

Critical Acclaim for

SQL: Practical Guide for Developers

The book lives up to its title: it is a very practical guide. The authors clearly know their SQL
and manage to write about the language in a step-by-step style that progresses smoothly
from the simple to the more difficult aspects of the language. The profuse use of examples,
each with an accompanying motivation and explanation of the results, lets the reader follow
even complex topics without a constant struggle. The authors have even included examples
that illustrate common errors programmers make, explaining the right way to perform the
task. It doesn’t hurt that the sample application is based on something everybody uses every
day: food.

I especially enjoyed the manner in which the authors explained the rationale behind most
of the SQL facilities. Even though they have not been an active part of the standard’s devel-
opment efforts, their insight into the underlying reasons for a feature’s inclusion is spot
on. They also do an excellent job of explaining complex sets of rules in easily understood
language—I learned new ways of understanding some of the very rules that I personally
wrote into the standard!

Each chapter ends with a summary of the principle points, and most of them include prac-
tical advice for programmers who intend to use the SQL language features described in the
chapter. The inclusion at every chapter’s end of a set of questions and exercises—all directly
relevant to the chapter’s material—makes this book an excellent candidate for use in the
classroom.
– Jim Melton, Oracle Corporation, Editor of ISO/IEC 9075-* (SQL) and Co-Chair, W3C XML
Query Working Group

This book provides a succinct yet complete introduction to the fundamental aspects of the
SQL language. It is not just another SQL text. The authors’ use of simple yet clear examples
to illustrate difficult concepts throughout the text makes this a perfect book for use in an
introductory database systems class as a supplement or as an introductory reference for
the novice practitioner.
– Paul Fortier, University of Massachusetts, Dartmouth

SQL: Practical Guide
for Developers

The Morgan Kaufmann Practical Guides Series
Series Editor, Michael J. Donahoo
SQL: Practical Guide for Developers
Michael J. Donahoo and Gregory D. Speegle

C# 2.0: Practical Guide for Programmers
Michel de Champlain and Brian G. Patrick

Multi-Tier Application Programming with PHP: Practical Guide for Architects
and Programmers
David Wall

TCP/IP Sockets in C#: Practical Guide for Programmers
David B. Makofske, Michael J. Donahoo, and Kenneth L. Calvert

Java Cryptography Extensions: Practical Guide for Programmers
Jason Weiss

JSP: Practical Guide for Java Programmers
Robert J. Brunner

JSTL: Practical Guide for JSP Programmers
Sue Spielman

Java: Practical Guide for Programmers
Zbigniew M. Sikora

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

TCP/IP Sockets in Java: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

TCP/IP Sockets in C: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

JDBC: Practical Guide for Java Programmers
Gregory D. Speegle

For further information on these books and for a list of forthcoming titles, please visit our
Web site at http://www.mkp.com/practical

SQL: Practical Guide
for Developers

Michael J. Donahoo

Gregory D. Speegle

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Publisher Diane Cerra
Publishing Services Manager Simon Crump
Project Manager Brandy Lilly
Editorial Assistant Asma Stephan
Cover Design Yvo Riezebos
Cover Image Getty Images
Composition Cepha Imaging Pvt. Ltd.
Technical Illustration Dartmouth Publishing, Inc.
Copyeditor Graphic World Inc.
Proofreader Graphic World Inc.
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN-13: 978-0-1222-0531-6
ISBN-10: 0-12-220531-6

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
05 06 07 08 09 5 4 3 2 1

Contents

1 Databasics 1
1.1 Tables 3
1.2 Data Types 4

1.2.1 Character String 4
1.2.2 Numeric 5
1.2.3 Temporal 6
1.2.4 Binary 7
1.2.5 Boolean 8
1.2.6 Other Data Types 8

1.3 NULL 8
1.4 Primary Key 9
1.5 Table Relationships 9

1.5.1 Foreign Key 10
1.5.2 Relationship Types 11
1.5.3 Schemas 14

1.6 Restaurant Database 15
1.7 Wrap Up 21

2 Retrieval: Basic SELECTion 27
2.1 Simple SELECT 27
2.2 Selecting Rows 30
2.3 Standard Comparison Operators 30
2.4 String Comparisons 31
2.5 Matching String Patterns with LIKE 33
2.6 Getting What We Haven’t Got with NOT 34

vii

viii Contents ■

2.7 Combining Conditions with AND and OR 35
2.8 Selecting a Range of Values with BETWEEN 37
2.9 Selecting a Set of Values Using IN 38
2.10 IS NULL: Exploring the Unknown 38
2.11 ANDs, ORs, NOTs with NULLs: Three-Valued Logic 41
2.12 Three-Valued Logic and the IN Operator 42
2.13 How WHERE Determines What’s In and Out 43
2.14 Wrap Up 43

3 Reshaping Results 47
3.1 AS: Naming Result Table Columns 47
3.2 DISTINCT and ALL: Dealing with Duplicates 48
3.3 Derived Attributes 50

3.3.1 Numeric 50
3.3.2 Character String 52
3.3.3 Temporal 57
3.3.4 Binary 59

3.4 Computation in the WHERE Clause 60
3.5 ORDER BY: Ordering Result Table Traversal 61
3.6 CAST: Data Type Conversion 64
3.7 CASE, COALESCE, and NULLIF: Conditional Expressions 66

3.7.1 CASE: Value List 66
3.7.2 CASE: Conditional List 67
3.7.3 NULLIF 69
3.7.4 COALESCE 70

3.8 Wrap Up 70

4 Aggregating Results 75
4.1 Aggregation Functions 75

4.1.1 AVG and SUM 75
4.1.2 MIN and MAX 76
4.1.3 COUNT 77

4.2 Removing Rows before Aggregation with WHERE 78
4.3 Removing Repeating Data with DISTINCT before Aggregation 79
4.4 Mixing Attributes, Aggregates, and Literals 79
4.5 Group Aggregation Using GROUP BY 80
4.6 Removing Rows before Grouping with WHERE 82
4.7 Sorting Groups with ORDER BY 83
4.8 Removing Groups with HAVING 83
4.9 Aggregates over Expressions 85
4.10 Wrap Up 87

■ Contents ix

5 Joins 91
5.1 Two Table Joins with WHERE 91
5.2 Table Aliases 94
5.3 Joins Needing More Than Two Tables 95
5.4 Self-Join: Joining a Table with Itself 97
5.5 Example Joins 97
5.6 How Does a Join Really Work? 99
5.7 Theta Joins: Generalizing Join Predicates 101
5.8 JOIN Operator 104

5.8.1 INNER JOIN 104
5.8.2 OUTER JOIN 106
5.8.3 NATURAL JOIN 109
5.8.4 CROSS JOIN 111

5.9 Join Strategies 111
5.10 Wrap Up 112

6 Set Queries: UNION, INTERSECT, and EXCEPT 117
6.1 UNION 117
6.2 INTERSECT 120
6.3 EXCEPT 121
6.4 Wrap Up 124

7 Subqueries 127
7.1 What Are Subqueries? 127
7.2 Multilevel Subquery Nesting 132
7.3 Subqueries Using NOT IN 134
7.4 Subqueries with Empty Results 136
7.5 Combining JOIN and Subqueries 137
7.6 Standard Comparison Operators with Lists Using ANY, SOME,

or ALL 138
7.6.1 ANY or SOME 139
7.6.2 ALL 142

7.7 Correlated Subqueries 144
7.8 EXISTS 146
7.9 Derived Relations—Subqueries in the FROM Clause 148
7.10 Subqueries in the HAVING Clause 150
7.11 Subset Queries 151

7.11.1 Subset Using EXISTS and EXCEPT 152
7.11.2 Subset Using Set Cardinality 155
7.11.3 Comparing Set Cardinality and Subsets 156

7.12 Subqueries in the SELECT Clause 157
7.13 Wrap Up 159

x Contents ■

8 Modifying Data 165
8.1 INSERT: Adding New Rows 165

8.1.1 INSERTing a Row with VALUES 165
8.1.2 INSERTing Multiple Rows with SELECT 168

8.2 DELETE: Removing Rows 169
8.3 UPDATE: Changing Row Values 171
8.4 Testing Your DELETE and UPDATE WHERE Conditions 174
8.5 Living within Constraints 174
8.6 Wrap Up 176

9 Creating, Deleting, and Altering Tables 179
9.1 Creating Simple Tables 179
9.2 DEFAULT Values 180
9.3 Constraints 181

9.3.1 NOT NULL 181
9.3.2 UNIQUE 182
9.3.3 PRIMARY KEY 183
9.3.4 FOREIGN KEY 184
9.3.5 CHECK 185
9.3.6 Naming Constraints 186

9.4 Creating a Table from Tables 187
9.5 CREATE DOMAIN 188
9.6 Referential Actions: The Autopilot of Foreign Key

Maintenance 189
9.7 Indexes 190

9.7.1 CREATE INDEX 191
9.7.2 DROP INDEX 192
9.7.3 Indexes Are NOT in SQL 2003 192

9.8 DROP TABLE 192
9.9 ALTER TABLE 193
9.10 Generated Values 195
9.11 Sequences 195
9.12 Global and Local Temporary Tables 197
9.13 Creating a Database 198
9.14 Wrap Up 199

10 Views 205
10.1 Why Views? 206
10.2 Querying Views 207
10.3 Updating Views 209
10.4 DROP VIEW 211
10.5 Wrap Up 211

■ Contents xi

11 Transactions 215
11.1 Ending a Transaction—COMMIT and ROLLBACK 217
11.2 Starting a Transaction—START TRANSACTION 217
11.3 Auto-Commit 218
11.4 SAVEPOINTs 218
11.5 Immediate or Deferred Constraints 219
11.6 Testing Changes with Transactions 221
11.7 Transaction Characteristics 222
11.8 Locking Issues 223
11.9 Wrap Up 223

12 Database Privileges 227
12.1 GRANT 228
12.2 REVOKE 230
12.3 PUBLIC 230
12.4 Creating a Set of Privileges Using ROLEs 231
12.5 Using Privileges and Views 232
12.6 Wrap Up 233

13 Introduction to Cursors, Embedded SQL, Stored Procedures,
and Triggers 237
13.1 CURSORs 237
13.2 Programming with SQL 239

13.2.1 Stored Procedures 239
13.2.2 Executing SQL in Other Programming Languages 240

13.3 Triggers 243
13.3.1 CREATE TRIGGER 243
13.3.2 Trigger Firing Rules 245
13.3.3 DROP TRIGGER 245
13.3.4 Using Triggers 245

13.4 Wrap Up 246

Index 249

Preface

The value of the relational database is indisputable. It is by far the most commonly used,
modern database system. The primary language for relational databases is SQL, making
it the gateway to the data of the small business and corporate enterprise. Many of the
applications that you see on the Internet, in your local library, and so on, access and
manipulate their data using SQL.

Intended Audience

We wrote this book for technically competent readers who want a short, focused, and inex-
pensive introduction to the main features of SQL. Our general approach revolves around
creating the resource we have wished for in our classes. We believe that this book is
appropriate for both students and professionals.

This is not a guide to using a specific database product. We assume that you have
a database system installed and sufficient access privileges to perform the operations
described in this book. There are many database products readily available if you do
not have access to an existing one. Many such systems are available for download from
the Internet for trial or even free use. See the book Web site (http://www.mkp.com/
practical/sql) for a partial list of products.

Approach

Chapter 1 provides a general overview of basic relational database and SQL concepts.
It is not a comprehensive introduction to the database area; instead, it is intended to
introduce the terminology and concepts used in the book. Chapters 2 through 7 cover

xiii

xiv Preface ■

querying data. After reading these chapters, you should be able to answer a broad range
of queries on an existing database. Chapter 8 describes data creation and manipulation.
Chapters 9 and 10 deal with creation of the structures to represent stored data. Finally,
Chapters 11 through 13 address advanced database features such as transactions, security,
and database application development.

You may wish to begin your exploration of SQL with database creation instead of
querying an existing database. To take this approach in our book, begin by reading the
relational database and SQL introduction in Chapter 1. Next, read Chapter 9 on creating
database tables, followed by Chapter 8 on manipulating data. Skim over the creation and
population of tables from existing tables as these assume an understanding of database
querying. It will be easy to read these sections later. At this point, you should be able
to create a database and fill it with data. Next, read Chapters 2 through 7 on querying
your new database. Finally, read Chapters 11 through 13 to understand some advanced
database features.

Acknowledgments

We would like to thank all the people who helped make this book a reality. Despite the
book’s brevity, many hours went into reviewing the original proposal and the draft, and
the reviewers’ input has significantly shaped the final result.

We thank those who reviewed the original proposal and offered advice on what to
put in and what to leave out. We especially thank those who meticulously reviewed the
various drafts of the text and made suggestions for improvement. Any errors that remain
are, of course, our responsibility. We are very interested in weeding out such errors in
future printings, so if you find one, please send an email to either of us. We will maintain
an errata list on the book’s Web site.

We are also grateful to the folks at Morgan Kaufmann. They take a hands-on approach
to development that contributes significantly to the ultimate text quality. Diane Cerra, our
editor, worked hard to provide valuable guidance throughout this process. We are also
grateful to Lisa Royse, our production editor from Graphic World Publishing Services, who
has been very willing to work with us on the design and “look and feel” of the text; we hope
you like the result.

Feedback

We invite your suggestions for improvement of any aspect of this book. You can send
feedback via the book’s Web site (http://www.mkp.com/practical/sql), or you can send us
an email to the addresses below.

Michael J. Donahoo
Jeff_Donahoo@baylor.edu

Gregory D. Speegle
Greg_Speegle@baylor.edu

SQL: Practical Guide
for Developers

c h a p t e r 1

Databasics

A database is a repository designed for organizing and accessing information. For
simple data, management is easy. For example, a grocery list may be written on scratch
paper, and contact information may be kept in an address book. Both the scratch paper
and address book are examples of databases.

Grocery List
Milk
Bread

Coffee
SQL book

Name__________________________

Business
 address_______________________

City__________State_____Zip______

Address________________________

Home phone:____________________

Work phone:____________________

Fax:___________________________

Mobile:_________________________

Bob Feakins

123 Pine St

Dallas

(251)892-7367

(251)892-8193

(251)887-2391 (pager)

TX 78909

1

2 Chapter 1: Databasics ■

Basic lists may work for very simple databases. However, the limitations of this
approach can make even simple tasks difficult. Let’s look at our address book example
again. One problem is that it has space for information we don’t know/need (e.g., home
address), whereas it does not have space for information we need to know (e.g., pager
number). Searching presents another problem. An address book is typically organized
alphabetically by name. What if we want to search using some other criteria? Finding all
of our friends who live in a particular city requires an exhaustive search. Data entry and
maintenance can also be problematic. Paper-based address books are fine for a small set
of people; however, it would be very time-consuming to add all of the people in your com-
pany. Keeping up with the changes quickly becomes unmanageable. Another problem is
relating our paper-based address book with other databases. If we wanted to call all of
the individuals on our softball team, we would need to combine the information from our
team roster with our address book. Clearly, additional complexity makes it harder and
harder to effectively represent the various data relationships. Likewise, as the volume of
data increases, the complexity of managing and querying information grows.

Lucky for us, computers are especially adept at managing and quickly accessing infor-
mation. Software designed to store, manipulate, and retrieve data in a database is called a
Database management system (DBMS). Here, we focus exclusively on a specific (and by far
the most common) type of DBMS, the relational DBMS. There are many relational DBMSs
(see the book Web site for pointers to some examples). Fortunately, relational DBMSs speak
a common language called SQL. Using SQL, we can define, manipulate, and query our data.
SQL is correctly pronounced as S-Q-L; however, many people also pronounce it see-kwel.

This text is based on the ANSI 2003 SQL standard. NOTE: Each DBMS does things dif-
ferently, and no major DBMS follows the specification exactly. The specifics of a particular
DBMS can be found in its documentation. There are many reasons a DBMS may vary from
the standard, including performance, legacy, or marketing. Fortunately, the basic syntax
of SQL is the same for all DBMS. See the book Web site for information on DBMS-specific
syntax.

SQL is divided into three major parts. Data manipulation language (DML) is used to
store and retrieve data from the database. The majority of this book is on SQL DML, and
that will be the part of SQL used by the most people. Data description language (DDL) is
used to define the structure of the data. Chapters 9 and 10 cover the basics in SQL DDL.
Data control language (DCL) is used to restrict access to data by certain users. We introduce
DCL in Chapter 12.

We assume that you have a DBMS already installed and are able to enter SQL com-
mands. Consult your DBMS documentation for instructions on how to do this. If you do
not have a DBMS, consider downloading one from the Internet. There are some free rela-
tional databases, and several commercial DBMSs provide a free version of their product
for experimentation. See the book Web site for suggestions of DBMSs.

The best way to understand how a relational database works is to consider a spe-
cific application. Imagine that you are the proud owner of a restaurant named Garden
Variety Salads. You need to manage information about a variety of real-world entities to
run your establishment. For example, you need to maintain a list of food items so your
customers will have something to purchase. Each food item is made from one or more

■ 1.1 Tables 3

different ingredients, such as lettuce, tomatoes, and so on. You also want to track how
much each ingredient costs so you can determine how much to charge and how much
profit you’re making. If you don’t want to grow the ingredients yourself, you should keep
a list of vendors.

Let’s look at representing this information in a relational database called the
Restaurant Database. Our design is contrived solely for the purpose of teaching SQL, not
database design. Proper database design is a difficult problem, well beyond the scope of
this text. Most introductory database texts address design.

1.1 Tables

In the relational model, a database contains a set of tables. A table is made up of rows and
columns. Each table has a name, which is unique within the database. Each column has a
name and a data type. We discuss data types in the next section. The name of a column
need only be unique within a table so other tables in the same database can have columns
of the same name. Each row constitutes one record in the table. A table may contain zero
or more rows. A row is subdivided into fields, one per column. Tables may be used to
model real-world objects and relationships.

Let’s look at an example table. In our Restaurant Database, we record information
about the suppliers of our ingredients in a table named vendors.

vendors

companyname

Veggies_R_Us

Don’s Dairy

Flavorful Creams

"Fruit Eating" Friends

Ed’s Dressings

Spring Water Supply

repfname

Candy

Marla

Sherman

Gilbert

Sam

Gus

replname

Corn

Milker

Sherbert

Grape

Sauce

Hing

vendorid

VGRUS

DNDRY

FLVCR

FRTFR

EDDRS

SPWTR

referredby

NULL

VGRUS

VGRUS

FLVCR

FRTFR

EDDRS

table name

row

attribute
column

field

FK

Each row in the vendors table records information about a particular vendor. For example,
the row with a vendorid of VGRUS is a record representing the vendor named Veggies_R_Us.
The attributes that we wish to record for each vendor are represented by the five columns
of the vendors table: a unique vendor identifier (vendorid), the name of the vendor
(companyname), the first and last name of the vendor representative (repfname and
replname), and an identifier for the vendor (referredby) who recommended this vendor.

Not everybody uses the same terminology. A table may also be called a relation.
Technically, a table and a relation are not exactly the same thing. Unlike a table, a relation

4 Chapter 1: Databasics ■

cannot contain duplicate rows. A row is sometimes called a tuple. Finally, a column may
also be called an attribute of the relation. A table may be represented by its name followed
by a comma-delimited list of columns:

vendors(vendorid, companyname, repfname, replname, referredby)

We refer to individual columns of a table using the tablename.columnname notation (e.g.,
vendors.vendorid).

1.2 Data Types

Every column has a declared data type, which specifies what kind (e.g., characters, num-
bers, time, etc.) of information may be contained in the column. Your DBMS may not
support all of these types, and it may have some additional types as well. Consult
your DBMS documentation for details. We divide the SQL data types into five categories:
character string, numeric, temporal, binary, and boolean.

1.2.1 Character String

Attributes such as names and addresses are typically represented by strings of characters
(e.g., 'Bob Smith'). There are many database types for character strings. The most common
are as follows:

CHARACTER[(L)] specifies a fixed-length character string containing exactly L characters.
If the length is not specified, SQL uses a length of 1. If the string contains fewer than
L characters, the remaining characters contain padding characters (usually spaces).
CHARACTER may be abbreviated as CHAR.

CHARACTER VARYING(L) specifies a variable-length character string that may hold up
to L characters. Only the specified characters are stored so there is no padding.
CHARACTER VARYING may be abbreviated as CHAR VARYING or, most often,
VARCHAR.

String literals are enclosed in single quotes (e.g., 'Bob'). A single quote within a literal is
indicated by two single quotes (e.g., 'Bob"s Car').

The inclusion of trailing spaces is the primary difference between CHAR and
VARCHAR. For example, vendorid is defined as CHAR(5) and repfname is defined as
VARCHAR(20). Assume we add a row such as the following:

BOB Bob’s Bakery Bob Bobson VGRUS

to vendors. Because vendorid is CHAR(5), two extra spaces are stored. However, repfname
is VARCHAR(20), so no extra spaces are added. This also makes a difference when we
retrieve data from the database. The vendorid 'BOB��' will match 'BOB' or 'BOB��', but
the repfname 'Bob' will not match 'Bob��'.

■ 1.2 Data Types 5

The default character set for your DBMS may be limited in the kinds of characters it
can represent. For example, if your DBMS uses the ASCII (American Standard Code for Infor-
mation Interchange) character encoding, it can only represent English characters. Unfor-
tunately, this doesn’t work well for internationalization. The national character string
type can represent internationalized character sets such as Unicode. The fixed-length
national character string type is NATIONAL CHARACTER (abbreviated NATIONAL CHAR
or NCHAR). The variable-length national character string type is NATIONAL CHARACTER
VARYING (abbreviated NATIONAL CHAR VARYING or NCHAR VARYING). String literals for
NATIONAL CHARACTER types are prefixed with an N (e.g., N'Bob').

Most DBMSs place an upper limit on the size of a character string. To store large
strings, SQL provides the CHARACTER LARGE OBJECT data type (abbreviated as CHAR
LARGE OBJECT or CLOB). SQL allows the use of the national character string encoding with
NATIONAL CHARACTER LARGE OBJECT (abbreviated NCHAR LARGE OBJECT or NCLOB).

1.2.2 Numeric

SQL includes several different types to store numeric information, such as age and salary.
In specifying a numeric type, we need to consider three questions: 1) Are our data limited
to whole numbers, 2) What range of values do we wish to support, and 3) How much control
do we need over precision?

INTEGER, SMALLINT, and BIGINT—INTEGER, SMALLINT, and BIGINT store signed whole
numbers. The range of possible values is DBMS dependent; however, the range of
values for SMALLINT is less than or equal to the range of value for INTEGER, which
is less than or equal to the range of values for BIGINT. INTEGER may be abbreviated
as INT.

NUMERIC[(P [, S])] and DECIMAL[(P [, S])]—NUMERIC(P, S) specifies a signed, fixed-
point number where P (precision) specifies the total number (to the left and right
of the decimal) of digits in the number and S (scale) specifies the number of digits to
the right of the decimal place. For example, NUMERIC(5, 2) specifies a type ranging
from −999.99 to 999.99. DECIMAL(P, S) is the same as NUMERIC(P, S) except that the
actual precision may exceed the specification. For both NUMERIC and DECIMAL, if P
or S are not specified, default values will be used. DECIMAL may be abbreviated as
DEC.

REAL and DOUBLE PRECISION—REAL specifies a signed, single-precision, floating-point
number. The range is DBMS specific. DOUBLE PRECISION is the same as REAL except
it supports a greater range of values.

FLOAT[(P)]—FLOAT(P) specifies a signed, floating-point number with a precision of at
least P. Here P specifies the number of binary digits.

Numeric literals look like you would expect. For REAL, DOUBLE, and FLOAT, literals may be
written in exponential notation as nEp representing n × 10p where n is a signed, floating-
point number and p is a signed, whole number (e.g., 7.4E-3).

6 Chapter 1: Databasics ■

If you try to use a number with an absolute value that is too large for the data type,
the database should generate an exception. For example, an exception would be raised if
we tried to put −1000 into a NUMERIC(5,2) field. If you use a number with too many digits
to the right of the decimal point, the DBMS may either truncate or round the value. So,
placing 0.0001 into a NUMERIC(5,2) field results in a value of 0.00. A number with fewer
digits than the limit of the data type can be placed into a column without exception or
change. For example, 9.9 fits in a NUMERIC(5,2) field.

1.2.3 Temporal

SQL provides several data types specific to storing information about temporal infor-
mation. Representing and utilizing data and time information can be complicated with
considerations of time zone, daylight savings time, and so on. As a result, temporal data
tend to be more DBMS specific than other types. If the syntax presented here does not
work on your database, check your DBMS documentation. SQL divides its temporal types
into two categories: datetime and interval. We begin by looking at the date and time types
in SQL.

Datetime
Datetime types store date, time information, or both.

Type Stores Literal

DATE year, month, day DATE 'YYYY-MM-DD'

TIME hour, minute, and second TIME 'HH:MM:SS'

TIMESTAMP year, month, day, hour, TIMESTAMP 'YYYY-MM-DD HH:MM:SS'
minute, and second

Seconds may contain fractional values (e.g., 32.456 seconds). An optional precision for
fractional seconds may be given for TIME and TIMESTAMP. TIME and TIMESTAMP may
include time zone information. Consult your DBMS documentation for details on WITH
TIMEZONE.

Use DATE for columns where you do not care about the time of an event, only the
specific day (e.g., birthday). Use TIME type where you do not care about the date, only
the specific time. An example is the time of a college class, which might be at 8 am on
Tuesday and Thursday for a semester. TIMESTAMP covers the other cases. An example of
a TIMESTAMP might be the time when an order is placed. In this case, we want to know
both the date and the time.

Interval
In addition to dates and times, SQL can represent time intervals. Such a data type might
be useful for representing concepts such as a warranty period (e.g., 90 days). Interval data

■ 1.2 Data Types 7

types come in two flavors:

Year–Month—Interval expressed in years and/or months. A Year–Month interval data type
can be INTERVAL YEAR, INTERVAL MONTH, or INTERVAL YEAR TO MONTH.

Day–Time—Interval expressed in days, hours, minutes, and/or seconds. A Day–Time
interval data type is of the following form:

INTERVAL <start interval value> [TO <stop interval value>]

where the possible interval values are DAY, HOUR, MINUTE, and SECOND. If the optional
<stop interval value> is specified, it must be an interval with a smaller granularity than the
<start interval value>. For example, if the <start interval value> is HOUR, the only valid
values for the <stop interval value> are MINUTE and SECOND.

Creating an interval literal is a two-step process. First, determine the interval type
(e.g., DAY TO MINUTE). Second, place an interval literal string between INTERVAL and the
interval value range specification. Here are some example interval literals:

Type Example Literal Description

Year–Month INTERVAL '5' YEAR 5 years

INTERVAL '2' MONTH 2 months

INTERVAL '3-1' YEAR TO MONTH 3 years and 1 month

Day–Time INTERVAL '5 10:30:22.5' DAY TO SECOND 5 days, 10 hours, 30 minutes, and
22.5 seconds

INTERVAL '-5' DAY 5 days ago

INTERVAL '2 18:00' DAY TO MINUTE 2 days and 18 minutes

1.2.4 Binary

Although everything on the computer is ultimately stored as binary data, SQL binary data
types are designed to store sequences of binary digits. Binary types differ from charac-
ter string and numeric types in that they are more limited in the allowable comparisons,
searches, and other functions. Common uses for binary types include storage of multi-
media, such as photographs, sounds, and movies, and storage of scanned images, as in a
document imaging and retrieval system.

BIT[(L)] specifies a fixed-length binary string containing exactly L bits. If the length, L,
is not specified, SQL uses a length of 1. The behavior for attempting to insert fewer
than L bits is system specific. Some systems will reject the insertion attempt; others
will pad with zeros.

BIT VARYING(L) specifies a variable-length binary string that may hold up to L bits.

8 Chapter 1: Databasics ■

BINARY LARGE OBJECT[(L)] specifies a large, variable-length binary string that may hold
up to L bytes. If the length, L, is not specified, the system default length is used.
BINARY LARGE OBJECT may be abbreviated as BLOB.

BIT and BIT VARYING literals may be written either in binary form—a single quote
enclosed sequence of 0s and 1s prefixed with a B (e.g., B'10110')—or hexadecimal form—a
single quote enclosed sequence of hexadecimal digits prefix with an X (e.g., X'3AF'). Note
that the 2003 SQL specification drops both BIT and BIT VARYING so systems supporting
these types may exclude them in future releases.

1.2.5 Boolean

Truth gets a category all its own in SQL with the BOOLEAN data type. The BOOLEAN data
type has three possible values: true, false, and unknown. The unknown value may sur-
prise those familiar with boolean types in most programming languages. We discuss the
unknown value in Section 2.8. BOOLEAN literals are (surprise) TRUE, FALSE, and UNKNOWN.
The BOOLEAN type is not widely supported, but it is hoped that it will be in the near future.

1.2.6 Other Data Types

Most DBMSs include a slew of custom data types (e.g., money, network, geometric). Using
such data types is convenient but may limit portability. Note that not all SQL standard
data types are supported by every DBMS. Consult your DBMS documentation for a list of
supported types.

1.3 NULL

What if a particular attribute for a row isn’t known? A value may be unknown because
there is no applicable value, the value is currently missing, or the value is purposefully
omitted. Let’s look more carefully at the referredby column in the vendors table. For each
vendor, this field contains the identifier of the recommending vendor. Flavorful Creams
was recommended to you by Veggies_R_Us so the referredby field of the row in vendors
for Flavorful Creams contains the value VGRUS. What value should referredby contain for
a vendor without a recommendation? We could try to pick a special identifier value to
indicate that the referredby identifier is not valid (say, XXXXX); however, we would need
to ensure that this identifier could never be a valid vendor identifier. Also, any application
using this database would have to know about this special identifier and enforce its special
meaning.

To avoid these difficulties, relational databases provide a special value, called NULL,
indicating that a field’s value is unknown. In the vendors table, referredby is NULL for
all vendors where we do not have a recommending vendor. Unless explicitly forbidden,
NULL is a valid value for a column of any data type. For example, NULL is a valid value
for a column of type NUMERIC. This means that NULL can be a valid value in a column

■ 1.5 Table Relationships 9

of type FLOAT. NULLs are a sticky subject, and how they are handled may not always be
obvious. We address the special status of NULLs whenever applicable.

1.4 Primary Key

The primary key of a table is a column or set of columns whose values uniquely identify
a row. Using the values of the primary key, we can refer to a specific row in a table. In the
vendors table, each vendor has a unique identifier, vendorid, which we use as the primary
key. If we declare a primary key on a table, the DBMS will enforce the following rules:

■ The value of a primary key for a particular row must be unique.

■ None of the primary key column values can be NULL.

Why is a primary key so important? Suppose we did not have this unique identity and
we wanted to change the company name for a representative named Bob Snitch. If there
are multiple representatives with this name, we have no way of knowing which Snitch is
which. By having a primary key like vendorid, we can tell our Snitches apart.

In this text, we indicate the column(s) of the primary key for a table with the symbol.
Note that a relational DBMS may allow tables to be created without primary keys; however,
good database design calls for a primary key in virtually all tables.

1.5 Table Relationships

A database typically contains several tables. Each table in a database usually has one or
more relationships to other tables in the database. In addition to the vendors table, your
restaurant application has a separate table of ingredients:

ingredients

ingredientid name unit unitprice foodgroup inventory vendorid FK

CHESE Cheese scoop 0.03 Milk 150 DNDRY
CHIKN Chicken strip 0.45 Meat 120 DNDRY
CRUTN Crouton piece 0.01 Bread 400 EDDRS
GRAPE Grape piece 0.01 Fruit 300 FRTFR
LETUS Lettuce bowl 0.01 Vegetable 200 VGRUS
PICKL Pickle slice 0.04 Vegetable 800 VGRUS
SCTDR Secret Dressing ounce 0.03 NULL 120 NULL
TOMTO Tomato slice 0.03 Fruit 15 VGRUS
WATER Water glass 0.06 NULL NULL SPWTR
SODA Soda glass 0.69 NULL 5000 SPWTR
WTRML Watermelon piece 0.02 Fruit NULL FRTFR
ORNG Orange slice 0.05 Fruit 10 FRTFR

10 Chapter 1: Databasics ■

Each ingredient used in your restaurant has a row in the ingredients table, and each ingre-
dient can be uniquely identified by its ingredientid, the primary key of ingredients. Each
row in ingredients also contains the identifier of the vendor that supplies it. The vendorid
in ingredients connects each row with the corresponding row in the vendors table. Note
that having columns with the same name in different tables doesn’t confuse SQL (e.g.,
vendorid in both vendors and ingredients). SQL does not require that related columns be
named the same, nor do columns named the same have to be related.

1.5.1 Foreign Key

A foreign key is a column or set of columns in a table that refers to a column or set of col-
umns in some (possibly the same) table. In the Restaurant Database, ingredients.vendorid
is a foreign key referencing vendors.vendorid. Consider the table excerpts in Figure 1.1.
The Grape ingredient has a vendorid of FRTFR, which refers to the vendor identifier
for “Fruit Eating” Friends. Veggies_R_Us provides two of the ingredients in the figure
example.

A foreign key depends on the row it is referencing in another table for completeness.
In the ingredients table, a vendorid attribute value makes little sense without a corre-
sponding row in the vendors table. For example, the vendorid for Cheese in ingredients
is DNDRY, which has little meaning unless we can find out information about the vendor
with that identifier. The table containing the foreign key is called the child table, and the
table containing the attribute(s) it references is called the parent table. The attribute(s)
values referenced in the parent table are required to be unique. Usually, these referenced
attributes are the primary keys of the parent table, but this is not a requirement. A foreign
key (or referential) integrity constraint requires that any foreign key value in a child table
must have one of the following characteristics:

■ Have a matching value in the parent table OR

■ Be NULL

GRAPE

LETUS

PICKL

SCTDR

ingredientid

FRTFR

VGRUS

VGRUS

NULL

vendorid

Grape

Lettuce

Pickle

Secret Dressing

name

EGPLT FAKVDEggplant

Flavorful Creams

"Fruit Eating" Friends

Veggies_R_Us

companyname

FLVCR
FRTFR
VGRUS

vendorid

vendors
ingredients

referredby

VGRUS
FLVCR
NULL

Violates Foriegn Key Constraint

FK
FK

Figure 1.1: Foreign keys.

■ 1.5 Table Relationships 11

Consider the tables in Figure 1.1. If we try to add a row for the ingredient eggplant with a
vendor identifier of FAKVD, the DBMS will not allow the addition because the vendorid value
FAKVD does not exist in the vendors table. Note that several rows in the child (ingredients)
table may reference the same row in the parent (vendors) table.

If a foreign key is declared, the DBMS will enforce the foreign key integrity constraint
by never allowing the existence of a violating row in the child table. Like the primary key,
a foreign key may have multiple attributes. Foreign keys can even refer to attributes in
the same table. For example, vendors.referredby is a foreign key to vendors.vendorid (see
Figure 1.1). Here the DBMS will not allow a row containing a value for referredby that does
not already exist in the vendorid column of vendors.

1.5.2 Relationship Types

There are three basic types of relationships between tables: one-to-many, many-to-many,
and one-to-one.

One-to-Many
In a one-to-many relationship between tables T1 and T2, each row from T1 relates to
zero or more rows in T2, and each row in T2 relates to at most one row in T1. To model
this relationship, T2 will have a foreign key referencing attributes in T1. For the Restau-
rant Database, the relationship between vendors and ingredients is one-to-many. Each
vendor can supply many different ingredients; however, an ingredient may be supplied
by at most one vendor. Figure 1.2 shows the one-to-many relationship between vendors

FK

CHESE
CHIKN
CRUTN
GRAPE
LETUS
PICKL
SCTDR
TOMTO
WATER
SODA
WTRML
ORNG

ingredients

ingredientid

DNDRY
DNDRY
EDDRS
FRTFR
VGRUS
VGRUS
NULL
VGRUS
SPWTR
SPWTR
FRTFR
FRTFR

vendorid

VGRUS
DNDRY
FLVCR
FRTFR
EDDRS
SPWTR

vendorid

vendors

Figure 1.2: One-to-many relationship between vendors and ingredients.

12 Chapter 1: Databasics ■

and ingredients. Each row from ingredients contains the identifier of the supplying vendor
(or NULL). A particular vendor identifier can show up in multiple ingredient rows. For
example, you get cheese from the vendor with identifier DNDRY. Looking up DNDRY in
the vendors table, we see the name of the cheese vendor is Don’s Dairy. To find the ingre-
dients provided by Veggies_R_Us, first look up its vendor identifier in the vendors table
(i.e., VGRUS) and then look up the ingredients for that vendor identifier in the ingredients
table. We make the vendorid attribute in ingredients a foreign key to the vendorid attribute
in vendors to enforce this relationship.

A vendor can exist without providing any ingredients. Such a vendor will have a row
in the vendors table but no matching rows in the ingredients table. In the vendors table,
the Flavorful Creams vendor does not provide any ingredients. Conversely, an ingredient
may exist without a vendor. In this case, the vendorid attribute in the ingredients table
will be NULL. Your Secret Dressing ingredient doesn’t have a vendor because you make it
yourself.

The vendors table also participates in a one-to-many relationship with itself. A vendor
may recommend many other vendors; however, a vendor may be recommended by at most
one vendor. To represent this one-to-many relationship, vendors.referredby is a foreign
key that references vendors.vendorid.

Many-to-Many
In a many-to-many relationship between tables T1 and T2, each row from T1 relates to zero
or more rows in T2, and each row in T2 relates to zero or more rows in T1. To make money,
you need some food items to sell to customers. To represent this, our Restaurant Database
contains a table of items. Each item is made from many ingredients, and each ingredient
can be used in many items. Consequently, we have a many-to-many relationship between
items and ingredients. Let’s first look at the items table.

items

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13

FRTSD Fruit Salad 3.45 2000-05-06

GDNSD Garden Salad 0.99 2001-03-02

MILSD Millennium Salad NULL 2002-08-16

SODA Soda 0.99 2003-02-06

WATER Water 0.00 2002-05-19

FRPLT Fruit Plate 3.99 2000-09-02

Each item has an item identifier, itemid, the primary key for the items table. Each item also
has a full name, a menu price, and the date the item was added to the menu. To express

■ 1.5 Table Relationships 13

the many-to-many relationship, we need some way to match items to ingredients and vice
versa. To do this, we create a new table, called a madewith table, that pairs ingredients
with items.

madewith

itemid FK ingredientid FK quantity

CHKSD CHESE 2

CHKSD CHIKN 4

CHKSD LETUS 1

CHKSD SCTDR 1

FRTSD GRAPE 10

FRTSD WTRML 5

GDNSD LETUS 4

GDNSD TOMTO 8

FRPLT WTRML 10

FRPLT GRAPE 10

FRPLT CHESE 10

FRPLT CRUTN 10

FRPLT TOMTO 8

WATER WATER 1

SODA SODA 1

FRPLT ORNG 10

For each ingredient in an item, the madewith table has a row containing the corre-
sponding item and ingredient identifiers. A table like madewith that links rows from one
table to another is called a join table. Figure 1.3 shows the many-to-many relationship
between ingredients and items. The Chicken Salad item has 4 ingredients, represented by
4 rows in madewith with an itemid of CHKSD. The Cheese ingredient is used in two items,
represented by 2 rows in madewith with an ingredientid of CHESE.

You can see that the relational model doesn’t have explicit many-to-many relation-
ships. It implements a many-to-many relationship using 2 one-to-many relationships.
To record how much of each ingredient to include in an item, we add a quantity attribute.
For example, each fruit salad has 10 grapes and 5 watermelon cubes.

The primary key for madewith consists of two attributes: itemid and ingre-
dientid. As you might suspect, madewith.ingredientid is a foreign key referencing
ingredients.ingredientid, and madewith.itemid is a foreign key referencing items.itemid.
Given these primary and foreign keys, the DBMS will enforce the following constraints for
the madewith table:

■ Every itemid, ingredientid pair in a madewith must be unique (primary key).

■ Neither the itemid nor the ingredientid column may contain NULL (primary key).

■ Any itemid/ingredientid value must already exist in the item/ingredient table
(foreign key).

14 Chapter 1: Databasics ■

FK

CHKSD
FRTSD
GDNSD
MILSD
SODA
WATER
FRPLT

items

itemid

CHKSD
CHKSD
CHKSD
CHKSD
FRTSD
FRTSD
GDNSD
GDNSD
FRPLT
FRPLT
FRPLT
FRPLT
FRPLT
WATER
SODA
FRPLT

madewith

itemid ingredientid

CHESE
CHIKN
LETUS
SCTDR
GRAPE
WTRML
LETUS
TOMTO
WTRML
GRAPE
CHESE
CRUTN
TOMTO
WATER
SODA
ORNG

CHESE
CHIKN
CRUTN
GRAPE
LETUS
PICKL
SCTDR
TOMTO
WATER
SODA
WTRML
ORNG

ingredients

ingredientidFK

Figure 1.3: Many-to-many relationship between ingredients and items.

One-to-One
Usually, one-to-one relationships are represented by attributes within a single table. That
is, all of the attributes of a table exhibit a natural one-to-one relationship. In the vendors
table, a row relates one vendor identifier to one company name to one representative.

In a one-to-one relationship between tables T1 and T2, each row from T1 relates to at
most one row in T2 and vice versa. In reality, a one-to-one relationship between tables is
often just a special case of a one-to-many relationship.

1.5.3 Schemas

The collection of tables and other data description objects in a database is called the
schema. We populate the database by adding data to the tables in the schema. Note that
the schema does not include the data but only the description of the data. Whereas we
expect the data to change often (with every insert, update, and delete), the schema of a
database should change infrequently.

■ 1.6 Restaurant Database 15

FK

FK

FK

FK

FK

FK

mealid

itemid

quantity

discount

partof

itemid

ingredientid

quantity

madewith

ingredientid

ingredients

name

unit

unitprice

foodgroup

inventory

vendorid

vendorid

companyname

repfname

replname

referredby

name

description

mealid

meals

name

price

dateadded

itemid

menuitems

slogan

ads

vendors

Figure 1.4: Schema for the Restaurant Database.

1.6 Restaurant Database

We present the schema and data for our sample Restaurant Database. Figure 1.4 gives an
overview of the Restaurant Database by showing the tables and relationships. This section
will be useful as a reference so note where it is. To help find it again, this particular page
is 2 microns1 taller and wider than all of the other pages, which should make it stick out.

vendors—Vendors who supply ingredients for the restaurant.

Column Type Description

vendorid CHAR(5) Unique vendor identifier

companyname VARCHAR(30) Vendor company name

repfname VARCHAR(20) Vendor representative first name

replname VARCHAR(20) Vendor representative last name

referredby FK CHAR(5) Identifier of vendor that referred this vendor to you. Foreign
key referencing vendors.vendorid

1Because of variations in the publishing process, page widths may vary up to 125 microns.

16 Chapter 1: Databasics ■

vendors

vendorid companyname repfname replname referredby FK

VGRUS Veggies_R_Us Candy Corn NULL
DNDRY Don’s Dairy Marla Milker VGRUS
FLVCR Flavorful Creams Sherman Sherbert VGRUS
FRTFR "Fruit Eating" Friends Gilbert Grape FLVCR
EDDRS Ed’s Dressings Sam Sauce FRTFR
SPWTR Spring Water Supply Gus Hing EDDRS

ingredients—Ingredients provided by vendors for use in items.

Column Type Description

ingredientid CHAR(5) Unique ingredient identifier

name VARCHAR(30) Ingredient name

unit CHAR(10) Ingredient serving size

unitprice NUMERIC(5,2) Cost of an ingredient serving

foodgroup CHAR(15) Ingredient food group

inventory INTEGER Number of available ingredient servings

vendorid FK CHAR(5) Identifier of vendor supplying ingredient. Foreign key

referencing vendors.vendorid

ingredients

ingredientid name unit unitprice foodgroup inventory vendorid FK

CHESE Cheese scoop 0.03 Milk 150 DNDRY
CHIKN Chicken strip 0.45 Meat 120 DNDRY
CRUTN Crouton piece 0.01 Bread 400 EDDRS
GRAPE Grape piece 0.01 Fruit 300 FRTFR
LETUS Lettuce bowl 0.01 Vegetable 200 VGRUS
PICKL Pickle slice 0.04 Vegetable 800 VGRUS
SCTDR Secret Dressing ounce 0.03 NULL 120 NULL
TOMTO Tomato slice 0.03 Fruit 15 VGRUS
WATER Water glass 0.06 NULL NULL SPWTR
SODA Soda glass 0.69 NULL 5000 SPWTR
WTRML Watermelon piece 0.02 Fruit NULL FRTFR
ORNG Orange slice 0.05 Fruit 10 FRTFR

■ 1.6 Restaurant Database 17

items—Basic items for sale to customers.

Column Type Description

itemid CHAR(5) Unique item identifier

name VARCHAR(30) Item name

price NUMERIC(5,2) Item price

dateadded DATE Date item added to menu

items

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13

FRTSD Fruit Salad 3.45 2000-05-06

GDNSD Garden Salad 0.99 2001-03-02

MILSD Millennium Salad NULL 2002-08-16

SODA Soda 0.99 2003-02-06

WATER Water 0.00 2002-05-19

FRPLT Fruit Plate 3.99 2000-09-02

madewith—Item ingredients: Join table for the many-to-many relationship between
ingredients and items.

Column Type Description

itemid FK CHAR(5) Identifier of item that uses the ingredient. Foreign key referencing
items.itemid.

ingredientid FK CHAR(5) Identifier of ingredient used in the item. Foreign key referencing
ingredients.ingredientid.

quantity INTEGER Number of units of specified ingredient to use in item.

madewith

itemid FK ingredientid FK quantity

CHKSD CHESE 2

CHKSD CHIKN 4

CHKSD LETUS 1

CHKSD SCTDR 1

FRTSD GRAPE 10

FRTSD WTRML 5

GDNSD LETUS 4

GDNSD TOMTO 8

FRPLT WTRML 10

FRPLT GRAPE 10

FRPLT CHESE 10

FRPLT CRUTN 10

Continued on next page

18 Chapter 1: Databasics ■

madewith (cont’d)

itemid FK ingredientid FK quantity

FRPLT TOMTO 8

WATER WATER 1

SODA SODA 1

FRPLT ORNG 10

meals—A meal is a collection of items. To entice customers to buy more food, you combine
items together into a meal and sell it at a discount. For example, our Chicken N Suds
meal combines a chicken salad with a soda.

Column Type Description

mealid CHAR(5) Unique meal identifier

name CHAR(10) Meal name

meals

mealid name

CKSDS Chicken N Suds

VGNET Vegan Eatin’

partof—Meal items: Join table for the many-to-many relationship between meals and
items.

Column Type Description

mealid FK CHAR(5) Identifier of meal that includes the item. Foreign key referencing
meals.mealid.

itemid FK CHAR(5) Identifier of item to be used in the meal. Foreign key referencing
items.itemid.

quantity INTEGER Number of specified items to use in meal.
discount DECIMAL(2,2) Percentage discount for item when part of this meal. To compute

the price of a meal, sum the discounted individual price of all
items. For example, Chicken N Suds meal costs

2.85 * 98% + 0.99 * 90% = 3.68.

partof

mealid FK itemid FK quantity discount

CKSDS CHKSD 1 0.02

CKSDS SODA 1 0.10

VGNET GDNSD 1 0.03

VGNET FRTSD 1 0.01

VGNET WATER 1 0.00

■ 1.6 Restaurant Database 19

ads—Possible advertising slogans for the restaurant.

Column Type Description

slogan CHAR(50) Advertising
slogan

ads

slogan

Grazing in style

NULL

Bovine friendly and heart smart

Where the grazin’s good

The grass is greener here

Welcome to the "other side"

menuitems—Combination of both meals and items to go on the restaurant menu. We
implement menuitems as a view (see Chapter 10).

Column Type Description

menuitemid CHAR(5) Item or meal identifier

name VARCHAR(30) Menu item name

price NUMERIC(5,2) Item price

menuitems

menuitemid name price

CHKSD Chicken Salad 2.85

CKSDS Chicken N Suds 3.68

FRPLT Fruit Plate 3.99

FRTSD Fruit Salad 3.45

GDNSD Garden Salad 0.99

MILSD Millennium Salad NULL

SODA Soda 0.99

VGNET Vegan Eatin’ 4.38

WATER Water 0.00

stores—Stores franchised across the country.

Column Type Description

storeid CHAR(5) Unique store identifier

street VARCHAR(25) Street address of the store

city VARCHAR(25) City of the store

state CHAR(2) U.S. state of the store

zip CHAR(10) U.S. zip code in XXXXX-XXXX format

operator VARCHAR(41) Name of the operator of the store (e.g., owner or the manager)

20 Chapter 1: Databasics ■

stores

storeid address city state zip manager

FIRST 1111 Main St. Waco TX 76798 Jeff Donahoo

#2STR 2222 2nd Ave. Waco TX 76798-7356 Greg Speegle

NDSTR 3333 3rd St. Fargo ND 58106 Jeff Speegle

CASTR 4444 4th Blvd San Francsico CA 94101-4150 Greg Donahoo

NWSTR NULL NULL TX NULL Man Ager

orders—Information about each order placed at every store. Each order that a customer
places is given a unique order number. Each item within an order is given a line
number, which is unique within the order. The menuitemid is not declared as a
foreign key to allow for future deletion of menu items.

Column Type Description

ordernumber INTEGER Unique order identifier

linenumber INTEGER Order line identifier for orders with multiple items that is

unique within an order

storeid FK CHAR(5) Identifier of the store where the order is placed. Foreign key

referencing store.storeid

menuitemid CHAR(5) Identifier of menu item ordered for this line number

price NUMERIC(5,2) Price of the menu item ordered

time TIMESTAMP Time and date the order was placed

orders

ordernumber linenumber storeid FK menuitemid price time

1 1 FIRST FRTSD 3.45 2005-01-26 13:46:04.188

1 2 FIRST WATER 0.00 2005-01-26 13:46:19.188

1 3 FIRST WATER 0.00 2005-01-26 13:46:34.188

2 1 FIRST CHKSD 2.85 2005-01-26 13:47:49.188

3 1 FIRST SODA 0.99 2005-01-26 13:49:04.188

3 2 FIRST FRPLT 3.99 2005-01-26 13:49:19.188

3 3 FIRST VGNET 4.38 2005-01-26 13:49:34.188

1 1 #2STR CKSDS 3.68 2005-01-26 14:02:04.188

1 2 #2STR CHKSD 2.85 2005-01-26 14:02:19.188

1 3 #2STR SODA 0.99 2005-01-26 14:02:34.188

1 4 #2STR GDNSD 0.99 2005-01-26 14:02:49.188

2 1 #2STR CHKSD 2.85 2005-01-26 14:04:04.188

2 2 #2STR SODA 0.99 2005-01-26 14:04:19.188

3 1 #2STR CHKSD 2.85 2005-01-26 14:05:34.188

3 2 #2STR FRPLT 3.99 2005-01-26 14:05:49.188

3 3 #2STR GDNSD 0.99 2005-01-26 14:06:04.188

1 1 NDSTR WATER 0.00 2005-01-26 14:14:04.188

1 2 NDSTR FRPLT 3.99 2005-01-26 14:14:19.188

■ 1.7 Wrap Up 21

orders (cont’d)

ordernumber linenumber storeid FK menuitemid price time

2 1 NDSTR GDNSD 0.99 2005-01-26 14:15:34.188

3 1 NDSTR VGNET 4.38 2005-01-26 14:16:49.188

3 2 NDSTR FRPLT 3.99 2005-01-26 14:17:04.188

3 3 NDSTR FRTSD 3.45 2005-01-26 14:17:19.188

3 4 NDSTR SODA 0.99 2005-01-26 14:17:34.188

1 1 CASTR CHKSD 2.85 2005-01-26 14:22:04.188

1 2 CASTR GDNSD 0.99 2005-01-26 14:22:19.188

2 1 CASTR SODA 0.99 2005-01-26 14:23:34.188

2 2 CASTR FRTSD 3.45 2005-01-26 14:23:49.188

2 3 CASTR SODA 0.99 2005-01-26 14:24:04.188

2 4 CASTR VGNET 4.38 2005-01-26 14:24:19.188

3 1 CASTR VGNET 4.38 2005-01-26 14:25:34.188

3 2 CASTR FRPLT 3.99 2005-01-26 14:25:49.188

3 3 CASTR FRTSD 3.45 2005-01-26 14:26:04.188

3 4 CASTR WATER 0.00 2005-01-26 14:26:19.188

3 5 CASTR CHKSD 2.85 2005-01-26 14:26:34.188

1.7 Wrap Up

Like any language, the best way to learn is to use it over and over again. The way to
try SQL is to create a schema in a DBMS, load some data, and bang out some SQL. We
encourage executing each and every SQL statement in this book, experimenting with new
queries, and working the exercises at the end of each chapter. Unfortunately, each DBMS is
different. Even worse, how something is implemented in a particular DBMS changes with
new releases. Given this, we do not include DBMS specifics in this book; however, the book
Web site includes materials on the major DBMSs, such as scripts to create and populate
the Restaurant Database.

22 Chapter 1: Databasics ■

Review Questions

1. A row in a table can be uniquely identified by .

2. The includes the set of tables but not the data.

3. What is the difference between the literal 'Bob' stored as a CHAR(5) versus a
VARCHAR(5)?

4. Can an attribute of type INTEGER have the value NULL?

5. In the Restaurant Database, an item may have between and
ingredients.

6. If we added a new row to vendors in the Restaurant Database with vendorid = HMFDS,
give the list of all possible values for referredby.

7. In the Restaurant Database, would the DBMS allow a row in the vendors table with
a vendorid of NULL? Explain.

8. Give a type and an example literal for the following data:

Data Type Literal

Weight NUMERIC(5, 2) 129.3

Street

Birthday

Contract Length

Salary

Gender

9. What is the difference between a database and a DBMS?

10. In the Restaurant Database, give the name of all of the ingredients in the Vegan
Eatin’ meal.

11. If a vendor could be recommended by multiple vendors, how would our restaurant
schema change?

12. We must call our vendors to place new orders; unfortunately, we don’t know their
phone numbers. Of course, a vendor may have several phone numbers. For the
restaurant schema, how would you add the number and phone type (e.g., office,
home, cell, fax, etc.)? Assume that a phone number is assigned to only one vendor.

13. For your restaurant, you need to create a table for customers containing an iden-
tifier, name, number of visits, and percent discount. Give the column names and
data types of this table. What is the primary key of this new table?

■ Practice 23

14. In the Restaurant Database, we want to add 2 more scoops of cheese to the
Chicken Salad item. We could simply increase the value of the quantity field in
the madewith table for the row pairing Chicken Salad with cheese. Could we
also just add another row to madewith containing the values (CHKSD, CHESE, 2)?
Explain.

15. In the Restaurant Database, you have a new vendor, “Homemade Foods”, that makes
a single ingredient, “Homemade Bread”. Give the new rows to add to the various
tables to add this new information and include two slices of bread in the “Chicken
N Suds” meal.

16. Can any of the numeric fields have a negative value?

17. Provide an example of an attribute that would require a time interval.

18. In the Restaurant Database, can FRPLT be the name of an item?

19. Consider the ads table in the restaurant schema. Could we make slogan the primary
key? Explain.

20. Can a table have no rows?

21. Give a data type to represent a number without loss of precision that can range
from −1397 to 24892.99.

Practice

To practice SQL, we introduce a new database application. The Employees Database stores
information about a business, including employees, departments, and projects. Each
employee works for one department and is assigned many projects. Each department has
many employees, has many projects, and may be a subdepartment of one department
(e.g., Accounting is a subdepartment of Administration). Each project is assigned to one
department and is worked on by many employees. Figure 1.5 gives the schema for the
Employees Database.

employees—Employees who work for the company.

Column Type Description

employeeid NUMERIC(9) Unique employee identifier

firstname VARCHAR(10) Employee first name

lastname VARCHAR(20) Employee last name

deptcode FK CHAR(5) Identifier of department the employee works for. Foreign key
referencing departments.code

salary NUMERIC(9,2) Employee salary

24 Chapter 1: Databasics ■

FK

FK

FK

FK

FK

FK

deptcode

description

startdate

enddate

revenue

projectid

projects

projectid

employeeid

assignedtime

workson

firstname

lastname

deptcode

salary

employeeid

employees

name

managerid

subdeptof

code

departments

Figure 1.5: Schema for the Employees Database.

employees

employeeid firstname lastname deptcode FK salary

1 Al Betheleader ADMIN 70000.00

2 PI Rsquared ACCNT 40000.00

3 Harry Hardware HDWRE 50000.00

4 Sussie Software CNSLT 60000.00

5 Abe Advice CNSLT 30000.00

6 Hardly Aware NULL 65000.00

departments—Company departments.

Column Type Description

code CHAR(5) Unique department identifier

name VARCHAR(30) Department name

managerid FK NUMERIC(9) Identifier of employee who manages the department. Foreign
key referencing employees.employeeid

subdeptof FK CHAR(5) Code of department that includes this department as one
of its immediate subdepartments. Foreign key referencing
departments.code

■ Practice 25

departments

code name managerid FK subdeptof FK

ADMIN Administration 1 NULL

ACCNT Accounting 2 ADMIN

HDWRE Hardware 3 CNSLT

CNSLT Consulting 4 ADMIN

projects—Projects managed by company.

Column Type Description

projectid CHAR(8) Unique project identifier

deptcode FK CHAR(5) Identifier of department managing this project. Foreign key
referencing departments.code

description VARCHAR(200) Project description

startdate DATE Project start date

stopdate DATE Project stop date. NULL value indicates that the project is
ongoing

revenue NUMERIC(12, 2) Total project revenue

projects

projectid deptcode FK description startdate enddate revenue

EMPHAPPY ADMIN Employee Moral 2002-03-14 NULL 0.00

ADT4MFIA ACCNT Mofia Audit 2003-07-03 2003-11-30 100000.00

ROBOSPSE CNSLT Robotic Spouse 2002-03-14 NULL 242000.00

DNLDCLNT CNSLT Download Client 2005-02-03 NULL 18150.00

workson—Project employees: Join table for the many-to-many relationship between
employees and departments.

Column Type Description

employeeid FK NUMERIC(9) Identifier of employee working on a project. Foreign key refer-
encing employees.employeeid

projectid FK CHAR(8) Identifier of project that employee is working on. Foreign key
referencing projects.projectid

assignedtime DECIMAL(3,2) Percentage of time employee is assigned to project

26 Chapter 1: Databasics ■

workson

employeeid FK projectid FK assignedtime

2 ADT4MFIA 0.50

3 ROBOSPSE 0.75

4 ROBOSPSE 0.75

5 ROBOSPSE 0.50

5 ADT4MFIA 0.60

3 DNLDCLNT 0.25

1. What must be true about the values of projectid and deptcode in a row of the projects
table?

2. Can an employee who works on no projects be in this database?

3. Can an employee work on a project that is assigned to a department other than the
one he or she works for?

4. Describe the various relationships in the Employees Database. For example, employ-
ees has a one-to-many relationship with departments because an employee works
for one department and a department has many employees.

5. Which attributes in the departments table can be NULL?

6. Which is higher, the largest possible employee ID or the highest salary?

7. For each table, give an example of a new row that could be added.

8. Can a department be a subdepartment of itself? Explain.

9. Can an employee be assigned hours on a project that is not in the database? Explain.

10. Can the end date of a project precede the start date of the project?

11. Can the revenue of a project be negative?

c h a p t e r 2

Retrieval: Basic SELECTion

We start our discussion of SQL with the most basic operation: retrieving informa-
tion. Often, a database of interest already exists, complete with data, and we want to
query that data. As we’ve already noted, the best way to learn SQL is by doing it. You
should experiment with the example database as much as possible. Try the statements
from the book. Then make up some of your own. Scripts to create and populate the exam-
ple database are available from the book Web site. Chapter 9 covers creating a database
using SQL. If desired, you can skip to that chapter and return here after your database is
created.

In SQL the workhorse for data retrieval is the SELECT statement:

SELECT [DISTINCT | ALL] <select list>
FROM <table list>
[WHERE <row condition>]
[GROUP BY <group list>]
[HAVING <group condition>]
[ORDER BY <sort list>]

Section 3.2, p. 48

Section 2.1, p. 27

Section 2.2, p. 30

Section 3.5, p. 61

 Section 2.1, p. 27
and Section 5.1, p. 91

 Section 4.5, p. 80

 Section 4.6, p. 82

SELECT may look complex, but don’t be intimidated. You can do amazing things with the
simplest of queries.

2.1 Simple SELECT

At its simplest, you only need to tell SELECT two things: 1) the data attributes you want
and 2) the table where it should get it. Let’s start with a simple query. Suppose you wanted

27

28 Chapter 2: Retrieval: Basic SELECTion ■

to find the names of all individual items on your menu. In the Restaurant Database, this
information is contained in the name column of the items table.

Query 2.1 Find the names of all items

SELECT name
FROM items;

name

Chicken Salad
Fruit Salad
Garden Salad
Millennium Salad
Soda
Water
Fruit Plate

[7 row(s)]

This SQL statement fetches the values from a single column, name, from all of the rows in
the items table and displays the results.

To retrieve multiple columns, specify a comma-delimited list of column names.

Query 2.2 Find the name, item ID, and price of all items

SELECT name, itemid, price
FROM items;

name itemid price

Chicken Salad CHKSD 2.85
Fruit Salad FRTSD 3.45
Garden Salad GDNSD 0.99
Millennium Salad MILSD NULL
Soda SODA 0.99
Water WATER 0.00
Fruit Plate FRPLT 3.99

[7 row(s)]

The order in which the attributes are specified in the column name list determines the
order of attributes in the result. The presentation of a NULL value in a result is DBMS
specific.

What if we want all of the columns in a table? Typing them all is both painful and
error-prone. Fortunately, SQL provides * as a shorthand for all columns.

■ 2.1 Simple SELECT 29

Query 2.3 Find all items

SELECT *
FROM items;

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13
FRTSD Fruit Salad 3.45 2000-05-06
GDNSD Garden Salad 0.99 2001-03-02
MILSD Millennium Salad NULL 2002-08-16
SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19
FRPLT Fruit Plate 3.99 2000-09-02

[7 row(s)]

SQL has two types of comments. The first type begins with two minus signs ('–') and
ends with the end of the line. The second type begins with /*, ends with */, and can span
multiple lines.

/* This is a
multiline comment */

SELECT itemid – – This comment goes to the end of the line
FROM items;

Before we go on, there are several important things to note about SQL statements:

White space is not significant—For readability we break our statements into separate
lines, one for each part of the SQL statement; however, SQL would be just as happy if
we put the entire statement on the same line. We can also use multiple spaces, tabs,
or other white space characters to separate elements in the query.

SQL statements are not case sensitive—For readability we use uppercase for SQL key-
words and use lowercase for our table and column names; however, SQL is mostly
case insensitive for keywords and table/column names. Even if we create our table
as vendors, we can refer to it in SQL as vEnDOrS. Whereas SQL statements and
table/column names are case insensitive, character data may be sensitive to case,
such as when it is stored and compared. We will point out when character comparison
is case sensitive.

Semicolons are optional—SQL statements may be terminated by a semicolon. This is
useful for separating multiple SQL statements. Most DBMSs do not require a semi-
colon for the final (or, in the case of a single statement, only) statement. We include
semicolons in our examples for completeness.

SELECT generates a new table—Logically, the execution of a SELECT statement gener-
ates a new table, called the result table, with its own columns and rows. Although
your DBMS may not actually create the table, it is helpful to think about queries
this way.

30 Chapter 2: Retrieval: Basic SELECTion ■

2.2 Selecting Rows

Using basic SELECT/FROM, we can retrieve data from any table and even specify columns.
That’s nice, but what if we want to limit the rows in the result? SQL uses the WHERE
clause to specify the condition that a particular row must satisfy to be in the query result.
SQL provides many different operators for condition construction. Table 2.1 provides an
overview of these operators. We discuss each of these operators in detail in the following.

Operator Evaluates Usage

= Equal repfname = 'Bob'

>; < Greater/less than unitprice > 10

>=; <= Greater/less than or equal to inventory <= 5000

< > Not equal vendorid < > 3

[NOT] BETWEEN Between two values (inclusive) vendorid BETWEEN 'A' AND 'M'

IS [NOT] NULL Value is NULL referredby IS NULL

[NOT] LIKE Equal strings using wildcards (e.g., '%', '_') replname LIKE '%ith'

[NOT] IN Equal to any element in a list name IN ('Soda', 'Water')

NOT Negates a condition NOT itemid IN ('GDNSD', 'CHKSD')

Table 2.1: SQL Operators

2.3 Standard Comparison Operators

For starters, SQL provides the standard comparison operators: = (equal), < > (not equal),
> (greater than), < (less than), >= (greater than or equal), and <= (less than or equal).
Suppose we want to create a value menu of all items costing $0.99 or less.

Query 2.4 Find the names of items that cost $0.99 or less

SELECT name
FROM items
WHERE price <= 0.99;

name

Garden Salad
Soda
Water

[3 row(s)]

How does Query 2.4 work? To construct the result set, SQL begins by fetching the items
table specified in the FROM clause. Next, SQL goes through each row, evaluating the

■ 2.4 String Comparisons 31

WHERE condition. SQL eliminates any rows where price <= 0.99 does not evaluate to true.
Finally, SQL eliminates any columns not in the SELECT list. Note that the column list does
not necessarily need to contain the attribute(s) used in the WHERE clause.

In Query 2.4, we use a numeric literal, 0.99, for the price comparison. The specific
form of a literal depends on the needed data type. We discuss literal format for the various
data types in Chapter 1. Let’s look at a few examples. Literal strings in SQL must be enclosed
in single quotes ('). Let’s verify that our Cheese ingredient is in the correct food group.

Query 2.5 Find the ID and food group of ingredients named Cheese

SELECT ingredientid, foodgroup
FROM ingredients
WHERE name = 'Cheese';

ingredientid foodgroup

CHESE Milk

[1 row(s)]

Dates use a literal expressed as 'YYYY-MM-DD'.

Query 2.6 Find the food items added after 1999

SELECT *
FROM items
WHERE dateadded > '1999-12-31';

itemid name price dateadded

FRTSD Fruit Salad 3.45 2000-05-06
GDNSD Garden Salad 0.99 2001-03-02
MILSD Millennium Salad NULL 2002-08-16
SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19
FRPLT Fruit Plate 3.99 2000-09-02

[6 row(s)]

2.4 String Comparisons

How does SQL compare values to determine what is greater than, less than, or equal to? For
most data types, it is just what we expect. For character data, comparison is complicated
by issues such as collating sequences, case sensitivity, and padding. Unfortunately, the
result of string comparison is usually DBMS specific. Most DBMSs allow administrators to
configure each of these.

32 Chapter 2: Retrieval: Basic SELECTion ■

Collating sequence dictates how the system orders characters to allow character com-
parisons. '3' is obviously less than '4', but what about '5' and 'a'? ASCII (American
Standard Code for Information Interchange) is a commonly used collating sequence,
where '5' happens to be less than 'a'.

Case sensitivity determines whether character comparisons distinguish between upper-
case and lowercase. If comparisons are case sensitive, then the collating sequence
determines which case is smaller. Case sensitivity can have a significant impact
on query results. To avoid confusion, many SQL users will convert all strings to
uppercase or lowercase before comparison.

Padding determines how strings of different lengths are handled when compared. If
padding is enabled, then the shorter string is padded with the padding character
(usually space) so that both strings are the same length.

To compare two strings, SQL evaluates the strings character by character, starting at
the head of each string. If it finds two corresponding characters (e.g., the third character
of both strings) that are not equal, the string with the lowest character in the collating
sequence is less than the other string. If SQL runs out of corresponding characters before
finding two characters that do not match, then the strings are equal if they are the same
length; otherwise, the shorter string is less than the longer string. For example, consider
Query 2.7.

Query 2.7 Find all items with a name less than or equal to 'garden'

SELECT name
FROM items
WHERE name <= 'garden';

name

Chicken Salad
Fruit Salad
Fruit Plate

[3 row(s)]

Our result is from a database that is case insensitive. As expected, Garden Salad is not in
the results because garden is shorter and the comparison is case insensitive.

Recall that if a literal string contains the quote character ('), we quote it.

Query 2.8 Find the name of the representative for Don’s Dairy

SELECT repfname, replname
FROM vendors
WHERE companyname = 'Don"s Dairy';

repfname replname

Marla Milker

[1 row(s)]

■ 2.5 Matching String Patterns with LIKE 33

2.5 Matching String Patterns with LIKE

What if we cannot remember if a particular customer’s name is Bill, Phill, or Will? SQL pro-
vides wildcard-based, pattern-matching capabilities with the LIKE operator. SQL wildcard
characters include the following:

Wildcard Description

% matches any substring containing 0 or more characters

_ matches any single character

Use LIKE as you would the = operator, except the comparison string may contain wildcard
characters.

Query 2.9 Find the list of vendor representative first names that begin with 'S'

SELECT repfname
FROM vendors
WHERE repfname LIKE 'S%';

repfname

Sherman
Sam

[2 row(s)]

Case sensitivity and padding characters are determined by the DBMS configuration.
Without any wildcard characters, LIKE works just like =.

Let’s try a few examples using LIKE. Suppose you have the following list of character
strings: Ball, Beggy, Bill, Billy, ill, Meg, Phill, Philly, Peg, Peggy. Following are some example
LIKE expressions along with what they match:

LIKE Matches strings Matches

%ill ending in 'ill' Bill, ill, Phill

Peg% starting with 'Peg' Peg, Peggy

B%y starting with B and ending with y Beggy, Billy

_ill starting with any single character and ending in 'ill' Bill

B_ll starting with B and ending with 'll' with any single character in between Ball, Bill

%_ _ill_ starting with 2 or more characters and ending with 'ill' followed by any
single character

Philly

Other wildcard characters may be supported by your particular DBMS, so check your
documentation. In fact, some DBMSs allow regular expressions. The SQL standard

34 Chapter 2: Retrieval: Basic SELECTion ■

includes the operator SIMILAR TO, which works similarly to LIKE except it takes regular
expressions. Few DBMSs implement SIMILAR TO.

What about using LIKE to find strings containing wildcard characters? For example,
what if we wanted to find all strings containing an underscore character? We could try
LIKE '%_%', but this finds all strings containing 1 or more characters because SQL treats '_'
as a wildcard character. We need some way to turn a wildcard into a regular character.
To do this, SQL allows us to specify an escape character. Any character that immediately
follows an escape character is interpreted as a regular character, even if it is normally a
wildcard or even the escape character. We define '#' as the escape character in Query 2.10.

Query 2.10 Find all vendor names containing an '_'

SELECT companyname
FROM vendors
WHERE companyname LIKE '%#_%' ESCAPE '#';

companyname

Veggies_R_Us

[1 row(s)]

Because '#' is designated as the escape character, '_' is interpreted literally, not as a
wildcard. What if you want to search for the escape character? Escape it (e.g., '##').

2.6 Getting What We Haven’t Got with NOT

To fetch the rows that evaluate to false, prefix the condition with NOT.

Query 2.11 Find the name of all of the food items other than salads

SELECT name
FROM items
WHERE NOT name LIKE '%Salad';

name

Soda
Water
Fruit Plate

[3 row(s)]

You can use NOT with any of the comparison operators from Table 2.1.

■ 2.7 Combining Conditions with AND and OR 35

2.7 Combining Conditions with AND and OR

Sometimes the criteria for including or excluding a row is more complicated than a simple
condition can express. Fortunately, we can combine two or more conditions using AND and
OR. Two conditions joined by AND must both be true for the entire condition to evaluate
to true.

Query 2.12 Find all of the ingredients from the Fruit food group with an inventory greater than 100

SELECT ingredientid, name
FROM ingredients
WHERE foodgroup = 'Fruit' AND inventory > 100;

ingredientid name

GRAPE Grape

[1 row(s)]

For two conditions joined by OR, the entire condition is true if either or both are true.

Query 2.13 Find the name of all ingredients with unit price over $0.40 or with a unit of glass

SELECT name, unitprice, unit
FROM ingredients
WHERE unitprice > 0.40 OR unit = 'glass';

name unitprice unit

Chicken 0.45 strip
Water 0.06 glass
Soda 0.69 glass

[3 row(s)]

Note that Soda is true for both conditions, whereas the Chicken and Water are only true
for one.

You can combine as many ANDs and ORs together as needed, but beware. SQL may
not interpret the WHERE clause as you intended. Why? SQL doesn’t strictly evaluate an
expression from left to right. Some operators have a higher precedence than others. Oper-
ators with a higher precedence get evaluated before operators with a lower precedence,
no matter where they are in the condition.

In SQL, the precedence order from highest to lowest is as follows:

Precedence Operator

Highest Comparison Operators
NOT
AND

Lowest OR

36 Chapter 2: Retrieval: Basic SELECTion ■

The evaluation of a condition begins with the individual comparisons. Next, conditions
prefixed with a NOT are negated. The ANDs are then applied from left to right. Finally, the
ORs are applied from left to right. Consider the incorrect solution in Query 2.14.

Query 2.14
INCORRECT! Find the food items that have a name beginning with either F or S that
cost less than $3.50

SELECT name, price
FROM items
WHERE name LIKE 'F%' OR name LIKE 'S%' AND price < 3.50;

name price

Fruit Salad 3.45
Soda 0.99
Fruit Plate 3.99

[3 row(s)]

How did the Fruit Plate get into our result? Because AND has a higher precedence, name
LIKE 'S%' AND price > 3.50 is evaluated first. For the Fruit Plate, this returns false;
however, name LIKE 'F%' returns true, making the condition true for the row. This query
really finds the food items with a name beginning with F plus the food items with a price
less than $3.50 that begin with S.

How do we write the correct query? Use parentheses.

Query 2.15
CORRECT! Find the food items that have a name beginning with either F or S that cost
less than $3.50

SELECT name, price
FROM items
WHERE (name LIKE 'F%' OR name LIKE 'S%') AND price < 3.50;

name price

Fruit Salad 3.45
Soda 0.99

[2 row(s)]

In Query 2.15, the condition inside the parenthesis has the highest priority so it is exe-
cuted first, just as we wanted. Inside parentheses, normal precedence rules apply. It is
always best to use parentheses with a WHERE clause containing more than two conditions
to ensure the interpretation of the query is correct.

We can nest parentheses to get any execution order desired. The condition inside the
innermost parenthesis always has the highest priority. Once a parenthetical expression

■ 2.8 Selecting a Range of Values with BETWEEN 37

has been evaluated, the normal rules of precedence apply. That means ((name LIKE 'F%'
OR name LIKE 'S%') AND price < 3.50) would execute just like Query 2.15.

2.8 Selecting a Range of Values with BETWEEN

The BETWEEN operator allows us to specify a range of values (inclusive) for matching as
in Query 2.16.

Query 2.16 Find the food items costing between $2.50 and $3.50

SELECT *
FROM items
WHERE price BETWEEN 2.50 AND 3.50;

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13
FRTSD Fruit Salad 3.45 2000-05-06

[2 row(s)]

To get the values that are not within a specified range, use NOT BETWEEN.

Query 2.17 Find the food items costing less than $2.50 or more than $3.50

SELECT *
FROM items
WHERE price NOT BETWEEN 2.50 AND 3.50;

itemid name price dateadded

GDNSD Garden Salad 0.99 2001-03-02
SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19
FRPLT Fruit Plate 3.99 2000-09-02

[4 row(s)]

The result includes any food items costing less than $2.50 or greater than $3.50. Note that
WHERE x BETWEEN y AND z is equivalent to WHERE x >= y AND x <= z so it is really just
another way to answer the same query. Usually, there are many ways to answer the same
query in SQL. In most cases, the choice of syntax should not change the performance of
the query; however, in a few cases, one variant can be much more efficient than another.
This will depend on your database and your DBMS.

38 Chapter 2: Retrieval: Basic SELECTion ■

2.9 Selecting a Set of Values Using IN

The IN operator determines if a value is contained in a list of values.

Query 2.18 Find the vendor representatives with last names of Corn or Sherbert

SELECT vendorid, repfname, replname
FROM vendors
WHERE replname IN ('Corn', 'Sherbert');

vendorid repfname replname

VGRUS Candy Corn
FLVCR Sherman Sherbert

[2 row(s)]

The list of values must be comma-delimited and enclosed within parentheses. To evaluate
WHERE x IN (y1, : : :, yn), SQL evaluates x = yi for each yi in the list. If at least one
x = yi evaluates to true, the condition evaluates to true.

As you probably already suspect, you can use NOT IN to find all of the values not
contained in a list.

Query 2.19 Find the ingredient ID, name, and unit of items not sold in pieces or strips

SELECT ingredientid, name, unit
FROM ingredients
WHERE unit NOT IN ('piece', 'strip');

ingredientid name unit

CHESE Cheese scoop
LETUS Lettuce bowl
PICKL Pickle slice
SCTDR Secret Dressing ounce
TOMTO Tomato slice
WATER Water glass
SODA Soda glass
ORNG Orange slice

[8 row(s)]

2.10 IS NULL: Exploring the Unknown

How do we find all of the vendors who were not referred by any other vendor? We
need all of the rows from vendors with a referredby value of NULL, but beware—NULL

■ 2.10 IS NULL: Exploring the Unknown 39

is a strange animal. SQL interprets NULL as unknown. If we compare something that is
unknown to any value, even unknown, the result is unknown. This makes sense if you
think about it. Consider a new vendor representative with first name Bob and an unknown
last name. If somebody asked you if Bob’s last name was Smith, how could you most
accurately answer? That’s right—“I don’t know.” The database equivalent is unknown. Our
system of evaluation now has three values: true, false, and unknown. It is not surprising
that the system for evaluating conditions with three possible results is called three-valued
logic.

How does SQL handle unknown? SQL only reports the rows for which the WHERE
condition evaluates to true. Rows evaluating to false or unknown are not included in the
answer. Compare Queries 2.20 and 2.21.

Query 2.20 INCORRECT! Find all vendors not referred by anyone

SELECT *
FROM vendors
WHERE referredby = NULL;

vendorid companyname repfname replname referredby

[0 row(s)]

This query returns no rows because each evaluation of referredby = NULL returns
unknown, even for the rows where referredby is NULL. So how do we test for NULL?
We use IS NULL.

Query 2.21 CORRECT! Find all vendors not referred by anyone

SELECT *
FROM vendors
WHERE referredby IS NULL;

vendorid companyname repfname replname referredby

VGRUS Veggies_R_Us Candy Corn NULL

[1 row(s)]

As you might expect, we can find the rows with non-NULL values using the IS NOT
NULL.

The implications of NULL comparison can be subtle. The rule to remember is that
comparing NULL to an attribute (e.g., referredby), a literal (e.g., 'A', 3, etc.), or even to
NULL itself always returns unknown. This means that NULL = NULL evaluates to unknown.
Of course, NULL IS NULL always evaluates to true. Consider the Queries 2.22 and 2.23.

40 Chapter 2: Retrieval: Basic SELECTion ■

Query 2.22 Find all items with price greater than $0.99

SELECT *
FROM items
WHERE price > 0.99;

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13
FRTSD Fruit Salad 3.45 2000-05-06
FRPLT Fruit Plate 3.99 2000-09-02

[3 row(s)]

Query 2.23 Find all items with price less than or equal to $0.99

SELECT *
FROM items
WHERE price <= 0.99;

itemid name price dateadded

GDNSD Garden Salad 0.99 2001-03-02
SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19

[3 row(s)]

Where’s the Millennium Salad? Its price is NULL, so comparing it to $0.99 always returns
unknown, which SQL excludes from both results. In effect, the NULL price for Millennium
Salad is not less than, greater than, or equal to $0.99. To list this salad’s row (and any
other rows with a price of NULL), we need Query 2.24.

Query 2.24 Find all items with no price

SELECT *
FROM items
WHERE price IS NULL;

itemid name price dateadded

MILSD Millennium Salad NULL 2002-08-16

[1 row(s)]

The incomparability of NULL has other implications. For example, neither LIKE '%'
nor NOT LIKE '%' match NULL. NULL is neither BETWEEN nor NOT BETWEEN any two values,
including NULL itself.

■ 2.11 ANDs, ORs, NOTs with NULLs: Three-Valued Logic 41

2.11 ANDs, ORs, NOTs with NULLs: Three-Valued Logic

What happens when we AND, OR, or NOT a value of unknown? SQL evaluates conditions
using three-valued logic. Table 2.2 shows the logic tables for AND, OR, and NOT.

AND true false unknown

true true false unknown
false false false false
unknown unknown false unknown

OR true false unknown

true true true true
false true false unknown
unknown true unknown unknown

NOT

true false
false true
unknown unknown

Table 2.2: Three-valued logic tables.

Let’s try our three-valued logic tables on an example.

Query 2.25
Find the ingredient ID, food group, and inventory for fruits or ingredients with
inventory not less than or equal to 200

SELECT ingredientid, foodgroup, inventory
FROM ingredients
WHERE foodgroup = 'Fruit' OR NOT inventory <= 200;

ingredientid foodgroup inventory

CRUTN Bread 400
GRAPE Fruit 300
PICKL Vegetable 800
TOMTO Fruit 15
SODA NULL 5000
WTRML Fruit NULL
ORNG Fruit 10

[7 row(s)]

42 Chapter 2: Retrieval: Basic SELECTion ■

The results for rows with non-NULL values for both foodgroup and inventory are not
surprising. Let’s consider two other rows in the ingredients table: the ones identified by
WTRML and SCTDR.
First, let’s evaluate the condition for the WTRML row from ingredients:

foodgroup = 'Fruit' = = true

NOT inventory <= 200 = NOT unknown = unknown

〉
OR = true

The first condition, foodgroup = 'Fruit', evaluates to true. inventory <= 200 evaluates
to unknown, and the NOT of unknown is itself unknown. For this row, SQL evaluates true
OR unknown, which is true so the WTRML row is included.

Now consider the SCTDR row.

foodgroup = 'Fruit' = = unknown

NOT inventory <= 200 = NOT true = false

〉
OR = unknown

foodgroup = 'Fruit' evaluates to unknown, and NOT inventory <= 200 evaluates to
false. Because false OR unknown is unknown, the SCTDR row is not included in the results
of Query 2.25.

2.12 Three-Valued Logic and the IN Operator

Let’s consider the implications of three-valued logic for the IN operator. As we’ve already
stated, to evaluate x IN (y1, : : :, yn), SQL evaluates x = yi for each yi in the list. If at
least one x = yi evaluates to true, the condition evaluates to true. If all x = yi evaluate
to false or the IN list is empty, the condition evaluates to false. If neither of these cases
holds, then the condition returns unknown.

The condition x NOT IN (y1, : : :, yn) is equivalent to NOT x IN (y1, : : :, yn),
leading to the nonintuitive result of Query 2.26.

Query 2.26 INCORRECT! Find all of the vendors whose vendor ID is neither BADID or NULL

SELECT *
FROM vendors
WHERE vendorid NOT IN ('BADID', NULL);

vendorid companyname repfname replname referredby

[0 row(s)]

Why is the result empty? Comparing each vendorid with BADID returns false and with
NULL returns unknown; consequently, IN returns unknown for each row. Applying NOT
still returns unknown. Because the condition evaluates to unknown for all rows, the result

■ 2.14 Wrap Up 43

is empty. Clearly, the solution is to avoid NULL with the IN operator, but as we will see in
later chapters, IN can be used in situations where we do not have that much control.

2.13 How WHERE Determines What’s In and Out

What determines which rows are in or out? SQL evaluates the WHERE condition for each
row, and a row is only included if the condition evaluates to true for that particular row.
Consider Query 2.27.

Query 2.27 Find all items

SELECT *
FROM items
WHERE 1 = 1;

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13
FRTSD Fruit Salad 3.45 2000-05-06
GDNSD Garden Salad 0.99 2001-03-02
MILSD Millennium Salad NULL 2002-08-16
SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19
FRPLT Fruit Plate 3.99 2000-09-02

[7 row(s)]

For each row, 1 = 1 is true, so this query returns all rows in the items table. If we change
the WHERE condition to 1 = 2, our query result will contain no rows because 1 = 2 is always
false. Although this particular example is trivial, it is important to understand how SQL
thinks when we consider more complex queries later.

As this example shows, it is perfectly legal in SQL for the condition in the WHERE
clause to have nothing to do with the values in the row. SQL does require that any column
referenced in the SELECT and WHERE clauses must be an attribute in a table in the FROM
clause; otherwise, SQL returns an error.

2.14 Wrap Up

In this chapter, we’ve learned how to extract data from a single table. We specify the
attributes we want in the SELECT list. The rows in the result are determined by the WHERE
condition. SQL evaluates the WHERE condition for each row, including only those rows in
the result where the condition evaluates to true. SQL provides a powerful set of comparison
operators for use in the WHERE clause to determine which rows are in and out. We can
join individual conditionals together using AND and OR, and we can negate using NOT.
Some attributes may have a value of NULL, which SQL interprets as unknown. To allow for
unknown values, SQL evaluates a conditional using three-valued logic.

44 Chapter 2: Retrieval: Basic SELECTion ■

Review Questions

1. The result of a SELECT statement is a new .

2. SQL uses -valued logic. The possible values of the system are
, , and .

3. Does 5 BETWEEN 3 AND 5 return true or false?

4. NOT unknown AND NOT false OR unknown evaluates to .

5. Circle the strings that LIKE '_ _s%l' matches: [baseball, football, soccer, basket-
ball, cricket]

6. NULL > NULL evaluates to .

7. NULL > NULL AND true OR false evaluates to .

8. NULL > NULL OR true AND false evaluates to .

9. What string matching pattern matches all strings beginning with 'B' and ending with
'll' with exactly one character in between (e.g., 'Bill', 'Ball') ? Same
question with one or more characters in between .

10. Are string comparisons case sensitive for your database?

11. The easiest way to select all columns in a table is to use .

12. Does an attribute in the SELECT clause have to appear in the WHERE clause?

13. Does an attribute in the WHERE clause have to appear in the SELECT clause?

14. Which operators are equivalent to NOT >, NOT <=, and NOT <>?

15. In the Restaurant Database, how many rows does the following query return?

SELECT *
FROM vendors;

16. Will this query execute?

SELECTnameFROMingredients;

17. Will this query execute?

SELECT
name
FROM
ingredients
;

Practice

For these exercises, use the Employees Database presented at the end of Chapter 1. For
each question, give the single SQL statement to answer it. Your query must work for any
set of data in the Employees Database, not just the set of data we provide.

■ Practice 45

1. List the first and last names of all employees.

2. List all attributes of the projects with revenue greater than $40,000.

3. List the department codes of the projects with revenue between $100,000 and
$150,000.

4. List the project IDs for the projects that started on or before July 1, 2004.

5. List the names of the departments that are top level (i.e., not a subdepartment).

6. List the ID and descriptions of the projects under the departments with code ACCNT,
CNSLT, or HDWRE.

7. List all of the information about employees with last names that have exactly 8
characters and end in 'ware'.

8. List the ID and last name of all employees who work for department ACTNG and
make less than $30,000.

9. List the “magical” projects that have not started (indicated by a start date in the
future or NULL) but are generating revenue.

10. List the IDs of the project either from the ACTNG department or that are ongoing
(i.e., NULL end date). Exclude any projects that have a revenue of $50,000 or less.

11. Consider the table T with columns C1 VARCHAR(10), C2 INTEGER and C3 INTEGER
and the query

SELECT *
FROM T
WHERE C1 LIKE '%ar_' OR NOT C2 BETWEEN 3 AND 7 AND C3 < 5;

Fill in the missing results for the example rows.

C1 C2 C3 Row Value In result?

No 4 9 false No

Share NULL 5

Car 2 NULL

Sarah 8 1

NULL true Yes

c h a p t e r 3

Reshaping Results

Remember that we can think of the execution of a SELECT statement as generating
a completely new table, called the result table, which usually only exists long enough to
output the query results. The result table’s columns are determined by the column list of
the SELECT statement, and the WHERE expression determines the result table rows. Often,
simply selecting a subset of the rows and columns is not sufficient to answer our question.
We may need to perform some operations on the raw data to generate the desired results.
We might also want to control the form of the result table itself. In this chapter, we explore
the various SQL capabilities for manipulating result tables.

3.1 AS: Naming Result Table Columns

If a SELECT statement generates a new table, what are the names of the columns of that
table? By default, result table columns have the same name as attributes in the original
table; however, you can change the result table column name using a column alias. We
assign a column alias in the column list of the SELECT statement using AS.

47

48 Chapter 3: Reshaping Results ■

Query 3.1 Alias example

SELECT companyname AS company, repfname AS "First Name"
FROM vendors;

company First Name

Veggies_R_Us Candy
Don’s Dairy Marla
Flavorful Creams Sherman
"Fruit Eating" Friends Gilbert
Ed’s Dressings Sam
Spring Water Supply Gus

[6 row(s)]

The AS keyword is optional. To specify a column alias with a space or other special
character, enclose the alias name in quotes; otherwise the quotes are optional. Consult
your DBMS documentation on specific restrictions.

3.2 DISTINCT and ALL: Dealing with Duplicates

Duplicate rows are okay in SQL; however, you may not be so happy with all of that
repeatedly repeating repetition. Let’s generate a list of food groups.

Query 3.2 Find the food groups served by your restaurant

SELECT foodgroup
FROM ingredients;

foodgroup

Milk
Meat
Bread
Fruit
Vegetable
Vegetable
NULL
Fruit
NULL
NULL
Fruit
Fruit

[12 row(s)]

■ 3.2 DISTINCT and ALL: Dealing with Duplicates 49

We can eliminate duplicate rows by prefixing the SELECT column list with the DISTINCT
keyword, as in Query 3.3.

Query 3.3 Find the food groups served by your restaurant without duplication

SELECT DISTINCT foodgroup
FROM ingredients;

foodgroup

Bread
Fruit
Meat
Milk
Vegetable
NULL

[6 row(s)]

Note that NULL is treated as a distinct value, and duplicate NULLs are eliminated.
DISTINCT may only appear once in the SELECT statement at the head of the attribute

list, and it applies to all attributes in the attribute list.

Query 3.4 Find the distinct list of food groups provided by each vendor

SELECT DISTINCT foodgroup, vendorid
FROM ingredients;

foodgroup vendorid

Bread EDDRS
Fruit FRTFR
Fruit VGRUS
Meat DNDRY
Milk DNDRY
Vegetable VGRUS
NULL SPWTR
NULL NULL

[8 row(s)]

In this example, SQL uses the values for both attributes to determine if each row value
is unique. The Fruit food group shows up twice because two different vendors provide
ingredients from that food group. Again, note that NULL is treated as a distinct value. You
can use ALL instead of DISTINCT to indicate that you do not want to eliminate duplicates.
Because keeping duplicates is the default, ALL is unnecessary.

50 Chapter 3: Reshaping Results ■

3.3 Derived Attributes

Data can be somewhat raw. SQL provides the ability to create attributes in our result table
that are derived using operations and functions over existing attributes and literals. The
default column name of a derived attribute is system dependent; however, a name can be
assigned using a column alias.

3.3.1 Numeric

SQL can evaluate simple arithmetic expressions containing numeric columns and literals.
Table 3.1 shows the SQL arithmetic operators in precedence order from highest to lowest.
Unary +/- have the highest precedence. Multiplication and division have the next highest
precedence. Addition and subtraction have the lowest precedence. Operators with the
same precedence are executed left to right. We can control the order of evaluation using
parentheses. SQL evaluates an expression for each row in the table specified in the FROM
clause that satisfies the condition in the WHERE clause. Let’s look at an example.

Query 3.5 Find the value of your pickle inventory if you double your stock of pickles

SELECT ingredientid, inventory * 2 * unitprice AS "Inventory Value"
FROM ingredients
WHERE name = 'Pickle';

ingredientid Inventory Value

PICKL 64.00

[1 row(s)]

Operator Returns Example Precedence

+numexp numexp with sign unchanged +inventory

–numexp numexp with negated sign –3
Highest

lnumexp * rnumexp Product of lnumexp and rnumexp inventory * unitprice

lnumexp / rnumexp Division of lnumexp by rnumexp quantity / 3
Middle

lnumexp + rnumexp Sum of lnumexp and rnumexp inventory + 10

lnumexp – rnumexp Difference of lnumexp and rnumexp discount – 0.1
Lowest

Table 3.1: SQL Arithmetic Operators

How does this work? For each row in the ingredients table that satisfies the WHERE con-
dition, SQL computes the value of the expression(s) in the attribute list. Let’s try another
example.

■ 3.3 Derived Attributes 51

Query 3.6 Arithmetic literal example

SELECT 5 - 4 + 8 / 4 * 2 AS "Example Equation"
FROM vendors
WHERE referredby IS NOT NULL;

Example Equation

5
5
5
5
5

[5 row(s)]

Why does the same value show up so many times in Query 3.6? There are 5 rows in
the vendors table that satisfy the predicate referredby IS NOT NULL. SQL evaluates the
expression for each of these rows and reports the results. Note that the expression itself
is evaluated according to operator precedence, not simply from left to right.

SQL also includes many standard mathematic functions. Table 3.2 contains some
of the more common functions. The exact set of available functions is DBMS dependent.
In fact, your DBMS will likely have additional functions.

Function Returns Example

ABS(N) Absolute value of N ABS(inventory – 100)

CEIL[ING](N) Ceiling of N CEILING(inventory/10)

EXP(N) eN EXP(5)

FLOOR(N) Floor of N FLOOR(inventory/10)

LN(N) Natural log of N LN(5)

MOD(N, D) Remainder of N divided by D MOD(11, 3)

POWER(B, E) B to the power of E (BE) POWER(2, 3)

SQRT(N)
√

N SQRT(4)

Table 3.2: SQL Arithmetic Functions

What about the infamous NULL? An arithmetic expression evaluated with NULL for
any value returns NULL. Arithmetic functions given a NULL parameter value return NULL,
as in Query 3.7.

52 Chapter 3: Reshaping Results ■

Query 3.7 Find the inventory value of each ingredient in both dollars and euros

SELECT name, inventory * unitprice AS Dollars,
CEIL(inventory * unitprice * 1.2552) AS euros, 1.2552 AS "Exchange Rate"

FROM ingredients;

name dollars euros Exchange Rate

Cheese 4.50 6 1.2552
Chicken 54.00 68 1.2552
Crouton 4.00 6 1.2552
Grape 3.00 4 1.2552
Lettuce 2.00 3 1.2552
Pickle 32.00 41 1.2552
Secret Dressing 3.60 5 1.2552
Tomato 0.45 1 1.2552
Water NULL NULL 1.2552
Soda 3450.00 4331 1.2552
Watermelon NULL NULL 1.2552
Orange 0.50 1 1.2552

[12 row(s)]

We compute our inventory value in both U.S. dollars and euros. To hedge our bets
against fluctuations in the exchange rate, we take the ceiling of the European currency
value. As you can see in the example query results, if either inventory or unitprice is
NULL, their product is NULL. In the case of a NULL product of inventory and unitprice,
the ceiling function also returns NULL. We name our computed columns using column
aliases.

3.3.2 Character String

The typical database is full of character strings, such as names, addresses, and ingredients.
The string you really want may be a combination of data strings, substrings, string literals,
and so on. Perhaps you want to generate address labels or salutations (e.g., “Dear first name
last name,”). SQL provides a wide range of mechanisms for combining and manipulating
character strings.

Concatenating Strings With ||
We begin with the || (concatenation) operator to construct a new string from a combination
of string expressions.

■ 3.3 Derived Attributes 53

Query 3.8 Create a mailing label for each store

SELECT manager, address || ' ' || city || ' ' || state || ' ' || zip
|| ' USA' as mail

FROM stores;

manager mail

Greg Speegle 2222 2nd Ave. Waco TX 76798-7356 USA
Greg Donahoo 4444 4th Blvd San Francsico CA 94101-4150 USA
Jeff Donahoo 1111 Main St. Waco TX 76798 USA
Jeff Speegle 3333 3rd St. Fargo ND 58106 USA
Man Ager NULL

[5 row(s)]

There are several things worth noting from Query 3.8:

1. You may use string literals in the SELECT list either by themselves or in concatena-
tions.

2. The concatenation operator can take both literals and columns. In fact, it takes any
expression that returns (or can be coerced to) a string.

3. Concatenation with NULL is always NULL.

4. String concatenation does not add a space. Any spacing must be explicitly
added.

5. Because strings of type CHAR are padded with trailing blanks, concatenation with
such strings includes these extra blanks. See the spaces between the zip code and
USA in some of the rows.

6. VARCHARs are not padded with trailing spaces; they only include the explicitly
specified characters.

SUBSTRING: Getting the String Within the String
SUBSTRING(<source> FROM <start> [FOR <length>])

SUBSTRING returns the substring from <source> string, starting from the character at
position <start> (numbering from 1) and containing up to <length> characters. The
<source> may be any string expression. <start> and <length> may be any integer expres-
sion. If <length> is not specified, SUBSTRING returns all characters from <start> to the
end of <source>. If the <source> string is empty or if the <start> position is beyond the
end of the <source> string, SUBSTRING returns an empty string (length of 0). If any of
the parameters are NULL, SUBSTRING returns NULL.

54 Chapter 3: Reshaping Results ■

Query 3.9 SUBSTRING example

SELECT SUBSTRING(repfname FROM 1 FOR 1) || '. ' || replname AS name
FROM vendors;

name

C. Corn
M. Milker
S. Sherbert
G. Grape
S. Sauce
G. Hing

[6 row(s)]

TRIM: Removing Unwanted Leading and Trailing Characters
TRIM([[LEADING | TRAILING | BOTH] [<trim characters>] FROM] <source>)

TRIM returns the <source> after removing the longest substring of leading and/or trail-
ing sequences of <trim characters>. The <source> and <trim characters> can be any
string expression. If LEADING, TRAILING, or BOTH is not specified, the default is BOTH. If
<trim characters> is not specified, the default is a single space. If any of the parameters
are NULL, TRIM returns NULL.

Query 3.10 TRIM example

SELECT DISTINCT ingredientid, foodgroup || '.' AS "with trailing",
TRIM(TRAILING ' ' FROM foodgroup) || '.' AS "without trailing"
FROM ingredients
WHERE inventory > 500;

ingredientid with trailing without trailing

PICKL Vegetable Vegetable
SODA NULL NULL

[2 row(s)]

UPPER and LOWER: Controlling Character Case
LOWER(<source>)
UPPER(<source>)

LOWER returns the <source> string with all alphabetic characters changed to lowercase.
UPPER returns the <source> string with all alphabetic characters changed to uppercase.
The <source> can be any string expression. LOWER and UPPER do not change nonalphabetic
characters. If <source> is NULL, UPPER and LOWER return NULL.

■ 3.3 Derived Attributes 55

Query 3.11 UPPER and LOWER example

SELECT UPPER(repfname || ' ' || replname) AS rep, LOWER(companyname) AS company
FROM vendors WHERE referredby = 'VGRUS';

rep company

MARLA MILKER Don’s Dairy
SHERMAN SHERBERT Flavorful Creams

[2 row(s)]

POSITION: Finding Where a Substring Begins
POSITION(<substring> IN <source>)

POSITION returns a number representing the character position (numbering from 1) of
the first character of the first occurrence of <substring> in <source>. The <source> and
the <substring> can be any string expression. If <substring> does not appear in <source>,
POSITION returns 0. If <substring> or <source> are NULL, POSITION returns NULL.

Query 3.12 POSITION example

SELECT name, POSITION('Salad' IN name)
FROM items;

name position

Chicken Salad 9
Fruit Salad 7
Garden Salad 8
Millennium Salad 12
Soda 0
Water 0
Fruit Plate 0

[7 row(s)]

CHAR[ACTER]_LENGTH: Counting Characters in a String
CHARACTER_LENGTH(<source>)

CHARACTER_LENGTH returns the number of characters in <source>. <source> can
be any string expression. If <source> is NULL, CHARACTER_LENGTH returns NULL.
CHARACTER_LENGTH may be abbreviated as CHAR_LENGTH.

56 Chapter 3: Reshaping Results ■

Query 3.13 CHARACTER_LENGTH example

SELECT name, CHAR_LENGTH(name) AS namelen, CHAR_LENGTH(foodgroup) AS fglen
FROM ingredients;

name namelen fglen

Cheese 6 15
Chicken 7 15
Crouton 7 15
Grape 5 15
Lettuce 7 15
Pickle 6 15
Secret Dressing 15 NULL
Tomato 6 15
Water 5 NULL
Soda 4 NULL
Watermelon 10 15
Orange 6 15

[12 row(s)]

Combining String Functions
The parameters to the various string functions can be any expression returning the correct
data type. Such expressions can even include other string functions. Query 3.14 is a com-
plex example to show how to combine string functions. This query returns the first word
in uppercase of a multiword company name with any trailing ’s (apostrophe s) removed.
The results are in all uppercase.

Query 3.14 Combining string functions

SELECT vendorid, companyname,
TRIM(TRAILING '''S' FROM

TRIM(SUBSTRING(UPPER(companyname) FROM 1 FOR
POSITION(' ' IN companyname)))) AS "CoName"

FROM vendors;

vendorid companyname CoName

VGRUS Veggies_R_Us
DNDRY Don’s Dairy DON
FLVCR Flavorful Creams FLAVORFUL
FRTFR "Fruit Eating" Friends "FRUIT
EDDRS Ed’s Dressings ED
SPWTR Spring Water Supply SPRING

[6 row(s)]

■ 3.3 Derived Attributes 57

Let’s take this step-by-step:

■ POSITION(' ' IN companyname) finds the character position of the first occurrence of
a space. Let’s call this value P. For Ed’s Dressing, P is 5.

■ UPPER(companyname) returns the company name with all alphabetic characters
converted to uppercase. Let’s call this string C. For Ed’s Dressing, C is ED’S DRESSING.

■ SUBSTRING then finds the substring in C starting at character position 1 and ending
at position P, inclusive. Let’s call this substring S. For Ed’s Dressing, S is "ED’S ". Note
the trailing space.

■ The inner TRIM then eliminates any leading and trailing spaces. If the company name
has a space, then S has a space because S includes the character in position C, which
must be a space. If the company name does not have a space, then P is 0 and S is the
empty string. Let’s call this substring T. For Ed’s Dressing, T is ED’S. Note that the
trailing space has been removed.

■ Finally, the outer TRIM eliminates any trailing occurrences of the string 'S. Note that
we had to quote the single quote ('). For Ed’s Dressing, this final value is ED.

What happened to Veggies_R_Us? Recall that POSITION returns 0 if it cannot find the
substring. Given a <length> of 0, SUBSTRING returns an empty string.

Your DBMS will likely have other string manipulation functions. The SQL standard
describes a few other string manipulation functions, which are not widely implemented.
Such functions include OVERLAY (substituting substrings), CONVERT (changing character
encoding), and TRANSLATE (mapping between character sets).

3.3.3 Temporal

Time is no simple concept. To deal with this complexity, SQL provides a wide range of tech-
niques for operating on temporal data types. Unfortunately, temporal types and arithmetic
are not supported by all DBMSs. Consult your documentation for the exact limitations and
syntax of your system.

Finding the Current Date or Time
Let’s start with the basic question: “What time is it?” SQL provides several functions to
help you find out.

Temporal Function Description Return Type

CURRENT_TIME[(precision)] Current time with time
zone displacement

TIME WITH TIMEZONE

CURRENT_DATE Current date DATE

CURRENT_TIMESTAMP[(precision)] Current date and time with
timezone displacement

TIMESTAMP WITH TIMEZONE

LOCALTIME[(precision)] Current time TIME WITHOUT TIMEZONE

LOCALTIMESTAMP[(precision)] Current date TIMESTAMP WITHOUT TIMEZONE

58 Chapter 3: Reshaping Results ■

The optional precision argument specifies the fractional seconds precision. LOCALTIME and
LOCALTIMESTAMP are not widely implemented.

Using Arithmetic Operators with Temporal Types
SQL allows the use of basic arithmetic operators with temporal data types. For example,
you may want to know the date 3 days from now. To get that, you can add the current
date to an interval of 3 days. Of course, not all arithmetic operations make sense with
temporal data. For example, dividing a date by an interval makes no sense so it is not
allowed by SQL. Here are the allowable operations and the resulting data types:

Expression Result Type Precedence

Interval * / Numeric Interval

Numeric * Interval Interval
Highest

Datetime + – Interval Datetime

Interval + Datetime Datetime

Datetime – Datetime Interval

Interval + – Interval Interval

Lowest

The table doesn’t cover all restrictions. The operation must make sense. Subtracting a
DATE value from a TIME value has no meaning so it is not allowed by SQL. Let’s look at an
example.

Query 3.15 Find how long each item has been on the menu as of midnight January 2, 2005

SELECT name, dateadded, DATE '2005-01-02' - dateadded AS "Days on Menu"
FROM items;

name dateadded Days on Menu

Chicken Salad 1998-11-13 2242
Fruit Salad 2000-05-06 1702
Garden Salad 2001-03-02 1402
Millennium Salad 2002-08-16 870
Soda 2003-02-06 696
Water 2002-05-19 959
Fruit Plate 2000-09-02 1583

[7 row(s)]

According to the 2003 SQL specification, subtracting two dates should result in an
interval. Naturally, this must be a DAY–TIME interval, or precision would be lost. Because
there is no time data, our DBMS chose to represent the results as a number of days. Your
DBMS may be different.

■ 3.3 Derived Attributes 59

EXTRACT: Getting Fields from Temporal Data
Datetime and interval data are made up of fields such as year, month, and so on. EXTRACT
gets a specified field from temporal data.

EXTRACT(<field label> FROM <source>)

EXTRACT returns a numeric value representing the field specified by <field label>
from <source>. The <source> is any expression returning a datetime or interval, and
<field label> must be YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, or
TIMEZONE_MINUTE. If <source> or <field label> is NULL, EXTRACT returns NULL.

Query 3.16 EXTRACT example

SELECT name, EXTRACT(YEAR FROM dateadded) AS year,
EXTRACT(MONTH FROM dateadded + INTERVAL '30' DAY) AS

month
FROM items;

name year month

Chicken Salad 1998 12
Fruit Salad 2000 6
Garden Salad 2001 4
Millennium Salad 2002 9
Soda 2003 3
Water 2002 6
Fruit Plate 2000 10

[7 row(s)]

Your DBMS will likely specify other temporal functions. Other SQL standard temporal
functions include OVERLAPS (test if two time periods intersect) and ABS (returns the
absolute value of an interval); however, these functions are not widely implemented.

3.3.4 Binary

The binary data types are called binary strings because SQL treats them like a strings of 0s
and 1s. Most (but not all) things that you can do with a character string, you can do with a
binary string using the same operators and functions, including concatenation, trimming
(using the hexadecimal value X'00' as the default trim character), using substrings, and
using LIKE. Query 3.17 is a simple binary string example.

Query 3.17 Binary string example

SELECT SUBSTRING(X'F0' FROM 3) || B'11' AS bits
FROM stores
WHERE storeid LIKE '#%';

bits

11000011

[1 row(s)]

60 Chapter 3: Reshaping Results ■

One of the differences between character strings and binary strings is that binary
strings can only be compared using = and <>; comparisons with > and < are not allowed.
Binary strings also cannot follow DISTINCT or appear in the ORDER BY clause (see
Section 3.5) or in many other parts of SQL that we discuss later. If you need to use binary
strings, consult your DBMS documentation.

3.4 Computation in the WHERE Clause

The usefulness of SQL’s powerful repertoire of operators and functions doesn’t stop at
derived column values. You can use these capabilities within predicates in the WHERE
clause.

Query 3.18
Find the name and inventory value of the ingredients with an inventory value of $10
or more

SELECT name, inventory * unitprice AS "invalue"
FROM ingredients
WHERE inventory * unitprice > 10;

name invalue

Chicken 54.00
Pickle 32.00
Soda 3450.00

[3 row(s)]

How does SQL handle this statement? It first gets the specified table, ingredients. Next it
evaluates the predicate for each row. Finally, it evaluates the expressions in the SELECT
list. One subtle consequence of this order of execution is that you cannot use column
aliases in the WHERE clause. Why? The WHERE clause is evaluated before the SELECT list
so the column aliases don’t exist when the WHERE executes. Replacing the WHERE class in
Query 3.18 with WHERE invalue > 10 may return an error.

Consider Query 3.19. Here we are searching for a particular vendor, S. Sauce. You
might be given such a string by some application program. The problem is that we don’t
know the case of the names in the database or the case sensitivity of string matching. To
fix this, we simply change all of the names to uppercase and format them correctly (first
initial and last name).

■ 3.5 ORDER BY: Ordering Result Table Traversal 61

Query 3.19 Find the vendors with the name S. Sauce

SELECT repfname || ' ' || replname AS name, companyname
FROM vendors
WHERE UPPER(SUBSTRING(repfname FROM 1 FOR 1) || '. ' || replname) =

UPPER('S. Sauce');

name companyname

Sam Sauce Ed’s Dressings

[1 row(s)]

3.5 ORDER BY: Ordering Result Table Traversal

The rows in a table in the relational model have no order. Because the result of a SELECT is
itself a table, query results also have no order. Never rely on the DBMS to produce results
in any particular order, even if it appears to work. Although a table has no order, SQL will
allow us to control the order in which we access the rows of a table using ORDER BY. To
use ORDER BY, we specify the sort key(s) that SQL should use to order the result output.

ORDER BY <sort specification> [{, <sort specification>}...]
<sort specification> = <key expression> [ASC | DESC] [NULLS FIRST | NULLS LAST]

Let’s try a simple example.

Query 3.20 Find all items from least to most expensive

SELECT name, price
FROM items
ORDER BY price ASC;

name price

Water 0.00
Garden Salad 0.99
Soda 0.99
Chicken Salad 2.85
Fruit Salad 3.45
Fruit Plate 3.99
Millennium Salad NULL

[7 row(s)]

This query fetches the name and price of each item and then presents the results in sorted
order by price. The ordering depends on the data type. For numeric types, ordering is
straightforward. Character string ordering follows the same rules as character string com-
parison (see Chapter 2). The default ordering is ascending. You control the order direction
using either ASC (ascending) or DESC (descending).

62 Chapter 3: Reshaping Results ■

Note where the infamous NULL goes in the sort order. Because NULL is not comparable
to any other value, even itself, the default ordering of NULL values is DBMS-specific. You
may specify the placement of NULL in the sort order using either NULLS FIRST or NULLS
LAST. Unfortunately, this feature is not widely implemented.

Query 3.21 Find items added in 2001 or later in decreasing order of price

SELECT itemid, price
FROM items
WHERE EXTRACT(YEAR FROM dateadded) >= 2001
ORDER BY price DESC;

itemid price

MILSD NULL
GDNSD 0.99
SODA 0.99
WATER 0.00

[4 row(s)]

In Query 3.21, SQL evaluates the query by fetching the items table, applying the WHERE
predicate, extracting the item ID, and finally sorting by price. SQL does not require the
sort key to be in the select list.

ORDER BY takes any expression. For example, we can sort our ingredients by a
computed inventory value. We can even use column aliases in the ORDER BY.

Query 3.22 Find the name and inventory value of all ingredients ordered by value

SELECT name, inventory * unitprice AS value
FROM ingredients
ORDER BY value DESC;

name value

Water NULL
Watermelon NULL
Soda 3450.00
Chicken 54.00
Pickle 32.00
Cheese 4.50
Crouton 4.00
Secret Dressing 3.60
Grape 3.00
Lettuce 2.00
Orange 0.50
Tomato 0.45

[12 row(s)]

■ 3.5 ORDER BY: Ordering Result Table Traversal 63

You may specify multiple sort keys. SQL sorts primarily by the first key in the ORDER
BY list. The second key is only used to break ties for rows where the first key values
match and so on. Of course, if all values of the first sort key are distinct, then specifying
additional sort keys does nothing.

Query 3.23 Find the order number, line number, and item ID ordered at #2STR, last order first

SELECT ordernumber, linenumber, menuitemid
FROM orders
WHERE storeid = '#2STR'
ORDER BY ordernumber DESC, linenumber ASC;

ordernumber linenumber menuitemid

3 1 CHKSD
3 2 FRPLT
3 3 GDNSD
2 1 CHKSD
2 2 SODA
1 1 CKSDS
1 2 CHKSD
1 3 SODA
1 4 GDNSD

[9 row(s)]

We really didn’t need to specify ASC after linenumber because ascending order is the
default.

Many DBMS also allow specification of the sort key by the positional number of the
attribute in the select list. The attributes in the select list are numbered starting with 1.
We can refer to these positional numbers in the ORDER BY clause. Consider Query 3.24.

Query 3.24 Positional ORDER BY example

SELECT foodgroup, name, unitprice * inventory AS value
FROM ingredients
ORDER BY 1 ASC, 3 DESC;

foodgroup name value

Bread Crouton 4.00
Fruit Watermelon NULL
Fruit Grape 3.00
Fruit Orange 0.50
Fruit Tomato 0.45
Meat Chicken 54.00

Continued on next page

64 Chapter 3: Reshaping Results ■

Query 3.24 (cont’d)

Milk Cheese 4.50
Vegetable Pickle 32.00
Vegetable Lettuce 2.00
NULL Water NULL
NULL Soda 3450.00
NULL Secret Dressing 3.60

[12 row(s)]

The results are sorted primarily by food group in ascending order and secondarily by
inventory value (i.e., unitprice * inventory) in descending order. You may mix sort key
expressions and positional numbers. Positional column numbers are convenient for graph-
ical user interface (GUI) based SQL tools that need to sort on arbitrary result columns,
but in other cases, positional attribute numbers are almost always a bad idea. Adding an
attribute to the select list may change the relative position of the attributes, and the devel-
oper may forget to update the ORDER BY clause. As a result, positional attribute numbers
were deprecated in SQL-92 so they shouldn’t be used.

3.6 CAST: Data Type Conversion

In SQL, all data have a type, whether it is data in a table or data returned by some
expression. Sometimes the data type needs to change. Consider Query 3.25.

Query 3.25 Type cast example

SELECT name || ' was added on ' || dateadded || ' and is ' || price AS message
FROM items;

message

Chicken Salad was added on 1998-11-13 and is 2.85
Fruit Salad was added on 2000-05-06 and is 3.45
Garden Salad was added on 2001-03-02 and is 0.99
NULL
Soda was added on 2003-02-06 and is 0.99
Water was added on 2002-05-19 and is 0.00
Fruit Plate was added on 2000-09-02 and is 3.99

[7 row(s)]

Here the dateadded and price fields must be converted to character strings for concate-
nation. In many cases, the DBMS silently converts data types. Such conversions are called
implicit type conversions. SQL uses the context to determine the needed type. In the

■ 3.6 CAST: Data Type Conversion 65

previous example, the string concatenation implies that dateadded and price must be
converted to character strings.

In some cases, the DBMS needs help in determining the correct data type. To han-
dle this, SQL provides the CAST operator, which allows the specification of the resulting
data type.

CAST(<source expression> AS <result type>)

CAST converts the type of the data specified by <source expression> to <result type>.
A conversion using the CAST operator is called an explicit type conversion. Be aware that
data type conversion may result in data loss. This happens when the result type repre-
sents less information than the source data. For example, conversion from a floating-point
to an integer results in either truncation or rounding, depending on your DBMS. However,
if the conversion would result in the loss of leading significant digits, then an exception is
raised. Similarly, converting from a TIMESTAMP to a DATE will lose the time information.

What happens when the result type has more precision than the source data? For
numeric types, it’s straightforward. In some cases, SQL actually makes up data. For exam-
ple, when converting from a DATE to a TIMESTAMP, the time is set to 00:00:00.0. Some
type conversions are not allowed, even with the CAST operator. For example, SQL will give
you an error if you try to cast a boolean to a numeric type. Query 3.26 generates a neatly
formatted menu and uses CAST in the WHERE clause.

Query 3.26 Formatted menu

SELECT CAST(name AS CHAR(20)) || '$' || CAST(price AS NUMERIC(5,2)) AS "Menu"
FROM menuitems
WHERE CAST(menuitemid AS CHAR(1)) IN ('S', 'C', 'V');

Menu

Chicken Salad $2.85
Chicken N Suds $3.68
Soda $0.99
Vegan Eatin’ $4.38

[4 row(s)]

The cast of name to CHAR(20) makes a fixed-width character string. Character strings
longer than 20 characters are truncated, and character strings shorter than 20 characters
are padded with spaces. You can use CAST in the ORDER BY clause as well. Just don’t forget
that sort order depends on data type.

66 Chapter 3: Reshaping Results ■

Query 3.27 Numbers as characters example

SELECT name, price * 10 AS "high price"
FROM menuitems
ORDER BY CAST (price * 10 AS CHAR(7));

name high price

Water 0.00
Chicken Salad 28.50
Fruit Salad 34.50
Chicken N Suds 36.80
Fruit Plate 39.90
Vegan Eatin’ 43.80
Garden Salad 9.90
Soda 9.90
Millennium Salad NULL

[9 row(s)]

3.7 CASE, COALESCE, and NULLIF: Conditional Expressions

SQL also provides basic conditional constructs to determine the correct result. CASE
provides a general mechanism for specifying conditional results. SQL also provides the
COALESCE and NULLIF statements to deal with NULL values, but these have equivalent
CASE statements.

3.7.1 CASE: Value List

The simplest form of the CASE statement determines if a value matches any values from
a list and returns the corresponding result.

CASE <target expression>
WHEN <candidate expression> THEN <result expression>
WHEN <candidate expression> THEN <result expression>
...
WHEN <candidate expression> THEN <result expression>
[ELSE <result expression>]
END

CASE finds the first WHEN clause where <candidate expression> = <target expression>
and returns the value of the corresponding <result expression>. If no matches are found,
the value of the <result expression> for the ELSE clause is returned. If the ELSE clause is
not specified, an implicit ELSE NULL is added to the CASE statement.

Consider the case where you want to list ingredients and their corresponding good-
ness as determined by the food group. The goodness assignments are as follows: Vegetable

■ 3.7 CASE, COALESCE, and NULLIF: Conditional Expressions 67

and Fruit are Good, Milk and Bread are Acceptable, Meat is Bad, and any other value is NULL,
representing an unknown value.

Query 3.28 CASE value list example

SELECT name,
CASE foodgroup

WHEN 'Vegetable' THEN 'Good'
WHEN 'Fruit' THEN 'Good'
WHEN 'Milk' THEN 'Acceptable'
WHEN 'Bread' THEN 'Acceptable'
WHEN 'Meat' THEN 'Bad'

END AS quality
FROM ingredients;

name quality

Cheese Acceptable
Chicken Bad
Crouton Acceptable
Grape Good
Lettuce Good
Pickle Good
Secret Dressing NULL
Tomato Good
Water NULL
Soda NULL
Watermelon Good
Orange Good

[12 row(s)]

3.7.2 CASE: Conditional List

Matching values from a list is a good start, but we may need more powerful matching capa-
bilities. SQL provides a more general version of the CASE statement that allows conditionals
in the WHEN clause.

CASE
WHEN <match conditional> THEN <result expression>
WHEN <match conditional> THEN <result expression>
...
WHEN <match conditional> THEN <result expression>
[ELSE <result expression>]
END

In this conditional form, CASE finds the first WHEN clause where the <match conditional>
evaluates to true and returns the value of the corresponding <result expression>. The

68 Chapter 3: Reshaping Results ■

<match conditional> can be any conditional expression using expressions, functions,
boolean connectives, and so on. Note that the value-list CASE is just a special case of
the conditional CASE where each <match conditional> is of the form <target expression> =
<candidate expression>.

To show the power of the CASE statement, let’s put together an order for ingredients.
The amount that we want to order is based on the current inventory. If that inventory is
below a threshold, then we want to place an order to raise it to the threshold; otherwise,
we want to order a percentage of our inventory. The exact amount is based on the type
of the food item because some will spoil more quickly than others. A query to create the
order is Query 3.29.

Query 3.29 CASE conditional list example

SELECT name,
FLOOR(

CASE
WHEN inventory < 20 THEN 20 - inventory
WHEN foodgroup = 'Milk' THEN inventory * 0.05
WHEN foodgroup IN ('Meat', 'Bread') THEN inventory * 0.10
WHEN foodgroup = 'Vegetable' AND unitprice <= 0.03 THEN inventory * 0.10
WHEN foodgroup = 'Vegetable' THEN inventory * 0.03
WHEN foodgroup = 'Fruit' THEN inventory * 0.04
WHEN foodgroup IS NULL THEN inventory * 0.07
ELSE 0

END) AS size, vendorid
FROM ingredients
WHERE inventory < 1000 AND vendorid IS NOT NULL
ORDER BY vendorid, size;

name size vendorid

Cheese 7 DNDRY
Chicken 12 DNDRY
Crouton 40 EDDRS
Orange 10 FRTFR
Grape 12 FRTFR
Tomato 5 VGRUS
Lettuce 20 VGRUS
Pickle 24 VGRUS

[8 row(s)]

There are a couple of things to note about this query.

■ The CASE statement stops executing when the first condition is matched. This makes
the order of the <match conditionals> very important.

■ 3.7 CASE, COALESCE, and NULLIF: Conditional Expressions 69

■ The constants used for inventory and percentages should be stored in the database.
This would allow the user to update the database and automatically update this order
query.

■ Items with a NULL inventory are filtered out by the WHERE clause. Including an item
with a NULL inventory would result in a NULL size.

■ CASE returns data that can be used in expressions, conditionals, function arguments,
and even database modification statements. Thus, if we had an appropriate table, we
could store the result of this query directly in the database.

3.7.3 NULLIF

NULLIF takes two values and returns NULL if they are equal or the first value if the two
values are not equal. You can think of it as “NULL IF equal.”

NULLIF(<value1>,<value2>)

The NULLIF is actually a special case of the CASE statement. It is equivalent to the CASE
statement:

CASE WHEN value1=value2 THEN NULL ELSE value1 END

Let’s try an example. The World Health Organization (WHO) has declared that Meat is no
longer a food group. Query 3.30 shows the ingredients table with the food group of all
meats as NULL.

Query 3.30 NULLIF example

SELECT ingredientid, name, unit, unitprice,
NULLIF(foodgroup, 'Meat') AS foodgroup, inventory, vendorid

FROM ingredients;

ingredientid name unit unitprice foodgroup inventory vendorid

CHESE Cheese scoop 0.03 Milk 150 DNDRY
CHIKN Chicken strip 0.45 NULL 120 DNDRY
CRUTN Crouton piece 0.01 Bread 400 EDDRS
GRAPE Grape piece 0.01 Fruit 300 FRTFR
LETUS Lettuce bowl 0.01 Vegetable 200 VGRUS
PICKL Pickle slice 0.04 Vegetable 800 VGRUS
SCTDR Secret Dressing ounce 0.03 NULL 120 NULL
TOMTO Tomato slice 0.03 Fruit 15 VGRUS
WATER Water glass 0.06 NULL NULL SPWTR
SODA Soda glass 0.69 NULL 5000 SPWTR
WTRML Watermelon piece 0.02 Fruit NULL FRTFR
ORNG Orange slice 0.05 Fruit 10 FRTFR

[12 row(s)]

70 Chapter 3: Reshaping Results ■

3.7.4 COALESCE

COALESCE takes a list of values and returns the first non-NULL value.

COALESCE(<value1>, <value2>, : : :, <valueN>)

COALESCE is also shorthand for a complicated CASE statement. When the number of values
is 2, it is exactly equivalent to the following:

CASE WHEN value1 IS NOT NULL THEN value1 ELSE value2 END

and when the number of values is greater than 2, it is equivalent to the following:

CASE WHEN value1 IS NOT NULL THEN value1
ELSE COALESCE (value2, . . ., valueN) END

One practical use for COALESCE is providing a substitute for NULL values in the
results. For example, if we want to display all of our items with a price, we would have to
handle the ones with a NULL price. Query 3.31 does this.

Query 3.31 COALESCE example

SELECT name, price, COALESCE(price, 0.00) AS "no nulls"
FROM items;

name price no nulls

Chicken Salad 2.85 2.85
Fruit Salad 3.45 3.45
Garden Salad 0.99 0.99
Millennium Salad NULL 0.00
Soda 0.99 0.99
Water 0.00 0.00
Fruit Plate 3.99 3.99

[7 row(s)]

3.8 Wrap Up

The basic SELECT statement allows control over result table rows and columns. In some
cases, this is not sufficient to get our final answer. SQL provides several mechanisms for
manipulating the result table and its data. We can select result table column names and
eliminate duplicates. Because data can be somewhat raw, SQL provides us with the ability
to derive data using expressions of basic operators and functions. We can even control
result table column data types with explicit type conversion. Finally, we can determine
the order in which the rows of our result table are traversed by specifying sort key(s) to
ORDER BY. With all of these capabilities, SQL gives us great control over the final form of
our result table.

■ Review Questions 71

Review Questions

1. True/False NULLs always appear first when using the ORDER BY clause.

2. What’s the difference between the output of the following two queries? Explain.

SELECT vendorid FROM vendors;
SELECT DISTINCT vendorid FROM vendors;

3. How many rows does the following query return?
SELECT 'apples' FROM vendors;

4. Fully parenthesize the following WHERE clause to indicate the order of execution:
WHERE NOT - x + 2 * y >= 3 AND z + 9 < 12;
x, y, and z are all integers.

5. What happens when you CAST a NULL value?

6. Consider the blood donor table that follows. Place an × in the rows that would not
be in the result of a query with the select clause.

donor

SELECT SELECT SELECT

DISTINCT DISTINCT DISTINCT

id gender type gender type gender, type

1 M A

2 F B

3 NULL A

4 NULL NULL

5 M NULL

6 M A

7. What is the result of the following expression?
5 * 8 + 2 / ABS(NULL)

8. Modify Query 3.14 so that single word company names are also returned.

9. AS is optional in SQL. In the Restaurant Database, what is the difference between
the SELECT clause aliasing repfname as vendorid (without AS) and the SELECT clause
returning both repfname and vendorid?

10. eln x = x. Write a query to test these SQL functions.

11. In the Restaurant Database, how would you combine substring and position to
return the first word in a VARCHAR field? You can assume words are separated
by spaces.

12. Write a query to return tomorrow’s date.

72 Chapter 3: Reshaping Results ■

13. Explain the difference between Query 3.32 and Query 3.33.

Query 3.32

SELECT ingredientid, price
FROM ingredients
ORDER BY CAST(price * 10 AS
VARCHAR(10))

Query 3.33

SELECT ingredientid, price
FROM ingredients
ORDER BY price * 10

14. The conditional list (see Section 3.7.2) is similar to if-then-elseif constructs in
programming languages. Construct a conditional list equivalent to the following
pseudo code:

if (A<>B) then {
if (C>0) then output A*C;
if (C==0) then output A*B;
if (C<0) then output B*C;

}

15. What is the result of NULLIF(X,NULL)? NULLIF(NULL,X)? NULLIF(NULL, NULL)?

16. What is the result of COALESCE(NULLIF(X,X),X)?

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Answer each question with a single SQL statement. Your query must work for any set of
data in the Employees Database, not just the set of data we provide.

1. List all employee names as one field called name.

2. List all of the department codes assigned to a project. Remove all duplicates.

3. Find the project ID and duration of each project.

4. Find the project ID and duration of each project. If the project has not finished,
report its execution time as of now.

5. For each completed project, find the project ID and average revenue per day.

■ Practice 73

6. Find the years a project started. Remove duplicates.

7. Find the IDs of employees assigned to a project that is more than 20 hours per week.
Write three queries using 20, 40, and 60 hour work weeks.

8. For each employee assigned to a task, output the employee ID with the following:

■ 'part time' if assigned time is < 0.33

■ 'split time' if assigned time is >= 0.33 and < 0.67

■ 'full time' if assigned time is >= 0.67

9. We need to create a list of abbreviated project names. Each abbreviated name con-
catenates the first three characters of the project description, a hyphen, and the
department code. All characters must be uppercase (e.g., EMP-ADMIN).

10. For each project, list the ID and year the project started. Order the results in
ascending order by year.

11. If every employee is given a 5% raise, find the last name and new salary of the
employees who will make more than $50,000.

12. For all the employees in the HDWRE department, list their ID, first name, last name,
and salary after a 10% raise. The salary column in the result should be named Next
Year.

13. Create a neatly formatted directory of all employees, including their department
code and name. The list should be sorted first by department code, then by last
name, then by first name.

c h a p t e r 4

Aggregating Results

Databases are designed to hold data—lots of it. Often, to answer a question, we
don’t want the raw data; we just need some aggregate of the data. For example, when
somebody asks about your car’s fuel efficiency, they don’t want to know minute-by-minute
fuel consumption details. Instead they want to know the average distance that your car
can go on a gallon or liter of gas. To answer these types of queries, SQL computes common
data aggregates.

4.1 Aggregation Functions

Given a set of data, SQL can provide us with a single, aggregate value over that data. For
example, we can find the average cost of our items or sum of the values of each item in
our inventory.

SQL provides several basic aggregation functions. These functions take an expres-
sion and return an aggregate value over all rows in the specified table. Table 4.1 includes
information about each function, including what it computes, the acceptable data types,
and how NULLs and repeated values are handled. There are five basic aggregate functions
in SQL: AVG, SUM, MIN, MAX, and COUNT.

4.1.1 AVG and SUM

AVG computes the average of an expression over all rows in the result table. Similarly, SUM
computes the sum. The expression parameter can be as simple as a single column name.
In Section 4.9, we will see that more complex expressions are possible. Rows for which

75

76 Chapter 4: Aggregating Results ■

Data NULLs DISTINCT
Function Returns Type Ignored? Meaningful

AVG Average expression value Numeric Yes Yes

MAX Largest expression value Any Yes No

MIN Smallest expression value Any Yes No

SUM Sum of expression values Numeric Yes Yes

COUNT Number of non-null values Any Yes Yes

COUNT(*) Number of rows Any No Illegal

Table 4.1: SQL Aggregate Functions

the expression evaluates to NULL are ignored. Naturally, the parameter for AVG and SUM
must be a numeric data type.

Query 4.1 Find the average and total price for all items

SELECT AVG(price), SUM(price)
FROM items;

avg sum

2.0450000000000000 12.27

[1 row(s)]

Query 4.1 computes the average and total price of all rows in the items table. Both results
ignore rows where the price is NULL.

As with any SELECT statement, the result of Query 4.1 is a table. This table contains
two columns and one row containing the results of the aggregate functions. The name of
each column is DBMS specific; however, we can specify the name using an attribute alias.

Query 4.2 Find the total number of ingredient units in inventory

SELECT SUM(inventory) AS totalinventory
FROM ingredients;

totalinventory

7115

[1 row(s)]

4.1.2 MIN and MAX

MIN and MAX find the minimum and maximum value, respectively, of the given expression
over all rows in the given table. Because NULL is not comparable, it can be neither the

■ 4.1 Aggregation Functions 77

minimum nor maximum value; consequently, MIN and MAX ignore NULL values, just like
AVG and SUM.

Query 4.3 Find the smallest price of all items

SELECT MIN(price) AS minprice
FROM items;

minprice

0.00

[1 row(s)]

Unlike AVG and SUM, MIN and MAX are not limited to numeric values. We can use any
data type that allows for comparisons. Query 4.4 provides an example using dates.

Query 4.4 Find the date on which the last item was added

SELECT MAX(dateadded) AS lastmenuitem
FROM items;

lastmenuitem

2003-02-06

[1 row(s)]

4.1.3 COUNT

COUNT returns the number of rows. It comes in two flavors. COUNT(*) computes the
number of rows in a table, including NULLs.

Query 4.5 Find the number of slogans

SELECT COUNT(*) AS numads
FROM ads;

numads

6

[1 row(s)]

The second form of COUNT takes an expression as its parameter and only counts the rows
where the expression does not evaluate to NULL.

78 Chapter 4: Aggregating Results ■

Query 4.6 Find the number of ingredients with non-NULL inventories

SELECT COUNT(inventory) AS invct
FROM ingredients;

invct

10

[1 row(s)]

4.2 Removing Rows before Aggregation with WHERE

We can limit the rows used by the aggregate function with a WHERE condition.

Query 4.7 Find the total sales at FIRST store

SELECT SUM(price) AS sales
FROM orders
WHERE storeid = 'FIRST';

sales

15.66

[1 row(s)]

The WHERE condition is always applied before any aggregate function is computed. Note
that AVG, SUM, MIN, and MAX over an empty set of values returns NULL. Because these
functions ignore NULL values, computing one of these functions over a set of NULL values
returns NULL. COUNT over an empty set of values returns 0. Query 4.8 shows an example.

Query 4.8 Aggregates and NULL example

SELECT AVG(inventory) AS ainv, SUM(inventory) AS sinv, MIN(inventory) AS mininv,
MAX(inventory) AS maxinv, COUNT(*) AS cntall, COUNT(inventory) AS cntinv

FROM ingredients
WHERE ingredientid = 'WATER';

ainv sinv mininv maxinv cntall cntinv

NULL NULL NULL NULL 1 0

[1 row(s)]

In Query 4.8 AVG, SUM, MIN, and MAX returned NULL because the inventory for water is
NULL, which is ignored for computing them. Because COUNT(inventory) ignores NULL, it

■ 4.4 Mixing Attributes, Aggregates, and Literals 79

computes the number of rows in an empty set, and COUNT(*) returns the number of rows,
even with the NULL value.

4.3 Removing Repeating Data with DISTINCT
before Aggregation

How do aggregate functions handle repeated values? By default, an aggregate function
includes all rows, even repeats, with the noted exceptions of NULL. We can add the
DISTINCT qualifier to remove duplicates prior to computing the aggregate function.

Query 4.9
Find the number of ingredients with a non-NULL food group and the number of distinct
non-NULL food groups

SELECT COUNT(foodgroup) AS "FGIngreds", COUNT(DISTINCT foodgroup) AS "NoFGs"
FROM ingredients;

FGIngreds NoFGs

9 5

[1 row(s)]

Recall that, when given an expression, COUNT ignores NULL values. After eliminating the
NULL foodgroup values, we have only 5 distinct food groups.

DISTINCTions to keep in mind:

1. It is legal to use DISTINCT with MIN and MAX; however, it will not alter the results.

2. COUNT(DISTINCT *) is illegal.

3. We can explicitly request the inclusion of repeats by using the ALL qualifier instead
of DISTINCT; however, this does not change the behavior because ALL is the default
qualifier.

4.4 Mixing Attributes, Aggregates, and Literals

Aggregate functions return a single value, so we usually cannot mix attributes and aggre-
gate functions in the attribute list of a SELECT statement. The following query produces
an error.

SELECT itemid, AVG(price)
FROM items;

Because there are many item IDs and only one average price, SQL doesn’t know how
to pair them. In Section 4.5 we will see how SQL partially removes this restriction with
GROUP BY.

We can mix literals and aggregate functions as shown in Query 4.10.

80 Chapter 4: Aggregating Results ■

Query 4.10 Mixing literals with aggregates

SELECT 'Results: ' AS " ", COUNT(*) AS noingredients,
COUNT(inventory) AS countedingredients,
SUM(DISTINCT inventory) AS totalingredients

FROM ingredients;

noingredients countedingredients totalingredients

Results: 12 10 6995

[1 row(s)]

Note that each aggregate function operates independently. COUNT(*) counts all rows,
COUNT(quantity) counts all rows with non-NULL inventory quantities, and SUM(DISTINCT
inventory) sums all rows with non-NULL and ignores repeated values.

4.5 Group Aggregation Using GROUP BY

Aggregate functions return a single piece of summary information about an entire set of
rows. What if we wanted the aggregate over different groups of data? For example, we
might want to find the total sales in all of our stores. We could repeat Query 4.7 for every
store ID, but this would be impractical for large chains. Fortunately, SQL provides a simple
mechanism for applying aggregates to all groups in one query. SQL uses the GROUP BY
clause to specify the attribute(s) that determine the grouping. Let’s look at an example.

Query 4.11 Find the storeid and total sales from all stores

SELECT storeid, SUM(price)
FROM orders
GROUP BY storeid;

storeid sum

CASTR 28.32
#2STR 20.18
NDSTR 17.79
FIRST 15.66

[4 row(s)]

The GROUP BY is executed before the SELECT. Thus, the orders table is divided into
groups based on the storeid values. For each of these groups, we then apply the SELECT,
including the aggregate function, which in this case is SUM. This means the result of
Query 4.11 will include one row for each store ID and the total sales at that store. This
solves the problem of combining attributes and aggregates we had in Section 4.4. If we
had stores with NULL IDs, they would form their own single group.

■ 4.5 Group Aggregation Using GROUP BY 81

Groups can be defined by multiple attributes, as shown in Query 4.12.

Query 4.12 Find the total for each order

SELECT storeid, ordernumber, SUM(price)
FROM orders
GROUP BY storeid, ordernumber;

storeid ordernumber sum

FIRST 2 2.85
FIRST 3 9.36
FIRST 1 3.45
NDSTR 2 0.99
NDSTR 3 12.81
NDSTR 1 3.99
#2STR 2 3.84
#2STR 3 7.83
#2STR 1 8.51
CASTR 2 9.81
CASTR 3 14.67
CASTR 1 3.84

[12 row(s)]

In this example, a group is formed for each storeid/ordernumber pair, and the aggregate
is applied just as before.

It is important to note that when we use a GROUP BY clause, we restrict the attributes
that can appear in the SELECT clause. If a GROUP BY clause is present, the SELECT clause
may only contain attributes appearing in the GROUP BY clause, aggregate functions (on
any attribute), or literals.

GROUP BY does not require the use of aggregation functions in the attribute list.
Without aggregation functions, GROUP BY acts like DISTINCT, forming the set of unique
groups over the given attributes. For example, compare Query 3.4 to Query 4.13.

Query 4.13 Find the distinct list of food groups provided by each vendor

SELECT vendorid, foodgroup
FROM ingredients
GROUP BY vendorid, foodgroup;

vendorid foodgroup

NULL NULL
FRTFR Fruit

Continued on next page

82 Chapter 4: Aggregating Results ■

Query 4.13 (cont’d)

SPWTR NULL
VGRUS Vegetable
VGRUS Fruit
DNDRY Milk
DNDRY Meat
EDDRS Bread

[8 row(s)]

Now consider Query 4.14. In this query, we want the name of the ingredient, not the
ingredient ID. However, it is possible that different ingredients have the same name. (Our
example database does not, but it is not prevented.) We can still get the groups we want
by using BOTH the ingredient ID and the name in the GROUP BY clause.

Query 4.14 GROUP BY example

SELECT name, AVG(unitprice)
FROM ingredients
WHERE unit = 'piece'
GROUP BY ingredientid, name;

name avg

Grape 0.01000000000000000000
Watermelon 0.02000000000000000000
Crouton 0.01000000000000000000

[3 row(s)]

4.6 Removing Rows before Grouping with WHERE

We may want to eliminate some rows from the table before we form groups. We can
eliminate rows from groups using the WHERE clause as shown in Query 4.15.

Query 4.15 Find the number of nonbeverages sold at each store

SELECT storeid, COUNT(*)
FROM orders
WHERE menuitemid NOT IN ('SODA','WATER')
GROUP BY storeid;

■ 4.8 Removing Groups with HAVING 83

Query 4.15 (cont’d)

storeid count

CASTR 8
#2STR 7
NDSTR 5
FIRST 4

[4 row(s)]

Rows not satisfying the WHERE predicate are removed before the groups are formed. The
aggregate function values are computed after the groups are formed.

4.7 Sorting Groups with ORDER BY

We can order our groups using ORDER BY. It works the same as ORDER BY without grouping
except that we can now also sort by group aggregates. The aggregate we use in our sort
criteria need not be an aggregate from the SELECT list.

Query 4.16 Find stores and store sales sorted by number items sold

SELECT storeid, SUM(price)
FROM orders
GROUP BY storeid
ORDER BY COUNT(*);

storeid sum

NDSTR 17.79
FIRST 15.66
#2STR 20.18
CASTR 28.32

[4 row(s)]

Just like the SELECT clause, any attributes in the ORDER BY clause must either be
contained within an aggregation function or appear in the GROUP BY clause. This means
that in Query 4.16 we can only sort by storeid or an aggregate function.

4.8 Removing Groups with HAVING

Use the HAVING clause to specify a condition for groups in the final result. This is dif-
ferent from WHERE, which removes rows before grouping. Groups for which the HAVING
condition does not evaluate to true are eliminated. Because we’re working with groups of
rows, it makes sense to allow aggregate functions in a HAVING predicate.

84 Chapter 4: Aggregating Results ■

Query 4.17
Find the number of vendors each vendor referred, and only report the vendors
referring more than 1

SELECT referredby, COUNT(*)
FROM vendors
WHERE referredby IS NOT NULL
GROUP BY referredby
HAVING COUNT(*) > 1;

referredby count

VGRUS 2

[1 row(s)]

SQL begins Query 4.17 by evaluating the WHERE clause to remove the vendors who have
not been referred by anyone. Remember that NULL would become a group, but we do
not want that in the result. Next, SQL divides the remaining rows into groups according
to referredby values. For each referring vendor, SQL computes the number of referrals.
The HAVING clause only keeps the groups with more than 1 referral. Could we have used
WHERE instead of HAVING? No. WHERE conditionals apply to rows, and no single row in
the vendors table tells us how many other vendors a vendor has referred. We can only find
that after we have grouped the rows and applied the aggregate function. Because WHERE
works on rows, it does not even allow aggregate functions.

The condition in the HAVING clause may be over any group attribute or group data
aggregation. This means that our HAVING clause is not restricted to aggregation functions
in the SELECT list or even aggregation functions over attributes in the GROUP BY.

Query 4.18
Find the maximum number of items in an order for each store with total sales of more
than $20

SELECT storeid, MAX(linenumber) AS "Items Sold"
FROM orders
GROUP BY storeid
HAVING SUM(price) > 20;

storeid Items Sold

CASTR 5
#2STR 4

[2 row(s)]

In Query 4.18, SQL first forms the groups of rows for each store ID. Next, it computes
the SUM of the price attribute for each row in the group. If this total is higher than $20,
SQL returns the store ID and greatest line number in the group.

Sometimes, we can get the same results by applying a predicate in either the WHERE
clause or the HAVING clause. Compare Query 4.19 with Query 4.7.

■ 4.9 Aggregates over Expressions 85

Query 4.19 Find the total sales at FIRST store

SELECT SUM(price) AS sales
FROM orders
GROUP BY storeid
HAVING storeid = 'FIRST';

sales

15.66

[1 row(s)]

Query 4.19 will almost certainly be slower than Query 4.7 because the DBMS will have to
go through the effort of creating groups that are not needed.

The HAVING clause can use AND, OR, and NOT just like the WHERE clause to form more
complicated predicates on groups. The following query finds the minimum and maximum
unit price of all ingredients in each non-NULL food group. The results are only reported
for food groups with either two or more items or a total inventory of more than 500 items.

Query 4.20 Complex HAVING example

SELECT foodgroup, MIN(unitprice) AS minprice, MAX(unitprice) AS maxprice
FROM ingredients
WHERE foodgroup IS NOT NULL
GROUP BY foodgroup
HAVING COUNT(*) >= 2 OR SUM(inventory) > 500;

foodgroup minprice maxprice

Vegetable 0.01 0.04
Fruit 0.01 0.05

[2 row(s)]

It is legal to have a HAVING clause without a GROUP BY. In this case, the entire table is
treated as a single group. Note that without the GROUP BY clause, only aggregate functions
and literals can appear in the SELECT clause, so the result of a query with a HAVING clause
and no GROUP BY clause will either be a single row or no rows, depending on whether the
selected rows satisfy the HAVING predicate. Finally, in a query with both a HAVING clause
and an ORDER BY clause, the HAVING clause comes first.

4.9 Aggregates over Expressions

Aggregate functions accept expression parameters. This allows us to aggregate complex
values.

86 Chapter 4: Aggregating Results ■

Query 4.21 Find the total value of our inventory for the vendor with ID VGRUS

SELECT SUM(unitprice*inventory) AS invalue
FROM ingredients
WHERE vendorid = 'VGRUS';

invalue

34.45

[1 row(s)]

The computation of these expressions follow the rules for handling NULLs as described in
Section 3.3. Expressions also work with GROUP BY. We can even use aggregate functions
within expressions. Suppose your restaurant chain has a sales goal of $25. You want to
know the percentage of the sales goal that has been met by each store that has sold at least
8 items.

Query 4.22 Find the percentage of sales goals met for each store with at least 8 items sold

SELECT storeid, CAST(SUM(price)/25.0*100.0 AS NUMERIC(5,2)) || '%' AS "Goal"
FROM orders
GROUP BY storeid
HAVING COUNT(*) >= 8
ORDER BY SUM(price)/25.0*100.0 DESC;

storeid Goal

CASTR 113.28%
#2STR 80.72%

[2 row(s)]

Query 4.22 combines much of what we have learned so far. First, it groups the orders
by the storeid. Each group with at least 8 rows is then sorted by the percentage of the goal
($25 for our small orders table) met. The output is then formatted.

Let’s try one more example of an aggregate over an expression.

Query 4.23 COUNT without COUNT

SELECT SUM(1) AS "no count", COUNT(*) AS count
FROM vendors;

no count count

6 6

[1 row(s)]

■ 4.10 Wrap Up 87

How does Query 4.23 work? Because we do not have a GROUP BY clause, the entire table is
considered one group. For each row in the group, SUM totals its expression. In this case,
that simply adds one to the total. The end result is that both SUM(1) and COUNT(*) return
the same value.

4.10 Wrap Up

Databases contain raw data, and aggregate functions allow us to derive useful summariza-
tions. We present the use of the five basic aggregation functions: SUM, AVG, MIN, MAX, and
COUNT. The SQL standard includes several more, such as boolean set operations EVERY,
ANY, and SOME and statistical operations STDDEV_POP, STDDEV_SAMP, VAR_SAMP, and
VAR_POP. Support for these operations is limited.

Instead of computing a single aggregate value, we can group data for aggrega-
tion using the GROUP BY clause. We can control the inclusion of rows in aggregation
computation using the WHERE clause and the inclusion of groups using the HAVING clause.

88 Chapter 4: Aggregating Results ■

Review Questions

1. If we have a column, X, with values 1, 2, 3, and NULL, what is AVG(X)?

2. Does AVG(price) = SUM(price)/COUNT(*)? Explain. If they are not equal, how can you
fix it?

3. If we have a column X, when can MIN(X) = MAX(X)?

4. If X is a primary key, what is COUNT(X)? How does that value compare to COUNT(*)
over the same table?

5. For each aggregate function, what is the result if the SQL statement includes WHERE
1 = 2?

6. If the result of the query is the same, which is better, eliminating rows with a WHERE
clause or eliminating groups with a HAVING clause? Why?

7. Is there any relationship between the number of rows in a table and the number of
rows generated by a GROUP BY?

8. What is the difference between using DISTINCT in the SELECT clause and a GROUP
BY clause with the same attributes?

9. What can the HAVING clause contain that the WHERE clause cannot?

10. How many rows are returned if the GROUP BY clause contains the primary key of a
table?

11. WHERE is to rows as HAVING is to .

12. Using the Restaurant Database, assume the FROM clause contains the vendors table.
If the GROUP BY clause contains the vendorid and replname attributes, list all
attributes that can appear by themselves in the SELECT, WHERE, HAVING, and ORDER
BY clauses.

13. If a HAVING clause appears without a GROUP BY clause, what is the maximum
number of rows that can be in the result? What is the minimum number of rows?

14. In statistics, the “sum-of-squares error” is used to determine the goodness of fit for
an approximation. The formula is as follows:∑

i

(Xi − Yi)
2:

If X and Y are columns in table test, write an SQL statement to find the “sum-of-
squares error” for the data in test.

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Answer each question with a single SQL statement. Your query must work for any set of
data in the Employees Database, not just the set of data we provide.

■ Practice 89

1. Find the average salary for all employees.

2. Find the minimum and maximum project revenue for all active projects that make
money.

3. Find the number of projects that are completed. You may not use a WHERE clause.

4. Find the number of projects that have been worked on or currently are being worked
on by an employee.

5. Find the last name of the employee whose last name is last in dictionary order.

6. Compute the employee salary standard deviation. As a reminder, the formula for
the population standard deviation is as follows:

√√√√√ 1
N

N∑
i=1

(xi − x)2

7. Find the number of employees who are assigned to some department. You may not
use a WHERE clause.

8. For each department, list the department code and the number of employees in the
department.

9. For each department that has a project, list the department code and report the
average revenue and count of all of its projects.

10. Modify the query from Problem 9 to only include departments with 2 or more
projects.

11. Modify the query from Problem 10 to only count active projects. Sort the results in
descending order by count.

12. Find the employee ID of all employees where their assigned time to work on projects
is 100% or more.

13. Calculate the salary cost for each department with employees that don’t have a last
name ending in “re” after giving everyone a 10% raise.

c h a p t e r 5

Joins

Until now, all of our queries have used a single table. It is not surprising that many
queries require information from more than one table. Suppose that you want a list of
ingredients and their vendor (ID and company name). The names of the companies are in
the vendors table, but the names of the ingredients are in the ingredients table. To answer
this yourself, you could go through each row of the ingredients table and use the vendorid
value to search for the company name in the vendors table. What a painful process!

To deal with this problem, SQL allows us to derive a single table that contains all
of the desired data. We can then query that table using the techniques we already know.
Combining tables to derive a new table is called a join.

5.1 Two Table Joins with WHERE

The best way to understand joins is to look at an example. Let’s try our ingredients/vendor
list again. Using a join, we derive a new, virtual table that includes the information we need
from both the ingredients and vendors table.

Query 5.1 For each ingredient, find its name and the name and ID of the vendor that supplies it

SELECT vendors.vendorid, name, companyname
FROM ingredients, vendors
WHERE ingredients.vendorid = vendors.vendorid;

vendorid name companyname

DNDRY Cheese Don’s Dairy
DNDRY Chicken Don’s Dairy

Continued on next page

91

92 Chapter 5: Joins ■

Query 5.1 (cont’d)

EDDRS Crouton Ed’s Dressings
FRTFR Grape "Fruit Eating" Friends
VGRUS Lettuce Veggies_R_Us
VGRUS Pickle Veggies_R_Us
VGRUS Tomato Veggies_R_Us
SPWTR Water Spring Water Supply
SPWTR Soda Spring Water Supply
FRTFR Watermelon "Fruit Eating" Friends
FRTFR Orange "Fruit Eating" Friends

[11 row(s)]

Let’s dissect this query. First, the FROM clause creates the new table that has the
combined attributes of all tables in the list. In the previous example, the new table has a
total of 12 attributes (5 from vendors + 7 from ingredients). Note that we now have two
attributes in the new table with the name vendorid: one from the ingredients table and one
from the vendors table. If we reference vendorid in the new table, do we mean the vendorid
from ingredients or vendors? It is impossible to know which, so SQL requires us to prefix
these attributes with their original table names. For example, the vendorid from vendors
is called vendors.vendorid. The table name prefix is not required if the attribute name is
unambiguous, as with name in the SELECT clause.

Next, the WHERE clause describes how to connect the tables. For this query, we want
to match the rows in ingredients with the rows in vendors that supply them. We know that
the vendorid in ingredients references the vendorid in vendors. The foreign key constraint
between the two tables tells us these attributes have an association. We want to match
rows from the two tables where this common attribute contains the same value. To do
this, we add a condition (called the join predicate) to the WHERE clause that describes
this relationship. To combine our two tables, we use WHERE ingredients.vendorid =
vendors.vendorid.

We can think of executing this query by taking every row in ingredients and searching
the vendors table for matching rows. Once a match is found, all of the attributes in both
tables are processed by the rest of the SQL query. This allows us to display the name of the
ingredient and the name and ID of the vendor that supplies it. After executing the FROM
and WHERE clauses, we have a table with the attributes of both ingredients and vendors
and the rows with matched vendor IDs. Finally SQL executes the SELECT clause, keeping
only the attributes in the SELECT list.

Once we create our new table, we can use it just like any other table. We can apply
conditions in the WHERE clause to the matched rows. Query 5.2 uses the same join pred-
icate as Query 5.1, but it also applies the additional constraint that the company name is
Veggies_R_Us.

■ 5.1 Two Table Joins with WHERE 93

Query 5.2 Find the names of the ingredients supplied to us by Veggies_R_Us

SELECT name
FROM ingredients, vendors
WHERE ingredients.vendorid = vendors.vendorid AND companyname = 'Veggies_R_Us';

name

Lettuce
Pickle
Tomato

[3 row(s)]

Designing a join is a two-step process:

1. Find the tables with the information that we need to answer the query.

2. Determine how to connect the tables.

Let’s try an example: Find the orders made at our California store in Query 5.3. In
Step 1, we list all of the tables that we need to answer the query. In this example, we need
the orders table for the order information and the stores table to find out the state of each
store. We list these tables in the FROM clause of our query. For Step 2, we need to give
the criteria for connecting these two tables. We know that the storeid in orders references
the storeid in stores from the foreign key constraint. We want to match rows from the two
tables where this common attribute contains the same value. We add the join predicate
WHERE orders.storeid = stores.storeid. At this point, we have the orders made in all
stores. To finish we add the condition state = 'CA' and select the desired attributes.

Query 5.3 Find the store ID and price of all orders made in our California stores

SELECT stores.storeid, price
FROM orders, stores
WHERE orders.storeid = stores.storeid AND state = 'CA';

storeid price

CASTR 2.85
CASTR 0.99
CASTR 0.99
CASTR 3.45
CASTR 0.99
CASTR 4.38
CASTR 4.38
CASTR 3.99
CASTR 3.45
CASTR 0.00
CASTR 2.85

[11 row(s)]

94 Chapter 5: Joins ■

Here we join the two tables from Step 1 using the join predicate from Step 2 to derive a
new table. We can then treat this like any other table, applying additional conditions and
selecting specific attributes.

We can even apply aggregation and grouping to a derived table. Suppose you want
to know the total sales in each state. Step 1 tells us we need the stores (to find the states)
and the orders tables. We connect our tables using the storeid column in Step 2. Now that
we have the derived table, we perform aggregation and grouping.

Query 5.4 Find the total sales by state

SELECT state, SUM(price)
FROM stores, orders
WHERE stores.storeid = orders.storeid
GROUP BY state;

state sum

TX 35.84
ND 17.79
CA 28.32

[3 row(s)]

5.2 Table Aliases

It becomes tiresome and error prone to prefix attributes with the full table name every
time. Fortunately, SQL allows aliases for the table names.

Query 5.5 Find the name of all ingredients supplied by Veggies_R_Us or Spring Water Supply

SELECT v.vendorid AS "Vendor ID", name
FROM ingredients AS i, vendors AS v
WHERE i.vendorid = v.vendorid AND

v.companyname IN ('Veggies_R_Us', 'Spring Water Supply')
ORDER BY v.vendorid;

Vendor ID name

SPWTR Water
SPWTR Soda
VGRUS Lettuce
VGRUS Pickle
VGRUS Tomato

[5 row(s)]

■ 5.3 Joins Needing More Than Two Tables 95

The keyword AS is optional for table aliases. In our example query, we use i for ingredients
and v for vendors. We can use the table alias in all other clauses. We SELECT and ORDER
BY v.vendorid. We would get the same results using i.vendorid because the WHERE clause
ensures that the vendor IDs are equal.

5.3 Joins Needing More Than Two Tables

Sometimes when we’re answering a query the tables containing the information we need
aren’t directly related so they don’t share a common attribute. For example, suppose
we ask the query to find the names and prices of items that are made from ingredients
supplied by Veggies_R_Us. Step 1 tells us we need information in the items and vendors
tables. However, we cannot complete Step 2 because items and vendors have no common
attributes. The solution is to use additional tables to connect items with vendors. The
madewith table pairs items and vendors. The foreign key constraints tell us how they are
connected.

Our FROM clause now contains four tables: items, madewith, ingredients, and vendors.
As in Section 5.1, we apply join predicates over the common attributes to find rows where
the items are made with ingredients supplied by the vendor. In other words, we want all
of the rows to meet three criteria:

1. items.itemid matches madewith.itemid

2. madewith.ingredientid matches ingredients.ingredientid

3. ingredients.vendorid matches vendors.vendorid

All of these constraints can be part of a single WHERE clause. Once we have the table
constructed, all that remains is the selection of the name attribute of the items table and
the additional selection criteria of the company named Veggies_R_Us.

Query 5.6 Find the name and price of all items using an ingredient supplied by Veggies_R_Us

SELECT DISTINCT mi.name, price
FROM ingredients i, vendors v, items mi, madewith mw
WHERE i.vendorid = v.vendorid AND i.ingredientid = mw.ingredientid AND

mw.itemid = mi.itemid AND companyname = 'Veggies_R_Us';

name price

Chicken Salad 2.85
Fruit Plate 3.99
Garden Salad 0.99

[3 row(s)]

Note that we know the attributes itemid and vendorid refer to the same real-world
objects because of the foreign key constraints. Without these constraints, or similar

96 Chapter 5: Joins ■

additional information, no assumptions should be made about attribute compatibility.
For example, the name attribute in items and the name attribute in ingredients do not
have anything to do with each other and will rarely be used as join predicates.

In general, whenever we join N tables to answer a query, we will need N−1 join pred-
icates in the WHERE clause. In our two-table query examples, we use one join predicate. In
Query 5.6, we join four tables, requiring three join predicates. Leaving out a join predicate
is a common error. The result of leaving out a join predicate is almost always an incorrect
result. One sign of join predicate omission is too many rows in the answer. We explain
why this happens in Section 5.6.

As with our previous queries, once we have figured out how to construct the needed
table, we can then process this new table with any of our single table techniques. Let’s
look at a few examples.

Query 5.7 Find the cost of the most expensive item that uses an ingredient supplied by each vendor

SELECT companyname, MAX(price) AS price
FROM ingredients i, vendors v, items mi, madewith mw
WHERE i.vendorid = v.vendorid AND i.ingredientid = mw.ingredientid AND

mw.itemid = mi.itemid
GROUP BY v.vendorid, companyname;

companyname price

Spring Water Supply 0.99
"Fruit Eating" Friends 3.99
Veggies_R_Us 3.99
Don’s Dairy 3.99
Ed’s Dressings 3.99

[5 row(s)]

Query 5.8 Find all of the vendors who supply an ingredient used to make a fruit plate

SELECT DISTINCT(companyname)
FROM ingredients i, vendors v, items mi, madewith mw
WHERE i.vendorid = v.vendorid AND i.ingredientid = mw.ingredientid AND

mw.itemid = mi.itemid AND mi.name = 'Fruit Plate';

companyname

Don’s Dairy
Ed’s Dressings
"Fruit Eating" Friends
Veggies_R_Us

[4 row(s)]

■ 5.5 Example Joins 97

5.4 Self-Join: Joining a Table with Itself

In some situations, we need to connect a table to itself. Suppose we want to find all of the
vendors that were referred to us by Veggies_R_Us. To answer this, we must first find the
vendor ID of Veggies_R_Us. Next we must find all of the vendors with a referredby value
matching that ID. To answer both of these questions at the same time, we need two copies
of the vendors table—one to find the vendorid of Veggies_R_Us and the other to find all
vendors referred by that vendor ID.

SQL handles this situation by allowing two copies of the same table to appear in
the FROM clause. The only requirement is that each copy of the table must be given a
distinct alias to distinguish between the copies of the table. Therefore, our FROM clause
has vendors v1, vendors v2. Now the query table–building process proceeds exactly as if
we had two distinct copies of the vendors table. We want only rows in which the referredby
value of v2 matches the vendorid from v1. Joining a table to itself is called a self-join.

Query 5.9 Find all of the vendors referred by Veggies_R_Us

SELECT v2.companyname
FROM vendors v1, vendors v2
WHERE v1.vendorid = v2.referredby AND v1.companyname = 'Veggies_R_Us';

companyname

Don’s Dairy
Flavorful Creams

[2 row(s)]

In this query, we use a join over attributes with different names. This is correct because
the attributes refer to the same domain—vendor IDs.

5.5 Example Joins

We now give some examples to show the two-step process for creating joins.

Query 5.10 List all the items for each meal

SELECT i.name, m.name
FROM items i, meals m, partof p
WHERE i.itemid = p.itemid and p.mealid = m.mealid;

name name

Chicken Salad Chicken N Suds
Soda Chicken N Suds

Continued on next page

98 Chapter 5: Joins ■

Query 5.10 (cont’d)

Garden Salad Vegan Eatin’
Fruit Salad Vegan Eatin’
Water Vegan Eatin’

[5 row(s)]

The names of items appear in the answer, so Step 1 requires the items table to be in our
query. Likewise, meals appears in the answer, so the meals table must be in the query.
For Step 2, because meals and items share no common attributes, we need a join table,
specifically partof, to complete the join.

As far as SQL is concerned, the join attributes are not special. We can compare any
two attributes. However, join attributes should refer to the same real-world objects or the
query must require the comparison.

Query 5.11 Find all ingredients with an inventory equal to the quantity required to make some item

SELECT i.name
FROM ingredients i, madewith mw
WHERE i.ingredientid = mw.ingredientid AND inventory = quantity;

name

Orange

[1 row(s)]

Step 1 requires the ingredients (for the result) and madewith (to filter the results) tables.
For Step 2, we can use the common ingredientid column to find which ingredients are used
in an item, but that is not enough. We also need the fact that the inventory of the item is
equal to the quantity required. This is an example of a compound join predicate, because
we are using multiple attributes to join the tables together.

Query 5.12 might sound like an unusual query, but a data entry error—entering the
vendor company name for the ingredient name—could require a query like this to find.
Fortunately, no such errors are present in our database, so the results are empty.

Query 5.12 Find all ingredients with the same name as a vendor

SELECT ingredientid
FROM ingredients, vendors
WHERE name = companyname;

ingredientid

[0 row(s)]

■ 5.6 How Does a Join Really Work? 99

Query 5.12 also has a different join predicate. From Step 1, we know we need the
vendors table and the ingredients table. In our other queries (such as Query 5.1) over
these two tables we used the common vendorid column to connect the two tables together.
However, in this case, that might miss some errors in the data. Therefore, we use the join
predicate suggested by the query of matching the name of the ingredient and the vendor’s
company name. If any match, we have our error.

5.6 How Does a Join Really Work?

As Query 5.12 indicates, Step 2 in our process is the difficult part. In this section, we look
at the details of performing joins. This is not always obvious, but it is important in order
to understand how to connect tables together.

SQL begins in the FROM clause. When more than one table is listed in the FROM clause,
the first step of query processing is to create one table from the multiple tables listed. To
do this, SQL pairs every row in the first table with every row in the second table. SQL
then pairs every row in this new table with every row in the third table, and so on. This
combination is called a Cartesian product or a cross product. Let’s look at an example.

Query 5.13 Cartesian product

SELECT *
FROM meals, partof;

mealid name mealid itemid quantity discount

CKSDS Chicken N Suds CKSDS CHKSD 1 0.02
CKSDS Chicken N Suds CKSDS SODA 1 0.10
CKSDS Chicken N Suds VGNET GDNSD 1 0.03
CKSDS Chicken N Suds VGNET FRTSD 1 0.01
CKSDS Chicken N Suds VGNET WATER 1 0.00
VGNET Vegan Eatin’ CKSDS CHKSD 1 0.02
VGNET Vegan Eatin’ CKSDS SODA 1 0.10
VGNET Vegan Eatin’ VGNET GDNSD 1 0.03
VGNET Vegan Eatin’ VGNET FRTSD 1 0.01
VGNET Vegan Eatin’ VGNET WATER 1 0.00

[10 row(s)]

Here each row from meals is paired with each row from partof. Note that the result table
has all of the attributes from both tables in the FROM clause.

The result of a cross product is a set of rows and columns, just like a table, so all
of the previous WHERE conditions and SELECT clauses can be applied. We can apply the
join predicate meals.mealid = partof.mealid. We can use an aggregate function such as
COUNT(*), with or without a join predicate. Similarly, we can use ORDER BY, GROUP BY,

100 Chapter 5: Joins ■

HAVING, or anything else that can be applied to a table with this schema. As an example,
consider Query 5.14.

Query 5.14 Find the IDs of the items in each meal

SELECT m.name AS meal, i.name AS item
FROM meals m, partof p, items i
WHERE m.mealid = p.mealid AND i.itemid = p.itemid;

meal item

Chicken N Suds Chicken Salad
Chicken N Suds Soda
Vegan Eatin’ Garden Salad
Vegan Eatin’ Fruit Salad
Vegan Eatin’ Water

[5 row(s)]

We apply our same two-step process to answer the query. Step 1 tells us we need the
meals and items tables. Placing them in the FROM clause creates the Cartesian product.
Step 2 tells us we need the partof table to connect them, so we add it to the FROM clause,
creating the cross product of all three tables. Query 5.14 finds the names of the items in
each meal by reporting the rows where meals.mealid = partof.mealid and partof.itemid =
items.itemid. Our new table now has all of the attributes from all three tables, including
duplicate meal and item IDs, so the last step is to limit the attributes in the final result
with the SELECT list.

What happens with a self-join? It’s really not a special case. As before, SQL computes
the cross product of the two copies of the table. Query 5.15 is a small example of a table
crossed with itself.

Query 5.15 Self-Cartesian product

SELECT *
FROM meals m1, meals m2;

mealid name mealid name

CKSDS Chicken N Suds CKSDS Chicken N Suds
CKSDS Chicken N Suds VGNET Vegan Eatin’
VGNET Vegan Eatin’ CKSDS Chicken N Suds
VGNET Vegan Eatin’ VGNET Vegan Eatin’

[4 row(s)]

■ 5.7 Theta Joins: Generalizing Join Predicates 101

The Cartesian product of even small tables can be very large. In fact, the total number
of rows is equal to the product of the number of rows in each of the tables. Making the
results even larger, every attribute of every table is present in every row. Fortunately for
us, although the Cartesian product is large, the DBMS uses query optimization to avoid
having to create all of it at once. If the Cartesian product cannot be avoided, your perfor-
mance may be very poor. If you are executing a query with a potentially large join and
the performance is poor, make sure that your query is not forcing the DBMS to perform a
Cartesian product.

Earlier we said that a join of N tables needs N−1 join predicates. What would happen
in Query 5.14 if we missed one of the join predicates?

Query 5.16 Missing join predicate

SELECT m.name AS meal, i.name AS item
FROM meals m, partof p, items i
WHERE i.itemid = p.itemid;

meal item

Chicken N Suds Chicken Salad
Vegan Eatin’ Chicken Salad
Chicken N Suds Soda
Vegan Eatin’ Soda
Chicken N Suds Garden Salad
Vegan Eatin’ Garden Salad
Chicken N Suds Fruit Salad
Vegan Eatin’ Fruit Salad
Chicken N Suds Water
Vegan Eatin’ Water

[10 row(s)]

Here every item used in any meal is paired with every meal, not just the meals the item is
used in. Of course, this isn’t the answer we wanted.

5.7 Theta Joins: Generalizing Join Predicates

The tables built so far have been based on the notions of equality in the join predicates.
This is the most common type of join, often used when there is a referential integrity
constraint between tables. This type of join is called an equijoin. However, we are not
limited to using only the = operator in join predicates. A join where the join predicate
uses any of the comparison operators is called a theta join. Note that an equijoin is a
special case of a theta join.

Let’s make a slight change to Query 5.11 to generate Query 5.17.

102 Chapter 5: Joins ■

Query 5.17
Find all of the items and ingredients where we do not have enough of the ingredient
to make three items

SELECT items.name, ing.name
FROM items, madewith mw, ingredients ing
WHERE items.itemid = mw.itemid AND mw.ingredientid = ing.ingredientid AND

3 * mw.quantity > ing.inventory;

name name

Garden Salad Tomato
Fruit Plate Tomato
Fruit Plate Orange

[3 row(s)]

We follow the same two-step process to answer theta joins as with equijoins. Step 1
for Query 5.17 requires the tables items, madewith, and ingredients. Step 2 has the foreign
key connections of matching itemid and ingredientid, but it also contains the inequality
between the amount needed to make three of the items and the current inventory. This
requires the last join predicate.

Query 5.18 is another example of a theta join.

Query 5.18 Find the name of all items that cost more than the garden salad

SELECT a.name
FROM items a, items q
WHERE a.price > q.price AND q.name = 'Garden Salad';

name

Chicken Salad
Fruit Salad
Fruit Plate

[3 row(s)]

To answer Query 5.18, Step 1 tells us we need two copies of the items table. However,
instead of matching items with the same itemid values, we want to compare those items
that have a price greater than the price of the garden salad. Within the WHERE clause,
we use a join predicate that compares the price of the garden salad item and the price
of all other items. To help with the query construction, we use the alias 'a' to represent
the answer copy of the items table, and the alias 'q' to represent the question or Garden
Salad part.

We can likewise extend Query 5.18 to Query 5.19. This simply combines the table we
built in Query 5.6 with Query 5.18.

■ 5.7 Theta Joins: Generalizing Join Predicates 103

Query 5.19 Find all of the ingredients that are in items and cost more than the garden salad

SELECT DISTINCT(i.name)
FROM items a, items q, madewith m, ingredients i
WHERE a.price > q.price AND q.name = 'Garden Salad' AND

i.ingredientid = m.ingredientid AND m.itemid = a.itemid;

name

Cheese
Chicken
Crouton
Grape
Lettuce
Orange
Secret Dressing
Tomato
Watermelon

[9 row(s)]

Finally, the theta join allows us to provide a “ranking” for values without ties. We can
do a theta self-join to compare a value in a table with all of the other values. If we use >=
as the join predicate for any given value, we can count the number of times another value
is less. This is the number of values ahead of the given value in the ranking. Query 5.20
is an example.

Query 5.20 Alphabetic ranking of ingredients

SELECT i1.name, COUNT(*) AS rank
FROM ingredients i1, ingredients i2
WHERE i1.name >= i2.name
GROUP BY i1.ingredientid, i1.name
ORDER BY rank;

name rank

Cheese 1
Chicken 2
Crouton 3
Grape 4
Lettuce 5
Orange 6
Pickle 7
Secret Dressing 8

Continued on next page

104 Chapter 5: Joins ■

Query 5.20 (cont’d)

Soda 9
Tomato 10
Water 11
Watermelon 12

[12 row(s)]

Note that this does not work with ties, but your DBMS may provide a better function for
ranking.

5.8 JOIN Operator

Joining tables together is so common that SQL provides a JOIN operator for use in the
FROM clause. There are several variants of the JOIN, which we explore here.

5.8.1 INNER JOIN

INNER JOIN is identical to the joins we have discussed so far. INNER JOIN takes two tables
and a join specification describing how the two tables should be joined. The join specifi-
cation may be specified as a condition. The condition follows the keyword ON. Compare
Query 5.21 with the Query 5.2.

Query 5.21 Find the names of the ingredients supplied to us by Veggies_R_Us

SELECT name
FROM ingredients i INNER JOIN vendors v ON i.vendorid = v.vendorid
WHERE v.companyname = 'Veggies_R_Us';

name

Lettuce
Pickle
Tomato

[3 row(s)]

We follow the exact same two-step process with the INNER JOIN syntax as with the
join predicates in the WHERE clause. The only difference is the syntax. Compare the theta
self-join in Query 5.22 with Query 5.18.

■ 5.8 JOIN Operator 105

Query 5.22 Find the name of all items that cost more than the garden salad

SELECT i1.name
FROM items i1 INNER JOIN items i2 ON i1.price > i2.price
WHERE i2.name = 'Garden Salad';

name

Chicken Salad
Fruit Salad
Fruit Plate

[3 row(s)]

It is common to join tables over attributes with the same name. Thus, SQL provides
a shorthand for this type of join. The USING clause lists those attributes common to both
tables that must have the same value to be in the result. Here USING is identical to the
equijoin. Note that INNER may be omitted because it is the default type of JOIN. Query 5.23
is a modified version (different SELECT clause to demonstrate a subtlety) of Queries 5.21
and 5.2.

Query 5.23 Find the names of the ingredients supplied to us by Veggies_R_Us

SELECT companyname, name, vendorid
FROM ingredients JOIN vendors v USING (vendorid)
WHERE v.companyname = 'Veggies_R_Us';

companyname name vendorid

Veggies_R_Us Lettuce VGRUS
Veggies_R_Us Pickle VGRUS
Veggies_R_Us Tomato VGRUS

[3 row(s)]

The one subtle difference between Query 5.21 and Query 5.23 is that after performing
the Cartesian product, Query 5.21 includes all attributes from both tables, including both
copies of the attributes used for matching. Because USING requires equal values for the
specified attributes, Query 5.23 only needs to include one copy of the attribute. This is
why vendorid must be table qualified in Query 5.21 but not in Query 5.23.

JOIN returns a new table that can be used by another JOIN, as in Query 5.24.

Query 5.24
Find the names of items that are made from ingredients supplied by the company
Veggies_R_Us

SELECT DISTINCT(i.name)
FROM vendors JOIN ingredients USING (vendorid) JOIN

madewith USING(ingredientid) JOIN items i USING (itemid)
WHERE companyname = 'Veggies_R_Us';

Continued on next page

106 Chapter 5: Joins ■

Query 5.24 (cont’d)

name

Chicken Salad
Fruit Plate
Garden Salad

[3 row(s)]

The new table created in the FROM clause may be used with any other SQL clauses,
as in Query 5.25.

Query 5.25 Find the number of items in each meal that were added to the menu in 2000 or 2001

SELECT m.mealid, COUNT(i.itemid) AS ct
FROM meals m JOIN partof p USING (mealid) JOIN

items i ON p.itemid = i.itemid
WHERE EXTRACT(YEAR FROM dateadded) BETWEEN 2000 AND 2001
GROUP BY m.mealid
ORDER BY ct;

mealid ct

VGNET 2

[1 row(s)]

Note that the WHERE clause is not needed because the EXTRACT predicate could be part
of the ON. However, because the date is not part of the join predicate (it is a filter on the
table resulting from the join), we place it in the WHERE clause. Of course, your standard
practices should dictate your choice of locations. One problem is that this query does
not return meals containing no items added in 2000 or 2001. We’ll see how to fix this in
Section 5.8.2.

5.8.2 OUTER JOIN

In Query 5.25, we found the meals that added at least one item in 2000 and 2001. However,
we might also want the meals that did not add an item. This is an example where we want
not only the rows that satisfy the join predicate, but also the rows that do not satisfy it.
Chapter 6 provides one technique for finding those results, but SQL also includes a join
variant that does so. This variant is called the OUTER JOIN.

There are three types of OUTER JOIN: FULL, LEFT, and RIGHT. We begin with FULL
OUTER JOIN. FULL OUTER JOIN includes three kinds of rows:

1. All rows that satisfy the join predicate (same as INNER JOIN)

2. All rows from the first table that don’t satisfy the join predicate for any row in the
second table

■ 5.8 JOIN Operator 107

3. All rows from the second table that don’t satisfy the join predicate for any row in the
first table

Just like an INNER JOIN, an OUTER JOIN returns all of the columns in both tables.
Because a row that satisfies Condition 2 has no values for attributes from the second table,
the OUTER JOIN uses NULL for those values. Similarly, a row satisfying Condition 3 has
NULL values for all attributes from the first table.

Like the INNER JOIN, the join predicate can be specified using either ON or USING.
Similar to INNER, the keyword OUTER is not required, but one of FULL, LEFT, or RIGHT
must be included. Query 5.26 is a simple example. Compare its results with Query 5.1.

Query 5.26
For each ingredient, find its name and the name and ID of the vendor that supplies them.
Include vendors who supply no ingredients and ingredients supplied by no vendors

SELECT companyname, i.vendorid, i.name
FROM vendors v FULL JOIN ingredients i ON v.vendorid = i.vendorid;

companyname vendorid name

Don’s Dairy DNDRY Cheese
Don’s Dairy DNDRY Chicken
Ed’s Dressings EDDRS Crouton
Flavorful Creams NULL NULL
"Fruit Eating" Friends FRTFR Grape
"Fruit Eating" Friends FRTFR Watermelon
"Fruit Eating" Friends FRTFR Orange
Spring Water Supply SPWTR Water
Spring Water Supply SPWTR Soda
Veggies_R_Us VGRUS Lettuce
Veggies_R_Us VGRUS Pickle
Veggies_R_Us VGRUS Tomato
NULL NULL Secret Dressing

[13 row(s)]

Query 5.26 includes the vendors with the ingredients they provide, the vendors who do
not provide an ingredient, and the ingredients not supplied by a vendor. Notice the row
containing Flavorful Creams as a vendor. This row is not in Query 5.1 because Flavorful
Creams does not supply any ingredients. All of the attributes that are derived from the
ingredients table are NULL. Likewise, the Secret Dressing ingredient row is not in Query 5.1,
and it contains NULL for all columns coming from the vendors table.

Because the vendorid is the primary key of the vendors table, any rows retrieved from
the vendors table cannot contain a NULL value for that field. We can use this information
to discover which rows in ingredients do not match a row in vendors. If vendorid is NULL,
then there is no match. Similarly, we can determine which vendors do not supply us with
any ingredients. If the primary key of the ingredients table has a NULL value, then we have
found a vendors row with no matching ingredients row.

108 Chapter 5: Joins ■

Query 5.27 Find the vendors who do not provide us with any ingredients

SELECT companyname
FROM vendors v LEFT JOIN ingredients i USING(vendorid)
WHERE ingredientid IS NULL;

companyname

Flavorful Creams

[1 row(s)]

In Query 5.27, we use a LEFT JOIN. This means the table on the left side (vendors) would
have all rows included in the results even if it did not satisfy the join predicate. However,
rows from ingredients would only be included if they satisfied the join predicate (just
like an INNER JOIN). In other words, vendors who do not provide us any ingredients are
included, and the ingredientid column for such rows is NULL. As with INNER JOIN, if the
name of the join attributes match, we can use the USING clause with OUTER JOIN.

Now we are ready to use OUTER JOIN to improve Query 5.25. This time, we want all
meals included, even those containing no items added in 2000 or 2001.

Query 5.28 Find the number of items in each meal that were added to the menu in 2000 or 2001

SELECT m.mealid, COUNT(i.itemid) AS ct
FROM partof p JOIN items i ON p.itemid = i.itemid AND

EXTRACT(YEAR FROM dateadded) BETWEEN 2000 AND 2001 RIGHT JOIN meals m USING (mealid)
GROUP BY m.mealid
ORDER BY ct;

mealid ct

CKSDS 0
VGNET 2

[2 row(s)]

Let’s look at Query 5.28 closely. First, it performs the INNER JOIN between partof and
items with the join predicate p.itemid=i.itemid AND EXTRACT(YEAR FROM dateadded)
BETWEEN 2000 AND 2001. The result of that (with only the important columns retained) is
in Query 5.29.

Query 5.29 Partial result of Query 5.28

SELECT p.mealid, i.itemid
FROM partof p JOIN items i ON p.itemid = i.itemid AND

EXTRACT(YEAR FROM dateadded) BETWEEN 2000 AND 2001;

■ 5.8 JOIN Operator 109

Query 5.29 (cont’d)

mealid itemid

VGNET GDNSD
VGNET FRTSD

[2 row(s)]

Next, the result of Query 5.29 is combined in a RIGHT OUTER JOIN with the meals table.
Because the ID of “Chicken N Suds” is not in the results of Query 5.29, it is included with
NULL for the missing values, as seen in Query 5.30.

Query 5.30 More partial results of Query 5.28

SELECT m.mealid, i.itemid
FROM partof p JOIN items i ON p.itemid = i.itemid AND

EXTRACT(YEAR FROM dateadded) BETWEEN 2000 AND 2001 RIGHT JOIN meals m USING (mealid);

mealid itemid

CKSDS NULL
VGNET FRTSD
VGNET GDNSD

[3 row(s)]

The final results are obtained by applying the GROUP BY and ORDER BY clauses and the
COUNT aggregate function, as discussed in Chapter 4.

There is one thing to note about Query 5.28 as opposed to Query 5.25. In Query 5.25
we put

EXTRACT(YEAR FROM dateadded) BETWEEN 2000 AND 2001

in the WHERE clause, but in Query 5.28 it must go in the FROM clause, although it isn’t really
a join predicate. The reason for the change is that INNER JOIN returns the same results no
matter which order we execute join predicates and predicates that apply to only one table.
OUTER JOIN does not, as evidenced by Query 5.28.

5.8.3 NATURAL JOIN

By now we’ve done enough join queries that you may have noticed we often use equality
predicates where both tables contain attribute(s) using the same name. This is a common
join query. In fact, it is so common that it is often called the natural join. Again, to simplify
the syntax, SQL has a NATURAL modifier for both the inner and outer joins. With this
modifier present, we don’t need a join specification, so the ON or USING clauses are not
needed. Once more, we present the answer to Query 5.2, this time using NATURAL JOIN.

110 Chapter 5: Joins ■

Query 5.31 Find the names of the ingredients supplied to us by Veggies_R_Us

SELECT name
FROM ingredients NATURAL JOIN vendors
WHERE companyname = 'Veggies_R_Us';

name

Lettuce
Pickle
Tomato

[3 row(s)]

As with USING, the NATURAL JOIN eliminates the duplicate copy of the join attribute.
The NATURAL modifier applies to outer joins as well. Compare Query 5.32 with Query 5.27.

Query 5.32 Find the vendors who do not provide us with any ingredients

SELECT companyname
FROM vendors v NATURAL LEFT JOIN ingredients i
WHERE ingredientid IS NULL;

companyname

Flavorful Creams

[1 row(s)]

Beware! NATURAL JOIN requires equality of all attributes with the same name.
Compare Query 5.33 with Query 5.6.

Query 5.33
INCORRECT! Find the names of items that are made from ingredients supplied by
Veggies_R_Us

SELECT name
FROM vendors NATURAL JOIN ingredients NATURAL JOIN madewith NATURAL JOIN items
WHERE companyname = 'Veggies_R_Us';

name

[0 row(s)]

Why doesn’t this work? The items and ingredients table both contain an attribute name.
Thus, NATURAL JOIN requires that the name of the ingredient also match the name of
the item. Note that if the tables contain no matching attribute names, the NATURAL JOIN
performs a Cartesian product.

■ 5.9 Join Strategies 111

5.8.4 CROSS JOIN

SQL also provides a CROSS JOIN. It computes the cross product of two tables. We cannot
use OUTER, NATURAL, USING, or ON with CROSS JOINS. Note that this is the same behavior
as using a comma-delimited list of tables in the FROM clause. Compare Query 5.34 to
Query 5.13.

Query 5.34 Cartesian product

SELECT *
FROM meals CROSS JOIN partof;

mealid name mealid itemid quantity discount

CKSDS Chicken N Suds CKSDS CHKSD 1 0.02
CKSDS Chicken N Suds CKSDS SODA 1 0.10
CKSDS Chicken N Suds VGNET GDNSD 1 0.03
CKSDS Chicken N Suds VGNET FRTSD 1 0.01
CKSDS Chicken N Suds VGNET WATER 1 0.00
VGNET Vegan Eatin’ CKSDS CHKSD 1 0.02
VGNET Vegan Eatin’ CKSDS SODA 1 0.10
VGNET Vegan Eatin’ VGNET GDNSD 1 0.03
VGNET Vegan Eatin’ VGNET FRTSD 1 0.01
VGNET Vegan Eatin’ VGNET WATER 1 0.00

[10 row(s)]

5.9 Join Strategies

The different join strategies presented here are fairly interchangeable. This means that (in
general) you may use whichever technique you want. We present a few guidelines to help
you make the right choice.

Rule 1: Use OUTER JOIN only if you need to include nonmatching rows. OUTER JOIN will
never produce a smaller result than INNER JOIN and therefore will never be faster.

Rule 2: NEVER use NATURAL JOIN when tables contain common attributes that you do not
want to join. This will lead to incorrect results.

Rule 3: The USING clause and NATURAL JOIN will not match rows where the corresponding
attributes contain NULL values. Either the WHERE clause or the ON clause must be
used instead.

Rule 4: When the same attribute name is in multiple tables, SQL requires that you use the
table qualifier to distinguish them.

112 Chapter 5: Joins ■

The following are some general guidelines for your other choices:

Policy: If you are working in a group and the group has a policy about the style of join to
use, follow it. If the group does not have a policy, try to create one. Maintaining SQL
queries is significantly easier than maintaining code (primarily because SQL queries
are shorter), but common practice is important in maintenance of all programming
projects.

Performance: The execution differences between the various join techniques in this chap-
ter should be small. However, your DBMS may do better on a particular query with
one type of join as opposed to another. If your performance is not what you want,
changing the type of join might help.

Preference: If there is no policy and there are no performance differences, then the choice
is primarily personal preference. The join technique that most appeals to you is prob-
ably the one you understand the best and, therefore, the one you are most likely to
use correctly.

5.10 Wrap Up

Joins are common in data processing applications. They allow us to combine different
tables together and perform complex queries on the results. We will see in later chapters
additional techniques for answering these queries, but joins are commonly used.

There are two different syntaxes for performing joins. The first uses a comma-
delimited list of tables in the FROM clause and join predicates in the WHERE clause. This
syntax has the advantage of relieving us from worrying about commutativity and associa-
tivity, but it is not as intuitive to all users. The second syntax uses the JOIN keyword in
the FROM clause. An INNER JOIN is similar to the first JOIN syntax, but we can also use
OUTER JOIN, which includes not only the matching rows but also the nonmatching rows.

It is important to understand not only the syntax, but also the semantics of what is
happening during join processing. Poorly constructed joins can waste large amounts of
computing resources.

■ Review Questions 113

Review Questions

1. Table A(A1, A2, A3) has 5 rows, and table B(B1, B2) has 10 rows. Consider the
following query:

SELECT *
FROM A, B;

The number of rows in the result table is , and the number of attributes
is .

2. To join three tables, we need join predicates.

3. What does the first step in designing a join query determine?

4. What is the second step in designing a join query?

5. True/False A foreign key constraint is a good clue for a join predicate.

6. True/False All attributes with the same name should always be in a join predicate.

7. True/False In a join query, only the join predicates can appear in the WHERE
clause.

8. True/False In a join query with a GROUP BY clause, the GROUP BY must include
an attribute in a join predicate.

9. Provide the FROM clause of a self-join of table T.

10. True/False Self-joins do not require a join predicate.

11. In the Restaurant Database, what would be the result of the following?

SELECT *
FROM vendors v1 NATURAL JOIN vendors v2;

12. In the Restaurant Database, provide a theta self-join to rank all items by price, with
most expensive first. What happens with ties?

13. In the Restaurant Database, what would be some other examples of “error finding”
queries like Query 5.12?

14. Consider Queries 5.35 and 5.36. Query 5.36 can never return a smaller result set,
but it can return the same size. Under what conditions is that true?

Query 5.35 INNER JOIN

SELECT *
FROM r JOIN r1 USING(pk);

Query 5.36 OUTER JOIN

SELECT *
FROM r FULL JOIN r1 USING(pk);

114 Chapter 5: Joins ■

15. Technically, the requirement of using a primary key in Query 5.27 to find rows that
don’t satisfy the join predicate is too strong. What is required?

16. INNER JOIN is commutative and associative. That means we can arrange the tables
in any order and get the same results. Is this true for FULL OUTER JOIN? LEFT OUTER
JOIN?

17. Modify Query 5.28 to put EXTRACT(YEAR FROM dateadded) BETWEEN 2000 AND
2001 RIGHT JOIN in the WHERE clause. Explain the results.

18. For the following queries, leave out one of the predicates marked with “***.” Repeat
for each of the other predicates. What happens? Leave out two or more such predi-
cates. What happens? Obviously, the “***” must be removed from each line for the
query to execute.

SELECT M.name
FROM ingredients i, madewith w, partof p, meals m
WHERE i.name = 'Lettuce' AND
*** i.ingredientid = w.ingredientid AND
*** m.itemid = p.itemid AND
*** p.mealid = m.mealid;

19. What is the result of the following query:

SELECT *
FROM ingredients INNER JOIN vendors ON 1=1;

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Answer each question with a single SQL statement. Your query must work for any set of
data in the Employees Database, not just the set of data we provide.

1. Find the names of all people who work in the Consulting department. Solve it two
ways: 1) using only WHERE-based join (i.e., no INNER/OUTER/CROSS JOIN) and 2) with
CROSS JOIN.

2. Find the names of all people who work in the Consulting department and who spend
more than 20% of their time on the project with ID ADT4MFIA. Solve three ways:
1) using only WHERE-based join (i.e., no INNER/OUTER/CROSS JOIN), 2) using JOIN
ON, and 3) using NATURAL JOIN whenever possible and JOIN ON otherwise.

3. Find the total percentage of time assigned to employee Abe Advice. Solve it two ways:
1) using only WHERE-based join (i.e., no INNER/OUTER/CROSS JOIN) and 2) using
some form of JOIN.

4. Find the descriptions of all projects that require more than 70% of an employee’s time.
Solve it two ways: 1) using only WHERE-based join (i.e., no INNER/OUTER/CROSS JOIN)
and 2) using some form of JOIN.

■ Practice 115

5. For each employee, list the employee ID, number of projects, and the total percentage
of time for the current projects to which she is assigned. Include employees not
assigned to any project.

6. Find the description of all projects with no employees assigned to them.

7. For each project, find the greatest percentage of time assigned to one employee. Solve
it two ways: 1) using only WHERE-based join (i.e., no INNER/OUTER/CROSS JOIN) and
2) using some form of JOIN.

8. For each employee ID, find the last name of all employees making more money
than that employee. Solve it two ways: 1) using only WHERE-based join (i.e., no
INNER/OUTER/CROSS JOIN) and 2) using some form of JOIN.

9. Rank the projects by revenue. Solve it two ways: 1) using only WHERE-based join
(i.e., no INNER/OUTER/CROSS JOIN) and 2) using some form of JOIN.

c h a p t e r 6

Set Queries: UNION, INTERSECT,
and EXCEPT

A result table can be thought of as a set1 of rows. In mathematics, you have probably
seen set operators like union (

⋃
) and intersection (

⋂
). SQL has operators that perform

similar operations. In SQL, these operators are UNION, INTERSECT, and EXCEPT. Unlike the
previous operators that create results from tables, the SQL set operators combine query
results to create new results.

6.1 UNION

The UNION operator corresponds to
⋃

in sets. Where
⋃

combines two sets, UNION
combines two query results. The syntax for UNION is as follows:

<left SELECT> UNION [{ALL | DISTINCT}] <right SELECT>

The <left SELECT> and <right SELECT> can be almost any SQL query, provided that the
result sets from the left and right SELECT are compatible. Two result sets are compatible if
they have the same number of attributes and each corresponding attribute is compatible.
Two attributes are compatible if SQL can implicitly cast them to the same type. Let’s look
at an example.

1Mathematically, result tables are really bags, not sets, because they allow duplicates.

117

118 Chapter 6: Set Queries: UNION, INTERSECT, and EXCEPT ■

Query 6.1 Find the first and last names of all store managers and vendor representatives

SELECT repfname AS "First Name", replname AS "Last Name"
FROM vendors

UNION
SELECT SUBSTRING(manager FROM 1 FOR POSITION (' ' IN manager)),

SUBSTRING(manager FROM POSITION (' ' IN manager)+1)
FROM stores;

First Name Last Name

Candy Corn
Gilbert Grape
Greg Donahoo
Greg Speegle
Gus Hing
Jeff Donahoo
Jeff Speegle
Man Ager
Marla Milker
Sam Sauce
Sherman Sherbert

[11 row(s)]

The left SELECT returns the first and last names of the vendors. The right SELECT breaks the
store manager’s name into two parts at the first space. These two result sets are compatible
because they have the same number of attributes (2) and both attributes are character
strings. Note that the names of the attributes in the final result table are determined by
the left SELECT.

By default, UNION eliminates duplicate values. For duplicate elimination, NULL values
are considered a single value.

Query 6.2 Find the list of item prices and ingredient unit prices

SELECT price
FROM items

UNION
SELECT unitprice
FROM ingredients;

price

0.00
0.01
0.02
0.03

■ 6.1 UNION 119

Query 6.2 (cont’d)

0.04
0.05
0.06
0.45
0.69
0.99
2.85
3.45
3.99
NULL

[14 row(s)]

Note that all duplicate prices are eliminated. To keep duplicates, use UNION ALL. We can
use DISTINCT instead of ALL to eliminate duplicate values; however, duplicate elimination
is the default behavior so specifying DISTINCT is optional.

UNION combines results in a totally different way from joins. Some queries cannot
be answered using joins, but they can be answered with UNION. Query 6.3 is a perfect
example. We cannot generate this result with a join.

Query 6.3 Find the names and prices of meals and items

SELECT name, price
FROM items

UNION
SELECT m.name, SUM(quantity * price * (1.0 - discount))
FROM meals m, partof p, items i
WHERE m.mealid = p.mealid AND p.itemid = i.itemid
GROUP BY m.mealid, m.name;

name price

Chicken N Suds 3.6840
Chicken Salad 2.85
Fruit Plate 3.99
Fruit Salad 3.45
Garden Salad 0.99
Millennium Salad NULL
Soda 0.99
Vegan Eatin’ 4.3758
Water 0.00

[9 row(s)]

120 Chapter 6: Set Queries: UNION, INTERSECT, and EXCEPT ■

6.2 INTERSECT

The intersection of two sets are all elements that are common to both sets. In SQL, the
INTERSECT operator returns all rows that are the same in both results. The syntax for
INTERSECT is as follows:

<left SELECT> INTERSECT [{ALL |DISTINCT}] <right SELECT>

The <left SELECT> and <right SELECT> must be compatible, as with UNION (see Section 6.1).
By default, INTERSECT eliminates duplicates.

Query 6.4 Find all item IDs with ingredients in both the Fruit and Vegetable food groups

SELECT itemid
FROM madewith mw, ingredients ing
WHERE mw.ingredientid = ing.ingredientid and foodgroup = 'Vegetable'

INTERSECT
SELECT itemid
FROM madewith mw, ingredients ing
WHERE mw.ingredientid = ing.ingredientid and foodgroup = 'Fruit';

itemid

GDNSD

[1 row(s)]

The ALL modifier can be added to INTERSECT to require SQL to keep duplicates. If
the left and right tables have l and r duplicates of a value, v, the number of duplicate
values resulting from an INTERSECT ALL is the minimum of l and r: Query 6.5 provides
an example.

Query 6.5 Find all food groups in both fruit plates and fruit salads

SELECT foodgroup
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND m.itemid = 'FRTSD'

INTERSECT ALL
SELECT foodgroup
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND m.itemid = 'FRPLT';

foodgroup

Fruit
Fruit

[2 row(s)]

■ 6.3 EXCEPT 121

Queries 6.6 and 6.7 show the results of both parts of Query 6.5.

Query 6.6 Left SELECT of Query 6.5

SELECT foodgroup
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND m.itemid = 'FRTSD';

foodgroup

Fruit
Fruit

[2 row(s)]

Query 6.7 Right SELECT of Query 6.5

SELECT foodgroup
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND m.itemid = 'FRPLT';

foodgroup

Milk
Bread
Fruit
Fruit
Fruit
Fruit

[6 row(s)]

6.3 EXCEPT

Another common set operation is set difference. If R and S are sets, then R − S contains
all of the elements in R that are not in S. The EXCEPT operator in SQL is similar, in that it
returns the rows in the first result that are not in the second one. The syntax for EXCEPT
is as follows:

<left SELECT> EXCEPT [ALL | DISTINCT] <right SELECT>

The <left SELECT> and <right SELECT> must be compatible, as with UNION and INTERSECT
(see Section 6.1). As with UNION, there are queries that can be answered with EXCEPT that
cannot be answered with a join or a union. Usually, these queries are “negative information”
queries—that is, queries that are trying to find out information that is not found in the
database. Query 6.8 provides an example.

122 Chapter 6: Set Queries: UNION, INTERSECT, and EXCEPT ■

Query 6.8 Find all item IDs of items not made with Cheese

SELECT itemid
FROM items

EXCEPT
SELECT itemid
FROM madewith mw, ingredients ing
WHERE mw.ingredientid = ing.ingredientid AND ing.name = 'Cheese';

itemid

FRTSD
GDNSD
MILSD
SODA
WATER

[5 row(s)]

In some respects, these queries are like Sherlock Holmes’ famous maxim, “When you have
excluded the impossible, whatever remains, however improbable, must be the truth.” The
right SELECT produces the item IDs of all items having Cheese as an ingredient. Query 6.9
demonstrates this.

Query 6.9 Right SELECT of Query 6.8

SELECT itemid
FROM madewith mw, ingredients ing
WHERE mw.ingredientid = ing.ingredientid and ing.name = 'Cheese';

itemid

CHKSD
FRPLT

[2 row(s)]

Because we want the items without cheese, these are the impossible answers. EXCEPT
allows us to eliminate them from the set of all possible answers, so what remains is the
truth.

Some might be tempted to use Query 6.10 to answer this query, but that would be an
error.

Query 6.10 INCORRECT! Find all item IDs of items not made with Cheese

SELECT DISTINCT(itemid)
FROM madewith mw, ingredients ing
WHERE mw.ingredientid = ing.ingredientid AND ing.name != 'Cheese';

■ 6.3 EXCEPT 123

Query 6.10 (cont’d)

itemid

CHKSD
FRPLT
FRTSD
GDNSD
SODA
WATER

[6 row(s)]

Note that this answer is incorrect in two ways:

1. The Millennium Salad is not included. The Millennium Salad is not made with any
ingredients, so it clearly does not include cheese. However, because it is not made
with any ingredients, it is not in the madewith table, so it cannot be in the results of
Query 6.10.

2. More importantly, note that the Chicken Salad (itemid CHKSD) is in the results for
Query 6.10 and in Query 6.9. How can it have both cheese and no cheese? Obvi-
ously, it can’t. In fact, the Chicken Salad is made with cheese, but it is also made
with chicken, lettuce, and our secret dressing. Those last three rows all satisfy the
predicate ing.name != 'Cheese', so the Chicken Salad is in the results. Query 6.10
is actually finding all items made with something besides cheese.

Like UNION and INTERSECT, EXCEPT eliminates duplicates. To keep duplicates, use
EXCEPT ALL. If the left and right tables have l and r duplicates of a value, v; the number of
duplicate values resulting from an EXCEPT ALL is the minimum of l − r and 0.

Query 6.11
List all the food groups provided by some ingredient that is in the Fruit Plate but not
the Fruit Salad

SELECT foodgroup
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND m.itemid = 'FRPLT'

EXCEPT ALL
SELECT foodgroup
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND m.itemid = 'FRTSD';

foodgroup

Bread
Fruit
Fruit
Milk

[4 row(s)]

124 Chapter 6: Set Queries: UNION, INTERSECT, and EXCEPT ■

As with UNION and INTERSECT, NULL values are not considered distinct by EXCEPT when
eliminating duplicates.

6.4 Wrap Up

Sets are powerful representations of the way we look at data. UNION operations cannot
be performed by any other SQL function. For example, consider a query that finds the
first names of customers and company representatives in one column. As such, it is sup-
ported by almost all database management systems. Likewise, the EXCEPT operator, used
to perform set difference, cannot be performed by JOIN or UNION operations. Thus, it is
important for SQL programmers to understand these operators and know how to use them.
Note that the INTERSECT operator can be implemented by the EXCEPT operator (see the
exercises).

■ Review Questions 125

Review Questions

1. Rewrite Query 5.27 to use EXCEPT instead of an OUTER JOIN.

2. From set theory, R∩S = R− (R−S). Rewrite the following query using EXCEPT instead
of INTERSECT.

SELECT itemid
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND foodgroup='Milk'

INTERSECT
SELECT itemid
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND foodgroup='Fruit';

3. If you wanted to use UNION over a NUMERIC(5,2) type and a CHAR(5) type, what
could you do to make it work?

4. How many rows are in the result of Query 6.12? What if you used UNION ALL?

Query 6.12 UNION Review Question

SELECT *
FROM vendors

UNION
SELECT *
FROM vendors;

5. How many rows are in the result of Query 6.13? What if you used INTERSECT ALL?

Query 6.13 INTERSECT Review Question

SELECT *
FROM vendors

INTERSECT
SELECT *
FROM vendors;

6. How many rows are in the result of Query 6.14? What if you used EXCEPT ALL?

Query 6.14 EXCEPT Review Question

SELECT *
FROM vendors

EXCEPT
SELECT *
FROM vendors;

126 Chapter 6: Set Queries: UNION, INTERSECT, and EXCEPT ■

7. The OUTER JOIN contains rows that do not satisfy a join predicate. Use EXCEPT
to find the rows in vendors that are not in the NATURAL JOIN of vendors and
ingredients.

8. Can you use UNION to combine your answer from the previous question to generate
vendors LEFT OUTER JOIN ingredients? Explain.

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Answer each question with a single SQL statement. Your query must work for any set of
data in the Employees Database, not just the set of data we provide.

1. Find all dates on which projects either started or ended. Eliminate any duplicate or
NULL dates. Sort your results in descending order.

2. Use INTERSECT to find the first and last name of all employees who both work on the
Robotic Spouse and for the Hardware department.

3. Use EXCEPT to find the first and last name of all employees who work on the Robotic
Spouse but not for the Hardware department.

4. Find the first and last name of all employees who work on the Download Client project
but not the Robotic Spouse project.

5. Find the first and last name of all employees who work on the Download Client project
and the Robotic Spouse project.

6. Find the first and last name of all employees who work on either the Download Client
project or the Robotic Spouse project.

7. Find the first and last name of all employees who work on either the Download Client
project or the Robotic Spouse project but not both.

8. Using EXCEPT, find all of the departments without any projects.

c h a p t e r 7

Subqueries

So far, we’ve seen joins (Chapter 5) and set operators (Chapter 6) for combining
tables together. SQL provides another way to combine tables. You can nest queries within
queries. Such an embedded query is called a subquery. A subquery computes results that
are then used by an outer query. Basically, a subquery acts like any other expression
we’ve seen so far. A subquery can be nested inside the SELECT, FROM, WHERE, and HAVING
clauses. You can even nest subqueries inside another subquery.

7.1 What Are Subqueries?

Let’s find the names of the ingredients supplied by Veggies_R_Us. In the subquery
approach, we think of this query as two operations. The first query (Query 7.1) finds the
vendorid of Veggies_R_Us:

Query 7.1 Find the vendor ID of Veggies_R_Us

SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us';

vendorid

VGRUS

[1 row(s)]

The second query (Query 7.2) uses that vendorid in its WHERE clause.

127

128 Chapter 7: Subqueries ■

Query 7.2 Find the names of ingredients provided by VGRUS

SELECT name
FROM ingredients
WHERE vendorid = 'VGRUS';

name

Lettuce
Pickle
Tomato

[3 row(s)]

We combine the two queries by replacing the literal string in Query 7.2 with Query 7.1.

Query 7.3 Find the names of the ingredients supplied by Veggies_R_Us

SELECT name
FROM ingredients
WHERE vendorid =

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

name

Lettuce
Pickle
Tomato

[3 row(s)]

So what’s going on in Query 7.3? SQL starts by executing the inner query. The results
are simply plugged into the outer query. Next SQL executes the outer query and creates
the result table. In this example, Query 7.1 becomes the subquery or the inner query,
and Query 7.2 becomes the outer query. SQL marks the boundaries of a subquery with
parentheses. Here are some points to remember when using subqueries:

1. Only the columns of the outermost query can appear in the result table. When creating
a new query, the outermost query must contain all of the attributes needed in the
answer.

2. There must be some way of connecting the outer query to the inner query. All SQL
comparison operators (see Table 2.1) work with subqueries.

3. Subqueries are restricted in what they can return. First, the row and column count
must match the comparison operator. Second, the data types must be compatible.
Of course, SQL may implicitly convert types.

Let’s look again at Query 7.3. The names of the ingredients have to appear in the answer;
therefore, the ingredients table must be in the outer query. The = operator makes the
connection between the queries. Because = expects a single value, the inner query may only

■ 7.1 What Are Subqueries? 129

return a result with a single attribute and row. In this query, only the vendorid attribute is
returned, and there is only one vendor named Veggies_R_Us, satisfying the requirements
of the = operator. If there happened to be multiple vendors named Veggies_R_Us, SQL
would report an error during query execution.

If our subquery returns multiple rows, we must use a different operator. In Query 7.4,
we use the IN operator, which expects a subquery result with zero or more rows.

Query 7.4 Find the name of all ingredients supplied by Veggies_R_Us or Spring Water Supply

SELECT name
FROM ingredients
WHERE vendorid IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR

companyname = 'Spring Water Supply');

name

Lettuce
Pickle
Tomato
Water
Soda

[5 row(s)]

In Query 7.4, several vendor IDs are returned from the subquery. The outer query then
returns all ingredients with vendor IDs in the subquery list.

Suppose you want a list of vendor companies that provide ingredients with a depleted
inventory.

Query 7.5
Find the company name of all vendors who provide an ingredient with an inventory of
fewer than 50

SELECT companyname
FROM vendors
WHERE vendorid IN

(SELECT vendorid
FROM ingredients
WHERE inventory < 50);

companyname

Veggies_R_Us
"Fruit Eating" Friends

[2 row(s)]

130 Chapter 7: Subqueries ■

We begin by finding the ingredients with an inventory less than 50 in the ingredients table.
Each row in the ingredients table contains the ID of the vendor supplying the ingredient.
Now we need the company name for each vendor ID returned by the inner query. To do
this, we create an outer query that finds the company names of the vendors with a vendorid
returned from the inner query. Again, we use the IN operator because there may be multiple
vendor IDs returned from the subquery.

The outer query works just like any other single table query. For example, it can use
aggregation functions as in Query 7.6.

Query 7.6 Find the average unit price for all items provided by Veggies_R_Us

SELECT AVG(unitprice) AS avgprice
FROM ingredients
WHERE vendorid IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

avgprice

0.02666666666666666667

[1 row(s)]

In Query 7.6, the outer query must contain the average price, while the inner query must
contain the company name. Note that we may use IN to connect the queries although we
know that there’s only one Veggies_R_Us.

The inner and outer query may even use the same table. As far as SQL is con-
cerned, there is nothing special about this case—every row in the outer query is compared
with the result of the inner query. In Query 7.7, the outer query uses the vendors table to
obtain the name of the vendor, and the inner query uses the vendors table to obtain the
vendorid of Veggies_R_Us.

Query 7.7 Find the names of all vendors referred to us by Veggies_R_Us

SELECT companyname
FROM vendors
WHERE referredby IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

companyname

Don’s Dairy
Flavorful Creams

[2 row(s)]

All of the other comparison operators work with subqueries. Let’s try a subquery with
BETWEEN in Query 7.8.

■ 7.1 What Are Subqueries? 131

Query 7.8
Find all of the ingredients with an inventory within 25% of the average inventory of
ingredients

SELECT name
FROM ingredients
WHERE inventory BETWEEN

(SELECT AVG(inventory) * 0.75
FROM ingredients)

AND
(SELECT AVG(inventory) * 1.25
FROM ingredients);

name

Pickle

[1 row(s)]

Query 7.8 also demonstrates the use of a subquery result in an expression.
Subqueries can even be combined with other predicates in the WHERE clause,

including other subqueries as demonstrated in Query 7.9.

Query 7.9
Find the companies who were referred by Veggies_R_Us and provide an ingredient in
the milk food group

SELECT companyname
FROM vendors
WHERE (referredby IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us')) AND

(vendorid IN
(SELECT vendorid
FROM ingredients
WHERE foodgroup = 'Milk'));

companyname

Don’s Dairy

[1 row(s)]

The type of the results of a subquery is determined by the context of the query. The
standard comparison operators, BETWEEN, IS NULL, and LIKE assume scalar values. When
these operators are used, SQL assumes a scalar context, and the result of the subquery
is converted into a scalar value. Of course, multiple values returned by query in a scalar
context generate an error. Operators such as IN assume a table subquery. The result of a
table subquery is always a table. If the result contains only a single value, it is treated as
a table with a single row and a single column.

132 Chapter 7: Subqueries ■

7.2 Multilevel Subquery Nesting

SQL allows many levels of subquery nesting, as in Query 7.10.

Query 7.10 Find the name and price for all items using an ingredient supplied by Veggies_R_Us

SELECT name, price
FROM items
WHERE itemid IN

(SELECT itemid -- Subquery 3
FROM madewith
WHERE ingredientid IN

(SELECT ingredientid -- Subquery 2
FROM ingredients
WHERE vendorid =

(SELECT vendorid -- Subquery 1
FROM vendors
WHERE companyname = 'Veggies_R_Us')));

name price

Chicken Salad 2.85
Garden Salad 0.99
Fruit Plate 3.99

[3 row(s)]

The query must return the name and price of the item so the outer query must
contain the items table. We use the common attribute itemid between the items and made-
with tables as the basis for the first subquery. The madewith table also has a common
attribute with the ingredients table, specifically, ingredientid. We use that to build the
next subquery. The innermost subquery is similar to others we have seen in this chapter.

Let’s trace the execution of this SELECT statement:

1. SQL first executes the innermost subquery, Subquery 1. This returns a table contain-
ing one column, vendorid, with one row (for Veggies_R_Us).

2. Subquery 2 executes next and returns a table containing one column, ingredientid,
with a row for each ingredient supplied by the vendor ID returned from Subquery 1.
Because we know Subquery 1 produces a single row, we can use the = operator to
connect Subquery 1 and Subquery 2.

3. Next Subquery 3 executes and returns a table containing one column, itemid, with a
row for each ingredient returned by Subquery 2.

4. Finally, the outer query executes and returns a table containing two columns, name
and price, with a row for each item returned by Subquery 3.

Finally, it is instructive to compare Query 7.10 to Query 5.6, which both answer a
similar query. Query 5.6 contains DISTINCT in the SELECT, but Query 7.10 does not. Why?
Query 7.10 executes the outer query once for each row, so each name can only appear one
time. In Query 5.6, the query is applied to a Cartesian product, so the name may appear

■ 7.2 Multilevel Subquery Nesting 133

multiple times. In fact, without DISTINCT, the name would appear once for each ingredient
supplied by Veggies_R_Us used by the item.

There are few restrictions on subqueries. Query 7.11 uses aggregation over a numeric
expression in the subquery.

Query 7.11
Find the names and inventory value for all ingredients with an inventory value greater
than the total inventory value of all ingredients provided by Veggies_R_Us

SELECT name, unitprice * inventory AS stock
FROM ingredients
WHERE (unitprice * inventory) >

(SELECT SUM(unitprice * inventory) -- Subquery 2
FROM ingredients
WHERE vendorid =

(SELECT vendorid -- Subquery 1
FROM vendors
WHERE companyname = 'Veggies_R_Us'));

name stock

Chicken 54.00
Soda 3450.00

[2 row(s)]

The innermost query, Subquery 1, finds the vendor ID for Veggies_R_Us. Subquery 2 finds
the total value of the inventory from Veggies_R_Us. As before, we can use the = operator
because we know that there is only one vendor. Finally, the outer query finds the names
and inventory values for all ingredients with an inventory value greater than the total
inventory value of all ingredients provided by Veggies_R_Us. Note that all DBMSs have a
limit to the depth of nested subqueries, but in commercial-grade databases, that number
is usually high enough to perform any query (32 or more).

We can use GROUP BY, HAVING, and ORDER BY with subqueries.

Query 7.12
For each store, find the total sales of items made with ingredients supplied by
Veggies_R_Us. Ignore meals and only consider stores with at least two such items sold

SELECT storeid, SUM(price) AS sales
FROM orders
WHERE menuitemid IN

(SELECT itemid -- Subquery 3
FROM madewith
WHERE ingredientid IN

(SELECT ingredientid -- Subquery 2
FROM ingredients
WHERE vendorid =

(SELECT vendorid -- Subquery 1
FROM vendors
WHERE companyname = 'Veggies_R_Us')))

GROUP BY storeid
HAVING COUNT(*) > 2
ORDER BY sales DESC;

Continued on next page

134 Chapter 7: Subqueries ■

Query 7.12 (cont’d)

storeid sales

#2STR 14.52
CASTR 10.68
NDSTR 8.97

[3 row(s)]

It is possible to use GROUP BY and HAVING in an inner query as well.

Query 7.13 Find the managers of stores with more than $20 in sales

SELECT manager
FROM stores
WHERE storeid IN

(SELECT storeid
FROM orders
GROUP BY storeid
HAVING SUM(price) > 20);

manager

Greg Speegle
Greg Donahoo

[2 row(s)]

Using ORDER BY in a subquery makes little sense because the order of the results is
determined by the execution of the outer query.

7.3 Subqueries Using NOT IN

We can also find the outer query rows that do not match anything in the inner query by
using NOT IN.

Query 7.14 Find all of the ingredients supplied by someone other than Veggies_R_Us

SELECT name
FROM ingredients
WHERE vendorid NOT IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us');

■ 7.3 Subqueries Using NOT IN 135

Query 7.14 (cont’d)

name

Cheese
Chicken
Crouton
Grape
Water
Soda
Watermelon
Orange

[8 row(s)]

Care is required when using NOT IN to answer this type of question. Every row in the
outer query is compared with the results of the inner query. In this case, there is only one
vendor for each ingredient. Compare Query 7.15 to Queries 6.8 and 6.10.

Query 7.15 INCORRECT! Find all of the items not made with cheese

SELECT DISTINCT itemid
FROM madewith
WHERE ingredientid NOT IN

(SELECT ingredientid
FROM ingredients
WHERE name = 'Cheese');

itemid

CHKSD
FRPLT
FRTSD
GDNSD
SODA
WATER

[6 row(s)]

Notice that Chicken Salad and Fruit Plate appear in the output, although they both have
Cheese. Again, that is because every row in the outer query is compared to the inner
query. If one ingredient in the outer row is not Cheese, NOT IN returns true. Also note that
Millennium Salad is not in the results of Query 7.15.

Recall from Chapter 2 that we warned you about NULL values and NOT IN. Basically,
if any element in the NOT IN list is NULL, then no rows evaluate to true, and the final result
table is empty.

136 Chapter 7: Subqueries ■

Query 7.16
INCORRECT! Find the company name of the small vendors who don’t provide any
ingredients with large (>100) inventories

SELECT companyname
FROM vendors
WHERE vendorid NOT IN

(SELECT vendorid
FROM ingredients
WHERE inventory > 100);

companyname

[0 row(s)]

By examining the ingredients table, we can see that Flavorful Creams ought to be
the answer. What happened? The ingredient Secret Dressing does not have a vendor, so
the list of values contains a NULL. How do we fix this? Eliminate NULL values from the
subquery result.

Query 7.17
Find the company name of the small vendors who don’t provide any ingredients with
large (>100) inventories

SELECT companyname
FROM vendors
WHERE vendorid NOT IN

(SELECT vendorid
FROM ingredients
WHERE inventory > 100 AND vendorid IS NOT NULL);

companyname

Flavorful Creams

[1 row(s)]

7.4 Subqueries with Empty Results

What happens when a subquery result is empty? The answer depends on what SQL is
expecting from the subquery. Let’s look at a couple of examples. Remember that the
standard comparison operators expect a scalar value; therefore, SQL expects that any sub-
queries used with these operators always return a single value. If the subquery result is
empty, SQL returns NULL.

Query 7.18 Empty subquery returning scalar

SELECT companyname
FROM vendors
WHERE referredby =

(SELECT vendorid
FROM vendors
WHERE companyname = 'No Such Company');

■ 7.5 Combining JOIN and Subqueries 137

Query 7.18 (cont’d)

companyname

[0 row(s)]

Here the subquery results are empty so the subquery returns NULL. Evaluating the outer
query, referredby = NULL returns unknown for each row in vendors. Consequently, the
outer query returns an empty result table.

Let’s look at another example. When using the IN operator, SQL expects the subquery
to return a table. When SQL expects a table from a subquery and the subquery result is
empty, the subquery returns an empty table. IN over an empty table always returns false,
therefore NOT IN always returns true.

Query 7.19 Empty subquery returning table

SELECT companyname
FROM vendors
WHERE referredby NOT IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'No Such Company');

companyname

Veggies_R_Us
Don’s Dairy
Flavorful Creams
"Fruit Eating" Friends
Ed’s Dressings
Spring Water Supply

[6 row(s)]

In Query 7.19, the subquery returns a table with zero rows (and one column). For every
row in the vendors table, NOT IN returns true over the subquery, so every row is returned.

7.5 Combining JOIN and Subqueries

Nested queries are not restricted to a single table. Consider Queries 7.10 and 5.6. They
return the same results, although they are constructed very differently. Query 7.20
combines the two strategies.

138 Chapter 7: Subqueries ■

Query 7.20 Find the name and price of all items using an ingredient supplied by Veggies_R_Us

SELECT itemid, price
FROM items
WHERE itemid IN

(SELECT itemid
FROM madewith mw, ingredients i, vendors v
WHERE mw.ingredientid = i.ingredientid AND i.vendorid = v.vendorid

AND companyname = 'Veggies_R_Us');

itemid price

CHKSD 2.85
GDNSD 0.99
FRPLT 3.99

[3 row(s)]

Remember, all desired attributes must appear in the outermost query, but other
combinations of JOIN and subquery are dependent on the practices of your organization
and the performance of your DBMS. It is a common tactic for a DBMS to change sub-
queries like these into joins anyway, so despite the different appearance, there may be
no difference in the underlying execution at all.

Similarly, Query 7.21 is another way to answer the same question. It uses a join in
the outer query and a subquery.

Query 7.21 Find the name and price of all items using an ingredient supplied by Veggies_R_Us

SELECT DISTINCT itemid, price
FROM items NATURAL JOIN madewith
WHERE ingredientid IN

(SELECT ingredientid
FROM ingredients NATURAL JOIN vendors
WHERE companyname = 'Veggies_R_Us');

itemid price

CHKSD 2.85
FRPLT 3.99
GDNSD 0.99

[3 row(s)]

Notice that DISTINCT is again required to eliminate duplicate results, because each row in
the items table appears multiple times in the outer query.

7.6 Standard Comparison Operators with Lists Using ANY,
SOME, or ALL

We can modify the meaning of the SQL standard comparison operators with ANY, SOME,
and ALL so that the operator applies to a list of values instead of a single value. As with

■ 7.6 Standard Comparison Operators with Lists Using ANY, SOME, or ALL 139

IN, SQL expects the subquery to return a table. The basic syntax is as follows:

<expr> <op> {SOME | ANY | ALL} <subquery>

7.6.1 ANY or SOME

The ANY or SOME modifiers determine if the expression evaluates to true for at least one
row in the subquery result. Here’s how SQL determines the result for ANY or SOME:

Result Condition

true if at least one row in <subquery> evaluates to true

false if all rows in <subquery> evaluate to false or the subquery returns no rows

unknown otherwise

Query 7.22 uses > ANY to connect the subquery. The outer query simply returns the name
of the item. The inner subquery returns all of the prices of all the items that have salad in
their names.

Query 7.22 Find all items that have a price that is greater than any salad item

SELECT name
FROM items
WHERE price > ANY

(SELECT price
FROM items
WHERE name LIKE '%Salad');

name

Chicken Salad
Fruit Salad
Fruit Plate

[3 row(s)]

Note that without the ANY modifier, SQL would reject this query if we have more than one
salad item.

The IN operator is defined to be the same as = ANY. Compare Query 7.4 to Query 7.23.

140 Chapter 7: Subqueries ■

Query 7.23 Find the name of all ingredients supplied by Veggies_R_Us or Spring Water Supply

SELECT name
FROM ingredients
WHERE vendorid = ANY

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR

companyname = 'Spring Water Supply');

name

Lettuce
Pickle
Tomato
Water
Soda

[5 row(s)]

Be aware of the difference between <> ANY and NOT IN. x <> ANY y returns true if any of
the values in y are not equal to x. x NOT IN y returns true only if none of the values in y
are equal to x or if the list y is empty. Compare Queries 7.24 and 7.25.

Query 7.24
Find the name of all ingredients supplied by someone other than Veggies_R_Us or
Spring Water Supply

SELECT name
FROM ingredients
WHERE vendorid NOT IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR

companyname = 'Spring Water Supply');

name

Cheese
Chicken
Crouton
Grape
Watermelon
Orange

[6 row(s)]

■ 7.6 Standard Comparison Operators with Lists Using ANY, SOME, or ALL 141

Query 7.25
INCORRECT! Find the name of all ingredients supplied by someone other than
Veggies_R_Us or Spring Water Supply

SELECT name
FROM ingredients
WHERE vendorid <> ANY

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR

companyname = 'Spring Water Supply');

name

Cheese
Chicken
Crouton
Grape
Lettuce
Pickle
Tomato
Water
Soda
Watermelon
Orange

[11 row(s)]

Note that we were careful in the wording of Query 7.24. The results of Query 7.24 do
not include Secret Dressing, so this query does not find all ingredients not supplied
by Veggies_R_Us or Spring Water Supply. To answer that query, we have to use a more
complicated subquery or an EXCEPT query as shown in Query 7.26.

Query 7.26 Find all ingredients not supplied by Veggies_R_Us or Spring Water Supply

SELECT name
FROM ingredients
WHERE ingredientid NOT IN

(SELECT ingredientid
FROM ingredients
WHERE vendorid = ANY

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR

companyname = 'Spring Water Supply'));

name

Cheese
Chicken

Continued on next page

142 Chapter 7: Subqueries ■

Query 7.26 (cont’d)

Crouton
Grape
Secret Dressing
Watermelon
Orange

[7 row(s)]

7.6.2 ALL

The ALL modifier determines if the expression evaluates to true for all rows in the subquery
result. Here’s how SQL determines the result for ALL:

Result Condition

true if every row in <subquery> evaluates to true or the subquery returns no rows

false if at least one row in <subquery> evaluates to false

unknown otherwise

Query 7.27 Find all ingredients that cost at least as much as every ingredient in a salad

SELECT name
FROM ingredients
WHERE unitprice >= ALL

(SELECT unitprice
FROM ingredients ing NATURAL JOIN madewith mw JOIN

items i USING(itemid)
WHERE i.name LIKE '%Salad');

name

Chicken
Soda

[2 row(s)]

A common mistake is to assume that the = ALL operator returns true if all of the rows
in the outer query match all of the rows in the inner query. This is not the case. A row in
the outer query will satisfy the = ALL operator only if it is equal to all of the values in the
subquery. If the inner query returns multiple rows, each outer query row will only satisfy
the = ALL predicate if all rows in the inner query have the same value and that value equals
the outer query row value. Notice that the exact same result is achieved by using = alone
and ensuring that only a distinct value is returned by the inner query.

■ 7.6 Standard Comparison Operators with Lists Using ANY, SOME, or ALL 143

In Query 7.23 we saw that = ANY works exactly the same as IN. It should not be
surprising that <> ALL works the same as NOT IN. Compare Query 7.24 with Query 7.28.

Query 7.28
Find the name of all ingredients supplied by someone other than Veggies_R_Us or
Spring Water Supply

SELECT name
FROM ingredients
WHERE vendorid <> ALL

(SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us' OR

companyname = 'Spring Water Supply');

name

Cheese
Chicken
Crouton
Grape
Watermelon
Orange

[6 row(s)]

You might be tempted to believe that >= ALL is equivalent to >= (SELECT MAX()), but
this is not correct. Let’s say we wanted to find the items that cost as much as the most
expensive item. Consider Queries 7.29 and 7.30.

Query 7.29 INCORRECT! Find the most expensive items

SELECT *
FROM items
WHERE price >= ALL

(SELECT price
FROM items);

itemid name price dateadded

[0 row(s)]

Query 7.30 Find the most expensive items

SELECT *
FROM items
WHERE price >=

(SELECT MAX(price)
FROM items);

itemid name price dateadded

FRPLT Fruit Plate 3.99 2000-09-02

[1 row(s)]

144 Chapter 7: Subqueries ■

What’s going on here? Recall that for ALL to return true, the condition must be true for all
rows in the subquery. NULL prices evaluate to unknown; therefore, >= ALL evaluates to
unknown so the result is empty. Of course, we can solve this problem by eliminating NULL
prices. However, NULL isn’t the only problem. What happens when the subquery result is
empty? Again, we get different results, as seen in Queries 7.31 and 7.32.

Query 7.31 Empty results with MAX

SELECT *
FROM items
WHERE price >=

(SELECT MAX(price)
FROM items
WHERE itemid = 'BADID');

itemid name price dateadded

[0 row(s)]

Query 7.32 Empty results with >= ALL

SELECT *
FROM items
WHERE price >= ALL

(SELECT price
FROM items
WHERE itemid = 'BADID');

itemid name price dateadded

CHKSD Chicken Salad 2.85 1998-11-13
FRTSD Fruit Salad 3.45 2000-05-06
GDNSD Garden Salad 0.99 2001-03-02
MILSD Millennium Salad NULL 2002-08-16
SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19
FRPLT Fruit Plate 3.99 2000-09-02

[7 row(s)]

For ALL, an empty subquery always returns true; however, MAX() over an empty result
returns NULL. It is crucial that you understand the semantics of your query and the
capabilities of the operations to make sure the correct result is returned.

7.7 Correlated Subqueries

All of our subquery examples thus far contain simple subqueries. A simple subquery can
be executed by itself, independent of the outer query. Simple subqueries work by first

■ 7.7 Correlated Subqueries 145

executing the inner query, filling the resulting values into the outer query, and finally
executing the outer query.

Correlated subqueries are not independent of the outer query. Correlated subqueries
work by first executing the outer query and then executing the inner query for each row
from the outer query. Query 7.33 is a typical example.

Query 7.33 Find the items that contain 3 or more ingredients

SELECT itemid, name
FROM items
WHERE (SELECT COUNT(*)

FROM madewith
WHERE madewith.itemid = items.itemid) >= 3;

itemid name

CHKSD Chicken Salad
FRPLT Fruit Plate

[2 row(s)]

Look closely at the inner query. It cannot be executed independently from the outer query
because the WHERE clause references the items table from the outer query. Note that in
the inner query we must use the table name from the outer query to qualify itemid.

How does this execute? Because it’s a correlated subquery, the outer query fetches
all the rows from the items table. For each row from the outer query, the inner query is
executed to determine the number of ingredients for the particular itemid. For example,
the outer query fetches the row for Chicken Salad and then executes Query 7.34.

Query 7.34 Find the number of ingredients in a Chicken Salad

SELECT COUNT(*)
FROM madewith
WHERE itemid = 'CHKSD';

count

4

[1 row(s)]

The WHERE clause in Query 7.33 is evaluated for the Chicken Salad row in the outer query
using the value returned by Query 7.34. Because the WHERE clause evaluates to true,
Chicken Salad is added to the final result set.

For you programmer types, think of the implementation as a nested loop. For every
row returned by the outer query, the inner query is executed, much like a nested loop

146 Chapter 7: Subqueries ■

structure. We can continue this analogy further. In nested loops, variables declared in the
outer loop can be accessed in the inner loop. We can do the same thing with subqueries—
values in the row returned by the outer query can be used by the inner query.

Let’s try some examples. Query 7.35 is similar to Query 4.17.

Query 7.35 Find all of the vendors who referred two or more vendors

SELECT vendorid, companyname
FROM vendors v1
WHERE (SELECT COUNT(*)

FROM vendors v2
WHERE v2.referredby = v1.vendorid) >= 2;

vendorid companyname

VGRUS Veggies_R_Us

[1 row(s)]

Here we use the vendors table in both the inner and outer query so we need table aliases.
Let’s look at another example. Compare Query 7.36 with Query 7.13.

Query 7.36 Find the managers of stores with more than $20 in sales

SELECT manager
FROM stores s
WHERE (SELECT SUM(price)

FROM orders o
WHERE o.storeid = s.storeid) > 20;

manager

Greg Speegle
Greg Donahoo

[2 row(s)]

Query 7.36 uses a correlated subquery to answer the same question as Query 7.13, which
uses a simple query.

7.8 EXISTS

Sometimes we only want to know if there are any rows that satisfy a query. This is espe-
cially useful if we want to automatically check a condition, such as the error condition we
saw in Query 5.12. In these cases, we can use the EXISTS operator.

EXISTS <subquery>

■ 7.8 EXISTS 147

EXISTS is a conditional that determines if any rows exist in the result of a subquery. EXISTS
returns true if <subquery> returns at least one row and false otherwise. The subquery can
be simple or correlated; however, most meaningful examples use correlated subqueries.

Query 7.37 Find the meals containing an ingredient from the Milk food group

SELECT *
FROM meals m
WHERE EXISTS

(SELECT *
FROM partof p JOIN items USING (itemid)

JOIN madewith USING (itemid)
JOIN ingredients USING (ingredientid)

WHERE foodgroup = 'Milk' AND m.mealid = p.mealid);

mealid name

CKSDS Chicken N Suds

[1 row(s)]

For every meal, SQL executes the subquery to find the items with ingredients from the Milk
food group. If it finds any such ingredients, then EXISTS returns true, and the meal will be
in the results. If not, EXISTS returns false, and the meal will not be in the results.

We can use NOT with EXISTS to determine if something does not exist, as in
Query 7.38.

Query 7.38 Find all of the vendors that did not recommend any other vendor

SELECT vendorid, companyname
FROM vendors v1
WHERE NOT EXISTS (SELECT *

FROM vendors v2
WHERE v2.referredby = v1.vendorid);

vendorid companyname

DNDRY Don’s Dairy
SPWTR Spring Water Supply

[2 row(s)]

148 Chapter 7: Subqueries ■

7.9 Derived Relations—Subqueries in the FROM Clause

Subqueries can also appear in the FROM clause. Such subqueries create derived tables
because the subquery forms a table that does not exist in the database. These derived
tables may be used like any other table.

Query 7.39
List the name and inventory value of each ingredient in the Fruit or Vegetable food
group and its supplier

SELECT food, companyname, val
FROM vendors v, (SELECT name, vendorid, unitprice * inventory

FROM ingredients i
WHERE foodgroup IN ('Fruit', 'Vegetable')) AS d(food, vdrno, val)

WHERE v.vendorid = d.vdrno;

food companyname val

Tomato Veggies_R_Us 0.45
Pickle Veggies_R_Us 32.00
Lettuce Veggies_R_Us 2.00
Orange "Fruit Eating" Friends 0.50
Watermelon "Fruit Eating" Friends NULL
Grape "Fruit Eating" Friends 3.00

[6 row(s)]

The subquery generates a derived table containing the name, vendor ID, and inventory
value of each ingredient in the specified food groups. Using an expanded form of table
aliases, we name the derived table and its attributes. Next, SQL performs the Cartesian
product of the vendors table and the derived table and applies the join predicate. Recall
that the FROM clause is executed first by the DBMS. When the subquery is executed,
no rows from the other tables have been retrieved. Thus, the DBMS cannot reference
another table inside a subquery in the FROM clause. All derived relations are uncorrelated
subqueries.

There are two advantages of derived relations. First, it allows us to break down com-
plex queries into easier to understand parts. For example, Query 7.40 can be answered
easily by creating two derived relations. The first subquery contains the number of items
provided by Spring Water Supply, and the second subquery contains the number of items
provided by all the other vendors.

■ 7.9 Derived Relations—Subqueries in the FROM Clause 149

Query 7.40 Find all vendors who provide more ingredients than Spring Water Supply

SELECT p.companyname
FROM (SELECT COUNT(*)

FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND

companyname = 'Spring Water Supply') AS q(items),
(SELECT companyname, COUNT(*)
FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid
GROUP BY v.vendorid, companyname) AS p(companyname, items)

WHERE p.items > q.items;

companyname

"Fruit Eating" Friends
Veggies_R_Us

[2 row(s)]

As another example, look at Query 7.41. We first find the cost of each item in a derived
relation named itemcost. It is then straightforward to combine itemcost with the items table
to determine the profit.

Query 7.41 Find the profit margin on each item

SELECT name, price-cost AS profit
FROM items theitm, (SELECT itm.itemid, SUM(quantity * unitprice)

FROM items itm, madewith mw, ingredients ing
WHERE itm.itemid = mw.itemid AND

mw.ingredientid = ing.ingredientid
GROUP BY itm.itemid) AS itemcost(itemid, cost)

WHERE theitm.itemid = itemcost.itemid;

name profit

Soda 0.30
Garden Salad 0.71
Fruit Plate 2.55
Fruit Salad 3.25
Water -0.06
Chicken Salad 0.95

[6 row(s)]

The second advantage of derived relations is that we can improve the performance
of some queries. If a derived relation is much smaller than the original relation, then the
query may execute much faster. CAUTION: The query speed might not improve as a result
of several factors that are beyond the scope of this guide. It is a good idea to thoroughly
test optimizations before implementing them in a production system.

150 Chapter 7: Subqueries ■

7.10 Subqueries in the HAVING Clause

We can embed both simple and correlated subqueries in the HAVING clause. This works
much like the WHERE clause subqueries, except we are defining predicates on groups rather
than rows.

Query 7.42 Find all vendors who provide more ingredients than Spring Water Supply

SELECT companyname
FROM vendors v, ingredients i
WHERE i.vendorid = v.vendorid
GROUP BY v.vendorid, companyname
HAVING COUNT(*) > (SELECT COUNT(*)

FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND
companyname = 'Spring Water Supply');

companyname

"Fruit Eating" Friends
Veggies_R_Us

[2 row(s)]

This query works by first joining all vendors with their ingredients and grouping by ven-
dor. Next, the simple subquery computes the number of ingredients from the Spring Water
Supply and the predicate in the HAVING clause is evaluated for each group. Compare
Query 7.42 with Query 7.40.

Correlated subqueries in the HAVING clause allow us to evaluate per-group condi-
tionals.

Query 7.43
Find the average inventory values for each vendor who recommends at least one
other vendor

SELECT v1.vendorid, AVG(unitprice * inventory)
FROM ingredients JOIN vendors v1 USING (vendorid)
GROUP BY v1.vendorid
HAVING EXISTS (SELECT *

FROM vendors v2
WHERE v1.vendorid = v2.referredby);

vendorid avg

EDDRS 4.0000000000000000
FRTFR 1.7500000000000000
VGRUS 11.4833333333333333

[3 row(s)]

■ 7.11 Subset Queries 151

This query begins by grouping all of the ingredients together by vendor. Next, for each
vendor, the subquery finds the vendors referred by that vendor. If the subquery returns
any row, EXISTS returns true and the vendor ID and average inventory value are included
in the final result.

Our last query in this section uses a derived relation in a subquery in the HAVING
clause.

Query 7.44 Find the managers of stores with greater than average sales

SELECT manager
FROM stores s, orders o
WHERE s.storeid = o.storeid
GROUP BY s.storeid, manager
HAVING SUM(price) > (SELECT AVG(sales)

FROM (SELECT SUM(price)
FROM orders
GROUP BY storeid) AS d(sales));

manager

Greg Donahoo

[1 row(s)]

In Query 7.44, we need to find the average of the sales of all of the stores. We compute the
store sales with a query similar to Query 4.11. As a derived table, we can now use this
as any table and easily compute the average of the total sales. We use the HAVING clause
to check the sales of the store against this average, and we return the managers for all
above-average stores.

7.11 Subset Queries

One of the most challenging types of queries for SQL is one that compares two groups
of rows to see if they are the same. These types of queries arise in many different
applications. Some examples are as follows:

1. Has a student taken all the courses required for graduation?

2. List the departments and projects for which that department has all of the tools
required for the project.

3. Find all the items that contain all of the ingredients provided by a vendor.

In each case, we are comparing two sets of values—the set of courses taken by a student
and the set of courses required for graduation; the set of tools required for a project
and the set of tools available to the department; and the set of ingredients supplied by
a vendor and the set of ingredients in an item. We present two ways of answering these

152 Chapter 7: Subqueries ■

types of queries. In one approach, we use set operators (universal quantification), whereas
the second approach uses set cardinality.

7.11.1 Subset Using EXISTS and EXCEPT

Suppose that you want to find all items and vendors such that all ingredients supplied by
that vendor are in the item. Note that this is a subset query, since the set of ingredients
supplied by a vendor is a subset of the ingredients used in the item. SQL does not provide
a subset operator. Fortunately, we can combine SQL operators to evaluate subsets. One
definition of a subset, A ⊂ B; is that there does not exist an element in A that is not in B.
Looking at it this way, we can turn a subset query into an existence query followed by a set
difference query. We must transform our subset query into an equivalent query following
this pattern. Our new query is “Find all pairs of items and vendors such that there does
not exist any ingredient provided by the vendor that is not used to make the item.” As with
all nested queries, the outer query must contain all desired attributes; therefore the outer
query must be use the items and vendor tables. Here’s a start on our outer query:

SELECT mi.name, companyname
FROM items i, vendors v

The reworded query also makes it obvious that we want to use the NOT EXISTS clause,
but what does not exist? It is an ingredient provided by the vendor that is not in the item.
The “not provided” is a clue we are looking for missing information, as in Query 6.8. In
Query 6.8, we found all items that did not use cheese. Here, for any particular vendor, we
want to find any particular item provided by the vendor but not used in the item. The fact
we are looking at a particular vendor and a particular item gives us a clue that this is a
correlated subquery.

For complex correlated subqueries, it is often helpful to examine a single case for the
subquery. In our case, it would be Query 7.45.

Query 7.45 Find all ingredients supplied by Veggies_R_Us but not used in a Chicken Salad

SELECT ingredientid -- ingredients supplied by Veggies_R_Us
FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND companyname = 'Veggies_R_Us'

EXCEPT
SELECT ingredientid -- ingredients used in Chicken Salad
FROM items it, madewith m
WHERE it.itemid = m.itemid AND it.name = 'Chicken Salad';

ingredientid

PICKL
TOMTO

[2 row(s)]

■ 7.11 Subset Queries 153

Note that because Chicken Salads do not use pickles or tomatoes, then Chicken Salads do
not use all ingredients provided by Veggies_R_Us.

Now we need to combine Query 7.45 with the earlier outer query fragment. However,
because this is a correlated subquery, we need to remove vendors and items from the inner
query. We want those references to be pulled from the outer query. We also need to remove
the specific references to Veggies_R_Us and Chicken Salad. Query 7.46 is our result.

Query 7.46
Find all items and vendors such that all ingredients supplied by that vendor are in
the item

SELECT name, companyname
FROM items it, vendors v
WHERE NOT EXISTS (

SELECT ingredientid -- ingredients supplied by vendor
FROM ingredients i
WHERE i.vendorid = v.vendorid

EXCEPT
SELECT ingredientid -- ingredients used in item
FROM madewith m
WHERE it.itemid = m.itemid);

name companyname

Chicken Salad Don’s Dairy
Chicken Salad Flavorful Creams
Fruit Salad Flavorful Creams
Garden Salad Flavorful Creams
Millennium Salad Flavorful Creams
Soda Flavorful Creams
Water Flavorful Creams
Fruit Plate Flavorful Creams
Fruit Plate "Fruit Eating" Friends
Fruit Plate Ed’s Dressings

[10 row(s)]

Notice that in the answer to this query every item contains all of the ingredients
provided by Flavorful Creams. Flavorful Creams provides us with no ingredients. This
means that every item contains all ingredients provided by Flavorful Creams. Another way
to think about it is that the set of ingredients provided by Flavorful Creams is the empty
set. Because the empty set is a subset of all sets, the set of items provided by Flavorful
Creams is a subset of the ingredients used by every item.

Let’s go through this query one step at a time, to see what happens.

1. Take the Cartesian product of the vendors and items tables.

2. For each vendor/item pair, perform the subquery.

3. If the inner query is empty, then that vendor/item pair is output.

154 Chapter 7: Subqueries ■

The inner query consists of two parts.

1. The first part of the inner query finds all ingredients supplied by the vendor.

2. The second part of the inner query finds all ingredients used to make the item.

The result of the inner query is the rows from the first part not in the second part.
Subset queries are not easy to construct, but they have the same common pattern in

the WHERE clause NOT EXISTS A EXCEPT B, where A is the subset and B is the superset.
Query 7.47 is another example in which we answer the converse of Query 7.46.

Query 7.47
Find all vendors and items such that all ingredients in the item are from the same
vendor

SELECT i.name, companyname
FROM items i, vendors v
WHERE NOT EXISTS (

(SELECT m.ingredientid -- ingredients used in item
FROM madewith m
WHERE i.itemid = m.itemid)

EXCEPT
(SELECT ingredientid -- ingredients supplied by vendors
FROM ingredients i
WHERE i.vendorid = v.vendorid));

name companyname

Fruit Salad "Fruit Eating" Friends
Garden Salad Veggies_R_Us
Millennium Salad Veggies_R_Us
Millennium Salad Don’s Dairy
Millennium Salad Flavorful Creams
Millennium Salad "Fruit Eating" Friends
Millennium Salad Ed’s Dressings
Millennium Salad Spring Water Supply
Soda Spring Water Supply
Water Spring Water Supply

[10 row(s)]

In Query 7.47, the set of items in an ingredient is a subset of items provided by a vendor.
Subset queries are also called for all queries because the query is true for all rows

in a table. In the case of Query 7.46, for all ingredients supplied by the vendor, the ingre-
dient is used by the item. For the mathematically inclined, we translate that statement
into “there does not exist an ingredient supplied by the vendor that is not used in the
item.”

■ 7.11 Subset Queries 155

7.11.2 Subset Using Set Cardinality

There is an alternative to the query mechanism in Section 7.11.1. This alternative uses
the notion of set cardinality. The cardinality of a set is the number of elements in it. In
other words, if we carefully allow only the elements in the set that we want, then if the
sets have the same number of elements, they must be the same set. For example, if the
number of ingredients in an item is equal to the number of ingredients in an item supplied
by a vendor, then all of the ingredients in the item are supplied by the vendor. Compare
Query 7.48 to Query 7.47.

Query 7.48
Find all items and vendors such that all ingredients in the item are supplied by that
vendor

SELECT i.name, companyname
FROM items i, vendors v
WHERE

(SELECT COUNT(DISTINCT m.ingredientid) -- number of ingredients in item
FROM madewith m
WHERE i.itemid = m.itemid)

= -- number of ingredients in item supplied by vendor
(SELECT COUNT(DISTINCT m.ingredientid)
FROM madewith m, ingredients n
WHERE i.itemid = m.itemid AND m.ingredientid = n.ingredientid

AND n.vendorid = v.vendorid);

name companyname

Fruit Salad "Fruit Eating" Friends
Garden Salad Veggies_R_Us
Millennium Salad Veggies_R_Us
Millennium Salad Don’s Dairy
Millennium Salad Flavorful Creams
Millennium Salad "Fruit Eating" Friends
Millennium Salad Ed’s Dressings
Millennium Salad Spring Water Supply
Soda Spring Water Supply
Water Spring Water Supply

[10 row(s)]

We count the number of ingredients in the item and compare that to the number of ingre-
dients in that item provided by the specified vendor. If those two numbers are the same,
then that vendor provides all of the ingredients for the item. Note that the Millennium
Salad is present multiple times in the result. That is because the number of ingredients in
a Millennium Salad is 0, and the number of ingredients in a Millennium Salad provided by
each vendor is also 0.

156 Chapter 7: Subqueries ■

Now compare the result of Query 7.49 with Query 7.46.

Query 7.49
Find all items and vendors such that all ingredients supplied by that vendor are in the
item

SELECT name, companyname
FROM items i, vendors v
WHERE -- number of ingredients in item supplied by vendor

(SELECT COUNT(DISTINCT m.ingredientid)
FROM madewith m, ingredients ing
WHERE i.itemid = m.itemid AND m.ingredientid = ing.ingredientid AND

ing.vendorid = v.vendorid)
=
(SELECT COUNT(DISTINCT ing.ingredientid) -- number of ingredients supplied by vendor
FROM ingredients ing
WHERE ing.vendorid = v.vendorid);

name companyname

Chicken Salad Don’s Dairy
Chicken Salad Flavorful Creams
Fruit Salad Flavorful Creams
Garden Salad Flavorful Creams
Millennium Salad Flavorful Creams
Soda Flavorful Creams
Water Flavorful Creams
Fruit Plate Flavorful Creams
Fruit Plate "Fruit Eating" Friends
Fruit Plate Ed’s Dressings

[10 row(s)]

In this query, we count the number of ingredients in the item that are made by a specific
vendor and compare that to the number of ingredients supplied by the vendor. Although
in this query it does not matter, in general it is necessary to use COUNT(DISTINCT) instead
of COUNT(*).

7.11.3 Comparing Set Cardinality and Subsets

With two very different approaches to subset queries, which should be used to answer
these types of queries? There are three criteria to be weighed when making this choice:

Does your DBMS support the operation?
Although we can use NOT IN instead of EXCEPT if NULL values are not involved, some
database systems cannot perform all of the operations needed for one of the two
approaches. Usually, if a database only supports one option, it will be set cardinality.

■ 7.12 Subqueries in the SELECT Clause 157

Which is more efficient?
If a query is going to be executed many times, it is important that it execute as effi-
ciently as possible. We can do a superficial analysis of Queries 7.47 and 7.48 to get
an idea of the performance. Both queries require two subqueries to be performed for
every row in the cross product of items and vendors. In each case, the work done
in the first query is about the same: a join between the items and madewith table.
However, the second query in the subset execution is a two-way join between ven-
dors and ingredients, whereas the second query in the set cardinality approach is a
four-way join between items, madewith, ingredients, and vendors. Clearly, Query 7.47
will execute the two-way join faster than Query 7.48 will execute the four-way join.
However, the final step in Query 7.48 is a simple equality predicate, whereas the
EXCEPT operation in Query 7.47 is much slower. How much slower depends on
the size of the sets. If a set is very large, then this operation could dominate the
time of the query execution. However, if the sets are both small, then the four-way
join is likely to dominate the execution time. It is important to note that every DBMS
performs query optimization to improve query performance. Query optimization is
beyond the scope of this book, but it does mean that superficial analysis may be
incorrect in determining the relative speed of query performance. Thus, you should
execute both alternatives on real data to determine the relative speed of the queries.
There are also many techniques (such as adding indexes, discussed in Chapter 9) that
can greatly improve the speed of a query.

Which is easier to write?
If a query is not going to be executed a large number of times, then efficiency is not
very important. As a result, generating a correct query quickly becomes important.
Many programmers find the set cardinality approach easier to understand, so they
will take that solution. Other programmers find the subset approach easier to ensure
correct behavior (the subqueries tend to be more simple), so they prefer that method.

7.12 Subqueries in the SELECT Clause

We can include subqueries in the SELECT clause to compute a column in the result table. It
works much like any other expression. You may use both simple and correlated subqueries
in the SELECT clause as shown in Query 7.50.

Query 7.50
For each ingredient, list its inventory value, the maximum inventory value of all ingre-
dients, and the ratio of the ingredient’s inventory value to the average ingredient
inventory value

SELECT name, unitprice * inventory AS "Inventory Value",
(SELECT MAX(unitprice * inventory)
FROM ingredients) AS "Max. Value",

(unitprice * inventory) / (SELECT AVG(unitprice * inventory)
FROM ingredients) AS "Ratio"

FROM ingredients;
Continued on next page

158 Chapter 7: Subqueries ■

Query 7.50 (cont’d)

name Inventory Value Max. Value Ratio

Cheese 4.50 3450.00 0.01266161140107764381
Chicken 54.00 3450.00 0.15193933681293172578
Crouton 4.00 3450.00 0.01125476568984679450
Grape 3.00 3450.00 0.00844107426738509588
Lettuce 2.00 3450.00 0.00562738284492339725
Pickle 32.00 3450.00 0.09003812551877435602
Secret Dressing 3.60 3450.00 0.01012928912086211505
Tomato 0.45 3450.00 0.00126616114010776438
Water NULL 3450.00 NULL
Soda 3450.00 3450.00 9.7072354074928603
Watermelon NULL 3450.00 NULL
Orange 0.50 3450.00 0.00140684571123084931

[12 row(s)]

This query uses uncorrelated subqueries to compute the average and maximum inventory
value. Because we use uncorrelated subqueries, their values are the same for each row.
These subqueries may be used as the terms of larger expressions as in our ratio column.
Like other SELECT expressions, we can specify an alias.

Correlated subqueries in the SELECT clause work just like they do in the WHERE
clause.

Query 7.51 List each ingredient and its supplier

SELECT name, (SELECT companyname
FROM vendors v
WHERE v.vendorid = i.vendorid) AS "supplier"

FROM ingredients i;

name supplier

Cheese Don’s Dairy
Chicken Don’s Dairy
Crouton Ed’s Dressings
Grape "Fruit Eating" Friends
Lettuce Veggies_R_Us
Pickle Veggies_R_Us
Secret Dressing NULL
Tomato Veggies_R_Us
Water Spring Water Supply
Soda Spring Water Supply
Watermelon "Fruit Eating" Friends
Orange "Fruit Eating" Friends

[12 row(s)]

■ 7.13 Wrap Up 159

In Query 7.51, the subquery is executed one for each ingredient. Like other expressions in
the SELECT list, the subquery must return a single (scalar) value. Specifically, the result of
the subquery must contain exactly one attribute and zero or one rows. If the inner query
contains zero rows, the column value is NULL. Thus, Query 7.51 only works because we
know that each ingredient is provided by at most one company.

Query 7.52 ERROR! Find the ingredients for each item

SELECT name, (SELECT name
FROM ingredients JOIN madewith USING (ingredientid)
WHERE items.itemid = madewith.itemid)

FROM items;

Query 7.52 generates an error because there are items with multiple ingredients. Of course,
we can correctly answer Query 7.52 by using joins in the WHERE clause. Likewise, because
aggregate functions return exactly one value (without a GROUP BY clause), they are good
candidates for this technique, as in Query 7.53.

Query 7.53 Find the number of ingredients for each item

SELECT name, (SELECT COUNT(*)
FROM ingredients JOIN madewith USING (ingredientid)
WHERE items.itemid = madewith.itemid) AS "Ingredient Count"

FROM items;

name Ingredient Count

Chicken Salad 4
Fruit Salad 2
Garden Salad 2
Millennium Salad 0
Soda 1
Water 1
Fruit Plate 6

[7 row(s)]

7.13 Wrap Up

Simple subqueries in the WHERE allow us to construct multitable queries by nesting one
query inside another. We can connect an inner and outer query using any of the comparison
operators. It is important to remember that subqueries compare a single row in the outer
query to every row in the inner query. Forgetting this limitation can lead programmers to
obscure errors.

160 Chapter 7: Subqueries ■

Because these techniques are similar to the techniques in Chapter 5, it is important
to know when the various approaches should be used. Here are some guidelines to help
make the choice.

Possible:
As a result of the restrictions on the various techniques, some subquery approaches
may not be able to answer the query. The derived relation technique will also always
work, although it is not as widely supported.

Portable:
If the query is going to execute on different DBMSs, it must be supported on all of
them.

Performance:
Assuming the query is going to be asked more than once, the time required to answer
a query can be important. As a result, the various approaches should be optimized
independently as much as possible, and then they should be compared on realistic
data.

Preference:
If the query is going to be asked only once, or there is little difference in the per-
formance, then choose the approach that you like the best. Not only will this be the
easiest for you to write, but it will also be the easiest to maintain.

■ Review Questions 161

Review Questions

1. What is wrong with the following query?

SELECT name, companyname
FROM ingredients
WHERE vendorid IN

(SELECT vendorid
FROM vendors);

2. Consider the following query.

SELECT *
FROM ingredients
WHERE vendorid = (

SELECT vendorid
FROM vendors
WHERE referredby = 'NWVID');

SQL will report an error if . If there are no rows in the
vendors table with referredby of NWVID, the inner query returns and
the outer query returns . Make no assumptions about the data in
ingredients or vendors.

3. If the inner query returns NULL, what will happen in the outer query if IN is used
to connect the queries? NOT IN? > ANY? =? > ALL?

4. If a NULL value is in the outer query, what will happen when the inner query is
evaluated with IN? NOT IN? > ANY? =? > ALL?

5. If the inner query is empty, what will happen in the outer query if IN is used to
connect the queries? NOT IN? > ANY? =? > ALL?

6. Describe a query in which = ALL would be the correct predicate for a subquery.

7. Consider the following query:

SELECT companyname, (SELECT v2.repfname
FROM vendors v2
WHERE v1.referredby=v2.vendorid) as fname,

(SELECT v3.replname
FROM vendors v3
WHERE v1.referredby=v3.vendorid) as lname

FROM vendors v1;

What does it return?

8. Write the previous query using (a) no subqueries and (b) derived tables. Which of
the three approaches should be the fastest? Why? Determine an experiment to find
out. Apply your experiment and see if you were correct.

9. Why are aggregate functions useful in subqueries?

10. What is the maximum number of subqueries on your DBMS?

162 Chapter 7: Subqueries ■

11. Duplicate the results of Query 7.54 with the other operators. Hint: It can be done
with a join, a UNION, a couple of derived relations, an EXCEPT, and several CAST
statements.

Query 7.54 OUTER JOIN Review Question

SELECT *
FROM vendors v LEFT JOIN ingredients i ON v.vendorid = i.vendorid

12. What must be true of a subquery for it to appear in an expression?

13. Extend Query 7.12 to include meals.

14. Change Query 7.14 to find all ingredients not supplied by Veggies_R_Us.

15. Correct Query 7.15.

16. How many different ways can you combine joins and subqueries to generate the
results of Query 7.20? Don’t limit yourself to two levels of subqueries.

17. Under what conditions do > ANY and > ALL create the same results?

18. Can you modify Queries 7.31 and 7.32 so that they generate the same results on an
empty table as well as a nonempty one? Which query do you consider to be correct?

19. How can you tell if a query is correlated or not?

20. A subset query compares in one group to
in another group.

21. The basic structure of the WHERE clause in a subset query consists of
subquery A subquery B, where subquery A finds the and subquery
B finds the .

22. The set cardinality approach requires two sets to be in the number of rows.

23. Why does the set cardinality approach usually have more joins than the subset
approach?

24. What is the difference between COUNT(*) and COUNT(DISTINCT) in set cardinality
queries?

25. Can you simulate a cross product with subqueries in the SELECT clause?

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Answer each question with a single SQL statement. Your query must work for any set of
data in the Employees Database, not just the set of data we provide.

■ Practice 163

1. Find the names of all people who work in the Consulting department.

2. Find the names of all people who work in the Consulting department and who spend
more than 20% of their time on the project with ID ADT4MFIA.

3. Find the total percentage of time assigned to employee Abe Advice.

4. Find the names of all departments not currently assigned a project.

5. Find the first and last names of all employees who make more than the average
salary of the people in the Accounting department.

6. Find the descriptions of all projects that require more than 70% of an employee’s
time.

7. Find the first and last name of all employees who are paid more than someone in
the Accounting department.

8. Find the minimum salary of the employees who are paid more than everyone in the
Accounting department.

9. Find the first and last name of the highest paid employee(s) in the Accounting
department.

10. For each employee in the department with code ACCNT, find the employee ID and
number of assigned hours that the employee is currently working on projects for
other departments. Only report an employee if she has some current project to
which she is assigned more than 50% of the time and the project is for another
department. Report the results in ascending order by hours.

11. Find all departments where all of their employees are assigned to all of their
projects.

12. Use correlated subqueries in the SELECT and WHERE clauses, derived tables, and
subqueries in the HAVING clause to answer these queries. If they cannot be
answered using that technique, explain why.

(a) Find the names of all people who work in the Information Technology
department.

(b) Find the names of all people who work in the Information Technology
department and who spend more than 20% of their time on the health project.

(c) Find the names of all people who make more than the average salary of the
people in the Accounting department.

(d) Find the names of all projects that require more than 50% of an employee’s
time.

(e) Find the total percentage time assigned to employee Bob Smith.

(f) Find all departments not assigned a project.

164 Chapter 7: Subqueries ■

(g) Find all employees who are paid more than someone in the Information
Technology department.

(h) Find all employees who are paid more than everyone in the Information
Technology department.

(i) Find the highest paid employee in the Information Technology department.

c h a p t e r 8

Modifying Data

Our powerful query techniques do little good without data. We need some way to
add, modify, and even delete data. SQL provides three statements for modifying data:
INSERT, UPDATE, and DELETE.

8.1 INSERT: Adding New Rows

The INSERT statement adds new rows to a specified table. There are two variants of the
INSERT statement. One inserts a single row of values into the database, whereas the other
inserts multiple rows returned from a SELECT.

8.1.1 INSERTing a Row with VALUES

The most basic form of INSERT creates a single, new row with either user-specified or
default values. The syntax of this INSERT statement is as follows:

INSERT INTO <table name>
[(<attribute>, : : :, <attribute>)]
VALUES (<expression>, : : :, <expression>);

INSERT creates a new row in <table name>. The new row contains the values determined
by the expressions in the VALUES list. The expressions in the VALUES list correspond to
the attributes in the comma separated following the table name. If no attributes are given,

165

166 Chapter 8: Modifying Data ■

then the order of the attributes in <table name> is used. Insert 8.1 is a simple example.
Note that we provide a query to show the modifications. However, the modifications will
not actually be applied to the database. Thus, all of our updates will be on the database
installed from the Web site.

Insert 8.1 Add new dressing

INSERT INTO ingredients VALUES
('EDSDR', 'Ed''s Vanishing Dressing', 'ounce', 0.1, NULL, DEFAULT, 'EDDRS');

See the results
SELECT name, unit, foodgroup, inventory, vendorid
FROM ingredients
WHERE vendorid='EDDRS';

name unit foodgroup inventory vendorid

Crouton piece Bread 400 EDDRS
Ed’s Vanishing Dressing ounce NULL 0 EDDRS

[2 row(s)]

There are several things to note from this INSERT statement:

■ This creates a single, new row in the ingredients table.

■ The values of the row are specified by the value list. The items in the VALUES list
are matched one-by-one, in order of the attributes in the ingredients table. For exam-
ple, the first item in the values list (EDSDR) becomes the value for the first attribute
(ingredientid) in the new row of the ingredients table. This means that the number,
order, and data types of the items in the value list must match the number, order,
and data type of attributes in the specified table. SQL attempts to implicitly convert
each VALUE list expression result to the target column data type. You can also specify
an explicit conversion using CAST.

■ A NULL attribute value can be specified with the NULL keyword. All data types also
have a default value (see Chapter 9). The default value for any attribute is NULL unless
otherwise specified. Fields that are defined as NOT NULL do not have a default value
unless one is explicitly specified.

What happens if somebody changes the order or number of attributes in the ingredi-
ents table? SQL may refuse to execute our INSERT statement. Even worse, if only the order
of the attributes changes, SQL may put values in the wrong place without any warning. For
example, if we reversed the ordering of the second and third attributes of the ingredients
table, our INSERT statement will still execute; however, the name and unit values would
be incorrect. In general, it is good to avoid this reliance on the attribute creation order by
naming the attributes ourselves, as in Insert 8.2.

■ 8.1 INSERT: Adding New Rows 167

Insert 8.2 Add a dressing with attribute list

INSERT INTO ingredients
(ingredientid, name, unitprice, unit, foodgroup, vendorid) VALUES
('EDSDR', 'Ed''s Vanishing Dressing', 0.1, 'ounce', NULL, 'EDDRS');

See the results
SELECT name, unit, foodgroup, inventory, vendorid
FROM ingredients
WHERE vendorid = 'EDDRS';

name unit foodgroup inventory vendorid

Crouton piece Bread 400 EDDRS
Ed’s Vanishing Dressing ounce NULL 0 EDDRS

[2 row(s)]

Now the order of the values in the VALUES list is determined by the INSERT statement,
not the table. In this example, we have reversed the order of unit and unitprice from the
ingredients table in our attribute list, and we are missing the inventory attribute altogether.
All columns not present in the INSERT statement are assigned their default value. The
advantage of this form of the INSERT statement is that it will still work correctly if the
attribute order in the ingredients table changes, if new attributes with default values are
added, and even if attributes not listed in the INSERT attribute list are dropped. Of course,
if attributes in the INSERT statement are dropped, the statement will fail.

For the spectacularly lazy, there is a special form of INSERT that creates a new row
with all default values. You don’t have to specify any data. Insert 8.3 is the lazy update.

Insert 8.3 Add a default slogan

INSERT INTO ads DEFAULT VALUES;
See the results
SELECT *
FROM ads;

slogan

Grazing in style
NULL
Bovine friendly and heart smart
Where the grazin’s good
The grass is greener here
Welcome to the "other side"
NULL

[7 row(s)]

This inserts a row with all default values into the ads table. Recall that the ads table
contains a single column, slogan, of type VARCHAR(50). Because we don’t specify a default
value for slogan, the default value is NULL.

168 Chapter 8: Modifying Data ■

Would this statement work on any other table in our database? Consider the vendors
table. If we tried to insert a row using all default values, what would happen? Let’s focus
specifically on the primary key, vendorid. The default value for vendorid is NULL; however,
the primary key constraint does not allow NULL values for any attribute of the primary key.
If we attempted to insert a row of default values into vendors, the DBMS would reject it
because it violates the primary key constraint. Our ads table is the only one in our schema
with no primary key so it’s the only table where we can use the DEFAULT VALUES form of
INSERT.

8.1.2 INSERTing Multiple Rows with SELECT

The INSERT statement allows you to create new rows from existing data. It begins just like
the INSERT statements we’ve already seen; however, instead of a VALUES list, the data are
generated by a nested SELECT statement. The syntax is as follows:

INSERT INTO <table name>
[(<attribute>, : : :, <attribute>)]
<SELECT statement>;

The SELECT form of INSERT is similar to the VALUES form except that it gets its new rows
from a SELECT statement instead of a VALUES list. Unlike the VALUES form of INSERT that
creates a single row, the SELECT form of INSERT allows creation of zero or more new rows.
SQL evaluates this statement by first executing the SELECT and generating a result table.
SQL then attempts to insert a new row in <table name> for each row in the SELECT result
table. The attribute list of the SELECT result table must match the attribute list of the
INSERT statement. The INSERT statement’s attribute list is the same as the attribute list
of <table name> unless an optional comma-delimited attribute list is specified. As with
the VALUES form of INSERT, any unspecified attributes are assigned their default values.
You may use any SELECT statement you wish as long as it generates a result table with a
compatible attribute list.

Let’s look at an example. Being the health-conscious restaurateur that you are, you
decide to add water to every meal that doesn’t already have it. You need some way to
add a row to the partof table for each meal that doesn’t already include water. Insert 8.4
does this.

Insert 8.4 Add water to every meal

INSERT INTO partof (mealid, quantity, itemid)
SELECT mealid, 1,

(SELECT itemid FROM items WHERE name = 'Water')
FROM meals
WHERE mealid NOT IN

(SELECT mealid
FROM partof p, items m
WHERE p.itemid = m.itemid AND name = 'Water');

See the results
SELECT p.mealid, name, discount, p.itemid
FROM meals m, partof p
WHERE m.mealid = p.mealid AND p.itemid = 'WATER';

■ 8.2 DELETE: Removing Rows 169

Insert 8.4 (cont’d)

mealid name discount itemid

CKSDS Chicken N Suds 0.00 WATER
VGNET Vegan Eatin’ 0.00 WATER

[2 row(s)]

The simple subquery nested within the WHERE clause finds the meals with water. Moving
from inside out, using NOT IN the next SELECT statement finds the meal IDs for meals
without water. The simple subquery in the attribute list provides the item ID for water.
Because the discount attribute is not specified, each new row has the default value of 0.00.

8.2 DELETE: Removing Rows

You can remove rows from a table using DELETE.

DELETE FROM <table name> [[AS] <alias>]
[WHERE <condition>];

DELETE removes all rows from <table name> where <condition> evaluates to true. The
WHERE is optional, but beware! If there is no WHERE clause, DELETE removes all rows.
DELETE can only remove rows from a single table. Delete 8.5 is a simple example.

Delete 8.5 Remove items with a NULL price

DELETE FROM items
WHERE price IS NULL;
See the results
SELECT name, price
FROM items;

name price

Chicken Salad 2.85
Fruit Salad 3.45
Garden Salad 0.99
Soda 0.99
Water 0.00
Fruit Plate 3.99

[6 row(s)]

To execute this statement, SQL goes row by row through items deleting any row satisfy-
ing the WHERE predicate. The WHERE clause can involve any number of tables. Consider
the situation where you’re just about to open your restaurant and you hear on the news
that Don’s Dairy is under investigation for unsafe food handling. Delete 8.6 removes any
ingredients supplied by Don’s from all items.

170 Chapter 8: Modifying Data ■

Delete 8.6 Remove all ingredients supplied by Don’s Dairy

DELETE FROM madewith
WHERE ingredientid IN

(SELECT ingredientid
FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND companyname = 'Don''s Dairy');

See the results
SELECT itemid, i.ingredientid, quantity, vendorid
FROM madewith m, ingredients i
WHERE m.ingredientid=i.ingredientid;

itemid ingredientid quantity vendorid

CHKSD LETUS 1 VGRUS
CHKSD SCTDR 1 NULL
FRTSD GRAPE 10 FRTFR
FRTSD WTRML 5 FRTFR
GDNSD LETUS 4 VGRUS
GDNSD TOMTO 8 VGRUS
FRPLT WTRML 10 FRTFR
FRPLT GRAPE 10 FRTFR
FRPLT CRUTN 10 EDDRS
FRPLT TOMTO 8 VGRUS
WATER WATER 1 SPWTR
SODA SODA 1 SPWTR
FRPLT ORNG 10 FRTFR

[13 row(s)]

Here we use a simple subquery to find the ingredients from Don’s. The results of the
subquery execution are then used in the WHERE clause to evaluate each row of madewith.

DELETE may also use correlated subqueries as shown in Delete 8.7. Remember that
our updates are made on the original database, so Delete 8.6 has not been applied.
However, the Millennium Salad has no ingredients.

Delete 8.7 Remove items with no ingredients

DELETE FROM items
WHERE NOT EXISTS

(SELECT *
FROM madewith
WHERE items.itemid = madewith.itemid);

See the results
SELECT itemid, COUNT(ingredientid)
FROM items i FULL JOIN madewith mw USING(itemid)
GROUP BY itemid;

■ 8.3 UPDATE: Changing Row Values 171

Delete 8.7 (cont’d)

itemid count

SODA 1
GDNSD 2
FRPLT 6
FRTSD 2
WATER 1
CHKSD 4

[6 row(s)]

Like correlated SELECT subqueries in the WHERE clause, we can think of this statement
as iterating over all of the rows in the items table, evaluating the WHERE clause to test if
there are any rows in the madewith table for this item. Caveat: If any of the items to be
deleted are included in a meal, the DBMS will reject this delete because of the foreign key
constraint. We leave correcting this as an exercise for the reader. One solution is deferred
constraint enforcement (see Chapter 11). Note that SQL allows table aliases in the FROM
clause of DELETE statements if we need them to qualify an attribute.

When executing DELETE, we have to be careful with the WHERE clause. Using
substring matching with LIKE or an inequality comparator can cause unexpected conse-
quences. For example, if we decide we are never going to have the Millennium Salad,
Delete 8.8 would be the wrong way to get rid of it.

Delete 8.8 INCORRECT! Delete Millennium Salad

DELETE FROM items
WHERE name LIKE '%Salad%';
See the results
SELECT *
FROM items;

itemid name price dateadded

SODA Soda 0.99 2003-02-06
WATER Water 0.00 2002-05-19
FRPLT Fruit Plate 3.99 2000-09-02

[3 row(s)]

8.3 UPDATE: Changing Row Values

You can change the values in existing rows using UPDATE.

UPDATE <table-name> [[AS] <alias>]
SET <column>=<expression>, : : :, <attribute>=<expression>
[WHERE <condition>];

172 Chapter 8: Modifying Data ■

UPDATE changes all rows in <table name> where <condition> evaluates to true. For each
row, the SET clause dictates which attributes change and how to compute the new value.
All other attribute values do not change. The WHERE is optional, but beware! Like DELETE,
if there is no WHERE clause, UPDATE changes all rows. UPDATE can only change rows from
a single table.

Suppose your refrigeration unit failed overnight, forcing you to throw away all of
your milk products. Update 8.9 modifies your milk ingredient inventory.

Update 8.9 Set the inventory to 0 for all ingredients in the milk food group

UPDATE ingredients
SET inventory = 0
WHERE foodgroup = 'Milk';
See the results
SELECT name, foodgroup, inventory
FROM ingredients
ORDER BY foodgroup;

name foodgroup inventory

Crouton Bread 400
Grape Fruit 300
Tomato Fruit 15
Watermelon Fruit NULL
Orange Fruit 10
Chicken Meat 120
Cheese Milk 0
Lettuce Vegetable 200
Pickle Vegetable 800
Secret Dressing NULL 120
Water NULL NULL
Soda NULL 5000

[12 row(s)]

UPDATE goes row-by-row through ingredients changing the inventory attribute value to 0
for any row satisfying foodgroup = 'Milk'. Whereas the updates can only apply to one
table, the WHERE clause can involve any number of tables. Consider the situation where
Don’s Dairy offers a discount for customers who order more inventory. Update 8.10 reflects
our database after we make a large purchase.

■ 8.3 UPDATE: Changing Row Values 173

Update 8.10
Decrease the unit price by 20% and increase the inventory by 100 units for every
ingredient provided by Don’s Dairy

UPDATE ingredients
SET unitprice = unitprice * 0.8, inventory = inventory + 100
WHERE vendorid IN

(SELECT vendorid
FROM vendors
WHERE companyname LIKE 'Don%');

See the results
SELECT name, unitprice, inventory, vendorid
FROM ingredients;

name unitprice inventory vendorid

Crouton 0.01 400 EDDRS
Grape 0.01 300 FRTFR
Lettuce 0.01 200 VGRUS
Pickle 0.04 800 VGRUS
Secret Dressing 0.03 120 NULL
Tomato 0.03 15 VGRUS
Water 0.06 NULL SPWTR
Soda 0.69 5000 SPWTR
Watermelon 0.02 NULL FRTFR
Orange 0.05 10 FRTFR
Cheese 0.02 250 DNDRY
Chicken 0.36 220 DNDRY

[12 row(s)]

Note that our SET expressions can use old values to compute new values. SET expressions
can be complex, including the use of subqueries. Consider the situation where a big freeze
has caused a jump in tomato prices. You need to increase the price of every item by $0.05
for each slice of tomato. Update 8.11 makes this modification for you.

Update 8.11 Raise the price of all items by 5 cents per tomato slice in the item

UPDATE items
SET price = price + 0.05 *

(SELECT quantity
FROM madewith w
WHERE items.itemid = w.itemid AND ingredientid='TOMTO')

WHERE itemid IN
(SELECT itemid
FROM madewith
WHERE ingredientid = 'TOMTO');

See the results
SELECT name, price, quantity as tomatoes
FROM items i, madewith m
WHERE i.itemid = m.itemid and ingredientid = 'TOMTO';

Continued on next page

174 Chapter 8: Modifying Data ■

Update 8.11 (cont’d)

name price tomatoes

Fruit Plate 4.39 8
Garden Salad 1.39 8

[2 row(s)]

Here we use a correlated subquery in the SET expression to find the number of tomatoes
used in each item.

8.4 Testing Your DELETE and UPDATE WHERE Conditions

Recall that the WHERE clause is actually optional for the DELETE and UPDATE statements.
If the WHERE clause is omitted, DELETE removes and UPDATE changes all rows from the
target table. This makes DELETE and UPDATE dangerous statements because you can easily
forget to include the WHERE clause and remove or change all rows. Even with a WHERE
clause, you may execute a DELETE or UPDATE that changes the wrong rows.

To reduce the danger of these statements, you should always test your WHERE clause
in a SELECT before executing a DELETE or UPDATE. Develop your DELETE or UPDATE state-
ment in a separate text editor and write the WHERE clause before adding DELETE or UPDATE.
In Chapter 11 we’ll see how to execute DELETEs and UPDATEs as part of a transaction that
can be undone. Effectively, this provides a way to modify the data and evaluate the results
before making the changes permanent. If we made incorrect data changes, we can discard
the changes before anybody sees them.

8.5 Living within Constraints

SQL enforces a wide range of constraints on the data in a database. We are already familiar
with the primary and foreign key constraints. We’ll learn about specifying constraints in
Chapter 9. Constraints are enforced by rejecting any conflicting insert, update, or delete.
The implications of most constraint types are fairly obvious. You cannot put a NULL value
in a column declared NOT NULL. A primary key cannot contain NULL and must be unique.
Let’s take a moment to consider the impact of foreign key constraints. A foreign key value
must either be NULL or reference a specific value in the parent table. Say you just hired a
new vendor, Hawaiian Munch, to provide pineapples. You need to insert a new row in both
vendors and ingredients. As a reminder, the ingredients table is a child table containing a
foreign key, vendorid, referencing vendorid in the parent table, vendors.

Does the insert order matter? Absolutely! If you try to insert into ingredients first, the
new ingredients row will have a vendor ID that is not yet contained in the vendors table.
This means that the DBMS will reject the insert of the new ingredient. You must insert
the new vendor before inserting any new ingredients from that vendor. In general, when
inserting you must insert into the parent table before inserting into the child table.

■ 8.5 Living within Constraints 175

Insert 8.12 Insert satisfying foreign key constraints

INSERT INTO vendors
VALUES ('HAWNM', 'Hawaiian Munch', 'Coco', 'Nut', NULL);

INSERT INTO ingredients
VALUES ('PNAPL', 'Pineapple', 'cube', 0.10, 'Fruit', 50, 'HAWNM');

What about deletes? If we want to delete a vendor, say Ed’s Dressings, we must first
handle all of the referencing rows in ingredients. We have a couple of choices on how to
handle this problem. First, we can delete the rows in ingredients that refer to this vendor.
The statements to delete these rows would be Delete 8.13.

Delete 8.13 ERROR! Remove ingredients from former vendor

DELETE FROM ingredients
WHERE vendorid IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Ed''s Dressings');

However, with our database design this will not work. The attribute ingredientid is part of
another foreign key constraint with the madewith table. Besides, we may not want to get rid
of the ingredients supplied by the vendor, just the vendor. So, we modify the ingredients
table to indicate which ingredients no longer have a supplier by setting the vendor ID to
NULL for all ingredients supplied by Ed’s Dressings.

Update 8.14 Set the vendor ID to NULL in ingredients supplied by Ed’s Dressings

UPDATE ingredients
SET vendorid = NULL
WHERE vendorid IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Ed''s Dressings');

This solves the problems in the ingredients table, but deleting a vendor presents
another problem. The vendors table has a foreign key relationship to itself using the
referredby column. If some other vendor is referred by Ed’s Dressings, we must also update
that reference before deleting the vendor.

Update 8.15 Set referredby to NULL for vendors referred by Ed’s Dressings

UPDATE vendors SET referredby = NULL
WHERE referredby IN

(SELECT vendorid
FROM vendors
WHERE companyname = 'Ed''s Dressings');

176 Chapter 8: Modifying Data ■

Now we are able to delete the rows from the vendors table with the simple statement
in Delete 8.16.

Delete 8.16 Delete former vendor

DELETE FROM vendors
WHERE companyname = 'Ed''s Dressings';

Note that if we wanted to delete the ingredients, we must delete the corresponding made-
with entries. In general, you must delete from the child table before deleting from the
parent table.

What about update? Say you wanted to change the vendor ID for Hawaiian Munch to
HWNMC. You can’t change the vendor ID in vendors because a row in ingredients references
it. You can’t change the vendor ID for the row in ingredients to HWNMC because that vendor
ID doesn’t exist yet. How do you fix this? It requires several steps to be executed together.
SQL 8.17 shows one possible set of steps.

SQL 8.17 Changing a vendor ID

INSERT INTO vendors
SELECT 'HWNMC', companyname, repfname, replname, referredby
FROM vendors WHERE vendorid = 'HAWNM';

UPDATE ingredients SET vendorid = 'HWNMC' WHERE vendorid = 'HAWNM';

DELETE FROM vendors WHERE vendorid = 'HAWNM';

We use INSERT to copy the Hawaiian Munch row from the vendors table using the new
vendor ID. Using UPDATE we change the ingredients vendor ID to the new ID. Finally, we
remove the old Hawaiian Munch row with DELETE. If some other user generates a list of
vendors after the INSERT but before the DELETE, they’ll get an incorrect list. We’ll present
a solution to this in Chapter 11.

8.6 Wrap Up

SQL allows us to modify the data in a database. INSERT allows you to create new rows from
expressions, default values, and existing data. It is not surprising that DELETE removes
all rows where the WHERE conditional evaluates to true. UPDATE modifies all rows where
the WHERE conditional evaluates to true according to the list of assignment expressions.
A DELETE/UPDATE with no WHERE clause removes/modifies all rows. Finally, an INSERT,
DELETE, or UPDATE that results in data that violate any constraint is rejected.

■ Review Questions 177

Review Questions

1. Unless otherwise specified, the default value for any data type is .

2. If the following INSERT statement is valid, what do you know about the table things?

INSERT INTO things VALUES ('Magic Ring');

3. What happens if I try to insert a new vendor with ID VGRUS into the vendors table?

4. What happens if I try to delete the vendor with ID VGRUS?

5. A DELETE or UPDATE without a WHERE clause applies to rows.

6. What happens when we execute this query?

UPDATE items
SET price = price + 0.05 *

(SELECT quantity
FROM madewith w
WHERE items.itemid = w.itemid AND ingredientid = 'TOMTO');

7. The multi-row INSERT can be used to insert a single row of values. Write the INSERT-
SELECT statement that is the same as the following:

INSERT INTO madewith VALUES('GDNSD','CHESE',10);

8. Why is it a good idea to use the optional attribute list with an INSERT statement?

9. In the Restaurant Database, what happens when we execute the following statement:

INSERT INTO vendors (vendorid) VALUES ('NEWVN');

10. In the Restaurant Database, what happens when we execute the following statement:

INSERT INTO vendors (companyname) VALUES ('New Vendor');

11. In the Restaurant Database, does Delete 8.18 work as it claims?

Delete 8.18 Delete the most expensive item

DELETE
FROM items
WHERE price >= (SELECT MAX(price)

FROM items);

12. In the Restaurant Database, what does Update 8.19 do?

Update 8.19 Review question

UPDATE items
SET price = (SELECT CASE

WHEN price < 1.00 THEN price * 1.05
WHEN price < 2.00 THEN price * 1.1
ELSE price * 1.2

END);

178 Chapter 8: Modifying Data ■

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Your query must work for any set of data in the Employees Database, not just the set of
data we provide.

1. Give the single statement to create a new employee with ID 12 and name Ron
Neuman. All other values should be the default.

2. Give the single statement to assign the employee with ID 12 to the department with
code ADMIN.

3. Give the single statement to remove all employees from the project with ID
ADT4MFIA.

4. Give the single statement to increase the revenue of all projects by 10% that have
a project worked on by an employee with last name Hardware.

5. Give the single statement to assign the employee with ID 12 to the project(s) with
revenue greater than $15,000. Each project should be assigned an equal portion
of 100% time. For example, if there are 4 such projects, the employee with ID 12
should be assigned 25% time for each project.

6. Give the statement(s) to delete all employees of the Accounting department.

7. Harry Hardware’s twin brother, Igor, has decided to join the company. He’ll work for
the same department and make the same salary as his brother. Pick an unused ID.
Give the single statement to create this new employee. You never know when some-
body else might be changing Harry’s salary, department, or last name; therefore,
your statement must derive these values from the database. In other words, you
cannot look up Harry’s last name and use the literal value in the creation statement
for Igor.

8. You have created a new department named Shipping with code SHPNG. The new
department is a subdepartment of ADMIN. To handle this new department, you
have hired a new employee named Ed Fex with ID 20 to manage the department.
Give the statement(s) to add this new information to the database. Make up any
unspecified data yourself.

9. Give the statement(s) to remove the Administration department. Any responsi-
bilities that the Administration department has (e.g., being a super department,
owning projects) should be transferred to the department with code CNSLT. Don’t
peek at the data.

c h a p t e r 9

Creating, Deleting, and
Altering Tables

By now you can answer almost any query from a given set of tables, but where do
tables come from? You create them using SQL. Tables and all other parts of a database
(columns, keys, etc.) that are not data are collectively known as metadata. Metadata is
data about data. Because SQL is great at handling data, it is not surprising that SQL is also
great at handling metadata.

9.1 Creating Simple Tables

The basic table has a name and a set of columns, each with its own data type. We can create
a table in SQL using (surprise!) CREATE TABLE.

CREATE TABLE <table name> (
<column name> <type> [<default value>] [<column constraints>],
: : :

<column name> <type> [<default value>] [<column constraints>],
<table constraint>,
: : :

<table constraint>
);

This creates a table named <table name>. The columns of the table are specified in a
comma-delimited list of name/data type pairs. Optionally, you may specify constraints
and default values. Before creating a table, most DBMSs require the creation of a database

179

180 Chapter 9: Creating, Deleting, and Altering Tables ■

to hold the new table. For now we assume the database already exists. We discuss database
creation later in the chapter. Let’s create a simplified version of the vendors table.

DDL 9.1 Basic table creation

CREATE TABLE vendors (
vendorid CHAR(5),
companyname VARCHAR(30),
repfname VARCHAR(20),
replname VARCHAR(20),
referredby CHAR(5)

);

There are several things worth noting from this CREATE statement:

■ This creates a table named vendors.

■ The new table contains five columns. Each column has a data type. For example, the
first column of the vendors table is vendorid with data type CHAR(5). Section 1.2
explains SQL data types.

■ The new table does not contain any data. We discuss inserting data in Chapter 8.

■ As with SELECT, extra whitespace, such as line breaks, are ignored by SQL. This
statement could have been written on a single line. We only break it up for readability.

■ If we try to create a new table with the same name as an existing table, SQL returns
an error. Later, we’ll see how to delete and/or alter existing tables.

9.2 DEFAULT Values

Recall from our discussion of INSERT that when a new row is created, any columns with-
out a specified value are assigned the default value. Unless otherwise specified, the default
value of a column is NULL. SQL allows you to specify a default value for a column using
the DEFAULT clause.

DEFAULT <value expression>

<value expression> is a simple expression of literals, functions, and values. <value
expression> must evaluate to a data type that matches or can be implicitly converted to the
column data type. The DEFAULT clause follows the attribute name and type declaration.
Let’s look at a few attributes from our Restaurant schema:

DDL 9.2 Specify attribute DEFAULT values

companyname VARCHAR(30) DEFAULT 'SECRET'
inventory INTEGER DEFAULT 0
dateadded DATE DEFAULT CURRENT_DATE

■ 9.3 Constraints 181

9.3 Constraints

Your DBMS can do much more than just store and access data. It can also enforce rules
(called constraints) on what data are allowed in the database. Such constraints are impor-
tant because they help maintain data integrity. For example, you may want to ensure that
each meal costs at least as much its ingredients.

You may not realize it, but you’re already using one form of database constraint.
When you specify the data type of a column, you constrain the possible values that column
may hold. This is called a domain constraint. For example, a column of type INTEGER may
only hold whole numbers within a certain range. Any attempt to insert an invalid value
will be rejected by SQL. This is a good thing because you wouldn’t want an inventory of
“abc” pickles. SQL allows the specification of many more constraint types.

SQL enforces constraints by prohibiting any data in the database that violate any con-
straint. Any insert, update, or delete that would result in a constraint violation is rejected
without changing the database.

There are two forms of constraint specification:

Constraint Type Usage

Column constraint Declared with and applies to one particular column

Table constraint Declared separately and may apply to one or more columns

Each type of constraint has a column and/or table constraint form.

9.3.1 NOT NULL

Remember the good old NULL value and all of the problems it can cause? By default, most
DBMSs allow NULL as a value for any column of any data type. You may not be so keen
on allowing NULL values for some columns. Fortunately, you can require the database to
prohibit NULL values for particular columns by using the NOT NULL column constraint.
Many DBMSs also include a NULL column constraint, which specifies that NULL values are
allowed; however, because this is the default behavior, this constraint usually is unneces-
sary. Note that the NULL column constraint is not part of the SQL specification. Let’s revisit
our vendors table creation:

DDL 9.3 Create a table with DEFAULT values and NULL value constraints

CREATE TABLE vendors (
vendorid CHAR(5) NOT NULL,
companyname VARCHAR(30) DEFAULT 'SECRET' NOT NULL,
repfname VARCHAR(20) DEFAULT 'Mr. or Ms.',
replname VARCHAR(20),
referredby CHAR(5) NULL

);

182 Chapter 9: Creating, Deleting, and Altering Tables ■

■ Here we constrain vendorid to non-NULL values. Now the DBMS will not allow any row
where vendorid is NULL. Because we have disallowed NULL values for vendorid and
not specified a default value, we cannot insert a new row that doesn’t specify a value
for vendorid.

■ We specify multiple column characteristics in a space-delimited list. For example,
companyname must be non-NULL, and if no value is specified, the company name is
SECRET.

■ Although it is the default to allow NULL values, we specify a NULL constraint for
referredby. Some DBMSs may require explicit specification of either NULL or NOT
NULL.

9.3.2 UNIQUE

The UNIQUE constraint forces distinct column values. Suppose you want to avoid duplicate
meal names. Just specify the UNIQUE column constraint on the name column as follows:

DDL 9.4 Specify a UNIQUE column constraint

CREATE TABLE meals (
mealid CHAR(5) NOT NULL,
name CHAR(20) UNIQUE

);

Now the DBMS will not allow any row with a duplicate name value. Note that UNIQUE only
applies to non-NULL values. A UNIQUE column may have many rows containing a NULL
value. Of course, we can exclude all NULL values for the column using the NOT NULL
constraint with the UNIQUE constraint.

What if we want to make the values for a set of columns unique? For example, suppose
we want to make sure that we don’t have two vendor representatives with the same first
and last name. We could try the following column constraint specifications:

DDL 9.5 INCORRECT! Specify a multi-attribute UNIQUE constraint

repfname VARCHAR(20) DEFAULT 'Mr. or Ms.' UNIQUE,
replname VARCHAR(20) UNIQUE,

Unfortunately, such column constraints apply independently. Under these constraints,
we could not have two representatives with the first name “Bob”, even if their last
names differed, because the UNIQUE constraint for repfname only applies to that column.
Fortunately, UNIQUE also has a table constraint form that applies to the entire table
instead of just a single column. Table constraints are specified as another item in the

■ 9.3 Constraints 183

comma-delimited list of table elements. Such table constraints apply to groups of one or
more columns. Consider the following CREATE TABLE statement:

DDL 9.6 Specify a multi-attribute UNIQUE constraint

CREATE TABLE vendors (
vendorid CHAR(5) NOT NULL,
companyname VARCHAR(30) NOT NULL DEFAULT 'SECRET' UNIQUE,
repfname VARCHAR(20) DEFAULT 'Mr. or Ms.',
replname VARCHAR(20),
referredby CHAR(5) NULL,
UNIQUE(repfname, replname)

);

The UNIQUE(repfname, replname) table constraint allows multiple vendor representatives
with the same first or last name. What it doesn’t allow is more than one vendor with the
same first and last name. Note that the table constraint form of UNIQUE may take a single
column.

9.3.3 PRIMARY KEY

Recall from Chapter 1 that the primary key of a table is a column or set of columns that
uniquely identifies a row in the table. For example, itemid is the primary key from the
items table. We can declare a primary key using the PRIMARY KEY constraint. Here we
show PRIMARY KEY used as a column constraint.

DDL 9.7 Specify a PRIMARY KEY column constraint

itemid CHAR(5) PRIMARY KEY

What about a primary key with multiple columns? For example, the primary key of
the partof table contains two columns. You cannot simply add the PRIMARY KEY constraint
to every column in the key because SQL will think you are trying to create multiple primary
keys, which is not allowed. Instead, use the table constraint form of PRIMARY KEY.

DDL 9.8 Specify a PRIMARY KEY table constraint

CREATE TABLE partof (
mealid CHAR(5),
itemid CHAR(5),
quantity INTEGER,
discount DECIMAL (2, 2) DEFAULT 0.00,
PRIMARY KEY(mealid, itemid)

);

184 Chapter 9: Creating, Deleting, and Altering Tables ■

Of course, it is perfectly legal for the the table constraint form of PRIMARY KEY to contain
a single column. Keep the following in mind when specifying the PRIMARY KEY constraint:

■ No values of the primary key columns may be NULL, so we don’t need the NOT NULL
constraint for itemid (although some DBMSs may require it). In the partof table,
neither itemid nor ingredientid may have a NULL value for any row.

■ Because the primary key uniquely identifies a row in the table, SQL will not allow two
rows with the same value for all attributes of the primary key.

■ SQL allows tables to be created without a primary key; however, this is usually a bad
idea because we won’t be guaranteed to have a way to specify a particular row.

■ The PRIMARY KEY and UNIQUE constraints differ in two ways:

1. UNIQUE allows NULL values for its columns.

2. There can be at most one PRIMARY KEY constraint for each table. There is no
such limit on the number of UNIQUE constraints for a table.

9.3.4 FOREIGN KEY

A foreign key restricts the values of a column (or a set of columns) to the values appearing
in another column (or set of columns) or to NULL. In table ingredients (child table), vendorid
is a foreign key that refers to vendorid in table vendors (parent table). We want all of the
values of vendorid in the ingredients table either to reference a vendorid from vendors or
to be NULL. Any other vendor ID in the ingredients table would create problems because
you couldn’t look up information about the vendor such as the company name or the
representative.

In SQL, we specify a foreign key with the REFERENCES column constraint.

REFERENCES <referenced table>[(<referenced column>)]

A column with a REFERENCES constraint may only have a value of either NULL or a value
found in column <referenced column> of table <referenced table>. If the <referenced
column> is omitted, the primary key of table <referenced table> is used. Here is the
madewith table with the appropriate foreign keys.

DDL 9.9 Specify a FOREIGN KEY column constraint

CREATE TABLE madewith (
itemid CHAR(5) REFERENCES items(itemid),
ingredientid CHAR(5) REFERENCES ingredients,
quantity INTEGER DEFAULT 0 NOT NULL,
PRIMARY KEY(itemid, ingredientid)

);

■ 9.3 Constraints 185

With both the primary key and references constraints, the DBMS will only accept column
values for itemid in madewith if the following are true:

■ The value exists in the items.itemid (foreign key constraint) AND

■ The value is not NULL (primary key constraint)

Similar constraints hold on ingredientid.
What about a foreign key with multiple columns? You cannot simply add the

FOREIGN KEY constraint to every column in the foreign key because SQL will treat each
independently. Instead, use the table constraint form of FOREIGN KEY.

FOREIGN KEY (<column list>) REFERENCES
<referenced table>[(<referenced columns>)]

None of our tables have a multiple column foreign key. Here we demonstrate the table
constraint form of FOREIGN KEY in the partof table creation statement.

DDL 9.10 Specify a multi-attribute FOREIGN KEY table constraint

CREATE TABLE partof (
mealid CHAR(5),
itemid CHAR(5),
quantity INTEGER,
discount DECIMAL (2, 2) DEFAULT 0.00,
PRIMARY KEY(mealid, itemid),
FOREIGN KEY(mealid) REFERENCES meals(mealid),
FOREIGN KEY(itemid) REFERENCES items(itemid)

);

To create a foreign key reference, SQL requires that the referenced table/column already
exist. For example, items.itemid must exist before you can specify the foreign key reference
of madewith.itemid.

9.3.5 CHECK

We can specify a much more general type of constraint using the CHECK constraint.
A CHECK constraint specifies a boolean value expression to be evaluated for each row
before allowing any data change. Any INSERT, UPDATE, or DELETE that would cause the
condition for any row to evaluate to false is rejected by the DBMS.

CHECK (<condition>)

A CHECK constraint may be specified as either a column or table constraint. In the
following example, we specify two CHECK constraints on the ingredients table: a column
CHECK constraint on the allowable foodgroup values and a table constraint over the
inventory value of each ingredient.

186 Chapter 9: Creating, Deleting, and Altering Tables ■

DDL 9.11 Specify a column and table CHECK constraint

CREATE TABLE ingredients (
ingredientid CHAR(5) PRIMARY KEY,
name VARCHAR(30) NOT NULL,
unit CHAR(10),
unitprice NUMERIC(5,2),
foodgroup CHAR(15) CHECK (foodgroup IN ('Milk', 'Meat', 'Bread',

'Fruit', 'Vegetable')),
inventory INTEGER DEFAULT 0,
vendorid CHAR(5),
CHECK (unitprice * inventory <= 4000),
FOREIGN KEY(vendorid) REFERENCES vendors(vendorid)

);

Does an ingredient with a NULL food group violate the CHECK constraint? No. In this
case, the CHECK condition evaluates to unknown. The CHECK constraint only rejects a
change when the condition evaluates to false. In the SQL standard, a CHECK constraint
condition may even include subqueries referencing other tables; however, many DBMSs
do not implement this feature.

9.3.6 Naming Constraints

You can name your constraints by using an optional prefix.

CONSTRAINT <name> <constraint>

For example, we can name the foreign key constraint in our ingredients table. Here is an
excerpt of that statement.

DDL 9.12 Name FOREIGN KEY constraint

CREATE TABLE ingredients (
ingredientid CHAR(5) PRIMARY KEY,
name VARCHAR(30) NOT NULL,
. . .
CONSTRAINT vidfk FOREIGN KEY(ingredientid) REFERENCES vendors

);

Why name your constraints? When you attempt an insert, update, or delete that violates
a constraint, SQL rejects the operation and issues an error message. Many DBMSs include
the name of the violated constraint in the error message. Also, we can delete constraints
by name with ALTER TABLE (Section 9.9).

■ 9.4 Creating a Table from Tables 187

9.4 Creating a Table from Tables

SQL allows you to create and populate a new table from existing tables with one statement.
You could create the new table yourself and populate it using INSERT, but that’s a lot of
work. Fortunately, SQL provides a version of CREATE TABLE to do it all for us.

CREATE TABLE <table name>
[(<column list>)] AS <subquery>

CREATE TABLE AS creates a new table named <table name> with the columns and rows
returned by <subquery>. By default, the column names are determined by the subquery;
however, you can override this with the optional column list. The data types of the columns
are determined by the SELECT, and initially we have no constraints.

Suppose you wanted to have total sales for the stores stored in the database so you
do not have to compute it every time. We can create the table with the aggregate data.

DDL 9.13 Create a new table using CREATE TABLE AS

CREATE TABLE sales(storeid, manager, total) AS
SELECT s.storeid, manager, SUM(price)
FROM orders o, stores s
WHERE o.storeid = s.storeid
GROUP BY s.storeid, s.manager;

This creates an actual table named sales populated with the data returned from the
SELECT.

We can achieve the same results using SELECT INTO. This approach simply modifies
the SELECT statement so that the output goes to a new table. To do this, add an INTO <table
name> clause in the SELECT.

DDL 9.14 Create a new table using SELECT INTO

SELECT s.storeid, manager, SUM(price) as total
INTO sales
FROM orders o, stores s
WHERE o.storeid = s.storeid
GROUP BY s.storeid, manager;

In both cases, the data type of sales.storeid is CHAR(5), derived from the data type of
sales.storeid. Similarly, the type of sales.manager is VARCHAR(30). The type of total is
based on the results of the computation and will be a numeric type.

Remember Query 7.13? With our sales table it is very easy to answer.

188 Chapter 9: Creating, Deleting, and Altering Tables ■

Query 9.15 Find the managers of stores with more than $20 in sales

SELECT manager
FROM sales
WHERE total > 20;

manager

Greg Donahoo
Greg Speegle

[2 row(s)]

Note that both of these approaches create a completely new table. Any changes to orders
or stores will have no effect on the sales table. An alternative approach that links the sales
table and the underlying tables is called a view, which we discuss in Chapter 10.

9.5 CREATE DOMAIN

SQL allows the specification of user-defined domains based on existing data types. These
domains work just like any other data type.

CREATE DOMAIN <domain name> [AS] <data type> [DEFAULT <value expression>]
[<CHECK constraint list>];

Let’s try an example. Several columns in our restaurant schema are IDs (e.g., itemid, ven-
dorid, etc.). For corresponding IDs, we must make sure we use the same data type in each
table. To ensure such consistency, we create a domain for the ID data type.

DDL 9.16 Create an ID domain

CREATE DOMAIN idtype AS CHAR(5);

Now we can declare all of our ID columns as type idtype.
We can also associate a default value and a set of CHECK constraints with a domain.

The syntax is identical to the DEFAULT and column-constraint CHECK in CREATE TABLE
with one exception. Because we want the check constraint of the domain to work for
any attribute with the user-defined domain, we use the VALUE keyword in place of
the attribute name. Let’s create a pricetype with a default value of 0 and a check con-
straint of a nonnegative price. We demonstrate its use on an abbreviated ingredients
table.

■ 9.6 Referential Actions: The Autopilot of Foreign Key Maintenance 189

DDL 9.17 Use domain attribute types

CREATE DOMAIN pricetype AS NUMERIC(5,2) DEFAULT 0 CHECK (VALUE >= 0);

CREATE TABLE ingredients (
ingredientid idtype PRIMARY KEY,
unitprice pricetype,
vendorid idtype NOT NULL REFERENCES vendors(vendorid)

);

You can change a domain’s default value and constraints using ALTER DOMAIN. You
can delete a domain using DROP DOMAIN. Unfortunately, few DBMSs support any of the
domain statements.

9.6 Referential Actions: The Autopilot of Foreign Key
Maintenance

Maintaining foreign key constraints can be painful. To update or delete a referenced value
in the parent table, we must make sure that we first handle all foreign keys referencing that
value in the child table. For example, to update or delete VGRUS from the vendors table,
we must first update or delete all ingredients.vendorid and vendors.referredby values.
SQL allows us to specify the default actions for maintaining foreign key constraints for
UPDATE and DELETE on the parent table by adding a referential action clause to the end
of a column or table foreign key constraint:

ON UPDATE <action>
ON DELETE <action>

Any UPDATE or DELETE on the parent table triggers the specified <action> on the
referencing rows in the child table. The possible actions are in Table 9.1.

Action Definition

SET NULL Sets any referencing foreign key values to NULL.

SET DEFAULT Sets any referencing foreign key values to the default value (which may be NULL).

CASCADE On delete, this deletes any rows with referencing foreign key values. On update,
this updates any row with referencing foreign key values to the new value of the
referenced column.

NO ACTION Rejects any update or delete that violates the foreign key constraint. This is the
default action.

RESTRICT Same as NO ACTION with the additional restriction that the action cannot be deferred
(see Chapter 11).

Table 9.1: Foreign key actions.

190 Chapter 9: Creating, Deleting, and Altering Tables ■

Let’s look at an example. Each ingredient references the ID of the vendor that provides
it. If a vendor changes its ID, we want the providing vendor ID to change for all ingredients
the vendor provides. If a vendor is deleted, we want the providing vendor ID to change
to our default vendor, Gene’s Generic Gunk, with ID GEGEK for all ingredients the vendor
provided. DDL 9.18 demonstrates this in an abbreviated ingredients table creation.

DDL 9.18 Specify CASCADE and SET DEFAULT referential actions

CREATE TABLE ingredients (
ingredientid CHAR(5) PRIMARY KEY,
vendroid CHAR(5) DEFAULT 'GEGEK' REFERENCES vendors ON UPDATE CASCADE ON DELETE

SET DEFAULT
);

For a deletion to work, the GEGEK vendor must already exist in the vendors table. Instead
of setting a default vendor ID, we could simply set ingredients.vendorid to NULL.

DDL 9.19 Specify SET NULL referential action

CREATE TABLE ingredients (
ingredientid CHAR(5) PRIMARY KEY,
vendorid CHAR(5) REFERENCES vendors ON DELETE SET NULL

);

The default referential action is NO ACTION so far the ingredients table created in DDL 9.19
updates to vendors.vendorid violating the foreign key constraint are rejected.

9.7 Indexes

So far we have assumed a simple model of reading tables where the database does the
following:

1. Reads a row in the table

2. Evaluates the WHERE condition

3. If there is another row, goes to Step 1; otherwise, quits

This is called sequential processing because we are processing the table row-by-row. In
general we have to read the entire table to make sure we have found all of the rows that
satisfy the WHERE condition. For large tables, sequential processing can be very time-
consuming. Furthermore, as rows are added to the table, it will tend to become fragmented.
This means that parts of the table are not stored together on a disk; they are spread out
on the disk. This slows down sequential processing even more.

There are many algorithms for faster lookup. The approach used in database systems
is to have an additional data structure called an index. An index is usually defined over a
single attribute. The database can use the index to quickly find all of the rows that contain
a particular value of that attribute. Consider Query 9.20.

■ 9.7 Indexes 191

Query 9.20 Index example

SELECT companyname
FROM vendors
WHERE vendorid = 'VGRUS'

If we have an index on the vendorid column, the DBMS can use the index to find the loca-
tion of the row containing the particular vendorid value instead of sequentially searching.
As a result, the query will execute in almost exactly the same time whether we have six
rows in our vendors table or 600,000. However, the sequential search method would take
100,000 times longer on the larger table.

9.7.1 CREATE INDEX

We can create an index using the CREATE INDEX command.

CREATE [UNIQUE] INDEX <indexname> ON <table name>(<column list>)

This creates an index on the values of the attribute in <column list> from table <table
name>. Indexes are so important for query performance that some databases will automat-
ically create an index on the primary key of a table. This index is particularly important
for speeding up many types of queries. If a query, particularly one involving a join on a
foreign key, is running slowly, adding a query on the primary key may help a great deal.

Notice that indexes do NOT have to be on unique domains. Nonunique attributes
can also be indexed and provide similar query performance improvements, although an
attribute with few distinct values (e.g., gender) will not benefit much from an index. If the
attribute is unique, then we can add the keyword UNIQUE to create a unique index. Let’s
create the index for the vendorid of the vendors table.

DDL 9.21 Create index on vendors.vendorid

CREATE UNIQUE INDEX vendorindex ON vendors(vendorid);

It is an error to declare a unique index on a nonunique attribute.
With all of the great benefits of an index, you might be tempted to add an index on

everything. There are two problems with this idea. First, if you are updating the table,
every index must also be updated, slowing down the performance of the update. Second,
if you add an index that is never used, you unnecessarily consume resources. This leads
to the following benefit analysis for adding an index.

1. The primary key of the table should have an index.

2. The more times an attribute is used in a query, the better a candidate it is for an
index.

3. The higher the ratio of queries to updates, the better the chances the index will
improve overall performance.

192 Chapter 9: Creating, Deleting, and Altering Tables ■

9.7.2 DROP INDEX

We can remove an index using the DROP INDEX command.

DROP INDEX <index name>

This removes the specified index. It does not modify any data.

9.7.3 Indexes Are NOT in SQL 2003

Despite the importance of indexes to DBMS performance, indexes are not part of the SQL
standard. The rationale behind this decision is that creating indexes is part of the physical
storage and access of the data. The SQL standard is limited to the logical description of
the data, so indexes are not included. However, any production-grade DBMS must have
indexes, and most will have a mechanism for you to add your own. If the syntax presented
here does not work for you, check your DBMS documentation.

9.8 DROP TABLE

You can remove a table using the following:

DROP TABLE <table name> [CASCADE | RESTRICT];

DROP TABLE deletes the table <name> along with its data from the database. Let’s
drop the ads table.

DDL 9.22 Drop table

DROP TABLE ads;

Be careful. Once you drop a table, it’s gone, along with all of its data. You cannot undo a
DROP TABLE. Let’s compare this statement with one we saw earlier.

Delete 9.23 Delete all rows

DELETE
FROM ads;

The DELETE operation removes all of the rows from the table, but the table still remains.
With DROP TABLE, the table itself is removed, along with all of its rows, all of its con-
straints, and everything else related to it. With the DELETE statement, the ON DELETE
actions we discussed earlier can be applied, but when the DROP TABLE statement is exe-
cuted, the constraints themselves may become invalid because the reference table is gone.
Thus, DROP TABLE is even more extreme than DELETE without a WHERE clause.

■ 9.9 ALTER TABLE 193

In fact, SQL does not allow a table to be dropped if its removal invalidates any con-
straints. If you try to drop the vendors table, SQL will refuse because of the foreign key
constraint on ingredients.vendorid. This is the default behavior or the result of using the
RESTRICT option. To remove a table with constraints, we can specify CASCADE with DROP
TABLE. This will cause any constraints referencing the table to be removed before the table
is dropped. Let’s try dropping the vendors table with cascading.

DDL 9.24 Drop table with CASCADE

DROP TABLE vendors CASCADE;

SQL begins by dropping the foreign key constraint from ingredients. Then, it can actually
drop the vendors table.

According to the SQL specification, you must specify either CASCADE or RESTRICT
with DROP TABLE. It is not optional. We present it as optional because most (if not all)
DBMSs treat it as optional, with a default behavior of RESTRICT. For compliance with the
SQL standard, it’s a good idea to specify either CASCADE or RESTRICT.

9.9 ALTER TABLE

You can modify the columns and constraints of a table using the following:

ALTER TABLE <table name> <action>;

There are several types of actions:

ADD [COLUMN] <column definition>
Adds a new column to <table name>. The <column definition> may contain any of the
elements of a column definition in CREATE TABLE, such as types and constraints.

ALTER [COLUMN] <column name>
[SET DEFAULT <value expression> | DROP DEFAULT]

Change or drop the specified default value from <column name>. Your DBMS will
likely let you alter much more than just the default values.

DROP [COLUMN] <column name> [CASCADE | RESTRICT]
Delete <column name> from <table name>. If there are any external dependencies on
this column, the drop will be rejected. If CASCADE is specified, the DBMS will attempt
to eliminate all external dependencies before deleting the column. If RESTRICT is
specified, the DBMS will not allow the DROP if any external dependencies would be
violated. This is the default behavior.

ADD <table constraint>
Add a new constraint to <table name>. <table constraint> uses the same syntax as
table constraints in CREATE TABLE.

194 Chapter 9: Creating, Deleting, and Altering Tables ■

DROP CONSTRAINT <constraint name> [CASCADE | RESTRICT]
Delete <constraint name> from <table name>. If there are any external entities that
depend on this constraint, the drop could invalidate the entity. If RESTRICT is spec-
ified and an entity could be invalidated, the DBMS will not drop the constraint. This
is the default behavior. If CASCADE is specified, the DBMS will attempt to eliminate
all potentially violated entities before deleting the constraint.

Let’s add a company Web page to the vendors table.

DDL 9.25 Add a column to a table

ALTER TABLE vendors
ADD COLUMN url VARCHAR(100) DEFAULT 'unlisted';

The new attribute, url, is added to the table. The url value for all of the existing rows is
unlisted. If we hadn’t specified a default, all of the existing rows would have a value of
NULL for the url attribute.

What if we want to drop the foreign key constraint on ingredients.vendorid? The
DROP CONSTRAINT syntax requires a constraint name. Usually, the DBMS names a con-
straint if you don’t provide a name. Finding that name (if it exists) is DBMS specific.
Let’s assume that we heeded our earlier warning and created ingredients.vendorid as
follows:

DDL 9.26 Name a FOREIGN KEY constraint

vendorid CHAR(5) CONSTRAINT vidfk REFERENCES vendors;

We can remove the constraint as follows:

DDL 9.27 Drop a constraint

ALTER TABLE ingredients
DROP CONSTRAINT vidfk RESTRICT;

According to the SQL specification, you must specify either CASCADE or RESTRICT
with DROP COLUMN or DROP CONSTRAINT. It is not optional. We present it as optional
because most (if not all) DBMSs treat it as optional, with a default behavior of RESTRICT.
For compliance with the SQL standard, it’s a good idea to specify either CASCADE or
RESTRICT.

■ 9.11 Sequences 195

9.10 Generated Values

SQL will automatically generate data for you. Say you wanted to make a table of purchases,
consisting of an order number, the ID of the vendor, and the time of the order. For a new
order, the order number should be 1 more than the last order number.

SQL provides several mechanisms for autogeneration of data. Let’s look at an example
for the purchases table.

DDL 9.28 Create purchases table

CREATE TABLE purchases (
orderno INTEGER GENERATED BY DEFAULT AS IDENTITY,
vendorid CHAR(5) REFERENCES vendors,
ordertime TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

To insert a new order, we only really need the vendor ID.

DDL 9.29 Generated data example

INSERT INTO purchases (vendorid) VALUES ('VGRUS');

This will autogenerate an order number and set the order time to the current time. Pretty
nice! Unfortunately, although most DBMSs have autogeneration, most have their own,
DBMS-specific way of declaring autogenerated columns. Consult your DBMS documenta-
tion.

9.11 Sequences

Identity is one way of automatically generating values in SQL, but a more general approach
is a sequence. A sequence is a database object that generates values. The values are
numeric, but the sequence can be ascending or descending, can skip values, and can start
at any valid value.

The 2003 standard defines a sequence as follows:

CREATE SEQUENCE <sequence name> [AS <data type>]
[START WITH <signed numeric literal>]
[INCREMENT BY <signed numeric literal>]
[MAXVALUE <signed numeric literal> | NO MAXVALUE]
[MINVALUE <signed numeric literal> | NO MINVALUE]
[CYCLE | NO CYCLE]

Effectively, each time a new value is generated by a sequence, the increment value is added
to the current value. If the increment value is negative, then the current value decreases
and the sequence is descending. If the increment value is positive, then the current value
increases and the sequence is ascending. It is illegal for the increment value to be 0.

196 Chapter 9: Creating, Deleting, and Altering Tables ■

We may have many sequences in our database. For example, we can have a separate
sequence for each store to generate order numbers. Whenever a customer places an order
at that store, that sequence increases its value and returns a result. Because each store
has its own sequence, we can have the same order number in different stores.

For example, the command

DDL 9.30 Create a default sequence

CREATE SEQUENCE castr_seq;

creates a sequence with default values for type (implementation defined), starting value
(implementation defined), increment (1), maxvalue (implementation defined), minvalue
(implementation defined), and cycling (NO CYCLE). If we only wanted even numbers
between 100 and 1000 generated, we could create the following sequence:

DDL 9.31 Create a complex sequence

CREATE SEQUENCE even_numbers START WITH 100 INCREMENT BY 2 MAXVALUE 1000
MINVALUE 100;

The first value of the sequence even_numbers will be 100, the next will be 102, and so on.
To get a number from a sequence, we use the NEXT VALUE function. For an ascending

function, the NEXT VALUE function returns the lowest valid value not already returned
for the sequence. The syntax for the function is straightforward.

NEXT VALUE FOR <sequence name>

Unfortunately, there are many restrictions on where we can use the NEXT VALUE function.
Among other places, it cannot appear in the following:

■ Select list with DISTINCT (Chapter 3.2)

■ WHERE condition

■ ORDER BY (Section 3.5)

■ Aggregate function (Chapter 4)

■ CASE statement (Section 3.7).

That still leaves many places where we can use the NEXT VALUE function, including derived
relations (Section 7.9) and cursors (Section 13.1).

One of the best places to use sequences is for inserting values into a table. We can
automatically generate a new order number for the CASTR store.

DDL 9.32 Insert new order with sequence order number

INSERT INTO orders VALUES (NEXT VALUE FOR castr_seq, 1, 'CASTR','SODA', 0.99);

■ 9.12 Global and Local Temporary Tables 197

There are several important points to note about Insert 9.32. First, this only inserted one
row into the orders table. If we inserted multiple lines for the same order, the NEXT VALUE
function would increment the order number every time. Most DBMSs provide a function
to return the current value of the sequence without incrementing it. This could be used
for additional rows belonging to the same order. Second, any call to NEXT VALUE will
increment the sequence. Thus, if a second cashier increments the sequence, even calling
a DBMS-specific current value function will not work. A common practice is to use the
sequence number outside of SQL (see Chapter 13) to ensure that it does not change.

We could also use a sequence to generate the line numbers for orders. In this case, the
line numbers start over with each new order. The CYCLE option causes the values returned
by the sequence generator to start over, but it has an effect only when the sequence exceeds
the maximum value.

The SQL Standard specifies an ALTER SEQUENCE command to reset the current value
of a sequence or to modify any of the other properties, such as MINVALUE or INCREMENT.
Its syntax is as follows:

ALTER SEQUENCE <sequence generator name>
[RESTART WITH <signed numeric literal>]
[INCREMENT BY <signed numeric literal>]
[MAXVALUE <signed numeric literal> | NO MAXVALUE]
[MINVALUE <signed numeric literal> | NO MINVALUE]
[CYCLE | NO CYCLE]

To reset the line number when we start a new order, we could issue the following
statement:

DDL 9.33 Alter sequence

ALTER SEQUENCE castr_line_seq RESTART WITH 1

Most DBMSs have other functions for modifying this value, and some do not use this
statement to reset the value. Check your DBMS documentation.

Finally, it is easy to delete a sequence with the following command:

DROP SEQUENCE <sequence name> [CASCADE | RESTRICT]

As with the other DROP commands, if RESTRICT is specified, the sequence will not be
dropped if it invalidates the database. In particular, if a trigger (Chapter 13.3) uses a
sequence, the DROP SEQUENCE will fail. The CASCADE option will remove all dependent
database objects.

9.12 Global and Local Temporary Tables

SQL allows the creation of temporary tables. Such tables might be used for storing
results that were expensive and/or complex to compute. Temporary tables are created
like any other table with the exception of the TEMPORARY keyword. GLOBAL and LOCAL

198 Chapter 9: Creating, Deleting, and Altering Tables ■

determine the access scope of a temporary table. There are many restrictions on the use
of TEMPORARY tables. Consult your DBMS documentation for specific details.

An example of declaring a LOCAL TEMPORARY TABLE follows:

DDL 9.34 Create temporary table

CREATE LOCAL TEMPORARY TABLE temp (
key INTEGER,
value VARCHAR(100)

);

9.13 Creating a Database

In SQL, databases are organized into a hierarchy of containers, as shown in Figure 9.1. You
already knew that tables contained rows and columns. A schema contains a collection of
tables, and a catalog contains a collection of schemas. Each catalog, schema, table, and
attribute has a name. Names within a container must be unique, but other containers may
contain objects with the same name. For example, we’ve already seen the names of the
attributes within a table must be unique; however, two tables may both have attributes
with the same name. Using the hierarchy, you can give a fully qualified name to a database
object as follows:

<catalog>.<schema>.<table>.<column>

The mechanism for creating catalogs is system dependent. Schemas are created using
CREATE SCHEMA.

CREATE SCHEMA <schema name>

Although all DBMSs support an object hierarchy, many define their own, nonstandard
organization. See your DBMS documentation for details.

While it is not part of the standard, most DBMSs define a database container for
holding tables (or schemas containing tables). A DBMS manages a collection of databases.
We can create a database using either a DBMS-specific tool or a command similar to the
following:

CREATE DATABASE <database name>

Catalog Schema Table/View Rows/Columns

Figure 9.1: SQL container hierarchy.

■ 9.14 Wrap Up 199

9.14 Wrap Up

We can create a table in SQL by specifying a table name and a comma-delimited list of
column name/data type pairs to CREATE TABLE. We may also specify a set of constraints to
be enforced by the DBMS. Such constraints are key to maintaining the integrity of your data.
Enforcement of these constraints is accomplished by not allowing an INSERT, UPDATE, or
DELETE to execute if the results of the statement violate a constraint.

We can also change tables by using the ALTER TABLE command. This allows us to add
or remove columns, constraints, and other metadata. We can even change how a DBMS will
enforce the constraints. SQL provides for automatically generated values. Finally, we can
create databases and schemas to hold our tables.

200 Chapter 9: Creating, Deleting, and Altering Tables ■

Review Questions

1. Insert a row into the projects table without a startdate or an enddate. What
happened?

2. For each of the following columns, what is a reasonable DEFAULT value?

■ employees.firstname

■ projects.enddate

■ projects.revenue

■ workson.assignedtime

3. Consider the person table.

DDL 9.35 Create person table

CREATE TABLE person (
pid INTEGER PRIMARY KEY,
name VARCHAR(100) NOT NULL,
age INTEGER DEFAULT 20 NOT NULL,
badgeid INTEGER DEFAULT 1 UNIQUE

);

For each INSERT statement that follows, give a result of Accepted or Rejected.
Provide all reasons for rejection. The statements are executed in the given order,
and any rejected statements are ignored.

Statement Result

INSERT INTO person DEFAULT VALUES;

INSERT INTO person (pid, name) VALUES (1, DEFAULT);

INSERT INTO person (pid, name) VALUES (2, 'Jack');

INSERT INTO person (pid, name) VALUES (3, 'Jill');

4. List all of the constraints that may apply to multiple attributes.

5. Give the SQL command to create a domain named bloodtypedomain as a CHAR(2).
Restrict the possible values to A, B, O, AB.

Complete the following table creation. Make sure that bloodtype cannot be NULL
and gender can only be “M”, “F”, or NULL.

■ Review Questions 201

DDL 9.36 Patient table

CREATE TABLE patient (
id INTEGER PRIMARY KEY,
gender CHAR(1)
bloodtype

);

6. Consider the vehicle table.

DDL 9.37 Vehicle table

CREATE TABLE vehicle (
vehicleid CHAR(5) PRIMARY KEY,
manufacturerid INTEGER NOT NULL REFERENCES manufacturer,
productioncost NUMERIC(10, 2) CHECK (productioncost >= 0),
retailprice NUMERIC(10, 2) CHECK(retailprice > productioncost)

);

For each INSERT statement, give a result of Accepted or Rejected. If rejected, name
the violated constraint.

INSERT INTO vehicle VALUES Result

('CAR01', 1, 15000, 25000);

('CAR02', 1, NULL, 25000);

('CAR03', NULL, 26000, 25000);

('CAR04', 1, 26000, 25000);

('CAR03', 1, NULL, -5);

7. For the Restaurant Database, which attributes would benefit from an index?

8. For the Employees Database, add an index for employees.deptcode. Is this index
unique or nonunique?

9. Create a table test with two attributes: value and key. Make value a VARCHAR(200).
Make key an INTEGER and UNIQUE. Insert 100 rows into the table. Search for a
random key value and time how long the search takes. Repeat with 10,000 rows.
Repeat with 1,000,000 rows. Create an index on key and repeat the experiments.
Do not insert any NULL values for key.

202 Chapter 9: Creating, Deleting, and Altering Tables ■

Practice

The local library has hired you to create a database containing books, authors, and
patrons.

1. Give the SQL statements to create a database named library and add the following
tables. Make sure you enforce all constraints and implement all defaults. Include
all reasonable indexes.

Library

books—Books in the library

NULL Default
Column Type Allowed Value Comments

bookid INTEGER No Primary key

title VARCHAR(200) No

pages INTEGER Yes

sequelto INTEGER Yes NULL Foreign key to book(bookid) indicating
the book that this is a sequel. If the
book is not a sequel, the value is NULL

wrote—Pairs books with authors

NULL Default
Column Type Allowed Value Comments

bookid INTEGER No You figure out the primary key for this table

authorid INTEGER No Does not allow an author to be listed mul-
tiple times on a single book

authororder INTEGER No 0 Determines author order on a book; do not
allow multiple authors on the same book
to have the same authororder value

authors—Authors of library books

NULL Default
Column Type Allowed Value Comments

authorid INTEGER No Primary key

name VARCHAR(100) No Does not allow multiple authors with
same name

■ Practice 203

checksout—Pairs books with patrons

NULL Default
Column Type Allowed Value Comments

patronid INTEGER No You figure out the primary key for this
table; if a patron is deleted, all of her
checksout records should be automati-
cally deleted; if a patron’s ID is changed,
the patronid references should automat-
ically change to the new value

bookid INTEGER No A book may be checked out by a patron
multiple times

dateout DATE No Current date

datein DATE Yes NULL If the book has not been checked in, datein
should be NULL; make sure that the
datein is on or after the dateout if it is
not NULL

patrons—People that check out library books

NULL Default
Column Type Allowed Value Comments

patronid INTEGER No Primary key

name VARCHAR(100) No

favoritebook INTEGER Yes Foreign key to book(bookid) indicat-
ing this patron’s favorite book; if
the patron doesn’t have a favorite
book, the value is NULL

2. Give the SQL statements to populate the tables with 2 books (one a sequel of the
other), 2 patrons (Ed and Earl with a favorite book), and 2 authors (Jane and Jill).
Assign Jill to one book and both Jane and Jill to the other book. Check out both
books to Ed. Make the remaining data up yourself.

3. Give the SQL statements to check in all checked out books and then checkout all
books by Jill to Earl. Make no assumptions about the data.

4. Give the SQL statement to increase by 10 the number of pages for all books
written by Jane. If the number of pages is NULL, do not change the value. Make
no assumptions about the data.

5. Give the SQL statements to delete all information related to the author Jill including
her author information, books she wrote, and the checkout records of those books.
Make no assumptions about the data.

204 Chapter 9: Creating, Deleting, and Altering Tables ■

6. Give the SQL statement to remove the pages column from the books table.

7. Give the SQL statement(s) to successfully remove the books table.

8. Add an index for the name attribute of the authors table. Should it be a unique
index?

9. Add an index for the bookid attribute of checksout. Should it be a unique index?

c h a p t e r 10

Views

A view is a virtual table defined by a query. It provides a mechanism to create
alternate ways of working with the data in a database. A view acts much like a table. We
can query it with a SELECT, and some views even allow INSERT, UPDATE, and DELETE.
However, a view doesn’t have any data. All of its data are ultimately derived from tables
(called base tables) like those we created in Chapter 9. Views are similar to derived tables
(see Chapter 7), except that views are defined once and can be used in many queries.
We can create a view using the CREATE VIEW command.

CREATE VIEW <view name> [(<column list>)] AS <SELECT statement>

This creates a view named <view name>. The column names/types and data for the view
are determined by the result table derived by executing <SELECT statement>. Optionally,
we can specify the column names of the view in <column list>. The number of columns in
<column list> must match the number of columns in the <SELECT statement>.

Let’s create a view showing the ingredients (ingredient ID, inventory, and inventory
value) supplied to us by Veggies_R_Us.

DDL 10.1 View vrs

CREATE VIEW vrs AS
SELECT ingredientid, name, inventory, inventory * unitprice AS value
FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND companyname = 'Veggies_R_Us';

This creates a view named vrs. Note that views may contain expressions and even simple
literals. Let’s take a look at the view.

205

206 Chapter 10: Views ■

DDL 10.2 Show vrs view

vrs

ingredientid name inventory value

LETUS Lettuce 200 2.00
PICKL Pickle 800 32.00
TOMTO Tomato 15 0.45

Our vrs view contains four columns with the names and types of the results from the
SELECT statement. Note a view’s SELECT statement may refer to other views.

Because the view is just a virtual table, any changes to the base tables are instantly
reflected in the view data. For example, if we doubled the inventory for the Tomato
ingredient, the vrs view would show a doubled inventory and inventory value, as in this
example.

Update 10.3 Update the tomato inventory

UPDATE ingredients
SET inventory = inventory * 2
WHERE ingredientid = 'TOMTO';

SELECT * from vrs;

ingredientid name inventory value

LETUS Lettuce 200 2.00
PICKL Pickle 800 32.00
TOMTO Tomato 30 0.90

[3 row(s)]

10.1 Why Views?

There are several uses for a view.

Usability—We can use a view as a wrapper around very complex SELECT statements to
make our system more usable.

Security—If we need to restrict the data a user can access, we can create a view containing
only the permitted data. The user is given access to the view instead of the base
table(s). See Chapter 12 for details.

Reduced Dependency—The database schema evolves over time as our enterprise changes.
Such changes can break existing applications that expect a certain set of tables with
certain columns. We can fix this by having our applications access views rather than
base tables. When the base tables change, existing applications still work as long as
the views are correct.

■ 10.2 Querying Views 207

10.2 Querying Views

We can query views just like base tables.

Query 10.4 Find all ingredients provided by Veggies_R_Us with an inventory of more than 100

SELECT name
FROM vrs
WHERE inventory > 100;

name

Lettuce
Pickle

[2 row(s)]

Note that these are exactly the same results as Query 10.5.

Query 10.5 Rewrite as Query 10.4 using only base tables

SELECT name
FROM ingredients i, vendors v
WHERE i.vendorid = v.vendorid AND companyname = 'Veggies_R_Us'

AND inventory > 100;

name

Lettuce
Pickle

[2 row(s)]

Let’s create a new view called menuitems that lists all of the items we have for sale,
including meals and items, and how much they cost. The actual view definition is quite
complex.

DDL 10.6 Create menuitems view

CREATE VIEW menuitems (menuitemid, name, price) AS
(SELECT m.mealid, m.name, CAST(SUM(price * (1 – discount)) AS NUMERIC(5,2))
FROM meals m LEFT OUTER JOIN partof p ON m.mealid = p.mealid

LEFT OUTER JOIN items i ON p.itemid = i.itemid
GROUP BY m.mealid, m.name)

UNION
(SELECT itemid, name, price
FROM items);

208 Chapter 10: Views ■

Once this view is created, we can easily list our menu items.

Query 10.7 Find all menu items

SELECT *
FROM menuitems;

menuitemid name price

CHKSD Chicken Salad 2.85
CKSDS Chicken N Suds 3.68
FRPLT Fruit Plate 3.99
FRTSD Fruit Salad 3.45
GDNSD Garden Salad 0.99
MILSD Millennium Salad NULL
SODA Soda 0.99
VGNET Vegan Eatin’ 4.38
WATER Water 0.00

[9 row(s)]

It is now easy to find the most expensive item on our menu.

Query 10.8 Find the most expensive menu item

SELECT name
FROM menuitems
WHERE price =

(SELECT MAX(price)
FROM menuitems);

name

Vegan Eatin’

[1 row(s)]

It also is easy to find the number of items without a price.

Query 10.9 Find the priceless menu items

SELECT COUNT(*)
FROM menuitems
WHERE price IS NULL;

count

1

[1 row(s)]

Earlier, we presented similar queries, but we restricted our results to items and excluded
the meals. Queries 10.4–10.9 would be much more complex without the views.

■ 10.3 Updating Views 209

10.3 Updating Views

We can even perform INSERT, UPDATE, and DELETE on a view, which is propagated to
the underlying tables; however, there are restrictions on the kinds of views that can be
updated. Unfortunately, not all DBMSs allow updating through views and some DBMSs have
other restrictions (such as only having one table in the query specifying the view). Even if
your DBMS allows updates to views, you should be careful about using it, because some
results may be unexpected.

According to the SQL 2003 standard, for a view to be updatable, the query defining a
view must:

■ Not contain DISTINCT

■ Not reference the same column twice in the SELECT clause

■ Not have a GROUP BY or HAVING clause

■ Not contain UNION, EXCEPT, or INTERSECT

■ Contain attributes from only one table

■ Have exactly one row in a base table that corresponds to each row in the view

Furthermore, to insert values through a view, the view must:

■ Contain the primary key of the table

■ Contain all attributes of the table with NOT NULL constraints and no non-null default
value

Finally, even if a view is updatable, not all columns within the view may be updatable. For
example, derived columns such as value in the vrs cannot be updated.

Thus, our menuitems view cannot be directly updated because it contains attributes
from the items, meals, and partof tables. The vrs view can be updated as if it were a base
table.

Update 10.10 Updating through views

UPDATE vrs
SET inventory = inventory * 2;

SELECT *
FROM vrs;

ingredientid name inventory value

LETUS Lettuce 400 4.00
PICKL Pickle 1600 64.00
TOMTO Tomato 30 0.90

[3 row(s)]

210 Chapter 10: Views ■

It is important to note that updates through views can have unexpected conse-
quences, depending on the behavior of your DBMS. For example, a DBMS might allow an
INSERT on vrs, such as Insert 10.11. The underlying ingredients table would be updated
with the provided values, but the vendorid would be set to the default value (in our case,
NULL). Because the query specification for vrs requires the vendorid to be VGRUS, our new
row does NOT appear in the view.

Insert 10.11 Inserting through a view

INSERT INTO vrs(ingredientid, name, inventory) VALUES
'NEWIN','New ingredient',100);

As a result, updating through views should be treated with caution and tested
thoroughly. In general, updates through views work best when the view is defined as a
subset of a table and all attributes that determine if a row is in a view are updatable.

What if a view cannot be updated? We can still change the view by updating the under-
lying table. For example, to change the menuitems view, we have to update the underlying
tables. Fortunately for us, the updates will be automatically reflected in the view, as in
Update 10.12.

Update 10.12 Increase the discount for Fruit Salad in the Vegan Eatin’ meal

UPDATE partof
SET discount = discount + 0.1
WHERE itemid = 'FRTSD' AND mealid = 'VGNET';
See the results
SELECT *
FROM menuitems;

menuitemid name price

CHKSD Chicken Salad 2.85
CKSDS Chicken N Suds 3.68
FRPLT Fruit Plate 3.99
FRTSD Fruit Salad 3.45
GDNSD Garden Salad 0.99
MILSD Millennium Salad NULL
SODA Soda 0.99
VGNET Vegan Eatin’ 4.03
WATER Water 0.00

[9 row(s)]

■ 10.5 Wrap Up 211

10.4 DROP VIEW

We can remove a view with the DROP VIEW command.

DROP VIEW <view name> [CASCADE | RESTRICT]

This removes the specified view; however, it does not change any of the data in the
database. SQL does not allow a view to be dropped if view is contained in the SELECT
statement of another view. This is the default behavior or the result of using the RESTRICT
option. To remove such a view, specify the CASCADE option. This will cause any depen-
dent views to be removed before the view is dropped. According to the SQL specification,
you must specify either CASCADE or RESTRICT with DROP VIEW. It is not optional. We
present it as optional because most (if not all) DBMSs treat it as optional, with a default
behavior of RESTRICT. For compliance with the SQL standard, it’s a good idea to specify
either CASCADE or RESTRICT.

10.5 Wrap Up

Views are virtual tables whose columns and data are defined by a SELECT statement. You
may SELECT from views just like any other table. Some views even allow INSERT, UPDATE,
and DELETE. Updates to the base tables that a view is built from are immediately reflected
in the view.

212 Chapter 10: Views ■

Review Questions

1. A view can be defined over tables and may contain attributes.

2. How does SQL determine the data types of attributes in a view?

3. If the optional <column list> is used in creating a view, what are the restrictions
on it?

4. How can you always update any view?

5. List one application for each of the three reasons for using views mentioned in
Section 10.1.

6. Perform Queries 10.4, 10.8, and 10.9 without using any views.

7. According to the 2003 SQL specification, which of the following views are updat-
able? Which will allow inserts?

DDL 10.13 Review I

CREATE VIEW one AS
SELECT DISTINCT manager
FROM stores;

DDL 10.14 Review II

CREATE VIEW two AS
SELECT storeid, SUM(price)
FROM orders
GROUP BY storeid;

DDL 10.15 Review III

CREATE VIEW three AS
SELECT manager
FROM stores
UNION
SELECT replname
FROM vendors;

DDL 10.16 Review IV

CREATE VIEW four AS
SELECT storeid, manager
FROM stores
WHERE manager LIKE '%Jeff%';

■ Practice 213

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Answer each question with a single SQL statement. Your query must work for any set of
data in the Employees Database, not just the set of data we provide.

1. Create a view containing all of the employees assigned to the 'Robotic Spouse'
project. Include the percent time they are assigned to the project.

2. Query your view created in the previous question to find the employee first and last
name with the greatest amount of time assigned to 'Robotic Spouse'.

3. Create a view of employees with their department name.

4. Query your view to find all the first and last names of employees in the Consulting
department.

5. Create a view showing all of the projects assigned to Abe Advice, including his
percentage time on each project.

6. Query your view to find the total amount of time Abe is assigned to projects.

7. Create an updatable view showing employees and their salaries. Give everyone a
10% raise by updating the view.

c h a p t e r 11

Transactions

Databases are all about sharing data, so it is common for multiple users to be
accessing and even changing the same data at the same time. The simultaneous execu-
tion of operations is called concurrency. Sometimes concurrency can get us into trouble if
our changes require multiple SQL statements. Let’s look at an example. We always want to
make sure that we have all of the ingredients for every item before we submit a customer’s
order. Let’s start with Query 11.1.

Query 11.1 Find the available and required ingredients for a Garden Salad

SELECT ingredientid, ing.name, quantity, inventory
FROM items itm JOIN madewith USING (itemid)

JOIN ingredients ing USING (ingredientid)
WHERE itm.name = 'Garden Salad';

ingredientid name quantity inventory

LETUS Lettuce 4 200
TOMTO Tomato 8 15

[2 row(s)]

Note that because of a tomato shortage, we only have enough ingredients for one Garden
Salad. We could execute Query 11.1 each time an item is ordered. After verifying we have
the necessary ingredients, we can make the item and update the inventory of the used
ingredients. To remove the ingredients from the inventory, we perform Update 11.2.

Now consider the following scenario: Two customers, Bob and Mary, arrive at about
the same time and each go to a different register. Bob orders a Garden Salad. Bob’s register

215

216 Chapter 11: Transactions ■

Update 11.2 Remove the ingredients used in making a garden salad

UPDATE ingredients
SET inventory = inventory –

(SELECT quantity
FROM items itm JOIN madewith mw USING (itemid)
WHERE itm.name = 'Garden Salad'

AND ingredients.ingredientid = mw.ingredientid)
WHERE ingredientid IN

(SELECT ingredientid
FROM items itm JOIN madewith USING (itemid)
WHERE it.name = 'Garden Salad';

See the results
SELECT ing.name, inventory
FROM items itm JOIN madewith USING (itemid)

JOIN ingredients ing USING (ingredientid)
WHERE itm.name = 'Garden Salad';

Query Result

name inventory

Lettuce 196
Tomato 7

[2 row(s)]

runs Query 11.1, which indicates that there are enough ingredients to make his order.
While Bob decides if he wants to order a drink, Mary also orders a Garden Salad. Mary’s
register runs Query 11.1, which again indicates that there are enough ingredients to make
her order. Mary immediately pays for her order, and her register executes Update 11.2. Bob
finally decides against a drink, and his register executes Update 11.2. Of course, we only
have enough ingredients to make one Garden Salad. This is a classic problem in database
systems; it is called the isolation or serializability problem. In general, if two or more
users access the same data and one or more of the statements changes the data, we have a
conflict. If the users perform multiple steps, conflicts can cause incorrect results to occur.

To deal with this problem, databases allow the grouping of a sequence of SQL state-
ments into an indivisible unit of work called a transaction. A transaction ends with either
a commit or a rollback:

commit—A commit permanently stores all of the changes performed by the transaction.

rollback—A rollback removes all of the updates performed by the transaction, no matter
how many rows have been changed. A rollback can be executed either by the DBMS
to prevent incorrect actions or explicitly by the user.

The DBMS provides the following guarantees for a transaction, called the ACID properties:

Atomicity—Either all (commit) or none (rollback) of the changes within a transaction are
made permanent.

■ 11.2 Starting a Transaction—START TRANSACTION 217

Consistency—If a transaction executes on a consistent database, then when it terminates
the database will still be consistent.

Isolation—A transaction can execute on a database as though it is the only transaction
running.

Durability—Changes made by any committed transaction are permanent, even surviving
system crashes and hardware failures.

ACID is a well-known database concept. Further details can be found in most database
textbooks.

For Bob and Mary, Query 11.1 and the Update 11.2 are not two independent opera-
tions on the database but are actually part of a single order. The logical unit of work is both
the query and the update. We use transactions to let Bob and Mary execute Query 11.1 and
Update 11.2 as one unit of work. This avoids any conflicting updates to the database (either
Bob, Mary, or neither gets the Garden Salad, not both), and we know that if a transaction
commits, all of its changes are permanent.

11.1 Ending a Transaction—COMMIT and ROLLBACK

We begin with how to end a transaction. Recall that a transaction ends with either a commit
or rollback. A commit is explicitly executed by the user using the COMMIT statement:

COMMIT [WORK]

COMMIT attempts to commit all of the changes made since the beginning of the transaction.
If a problem is detected, COMMIT signals an error, and the transaction is rolled back. Once
a commit successfully completes, the changes are permanent. Here’s a situation where a
fear of commitment can be healthy.

A rollback can be executed either by the DBMS (to prevent incorrect actions) or
explicitly by the user using the ROLLBACK statement:

ROLLBACK [WORK] [TO SAVEPOINT <savepoint>]

ROLLBACK undoes all of the changes made since the beginning of the current transaction.
We discuss savepoints in Section 11.4. Note that if you have an active transaction and you
kill your query processor without executing a COMMIT, the DBMS should roll back all of
your changes.

11.2 Starting a Transaction—START TRANSACTION

SQL starts a transaction automatically when a new statement is executed if there is no
currently active transaction1. This means that a new transaction begins automatically with

1Technically, not all statements will signal the start of a transaction, but most that we care about do.

218 Chapter 11: Transactions ■

the first statement after the end of the previous transaction or the beginning of the session.
A user may explicitly start a transaction using the START TRANSACTION statement.

START TRANSACTION [<transaction characteristics>]

Many DBMSs use BEGIN TRANSACTION instead of START TRANSACTION. We discuss
transaction characteristics in Section 11.7.

While a transaction is running, all of the data accessed by the transaction are pro-
tected. For example, start a transaction and execute Query 11.1. Now, in a separate session
try to execute Update 11.2. What usually happens is that Update 11.2 does not com-
plete. The database has detected a possible conflict between Query 11.1 and Update 11.2.
Whichever transaction tries to access the data second is blocked by the database. No oper-
ations can be submitted by that transaction until the block ends, and that won’t happen
until the first transaction terminates.

11.3 Auto-Commit

Most DBMSs include an auto-commit mode where a commit is automatically attempted
after every SQL statement. With auto-commit, all transactions consist of only a single SQL
statement. This breaks our solution to the simultaneous order problem because with auto-
commit Query 11.1 and the Update 11.2 are executed in separate transactions. Usually
auto-commit is the default mode. Changing to the manual-commit mode where a COMMIT
statement must be executed to commit is DBMS-specific. Some DBMSs will temporarily
suspend the auto-commit mode if the user enters a START TRANSACTION.

11.4 SAVEPOINTs

SQL allows you to create named placeholders, called savepoints, in the sequence of state-
ments in a transaction. You can rollback to a savepoint instead of to the beginning of the
transaction. Only the changes made after the savepoint are undone. To set a savepoint,
use the SAVEPOINT command:

SAVEPOINT <savepoint name>

If we create a savepoint named sp, we can rollback to that savepoint with the following:

ROLLBACK TO SAVEPOINT sp <savepoint name>

Executing ROLLBACK without designating a savepoint or executing a COMMIT deletes all
savepoints back to the start of the transaction. A rollback to a particular savepoint deletes
all intervening savepoints.

How is this useful? Suppose Bob is ordering food for his entire soccer team, one
player at a time, and the last player wants to change his order. ROLLBACK will undo the
order for all players; however, if we created a savepoint before each player’s order, we
could easily rollback just the order of the last player.

■ 11.5 Immediate or Deferred Constraints 219

Update 11.3 Setting and using savepoints in a transaction

START TRANSACTION;
-- Player 1 Order
SAVEPOINT player2;
-- Player 2 Order
...
SAVEPOINT player20;
-- Player 20 Order
ROLLBACK TO SAVEPOINT player20;
-- Player 20 New Order

We include all of the orders in a single transaction because we don’t want to submit the
team order unless everybody’s order can be satisfied with the given inventory.

11.5 Immediate or Deferred Constraints

We learned in Chapter 9 that constraints may complicate data changes by forcing a partic-
ular ordering of inserts, updates, and deletes to avoid violation. Transactions provide a
possible means for making it much easier. Recall that the ACID properties ensure that the
database is consistent when a transaction terminates. During a transaction execution, the
database may be inconsistent. In other words, we could violate the constraint for a little
while, as long as we fixed it before the transaction terminates. Note that isolation ensures
no other transaction will see the violated constraint.

SQL has two different modes for checking constraints: DEFERRED or IMMEDIATE.

IMMEDIATE—Constraint is checked after each statement.

DEFERRED—Constraint is not checked until the transaction attempts to commit.

In DEFERRED mode, a transaction can violate the constraint within the transaction as long
as the violation is corrected before the commit. If you attempt to commit a transaction with
changes that violate a constraint, the DBMS will rollback the transaction. Let’s look at an
example. We have a foreign key constraint for the vendorid in the ingredients table. If the
constraint check mode for that constraint is DEFERRED, then we can execute a transaction
that first deletes the vendor then deletes the ingredient supplied by the vendor. When the
transaction performs a commit, the foreign key constraint is checked, and the constraint
is satisfied.

If the constraint check mode is IMMEDIATE, however, then the constraint is checked
when we attempt to delete the vendor, the constraint violation is detected, and a rollback
is performed. This is exactly the situation as when we did not use transactions.

Why would we want to use IMMEDIATE constraints? Consider the case of a transaction
performing a large number of insertions into the ingredients table. If the first ingredient
inserted has a bad vendorid, a DEFERRED constraint would not discover this until all of the
inserts had been performed, wasting a lot of work.

220 Chapter 11: Transactions ■

We can specify the default constraint check mode when we declare (or alter) the
constraint. The possible constraint check times are INITIALLY DEFERRED or INITIALLY
IMMEDIATE (default). We can even control whether a constraint can be deferred by spec-
ifying the constraint as DEFERRABLE or NOT DEFERRABLE (default) when we declare (or
alter) the constraint. If a constraint is INITIALLY DEFERRED, then it is DEFERRABLE. If a
constraint is NOT DEFERRABLE, we cannot specify its default constraint check mode to
INITIALLY DEFERRED, and we cannot change it within a transaction.

To specify the default constraint check mode and/or constraint deferrability, we add
the constraint characteristic on the end of a column or table constraint.

[[NOT] DEFERRABLE] [INITIALLY {DEFERRED |IMMEDIATE}]
Let’s try an example using the madewith table.

DDL 11.4 Create deferred constraints

CREATE TABLE madewith (
itemid CHAR(5) NOT NULL,
ingredientid CHAR(5) NOT NULL,
quantity INTEGER CONSTRAINT qtyck CHECK (quantity >= 0) NOT DEFERRABLE,
PRIMARY KEY(itemid, ingredientid),
CONSTRAINT itemidfk FOREIGN KEY(itemid) REFERENCES items(itemid) DEFERRABLE,
CONSTRAINT ingidfk FOREIGN KEY(ingredientid) REFERENCES ingredients

INITIALLY DEFERRED
);

The primary key constraint (by default) and the qtyck constraint are NOT DEFERRABLE
INITIALLY IMMEDIATE so the mode for these constraints is always IMMEDIATE. The itemidfk
constraint is DEFERRABLE INITIALLY IMMEDIATE so its default mode is IMMEDIATE, but
we can change it within a transaction. The ingidfk constraint is DEFERRABLE INITIALLY
DEFERRED so its default mode is DEFERRED, but we can change it within a transaction.

We change the constraint check mode with the SET CONSTRAINT command:

SET CONSTRAINTS {<constraint list> | ALL} {DEFERRED | IMMEDIATE}

If a list of constraints is given, then the constraint mode of each constraint is changed
to the specified mode. We can use the ALL keyword to change the mode of all deferrable
constraints.

The constraint modes are changed for only one transaction. If a transaction is
currently active, that transaction will execute with the changed modes while all other
transactions will execute with the default modes. If no transaction is active when a SET
CONSTRAINTS statement is executed, then the next transaction performed within the
same SQL context (e.g., the next transaction entered by the same user in a command line
environment) will use the new constraint modes.

■ 11.6 Testing Changes with Transactions 221

11.6 Testing Changes with Transactions

An incorrectly written INSERT, UPDATE, and DELETE can corrupt the database. For example,
you could forget the WHERE clause in an UPDATE or DELETE or INSERT the wrong data.
Because transactions provide the ability to rollback and isolation from other transactions,
we can use them to test INSERT, UPDATE, and DELETE before we commit the changes. Let’s
look at an example. Suppose we wanted to remove all ingredients from the Chicken Salad
(CHKSD) that are in the Milk food group. If we accidentally delete other ingredients, our
menu system breaks. To avoid this, we can make the change and test the results within a
transaction.

Transaction 11.5 Using the transactions to test DELETE

START TRANSACTION

–– Find the ingredients and their food group in Chicken Salad.
SELECT name, foodgroup
FROM madewith NATURAL JOIN ingredients
WHERE itemid = 'CHKSD'

Query Result

name foodgroup

Cheese Milk
Chicken Meat
Lettuce Vegetable
Secret Dressing NULL

[4 row(s)]

–– Delete the milk ingredients from Chicken Salad
DELETE FROM madewith WHERE itemid = 'CHKSD' AND
ingredientid IN
(SELECT ingredientid
FROM ingredients
WHERE foodgroup = 'Milk');

–– Only the non-Milk ingredients should be left
SELECT name, foodgroup
FROM madewith NATURAL JOIN ingredients
WHERE itemid = 'CHKSD';

Query Result

name foodgroup

Chicken Meat
Lettuce Vegetable
Secret Dressing NULL

[3 row(s)]

-- Since update is correct, COMMIT. If not, then ROLLBACK
COMMIT;

222 Chapter 11: Transactions ■

Note that with isolation, you are the only person who can see the changes after the DELETE.
If the test fails, you can rollback the entire transaction. If the test passes, execute a COMMIT
so everybody else can see the changes.

11.7 Transaction Characteristics

The material in this section is rather advanced. We assume you already understand
the consequences of changing the transaction characteristics. An explanation of these
characteristics can be found in most introductory database texts. We can change the
characteristics of a transaction with the SET TRANSACTION statement:

SET TRANSACTION <mode>[, <mode>]

One characteristic we can change is the access mode of the transaction. The two
possible access modes are as follows:

READ ONLY—Only statements that do not change the data are allowed.

READ WRITE—Both statements that access and manipulate data are allowed.

We can also change the level of the transaction. The possible levels include the following:

SERIALIZABLE—Prevents all possible conflicts.

REPEATABLE READ—Allows a problem known as phantom read. A phantom read happens
when a transaction reads a set of rows (such as an entire table). A second transaction
then inserts a row into the table. If the first transaction repeats the read, the results
will now be different.

READ COMMITTED—Allows the phantom read problem as well as what is known as the
nonrepeatable read problem. A nonrepeatable read occurs when a transaction reads
a single row. A second transaction updates that row, and the first transaction repeats
the read operation, getting a different answer.

READ UNCOMMITTED—Allows the dirty read problem as well as the nonrepeatable and
phantom read. This means transactions can interfere with each other and cause
unexpected results. For example, suppose a test transaction put $1 million in our
checking account. The testers are not worried about this because they are going to
rollback the test transaction and undo all of the operations. A second transaction
sees the $1 million and incorrectly approves a loan.2 Now the test transaction per-
forms a rollback. How do they correct the situation? Although this is an extreme
example, similar problems can easily arise in such environments. Extreme care
should be used in applications with read uncommitted isolation.

2Or worse, it allows us to withdraw the money. However, this requires even more relaxation of ACID.

■ 11.9 Wrap Up 223

SET TRANSACTION can only be performed once per transaction. If no transaction is
active, SET TRANSACTION changes the characteristics of the next transaction. You can also
specify the transaction characteristic in START TRANSACTION.

11.8 Locking Issues

When using a large database, there are a few important issues that arise as a result of the
DBMS ensuring isolation. Specifically, we need to discuss deadlocks and lock escalation.

When a deadlock occurs in any computer system, progress cannot occur. For example,
if two transactions execute Query 11.1 at the same time, the database will prevent any
other transaction from changing the values read. Now suppose the first transaction tries
to execute Update 11.2. The DBMS will “block” the transaction, preventing it from doing
any work. If the second transaction commits, then the first transaction will be able to
perform the update, and there will be no problems. However, if the second transaction
also performs Update 11.2, then it will also be blocked.

In this case, neither transaction can make progress. They are deadlocked. What
happens next depends on the database configuration. It is hoped that, the DBMS will detect
this deadlock and rollback one of the transactions, allowing the other to make progress.
However, sometimes the database will not detect such a situation for a long time. In these
cases, user intervention is required to rollback one of the transactions. The exact user
interaction will depend on the DBMS but requires one of the transactions to perform a
rollback.

Lock escalation occurs as a result of a transaction updating a large amount of data
in a single table. Usually, a DBMS will only lock as much of a database as needed for the
transaction to perform its operations. However, if a transaction updates a large portion of
a table, the DBMS may lock the entire table. This will help the performance of the update
transaction, but it may cause serious performance problems for concurrent transactions,
because they will not be able to read any of the table. The solutions to the lock escalation
problem are application specific and include dividing the update transaction into indepen-
dent transactions, running the transactions under a reduced isolation level, or accepting
the reduced performance.

11.9 Wrap Up

A transaction is a logical unit of work. By combining multiple SQL statements into a single
transaction we can execute many complex statements as though they are a single state-
ment. This allows us to correctly update different tables at one time. Transactions can
either commit, which means that all of the operations are saved to the database, or
rollback, which means all of the operations are removed from the database.

Transaction processing in databases allows many transactions to execute at the
same time with confidence. The theoretical properties ensured by a database are called

224 Chapter 11: Transactions ■

the ACID properties. Providing these properties requires extra work on the part of the
database. However, most applications consider the performance loss well worth the
benefits gained.

The observant reader will have guessed by now that we are using transactions in
reporting our results of database modifications. We perform the update and the query
inside one transaction, then we abort the transaction. This allows us to show the result of
the update without corrupting our database—exactly one of the roles of transactions.

■ Practice 225

Review Questions

1. A transaction may be started by (list two ways).

2. A transaction is ended by (list two ways).

3. A rollback is initiated by (list two ways).

4. A commit is initiated by (list two ways).

5. True/False A rollback only undoes the statement that causes a conflict or error.

6. If the DBMS is in auto-commit mode, a commit is attempted after every
.

7. By default, a constraint is (circle those that apply)

NOT DEFERRABLE INITIALLY IMMEDIATE DEFERRED

8. One of the problems that can happen with transactions is a situation called
deadlock. Create a deadlock by executing the following:

(a) Query 11.1 in one transaction

(b) Query 11.1 in another transaction

(c) Update 11.2 in the first transaction

(d) Update 11.2 in the second transaction

What happened on your DBMS?

9. Repeat the test with the isolation level set to READ UNCOMMITTED. What
happened?

10. Repeat the test without transactions (auto-commit on). What happened?

11. Start a transaction with the characteristic of READ ONLY. Perform Query 11.1 and
Update 11.2. What happened?

Practice

1. Consider a banking scenario. A customer wants to transfer money from Account 1
to Account 2. Write a transaction to first check the balance in Account 1, then to
update Account 1, and then to update Account 2. Write an identical transaction to
transfer money from Account 2 to Account 1. Use different amounts for each trans-
fer. Without any concurrency control, interleave the steps of the two transactions
in different ways. Is the final result correct? What would happen with serializable
isolation?

226 Chapter 11: Transactions ■

2. In the Employees Database, the department table has a foreign key on itself. Make
the following changes to the foreign key constraint and perform the updates. Do not
delete subdepartments of subdepartments of the Administration department.

(a) Delete the Administration department and all of its subdepartments without
using transactions.

(b) Using a transaction, delete the Administration department and all of its
subdepartments.

(c) Change all of the foreign key constraints by adding the phrase INITIALLY
DEFERRED. Delete the Administration department and all of its subdepart-
ments with and without a transaction.

(d) Change all of the foreign key constraints by adding the phrase DEFERRABLE.
Delete the Administration department and all of its subdepartments with
and without a transaction. Use the SET CONSTRAINTS statement to make
all constraints deferred. Delete the Administration department and all of its
subdepartments with a transaction.

c h a p t e r 12

Database Privileges

Databases are all about sharing data, so naturally a database is accessible to many
users. Of course, not every user should be allowed to do everything. If we maintain
employee information in our Restaurant Database, we might want to limit who can see
salary information. We’d certainly want to limit who can give raises. The owner of the
restaurant should be able to view and/or change any data. The restaurant accountant
should be able to see, but not change, salary information. The employees should be able
to see nonsensitive information, such as name and phone number, without being allowed
access to salaries.

SQL allows us to assign different types of privileges to different users. A user is
specified by a user identifier (e.g., Bob Smith is a user with the identifier bsmith). The
creation and maintenance of users is DBMS specific. Some DBMSs use identifiers from the
underlying operating system; others maintain their own set of users. Many DBMSs have a
CREATE USER command for creating new users. Similarly, not all users are allowed to create
tables, but this is not covered in the SQL standard. Consult your DBMS documentation.

The user that creates a database object, such as a table, is called the owner. The owner
of an object can do just about anything he or she wants with that object, including deter-
mining the privileges of other users for that object. Let’s see how SQL allows management
of privileges.

227

228 Chapter 12: Database Privileges ■

12.1 GRANT

You can give privileges on an object to a user with the GRANT statement:

GRANT {ALL PRIVILEGES | <privilege>[, <privilege>...]}
ON <database object>
TO <grantee> [, <grantee>...]
[WITH GRANT OPTION]

GRANT gives the specified privilege(s) on the named object to the list of identified users.
Specifying the WITH GRANT OPTION allows the identified users to grant their privileges to
other users.

We only address privileges on tables and views here, but privileges can be granted
on several types of objects. Available privileges include the following:

Privilege Permits

SELECT[(<column list>)] SELECT on the specified table. If <column list> is specified, the
user may only access values for those columns; otherwise, the
user may access all columns.

INSERT[(<column list>)] INSERT for new row(s) on the specified table. If <column list> is
specified, the user may only specify values for those columns;
all other columns are given the default value. If <column list> is
not specified, the user may specify values for all columns.

UPDATE[(<column list>)] UPDATE on existing rows on the specified table. If <column list> is
specified, the user may only update values for those columns;
otherwise, the user may update all columns.

DELETE DELETE of existing rows in the specified table.

REFERENCES[(<column list>)] References to columns in the specified table including foreign key
and CHECK constraints. If <column list> is specified, the user
may only define references for those columns; otherwise, the
user may reference all columns.

ALL PRIVILEGES All privilege types.

Many people need different access to our tables. It is important that we grant exactly
the privileges needed—no more, no less. Granting too many privileges opens the door for
security holes. Being too restrictive prevents a user from doing their job.

Let’s look at a access to the Restaurant Database users. We begin by granting access
to John and Mary from the marketing department.

DCL 12.1 Give SELECT privileges

GRANT SELECT(storeid, itemid) ON ORDERS TO john, mary;
GRANT SELECT ON STORES TO john, mary;

John and Mary may only view which stores sold which items and the information about
the stores. This is enough for them to handle a mass mailing advertising campaign.

■ 12.1 GRANT 229

DCL 12.2 Give SELECT privileges with GRANT OPTION

GRANT SELECT ON ORDERS TO ed WITH GRANT OPTION;

Ed, the company auditor, can now see the orders placed, and he can also allow others to
see this information as well.

We restrict the creation and deletion of stores to our vice-president, Rachel. However,
she cannot add an address for the store.

DCL 12.3 Give INSERT/DELETE privileges

GRANT INSERT(storeid, manager), DELETE ON stores TO rachel;

When Rachel inserts a new store, default values are used for the attributes other
than storeid and manager. Note that if Rachel did not have access to the primary key,
then any inserts attempted by Rachel would be rejected. Do you know why?1 We allow
our managers, Jeff and Greg, to update the locations of the stores. However, they cannot
change the store ID or the name of the manager.

DCL 12.4 Give UPDATE privileges

GRANT UPDATE(address, city, state, zip) ON stores TO jeff, greg;

Our purchasing director, Jane, creates a purchase order to restock our inventory.
Because purchase orders may be complex, Jane creates a new table for each order. These
tables must refer to vendor IDs.

DCL 12.5 Give REFERENCE privileges

GRANT REFERENCES(vendorid) ON vendors TO jane;

This allows Jane to create a purchases table with a foreign key or CHECK constraint refer-
encing vendors. If we didn’t restrict the allowable references, an unscrupulous user could
use references to discover sensitive information (e.g., create a table with references and
insert guessed values until one works) or limit your ability to control your own table (e.g.,
create a table with a dependency, such as foreign key reference, to prevent deletion of
rows from the referenced table).

1There is no default value for storeid, so NULL would be used. NULL is not an allowed value for a
primary key.

230 Chapter 12: Database Privileges ■

Finally, we give all privileges to the owner of our company, Jack.

DCL 12.6 Give ALL privileges

GRANT ALL PRIVILEGES ON stores TO jack WITH GRANT OPTION;
GRANT ALL PRIVILEGES ON orders TO jack WITH GRANT OPTION;
...

Jack can give any privilege to any other user he wishes.

12.2 REVOKE

You can remove privileges on an object from a user using REVOKE:

REVOKE [GRANT OPTION FOR]
{ALL PRIVILEGES | <privilege>[, <privilege>...]}
ON <database object>
FROM <grantee> [, <grantee>...]
[CASCADE | RESTRICT]

REVOKE removes the specified privilege(s) on the named object from the list of identified
users. Specifying the GRANT OPTION FOR option revokes the ability of the identified users
to grant the specified privilege(s) to other users; it does not revoke the privilege itself. If
we fire Greg, a manager, we need to revoke his privileges.

DCL 12.7 REVOKE privileges

REVOKE UPDATE ON stores FROM greg;

Consider Ed, our auditor to whom we granted SELECT privileges on orders with the
ability to grant that privilege to other users. If Ed has granted privileges to other users,
our attempt to revoke his privileges will be rejected because to delete Ed’s privileges we
must also delete the privileges Ed granted. The RESTRICT option disallows any REVOKE
where there are any dependent privileges, which is the default behavior. We can fix this by
using the CASCADE option to delete the specified privilege and any dependent privileges.
According to the SQL specification, you must specify either CASCADE or RESTRICT with
REVOKE. It is not optional. We present it as optional because most DBMSs either don’t
include CASCADE/RESTRICT or treat it as optional, with a default behavior of RESTRICT.
To be compliant with the standard, it’s a good idea to specify either CASCADE or RESTRICT
if allowed by the DBMS.

12.3 PUBLIC

We can grant a privilege to all users by assigning it to PUBLIC. Of course, this means we
should be very careful with any privileges granted to PUBLIC. One possibility is that we

■ 12.4 Creating a Set of Privileges Using ROLEs 231

would want everyone to see all of the items on our menu. We do not have a table with that
information, but we do have a view. We can assign privileges to views just as with tables.

DCL 12.8 Give PUBLIC privileges

GRANT SELECT(name, prices) ON menuitems TO PUBLIC;

Note that the privileges are assigned to PUBLIC, not to individual users. Therefore, we
cannot deny any user any privilege that is assigned to PUBLIC. In other words, DCL 12.9 has
no effect on the privileges allowed to Jane. Of course, we can revoke the privilege from
PUBLIC.

DCL 12.9 REVOKE SELECT privileges

REVOKE SELECT(name) ON menuitems TO jane;

12.4 Creating a Set of Privileges Using ROLEs

User-based privilege maintenance can quickly become a nightmare. If a cashier is promoted
to manager, you must remove the cashier privileges and add the manager privileges. If
you want to add or revoke a privilege for all cashiers, you must remember all of their IDs.
Fortunately, SQL has a solution. We can create a role that represents a type of database
user and assign privileges to that role. Assigning a role to a user gives that user all of the
privileges granted to the role.

We can create a role using the following:

CREATE ROLE <role name> [WITH ADMIN OPTION]

If WITH ADMIN OPTION is specified, the role grantee may grant the role to others. We grant
and revoke privileges to roles just as we assigned them to users. Let’s create our cashier
role and assign the appropriate privileges.

DCL 12.10 Create a ROLE and GRANT privileges

CREATE ROLE cashier;
GRANT INSERT ON orders TO cashier;

We assign a role using GRANT.

GRANT <role name>, [, <role name>...] TO <grantee> [, <grantee>...]
[WITH ADMIN OPTION]

Now we can assign the cashier role to Abe and Sara.

232 Chapter 12: Database Privileges ■

DCL 12.11 Grant ROLE to users

GRANT cashier TO abe, sara;

Now Abe and Sara have all of the privileges of a cashier. Any new privileges assigned to
the cashier role are now available to Abe and Sara. Any privilege revoked from the cashier
role becomes unavailable to Abe and Sara, unless they are granted that same privilege by
their user ID or some other role.

We use REVOKE to remove a role.

REVOKE [ADMIN OPTION FOR]
<role>[, <role>...]
FROM <grantee> [, <grantee>...]
[CASCADE | RESTRICT]

This works like the privilege form of REVOKE, except that it revokes roles. What do we do
if Abe is no longer a cashier? We simply REVOKE his role.

DCL 12.12 Revoke user ROLE

REVOKE cashier FROM abe;

Abe no longer gets any privileges from his cashier role. Of course, he may have privileges
from elsewhere.

We can delete a role altogether.

DROP ROLE <role>

The treatment of roles differs from DBMS to DBMS. Most DBMS either have roles or
an analogous construct such as groups. Consult your DBMS documentation.

12.5 Using Privileges and Views

We saw that we can grant and revoke privileges to views, just like a table. Previously, we
have granted privileges for all rows of the orders table. However, it makes more sense for
cashiers to only have access to the orders for their store. We begin by creating a view for
the FIRST store.

DDL 12.13 Create firststore view

CREATE VIEW firststore AS
SELECT * FROM orders WHERE storeid = 'FIRST';

■ 12.6 Wrap Up 233

The firststore view is updatable and can support inserts (if your DBMS allows that).
Next, we create a ROLE that allows the cashiers at our first store to access the orders for
that store.

DCL 12.14 Create ROLE for view privileges

CREATE ROLE firstcashier;
GRANT firstcashier to abe, sara;
GRANT SELECT ON firststore TO firstcashier;
GRANT INSERT ON firststore TO firstcashier;

Abe and Sara can now enter orders into our database as they sell lots of items to our
customers. Note that if your DBMS does not support updates on views, then you can grant
the privilege to the underlying table. Also note that Abe and Sara do NOT have the privilege
to change any order placed in the system.

12.6 Wrap Up

Databases usually are accessed and manipulated by many different users. SQL allows us
to control the kinds of operation each user is permitted to perform including SELECT,
INSERT, UPDATE, DELETE, and even external references. GRANT adds new privileges to a
user, whereas REVOKE removes existing privileges.

Controlling privileges on a user-by-user basis is very tedious. SQL provides a special
identifier, PUBLIC, that allows us to determine privileges available to all users. In addition,
we can create and assign privileges to database roles. We can then grant or revoke roles
to or from users and other roles.

234 Chapter 12: Database Privileges ■

Review Questions

1. For each of the Queries 12.15 through 12.18, which of the privileges 12.19
through 12.22 would allow the operation? Assume the username is USER and they
have role DBUSER.

Query 12.15 Query 1

SELECT *
FROM vendors;

Query 12.16 Query 2

SELECT vendorid
FROM vendors
WHERE companyname = 'Veggies_R_Us';

Query 12.17 Query 3

UPDATE vendors
SET companyname = 'Bad Vendor'
WHERE vendorid = 'VGRUS';

Query 12.18 Query 4

INSERT INTO vendors (vendorid) VALUES ('NEWVN');

DCL 12.19 Set privilege 1

GRANT ALL ON vendors TO PUBLIC;

DCL 12.20 Set privilege 2

GRANT SELECT(vendorid) ON vendors TO USER, DBUSER;

DCL 12.21 Set privilege 3

GRANT INSERT ON vendors TO DBUSER;

DCL 12.22 Set privilege 4

GRANT UPDATE(vendorid) ON vendors TO nobody;

■ Practice 235

2. We should be careful assigning privileges to .

3. is used to remove privileges.

4. True/False Privileges can be assigned to views.

5. are used to assign privileges to multiple users at one time.

Practice

For these exercises, we use the Employees Database presented at the end of Chapter 1.
Your query must work for any set of data in the Employees Database, not just the set of
data we provide. Assume we have users tom and sue.

1. Give everyone the privilege of seeing all employee information except salary.

2. Give sue the privilege of updating the revenue of projects.

3. Give tom the privilege of adding new projects but not end dates. Allow him to grant
this privilege to someone else.

4. Create a role called dept_head for tom and sue. Allow dept_head to delete depart-
ments.

5. Create a view of project descriptions belonging to the Consulting department.
Include all employees names and the amount of time each is assigned to the project.
Let tom see this view.

6. Assuming the previous questions have been successful, revoke all of the privileges
granted to tom, but allow sue to keep all of her privileges. Allow tom to keep all
PUBLIC privileges.

c h a p t e r 13

Introduction to Cursors,
Embedded SQL, Stored
Procedures, and Triggers

SQL is powerful, but we need other capabilities to make it truly useful. Such
capabilities include executing SQL and accessing results in other programming languages,
scripting procedures, and reacting to changes in the database.

We present a basic introduction to some of these topics. Our objective is to inform
you that such things exist, not to teach you how to use them. Each topic can be a book by
itself, and the use and even existence of these capabilities differ wildly between DBMSs.

13.1 CURSORs

An SQL query returns an entire set of rows. In some instances, we may wish to process
a result one row at a time instead of all at once. For example, we may wish to process a
result from within a programming language and make decisions row-by-row. We can do
this with a cursor. A cursor is basically a pointer to some position within the rows of a
result set. We can use the cursor to iterate over the result rows.

237

238 Chapter 13: Introduction to Cursors, Embedded SQL, Stored Procedures, and Triggers ■

Follow these steps to use a cursor:

1. Declare Cursor—A cursor declaration specifies the cursor name and the SELECT
statement to generate the results.

DECLARE <cursor name> CURSOR FOR
<SELECT statement>
[ORDER BY <sort criteria list>]

Note that we may optionally specify the order of the cursor’s traversal of the result.

2. Open Cursor—Opening a cursor executes the associated SELECT statement and
positions the cursor at the beginning of the result.

OPEN <cursor name> CURSOR

3. Fetch Rows—Each fetch retrieves the next row in the result. After the last row has
been fetched, subsequent calls to FETCH signal that there are not more data to fetch.

FETCH [FROM] <cursor name>
INTO [<target list>]

The <target list> specified the destination of the row values. Usually, these values
are placed into host variables.

4. Close Cursor—Closing a cursor deallocates associated system resources.

CLOSE <cursor name>

Suppose you wanted to print the name and price of all menu items in descending
order by price. Here’s some example pseudocode:

Code 13.1 Menu prices code

DECLARE menuitem CURSOR FOR
SELECT name, price
FROM menuitems
ORDER BY price DESC;

OPEN menuitem CURSOR;

FETCH NEXT FROM menuitem
INTO :name, :price;

WHILE fetch returned data

print name and price;

FETCH NEXT FROM menuitem
INTO :name, :price;

END WHILE

CLOSE menuitem;

■ 13.2 Programming with SQL 239

The exact coding depends on the host language. Because the cursor syntax is part of SQL,
many SQL interpreters will let you execute cursor commands directly. Experiment with
declaring, opening, fetching from, and closing your own cursor.

Cursors are actually much more powerful than what’s presented here. You can create
scrollable cursors that allow random access to rows. Cursors can also be used to update
and delete referenced rows.

13.2 Programming with SQL

Sometimes single SQL statements are not sufficient for what you need to do. There are
several ways to create a sequence of SQL statements to solve a problem.

13.2.1 Stored Procedures

SQL allows the creation of scripts, called stored procedures, within the database. These
scripts may contain one or more SQL statements. Stored procedures may take parameter
values as input and even return results. The scripting language also includes loops, con-
ditionals, variables, and so on. You may use cursors within stored procedures to process
result sets one row at a time.

What purpose do stored procedures serve? They allow you to write a sequence of
operations once and use it repeatedly. You only have to write the implementation of a pro-
cess once when using a stored procedure. Stored procedures can also insulate users from
changes to the underlying schema. When table changes occur, you only have to update
the affected stored procedures. As long as the interface of the stored procedure doesn’t
change, nobody calling the stored procedure needs to know about the table changes.

As you might have guessed, writing stored procedures is a complicated topic that
deserves a book of its own. In addition, there is little consistency between DBMSs on
stored procedure syntax. Consult your DBMS documentation for specific information on
creation and use of stored procedures.

Let’s look at an example. You have a new customer that really, really loves your
restaurant, but she’s extremely allergic to tomatoes. You need to generate a special menu
for her listing all items that contain no tomatoes. You consider writing a query just for her.
Unfortunately, you’ll have to rewrite this query every time she visits, and if you make an
error just once, she may end up in the hospital (or worse). In addition, once she’s told her
friends about how accommodating your restaurant is to people with food allergies, you’re
going to have lots of new customers with all kinds of food allergies. Looks like what you
need is a stored procedure that takes the name of an allergen and returns a list of eatable
items.

240 Chapter 13: Introduction to Cursors, Embedded SQL, Stored Procedures, and Triggers ■

Code 13.2 Create stored procedure

CREATE PROCEDURE AllergyMenu @allergen VARCHAR(30) AS
SELECT name, price
FROM items IT
WHERE NOT EXISTS

(SELECT *
FROM madewith m JOIN ingredients ig ON (m.ingredientid = ig.ingredientid)
WHERE it.itemid = m.itemid AND ig.name = @allergen);

Code 13.2 creates a stored procedure named AllergyMenu that takes a single parameter,
allergen, and finds the items that do not contain the specified allergen. The syntax here is
specific to Microsoft SQL Server; however, the syntax will be similar for other DBMSs.

We can call this procedure using EXECUTE.

EXECUTE AllergyMenu('Tomato');

Again, the exact method of calling a stored procedure differs by DBMS.

13.2.2 Executing SQL in Other Programming Languages

Consider your favorite online store. They could tell everybody their schema and allow
customers to use SQL to find and purchase merchandise. The complexity of searching and
ordering in this manner would drive most users to find somewhere else to shop, even
those who have read this book and are now SQL experts. In practice, databases work in
the background, and applications provide the front-end interface. Such applications are
responsible for driving user interaction through menus, dialog boxes, web pages, and so
on. Applications query and update the database in response to user interaction. For your
restaurant, if a customer requests a menu, your application should query the database for
menu items and output them in a form the user can easily access. If a customer submits
an order, the application should update the orders table.

Programming languages usually interact with relational databases by constructing
SQL queries, sending them to the database, and processing the results. Communication
between the application and the database is implemented by a library. In most cases, the
results are made available through a cursor or cursorlike interface, allowing the application
to process one row at a time.

Most programming languages support the use of SQL through libraries. Some even
support many different libraries. Unfortunately, these libraries differ greatly between lan-
guages and DBMSs. To give you a general idea of how you might connect a programming
language with a DBMS using SQL, we present a Java example. Even if you don’t know Java,
this should give you a general idea of how other approaches work.

To talk to databases using SQL, Java provides JDBC. JDBC uses a DBMS-specific driver
that serves as a bridge between Java and the specific DBMS. Java applications speak JDBC,
and the driver translates that to DBMS-specific speak, as shown in Figure 13.1. With minor
changes to the code, a Java application can switch the underlying DBMS it is accessing by
picking the JDBC driver of the new DBMS.

■ 13.2 Programming with SQL 241

Java application

JDBC driver

JDBC speak

DBMS

DBMS speak

Figure 13.1: Java application using JDBC to talk to a DBMS.

Let’s look at an example JDBC program.

import java.sql.*;

/**
* JDBCExample accesses the database identified by the connection URL using the
* specified driver for the given user. The ingredient ID and inventory value
* (unitPrice * inventory) is printed to the console for the specified ingredient
* name
*/
public class JDBCExample {

public static void main(String[] args) throws Exception {

// Test for appropriate parameters
if (args.length != 5) {
System.out println("Usage: <Driver Class> <Connection URL> <User Name> " +

"<Password> <Ingedient>");
System.exit(1);

}

String driverClass = args[0]; // JDBC driver class to load
String connectionURL = args[1]; // Database URL
String userName = args[2]; // Database user name
String password = args[3]; // Database password
String ingredient = args[4]; // Name of ingredient

Class.forName(driverClass); // Load JDBC driver

// Create connection to database
Connection conn = DriverManager.getConnection(connectionURL, userName,

password);

242 Chapter 13: Introduction to Cursors, Embedded SQL, Stored Procedures, and Triggers ■

// Create statement
Statement stmt = conn.createStatement();

// Construct string containing SQL query
String sql = "SELECT ingredientid, unitprice * inventory AS invValue " +

"FROM ingredients WHERE name = \'" + ingredient + "\'";

// Execute query and return result set
ResultSet rs = stmt.executeQuery(sql);

// Fetch rows until next() return false
while (rs.next()) {
System.out.println(rs.getString("ingredientid") + " " +
rs.getString("inValue"));

}

// Deallocate resources
rs.close();
stmt.close();
conn.close();

}
}

JDBCExample prints the name and inventory value (unitprice ∗ inventory) of a speci-
fied ingredient. This program expects five parameters. Four of them are common to JDBC
programs, whereas the fifth is application specific.

Driver Class—The class containing the DBMS-specific driver implementing the JDBC
interface to talk the DBMS. Naturally, this value will be driver specific. Some
example values include “org.postgresql.Driver” for a Postgres JDBC driver and
“com.mysql.jdbc.Driver” for a MySQL JDBC driver.

Connection URL—A URL describing the database. The URL is of the form jdbc:
<subprotocol>:<subname>. Both of these values will vary depending on your DBMS.
Often, the subprotocol is related to the DBMS and the subname is the name of
the database. Some example values include “jdbc:postgresql://databasehost.org/
restaurant”, where databasehost.org is the name of the machine hosting the DBMS
and restaurant is the name of the database.

User Name—Name of the user with permission to access the Restaurant Database.

Password—Password of the user with permission to access to Restaurant Database.

Ingredient—Name of the ingredient to find.

JDBCExample begins by loading the specified JDBC driver. Remember that the drivers are
DBMS specific, so you must use a JDBC driver that can talk to your DBMS. The driver
documentation will include the driver class name. Next, a connection is created by the

■ 13.3 Triggers 243

loaded driver. See your driver documentation for the specific syntax of the connection
URL. The specified database user must have permission to access the specific database
(see Chapter 12). Once the connection is created, JDBCExample creates a statement. The
SQL query is constructed using basic string concatenation and submitted through the state-
ment. The results are returned in a result set, which acts much like a cursor. Finally, all of
the system resources are deallocated.

Accessing a database from a programming or scripting language is a powerful con-
cept. Using JDBC, we’ve shown you an example of accessing a database from Java. Access
from other languages using other libraries, although syntactically different, is often con-
ceptually similar. Most dynamic Web page technologies nest scripting languages (e.g., JSP,
ASP, PHP, etc.) inside hypertext markup language (HTML). In turn, these scripting languages
can access databases using SQL to construct a Web page tuned to one particular user—even
one allergic to tomatoes.

13.3 Triggers

A trigger is a SQL statement that is automatically executed whenever a table is modified.
Specifically, a trigger can be set to fire whenever a row is inserted, updated, or deleted
from a specified table. The trigger can be set to fire either before or after the operation.

13.3.1 CREATE TRIGGER

We can create a trigger using the CREATE trigger command:

CREATE TRIGGER <trigger name>
{AFTER | BEFORE}
{DELETE | INSERT | UPDATE [OF <column list>]}
ON <table name>
[REFERENCING <reference list>]
[FOR EACH {ROW | STATEMENT}]
<triggered SQL statement>

Usually, a trigger that fires before an operation will make sure the operation can exe-
cute correctly. A trigger that fires after the table modification usually will cause another
action to take place. Triggers are added to the database using the CREATE TRIGGER com-
mand. For example, let’s assume that we always have a 100% markup on the price of items.
In other words, the price of an item is always twice the cost of the sum of the ingredients.
We can create a trigger to update the price of a meal when the ingredient costs are modified.

DDL 13.3 Triggers

CREATE TRIGGER markup
AFTER UPDATE OF unitprice ON ingredients
UPDATE items SET price =

(SELECT 2 * SUM(quantity * unitprice)
FROM madewith m, ingredients i
WHERE m.ingredientid = i.ingredientid AND items.itemid = m.itemid)

244 Chapter 13: Introduction to Cursors, Embedded SQL, Stored Procedures, and Triggers ■

There are several important items to note about this trigger.

■ The trigger only fires when the unitprice column of the ingredients table is updated.
This means it will not fire if we change the name of an ingredient.

■ The trigger does not fire when we change the quantity in the madewith table. We can
solve that problem by adding a second trigger for updates on the madewith table.

■ The trigger will update every row in the items table (assuming the item is made with
some ingredients) every time it fires. We will fix this problem with row-level triggers.

Another use of triggers is to log deletes from the database. For example, we might
want to remember whenever we delete from the items table. We want to use the logs table
to hold the date of the delete and the itemid that was deleted. To log the changes of a
row, we must know when a particular row is updated. This functionality is provided by
row-level triggers.

We can indicate that a trigger is row-level by adding the clause, FOR EACH ROW.
Any trigger without that clause is considered a statement-level trigger. A row-level trigger
fires once for every row that is changed. Thus, an update of many rows would fire many
row-level triggers but only one statement-level trigger.

This performance disadvantage allows a tremendous computation capability.
Because only one row is being updated, SQL allows us to access the value of that row before
and after the update. Note that INSERT operations do not have old values and DELETES do
not have new values. The SQL standard defines the following syntax for accessing these
values:

<reference list> = <reference element>[<reference element> ...]

<reference element> =
OLD [ROW] [AS] <identifier> |
NEW [ROW] [AS] <identifier> |
OLD TABLE [AS] <old table> |
NEW TABLE [AS] <new table>

The trigger to log changes to the items table to the logs table would look like this.

DDL 13.4 Logging trigger

CREATE TRIGGER logging
BEFORE DELETE ON items
REFERENCING OLD ROW AS oldrow
FOR EACH ROW

INSERT INTO logs VALUES (CURRENT_DATE, oldrow.itemid);

Finally, triggers can also be used to ensure integrity constraints. Whenever an update
is made to the database, the trigger can check to make sure the update is allowed. If it is

■ 13.3 Triggers 245

not, the trigger can generate an error and cause the transaction to perform a rollback. The
details of this require DBMS-specific commands.

13.3.2 Trigger Firing Rules

Row-level triggers and statement-level triggers do not fire at the same time. For example,
assume row-level trigger, row, and statement-level trigger, statement, are defined on the
same table. The triggers would fire in response to the modification as follows:

1. statement triggers with BEFORE clause.

2. row triggers with BEFORE clause.

3. Database modification is performed.

4. row triggers with AFTER clause.

5. statement triggers with AFTER clause.

If there are multiple triggers of the same type that fire from the same update, the SQL
standard defines them to fire in the order they were added to the database.

Caution is required when a trigger contains a reference to the table that fired the
trigger. Row-level operations may not be seen by the trigger, even if the AFTER clause is
used. There is no similar problem with statement-level triggers. Also, if a trigger modifies
a table that contains a trigger, that trigger is also fired. It is possible for these updates to
form a loop, resulting in an infinite number of triggers to fire. Most DBMSs prevent this
by limiting the number of triggers that can be fired. This limit is high enough to handle
ordinary transaction processing, but it will prevent infinite trigger chains.

13.3.3 DROP TRIGGER

We can remove a trigger using the DROP TRIGGER command:

DROP TRIGGER <trigger name>

13.3.4 Using Triggers

Triggers are very powerful operations, but they can consume large amounts of system
resources. As such, they should be used with care. It is possible for a trigger to cause
itself to fire, thus creating an infinite chain of triggers. As a result, all DBMSs have a limit
to the depth of these trigger calls. The more common problem with triggers is causing mul-
tiple updates whenever a single update is requested. This will slow the system down and
hurt performance. As a result, whenever simple integrity constraints such as domain con-
straints and foreign key constraints can be used to ensure the correctness of the database,
triggers should be avoided.

246 Chapter 13: Introduction to Cursors, Embedded SQL, Stored Procedures, and Triggers ■

13.4 Wrap Up

DBMSs support several mechanisms for programming with SQL. In this chapter, we intro-
duced several of these mechanisms. Cursors allow iteration over query results, which may
be useful for result processing in programming languages. Stored procedures allow you to
write scripts that can be executed within SQL. Stored procedures can take parameter values
and return computed results. You can access a relational DBMS from most programming
languages by submitting SQL and processing results. Finally, using triggers, you can react
to critical changes to the database.

■ Practice 247

Review Questions

1. SQL queries return , but we can use to process
results one row at a time.

2. The SQL associated with a cursor is actually executed by the
statement.

3. True/False A trigger can fire when a SELECT statement is executed on a table.

4. What is the name of the driver class for a JDBC driver that can talk to your DBMS?

5. Give the SQL command to execute a stored procedure named ListEmployees that
takes a department name as the only parameter.

6. If a statement-level trigger and row-level trigger are both declared on the same
operation, which is executed first? Does the operation matter? Does the declaration
matter?

7. For the Restaurant Database, write a trigger to update the ingredients table whenever
a vendor is deleted. For all ingredients supplied by that vendor, set the vendorid to
NULL.

8. Write a trigger that would cause an infinite number of triggers to fire. What did your
DBMS do?

Practice

1. Declare a cursor to list the vendor ID and company name of all vendors.

2. Execute the JDBCExample on your DBMS.

3. Add a column to the projects table that is the duration of the project. Write a trigger
to update this value whenever the projects table is updated.

4. Add a column to the projects table that is the duration of the project. Write a stored
procedure to update this value whenever it is called. Use pseudocode, or the stored
procedure language for your DBMS.

5. Add a column to the projects table that is the duration of the project. Write a Java
program to update this value every day.

6. Download and execute an example program in your favorite programming language
from the Internet that accesses your favorite DBMS. Have fun!

Index

ACID, 216
attribute, 4
auto-commit, 218

base tables, 205

cardinality, 155
Cartesian product, 99
catalog, 198
child table, 10
columns, 3
concurrency, 215
correlated subqueries, 145
COUNT, 77
cross product, 99

database, 1
Database management

system, 2
DEFERRED, 219

explicit type conversion, 65

fields, 3
foreign key, 10

foreign key (or referential)
integrity constraint, 10

IMMEDIATE, 219
implicit type conversions, 64
index, 190
inner query, 128
isolation, 216

join, 91
join predicate, 92
join table, 13

manual-commit, 218
many-to-many relationship,

12
MAX, 76
MIN, 76

outer query, 128

parent table, 10
phantom read, 222
populate, 14
primary key, 9

record, 3
relation, 3
relational DBMS, 2
result table, 29
role, 231
row-level trigger, 244
rows, 3

savepoints, 218
schema, 14, 198
self-join, 97
serializability, 216
simple subqueries, 144
statement-level trigger, 244
stored procedures, 239
subquery, 127, 128

table, 3
theta join, 101
three-valued logic, 39
transaction, 216
tuple, 4

249

