
SQL Reference Guide

Fundamentals

Creating a Table

CREATE TABLE cities (
 city VARCHAR(30) NOT NULL,
 state VARCHAR(30) NOT NULL,
 population INT
);

The CREATE TABLE cities
statement creates and names a table

within a database.

Within the parentheses, the data to be

inserted is specified. Similar to

headers in an Excel spreadsheet,

city, state, and population define

this data.

Inserting Values

INSERT INTO cities (city,
state, population)
VALUES ('Alameda',
'California', 79177);

The INSERT INTO statement first

specifies the table and columns, then

the VALUES line inserts the

corresponding data.

Viewing the Table

Tables are easily viewed by using the

SELECT statement.

SELECT *
FROM cities;

The * signifies selecting all available

data, while FROM indicates the specific

table to view.

Syntax note: the use of a semicolon

signifies the completion of a code set,

called a statement terminator. While

most interpreters are smart enough to

work without one, not all will and it is

best practice to end a SQL statement

in this manner.

Queries

Queries retrieve specific data from

within a table. The query can be

customized to be as broad or specific

as the user wishes with the use of

conditional operators.

WHERE:

// Return rows with a specific
value in column_a
SELECT *
FROM table_1
WHERE column_a = 'value';

WHERE and AND:

// Include multiple values with
the AND operator
SELECT *
FROM table_1
WHERE column_a = 'value'
AND column_b = 'value';

WHERE and OR:

// Return data containing
either one value or another
using the OR operator
SELECT *
FROM table_1
WHERE column_a = 'value'
OR column_b = 'value';

WHERE and IN:

// Return data containing
multiple values in a column
using the IN operator
SELECT *
FROM table_1
WHERE column_a IN ('value_a',
'value_b');

WHERE NOT:

// Exclude certain data with
the WHERE NOT operators
SELECT *
FROM table_1
WHERE NOT column_a = 'value';

WHERE and NOT IN:

// Exclude certain values from
a query using the NOT IN
operators
SELECT *
FROM table_1
WHERE column_a NOT IN
('value_a', 'value_b');

Joins

Data combined from different sets of

data, or tables, is referred to as a join.

Joins are completed using a column

that is common between tables.

LEFT JOIN: returns all records from
the left table and the matched records

from the right table.

SELECT column(s)
FROM table_1
LEFT JOIN table_2
ON table_1.column_name =
table_2.column_name;

RIGHT JOIN: returns all records from
the right table, and the matched

records from the left table.

SELECT column(s)
FROM table_1
RIGHT JOIN table_2
ON table_1.column_name =
table_2.column_name;

INNER JOIN: returns records that
have matching values in both tables.

SELECT column(s)
FROM table_1
INNER JOIN table_2
ON table_1.column_name =
table_2.column_name;

CROSS JOIN: returns records that
match every row of the left table with

every row of the right table. This type

of join has the potential to make very

large tables. Note that there are no

additional conditions to be met to join

the data.

SELECT column(s)
FROM table_1
CROSS JOIN table_2;

FULL OUTER JOIN: after an inner join
is performed, null values are placed

within the columns that do not match

between the two tables. Note that the

OUTER keyword is optional when using

this join.

SELECT column(s)
FROM table_1
FULL OUTER JOIN table_b
ON table_1.column_name =
table_2.column_name;

Primary Keys

Primary Keys are a means of creating unique values for the

data contained in tables.

CREATE TABLE people (
 id SERIAL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 has_pet BOOLEAN DEFAULT false,
 pet_type VARCHAR(10) NOT NULL,
 pet_name VARCHAR(30),
 pet_age INT
);

The code block above creates the people table. The line id
SERIAL PRIMARY KEY, indicates a column titled id,
SERIAL signifies that each row will be auto‑incremented, and

PRIMARY KEY stipulates that this column contains unique

identifiers for this table.

When inserting data into a table containing this line, the id
column does not need to be included in the insert statement

because it automatically increments with each row.

Wildcards

Wildcards are used to substitute from zero to many

characters in a string when performing queries. The keyword

LIKE indicates the use of a wildcard.

% (percentage):

// Substitute zero to multiple characters in a
query
SELECT *
FROM actor
WHERE last_name
LIKE 'Will%';

In this example, all last names beginning with "Will" will be

returned, including Will, Willa, and Willows.

_ (underscore):

// Substitute a single character in a query
SELECT *
FROM actor
WHERE first_name
LIKE '_AN';

In the above code block, the underscore represents a single

character. After executing this query, all actors whose first

name contains three letters, the second and third of which

are "AN", will be returned.

