

PROGRAM NAME: ETABS
REVISION NO.: 0

SS CP 65-99 PT-SL EXAMPLE 001

Post-Tensioned Slab Design

PROBLEM DESCRIPTION

The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab.

A one-way, simply supported slab is modeled in ETABS. The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm, as shown in Figure 1.

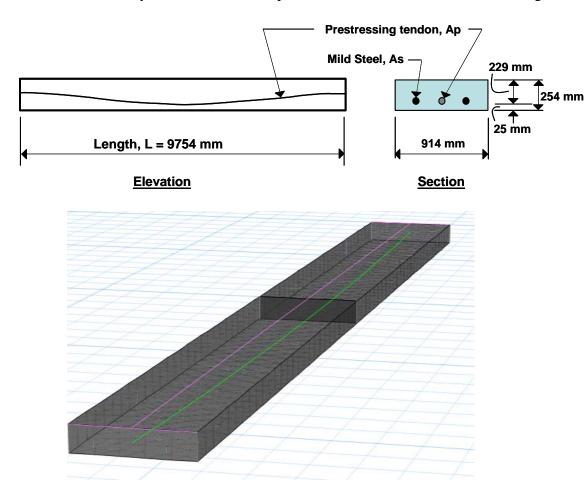


Figure 1 One-Way Slab

COMPUTERS & STRUCTURES INC.

Software Verification

PROGRAM NAME: ETABSREVISION NO.: 0

A 254-mm-wide design strip is centered along the length of the slab and has been defined as an A-Strip. B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile). A tendon with two strands, each having an area of 99 mm², has been added to the A-Strip. The self weight and live loads have been added to the slab. The loads and post-tensioning forces are as follows.

Loads: Dead = self weight, Live = 4.788 kN/m^2

The total factored strip moments, required area of mild steel reinforcement, and slab stresses are reported at the mid-span of the slab. Independent hand calculations are compared with the ETABS results and summarized for verification and validation of the ETABS results.

GEOMETRY, PROPERTIES AND LOADING

Thickness	T, $h=$	254	mm
Effective depth	d =	229	mm
Clear span	L =	9754	mm
Concrete strength	$f'_c =$	30	MPa
Yield strength of steel	$f_{\rm v} =$	400	MPa
Prestressing, ultimate	$f_{pu} =$	1862	MPa
Prestressing, effective	$f_e =$	1210	MPa
Area of Prestress (single strand)	$A_p =$	198	mm^2
Concrete unit weight	$w_c =$	23.56	kN/m^3
Modulus of elasticity	$E_c =$	25000	N/mm ³
Modulus of elasticity	$E_s =$	200,000	N/mm ³
Poisson's ratio	ν =	0	
			2
Dead load	$w_d =$	self	kN/m^2
Live load	$w_l =$	4.788	kN/m^2

TECHNICAL FEATURES OF ETABS TESTED

- > Calculation of the required flexural reinforcement
- Check of slab stresses due to the application of dead, live, and post-tensioning loads

RESULTS COMPARISON

Table 1 shows the comparison of the ETABS total factored moments, required mild steel reinforcing, and slab stresses with the independent hand calculations.

PROGRAM NAME: ETABS
REVISION NO.: 0

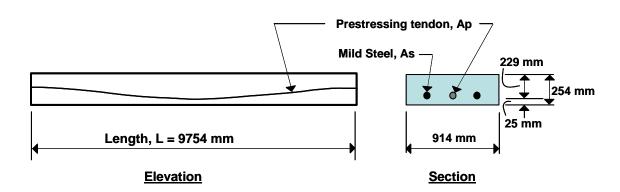
Table 1 Comparison of Results

FEATURE TESTED	INDEPENDENT RESULTS	ETABS RESULTS	DIFFERENCE
Factored moment, Mu (Ultimate) (kN-m)	174.4	174.4	0.00%
Area of Mild Steel req'd, As (sq-cm)	19.65	19.80	0.76%
Transfer Conc. Stress, top (D+PT _I), MPa	-5.058	-5.057	-0.02%
Transfer Conc. Stress, bot (D+PT _I), MPa	2.839	2.839	0.00%
Normal Conc. Stress, top (D+L+PT _F), MPa	-10.460	-10.467	0.07%
Normal Conc. Stress, bot (D+L+PT _F), MPa	8.402	8.409	0.08%

COMPUTER FILE: SS CP 65-1999 PT-SL Ex001.EDB

CONCLUSION

The ETABS results show an acceptable comparison with the independent results.



PROGRAM NAME: ETABSREVISION NO.: 0

HAND CALCULATIONS:

Design Parameters:

Mild Steel ReinforcingPost-Tensioning
$$f$$
'c = 30MPa f_{pu} = 1862 MPa fy = 400MPa f_{py} = 1675 MPaStressing Loss = 186 MPaLong-Term Loss = 94 MPa f_i = 1490 MPa f_e = 1210 MPa f_m , steel = 1.15

Loads:

 $\omega = 10.772 \text{ kN/m}^2 \times 0.914 \text{ m} = 9.846 \text{ kN/m}, \ \omega_u = 16.039 \text{ kN/m}^2 \times 0.914 \text{ m} = 14.659 \text{ kN/m}$

Ultimate Moment,
$$M_U = \frac{wl_1^2}{8} = 14.659 \times (9.754)^2/8 = 174.4 \text{ kN-m}$$

PROGRAM NAME: **REVISION NO.:**

ETABS

Ultimate Stress in strand,
$$f_{pb} = f_{pe} + \frac{7000}{l/d} \left(1 - 1.7 \frac{f_{pu} A_p}{f_{cu} b d} \right)$$
$$= 1210 + \frac{7000}{9754/229} \left(1 - 1.7 \frac{1862(198)}{30(914)(229)} \right)$$
$$= 1358 \text{ MPa} \le 0.7 f_{pu} = 1303 \text{ MPa}$$

K factor used to determine the effective depth is given as:

$$K = \frac{M}{f_{cu}bd^2} = \frac{174.4}{30000(0.914)(0.229)^2} = 0.1213 < 0.156$$
$$z = d \left(0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right) \le 0.95d = 192.2 \text{ mm}$$

Ultimate force in PT, $F_{ult,PT} = A_P(f_{PS}) = 2(99)(1303)/1000 = 258.0 \text{ kN}$

Ultimate moment due to PT,

$$M_{ult\ PT} = F_{ult\ PT}(z)/\gamma = 258.0(0.192)/1.15 = 43.12 \text{ kN-m}$$

Net Moment to be resisted by As,

$$M_{NET} = M_U - M_{PT}$$

= 174.4 - 43.12 = 131.28 kN-m

The area of tensile steel reinforcement is then given by:

$$A_s = \frac{M_{NET}}{0.87 f_y Z_X} = \frac{131.28}{0.87 (400)(192)} (1e6) = 1965 \text{ mm}^2$$

Check of Concrete Stresses at Midspan:

Initial Condition (Transfer), load combination $(D+PT_i) = 1.0D+0.0L+1.0PT_i$

Tendon stress at transfer = jacking stress - stressing losses = 1490 - 186 = 1304 MPa The force in the tendon at transfer, = 1304(197.4)/1000 = 257.4 kN

Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$

Moment due to PT,
$$M_{PT} = F_{PTI}(\text{sag}) = 257.4(102 \text{ mm})/1000 = 26.25 \text{ kN-m}$$

Stress in concrete, $f = \frac{F_{PTI}}{A} \pm \frac{M_D - M_{PT}}{S} = \frac{-257.4}{0.254(0.914)} \pm \frac{65.04 - 26.23}{0.00983}$

$$f = -1.109 \pm 3.948 \text{ MPa}$$

 $f = -5.058 \text{(Comp) max}, 2.839 \text{(Tension) max}$

PROGRAM NAME: ETABSREVISION NO.: 0

Normal Condition, load combinations: $(D+L+PT_F) = 1.0D+1.0L+1.0PT_F$

Tendon stress at normal = jacking - stressing - long-term = 1490 - 186 - 94 = 1210 MPa The force in tendon at normal, = 1210(197.4)/1000 = 238.9 kN

Moment due to dead load, $M_D = 5.984(0.914)(9.754)^2/8 = 65.04 \text{ kN-m}$

Moment due to live load, $M_L = 4.788(0.914)(9.754)^2/8 = 52.04 \text{ kN-m}$

Moment due to PT, $M_{PT} = F_{PTI}(\text{sag}) = 238.9(102 \text{ mm})/1000 = 24.37 \text{ kN-m}$

Stress in concrete for (D+L+PT_F),

$$f = \frac{F_{PTI}}{A} \pm \frac{M_{D+L} - M_{PT}}{S} = \frac{-238.8}{0.254(0.914)} \pm \frac{117.08 - 24.37}{0.00983}$$

$$f = -1.029 \pm 9.431$$

f = -10.460(Comp) max, 8.402(Tension) max