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Preface

Why Stan?

We did not set out to build Stan as it currently exists. We set out to apply full Bayesian
inference to the sort of multilevel generalized linear models discussed in Part II of
(Gelman and Hill, 2007). These models are structured with grouped and interacted
predictors at multiple levels, hierarchical covariance priors, nonconjugate coefficient
priors, latent effects as in item-response models, and varying output link functions
and distributions.

The models we wanted to fit turned out to be a challenge for current general-
purpose software. A direct encoding in BUGS or JAGS can grind these tools to a
halt. Matt Schofield found his multilevel time-series regression of climate on tree-
ring measurements wasn’t converging after hundreds of thousands of iterations.

Initially, Aleks Jakulin spent some time working on extending the Gibbs sampler
in the Hierarchical Bayesian Compiler (Daumé, 2007), which as its name suggests, is
compiled rather than interpreted. But even an efficient and scalable implementation
does not solve the underlying problem that Gibbs sampling does not fare well with
highly correlated posteriors. We finally realized we needed a better sampler, not a
more efficient implementation.

We briefly considered trying to tune proposals for a random-walk Metropolis-
Hastings sampler, but that seemed too problem specific and not even necessarily
possible without some kind of adaptation rather than tuning of the proposals.

The Path to Stan

We were at the same time starting to hear more and more about Hamiltonian Monte
Carlo (HMC) and its ability to overcome some of the the problems inherent in Gibbs
sampling. Matt Schofield managed to fit the tree-ring data using a hand-coded imple-
mentation of HMC, finding it converged in a few hundred iterations.

HMC appeared promising but was also problematic in that the Hamiltonian dy-
namics simulation requires the gradient of the log posterior. Although it’s possible
to do this by hand, it is very tedious and error prone. That’s when we discovered
reverse-mode algorithmic differentiation, which lets you write down a templated C++
function for the log posterior and automatically compute a proper analytic gradient
up to machine precision accuracy in only a few multiples of the cost to evaluate the
log probability function itself. We explored existing algorithmic differentiation pack-
ages with open licenses such as RAD (Gay, 2005) and its repackaging in the Sacado
module of the Trilinos toolkit and the CppAD package in the COIN-OR toolkit. But nei-
ther package supported very many special functions (e.g., probability functions, log



gamma, inverse logit) or linear algebra operations (e.g., Cholesky decomposition) and
were not easily and modularly extensible.

So we built our own reverse-mode algorithmic differentiation package. But once
we’d built our own reverse-mode algorithmic differentiation package, the problem
was that we could not just plug in the probability functions from a package like Boost
because they weren’t templated on all the arguments. We only needed algorithmic
differentiation variables for parameters, not data or transformed data, and promotion
is very inefficient in both time and memory. So we wrote our own fully templated
probability functions.

Next, we integrated the Eigen C++ package for matrix operations and linear alge-
bra functions. Eigen makes extensive use of expression templates for lazy evaluation
and the curiously recurring template pattern to implement concepts without virtual
function calls. But we ran into the same problem with Eigen as with the existing prob-
ability libraries — it doesn’t support mixed operations of algorithmic differentiation
variables and primitives like double.

At this point (Spring 2011), we were happily fitting models coded directly in C++
on top of the pre-release versions of the Stan API. Seeing how well this all worked, we
set our sights on the generality and ease of use of BUGS. So we designed a modeling
language in which statisticians could write their models in familiar notation that could
be transformed to efficient C++ code and then compiled into an efficient executable
program. It turned out that our modeling language was a bit more general than we’d
anticipated, and we had an imperative probabilistic programming language on our
hands.!

The next problem we ran into as we started implementing richer models is vari-
ables with constrained support (e.g., simplexes and covariance matrices). Although it
is possible to implement HMC with bouncing for simple boundary constraints (e.g.,
positive scale or precision parameters), it’s not so easy with more complex multi-
variate constraints. To get around this problem, we introduced typed variables and
automatically transformed them to unconstrained support with suitable adjustments
to the log probability from the log absolute Jacobian determinant of the inverse trans-
forms.

Even with the prototype compiler generating models, we still faced a major hurdle
to ease of use. HMC requires a step size (discretization time) and number of steps
(for total simulation time), and is very sensitive to how they are set. The step size
parameter could be tuned during warmup based on Metropolis rejection rates, but
the number of steps was not so easy to tune while maintaining detailed balance in
the sampler. This led to the development of the No-U-Turn sampler (NUTS) (Hoffman

!In contrast, BUGS and JAGS can be viewed as declarative probabilistic programming languages for
specifying a directed graphical model. In these languages, stochastic and deterministic (poor choice of
name) nodes may represent random quantities.
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and Gelman, 2011, 2014), which takes an exponentially increasing number of steps
(structured as a binary tree) forward and backward in time until the direction of the
simulation turns around, then uses slice sampling to select a point on the simulated
trajectory.

Although not part of the original Stan prototype, which used a unit mass matrix,
Stan now allows a diagonal or dense mass matrix to be estimated during warmup.
This allows adjustment for globally scaled or correlated parameters. Without this
adjustment, models with differently scaled parameters could only mix as quickly as
their most constrained parameter allowed.

We thought we were home free at this point. But when we measured the speed of
some BUGS examples versus Stan, we were very disappointed. The very first example
model, Rats, ran more than an order of magnitude faster in JAGS than in Stan. Rats
is a tough test case because the conjugate priors and lack of posterior correlations
make it an ideal candidate for efficient Gibbs sampling. But we thought the efficiency
of compilation might compensate for the lack of ideal fit to the problem.

We realized we were doing redundant calculations, so we wrote a vectorized form
of the normal distribution for multiple variates with the same mean and scale, which
sped things up a bit. At the same time, we introduced some simple template metapro-
grams to remove the calculation of constant terms in the log probability. These both
improved speed, but not enough. Finally, we figured out how to both vectorize and
partially evaluate the gradients of the densities using a combination of expression
templates and metaprogramming. At this point, we are within a small multiple of a
hand-coded gradient function.

Later, when we were trying to fit a time-series model, we found that normalizing
the data to unit sample mean and variance sped up the fits by an order of magnitude.
Although HMC and NUTS are rotation invariant (explaining why they can sample effec-
tively from multivariate densities with high correlations), they are not scale invariant.
Gibbs sampling, on the other hand, is scale invariant, but not rotation invariant.

We were still using a unit mass matrix in the simulated Hamiltonian dynamics.
The last tweak to Stan before version 1.0 was to estimate a diagonal mass matrix
during warmup; this has since been upgraded to a full mass matrix in version 1.2.
Both these extensions go a bit beyond the NUTS paper on arXiv. Using a mass matrix
sped up the unscaled data models by an order of magnitude, though it breaks the
nice theoretical property of rotation invariance. The full mass matrix estimation has
rotational invariance as well, but scales less well because of the need to invert the
mass matrix at the end of adaptation blocks and then perform matrix multiplications
every leapfrog step.
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Stan 2

It’s been over a year since the initial release of Stan, and we have been overjoyed by
the quantity and quality of models people are building with Stan. We've also been a
bit overwhelmed by the volume of traffic on our user’s list and issue tracker.

We’ve been particularly happy about all the feedback we’ve gotten about instal-
lation issues as well as bugs in the code and documentation. We’ve been pleasantly
surprised at the number of such requests which have come with solutions in the form
of a GitHub pull request. That certainly makes our life easy.

As the code base grew and as we became more familiar with it, we came to realize
that it required a major refactoring (see, for example, (Fowler et al., 1999) for a nice
discussion of refactoring). So while the outside hasn’t changed dramatically in Stan 2,
the inside is almost totally different in terms of how the HMC samplers are organized,
how the output is analyzed, how the mathematics library is organized, etc.

We've also improved our original simple optimization algorithms and now use L-
BFGS (a limited memory quasi-Newton method that uses gradients and a short history
of the gradients to make a rolling estimate of the Hessian).

We've added more compile-time and run-time error checking for models. We've
added many new functions, including new matrix functions and new distributions.
We've added some new parameterizations and managed to vectorize all the univariate
distributions. We've increased compatibility with a range of C++ compilers.

We've also tried to fill out the manual to clarify things like array and vector in-
dexing, programming style, and the I/0 and command-line formats. Most of these
changes are direct results of user-reported confusions. So please let us know where
we can be clearer or more fully explain something.

Finally, we’ve fixed all the bugs which we know about. It was keeping up with the
latter that really set the development time back, including bugs that resulted in our
having to add more error checking.

Perhaps most importantly, we've developed a much stricter process for unit test-
ing, code review, and automated integration testing (see Chapter 66).

As fast and scalable as Stan’s MCMC sampling is, for large data sets it can still be
prohibitively slow. Stan 2.7 introduced variational inference for arbitrary Stan mod-
els. In contrast to penalized maximum likelihood, which finds the posterior mode,
variational inference finds an approximation to the posterior mean (both methods
use curvature to estimate a multivariate normal approximation to posterior covari-
ance). This promises Bayesian inference at much larger scale than is possible with
MCMC methods. In examples we’ve run, problems that take days with MCMC com-
plete in half an hour with variational inference. There is still a long road ahead in
understanding these variational approximations, both in how good the multivariate
approximation is to the true posterior and which forms of models can be fit efficiently,
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scalably, and reliably.

Stan’s Future

We're not done. There’s still an enormous amount of work to do to improve Stan.
Some older, higher-level goals are in a standalone to-do list:

https://github.com/stan-dev/stan/wiki/
Longer-Term-To-Do-List

We are gradually weaning ourselves off of the to-do list in favor of the GitHub
issue tracker (see the next section for a link).

Some major features are on our short-term horizon: Riemannian manifold Hamil-
tonian Monte Carlo (RHMC), transformed Laplace approximations with uncertainty
quantification for maximum likelihood estimation, marginal maximum likelihood
estimation, data-parallel expectation propagation, and streaming (stochastic) varia-
tional inference. The latter has been prototyped and described in papers.

We will also continue to work on improving numerical stability and efficiency
throughout. In addition, we plan to revise the interfaces to make them easier to
understand and more flexible to use (a difficult pair of goals to balance).

Later in the Stan 2 release cycle (Stan 2.7), we added variational inference to Stan’s
sampling and optimization routines, with the promise of approximate Bayesian infer-
ence at much larger scales than is possible with Monte Carlo methods. The future
plans involve extending to a stochastic data-streaming implementation for very large-
scale data problems.

You Can Help

Please let us know if you have comments about this manual or suggestions for Stan.
We're especially interested in hearing about models you've fit or had problems fitting
with Stan. The best way to communicate with the Stan team about user issues is
through the following user’s group.

http://groups.google.com/group/stan-users

For reporting bugs or requesting features, Stan’s issue tracker is at the following
location.

https://github.com/stan-dev/stan/issues
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One of the main reasons Stan is freedom-respecting, open-source software? is that
we love to collaborate. We're interested in hearing from you if you’d like to volunteer
to get involved on the development side. We have all kinds of projects big and small
that we haven’t had time to code ourselves. For developer’s issues, we have a separate
group.

http://groups.google.com/group/stan-dev
To contact the project developers off the mailing lists, send email to

mc.stanislaw@gmail.com

The Stan Development Team
Tuesday 5" September, 2017

2See Appendix A for more information on Stan’s licenses and the licenses of the software on which it
depends.
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1. Overview

This document is both a user’s guide and a reference manual for Stan’s probabilistic
modeling language. This introductory chapter provides a high-level overview of Stan.
The remaining parts of this document include a practically-oriented user’s guide for
programming models and a detailed reference manual for Stan’s modeling language
and associated programs and data formats.

1.1. Stan Home Page

For links to up-to-date code, examples, manuals, bug reports, feature requests, and
everything else Stan related, see the Stan home page:

http://mc-stan.org/

1.2. Stan Interfaces

There are three interfaces for Stan that are supported as part of the Stan project.
Models and their use are the same across the three interfaces, and this manual is the
modeling language manual for all three interfaces. All of the interfaces share initial-
ization, sampling and tuning controls, and roughly share posterior analysis function-
ality.

The interfaces all provide getting-started guides, documentation, and full source
code.

CmdStan

CmdStan allows Stan to be run from the command line. In some sense, CmdStan is
the reference implementation of Stan. The CmdStan documentation used to be part
of this document, but is now its own standalone document. The CmdStan home page
is

http://mc-stan.org/cmdstan.html

RStan

RStan is the R interface to Stan. RStan interfaces to Stan through R’s memory rather
than just calling Stan from the outside, as in the R2ZWinBUGS and R2jags interfaces
on which it was modeled. The RStan home page is

http://mc-stan.org/rstan.html
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PyStan

PyStan is the Python interface to Stan. Like RStan, it interfaces at the Python memory
level rather than calling Stan from the outside. The PyStan home page is

http://mc-stan.org/pystan.html

MatlabStan

MatlabStan is the MATLAB interface to Stan. Unlike RStan and PyStan, MatlabStan
currently wraps a CmdStan process. The MatlabStan home page is

http://mc-stan.org/matTab-stan.html

Stan.jl

Stan.jl is the Julia interface to Stan. Like MatlabStan, Stan.jl wraps a CmdStan process.
The Stan.jl home page is

http://mc-stan.org/julia-stan.html

StataStan

StataStan is the Stata interface to Stan. Like MatlabStan, Stan.jl wraps a CmdStan
process. The StataStan home page is

http://mc-stan.org/stata-stan.html

MathematicaStan

MathematicaStan is the Mathematica interface to Stan. Like MatlabStan, Mathemati-
caStan wraps a CmdStan process. The MathematicaStan home page is

http://mc-stan.org/mathematica-stan.html

1.3. Stan Programs

A Stan program defines a statistical model through a conditional probability function
p(0ly,x), where 0 is a sequence of modeled unknown values (e.g., model parame-
ters, latent variables, missing data, future predictions), y is a sequence of modeled
known values, and x is a sequence of unmodeled predictors and constants (e.g., sizes,
hyperparameters).

Stan programs consist of variable type declarations and statements. Variable
types include constrained and unconstrained integer, scalar, vector, and matrix types,
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as well as (multidimensional) arrays of other types. Variables are declared in blocks
corresponding to the variable’s use: data, transformed data, parameter, transformed
parameter, or generated quantity. Unconstrained local variables may be declared
within statement blocks.

The transformed data, transformed parameter, and generated quantities blocks
contain statements defining the variables declared in their blocks. A special model
block consists of statements defining the log probability for the model.

Within the model block, BUGS-style sampling notation may be used as shorthand
for incrementing an underlying log probability variable, the value of which defines the
log probability function. The log probability variable may also be accessed directly,
allowing user-defined probability functions and Jacobians of transforms.

Variable Constraints

Variable constraints are very important in Stan, particularly for parameters. For Stan
to sample efficiently, any parameter values that satisfy the constraints declared for
the parameters must have support in the model block (i.e., must have non-zero pos-
terior density).

Constraints in the data and transformed data block are only used for error check-
ing data input and transforms. Constraints in the transformed parameters block
must be satisfied the same way as parameter constraints or sampling will devolve to
a random walk or fail. Constraints in the generated quantities block must succeed or
sampling will be halted altogether because it is too late to reject a draw at the point
the generated quantities block is evaluated.

Execution Order

Statements in Stan are interpreted imperatively, so their order matters. Atomic state-
ments involve the assignment of a value to a variable. Sequences of statements (and
optionally local variable declarations) may be organized into a block. Stan also pro-
vides bounded for-each loops of the sort used in R and BUGS.

Probabilistic Programming Language

Stan is an imperative probabilistic programming language. It is an instance of
a domain-specific language, meaning that it was developed for a specific domain,
namely statistical inference.

Stan is a probabilistic programming language in the sense that a random variable
is a bona fide first-class object. In Stan, variables may be treated as random, and
among the random variables, some are observed and some are unknown and need to
be estimated or used for posterior predictive inference. Observed random variables
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are declared as data and unobserved random variables are declared as parameters
(including transformed parameters, generated quantities, and local variables depend-
ing on them). For the unobserved random variables, it is possible to sample them
either marginally or jointly, estimate their means and variance, or plug them in for
downstream posterior predictive inference.

Stan is an imperative language, like C or Fortran (and parts of C++, R, Python, and
Java), in the sense that is based on assignment, loops, conditionals, local variables,
object-level function application, and array-like data structures. In contrast and/or
complement, functional languages typically allow higher-order functions and often
allow reflection of programming language features into the object language, whereas
pure functional languages remove assignment altogether. Object-oriented languages
introduce more general data types with dynamic function dispatch.

Stan’s language is Church-Turing complete Church (1936); Turing (1936); Hopcroft
and Motwani (2006), in the same way that C or R is. That means any program that is
computable on a Turing machine (or in C) can be implemented in Stan (not necessarily
easily, of course). All that is required for Turing completeness is loops, conditionals,
and arrays that can be dynamically (re)sized in a loop.

1.4. Compiling and Running Stan Programs

A Stan program is first translated to a C++ program by the Stan compiler stanc, then
the C++ program compiled to a self-contained platform-specific executable. Stan can
generate executables for various flavors of Windows, Mac OS X, and Linux.! Running
the Stan executable for a model first reads in and validates the known values y and
X, then generates a sequence of (non-independent) identically distributed samples
oW 0@ . each of which has the marginal distribution p(8|y, x).

1.5. Sampling

For continuous parameters, Stan uses Hamiltonian Monte Carlo (HMC) sampling (Du-
ane et al., 1987; Neal, 1994, 2011), a form of Markov chain Monte Carlo (MCMC) sam-
pling (Metropolis et al., 1953). Stan does not provide discrete sampling for param-
eters. Discrete observations can be handled directly, but discrete parameters must
be marginalized out of the model. Chapter 13 and Chapter 15 discuss how finite
discrete parameters can be summed out of models, leading to large efficiency gains
versus discrete parameter sampling.

LA Stan program may also be compiled to a dynamically linkable object file for use in a higher-level
scripting language such as R or Python.
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HMC accelerates both convergence to the stationary distribution and subsequent
parameter exploration by using the gradient of the log probability function. The un-
known quantity vector 0 is interpreted as the position of a fictional particle. Each
iteration generates a random momentum and simulates the path of the particle with
potential energy determined by the (negative) log probability function. Hamilton’s
decomposition shows that the gradient of this potential determines change in mo-
mentum and the momentum determines the change in position. These continuous
changes over time are approximated using the leapfrog algorithm, which breaks the
time into discrete steps which are easily simulated. A Metropolis reject step is then
applied to correct for any simulation error and ensure detailed balance of the result-
ing Markov chain transitions (Metropolis et al., 1953; Hastings, 1970).

Basic Euclidean Hamiltonian Monte Carlo involves three “tuning” parameters to
which its behavior is quite sensitive. Stan’s samplers allow these parameters to be set
by hand or set automatically without user intervention.

The first tuning parameter is the step size, measured in temporal units (i.e.,
the discretization interval) of the Hamiltonian. Stan can be configured with a user-
specified step size or it can estimate an optimal step size during warmup using dual
averaging (Nesterov, 2009; Hoffman and Gelman, 2011, 2014). In either case, addi-
tional randomization may be applied to draw the step size from an interval of possi-
ble step sizes (Neal, 2011).

The second tuning parameter is the number of steps taken per iteration, the prod-
uct of which with the temporal step size determines the total Hamiltonian simulation
time. Stan can be set to use a specified number of steps, or it can automatically adapt
the number of steps during sampling using the No-U-Turn (NUTS) sampler (Hoffman
and Gelman, 2011, 2014).

The third tuning parameter is a mass matrix for the fictional particle. Stan can be
configured to estimate a diagonal mass matrix or a full mass matrix during warmup;
Stan will support user-specified mass matrices in the future. Estimating a diago-
nal mass matrix normalizes the scale of each element 0x of the unknown variable
sequence 6, whereas estimating a full mass matrix accounts for both scaling and ro-
tation,? but is more memory and computation intensive per leapfrog step due to the
underlying matrix operations.

Convergence Monitoring and Effective Sample Size

Samples in a Markov chain are only drawn with the marginal distribution p(0|y, x)
after the chain has converged to its equilibrium distribution. There are several meth-
ods to test whether an MCMC method has failed to converge; unfortunately, passing

2These estimated mass matrices are global, meaning they are applied to every point in the parameter
space being sampled. Riemann-manifold HMC generalizes this to allow the curvature implied by the mass
matrix to vary by position.
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the tests does not guarantee convergence. The recommended method for Stan is
to run multiple Markov chains, initialized randomly with a diffuse set of initial pa-
rameter values, discard the warmup/adaptation samples, then split the remainder of
each chain in half and compute the potential scale reduction statistic, R (Gelman and
Rubin, 1992). If the result is not enough effective samples, double the number of
iterations and start again, including rerunning warmup and everything.

When estimating a mean based on a sample of M independent draws, the estima-
tion error is proportional to 1/+/M. If the draws are positively correlated, as they typ-
ically are when drawn using MCMC methods, the error is proportional to 1/./N_EFF,
where N_EFF is the effective sample size. Thus it is standard practice to also monitor
(an estimate of) the effective sample size until it is large enough for the estimation or
inference task at hand.

Bayesian Inference and Monte Carlo Methods

Stan was developed to support full Bayesian inference. Bayesian inference is based in
part on Bayes’s rule,
p(0ly,x) < p(y10,x) p(0,x),

which, in this unnormalized form, states that the posterior probability p(0]y, x) of
parameters 0 given data y (and constants x) is proportional (for fixed y and x) to the
product of the likelihood function p(y |6, x) and prior p(0, x).

For Stan, Bayesian modeling involves coding the posterior probability function up
to a proportion, which Bayes’s rule shows is equivalent to modeling the product of
the likelihood function and prior up to a proportion.

Full Bayesian inference involves propagating the uncertainty in the value of pa-
rameters € modeled by the posterior p(0|y, x). This can be accomplished by basing
inference on a sequence of samples from the posterior using plug-in estimates for
quantities of interest such as posterior means, posterior intervals, predictions based
on the posterior such as event outcomes or the values of as yet unobserved data.

1.6. Optimization

Stan also supports optimization-based inference for models. Given a posterior
p(0]y), Stan can find the posterior mode 6*, which is defined by

0* = argmax, p(0ly).

Here the notation argmax, f(v) is used to pick out the value of v at which f(v) is
maximized.

30ften a lack of effective samples is a result of not enough warmup iterations. At most this rerunning
strategy will consume about 50% more cycles than guessing the correct number of iterations at the outset.
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If the prior is uniform, the posterior mode corresponds to the maximum likeli-
hood estimate (MLE) of the parameters. If the prior is not uniform, the posterior
mode is sometimes called the maximum a posteriori (MAP) estimate.

For optimization, the Jacobian of any transforms induced by constraints on vari-
ables are ignored. It is more efficient in many optimization problems to remove lower
and upper bound constraints in variable declarations and instead rely on rejection in
the model block to disallow out-of-support solutions.

Inference with Point Estimates

The estimate 6* is a so-called “point estimate,” meaning that it summarizes the pos-
terior distribution by a single point, rather than with a distribution. Of course, a point
estimate does not, in and of itself, take into account estimation variance. Posterior
predictive inferences p(y | y) can be made using the posterior mode given data y as
p(y | 6*), but they are not Bayesian inferences, even if the model involves a prior, be-
cause they do not take posterior uncertainty into account. If the posterior variance is
low and the posterior mean is near the posterior mode, inference with point estimates
can be very similar to full Bayesian inference.

1.7. Variational Inference

Stan also supports variational inference, an approximate Bayesian inference tech-
nique (Jordan et al., 1999; Wainwright and Jordan, 2008). Variational inference pro-
vides estimates of posterior means and uncertainty through a parametric approxi-
mation of a posterior that is optimized for its fit to the true posterior. Variational
inference has had a tremendous impact on Bayesian computation, especially in the
machine learning community; it is typically faster than sampling techniques and can
scale to massive datasets (Hoffman et al., 2013).

Variational inference approximates the posterior p(6 | y) with a simple, parame-
terized distribution g(0 | ¢). It matches the approximation to the true posterior by
minimizing the Kullback-Leibler divergence,

P = argdr)ninKL[q(G [d) Il p@1y)].

This converts Bayesian inference into an optimization problem with a well-defined
metric for convergence. Variational inference can provide orders of magnitude faster
convergence than sampling; the quality of the approximation will vary from model to
model. Note that variational inference is not a point estimation technique; the result
is a distribution that approximates the posterior.
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Stan implements Automatic Differentiation Variational Inference (ADVI), an algo-
rithm designed to leverage Stan’s library of transformations and automatic differen-
tiation toolbox (Kucukelbir et al., 2015). ADVI circumvents all of the mathematics
typically required to derive variational inference algorithms; it works with any Stan
model.
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Part 11

Stan Modeling Language
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2. Encodings, Includes, and Comments

This quick chapter covers the character encoding, include mechanism, and comment
syntax for the Stan language.

2.1. Character Encoding

Stan Program

The content of a Stan program must be coded in ASCII. Extended character sets such
as UTF-8 encoded Unicode may not be used for identifiers or other text in a program.

Comments

The content of comments is ignored by the language compiler and may be written us-
ing any character encoding (e.g., ASCII, UTF-8, Latinl, Big5). The comment delimiters
themselves must be coded in ASCIIL.

2.2. Includes

Stan allows one file to be included within another file with the following syntax. For
example, suppose the file std-normal.stan defines the standard normal log proba-
bility density function (up to an additive constant).

functions {
real std_normal_Tpdf(vector y) {
return -0.5 * y' = y;
3
}

Suppose we also have a file containing a Stan program with an include statement.

#include std-normal.stan
parameters {
real y;

}
model {

y ~ std_normal();
}

This Stan program behaves as if the contents of the file std-normal.stan replace the
line with the #incTude statement, behaving as if a single Stan program were provided.
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functions {
real std_normal_Tlpdf(vector y) {
return -0.5 * y' * y;

}
}
parameters {
real y;
}
model {
y ~ std_normal();
}

There are no restrictions on where include statements may be placed within a file
or what the contents are of the replaced file. No additional whitespace is included
beyond what is in the included file.

Recursive Includes

Recursive includes will be ignored. For example, suppose a.stan contains
#include b.stan

and b.stan contains

#include a.stan
The result of processing this file will be empty, because a.stan will include b.stan,
from which the include of a.stan is ignored and a warning printed.

Include Paths

The Stan interfaces provide a mechanism for specifying a sequence of system paths
in which to search for include files. The file included is the first one that is found in
the sequence.

2.3. Comments

Stan supports C++-style line-based and bracketed comments. Comments may be used
anywhere whitespace is allowed in a Stan program.

Line-Based Comments

Any characters on a line following two forward slashes (//) is ignored along with the
slashes. These may be used, for example, to document variables,
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data {
int<lower=0> N; // number of observations
real y[N]; // observations

}

Bracketed Comments

For bracketed comments, any text between a forward-slash and asterisk pair (/*) and
an asterisk and forward-slash pair (x/) is ignored.

2.4. Whitespace

Whitespace Characters

The whitespace characters (and their ASCII code points) are the space (0x20), tab
(0x09), carriage return (0x0D), and line feed (0x0A).

Whitespace Neutrality

Stan treats these whitespace characters identically. Specifically, there is no signif-
icance to indentation, to tabs, to carriage returns or line feeds, or to any vertical
alignment of text.

Whitespace Location

Zero or more whitespace characters may be placed between symbols in a Stan pro-
gram. For example, zero or more whitespace characters of any variety may be in-
cluded before and after a binary operation such as a * b, before a statement-ending
semicolon, around parentheses or brackets, before or after commas separating func-
tion arguments, etc.

Identifiers and literals may not be separated by whitespace. Thus it is not le-
gal to write the number 10000 as 10 000 or to write the identifier normal_1pdf as
normal _ Tpdf.
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3. Data Types and Variable Declarations

This chapter covers the data types for expressions in Stan. Every variable used in
a Stan program must have a declared data type. Only values of that type will be
assignable to the variable (except for temporary states of transformed data and trans-
formed parameter values). This follows the convention of programming languages
like C++, not the conventions of scripting languages like Python or statistical lan-
guages such as R or BUGS.

The motivation for strong, static typing is threefold.

- Strong typing forces the programmer’s intent to be declared with the variable,
making programs easier to comprehend and hence easier to debug and main-
tain.

- Strong typing allows programming errors relative to the declared intent to be
caught sooner (at compile time) rather than later (at run time). The Stan com-
piler (called through an interface such as CmdStan, RStan, or PyStan) will flag
any type errors and indicate the offending expressions quickly when the pro-
gram is compiled.

- Constrained types will catch runtime data, initialization, and intermediate value
errors as soon as they occur rather than allowing them to propagate and poten-
tially pollute final results.

Strong typing disallows assigning the same variable to objects of different types at
different points in the program or in different invocations of the program.

3.1. Overview of Data Types

Arguments for built-in and user-defined functions and local variables are required to
be basic data types, meaning an unconstrained primitive, vector, or matrix type or an
array of such.

Passing arguments to functions in Stan works just like assignment to basic types.
Stan functions are only specified for the basic data types of their arguments, including
array dimensionality, but not for sizes or constraints. Of course, functions often
check constraints as part of their behavior.

Primitive Types

Stan provides two primitive data types, real for continuous values and int for inte-
ger values.
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Vector and Matrix Types

Stan provides three matrix-based data types, vector for column vectors, row_vector
for row vectors, and matrix for matrices.

Array Types

Any type (including the constrained types discussed in the next section) can be made
into an array type by declaring array arguments. For example,

real x[10];
matrix[3, 3] m[6, 7];

declares x to be a one-dimensional array of size 10 containing real values, and de-
clares m to be a two-dimensional array of size 6 x 7 containing values that are 3 x 3
matrices.

Constrained Data Types

Declarations of variables other than local variables may be provided with constraints.
These constraints are not part of the underlying data type for a variable, but deter-
mine error checking in the transformed data, transformed parameter, and generated
quantities block, and the transform from unconstrained to constrained space in the
parameters block.

All of the basic data types may be given lower and upper bounds using syntax
such as

int<lower = 1> N;
real<upper = 0> Tlog_p;
vector<lower = -1, upper = 1>[3] rho;

There are also special data types for structured vectors and matrices. There are
four constrained vector data types, simplex for unit simplexes, unit_vector for
unit-length vectors, ordered for ordered vectors of scalars and positive_ordered
for vectors of positive ordered scalars. There are specialized matrix data types
corr_matrix and cov_matrix for correlation matrices (symmetric, positive defi-
nite, unit diagonal) and covariance matrices (Ssymmetric, positive definite). The type
cholesky_factor_cov is for Cholesky factors of covariance matrices (lower trian-
gular, positive diagonal, product with own transpose is a covariance matrix). The
type cholesky_factor_corr is for Cholesky factors of correlation matrices (lower
triangular, positive diagonal, unit-length rows).

Constraints provide error checking for variables defined in the data,
transformed data, transformed parameters, and generated quantities
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blocks. Constraints are critical for variables declared in the parameters block, where
they determine the transformation from constrained variables (those satisfying the
declared constraint) to unconstrained variables (those ranging over all of R").

It is worth calling out the most important aspect of constrained data types:

The model must have support (non-zero density, equivalently finite log den-
sity) at every value of the parameters that meets their declared constraints.

If this condition is violated with parameter values that satisfy declared constraints
but do not have finite log density, then the samplers and optimizers may have any
of a number of pathologies including just getting stuck, failure to initialize, excessive
Metropolis rejection, or biased samples due to inability to explore the tails of the
distribution.

3.2. Primitive Numerical Data Types

Unfortunately, the lovely mathematical abstraction of integers and real numbers is
only partially supported by finite-precision computer arithmetic.

Integers

Stan uses 32-bit (4-byte) integers for all of its integer representations. The maximum
value that can be represented as an integer is 23! — 1; the minimum value is —(23!).
When integers overflow, their values wrap. Thus it is up to the Stan programmer
to make sure the integer values in their programs stay in range. In particular, every
intermediate expression must have an integer value that is in range.
Integer arithmetic works in the expected way for addition, subtraction, and multi-
plication, but rounds the result of division (see Section 40.1 for more information).

Reals

Stan uses 64-bit (8-byte) floating point representations of real numbers. Stan roughly!
follows the IEEE 754 standard for floating-point computation. The range of a 64-bit
number is roughly +21922  which is slightly larger than +103%7. It is a good idea to
stay well away from such extreme values in Stan models as they are prone to cause
overflow.

64-bit floating point representations have roughly 15 decimal digits of accuracy.
But when they are combined, the result often has less accuracy. In some cases, the
difference in accuracy between two operands and their result is large.

IStan compiles integers to int and reals to doubTe types in C++. Precise details of rounding will depend
on the compiler and hardware architecture on which the code is run.
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There are three special real values used to represent (1) not-a-number value for er-
ror conditions, (2) positive infinity for overflow, and (3) negative infinity for overflow.
The behavior of these special numbers follows standard IEEE 754 behavior.

Not-a-number

The not-a-number value propagates. If an argument to a real-valued function is not-a-
number, it either rejects (an exception in the underlying C++) or returns not-a-number
itself. For boolean-valued comparison operators, if one of the arguments is not-a-
number, the return value is always zero (i.e., false).

Infinite values

Positive infinity is greater than all numbers other than itself and not-a-number; neg-
ative infinity is similarly smaller. Adding an infinite value to a finite value returns
the infinite value. Dividing a finite number by an infinite value returns zero; divid-
ing an infinite number by a finite number returns the infinite number of appropriate
sign. Dividing a finite number by zero returns positive infinity. Dividing two infinite
numbers produces a not-a-number value as does subtracting two infinite numbers.
Some functions are sensitive to infinite values; for example, the exponential function
returns zero if given negative infinity and positive infinity if given positive infinity.
Often the gradients will break down when values are infinite, making these boundary
conditions less useful than they may appear at first.

Promoting Integers to Reals

Stan automatically promotes integer values to real values if necessary, but does not
automatically demote real values to integers. For very large integers, this will cause a
rounding error to fewer significant digits in the floating point representation than in
the integer representation.

Unlike in C++, real values are never demoted to integers. Therefore, real values
may only be assigned to real variables. Integer values may be assigned to either
integer variables or real variables. Internally, the integer representation is cast to
a floating-point representation. This operation is not without overhead and should
thus be avoided where possible.

3.3. Univariate Data Types and Variable Declarations

All variables used in a Stan program must have an explicitly declared data type. The
form of a declaration includes the type and the name of a variable. This section covers
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univariate types, the next section vector and matrix types, and the following section
array types.

Unconstrained Integer

Unconstrained integers are declared using the int keyword. For example, the variable
N is declared to be an integer as follows.

int N;

Constrained Integer

Integer data types may be constrained to allow values only in a specified interval by
providing a lower bound, an upper bound, or both. For instance, to declare N to be a
positive integer, use the following.

int<lower=1> N;

This illustrates that the bounds are inclusive for integers.
To declare an integer variable cond to take only binary values, that is zero or one,
a lower and upper bound must be provided, as in the following example.

int<Tower=0,upper=1> cond;

Unconstrained Real

Unconstrained real variables are declared using the keyword real, The following ex-
ample declares theta to be an unconstrained continuous value.

real theta;

Constrained Real

Real variables may be bounded using the same syntax as integers. In theory (that
is, with arbitrary-precision arithmetic), the bounds on real values would be exclusive.
Unfortunately, finite-precision arithmetic rounding errors will often lead to values on
the boundaries, so they are allowed in Stan.

The variable sigma may be declared to be non-negative as follows.

real<lower=0> sigma;

The following declares the variable x to be less than or equal to —1.
real<upper=-1> x;

To ensure rho takes on values between —1 and 1, use the following declaration.

real<lower=-1,upper=1> rho;
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Infinite Constraints

Lower bounds that are negative infinity or upper bounds that are positive infinity are
ignored. Stan provides constants positive_infinity() and negative_infinity()
which may be used for this purpose, or they may be read as data in the dump format.

Expressions as Bounds

Bounds for integer or real variables may be arbitrary expressions. The only require-
ment is that they only include variables that have been defined before the declaration.
If the bounds themselves are parameters, the behind-the-scenes variable transform
accounts for them in the log Jacobian.

For example, it is acceptable to have the following declarations.

data {
real Tb;
}
parameters {
real<lower=1b> phi;

}

This declares a real-valued parameter phi to take values greater than the value of
the real-valued data variable Th. Constraints may be complex expressions, but must
be of type int for integer variables and of type real for real variables (including
constraints on vectors, row vectors, and matrices). Variables used in constraints can
be any variable that has been defined at the point the constraint is used. For instance,

data {
int<lower=1> N;
real y[N];

}

parameters {
real<lower=min(y), upper=max(y)> phi;

}

This declares a positive integer data variable N, an array y of real-valued data of
length N, and then a parameter ranging between the minimum and maximum value
of y. As shown in the example code, the functions min() and max() may be applied
to containers such as arrays.

3.4. Vector and Matrix Data Types

Stan provides three types of container objects: arrays, vectors, and matrices. Vectors
and matrices are more limited kinds of data structures than arrays. Vectors are in-
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trinsically one-dimensional collections of reals, whereas matrices are intrinsically two
dimensional. Vectors, matrices, and arrays are not assignable to one another, even if
their dimensions are identical. A 3 X 4 matrix is a different kind of object in Stan than
a 3 X 4 array.

The intention of using matrix types is to call out their usage in the code. There
are three situations in Stan where only vectors and matrices may be used,

- matrix arithmetic operations (e.g., matrix multiplication)
- linear algebra functions (e.g., eigenvalues and determinants), and

- multivariate function parameters and outcomes (e.g., multivariate normal dis-
tribution arguments).

Vectors and matrices cannot be typed to return integer values. They are restricted
to real values.?
Indexing from 1

Vectors and matrices, as well as arrays, are indexed starting from one in Stan. This
follows the convention in statistics and linear algebra as well as their implementations
in the statistical software packages R, MATLAB, BUGS, and JAGS. General computer
programming languages, on the other hand, such as C++ and Python, index arrays
starting from zero.

Vectors

Vectors in Stan are column vectors; see the next subsection for information on row
vectors. Vectors are declared with a size (i.e., a dimensionality). For example, a 3-
dimensional vector is declared with the keyword vector, as follows.

vector[3] u;

Vectors may also be declared with constraints, as in the following declaration of a
3-vector of non-negative values.

vector<lower=0>[3] uj;

2This may change if Stan is called upon to do complicated integer matrix operations or boolean matrix
operations. Integers are not appropriate inputs for linear algebra functions.
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Unit Simplexes

A unit simplex is a vector with non-negative values whose entries sum to 1. For in-
stance, (0.2,0.3,0.4,0.1)7 is a unit 4-simplex. Unit simplexes are most often used as
parameters in categorical or multinomial distributions, and they are also the sampled
variate in a Dirichlet distribution. Simplexes are declared with their full dimensional-
ity. For instance, theta is declared to be a unit 5-simplex by

simplex[5] theta;

Unit simplexes are implemented as vectors and may be assigned to other vectors
and vice-versa. Simplex variables, like other constrained variables, are validated to
ensure they contain simplex values; for simplexes, this is only done up to a stati-
cally specified accuracy threshold € to account for errors arising from floating-point
imprecision.

In high dimensional problems, simplexes may require smaller step sizes in the
inference algorithms in order to remain stable; this can be achieved through higher
target acceptance rates for samplers and longer warmup periods, tighter tolerances
for optimization with more iterations, and in either case, with less dispersed param-
eter initialization or custom initialization if there are informative priors for some
parameters.

Unit Vectors

A unit vector is a vector with a norm of one. For instance, (0.5,0.5,0.5,0.5)" is a unit
4-vector. Unit vectors are sometimes used in directional statistics. Unit vectors are
declared with their full dimensionality. For instance, theta is declared to be a unit
5-vector by

unit_vector[5] theta;

Unit vectors are implemented as vectors and may be assigned to other vectors and
vice-versa. Unit vector variables, like other constrained variables, are validated to
ensure that they are indeed unit length; for unit vectors, this is only done up to a
statically specified accuracy threshold € to account for errors arising from floating-
point imprecision.

Ordered Vectors

An ordered vector type in Stan represents a vector whose entries are sorted in ascend-
ing order. For instance, (—1.3,2.7,2.71)" is an ordered 3-vector. Ordered vectors are
most often employed as cut points in ordered logistic regression models (see Sec-
tion 9.8).

The variable c is declared as an ordered 5-vector by
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ordered[5] c;

After their declaration, ordered vectors, like unit simplexes, may be assigned to other
vectors and other vectors may be assigned to them. Constraints will be checked after
executing the block in which the variables were declared.

Positive, Ordered Vectors

There is also a positive, ordered vector type which operates similarly to ordered vec-
tors, but all entries are constrained to be positive. For instance, (2,3.7,4,12.9) is a
positive, ordered 4-vector.

The variable d is declared as a positive, ordered 5-vector by

positive_ordered[5] d;

Like ordered vectors, after their declaration positive ordered vectors assigned to other
vectors and other vectors may be assigned to them. Constraints will be checked after
executing the block in which the variables were declared.

Row Vectors

Row vectors are declared with the keyword row_vector. Like (column) vectors, they
are declared with a size. For example, a 1093-dimensional row vector u would be
declared as

row_vector[1093] u;

Constraints are declared as for vectors, as in the following example of a 10-vector
with values between -1 and 1.

row_vector<lower=-1,upper=1>[10] u;

Row vectors may not be assigned to column vectors, nor may column vectors be
assigned to row vectors. If assignments are required, they may be accommodated
through the transposition operator.

Matrices

Matrices are declared with the keyword matrix along with a number of rows and
number of columns. For example,

matrix[3, 3] A;
matrix[M, N] B;
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declares A to be a 3 x 3 matrix and B to be a M x N matrix. For the second declaration
to be well formed, the variables M and N must be declared as integers in either the
data or transformed data block and before the matrix declaration.

Matrices may also be declared with constraints, as in this (3x4) matrix of non-
positive values.

matrix<upper=0>[3, 4] B;

Assigning to Rows of a Matrix

Rows of a matrix can be assigned by indexing the left-hand side of an assignment
statement. For example, this is possible.

matrix[M, N] a;
row_vector[N] b;

// ...
a[1l] = b;

This copies the values from row vector b to a[1], which is the first row of the matrix
a. If the number of columns in a is not the same as the size of b, a run-time error is
raised; the number of rows of a is N, which is also the size of b.

Assignment works by copying values in Stan. That means any subsequent assign-
ment to a[1] does not affect b, nor does an assignment to b affect a.

Correlation Matrices

Matrix variables may be constrained to represent correlation matrices. A matrix is
a correlation matrix if it is symmetric and positive definite, has entries between —1
and 1, and has a unit diagonal. Because correlation matrices are square, only one
dimension needs to be declared. For example,

corr_matrix[3] Sigma;

declares Sigma to be a 3 x 3 correlation matrix.
Correlation matrices may be assigned to other matrices, including unconstrained
matrices, if their dimensions match, and vice-versa.

Cholesky Factors of Correlation Matrices

Matrix variables may be constrained to represent the Cholesky factors of a correlation
matrix.

A Cholesky factor for a correlation matrix L is a K x K lower-triangular matrix
with positive diagonal entries and rows that are of length 1 (i.e., >5_, Lz, =1 If
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L is a Cholesky factor for a correlation matrix, then L LT is a correlation matrix (i.e.,
symmetric positive definite with a unit diagonal).
A declaration such as follows.

cholesky_factor_corr[K] L;

declares L to be a Cholesky factor for a K by K correlation matrix.

Covariance Matrices

Matrix variables may be constrained to represent covariance matrices. A matrix is a
covariance matrix if it is symmetric and positive definite. Like correlation matrices,
covariance matrices only need a single dimension in their declaration. For instance,

cov_matrix[K] Omega;

declares Omega to be a K X K covariance matrix, where K is the value of the data
variable K.

Cholesky Factors of Covariance Matrices

Matrix variables may be constrained to represent the Cholesky factors of a covariance
matrix. This is often more convenient or more efficient than representing covariance
matrices directly.

A Cholesky factor L is an M X N lower-triangular matrix (if m < n then L[m, n] = 0)
with a strictly positive diagonal (L[k,k] > 0) and M > N. If L is a Cholesky factor, then
> = LLT is a covariance matrix. Furthermore, every covariance matrix has a Cholesky
factorization.

The typical case of a square Cholesky factor may be declared with a single dimen-
sion,

cholesky_factor_cov[4] L;

In general, two dimensions may be declared, with the above being equal to
cholesky_factor_cov[4, 4]. The type cholesky_factor_cov[M, N] may be
used for the general M x N.

Assigning Constrained Variables

Constrained variables of all types may be assigned to other variables of the same
unconstrained type and vice-versa. Matching is interpreted strictly as having the same
basic type and number of array dimensions. Constraints are not considered, but
basic data types are. For instance, a variable declared to be real<Tower=0, upper=1>
could be assigned to a variable declared as real and vice-versa. Similarly, a variable
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declared as matrix[3, 3] may be assigned to a variable declared as cov_matrix[3]
or cholesky_factor_cov[3], and vice-versa.

Checks are carried out at the end of each relevant block of statements to ensure
constraints are enforced. This includes run-time size checks. The Stan compiler
isn’t able to catch the fact that an attempt may be made to assign a matrix of one
dimensionality to a matrix of mismatching dimensionality.

Expressions as Size Declarations

Variables may be declared with sizes given by expressions. Such expressions are
constrained to only contain data or transformed data variables. This ensures that all
sizes are determined once the data is read in and transformed data variables defined
by their statements. For example, the following is legal.

data {
int<lower=0> N_observed; int<lower=0> N_missing;
// ...

transformed parameters {
vector[N_observed + N_missing] y;

/] ...

Accessing Vector and Matrix Elements

If v is a column vector or row vector, then v[2] is the second element in the vector.
If mis a matrix, then m[2, 3] is the value in the second row and third column.

Providing a matrix with a single index returns the specified row. For instance, if m
is a matrix, then m[2] is the second row. This allows Stan blocks such as

matrix[M, N] m;
row_vector[N] v;

real x;
// ...
v = m[2];

x = vVv[3]; // x == m[2][3] == m[2, 3]

The type of m[2] is row_vector because it is the second row of m. Thus it is possible
to write m[2][3] instead of m[2, 3] to access the third element in the second row.
When given a choice, the form m[2, 3] is preferred.?

3 As of Stan version 1.0, the form m[2, 3] is more efficient because it does not require the creation and
use of an intermediate expression template for m[2]. In later versions, explicit calls to m[2] [3] may be
optimized to be as efficient as m[2, 3] by the Stan compiler.
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Size Declaration Restrictions

An integer expression is used to pick out the sizes of vectors, matrices, and arrays.
For instance, we can declare a vector of size M + N using

vector[M + N] vy;

Any integer-denoting expression may be used for the size declaration, providing all
variables involved are either data, transformed data, or local variables. That is, ex-
pressions used for size declarations may not include parameters or transformed pa-
rameters or generated quantities.

3.5. Array Data Types

Stan supports arrays of arbitrary dimension. The values in an array can be any type,
so that arrays may contain values that are simple reals or integers, vectors, matrices,
or other arrays. Arrays are the only way to store sequences of integers, and some
functions in Stan, such as discrete distributions, require integer arguments.

A two-dimensional array is just an array of arrays, both conceptually and in terms
of current implementation. When an index is supplied to an array, it returns the
value at that index. When more than one index is supplied, this indexing operation is
chained. For example, if a is a two-dimensional array, then a[m, n] is just a conve-
nient shorthand for a[m] [n]. Vectors, matrices, and arrays are not assignable to one
another, even if their dimensions are identical.

Declaring Array Variables

Arrays are declared by enclosing the dimensions in square brackets following the
name of the variable.
The variable n is declared as an array of five integers as follows.

int n[5];

A two-dimensional array of real values with three rows and four columns is declared
with the following.

real a[3, 4];

A three-dimensional array z of positive reals with five rows, four columns, and two
shelves can be declared as follows.

real<lower=0> z[5, 4, 2];

Arrays may also be declared to contain vectors. For example,
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vector[7] mu[3];

declares mu to be an array of size 3 containing vectors with 7 elements. Arrays may
also contain matrices. The example

matrix[7, 2] mul[l5, 12];

declares a 15 by 12 array of 7 X 2 matrices. Any of the constrained types may also be
used in arrays, as in the declaration

cholesky_factor_cov[5, 6] mu[2, 3, 4];

of a 2 x 3 x 4 array of 5 x 6 Cholesky factors of covariance matrices.

Accessing Array Elements and Subarrays

If x is a 1-dimensional array of length 5, then x[1] is the first element in the array and
x[5] is the last. For a 3 x 4 array y of two dimensions, y[1, 1] is the first element
and y[3, 4] the last element. For a three-dimensional array z, the first element is
z[1l, 1, 1], and so on.

Subarrays of arrays may be accessed by providing fewer than the full number
of indexes. For example, suppose y is a two-dimensional array with three rows and
four columns. Then y[3] is one-dimensional array of length four. This means that
y[31[1] may be used instead of y[3, 1] to access the value of the first column of
the third row of y. The form y[3, 1] is the preferred form (see Footnote 3 in this
chapter).

Assigning

Subarrays may be manipulated and assigned just like any other variables. Similar to
the behavior of matrices, Stan allows blocks such as

real w[9, 10, 11];
real x[10, 11];
real y[11];

real z;

// ...
x = w[5];

y = x[41; // y == w[5]1[4] == w[5, 4]

z = y[3]; // z == w[51[4]1[3] == w[5, 4, 3]

Arrays of Matrices and Vectors

Arrays of vectors and matrices are accessed in the same way as arrays of doubles.
Consider the following vector and scalar declarations.
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vector[5] a[3, 4];
vector[5] b[4];
vector[5] c;

real x;

With these declarations, the following assignments are legal.

b = a[l]; // result is array of vectors
c = a[l, 3]1; // result is vector

c = b[3]; //  same result as above

x = a[l, 3, 5]; // result is scalar

x = b[3, 5]; // same result as above

x = c[5]; // same result as above

Row vectors and other derived vector types (simplex and ordered) behave the same
way in terms of indexing.
Consider the following matrix, vector and scalar declarations.

matrix[6, 5] d[3, 41;
matrix[6, 5] e[4];
matrix[6, 5] f;
row_vector[5] g;

real x;

With these declarations, the following definitions are legal.

e = d[1]; // result is array of matrices
f = d[1,3]; // result is matrix

f = e[3]; // same result as above

g = d[1,3,2]; // result is row vector

g = e[3,2]; // same result as above

g = f[2]; // same result as above

x = d[1,3,5,2]; // result is scalar

x = e[3,5,2]; // same result as above

x = f[5,2]; // same result as above

x = g[2]; // same result as above

As shown, the result f[2] of supplying a single index to a matrix is the indexed row,
here row 2 of matrix f.

Partial Array Assignment

Subarrays of arrays may be assigned by indexing on the left-hand side of an assign-
ment statement. For example, the following is legal.
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real x[I,],K];
real y[J,K];
real z[K];

// ...
x[1]

=Y;
x[1,1] =

z;
The sizes must match. Here, x[1] is a J by K array, as is is y.

Partial array assignment also works for arrays of matrices, vectors, and row vec-
tors.

Mixing Array, Vector, and Matrix Types

Arrays, row vectors, column vectors and matrices are not interchangeable in Stan.
Thus a variable of any one of these fundamental types is not assignable to any of
the others, nor may it be used as an argument where the other is required (use as
arguments follows the assignment rules).

Mixing Vectors and Arrays

For example, vectors cannot be assigned to arrays or vice-versa.

real a[4];
vector[4] b;
row_vector c[4];

// ...

a =b; // illegal assignment of vector to array

b = a; // illegal assignment of array to vector

a =c; // illegal assignment of row vector to array
c = a; // illegal assignment of array to row vector

Mixing Row and Column Vectors

It is not even legal to assign row vectors to column vectors or vice versa.

vector b[4];
row_vector c[4];

// ...
b = c; // illegal assignment of row vector to column vector
c =b; // illegal assignment of column vector to row vector

Mixing Matrices and Arrays

The same holds for matrices, where 2-dimensional arrays may not be assigned to
matrices or vice-versa.
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real a[3,4];
matrix[3,4] b;

// ...
a=b; // illegal assignment of matrix to array
b =a; // illegal assignment of array to matrix

Mixing Matrices and Vectors
A 1 x N matrix cannot be assigned a row vector or vice versa.

matrix[1,4] a;
row_vector[4] b;

// ..
a =b; // illegal assignment of row vector to matrix
b =a; // illegal assignment of matrix to row vector

Similarly, an M X 1 matrix may not be assigned to a column vector.

matrix[4,1] a;
vector[4] b;

// ...
a =b; // illegal assignment of column vector to matrix
b =a; // illegal assignment of matrix to column vector

Size Declaration Restrictions

An integer expression is used to pick out the sizes of arrays. The same restrictions
as for vector and matrix sizes apply, namely that the size is declared with an integer-
denoting expression that does not contain any parameters, transformed parameters,
or generated quantities.

Size Zero Arrays

If any of an array’s dimensions is size zero, the entire array will be of size zero. That
is, if we declare

real a[3, 0];

then the resulting size of a is zero and querying any of its dimensions at run time will
result in the value zero. Declared as above, a[1] will be a size-zero one-dimensional
array. For comparison, declaring

real b[0, 3];
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also produces an array with an overall size of zero, but in this case, there is no way
to index legally into b, because b[0] is undefined. The array will behave at run time
as if it’s a 0 x 0 array. For example, the result of to_matrix(b) will be a 0 x 0 matrix,
not a 0 X 3 matrix.

3.6. Variable Types vs. Constraints and Sizes

The type information associated with a variable only contains the underlying type and
dimensionality of the variable.

Type Information Excludes Sizes

The size associated with a given variable is not part of its data type. For example,
declaring a variable using

real a[3];

declares the variable a to be an array. The fact that it was declared to have size 3 is
part of its declaration, but not part of its underlying type.

When are Sizes Checked?

Sizes are determined dynamically (at run time) and thus cannot be type-checked stat-
ically when the program is compiled. As a result, any conformance error on size will
raise a run-time error. For example, trying to assign an array of size 5 to an array of
size 6 will cause a run-time error. Similarly, multiplying an N X M by a J X K matrix
will raise a run-time error if M + J.

Type Information Excludes Constraints

Like sizes, constraints are not treated as part of a variable’s type in Stan when it
comes to the compile-time check of operations it may participate in. Anywhere Stan
accepts a matrix as an argument, it will syntactically accept a correlation matrix or
covariance matrix or Cholesky factor. Thus a covariance matrix may be assigned to a
matrix and vice-versa.

Similarly, a bounded real may be assigned to an unconstrained real and vice-versa.

When are Function Argument Constraints Checked?

For arguments to functions, constraints are sometimes, but not always checked when
the function is called. Exclusions include C++ standard library functions. All proba-
bility functions and cumulative distribution functions check that their arguments are
appropriate at run time as the function is called.
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When are Declared Variable Constraints Checked?

For data variables, constraints are checked after the variable is read from a data file or
other source. For transformed data variables, the check is done after the statements
in the transformed data block have executed. Thus it is legal for intermediate values
of variables to not satisfy declared constraints.

For parameters, constraints are enforced by the transform applied and do not
need to be checked. For transformed parameters, the check is done after the state-
ments in the transformed parameter block have executed.

For all blocks defining variables (transformed data, transformed parameters, gen-
erated quantities), real values are initialized to NaN and integer values are initialized
to the smallest legal integer (i.e., a large absolute value negative number).

For generated quantities, constraints are enforced after the statements in the gen-
erated quantities block have executed.

Type Naming Notation

In order to refer to data types, it is convenient to have a way to refer to them. The
type naming notation outlined in this section is not part of the Stan programming
language, but rather a convention adopted in this document to enable a concise de-
scription of a type.

Because size information is not part of a data type, data types will be written
without size information. For instance, real[] is the type of one-dimensional array
of reals and matrix is the type of matrices. The three-dimensional integer array
type is written as int[ , ,], indicating the number slots available for indexing.
Similarly, vector[ , ] is the type of a two-dimensional array of vectors.

3.7. Compound Variable Declaration and Definition

Stan allows assignable variables to be declared and defined in a single statement.
Assignable variables are

- local variables, and

- variables declared in the transformed data, transformed parameters, or gener-
ated quantities blocks.

For example, the statement
int N = 5;

declares the variable N to be an integer scalar type and at the same time defines it to
be the value of the expression 5.
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Assignment Typing

The type of the expression on the right-hand side of the assignment must be
assignable to the type of the variable being declared. For example, it is legal to have

real sum = 0;

even though 0 is of type int and sum is of type real, because integer-typed scalar
expressions can be assigned to real-valued scalar variables. In all other cases, the type
of the expression on the right-hand side of the assignment must be identical to the
type of the variable being declared.

Any type may be assigned. For example,

matrix[3, 2] a = b;

declares a matrix variable a and assigns it to the value of b, which must be of type
matrix for the compound statement to be well formed. The sizes of matrices are not
part of their static typing and cannot be validated until run time.

Right-Hand Side Expressions

The right-hand side may be any expression which has a type which is assignable to
the variable being declared. For example,

matrix[3, 2] a = 0.5 * (b + ¢);

assigns the matrix variable a to half of the sum of b and c. The only requirement on b
and c is that the expression b + c be of type matrix. For example, b could be of type
matrix and c of type real, because adding a matrix to a scalar produces a matrix,
and the multiplying by a scalar produces another matrix.

The right-hand side expression can be a call to a user defined function, allowing
general algorithms to be applied that might not be otherwise expressible as simple
expressions (e.g., iterative or recursive algorithms).

Scope within Expressions

Any variable that is in scope and any function that is available in the block in which
the compound declaration and definition appears may be used in the expression on
the right-hand side of the compound declaration and definition statement.
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4. Expressions

An expression is the basic syntactic unit in a Stan program that denotes a value. Every
expression in a well-formed Stan program has a type that is determined statically
(at compile time). If an expressions type cannot be determined statically, the Stan
compiler will report the location of the problem.

This chapter covers the syntax, typing, and usage of the various forms of expres-
sions in Stan.

4.1. Numeric Literals

The simplest form of expression is a literal that denotes a primitive numerical value.

Integer Literals

Integer literals represent integers of type int. Integer literals are written in base
10 without any separators. Integer literals may contain a single negative sign. (The
expression --1 is interpreted as the negation of the literal -1.)

The following list contains well-formed integer literals.

0, 1, -1, 256, -127098, 24567898765

Integer literals must have values that fall within the bounds for integer values (see
Section 3.2).

Integer literals may not contain decimal points (.). Thus the expressions 1. and
1.0 are of type real and may not be used where a value of type int is required.

Real Literals

A number written with a period or with scientific notation is assigned to a the con-
tinuous numeric type real. Real literals are written in base 10 with a period (.) as a
separator. Examples of well-formed real literals include the following.

0.0, 1.0, 3.14, -217.9387, 2.7e3, -2E-5

The notation e or E followed by a positive or negative integer denotes a power of 10
to multiply. For instance, 2.7e3 denotes 2.7 x 103 and -2E-5 denotes —2 x 107>,

4.2. Variables

A variable by itself is a well-formed expression of the same type as the variable.
Variables in Stan consist of ASCII strings containing only the basic lower-case and
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upper-case Roman letters, digits, and the underscore (_) character. Variables must
start with a letter (a-z and A-Z) and may not end with two underscores (__).
Examples of legal variable identifiers are as follows.

a, a3, a_3, Sigma, my_cpp_style_variable, myCamelCaseVariable

Unlike in R and BUGS, variable identifiers in Stan may not contain a period character.

Reserved Names

Stan reserves many strings for internal use and these may not be used as the name
of a variable. An attempt to name a variable after an internal string results in the
stanc translator halting with an error message indicating which reserved name was
used and its location in the model code.

Model Name

The name of the model cannot be used as a variable within the model. This is usually
not a problem because the default in bin/stanc is to append _model to the name
of the file containing the model specification. For example, if the model is in file
foo.stan, it would not be legal to have a variable named foo_model when using the
default model name through bin/stanc. With user-specified model names, variables
cannot match the model.

User-Defined Function Names

User-defined function names cannot be used as a variable within the model.

Reserved Words from Stan Language

The following list contains reserved words for Stan’s programming language. Not all
of these features are implemented in Stan yet, but the tokens are reserved for future
use.

for, in,while, repeat, until, if, then, else, true, false

Variables should not be named after types, either, and thus may not be any of the
following.

int, real, vector, simplex, unit_vector, ordered,
positive_ordered, row_vector, matrix, cholesky_factor_corr,
cholesky_factor_cov, corr_matrix, cov_matrix.

Variable names will not conflict with the following block identifiers,
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functions, model, data, parameters, quantities, transformed,
generated,

Reserved Names from Stan Implementation

Some variable names are reserved because they are used within Stan’s C++ implemen-
tation. These are

var, fvar, STAN_MAJOR, STAN_MINOR, STAN_PATCH, STAN_MATH_MAJOR,
STAN_MATH_MINOR, STAN_MATH_PATCH

Reserved Function and Distribution Names

Variable names will conflict with the names of predefined functions other than con-
stants. Thus a variable may not be named logit or add, but it may be named pi or
e.

Variable names will also conflict with the names of distributions suffixed with
_Tpdf, _1pmf, _1cdf, and _Tccdf, _cdf, and _ccdf, such as normal_1cdf_Tog; this
also holds for the deprecated forms _log, _cdf_log, and _ccdf_Tog,

Using any of these variable names causes the stanc translator to halt and report
the name and location of the variable causing the conflict.

Reserved Names from C++

Finally, variable names, including the names of models, should not conflict with any
of the C++ keywords.

alignas, alignof, and, and_eq, asm, auto, bitand, bitor, bool,
break, case, catch, char, charl6_t, char32_t, class, compl,
const, constexpr, const_cast, continue, decltype, default, delete,
do, double, dynamic_cast, else, enum, explicit, export, extern,
false, float, for, friend, goto, if, inline, int, long, mutable,
namespace, new, noexcept, not, not_eq, nullptr, operator, or, or_eq,
private, protected, public, register, reinterpret_cast, return,
short, signed, sizeof, static, static_assert, static_cast, struct,
switch, template, this, thread_local, throw, true, try, typedef,
typeid, typename, union, unsigned, using, virtual, void, volatile,
wchar_t, while, xor, xor_eq

Legal Characters

The legal variable characters have the same ASCII code points in the range 0-127 as
in Unicode.
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Characters ASCII (Unicode) Code Points

a-z 97 - 122
A-1Z 65 - 90
0-9 48 - 57
- 95

Although not the most expressive character set, ASCII is the most portable and least
prone to corruption through improper character encodings or decodings.

Comments Allow ASCII-Compatible Encoding

Within comments, Stan can work with any ASCII-compatible character encoding, such
as ASCII itself, UTF-8, or Latinl. It is up to user shells and editors to display them

properly.

4.3. Vector, Matrix, and Array Expressions

Expressions for the Stan container objects arrays, vectors, and matrices can be con-
structed via a sequence of expressions enclosed in either curly braces for arrays, or
square brackets for vectors and matrices.

Vector Expressions

Square brackets may be wrapped around a sequence of comma separated primi-
tive expressions to produce a row vector expression. For example, the expression
[ 1, 10, 100 ] denotes a row vector of three elements with real values 1.0, 10.0,
and 100.0. Applying the transpose operator to a row vector expression produces a
vector expression. This syntax provides a way declare and define small vectors a
single line, as follows.

row_vector[2] rv2= [ 1, 2 1;
vector[3] v3 =1 3, 4, 51";

The vector expression values may be compound expressions or variable names,
so it is legal to write [ 2 = 3, 1 + 4] or [ x, y ], providing that x and y are
primitive variables.

Matrix Expressions

A matrix expression consists of square brackets wrapped around a sequence of
comma separated row vector expressions. This syntax provides a way declare and
define a matrix in a single line, as follows.
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matrix[3,2] ml = [ [ 1, 21, [ 3, 41, [5,611;

Any expression denoting a row vector can be used in a matrix expression. For
example, the following code is valid:

vector[2] vX =[ 1, 10 ]'";
row_vector[2] vY = [ 100, 1000 ];
matrix[3,2] m2 = [ vX', vY, [ 1, 2] 1;

No empty vector or matrix expressions

The empty expression [ ] is ambiguous and therefore is not allowed and similarly
expressionssuchas [ [ ] Jor[ [ 1, [ ] ] are not allowed.

Array Expressions

Curly braces may be wrapped around a sequence of expressions to produce an array
expression. For example, the expression { 1, 10, 100 } denotes an integer array
of three elements with values 1, 10, and 100. This syntax is particularly convenient
to define small arrays in a single line, as follows.

int a[3] = { 1, 10, 100 };

The values may be compound expressions, so it is legal to write
{2 % 3, 1+ 4 } Itis also possible to write two dimensional arrays directly, as
in the following example.

int b[2, 31 ={ {1, 2,313} {4,5,611;

This way, b[1]is{ 1, 2, 3 }and b[2]is{ 4, 5, 6 }.

Whitespace is always interchangeable in Stan, so the above can be laid out as
follows to more clearly indicate the row and column structure of the resulting two
dimensional array.

int b[2, 31 ={ {1, 2,
{4,5

3 }!
’ 6 }

};

Array Expression Types

Any type of expression may be used within braces to form an array expression. In the
simplest case, all of the elements will be of the same type and the result will be an
array of elements of that type. For example, the elements of the array can be vectors,
in which case the result is an array of vectors.
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vector[3] b;
vector[3] c;

;éétor[3] d[2] = { b, c };

The elements may also be a mixture of int and real typed expressions, in which case
the result is an array of real values.

real b[2] = { 1, 1.9 };

Restrictions on Values

There are some restrictions on how array expressions may be used that arise from
their types being calculated bottom up and the basic data type and assignment rules
of Stan.

Rectangular array expressions only

Although it is tempting to try to define a ragged array expression, all Stan data
types are rectangular (or boxes or other higher-dimensional generalizations). Thus
the following nested array expression will cause an error when it tries to create a
non-rectangular array.

{{1, 2,33}, {4,53} 3} // compile time error: size mismatch

This may appear to be OK, because it is creating a two-dimensional integer array
(int[ , 1) out of two one-dimensional array integer arrays (int[ ]). But it is not
allowed because the two one-dimensional arrays are not the same size. If the ele-
ments are array expressions, this can be diagnosed at compile time. If one or both
expressions is a variable, then that won’t be caught until runtime.

{{1, 2, 3}, m} // runtime error if m not size 3

No empty array expressions

Because there is no way to infer the type of the result, the empty array expression
({ 3}) is not allowed. This does not sacrifice expressive power, because a declaration
is sufficient to initialize a zero-element array.

int a[0]; // a is fully defined as zero element array
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Integer only array expressions

If an array expression contains only integer elements, suchas { 1, 2, 3 }, then the
result type will be an integer array, int[]. This means that the following will not be
legal.

real a[2] = { -3, 12 }; // error: int[] can't be assigned to real[]

Integer arrays may not be assigned to real values. However, this problem is easily
sidestepped by using real literal expressions.

real a[2] = { -3.0, 12.0 };

Now the types match and the assignment is allowed.

4.4. Parentheses for Grouping

Any expression wrapped in parentheses is also an expression. Like in C++, but unlike
in R, only the round parentheses, ( and ), are allowed. The square brackets [ and ]
are reserved for array indexing and the curly braces { and } for grouping statements.

With parentheses it is possible to explicitly group subexpressions with operators.
Without parentheses, the expression 1 + 2 * 3 has a subexpression 2 * 3 and eval-
uates to 7. With parentheses, this grouping may be made explicit with the expression
1 + (2 = 3). More importantly, the expression (1 + 2) * 3has1l + 2 as a subex-
pression and evaluates to 9.

4.5. Arithmetic and Matrix Operations on Expressions

For integer and real-valued expressions, Stan supports the basic binary arithmetic
operations of addition (+), subtraction (-), multiplication (*) and division (/) in the
usual ways.

For integer expressions, Stan supports the modulus (%) binary arithmetic opera-
tion. Stan also supports the unary operation of negation for integer and real-valued
expressions. For example, assuming n and m are integer variables and x and y real
variables, the following expressions are legal.

3.0 + 0.14, -15, 2 * 3 +1, (x - y) / 2.0,
(n= M+ 1)) /2 x/n m%n

The negation, addition, subtraction, and multiplication operations are extended to
matrices, vectors, and row vectors. The transpose operation, written using an apos-
trophe () is also supported for vectors, row vectors, and matrices. Return types for
matrix operations are the smallest types that can be statically guaranteed to contain
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the result. The full set of allowable input types and corresponding return types is
detailed in Chapter 43.

For example, if y and mu are variables of type vector and Sigma is a variable of
type matrix, then

(y = mu)’ » Sigma * (y - mu)

is a well-formed expression of type real. The type of the complete expression is
inferred working outward from the subexpressions. The subexpression(s) y - mu are
of type vector because the variables y and mu are of type vector. The transpose of
this expression, the subexpression (y - mu)’ is of type row_vector. Multiplication
is left associative and transpose has higher precedence than multiplication, so the
above expression is equivalent to the following well-formed, fully specified form.

(CCy - mu)’) = Sigma) = (y - mu)

The type of subexpression (y - mu)’ =* Sigma is inferred to be row_vector, being
the result of multiplying a row vector by a matrix. The whole expression’s type is
thus the type of a row vector multiplied by a (column) vector, which produces a real
value.

Stan provides elementwise matrix division and multiplication operations, a .* b
and a ./b. These provide a shorthand to replace loops, but are not intrinsically more
efficient than a version programmed with an elementwise calculations and assign-
ments in a loop. For example, given declarations,

vector[N] a;
vector[N] b;
vector[N] c;

the assignment,
c=a .* b;
produces the same result with roughly the same efficiency as the loop

for (n in 1:N)
c[n] = a[n] = b[n];

Stan supports exponentiation (A) of integer and real-valued expressions. The re-
turn type of exponentiation is always a real-value. For example, assuming n and m are
integer variables and x and y real variables, the following expressions are legal.

3 A2 3.0A-2, 3.0A 0.14,
XAn nAXxX, nAm XAy

Exponentiation is right associative, so the expression
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2 A3 A4
is equivalent to the following well-formed, fully specified form.

2 A (3AD

Operator Precedence and Associativity

The precedence and associativity of operators, as well as built-in syntax such as ar-
ray indexing and function application is given in tabular form in Figure 4.1. Other
expression-forming operations, such as function application and subscripting bind
more tightly than any of the arithmetic operations.

The precedence and associativity determine how expressions are interpreted. Be-
cause addition is left associative, the expression a+b+c is interpreted as (a+b)+c.
Similarly, a/bx*c is interpreted as (a/b)*c.

Because multiplication has higher precedence than addition, the expression a=b+c
is interpreted as (a*b)+c and the expression a+b*c is interpreted as a+(b*c). Simi-
larly, 2«x+3*-y is interpreted as (2#x)+(3*(-y)).

Transposition and exponentiation bind more tightly than any other arithmetic or
logical operation. For vectors, row vectors, and matrices, -u’ is interpreted as - (u’),
u=v’ as ux(v’),and u’=v as (u’)=*v. For integer and reals, -n A 3 is interpreted as
-(n A 3).

4.6. Conditional Operator

Conditional Operator Syntax

The ternary conditional operator is unique in that it takes three arguments and uses
a mixed syntax. If a is an expression of type int and b and c are expressions that can
be converted to one another (e.g., compared with ==), then

a?b:c

is an expression of the promoted type of b and c. The only promotion allowed in Stan
is from integer to real; if one argument is of type int and the other of type real, the
conditional expression as a whole is of type real. In all other cases, the arguments
have to be of the same underlying Stan type (i.e., constraints don’t count, only the
shape) and the conditional expression is of that type.

Conditional Operator Precedence

The conditional operator is the most loosely binding operator, so its arguments rarely
require parentheses for disambiguation. For example,
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Op. \ Prec. Assoc. Placement Description
? 10 right ternary infix | conditional
| 9 left binary infix logical or
&& 8 left  binary infix logical and
== 7 left binary infix equality
= 7 left binary infix inequality
< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal
+ 5 left binary infix addition
- 5 left binary infix subtraction
* 4 left binary infix multiplication
/ 4 left binary infix (right) division
% 4 left binary infix modulus
\ 3 left binary infix left division
* 2 left binary infix elementwise multiplication
./ 2 left binary infix elementwise division
! 1 n/a unary prefix | logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix | promotion (no-op in Stan)
A 0.5 right  binary infix exponentiation
’ 0 n/a unary postfix | transposition
O 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

Figure 4.1: Stan’s unary, binary, and ternary operators, with their precedences, associativi-
ties, place in an expression, and a description. The last two lines list the precedence of function
application and array, matrix, and vector indexing. The operators are listed in ovder of prece-
dence, from least tightly binding to most tightly binding. The full set of legal arguments and
corresponding result types are provided in the function documentation in Part VII prefaced with
operator (ie., operator=(int,int) :int indicates the application of the multiplication oper-
ator to two integers, which returns an integer). Parentheses may be used to group expressions
explicitly rather than relying on precedence and associativity.
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a>0]l b<0?c+d:e-f
is equivalent to the explicitly grouped version
@>0 1]l b<0)? (c+d: (e -*F)

The latter is easier to read even if the parentheses are not strictly necessary.

Conditional Operator Associativity

The conditional operator is right associative, so that
a?b:c?d:e

parses as if explicitly grouped as
a?b:(c?d: e

Again, the explicitly grouped version is easier to read.

Conditional Operator Semantics

Stan’s conditional operator works very much like its C++ analogue. The first argument
must be an expression denoting an integer. Typically this is a variable or a relation
operator, as in the variable a in the example above. Then there are two resulting
arguments, the first being the result returned if the condition evaluates to true (i.e.,
non-zero) and the second if the condition evaluates to false (i.e., zero). In the example
above, the value b is returned if the condition evaluates to a non-zero value and c is
returned if the condition evaluates to zero.

Lazy Evaluation of Results

The key property of the conditional operator that makes it so useful in high-
performance computing is that it only evaluates the returned subexpression, not the
alternative expression. In other words, it is not like a typical function that evaluates
its argument expressions eagerly in order to pass their values to the function. As
usual, the saving is mostly in the derivatives that do not get computed rather than
the unnecessary function evaluation itself.

Promotion to Parameter

If one return expression is a data value (an expression involving only constants and
variables defined in the data or transformed data block), and the other is not, then
the ternary operator will promote the data value to a parameter value. This can cause
needless work calculating derivatives in some cases and be less efficient than a full
if-then conditional statement. For example,
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data {
real x[10];

parameters {
real z[10];
model {
y ~ normal(cond ? x : z, sigma);

would be more efficiently (if not more transparently) coded as

if (cond)

y ~ normal(x, sigma);
else

y ~ normal(z, sigma);

The conditional statement, like the conditional operator, only evaluates one of the
result statements. In this case, the variable x will not be promoted to a parameter
and thus not cause any needless work to be carried out when propagating the chain
rule during derivative calculations.

4.7. Indexing

Stan arrays, matrices, vectors, and row vectors are all accessed using the same array-
like notation. For instance, if x is a variable of type real[] (a one-dimensional array
of reals) then x[1] is the value of the first element of the array.

Subscripting has higher precedence than any of the arithmetic operations. For
example, alpha*x[1] is equivalent to alpha*(x[1]).

Multiple subscripts may be provided within a single pair of square brackets. If x
is of type real[ , 1, a two-dimensional array, then x[2,501] is of type real.

Accessing Subarrays

The subscripting operator also returns subarrays of arrays. For example, if x is of
type real[ , , 1, then x[2] is of type real[ , 1, and x[2,3] is of type real[].
As a result, the expressions x[2,3] and x[2][3] have the same meaning.

Accessing Matrix Rows

If Sigma is a variable of type matrix, then Sigma[1] denotes the first row of Sigma
and has the type row_vector.
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index type | example | value

integer a[l1] value of a atindex 11
integer array al[ii] al[ii[1]], ..., a[ii[K]]
lower bound al3:] a[3], ..., a[N]
upper bound al:5] a[ll, ..., a[5]

range al[2:7] al2], ..., a[7]

all al:] a[ll,..., a[N]
all al] a[l],..., a[N]

Figure 4.2: Types of indexes and examples with one-dimensional containers of size N and an
integer array ii of type int[] size K.

Mixing Array and Vector/Matrix Indexes

Stan supports mixed indexing of arrays and their vector, row vector or matrix values.
For example, if m is of type matrix[ , ], a two-dimensional array of matrices, then
m[1] refers to the first row of the array, which is a one-dimensional array of matrices.
More than one index may be used, so that m[1,2] is of type matrix and denotes the
matrix in the first row and second column of the array. Continuing to add indices,
m[1,2,3] is of type row_vector and denotes the third row of the matrix denoted by
m[1,2]. Finally, m[1,2,3,4] is of type real and denotes the value in the third row
and fourth column of the matrix that is found at the first row and second column of
the array m.

4.8. Multiple Indexing and Range Indexing

In addition to single integer indexes, as described in Section 4.7, Stan supports multi-
ple indexing. Multiple indexes can be integer arrays of indexes, lower bounds, upper
bounds, lower and upper bounds, or simply shorthand for all of the indexes. A com-
plete table of index types is given in Figure 4.2.

Multiple Index Semantics

The fundamental semantic rule for dealing with multiple indexes is the following. If
idxs is a multiple index, then it produces an indexable position in the result. To
evaluate that index position in the result, the index is first passed to the multiple
index, and the resulting index used.

alidxs, ...1[i, ...] = a[idxs[i], ...1[...]
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example | row index | column index | result type

ali] single n/a row vector
a[is] multiple n/a matrix
ali, jl single single real
al[i, js] single multiple row vector
alis, jl multiple single vector
a[is, js] | multiple multiple matrix

Figure 4.3: Special rules for reducing matrices based on whether the argument is a single or
multiple index. Examples are for a matrix a, with integer single indexes i and j and integer
array multiple indexes is and js. The same typing rules apply for all multiple indexes.

On the other hand, if idx is a single index, it reduces the dimensionality of the output,
so that

alidx, ...] = al[idx][...]

The only issue is what happens with matrices and vectors. Vectors work just like
arrays. Matrices with multiple row indexes and multiple column indexes produce
matrices. Matrices with multiple row indexes and a single column index become (col-
umn) vectors. Matrices with a single row index and multiple column indexes become
row vectors. The types are summarized in Figure 4.3.

Evaluation of matrices with multiple indexes is defined to respect the following
distributivity conditions.

m[idxsl, idxs2][i, j] = m[idxsl[i], idxs2[j]1]
m[idxs, idx][j] = m[idxs[j], idx]
mlidx, idxs][j] = m[idx, idxs[j]]

Evaluation of arrays of matrices and arrays of vectors or row vectors is defined
recursively, beginning with the array dimensions.

4.9. Function Application

Stan provides a range of built in mathematical and statistical functions, which are
documented in Part VIL

Expressions in Stan may consist of the name of function followed by a sequence
of zero or more argument expressions. For instance, 1Tog(2.0) is the expression of
type real denoting the result of applying the natural logarithm to the value of the
real literal 2.0.

Syntactically, function application has higher precedence than any of the other
operators, so thaty + Tog(x) is interpreted asy + (log(x)).
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Type Signatures and Result Type Inference

Each function has a type signature which determines the allowable type of its ar-
guments and its return type. For instance, the function signature for the logarithm
function can be expressed as

real Tog(real);
and the signature for the Tmultiply function is
real Tmultiply(real,real);

A function is uniquely determined by its name and its sequence of argument types.
For instance, the following two functions are different functions.

real mean(real[]);
real mean(vector);

The first applies to a one-dimensional array of real values and the second to a vector.

The identity conditions for functions explicitly forbids having two functions with
the same name and argument types but different return types. This restriction also
makes it possible to infer the type of a function expression compositionally by only
examining the type of its subexpressions.

Constants

Constants in Stan are nothing more than nullary (no-argument) functions. For in-
stance, the mathematical constants 7t and e are represented as nullary functions
named pi () and e(). See Section 41.2 for a list of built-in constants.

Type Promotion and Function Resolution

Because of integer to real type promotion, rules must be established for which func-
tion is called given a sequence of argument types. The scheme employed by Stan is
the same as that used by C++, which resolves a function call to the function requiring
the minimum number of type promotions.

For example, consider a situation in which the following two function signatures
have been registered for foo.

real foo(real,real);
int foo(int,int);

The use of foo in the expression foo(1.0,1.0) resolves to foo(real,real), and
thus the expression foo(1.0,1.0) itself is assigned a type of real.
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Because integers may be promoted to real values, the expression foo(1,1) could
potentially match either foo(real, real) or foo(int,int). The former requires two
type promotions and the latter requires none, so foo(1l,1) is resolved to function
foo(int,int) and is thus assigned the type int.

The expression foo(1,1.0) has argument types (int,real) and thus does not
explicitly match either function signature. By promoting the integer expression 1 to
type real, it is able to match foo(real,real), and hence the type of the function
expression foo(1,1.0) is real.

In some cases (though not for any built-in Stan functions), a situation may arise
in which the function referred to by an expression remains ambiguous. For example,
consider a situation in which there are exactly two functions named bar with the
following signatures.

real bar(real,int);
real bar(int,real);

With these signatures, the expression bar(1.0,1) and bar(1,1.0) resolve to the
first and second of the above functions, respectively. The expression bar(1.0,1.0)
is illegal because real values may not be demoted to integers. The expression
bar(1,1) is illegal for a different reason. If the first argument is promoted to a
real value, it matches the first signature, whereas if the second argument is promoted
to a real value, it matches the second signature. The problem is that these both re-
quire one promotion, so the function name bar is ambiguous. If there is not a unique
function requiring fewer promotions than all others, as with bar(1,1) given the two
declarations above, the Stan compiler will flag the expression as illegal.

Random-Number Generating Functions

For most of the distributions supported by Stan, there is a corresponding random-
number generating function. These random number generators are named by the
distribution with the suffix _rng. For example, a univariate normal random number
can be generated by normal_rng(0,1); only the parameters of the distribution, here
a location (0) and scale (1) are specified because the variate is generated.

Random-Number Generators Locations

The use of random-number generating functions is restricted to the transformed data
and generated quantities blocks; attempts to use them elsewhere will result in a pars-
ing error with a diagnostic message. They may also be used in the bodies of user-
defined functions whose names end in _rng.

This allows the random number generating functions to be used for simulation in
general, and for Bayesian posterior predictive checking in particular.
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Posterior Predictive Checking

Posterior predictive checks typically use the parameters of the model to generate
simulated data (at the individual and optionally at the group level for hierarchical
models), which can then be compared informally using plots and formally by means
of test statistics, to the actual data in order to assess the suitability of the model; see
(Gelman et al., 2013, Chapter 6) for more information on posterior predictive checks.

4.10. Type Inference

Stan is strongly statically typed, meaning that the implementation type of an expres-
sion can be resolved at compile time.

Implementation Types

The primitive implementation types for Stan are int, real, vector, row_vector, and
matrix. Every basic declared type corresponds to a primitive type; see Figure 4.4 for
the mapping from types to their primitive types. A full implementation type consists
of a primitive implementation type and an integer array dimensionality greater than
or equal to zero. These will be written to emphasize their array-like nature. For ex-
ample, int[] has an array dimensionality of 1, int an array dimensionality of 0, and
int[ , ,] an array dimensionality of 3. The implementation type matrix[ , , ]
has a total of five dimensions and takes up to five indices, three from the array and
two from the matrix.

Recall that the array dimensions come before the matrix or vector dimensions
in an expression such as the following declaration of a three-dimensional array of
matrices.

matrix[M, N] a[I, J, K];

The matrix a is indexed as a[i, j, k, m, n] with the array indices first, followed
by the matrix indices, with a[i, j, k] being a matrix and a[i, j, k, m] being a
Trow vector.

Type Inference Rules

Stan’s type inference rules define the implementation type of an expression based on
a background set of variable declarations. The rules work bottom up from primitive
literal and variable expressions to complex expressions.
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Type Primitive Type

int int

real real
matrix matrix
cov_matrix matrix
corr_matrix matrix
cholesky_factor_cov matrix
cholesky_factor_corr matrix
vector vector
simpTlex vector
unit_vector vector
ordered vector
positive_ordered vector

row_vector row_vector

Figure 4.4: The table shows the variable declaration types of Stan and their corre-
sponding primitive implementation type. Stan functions, operators, and probability
functions have argument and result types declared in terms of primitive types plus
arrvay dimensionality.

Literals

An integer literal expression such as 42 is of type int. Real literals such as 42.0 are
of type real.

Variables

The type of a variable declared locally or in a previous block is determined by its
declaration. The type of a loop variable is int.

There is always a unique declaration for each variable in each scope because Stan
prohibits the redeclaration of an already-declared variables.!

Indexing

If x is an expression of total dimensionality greater than or equal to N, then the type
of expression e[il, ..., iN] is the same as that of e[i1]...[iN], so it suffices to

ILanguages such as C++ and R allow the declaration of a variable of a given name in a narrower scope
to hide (take precedence over for evaluation) a variable defined in a containing scope.
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define the type of a singly-indexed function. Suppose e is an expression and i is an
expression of primitive type int. Then

- if e is an expression of array dimensionality K > 0, then e[1i] has array dimen-
sionality K — 1 and the same primitive implementation type as e,

- if e has implementation type vector or row_vector of array dimensionality O,
then e[1i] has implementation type real, and

- if e has implementation type matrix, then e[i] has type row_vector.

Function Application

If f is the name of a function and el,...,eN are expressions for N > 0, then
f(el,...,eN) is an expression whose type is determined by the return type in the
function signature for f given el through eN. Recall that a function signature is a
declaration of the argument types and the result type.

In looking up functions, binary operators like real = real are defined as
operator=(real,real) in the documentation and index.

In matching a function definition, arguments of type int may be promoted to type
real if necessary (see the subsection on type promotion in Section 4.9 for an exact
specification of Stan’s integer-to-real type-promotion rule).

In general, matrix operations return the lowest inferable type. For example,
row_vector =* vector returns avalue of type real, which is declared in the function
documentation and index as real operator=(row_vector,vector).

4.11. Chain Rule and Derivatives

Derivatives of the log probability function defined by a model are used in several ways
by Stan. The Hamiltonian Monte Carlo samplers, including NUTS, use gradients to
guide updates. The BFGS optimizers also use gradients to guide search for posterior
modes.

Errors Due to Chain Rule

Unlike evaluations in pure mathematics, evaluation of derivatives in Stan is done
by applying the chain rule on an expression-by-expression basis, evaluating using
floating-point arithmetic. As a result, models such as the following are problematic
for inference involving derivatives.

parameters {
real x;
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}
model {
X ~ normal(sqrt(x - x), 1);

}
Algebraically, the sampling statement in the model could be reduced to
X ~ normal(0, 1);

and it would seem the model should produce unit normal samples for x. But rather
than canceling, the expression sqrt(x - x) causes a problem for derivatives. The
cause is the mechanistic evaluation of the chain rule,

d 1 d
xS R Y
= %x(l—l)
= X0
= NaN.

Rather than the x — x canceling out, it introduces a 0 into the numerator and denom-
inator of the chain-rule evaluation.

The only way to avoid this kind problem is to be careful to do the necessary
algebraic reductions as part of the model and not introduce expressions like sqrt(x
- x) for which the chain rule produces not-a-number values.

Diagnosing Problems with Derivatives

The best way to diagnose whether something is going wrong with the derivatives
is to use the test-gradient option to the sampler or optimizer inputs; this option is
available in both Stan and RStan (though it may be slow, because it relies on finite
differences to make a comparison to the built-in automatic differentiation).

For example, compiling the above model to an executable sqrt-x-minus-x, the
test can be run as

> ./sqrt-x-minus-x diagnose test=gradient

TEST GRADIENT MODE
Log probability=-0.393734

param idx value model finite diff error
0 -0.887393 nan 0 nan
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Even though finite differences calculates the right gradient of 0, automatic differenti-
ation follows the chain rule and produces a not-a-number output.
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5. Statements

The blocks of a Stan program (see Chapter 6) are made up of variable declarations
and statements. Unlike programs in BUGS, the declarations and statements making
up a Stan program are executed in the order in which they are written. Variables must
be defined to have some value (as well as declared to have some type) before they are
used — if they do not, the behavior is undefined.

The basis of Stan’s execution is the evaluation of a log probability function (specif-
ically, a probability density function) for a given set of (real-valued) parameters. Log
probability function can be constructed by using assignment statements. Statements
may be grouped into sequences and into for-each loops. In addition, Stan allows local
variables to be declared in blocks and also allows an empty statement consisting only
of a semicolon.

5.1. Assignment Statement

An assignment statement consists of a variable (possibly multivariate with indexing
information) and an expression. Executing an assignment statement evaluates the
expression on the right-hand side and assigns it to the (indexed) variable on the left-
hand side. An example of a simple assignment is as follows.!

n = 0;

Executing this statement assigns the value of the expression 0, which is the integer
zero, to the variable n. For an assignment to be well formed, the type of the expression
on the right-hand side should be compatible with the type of the (indexed) variable
on the left-hand side. For the above example, because 0 is an expression of type int,
the variable n must be declared as being of type int or of type real. If the variable
is of type real, the integer zero is promoted to a floating-point zero and assigned
to the variable. After the assignment statement executes, the variable n will have the
value zero (either as an integer or a floating-point value, depending on its type).

Syntactically, every assignment statement must be followed by a semicolon. Oth-
erwise, whitespace between the tokens does not matter (the tokens here being the left-
hand-side (indexed) variable, the assignment operator, the right-hand-side expression
and the semicolon).

Because the right-hand side is evaluated first, it is possible to increment a variable
in Stan just as in C++ and other programming languages by writing

n=n+1;

lIn versions of Stan before 2.17.0, the operator <- was used for assignment rather than using the equal
sign =. The old operator <- is now deprecated and will print a warning. In the future, it will be removed.
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Such self assignments are not allowed in BUGS, because they induce a cycle into the
directed graphical model.

The left-hand side of an assignment may contain indices for array, matrix, or
vector data structures. For instance, if Sigma is of type matrix, then

Sigma[l, 1] = 1.0;

sets the value in the first column of the first row of Sigma to one.

Assignments can involve complex objects of any type. If Sigma and Omega are
matrices and sigma is a vector, then the following assignment statement, in which
the expression and variable are both of type matrix, is well formed.

Sigma
= diag_matrix(sigma)
= Omega
» diag_matrix(sigma);

This example also illustrates the preferred form of splitting a complex assignment
statement and its expression across lines.

Assignments to subcomponents of larger multi-variate data structures are sup-
ported by Stan. For example, a is an array of type real[ , ] and b is an array of
type real[], then the following two statements are both well-formed.

a[3] = b;
b = a[4];

Similarly, if x is a variable declared to have type row_vector and Y is a variable
declared as type matrix, then the following sequence of statements to swap the first
two rows of Y is well formed.

x = Y[1];
Y[1] = Y[2];
Y[2] = x;

Lvalue Summary

The expressions that are legal left-hand sides of assignment statements are known as
“Ivalues.” In Stan, there are only two kinds of legal Ivalues,

- avariable, or
- avariable with one or more indices.

To be used as an lvalue, an indexed variable must have at least as many dimensions
as the number of indices provided. An array of real or integer types has as many
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dimensions as it is declared for. A matrix has two dimensions and a vector or row
vector one dimension; this also holds for the constrained types, covariance and corre-
lation matrices and their Cholesky factors and ordered, positive ordered, and simplex
vectors. An array of matrices has two more dimensions than the array and an array of
vectors or row vectors has one more dimension than the array. Note that the number
of indices can be less than the number of dimensions of the variable, meaning that the
right hand side must itself be multidimensional to match the remaining dimensions.

Multiple Indexes

Multiple indexes, as described in Section 4.8, are also permitted on the left-hand side
of assignments. Indexing on the left side works exactly as it does for expressions,
with multiple indexes preserving index positions and single indexes reducing them.
The type on the left side must still match the type on the right side.

Aliasing

All assignment is carried out as if the right-hand side is copied before the assignment.
This resolves any potential aliasing issues arising from he right-hand side changing
in the middle of an assignment statement’s execution.

Compound Arithmetic and Assignment Statement

Stan’s arithmetic operators may be used in compound arithmetic and assignment
operations. For example, consider the following example of compound addition and
assignment.

real x = 5;
X += 7; // value of x is now 12

The compound arithmetic and assignment statement above is equivalent to the fol-
lowing long form.

X =X+ 7;

In general, the compound form
X op=y

will be equivalent to

X =X opy;
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Operation | Compound | Long

addition | X += vy X =X+Y

subtraction | x -=y X=X-Y

multiplication | x *=y X=X %Yy

division | x /=y X=x/Yy

elementwise multiplication | x .*=y X =X .%Yy
elementwise division | x ./=y X=X ./Yy

Figure 5.1: Stan allows compound arithmetic and assignment statements of the forms listed in
the table above. The compound form is legal whenever the corresponding long form would be
legal and it has the same effect.

The compound statement will be legal whenever the long form is legal. This requires
that the operation x op y must itself be well formed and that the result of the oper-
ation be assignable to x. For the expression x to be assignable, it must be an indexed
variable where the variable is defined in the current block. For example, the following
compound addition and assignment statement will increment a single element of a
vector by two.

vector[N] x;
x[3] += 2;

As a further example, consider

matirx[M, M] x;

vector[M] y;

real z;

x ¥=X; // 0K, (x * x) is a matrix
x %= z; // OK, (x * z) is a matrix
x *=Yy; // BAD, (x % y) is a vector

The supported compound arithmetic and assignment operations are listed in Fig-
ure 5.1; they are also listed in the index prefaced by operator, e.g., operator+=.

5.2. Increment Log Density

The basis of Stan’s execution is the evaluation of a log probability function (specifi-
cally, a probability density function) for a given set of (real-valued) parameters; this
function returns the log density of the posterior up to an additive constant. Data and
transformed data are fixed before the log density is evaluated. The total log probabil-
ity is initialized to zero. Next, any log Jacobian adjustments accrued by the variable
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constraints are added to the log density (the Jacobian adjustment may be skipped for
optimization). Sampling and log probability increment statements may add to the log
density in the model block. A log probability increment statement directly increments
the log density with the value of an expression as follows.?

target += -0.5 = y * y;

The keyword target here is actually not a variable, and may not be accessed as such
(though see below on how to access the value of target through a special function).

In this example, the unnormalized log probability of a unit normal variable y
is added to the total log probability. In the general case, the argument can be any
expression.3

An entire Stan model can be implemented this way. For instance, the following
model will draw a single variable according to a unit normal probability.

parameters {

real y;
}
model {

target += -0.5 = y * y;
}

This model defines a log probability function

y2
logp(y) = - o5 log Z

where Z is a normalizing constant that does not depend on y. The constant Z is
conventionally written this way because on the linear scale,

I
v(y)—Zexp( 2)-

which is typically written without reference to Z as

2
p(y) o< exp (—é)

Stan only requires models to be defined up to a constant that does not depend
on the parameters. This is convenient because often the normalizing constant Z is
either time-consuming to compute or intractable to evaluate.

2The current notation replaces two previous versions. Originally, a variable 1p__ was directly ex-
posed and manipulated; this is no longer allowed. The original statement syntax for target += u was
increment_Tlog_prob(u), but this form has been deprecated and will be removed in Stan 3.

3Writing this model with the expression -0.5 * y = y is more efficient than with the equivalent expres-
siony * y / -2 because multiplication is more efficient than division; in both cases, the negation is rolled
into the numeric literal (-0.5 and -2). Writing square(y) instead of y * y would be even more efficient
because the derivatives can be precomputed, reducing the memory and number of operations required for
automatic differentiation.

78



Relation to compound addition and assignment

The increment log density statement looks syntactically like compound addition and
assignment (see Section 5.1.3, it is treated as a primitive statement because target
is not itself a variable. So, even though

target += 1p;
is a legal statement, the corresponding long form is not legal.

target = target + 1p; // BAD, target is not a variable

Vectorization

The target += ... statement accepts an argument in place of ... for any expres-
sion type, including integers, reals, vectors, row vectors, matrices, and arrays of any
dimensionality, including arrays of vectors and matrices. For container arguments,
their sum will be added to the total log density.

Accessing the Log Density

To access accumulated log density up to the current execution point, the function
target() () may be used.

5.3. Sampling Statements

Stan supports writing probability statements also in sampling notation, such as
y ~ normal(mu,sigma);

The name “sampling statement” is meant to be suggestive, not interpreted literally.
Conceptually, the variable y, which may be an unknown parameter or known, modeled
data, is being declared to have the distribution indicated by the right-hand side of the
sampling statement.

Executing such a statement does not perform any sampling. In Stan, a sampling
statement is merely a notational convenience. The above sampling statement could
be expressed as a direct increment on the total log probability as

target += normal_Tpdf(y | mu, sigma);
In general, a sampling statement of the form

y ~ dist(thetal, ..., thetaN);
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involving subexpressions y and thetal through thetaN (including the case where N
is zero) will be well formed if and only if the corresponding assignment statement is
well-formed. For densities allowing real y values, the log probability density function
is used,

target += dist_Tpdf(y | thetal, ..., thetaN);

For those restricted to integer y values, the log probability mass function is used,

target += dist_l1pmf(y | thetal, ..., thetaN);

This will be well formed if and only if dist_Tpdf(y | thetal, ..., thetaN)
or dist_l1pmf(y | thetal, ..., thetaN) is a well-formed expression of type
real.

Log Probability Increment vs. Sampling Statement

Although both lead to the same sampling behavior in Stan, there is one critical differ-
ence between using the sampling statement, as in

y ~ normal(mu, sigma);
and explicitly incrementing the log probability function, as in
target += normal_lpdf(y | mu,sigma);

The sampling statement drops all the terms in the log probability function that are
constant, whereas the explicit call to normal_Tpdf adds all of the terms in the defini-
tion of the log normal probability function, including all of the constant normalizing
terms. Therefore, the explicit increment form can be used to recreate the exact log
probability values for the model. Otherwise, the sampling statement form will be
faster if any of the input expressions, y, mu, or sigma, involve only constants, data
variables, and transformed data variables.

User-Transformed Variables

The left-hand side of a sampling statement may be a complex expression. For in-
stance, it is legal syntactically to write

parameters {
real<lower=0> beta;
}

// ...
modeT {

Tog(beta) ~ normal(mu, sigma);

}
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Unfortunately, this is not enough to properly model beta as having a lognormal dis-
tribution. Whenever a nonlinear transform is applied to a parameter, such as the
logarithm function being applied to beta here, and then used on the left-hand side of
a sampling statement or on the left of a vertical bar in a log pdf function, an adjust-
ment must be made to account for the differential change in scale and ensure beta
gets the correct distribution. The correction required is to add the log Jacobian of the
transform to the target log density (see Section 35.1 for full definitions). For the case
above, the following adjustment will account for the log transform.*

target += - log(fabs(y));

Truncated Distributions

Stan supports truncating distributions with lower bounds, upper bounds, or both.

Truncating with lower and upper bounds

A probability density function p(x) for a continuous distribution may be truncated to
an interval [a, b] to define a new density pi,,»(x) with support [a, b] by setting

_ p®X)
Pla,p1(X) pr(u) T

A probability mass function p(x) for a discrete distribution may be truncated to the

closed interval [a, b] by
p(x)

)

Truncating with a lower bound

A probability density function p(x) can be truncated to [a, c] by defining

. px)
Plast ) = 7 oy

A probability mass function p(x) is truncated to [a, o] by defining

p(x)
Da<—u P (1)
4Because log | % logy| =1log|1/y| = —log|yl; see Section 35.1.

Pla,»] (X) =
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Truncating with an upper bound

A probability density function p(x) can be truncated to [—o0, b] by defining

p(x)

Plowpl(X) = 55— .
[° p(w) du
A probability mass function p(x) is truncated to [—oo, b] by defining

p(x)

P = S Cop )

Cumulative distribution functions

Given a probability function px(x) for a random variable X, its cumulative distribu-
tion function (cdf) Fx(x) is defined to be the probability that X < x,

Fx(x) =Pr[X < x].

The upper-case variable X is the random variable whereas the lower-case variable x is
just an ordinary bound variable. For continuous random variables, the definition of
the cdf works out to

Ee) = | patudu

For discrete variables, the cdf is defined to include the upper bound given by the
argument,

Fx(x) = > px(u).

usx

Complementary cumulative distribution functions

The complementary cumulative distribution function (ccdf) in both the continuous
and discrete cases is given by

F$(x) = Pr[X >x] = 1 - Fx(x).

Unlike the cdf, the ccdf is exclusive of the bound, hence the event X > x rather than
the cdf’s event X < x.
For continuous distributions, the ccdf works out to

F = 1= pxwdu = [ prwadu
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The lower boundary can be included in the integration bounds because it is a single
point on a line and hence has no probability mass. For the discrete case, the lower
bound must be excluded in the summation explicitly by summing over u > x,

Fi(x) = 1- > pxu) = > px(u).

usx u>x

Cumulative distribution functions provide the necessary integral calculations to
define truncated distributions. For truncation with lower and upper bounds, the de-
nominator is defined by

b
[ paw du = Fe(d) - Fx(@.
a
This allows truncated distributions to be defined as

px(X)

Plan®) = £ p) — Fy(a)”

For discrete distributions, a slightly more complicated form is required to explic-
itly insert the lower truncation point, which is otherwise excluded from Fx (b) — Fx (a),

px(X)
Fx(b) — Fx(a) + px(a)’

Plap)(X) =

Truncation with lower and upper bounds in Stan

Stan allows probability functions to be truncated. For example, a truncated unit nor-
mal distributions restricted to [—0.5,2.1] can be coded with the following sampling
statement.

y ~ normal(0, 1) T[-0.5, 2.1];

Truncated distributions are translated as an additional term in the accumulated log
density function plus error checking to make sure the variate in the sampling state-
ment is within the bounds of the truncation.

In general, the truncation bounds and parameters may be parameters or local
variables.

Because the example above involves a continuous distribution, it behaves the same
way as the following more verbose form.

y ~ normal(0, 1);
if (y < -0.5 [ y>2.D
target += negative_infinity(Q;
else
target += -log_diff_exp(normal_lcdf(2.1 | 0, 1),
normal_lcdf(-0.5 | 0, 1));
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Because a Stan program defines a log density function, all calculations are on the log
scale. The function normal_1lcdf is the log of the cumulative normal distribution
function and the function log_diff_exp(a, b) is a more arithmetically stable form
of Tog(exp(a) - exp(b)).

For a discrete distribution, another term is necessary in the denominator to ac-
count for the excluded boundary. The truncated discrete distribution

y ~ poisson(3.7) T[2, 10];
behaves in the same way as the following code.

y ~ poisson(3.7);
if (y <2 || y>10)
target += negative_infinity(Q);
else
target += -log_sum_exp(poisson_lpmf(2 | 3.7),
log_diff_exp(poisson_lcdf(10 | 3.7),
poisson_lcdf(2 | 3.7)));

Recall that Tog_sum_exp(a, b) is just the arithmetically stable form of Tog(exp(a)
+ exp(b)).
Truncation with lower bounds in Stan
For truncating with only a lower bound, the upper limit is left blank.
y ~ normal(0, 1) T[-0.5, 1;
This truncated sampling statement has the same behavior as the following code.

y ~ normal(0, 1);

if (y < -0.5)
target += negative_infinity(Q;
else

target += -normal_lccdf(-0.5 | 0, 1);

The normal_Tccdf function is the normal complementary cumulative distribution
function.

As with lower and upper truncation, the discrete case requires a more complicated
denominator to add back in the probability mass for the lower bound. Thus

y ~ poisson(3.7) T[2, 1;

behaves the same way as
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y ~ poisson(3.7);

if (y < 2)
target += negative_infinity(Q);
else

target += -log_sum_exp(poisson_Tpmf(2 | 3.7),
poisson_Tccdf(2 | 3.7));
Truncation with upper bounds in Stan

To truncate with only an upper bound, the lower bound is left blank. The upper
truncated sampling statement

y ~ normal(0, 1) T[ , 2.1];
produces the same result as the following code.

target += normal_Tpdf(y | 0, 1);
if (y > 2.1)
target += negative_infinity(Q);
else
target += -normal_lcdf(2.1 | 0, 1);

With only an upper bound, the discrete case does not need a boundary adjustment.
The upper-truncated sampling statement

y ~ poisson(3.7) T[ , 10];
behaves the same way as the following code.

y ~ poisson(3.7);

if (y > 10)
target += negative_infinity(Q;
else

target += -poisson_lcdf(10 | 3.7);

Cumulative distributions must be defined

In all cases, the truncation is only well formed if the appropriate log density or mass
function and necessary log cumulative distribution functions are defined. Not every
distribution built into Stan has log cdf and log ccdfs defined, nor will every user-
defined distribution. Part VIII and Part IX document the available discrete and con-
tinuous cumulative distribution functions; most univariate distributions have log cdf
and log ccdf functions.
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Type constraints on bounds

For continuous distributions, truncation points must be expressions of type int or
real. For discrete distributions, truncation points must be expressions of type int.

Variates outside of truncation bounds

For a truncated sampling statement, if the value sampled is not within the bounds
specified by the truncation expression, the result is zero probability and the entire
statement adds —o to the total log probability, which in turn results in the sample
being rejected; see the subsection of Section 12.2 discussing constraints and out-of-
bounds returns for programming strategies to keep all values within bounds.

Vectorizing Truncated Distributions

Stan does not (yet) support vectorization of distribution functions with truncation.

5.4. For Loops

Suppose N is a variable of type int, y is a one-dimensional array of type real[], and
mu and sigma are variables of type real. Furthermore, suppose that n has not been
defined as a variable. Then the following is a well-formed for-loop statement.

for (n in 1:N) {
y[n] ~ normal(mu, sigma);

}

The loop variable is n, the loop bounds are the values in the range 1:N, and the body
is the statement following the loop bounds.

Loop Variable Typing and Scope

The bounds in a for loop must be integers. Unlike in R, the loop is always interpreted
as an upward counting loop. The range L:H will cause the loop to execute the loop
with the loop variable taking on all integer values greater than or equal to L and less
than or equal to H. For example, the loop for (n in 2:5) will cause the body of the
for loop to be executed with n equal to 2, 3, 4, and 5, in order. The variable and bound
for (n in 5:2) will not execute anything because there are no integers greater than
or equal to 5 and less than or equal to 2.
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Order Sensitivity and Repeated Variables

Unlike in BUGS, Stan allows variables to be reassigned. For example, the variable
theta in the following program is reassigned in each iteration of the loop.

for (n in 1:N) {
theta = inv_logit(alpha + x[n] * beta);
y[n] ~ bernoulli(theta);

}

Such reassignment is not permitted in BUGS. In BUGS, for loops are declarative, defin-
ing plates in directed graphical model notation, which can be thought of as repeated
substructures in the graphical model. Therefore, it is illegal in BUGS or JAGS to have
a for loop that repeatedly reassigns a value to a variable.

In Stan, assignments are executed in the order they are encountered. As a con-
sequence, the following Stan program has a very different interpretation than the
previous one.

for (n in 1:N) {

y[n] ~ bernoulli(theta);

theta = inv_logit(alpha + x[n] * beta);
}

In this program, theta is assigned after it is used in the probability statement. This
presupposes it was defined before the first loop iteration (otherwise behavior is un-
defined), and then each loop uses the assignment from the previous iteration.

Stan loops may be used to accumulate values. Thus it is possible to sum the values
of an array directly using code such as the following.

total = 0.0;
for (n in 1:N)
total = total + x[n];

After the for loop is executed, the variable total will hold the sum of the elements
in the array x. This example was purely pedagogical; it is easier and more efficient to
write

total = sum(x);

A variable inside (or outside) a loop may even be reassigned multiple times, as in
the following legal code.

5A programming idiom in BUGS code simulates a local variable by replacing theta in the above example
with theta[n], effectively creating N different variables, theta[1], ..., theta[N]. Of course, this is not a
hack if the value of theta[n] is required for all n.

87



for (n in 1:100) {
y += y * epsilon;
epsilon = 0.5 = epsilon;
y +=y * epsilon;

}

5.5. Conditional Statements

Stan supports full conditional statements using the same if-then-else syntax as C++.
The general format is

if (conditionl)
statementl

else if (condition2)
statement2

// ...

else if (conditionN-1)
statementN-1

else
statementN

There must be a single leading if clause, which may be followed by any number of
else 1if clauses, all of which may be optionally followed by an else clause. Each
condition must be a real or integer value, with non-zero values interpreted as true
and the zero value as false.

The entire sequence of if-then-else clauses forms a single conditional statement
for evaluation. The conditions are evaluated in order until one of the conditions
evaluates to a non-zero value, at which point its corresponding statement is executed
and the conditional statement finishes execution. If none of the conditions evaluates
to a non-zero value and there is a final else clause, its statement is executed.

5.6. While Statements

Stan supports standard while loops using the same syntax as C++. The general format
is as follows.

while (condition)
body

The condition must be an integer or real expression and the body can be any state-
ment (or sequence of statements in curly braces).

Evaluation of a while loop starts by evaluating the condition. If the condition
evaluates to a false (zero) value, the execution of the loop terminates and control
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moves to the position after the loop. If the loop’s condition evaluates to a true (non-
zero) value, the body statement is executed, then the whole loop is executed again.
Thus the loop is continually executed as long as the condition evaluates to a true
value.

5.7. Statement Blocks and Local Variable Declarations

Just as parentheses may be used to group expressions, curly brackets may be used to
group a sequence of zero or more statements into a statement block. At the beginning
of each block, local variables may be declared that are scoped over the rest of the
statements in the block.

Blocks in For Loops

Blocks are often used to group a sequence of statements together to be used in the
body of a for loop. Because the body of a for loop can be any statement, for loops
with bodies consisting of a single statement can be written as follows.

for (n in 1:N)
y[n] ~ normal(mu,sigma);

To put multiple statements inside the body of a for loop, a block is used, as in the
following example.

for (n in 1:N) {
Tambda[n] ~ gamma(alpha,beta);
y[n] ~ poisson(lambda[n]);

}

The open curly bracket ({) is the first character of the block and the close curly bracket
(}) is the last character.
Because whitespace is ignored in Stan, the following program will not compile.

for (n in 1:N)
y[n] ~ normal(mu, sigma);
z[n] ~ normal(mu, sigma); // ERROR!

The problem is that the body of the for loop is taken to be the statement directly fol-
lowing it, which is y[n] ~ normal(mu,sigma). This leaves the probability statement
for z[n] hanging, as is clear from the following equivalent program.

for (n in 1:N) {
y[n] ~ normal(mu, sigma);
}
z[n] ~ normal(mu, sigma); // ERROR!
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Neither of these programs will compile. If the loop variable n was defined before the
for loop, the for-loop declaration will raise an error. If the loop variable n was not
defined before the for loop, then the use of the expression z[n] will raise an error.

Local Variable Declarations

A for loop has a statement as a body. It is often convenient in writing programs to be
able to define a local variable that will be used temporarily and then forgotten. For
instance, the for loop example of repeated assignment should use a local variable for
maximum clarity and efficiency, as in the following example.

for (n in 1:N) {
real theta;
theta = inv_logit(alpha + x[n] * beta);
y[n] ~ bernoulli(theta);

}

The local variable theta is declared here inside the for loop. The scope of a local
variable is just the block in which it is defined. Thus theta is available for use inside
the for loop, but not outside of it. As in other situations, Stan does not allow variable
hiding. So it is illegal to declare a local variable theta if the variable theta is already
defined in the scope of the for loop. For instance, the following is not legal.

for (m in 1:M) {
real theta;
for (n in 1:N) {
real theta; // ERROR!
theta = inv_logit(alpha + x[m, n] * beta);
y[m, n] ~ bernoulli(theta);
// ...

The compiler will flag the second declaration of theta with a message that it is al-
ready defined.

No Constraints on Local Variables

Local variables may not have constraints on their declaration. The only types that
may be used are

int, real, vector[K], row_vector[K], and matrix[M, N].
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Blocks within Blocks

A block is itself a statement, so anywhere a sequence of statements is allowed, one or
more of the statements may be a block. For instance, in a for loop, it is legal to have
the following

for (m in 1:M) {
{
intn =2 % m;
sum += n;
}
for (n in 1:N)
sum += x[m, n];

}

The variable declaration int n; is the first element of an embedded block and so
has scope within that block. The for loop defines its own local block implicitly over
the statement following it in which the loop variable is defined. As far as Stan is
concerned, these two uses of n are unrelated.

5.8. Break and Continue Statements

The one-token statements continue and break may be used within loops to alter con-
trol flow; continue causes the next iteration of the loop to run immediately, whereas
break terminates the loop and causes execution to resume after the loop. Both con-
trol structures must appear in loops. Both break and continue scope to the most
deeply nested loop, but pass through non-loop statements.

Although these control statements may seem undesirable because of their goto-
like behavior, their judicious use can greatly improve readability by reducing the level
of nesting or eliminating bookkeeping inside loops.

Break Statements

When a break statement is executed, the most deeply nested loop currently being
executed is ended and execution picks up with the next statement after the loop. For
example, consider the following program:

while (1) {
if (n < 0) break;
foo(n);
n=n-1;
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Thewhile (1) loop is a “forever” loop, because 1 is the true value, so the test always
succeeds. Within the loop, if the value of n is less than 0, the loop terminates, oth-
erwise it executes foo(n) and then decrements n. The statement above does exactly
the same thing as

while (n >= 0) {
foo(n);
n=n-1;

}

This case is simply illustrative of the behavior; it is not a case where a break simplifies
the loop.

Continue Statements

The continue statement ends the current operation of the loop and returns to the
condition at the top of the loop. Such loops are typically used to exclude some values
from calculations. For example, we could use the following loop to sum the positive
values in the array x,

real sum;

sum = 0;

for (n in 1l:size(x)) {
if (x[n] <= 0) continue;
sum += x[n];

}

When the continue statement is executed, control jumps back to the conditional part
of the loop. With while and for loops, this causes control to return to the conditional
of the loop. With for loops, this advances the loop variable, so the the above program
will not go into an infinite loop when faced with an x[n] less than zero. Thus the
above program could be rewritten with deeper nesting by reversing the conditional,

real sum;
sum = 0;
for (n in 1l:size(x)) {
if (x[n] > 0)
sum += x[n];

}

While the latter form may seem more readable in this simple case, the former has the
main line of execution nested one level less deep. Instead, the conditional at the top
finds cases to exclude and doesn’t require the same level of nesting for code that’s
not excluded. When there are several such exclusion conditions, the break or continue
versions tend to be much easier to read.
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Breaking and Continuing Nested Loops

If there is a loop nested within a loop, a break or continue statement only breaks
out of the inner loop. So

while (condl) {
while (cond2) {
if (cond3) break;

}

// execution continues here after break

}

If the break is triggered by cond3 being true, execution will continue after the nested
loop.

As with break statements, continue statements go back to the top of the most
deeply nested loop in which the continue appears.

Although break and continue must appear within loops, they may appear in nested
statements within loops, such as within the conditionals shown above or within
nested statements. The break and continue statements jump past any control struc-
ture other than while-loops and for-loops.

5.9. Print Statements

Stan provides print statements that can print literal strings and the values of expres-
sions. Print statements accept any number of arguments. Consider the following
for-each statement with a print statement in its body.

for (n in 1:N) { print("loop iteration: ", n); ... }

The print statement will execute every time the body of the loop does. Each time
the loop body is executed, it will print the string “loop iteration: ” (with the trailing
space), followed by the value of the expression n, followed by a new line.

Print Content

The text printed by a print statement varies based on its content. A literal (i.e., quoted)
string in a print statement always prints exactly that string (without the quotes).
Expressions in print statements result in the value of the expression being printed.
But how the value of the expression is formatted will depend on its type.
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Printing a simple real or int typed variable always prints the variable’s value.
For array, vector, and matrix variables, the print format uses brackets. For example,
a 3-vector will print as

[1, 2, 3]
and a 2 x 3-matrix as
[f1, 2, 31, [4, 5, 6]]

Printing a more readable version of arrays or matrices can be done with loops. An
example is the print statement in the following transformed data block.

transformed data {
matrix[2, 2] u;
ulfl, 1] = 1.0; ull, 2] 4.0;
uf2, 1] = 9.0; uf2, 2] = 16.0;
for (n in 1:2)
print("ul", n, "] =", uln]);

}
This print statement executes twice, printing the following two lines of output.

ufl] = [1, 4]
ul2] [9, 16]

Non-void Input

The input type to a print function cannot be void. In particular, it can’t be the result
of a user-defined void function. All other types are allowed as arguments to the print
function.

Print Frequency

Printing for a print statement happens every time it is executed. The transformed
data block is executed once per chain, the transformed parameter and model
blocks once per leapfrog step, and the generated quantities block once per it-
eration.

6The adjoint component is always zero during execution for the algorithmic differentiation variables
used to implement parameters, transformed parameters, and local variables in the model.
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String Literals

String literals begin and end with a double quote character ("). The characters be-
tween the double quote characters may be the space character or any visible ASCII
character, with the exception of the backslash character (\) and double quote charac-
ter (""). The full list of visible ASCII characters is as follows.

abcdefghijklImnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXY?Z
01234567890~@#$%AN&=_"" - +={
Y1 Cd)<> 1 /7020,

Debug by print

Because Stan is an imperative language, print statements can be very useful for de-
bugging. They can be used to display the values of variables or expressions at various
points in the execution of a program. They are particularly useful for spotting prob-
lematic not-a-number of infinite values, both of which will be printed.

It is particularly useful to print the value of the log probability accumulator (see
Section 41.4), as in the following example.

vector[2] vy;

y[1] = 1;

print("1p before =", target());

y ~ normal(0,1); // bug! y[2] not defined
print("1p after =", target());

The example has a bug in that y[2] is not defined before the vector y is used in the
sampling statement. By printing the value of the log probability accumulator before
and after each sampling statement, it’s possible to isolate where the log probability
becomes ill-defined (i.e., becomes not-a-number).

5.10. Reject Statements

The Stan reject statement provides a mechanism to report errors or problematic
values encountered during program execution and either halt processing or reject
samples or optimization iterations.

Like the print statement, the reject statement accepts any number of quoted
string literals or Stan expressions as arguments.

Reject statements are typically embedded in a conditional statement in order to
detect variables in illegal states. For example, the following code handles the case
where a variable x’s value is negative.
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if (x < 0)
reject("x must not be negative; found x=", Xx);

Behavior of Reject Statements

Reject statements have the same behavior as exceptions thrown by built-in Stan func-
tions. For example, the normal_Tpdf function raises an exception if the input scale
is not positive and finite. The effect of a reject statement depends on the program
block in which the rejection occurs.

In all cases of rejection, the interface accessing the Stan program should print the
arguments to the reject statement.

Rejections in Functions

Rejections in user-defined functions are just passed to the calling function or program
block. Reject statements can be used in functions to validate the function arguments,
allowing user-defined functions to fully emulate built-in function behavior. It is better
to find out earlier rather than later when there is a problem.

Fatal Exception Contexts

In both the transformed data block and generated quantities block, rejections are
fatal. This is because if initialization fails or if generating output fails, there is no
way to recover values.

Reject statements placed in the transformed data block can be used to validate
both the data and transformed data (if any). This allows more complicated constraints
to be enforced that can be specified with Stan’s constrained variable declarations.

Recoverable Rejection Contexts

Rejections in the transformed parameters and model blocks are not in and of them-
selves instantly fatal. The result has the same effect as assigning a — log probability,
which causes rejection of the current proposal in MCMC samplers and adjustment of
search parameters in optimization.

If the log probability function results in a rejection every time it is called, the
containing application (MCMC sampler or optimization) should diagnose this problem
and terminate with an appropriate error message. To aid in diagnosing problems, the
message for each reject statement will be printed as a result of executing it.
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Rejection is not for Constraints

Rejection should be used for error handling, not defining arbitrary constraints. Con-
sider the following errorful Stan program.

parameters {
real a;
real<lower=a> b;
real<lower=a, upper=b> theta;
model {
// #=*wrong=* needs explicit truncation
theta ~ normal(0, 1);

This program is wrong because its truncation bounds on theta depend on parame-
ters, and thus need to be accounted for using an explicit truncation on the distribu-
tion. This is the right way to do it.

theta ~ normal(0, 1) T[a, b];

The conceptual issue is that the prior does not integrate to one over the admissible
parameter space; it integrates to one over all real numbers and integrates to some-
thing less than one over [a, b]; in these simple univariate cases, we can overcome that
with the T[ , ] notation, which essentially divides by whatever the prior integrates
to over [a, b].

This problem is exactly the same problem as you would get using reject state-
ments to enforce complicated inequalities on multivariate functions. In this case, it is
wrong to try to deal with truncation through constraints.

if (theta < a || theta > b)

reject("theta not in (a, b)");
// still =xwrong==*, needs T[a,b]
theta ~ normal(0, 1);

In this case, the prior integrates to something less than one over the region of the
parameter space where the complicated inequalities are satisfied. But we don’t gener-
ally know what value the prior integrates to, so we can’t increment the log probability
function to compensate.

Even if this adjustment to a proper probability model may seem like “no big deal”
in particular models where the amount of truncated posterior density is negligible or
constant, we can’t sample from that truncated posterior efficiently. Programs need
to use one-to-one mappings that guarantee the constraints are satisfied and only use
reject statements to raise errors or help with debugging.
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6. Program Blocks

A Stan program is organized into a sequence of named blocks, the bodies of which
consist of variable declarations, followed in the case of some blocks with statements.

6.1. Overview of Stan’s Program Blocks

The full set of named program blocks is exemplified in the following skeletal Stan
program.

functions {

// ... function declarations and definitions ...
}
data {

// ... declarations ...
}
transformed data {

// ... declarations ... statements ...
}
parameters {

// ... declarations ...
}
transformed parameters {

// ... declarations ... statements ...
}
model {

// ... declarations ... statements ...
}
generated quantities {

// ... declarations ... statements ...
}

The function-definition block contains user-defined functions. The data block de-
clares the required data for the model. The transformed data block allows the def-
inition of constants and transforms of the data. The parameters block declares the
model’s parameters — the unconstrained version of the parameters is what’s sam-
pled or optimized. The transformed parameters block allows variables to be defined
in terms of data and parameters that may be used later and will be saved. The model
block is where the log probability function is defined. The generated quantities block
allows derived quantities based on parameters, data, and optionally (pseudo) random
number generation.
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Optionality and Ordering

All of the blocks are optional. A consequence of this is that the empty string is a valid
Stan program, although it will trigger a warning message from the Stan compiler. The
Stan program blocks that occur must occur in the order presented in the skeletal
program above. Within each block, both declarations and statements are optional,
subject to the restriction that the declarations come before the statements.

Variable Scope

The variables declared in each block have scope over all subsequent statements. Thus
a variable declared in the transformed data block may be used in the model block. But
a variable declared in the generated quantities block may not be used in any earlier
block, including the model block. The exception to this rule is that variables declared
in the model block are always local to the model block and may not be accessed in the
generated quantities block; to make a variable accessible in the model and generated
quantities block, it must be declared as a transformed parameter.

Variables declared as function parameters have scope only within that function
definition’s body, and may not be assigned to (they are constant).

Function Scope

Functions defined in the function block may be used in any appropriate block. Most
functions can be used in any block and applied to a mixture of parameters and data
(including constants or program literals).

Random-number-generating functions are restricted to the generated quantities
block; such functions are suffixed with _rng. Log-probability modifying functions to
blocks where the log probability accumulator is in scope (transformed parameters
and model); such functions are suffixed with _Tp.

Density functions defined in the program may be used in sampling statements.

Automatic Variable Definitions

The variables declared in the data and parameters block are treated differently than
other variables in that they are automatically defined by the context in which they are
used. This is why there are no statements allowed in the data or parameters block.
The variables in the data block are read from an external input source such as
a file or a designated R data structure. The variables in the parameters block are
read from the sampler’s current parameter values (either standard HMC or NUTS).
The initial values may be provided through an external input source, which is also
typically a file or a designated R data structure. In each case, the parameters are
instantiated to the values for which the model defines a log probability function.
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Transformed Variables

The transformed data and transformed parameters block behave similarly to
each other. Both allow new variables to be declared and then defined through a
sequence of statements. Because variables scope over every statement that follows
them, transformed data variables may be defined in terms of the data variables.

Before generating any samples, data variables are read in, then the transformed
data variables are declared and the associated statements executed to define them.
This means the statements in the transformed data block are only ever evaluated
once.! Transformed parameters work the same way, being defined in terms of the
parameters, transformed data, and data variables. The difference is the frequency of
evaluation. Parameters are read in and (inverse) transformed to constrained repre-
sentations on their natural scales once per log probability and gradient evaluation.
This means the inverse transforms and their log absolute Jacobian determinants are
evaluated once per leapfrog step. Transformed parameters are then declared and
their defining statements executed once per leapfrog step.

Generated Quantities

The generated quantity variables are defined once per sample after all the leapfrog
steps have been completed. These may be random quantities, so the block must be
rerun even if the Metropolis adjustment of HMC or NUTS rejects the update proposal.

Variable Read, Write, and Definition Summary

A table summarizing the point at which variables are read, written, and defined is
given in Figure 6.1. Another way to look at the variables is in terms of their function.
To decide which variable to use, consult the charts in Figure 6.2. The last line has
no corresponding location, as there is no need to print a variable every iteration that
does not depend on parameters.? The rest of this chapter provides full details on
when and how the variables and statements in each block are executed.

6.2. Statistical Variable Taxonomy

(Gelman and Hill, 2007, p. 366) provides a taxonomy of the kinds of variables used
in Bayesian models. Figure 6.3 contains Gelman and Hill’s taxonomy along with a

LIf the C++ code is configured for concurrent threads, the data and transformed data blocks can be
executed once and reused for multiple chains.

2Tt is possible to print a variable every iteration that does not depend on parameters — just define it (or
redefine it if it is transformed data) in the generated quantities block.
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Block | Stmt | Action / Period

data no | read / chain
transformed data yes | evaluate / chain
parameters no inv. transform, Jacobian / leapfrog

inv. transform, write / sample

transformed parameters | yes | evaluate /leapfrog
write / sample

mode’ yes | evaluate / leapfrog step
generated quantities yes | eval / sample

write / sample
(initialization) ‘ n/a ‘ read, transform / chain

Figure 6.1: The read, write, transform, and evaluate actions and periodicities listed
in the last column correspond to the Stan program blocks in the first column. The
middle column indicates whether the block allows statements. The last row indicates
that parameter initialization requires a read and transform operation applied once per
chain.

Params Log Prob Print | Declare In

+ + + transformed parameters

+ + - local in model

+ - - local in generated quantities

+ generated quantities

generated quantities*

- local in transformed data

transformed data and generated quantities*

+ +

|
+ o
+

Figure 6.2: This table indicates where variables that are not basic data or parameters
should be declared, based on whether it is defined in terms of parameters, whether
it is used in the log probability function defined in the model block, and whether it is
printed. The two lines marked with asterisks (x) should not be used as there is no need
to print a variable every iteration that does not depend on the value of any parameters
(for information on how to print these if necessary, see Footnote 2 in this chapter).

missing-data kind along with the corresponding locations of declarations and defini-
tions in Stan.

Constants can be built into a model as literals, data variables, or as transformed
data variables. If specified as variables, their definition must be included in data files.
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Variable Kind Declaration Block

unmodeled data data, transformed data
modeled data data, transformed data
missing data parameters, transformed parameters
modeled parameters parameters, transformed parameters

unmodeled parameters | data, transformed data

generated quantities transformed data, transformed parameters,
generated quantities

loop indices

loop statement

Figure 6.3: Variables of the kind indicated in the left column must be declared in one
of the blocks declared in the right column.

If they are specified as transformed data variables, they cannot be used to specify the
sizes of elements in the data block.

The following program illustrates various variables kinds, listing the kind of each
variable next to its declaration.

data {
int<lower=0> N; // unmodeled data
real y[N]; // modeled data
real mu_mu; // config. unmodeled param
real<lower=0> sigma_mu; // config. unmodeled param
}
transformed data {
real<lower=0> alpha; // const. unmodeled param
real<Tower=0> beta; // const. unmodeled param
alpha = 0.1;
beta = 0.1;
}
parameters {
real mu_y; // modeled param
real<lower=0> tau_y; // modeled param
}
transformed parameters {
real<lower=0> sigma_y; // derived quantity (param)
sigma_y = pow(tau_y, -0.5);
}
modeT {

tau_y ~ gamma(alpha, beta);
mu_y ~ normal(mu_mu, sigma_mu);
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for (n in 1:N)
y[n] ~ normal(mu_y, sigma_y);

}

generated quantities {
real variance_y; // derived quantity (transform)
variance_y = sigma_y * sigma_y;

}

In this example, y[N] is a modeled data vector. Although it is specified in the data
block, and thus must have a known value before the program may be run, it is mod-
eled as if it were generated randomly as described by the model.

The variable N is a typical example of unmodeled data. It is used to indicate a size
that is not part of the model itself.

The other variables declared in the data and transformed data block are examples
of unmodeled parameters, also known as hyperparameters. Unmodeled parameters
are parameters to probability densities that are not themselves modeled probabilisti-
cally. In Stan, unmodeled parameters that appear in the data block may be specified
on a per-model execution basis as part of the data read. In the above model, mu_mu
and sigma_mu are configurable unmodeled parameters.

Unmodeled parameters that are hard coded in the model must be declared in the
transformed data block. For example, the unmodeled parameters alpha and beta
are both hard coded to the value 0.1. To allow such variables to be configurable based
on data supplied to the program at run time, they must be declared in the data block,
like the variables mu_mu and sigma_mu.

This program declares two modeled parameters, mu and tau_y. These are the lo-
cation and precision used in the normal model of the values in y. The heart of the
model will be sampling the values of these parameters from their posterior distribu-
tion.

The modeled parameter tau_y is transformed from a precision to a scale param-
eter and assigned to the variable sigma_y in the transformed parameters block.
Thus the variable sigma_y is considered a derived quantity — its value is entirely
determined by the values of other variables.

The generated quantities block defines a value variance_y, which is defined
as a transform of the scale or deviation parameter sigma_y. It is defined in the gen-
erated quantities block because it is not used in the model. Making it a generated
quantity allows it to be monitored for convergence (being a non-linear transform, it
will have different autocorrelation and hence convergence properties than the devia-
tion itself).

In later versions of Stan which have random number generators for the distribu-
tions, the generated quantities block will be usable to generate replicated data
for model checking.
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Finally, the variable n is used as a loop index in the mode1 block.

6.3. Program Block: data

The rest of this chapter will lay out the details of each block in order, starting with
the data block in this section.

Variable Reads and Transformations

The data block is for the declaration of variables that are read in as data. With
the current model executable, each Markov chain of samples will be executed in a
different process, and each such process will read the data exactly once.3

Data variables are not transformed in any way. The format for data files or data in
memory depends on the interface; see the user’s guides and interface documentation
for PyStan, RStan, and CmdStan for details.

Statements

The data block does not allow statements.

Variable Constraint Checking

Each variable’s value is validated against its declaration as it is read. For example, if a
variable sigma is declared as real<Tower=0>, then trying to assign it a negative value
will raise an error. As a result, data type errors will be caught as early as possible.
Similarly, attempts to provide data of the wrong size for a compound data structure
will also raise an error.

6.4. Program Block: transformed data

The transformed data block is for declaring and defining variables that do not need
to be changed when running the program.

Variable Reads and Transformations

For the transformed data block, variables are all declared in the variable declara-
tions and defined in the statements. There is no reading from external sources and
no transformations performed.

3with multiple threads, or even running chains sequentially in a single thread, data could be read only
once per set of chains. Stan was designed to be thread safe and future versions will provide a multithread-
ing option for Markov chains.
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Variables declared in the data block may be used to declare transformed vari-
ables.

Statements

The statements in a transformed data block are used to define (provide values for)
variables declared in the transformed data block. Assignments are only allowed to
variables declared in the transformed data block.

These statements are executed once, in order, right after the data is read into the
data variables. This means they are executed once per chain (though see Footnote 3
in this chapter).

Variables declared in the data block may be used in statements in the
transformed data block.

Restriction on Operations in transformed data

The statements in the transformed data block are designed to be executed once and
have a deterministic result. Therefore, log probability is not accumulated and sam-
pling statements may not be used. Random number generating functions are also
prohibited.

Variable Constraint Checking

Any constraints on variables declared in the transformed data block are checked
after the statements are executed. If any defined variable violates its constraints,
Stan will halt with a diagnostic error message.

6.5. Program Block: parameters

The variables declared in the parameters program block correspond directly to the
variables being sampled by Stan’s samplers (HMC and NUTS). From a user’s perspec-
tive, the parameters in the program block are the parameters being sampled by Stan.

Variables declared as parameters cannot be directly assigned values. So there is
no block of statements in the parameters program block. Variable quantities derived
from parameters may be declared in the transformed parameters or generated
quantities blocks, or may be defined as local variables in any statement blocks
following their declaration.

There is a substantial amount of computation involved for parameter variables
in a Stan program at each leapfrog step within the HMC or NUTS samplers, and a
bit more computation along with writes involved for saving the parameter values
corresponding to a sample.
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Constraining Inverse Transform

Stan’s two samplers, standard Hamiltonian Monte Carlo (HMC) and the adaptive No-U-
Turn sampler (NUTS), are most easily (and often most effectively) implemented over a
multivariate probability density that has support on all of R”. To do this, the parame-
ters defined in the parameters block must be transformed so they are unconstrained.

In practice, the samplers keep an unconstrained parameter vector in memory rep-
resenting the current state of the sampler. The model defined by the compiled Stan
program defines an (unnormalized) log probability function over the unconstrained
parameters. In order to do this, the log probability function must apply the inverse
transform to the unconstrained parameters to calculate the constrained parameters
defined in Stan’s parameters program block. The log Jacobian of the inverse trans-
form is then added to the accumulated log probability function. This then allows the
Stan model to be defined in terms of the constrained parameters.

In some cases, the number of parameters is reduced in the unconstrained space.
For instance, a K-simplex only requires K — 1 unconstrained parameters, and a K-
correlation matrix only requires (’5 ) unconstrained parameters. This means that the
probability function defined by the compiled Stan program may have fewer parame-
ters than it would appear from looking at the declarations in the parameters program
block.

The probability function on the unconstrained parameters is defined in such a
way that the order of the parameters in the vector corresponds to the order of the
variables defined in the parameters program block. The details of the specific trans-
formations are provided in Chapter 35.

Gradient Calculation

Hamiltonian Monte Carlo requires the gradient of the (unnormalized) log probability
function with respect to the unconstrained parameters to be evaluated during every
leapfrog step. There may be one leapfrog step per sample or hundreds, with more
being required for models with complex posterior distribution geometries.

Gradients are calculated behind the scenes using Stan’s algorithmic differentiation
library. The time to compute the gradient does not depend directly on the number
of parameters, only on the number of subexpressions in the calculation of the log
probability. This includes the expressions added from the transforms’ Jacobians.

The amount of work done by the sampler does depend on the number of uncon-
strained parameters, but this is usually dwarfed by the gradient calculations.
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Writing Samples

In the basic Stan compiled program, the values of variables are written to a file for
each sample. The constrained versions of the variables are written, again in the or-
der they are defined in the parameters block. In order to do this, the transformed
parameter, model, and generated quantities statements must be executed.

6.6. Program Block: transformed parameters

The transformed parameters program block consists of optional variable declara-
tions followed by statements. After the statements are executed, the constraints on
the transformed parameters are validated. Any variable declared as a transformed
parameter is part of the output produced for samples.

Any variable that is defined wholly in terms of data or transformed data should
be declared and defined in the transformed data block. Defining such quantities in
the transformed parameters block is legal, but much less efficient than defining them
as transformed data.

Constraints are for Error Checking

Like the constraints on data, the constraints on transformed parameters is meant
to catch programming errors as well as convey programmer intent. They are not
automatically transformed in such a way as to be satisfied. What will happen if a
transformed parameter does not match its constraint is that the current parameter
values will be rejected. This can cause Stan’s algorithms to hang or to devolve to
random walks. It is not intended to be a way to enforce ad hoc constraints in Stan
programs. See Section 5.10 for further discussion of the behavior of reject statements.

6.7. Program Block: mode]

The mode1 program block consists of optional variable declarations followed by state-
ments. The variables in the model block are local variables and are not written as part
of the output.

Local variables may not be defined with constraints because there is no well-
defined way to have them be both flexible and easy to validate.

The statements in the model block typically define the model. This is the block
in which probability (sampling notation) statements are allowed. These are typically
used when programming in the BUGS idiom to define the probability model.
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6.8. Program Block: generated quantities

The generated quantities program block is rather different than the other blocks.
Nothing in the generated quantities block affects the sampled parameter values. The
block is executed only after a sample has been generated.

Among the applications of posterior inference that can be coded in the generated
quantities block are

- forward sampling to generate simulated data for model testing,
- generating predictions for new data,

- calculating posterior event probabilities, including multiple comparisons, sign
tests, etc.,

- calculating posterior expectations,

- transforming parameters for reporting,

- applying full Bayesian decision theory,

- calculating log likelihoods, deviances, etc. for model comparison.

Forward samples, event probabilities and statistics may all be calculated directly us-
ing plug-in estimates. Stan automatically provides full Bayesian inference by pro-
ducing samples from the posterior distribution of any calculated event probabilities,
predictions, or statistics. See Chapter 29 for more information on Bayesian inference.

Within the generated quantities block, the values of all other variables declared in
earlier program blocks (other than local variables) are available for use in the gener-
ated quantities block.

It is more efficient to define a variable in the generated quantities block instead of
the transformed parameters block. Therefore, if a quantity does not play a role in the
model, it should be defined in the generated quantities block.

After the generated quantities statements are executed, the constraints on the
declared generated quantity variables are validated.

All variables declared as generated quantities are printed as part of the output.
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7. User-Defined Functions

Stan allows users to define their own functions. The basic syntax is a simplified ver-
sion of that used in C and C++. This chapter specifies how functions are declared,
defined, and used in Stan; see Chapter 24 for a more programming-oriented perspec-
tive.

7.1. Function-Definition Block

User-defined functions appear in a special function-definition block before all of the
other program blocks.

functions {
// ... function declarations and definitions ...

}
data {

/] ...

Function definitions and declarations may appear in any order, subject to the con-
dition that a function must be declared before it is used. Forward declarations are
allowed in order to support recursive functions.

7.2. Function Names

The rules for function naming and function-argument naming are the same as for

other variables; see Section 4.2 for more information on valid identifiers. For example,
real foo(real mu, real sigma);

declares a function named foo with two argument variables of types real and real.
The arguments are named mu and sigma, but that is not part of the declaration. Two
user-defined functions may not have the same name even if they have different
sequences of argument types.

7.3. Calling Functions
All function arguments are mandatory—there are no default values.

Functions as Expressions

Functions with non-void return types are called just like any other built-in function in
Stan—they are applied to appropriately typed arguments to produce an expression,
which has a value when executed.
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Functions as Statements

Functions with void return types may be applied to arguments and used as state-
ments. These act like sampling statements or print statements. Such uses are only
appropriate for functions that act through side effects, such as incrementing the log
probability accumulator, printing, or raising exceptions.

Probability Functions in Sampling Statements

Functions whose name ends in _1pdf or _1pmf (density and mass functions) may be
used as probability functions and may be used in place of parameterized distributions
on the right-hand-side of sampling statements. There is no restriction on where such
functions may be used.

Restrictions on Placement

Functions of certain types are restricted on scope of usage. Functions whose names
end in _Tp assume access to the log probability accumulator and are only available in
the transformed parameter and model blocks. Functions whose names end in _rng
assume access to the random number generator and may only be used within the
generated quantities block, transformed data block, and within user-defined func-
tions ending in _rng. See Section 7.5 for more information on these two special types
of function.

7.4. Unsized Argument Types

Stan’s functions all have declared types for both arguments and returned value. As
with built-in functions, user-defined functions are only declared for base argument
type and dimensionality. This requires a different syntax than for declaring other
variables. The choice of language was made so that return types and argument types
could use the same declaration syntax.

The type void may not be used as an argument type, only a return type for a
function with side effects.

Base Variable Type Declaration

The base variable types are integer, real, vector, row_vector, and matrix. No
lower-bound or upper-bound constraints are allowed (e.g., real<lower=0> is illegal).
Specialized types are also not allowed (e.g., simpTex is illegal) .
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Dimensionality Declaration

Arguments and return types may be arrays, and these are indicated with optional
brackets and commas as would be used for indexing. For example, int denotes a sin-
gle integer argument or return, whereas real[ ] indicates a one-dimensional array
of reals, real[ , ] a two-dimensional array and real[ , , ] a three-dimensional
array; whitespace is optional, as usual.

The dimensions for vectors and matrices are not included, so that matrix is the
type of a single matrix argument or return type. Thus if a variable is declared as
matrix a, then a has two indexing dimensions, so that a[1] is a row vector and
a[l, 1] a real value. Matrices implicitly have two indexing dimensions. The type
declaration matrix[,] b specifies that b is a two-dimensional array of matrices, for
a total of four indexing dimensions, with b[1, 1, 1, 1] picking out a real value.

Dimensionality Checks and Exceptions

Function argument and return types are not themselves checked for dimensionality.
A matrix of any size may be passed in as a matrix argument. Nevertheless, a user-
defined function might call a function (such as a multivariate normal density) that
itself does dimensionality checks.

Dimensions of function return values will be checked if they’re assigned to a pre-
viously declared variable. They may also be checked if they are used as the argument
to a function.

Any errors raised by calls to functions inside user functions or return type mis-
matches are simply passed on; this typically results in a warning message and rejec-
tion of a proposal during sampling or optimization.

7.5. Function Bodies

The body of a function is bounded by curly braces ({ and }). The body may contain
local variable declarations at the top of the function body’s block and these scope the
same way as local variables used in any other statement block.

The only restrictions on statements in function bodies are external, and determine
whether the log probability accumulator or random number generators are available;
see the rest of this section for details.

Random Number Generating Functions

Functions that call random number generating functions in their bodies must have a
name that ends in _rng; attempts to use random-number generators in other func-
tions leads to a compile-time error.
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Like other random number generating functions, user-defined functions with
names that end in _rng may be used only in the generated quantities block and trans-
formed data block, or within the bodies of user-defined functions ending in _rng. An
attempt to use such a function elsewhere results in a compile-time error.

Log Probability Access in Functions

Functions that include sampling statements or log probability increment statements
must have a name that ends in _Tp. Attempts to use sampling statements or incre-
ment log probability statements in other functions leads to a compile-time error.

Like the target log density increment statement and sampling statements, user-
defined functions with names that end in _1p may only be used in blocks where the
log probability accumulator is accessible, namely the transformed parameters and
model blocks. An attempt to use such a function elsewhere results in a compile-time
error.

Defining Probability Functions for Sampling Statements

Functions whose names end in _Tpdf and _1pmf (density and mass functions) can be
used as probability functions in sampling statements. As with the built-in functions,
the first argument will appear on the left of the sampling statement operator (~) in
the sampling statement and the other arguments follow. For example, suppose a
function returning the log of the density of y given parameter theta allows the use
of the sampling statement is defined as follows.

real foo_lpdf(real y, vector theta) { ... }

Note that for function definitions, the comma is used rather than the vertical bar.
Then the shorthand

z ~ foo(phi);
will have exactly the same effect
target += foo_lpdf(z | phi);

Unlike built-in probability functions, user-defined probability functions like the ex-
ample foo above will not automatically drop constant terms.

The same syntax and shorthand works for log probability mass functions with
suffixes _1pmf.

A function that is going to be accessed as distributions must return the log of the
density or mass function it defines.
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7.6. Parameters are Constant

Within function definition bodies, the parameters may be used like any other variable.
But the parameters are constant in the sense that they can’t be assigned to (i.e., can’t
appear on the left side of an assignment (=) statement. In other words, their value
remains constant throughout the function body. Attempting to assign a value to a
function parameter value will raise a compile-time error.!

Local variables may be declared at the top of the function block and scope as
usual.

7.7. Return Value

Non-void functions must have a return statement that returns an appropriately typed
expression. If the expression in a return statement does not have the same type as
the return type declared for the function, a compile-time error is raised.

Void functions may use return only without an argument, but return statements
are not mandatory.

Return Guarantee Required

Unlike C++, Stan enforces a syntactic guarantee for non-void functions that ensures
control will leave a non-void function through an appropriately typed return state-
ment or because an exception is raised in the execution of the function. To enforce
this condition, functions must have a return statement as the last statement in their
body. This notion of last is defined recursively in terms of statements that qualify as
bodies for functions. The base case is that

a return statement qualifies,

and the recursive cases are that
a sequence of statements qualifies if its last statement qualifies,
a for loop or while loop qualifies if its body qualifies, and

a conditional statement qualifies if it has a default else clause and all of its body
statements qualify.

These rules disqualify

I Despite being declared constant and appearing to have a pass-by-value syntax in Stan, the implemen-
tation of the language passes function arguments by constant reference in C++.
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real foo(real x) {
if (x > 2) return 1.0;
else if (x <= 2) return -1.0;

}
because there is no default else clause, and disqualify

real foo(real x) {
real y;
y =x;
while (x < 10) {
if (x > 0) return Xx;
y =x/2;
}
}

because the return statement is not the last statement in the while loop. A bogus
dummy return could be placed after the while loop in this case. The rules for returns
allow

real Tog_fancy(real x) {
if (x < 1e-30)
return Xx;
else if (x < le-14)
return x * X;
else
return Tog(x);

}

because there’s a default else clause and each condition body has return as its final
statement.

7.8. Void Functions as Statements

Void Functions

A function can be declared without a return value by using void in place of a return
type. Note that the type void may only be used as a return type—arguments may not
be declared to be of type void.

Usage as Statement

A void function may be used as a statement after the function is declared; see Sec-
tion 7.9 for rules on declaration.

Because there is no return, such a usage is only for side effects, such as incre-
menting the log probability function, printing, or raising an error.
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Special Return Statements

In a return statement within a void function’s definition, the return keyword is fol-
lowed immediately by a semicolon (;) rather than by the expression whose value is
returned.

7.9. Declarations

In general, functions must be declared before they are used. Stan supports forward
declarations, which look like function definitions without bodies. For example,

real unit_normal_lpdf(real y);

declares a function named unit_normal_log that consumes a single real-valued in-
put and produces a real-valued output. A function definition with a body simultane-
ously declares and defines the named function, as in

real unit_normal_Tlpdf(real y) {
return -0.5 = square(y);

}

A user-defined Stan function may be declared and then later defined, or just de-
fined without being declared. No other combination of declaration and definition is
legal, so that, for instance, a function may not be declared more than once, nor may it
be defined more than once. If there is a declaration, there must be a definition. These
rules together ensure that all the declared functions are eventually defined.

Recursive Functions

Forward declarations allow the definition of self-recursive or mutually recursive func-
tions. For instance, consider the following code to compute Fibonacci numbers.

int fib(int n);

int fib(int n) {

if (n < 2) return n;

else return fib(n-1) + fib(n-2);
}

Without the forward declaration in the first line, the body of the definition would not
compile.
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8. Execution of a Stan Program

This chapter provides a sketch of how a compiled Stan model is executed using sam-
pling. Optimization shares the same data reading and initialization steps, but then
does optimization rather than sampling.

This sketch is elaborated in the following chapters of this part, which cover vari-
able declarations, expressions, statements, and blocks in more detail.

8.1. Reading and Transforming Data

The reading and transforming data steps are the same for sampling, optimization and
diagnostics.

Read Data

The first step of execution is to read data into memory. Data may be read in through
file (in CmdStan) or through memory (RStan and PyStan); see their respective manuals
for details.! All of the variables declared in the data block will be read. If a variable
cannot be read, the program will halt with a message indicating which data variable
is missing.

After each variable is read, if it has a declared constraint, the constraint is vali-
dated. For example, if a variable N is declared as int<lower=0>, after N is read, it
will be tested to make sure it is greater than or equal to zero. If a variable violates its
declared constraint, the program will halt with a warning message indicating which
variable contains an illegal value, the value that was read, and the constraint that was
declared.

Define Transformed Data

After data is read into the model, the transformed data variable statements are exe-
cuted in order to define the transformed data variables. As the statements execute,
declared constraints on variables are not enforced.

Transformed data variables are initialized with real values set to NaN and integer
values set to the smallest integer (large absolute value negative number).

After the statements are executed, all declared constraints on transformed data
variables are validated. If the validation fails, execution halts and the variable’s name,
value and constraints are displayed.

IThe C++ code underlying Stan is flexible enough to allow data to be read from memory or file. Calls
from R, for instance, can be configured to read data from file or directly from R’s memory.
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8.2. Initialization

Initialization is the same for sampling, optimization, and diagnosis

User-Supplied Initial Values

If there are user-supplied initial values for parameters, these are read using the same
input mechanism and same file format as data reads. Any constraints declared on
the parameters are validated for the initial values. If a variable’s value violates its
declared constraint, the program halts and a diagnostic message is printed.

After being read, initial values are transformed to unconstrained values that will
be used to initialize the sampler.

Boundary Values are Problematic

Because of the way Stan defines its transforms from the constrained to the uncon-
strained space, initializing parameters on the boundaries of their constraints is usu-
ally problematic. For instance, with a constraint

parameters {
real<Tower=0,upper=1> theta;
// ...

}

an initial value of 0 for theta leads to an unconstrained value of —oo, whereas a value
of 1 leads to an unconstrained value of +oc. While this will be inverse transformed
back correctly given the behavior of floating point arithmetic, the Jacobian will be
infinite and the log probability function will fail and raise an exception.

Random Initial Values

If there are no user-supplied initial values, the default initialization strategy is to
initialize the unconstrained parameters directly with values drawn uniformly from
the interval (-2, 2). The bounds of this initialization can be changed but it is always
symmetric around 0. The value of 0 is special in that it represents the median of the
initialization. An unconstrained value of 0 corresponds to different parameter values
depending on the constraints declared on the parameters.

An unconstrained real does not involve any transform, so an initial value of 0 for
the unconstrained parameters is also a value of 0 for the constrained parameters.

For parameters that are bounded below at 0, the initial value of 0 on the uncon-
strained scale corresponds to exp(0) = 1 on the constrained scale. A value of -2
corresponds to exp(—2) = .13 and a value of 2 corresponds to exp(2) = 7.4.
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For parameters bounded above and below, the initial value of 0 on the uncon-
strained scale corresponds to a value at the midpoint of the constraint interval. For
probability parameters, bounded below by 0 and above by 1, the transform is the
inverse logit, so that an initial unconstrained value of 0 corresponds to a constrained
value of 0.5, -2 corresponds to 0.12 and 2 to 0.88. Bounds other than 0 and 1 are just
scaled and translated.

Simplexes with initial values of 0 on the unconstrained basis correspond to sym-
metric values on the constrained values (i.e., each value is 1/K in a K-simplex).

Cholesky factors for positive-definite matrices are initialized to 1 on the diago-
nal and O elsewhere; this is because the diagonal is log transformed and the below-
diagonal values are unconstrained.

The initial values for other parameters can be determined from the transform that
is applied. The transforms are all described in full detail in Chapter 35.

Zero Initial Values

The initial values may all be set to 0 on the unconstrained scale. This can be helpful
for diagnosis, and may also be a good starting point for sampling. Once a model is
running, multiple chains with more diffuse starting points can help diagnose prob-
lems with convergence; see Section 30.3 for more information on convergence moni-
toring.

8.3. Sampling

Sampling is based on simulating the Hamiltonian of a particle with a starting posi-
tion equal to the current parameter values and an initial momentum (kinetic energy)
generated randomly. The potential energy at work on the particle is taken to be the
negative log (unnormalized) total probability function defined by the model. In the
usual approach to implementing HMC, the Hamiltonian dynamics of the particle is
simulated using the leapfrog integrator, which discretizes the smooth path of the
particle into a number of small time steps called leapfrog steps.

Leapfrog Steps

For each leapfrog step, the negative log probability function and its gradient need to
be evaluated at the position corresponding to the current parameter values (a more
detailed sketch is provided in the next section). These are used to update the momen-
tum based on the gradient and the position based on the momentum.

For simple models, only a few leapfrog steps with large step sizes are needed. For
models with complex posterior geometries, many small leapfrog steps may be needed
to accurately model the path of the parameters.
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If the user specifies the number of leapfrog steps (i.e., chooses to use standard
HMC), that number of leapfrog steps are simulated. If the user has not specified the
number of leapfrog steps, the No-U-Turn sampler (NUTS) will determine the number
of leapfrog steps adaptively (Hoffman and Gelman, 2011, 2014).

Log Probability and Gradient Calculation

During each leapfrog step, the log probability function and its gradient must be cal-
culated. This is where most of the time in the Stan algorithm is spent. This log
probability function, which is used by the sampling algorithm, is defined over the
unconstrained parameters.

The first step of the calculation requires the inverse transform of the uncon-
strained parameter values back to the constrained parameters in terms of which the
model is defined. There is no error checking required because the inverse transform
is a total function on every point in whose range satisfies the constraints.

Because the probability statements in the model are defined in terms of con-
strained parameters, the log Jacobian of the inverse transform must be added to
the accumulated log probability.

Next, the transformed parameter statements are executed. After they complete,
any constraints declared for the transformed parameters are checked. If the con-
straints are violated, the model will halt with a diagnostic error message.

The final step in the log probability function calculation is to execute the state-
ments defined in the model block.

As the log probability function executes, it accumulates an in-memory represen-
tation of the expression tree used to calculate the log probability. This includes all of
the transformed parameter operations and all of the Jacobian adjustments. This tree
is then used to evaluate the gradients by propagating partial derivatives backward
along the expression graph. The gradient calculations account for the majority of the
cycles consumed by a Stan program.

Metropolis Accept/Reject

A standard Metropolis accept/reject step is required to retain detailed balance and
ensure samples are marginally distributed according to the probability function de-
fined by the model. This Metropolis adjustment is based on comparing log proba-
bilities, here defined by the Hamiltonian, which is the sum of the potential (negative
log probability) and kinetic (squared momentum) energies. In theory, the Hamilto-
nian is invariant over the path of the particle and rejection should never occur. In
practice, the probability of rejection is determined by the accuracy of the leapfrog
approximation to the true trajectory of the parameters.
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If step sizes are small, very few updates will be rejected, but many steps will be
required to move the same distance. If step sizes are large, more updates will be
rejected, but fewer steps will be required to move the same distance. Thus a balance
between effort and rejection rate is required. If the user has not specified a step size,
Stan will tune the step size during warmup sampling to achieve a desired rejection
rate (thus balancing rejection versus number of steps).

If the proposal is accepted, the parameters are updated to their new values. Oth-
erwise, the sample is the current set of parameter values.

8.4. Optimization

Optimization runs very much like sampling in that it starts by reading the data and
then initializing parameters. Unlike sampling, it produces a deterministic output
which requires no further analysis other than to verify that the optimizer itself con-
verged to a posterior mode. The output for optimization is also similar to that for
sampling.

8.5. Variational Inference

Variational inference also runs similar to sampling. It begins by reading the data
and initializing the algorithm. The initial variational approximation is a random draw
from the standard normal distribution in the unconstrained (real-coordinate) space.
Again, similar to sampling, it outputs samples from the approximate posterior once
the algorithm has decided that it has converged. Thus, the tools we use for analyzing
the result of Stan’s sampling routines can also be used for variational inference.

8.6. Model Diagnostics
Model diagnostics are like sampling and optimization in that they depend on a
model’s data being read and its parameters being initialized. The user’s guides for the

interfaces (RStan, PyStan, CmdStan) provide more details on the diagnostics available;
as of Stan 2.0, that’s just gradients on the unconstrained scale and log probabilities.

8.7. Output

For each final sample (not counting samples during warmup or samples that are
thinned), there is an output stage of writing the samples.
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Generated Quantities

Before generating any output, the statements in the generated quantities block are
executed. This can be used for any forward simulation based on parameters of the
model. Or it may be used to transform parameters to an appropriate form for output.

After the generated quantities statements execute, the constraints declared on
generated quantities variables are validated. If these constraints are violated, the
program will terminate with a diagnostic message.

Write

The final step is to write the actual values. The values of all variables declared as
parameters, transformed parameters, or generated quantities are written. Local vari-
ables are not written, nor is the data or transformed data. All values are written in
their constrained forms, that is the form that is used in the model definitions.

In the executable form of a Stan models, parameters, transformed parameters,
and generated quantities are written to a file in comma-separated value (csv) notation
with a header defining the names of the parameters (including indices for multivariate
parameters).

2In the R version of Stan, the values may either be written to a csv file or directly back to R’s memory.
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Part III

Example Models
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9. Regression Models

Stan supports regression models from simple linear regressions to multilevel gener-
alized linear models.

9.1. Linear Regression

The simplest linear regression model is the following, with a single predictor and a
slope and intercept coefficient, and normally distributed noise. This model can be
written using standard regression notation as

Yn = &+ BXx, +€, where €, ~ Normal(0,0).
This is equivalent to the following sampling involving the residual,
Yn — (x + BX,) ~ Normal(0, o),
and reducing still further, to
Vn ~ Normal(x + BX,, 0).

This latter form of the model is coded in Stan as follows.

data {
int<lower=0> N;
vector[N] x;
vector[N] vy;

}

parameters {
real alpha;
real beta;
real<lower=0> sigma;

b
model {

y ~ normal(alpha + beta * x, sigma);
}

There are N observations, each with predictor x[n] and outcome y[n]. The intercept
and slope parameters are alpha and beta. The model assumes a normally distributed
noise term with scale sigma. This model has improper priors for the two regression
coefficients.
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Matrix Notation and Vectorization
The sampling statement in the previous model is vectorized, with

y ~ normal(alpha + beta * x, sigma);

providing the same model as the unvectorized version,

for (n in 1:N)
y[n] ~ normal(alpha + beta * x[n], sigma);

In addition to being more concise, the vectorized form is much faster.!

In general, Stan allows the arguments to distributions such as normal to be vec-
tors. If any of the other arguments are vectors or arrays, they have to be the same
size. If any of the other arguments is a scalar, it is reused for each vector entry. See
Section 49.8 for more information on vectorization of probability functions.

The other reason this works is that Stan’s arithmetic operators are overloaded to
perform matrix arithmetic on matrices. In this case, because x is of type vector and
beta of type real, the expression beta * xis of type vector. Because Stan supports
vectorization, a regression model with more than one predictor can be written directly
using matrix notation.

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] y; // outcome vector
}
parameters {
real alpha; // intercept
vector[K] beta; // coefficients for predictors
real<lower=0> sigma; // error scale
}
model {
y ~ normal(x = beta + alpha, sigma); // likelihood
}

The constraint Tower=0 in the declaration of sigma constrains the value to be greater
than or equal to 0. With no prior in the model block, the effect is an improper prior

1Unlike in Python and R, which are interpreted, Stan is translated to C++ and compiled, so loops and
assignment statements are fast. Vectorized code is faster in Stan because (a) the expression tree used to
compute derivatives can be simplified, leading to fewer virtual function calls, and (b) computations that
would be repeated in the looping version, such as Tog(sigma) in the above model, will be computed once
and reused.
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on non-negative real numbers. Although a more informative prior may be added,
improper priors are acceptable as long as they lead to proper posteriors.

In the model above, x is an N x K matrix of predictors and beta a K-vector of
coefficients, so x * beta is an N-vector of predictions, one for each of the N data
items. These predictions line up with the outcomes in the N-vector y, so the entire
model may be written using matrix arithmetic as shown. It would be possible to
include a column of 1 values in x and remove the alpha parameter.

The sampling statement in the model above is just a more efficient, vector-based
approach to coding the model with a loop, as in the following statistically equivalent
model.

model {
for (n in 1:N)
y[n] ~ normal(x[n] * beta, sigma);

}

With Stan’s matrix indexing scheme, x[n] picks out row n of the matrix x; because
beta is a column vector, the product x[n] * beta is a scalar of type real.

Intercepts as Inputs
In the model formulation
y ~ normal(x = beta, sigma);

there is no longer an intercept coefficient alpha. Instead, we have assumed that the
first column of the input matrix x is a column of 1 values. This way, beta[1] plays
the role of the intercept. If the intercept gets a different prior than the slope terms,
then it would be clearer to break it out. It is also slightly more efficient in its explicit
form with the intercept variable singled out because there’s one fewer multiplications;
it should not make that much of a difference to speed, though, so the choice should
be based on clarity.

9.2. The QR Reparameterization

In the previous example, the linear predictor can be written as n = x8, where n is a N-
vector of predictions, x is a NxK matrix, and S is a K-vector of coefficients. Presuming
N > K, we can exploit the fact that any design matrix, x can be decomposed using the
thin QR decomposition into an orthogonal matrix Q and an upper-triangular matrix
R, i.e. x = QR. See 43.13.4 for more information on the QR decomposition but
note that qr_Q and gqr_R implement the fat QR decomposition so here we thin it by
including only K columns in Q and K rows in R. Also, in practice, it is best to write
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X = Q*R* where Q* = Q xv/n -1 and R* = V,%R. Thus, we can equivalently write

n=xB=QRB=Q*R*B. If we let 0 = R*B, then we have n = Q*0 and B = R* '0. In
that case, the previous Stan program becomes

data {
int<lower=0> N; // number of data items
int<lower=0> K; // number of predictors
matrix[N, K] x; // predictor matrix
vector[N] vy; // outcome vector

}

transformed data {
matrix[N, K] Q_ast;
matrix[K, K] R_ast;
matrix[K, K] R_ast_inverse;
// thin and scale the QR decomposition
Q_ast = qr_Q(x)[, 1:K] = sqrt(N - 1);
R_ast = qr_R(x)[1:K, ] / sqrt(N - 1);
R_ast_inverse = inverse(R_ast);

}

parameters {
real alpha; // intercept
vector[K] theta; // coefficients on Q_ast
real<lower=0> sigma; // error scale

}

model {

y ~ normal(Q_ast * theta + alpha, sigma); // Tikelihood
}

generated quantities {
vector[K] beta;
beta = R_ast_inverse * theta; // coefficients on x

}

Since this Stan program generates equivalent predictions for y and the same posterior
distribution for «, B, and o as the previous Stan program, many wonder why the
version with this QR reparameterization performs so much better in practice, often
both in terms of wall time and in terms of effective sample size. The reasoning is
threefold:

1. The columns of Q* are orthogonal whereas the columns of x generally are not.
Thus, it is easier for a Markov Chain to move around in 6-space than in -space.

2. The columns of Q* have the same scale whereas the columns of x generally do
not. Thus, a Hamiltonian Monte Carlo algorithm can move around the parame-
ter space with a smaller number of larger steps

126



3. Since the covariance matrix for the columns of Qx* is an identity matrix, 6
typically has a reasonable scale if the units of y are also reasonable. This also
helps HMC move efficiently without compromising numerical accuracy.

Consequently, this QR reparameterization is recommended for linear and generalized
linear models in Stan whenever K > 1 and you do not have an informative prior on
the location of B. It can also be worthwhile to subtract the mean from each column
of x before obtaining the QR decomposition, which does not affect the posterior dis-
tribution of 6 or 8 but does affect & and allows you to interpret « as the expectation
of y in a linear model.

9.3. Priors for Coefficients and Scales

This section describes the choices available for modeling priors for regression coef-
ficients and scales. Priors for univariate parameters in hierarchical models are dis-
cussed in Section 9.10 and multivariate parameters in Section 9.13. There is also a
discussion of priors used to identify models in Section 9.12.

However, as described in Section 9.2, if you do not have an informative prior on
the location of the regression coefficients, then you are better off reparameterizing
your model so that the regression coefficients are a generated quantity. In that case,
it usually does not matter very much what prior is used on on the reparameterized
regression coefficients and almost any weakly informative prior that scales with the
outcome will do.

Background Reading

See (Gelman, 2006) for an overview of choices for priors for scale parameters, (Chung
et al., 2013) for an overview of choices for scale priors in penalized maximum likeli-
hood estimates, and Gelman et al. (2008) for a discussion of prior choice for regres-
sion coefficients.

Improper Uniform Priors

The default in Stan is to provide uniform (or “flat”) priors on parameters over their
legal values as determined by their declared constraints. A parameter declared with-
out constraints is thus given a uniform prior on (—o0, o) by default, whereas a scale
parameter declared with a lower bound of zero gets an improper uniform prior on
(0, 00). Both of these priors are improper in the sense that there is no way formulate
a density function for them that integrates to 1 over its support.

Stan allows models to be formulated with improper priors, but in order for sam-
pling or optimization to work, the data provided must ensure a proper posterior. This
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usually requires a minimum quantity of data, but can be useful as a starting point for
inference and as a baseline for sensitivity analysis (i.e., considering the effect the prior
has on the posterior).

Uniform priors are specific to the scale on which they are formulated. For instance,
we could give a scale parameter ¢ > 0 a uniform prior on (0, ), g(o) = ¢ (we use
g because the “density” is not only unnormalized, but unnormalizable), or we could
work on the log scale and provide log o a uniform prior on (—c0, ), g(logo) = c.
These work out to be different priors on o due to the Jacobian adjustment necessary
for the log transform; see Section 35.1 for more information on changes of variables
and their requisite Jacobian adjustments.

Stan automatically applies the necessary Jacobian adjustment for variables de-
clared with constraints to ensure a uniform density on the legal constrained values.
This Jacobian adjustment is turned off when optimization is being applied in order
to produce appropriate maximum likelihood estimates.

Proper Uniform Priors: Interval Constraints

It is possible to declare a variable with a proper uniform prior by imposing both an
upper and lower bound on it, for example,

real<lower=0.1, upper=2.7> sigma;

This will implicitly give sigma a Uniform(0.1,2.7) prior.

Matching Support to Constraints

As with all constraints, it is important that the model provide support for all legal
values of sigma. For example, the following code constraints sigma to be positive,
but then imposes a bounded uniform prior on it.

parameters {
real<lower=0> sigma;

model {
// #%% bad #xx : support narrower than constraint
sigma ~ uniform(0.1, 2.7);

The sampling statement imposes a limited support for sigma in (0.1, 2.7), which is
narrower than the support declared in the constraint, namely (0, c0). This can cause
the Stan program to be difficult to initialize, hang during sampling, or devolve to a
random walk.
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Boundary Estimates

Estimates near boundaries for interval-constrained parameters typically signal that
the prior is not appropriate for the model. It can also cause numerical problems with
underflow and overflow when sampling or optimizing.

“Uninformative” Proper Priors

It is not uncommon to see models with priors on regression coefficients such as
Normal(0,1000).2 If the prior scale, such as 1000, is several orders of magnitude
larger than the estimated coefficients, then such a prior is effectively providing no
effect whatsoever.

We actively discourage users from using the default scale priors suggested
through the BUGS examples (Lunn et al., 2012), such as

o2 ~ InvGamma(0.001,0.001).

Such priors concentrate too much probability mass outside of reasonable posterior
values, and unlike the symmetric wide normal priors, can have the profound effect of
skewing posteriors; see (Gelman, 2006) for examples and discussion.

Truncated Priors

If a variable is declared with a lower bound of zero, then assigning it a normal prior in
a Stan model produces the same effect as providing a properly truncated half-normal
prior. The truncation at zero need not be specified as Stan only requires the density
up to a proportion. So a variable declared with

real<lower=0> sigma;
and given a prior
sigma ~ normal(0, 1000);
gives sigma a half-normal prior, technically

Normal(o|0,1000)
1 — NormalCDF(0]0,1000)

plo) = oc Normal(c|0,1000),

but Stan is able to avoid the calculation of the normal cumulative distribution (CDF)
function required to normalize the half-normal density. If either the prior location or
scale is a parameter or if the truncation point is a parameter, the truncation cannot
be dropped, because the normal CDF term will not be a constant.

2The practice was common in BUGS and can be seen in most of their examples Lunn et al. (2012).
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Weakly Informative Priors

Typically a researcher will have some knowledge of the scale of the variables being
estimated. For instance, if we're estimating an intercept-only model for the mean
population height for adult women, then we know the answer is going to be some-
where in the one to three meter range. That gives us information around which to
form a weakly informative prior.

Similarly, a logistic regression with predictors on the standard scale (roughly zero
mean, unit variance) is unlikely to have a coefficient that’s larger than five in absolute
value. In these cases, it makes sense to provide a weakly informative prior such as
Normal(0, 5) for such a coefficient.

Weakly informative priors help control inference computationally and statisti-
cally. Computationally, a prior increases the curvature around the volume where
the solution is expected to lie, which in turn guides both gradient-based like L-BFGS
and Hamiltonian Monte Carlo sampling by not allowing them to stray too far from the
location of a surface. Statistically, a weakly informative prior is more sensible for a
problem like women’s mean height, because a very diffuse prior like Normal(0, 1000)
will ensure that the vast majority of the prior probability mass is outside the range
of the expected answer, which can overwhelm the inferences available from a small
data set.

Bounded Priors

Consider the women’s height example again. One way to formulate a proper prior
is to impose a uniform prior on a bounded scale. For example, we could declare the
parameter for mean women'’s height to have a lower bound of one meter and an upper
bound of three meters. Surely the answer has to lie in that range.

Similarly, it is not uncommon to see priors for scale parameters that impose lower
bounds of zero and upper bounds of very large numbers, such as 10,000.3 This
provides roughly the same problem for estimation as a very diffuse inverse gamma
prior on variance. We prefer to leave parameters which are not absolutely physically
constrained to float and provide them informative priors. In the case of women’s
height, such a prior might be Normal(2,0.5) on the scale of meters; it concentrates
95% of its mass in the interval (1, 3), but still allows values outside of that region.

In cases where bounded priors are used, the posterior fits should be checked
to make sure the parameter is not estimated at or very close to a boundary. This
will not only cause computational problems, it indicates a problem with the way the
model is formulated. In such cases, the interval should be widened to see where the

3This was also a popular strategy in the BUGS example models (Lunn et al., 2012), which often went one
step further and set the lower bounds to a small number like 0.001 to discourage numerical underflow to
Zero.
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parameter fits without such constraints, or boundary-avoid priors should be used (see
Section 9.10.)

Fat-Tailed Priors and “Default” Priors

A reasonable alternative if we want to accommodate outliers is to use a prior that
concentrates most of mass around the area where values are expected to be, but still
leaves a lot of mass in its tails. The usual choice in such a situation is to use a Cauchy
distribution for a prior, which can concentrate its mass around its median, but has
tails that are so fat that the variance is infinite.

Without specific information, the Cauchy prior is a very good default parameter
choice for regression coefficients (Gelman et al., 2008) and the half-Cauchy (coded
implicitly in Stan) a good default choice for scale parameters (Gelman, 2006).

Informative Priors

Ideally, there will be substantive information about a problem that can be included
in an even tighter prior than a weakly informative prior. This may come from actual
prior experiments and thus be the posterior of other data, it may come from meta-
analysis, or it may come simply by soliciting it from domain experts. All the goodness
of weakly informative priors applies, only with more strength.

Conjugacy

Unlike in Gibbs sampling, there is no computational advantage to providing conjugate
priors (i.e., priors that produce posteriors in the same family) in a Stan program.* Nei-
ther the Hamiltonian Monte Carlo samplers or the optimizers make use of conjugacy,
working only on the log density and its derivatives.

9.4. Robust Noise Models

The standard approach to linear regression is to model the noise term € as having a
normal distribution. From Stan’s perspective, there is nothing special about normally
distributed noise. For instance, robust regression can be accommodated by giving the
noise term a Student-t distribution. To code this in Stan, the sampling distribution is
changed to the following.

4BUGS and JAGS both support conjugate sampling through Gibbs sampling. JAGS extended the range of
conjugacy that could be exploited with its GLM module. Unlike Stan, both BUGS and JAGS are restricted to
conjugate priors for constrained multivariate quantities such as covariance matrices or simplexes.
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data {

real<Tower=0> nu;

}
modeT {

y ~ student_t(nu, alpha + beta * x, sigma);
}

The degrees of freedom constant nu is specified as data.

9.5. Logistic and Probit Regression

For binary outcomes, either of the closely related logistic or probit regression models
may be used. These generalized linear models vary only in the link function they
use to map linear predictions in (—o0, o) to probability values in (0, 1). Their respec-
tive link functions, the logistic function and the unit normal cumulative distribution
function, are both sigmoid functions (i.e., they are both S-shaped).

A logistic regression model with one predictor and an intercept is coded as fol-
lows.

data {
int<lower=0> N;
vector[N] x;
int<lower=0,upper=1> y[N];
}
parameters {
real alpha;
real beta;
}
model {
y ~ bernoulli_Tlogit(alpha + beta * x);
}

The noise parameter is built into the Bernoulli formulation here rather than specified
directly.

Logistic regression is a kind of generalized linear model with binary outcomes and
the log odds (logit) link function, defined by

logit(v) = log<1 \—)v> .

The inverse of the link function appears in the model.

1

se—1 _
logit™ " (u) = T o) e
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The model formulation above uses the logit-parameterized version of the
Bernoulli distribution, which is defined by

BernoulliLogit(y|x) = Bernoulli(yllogitfl(a)).

The formulation is also vectorized in the sense that alpha and beta are scalars and
x is a vector, so that alpha + beta * x is a vector. The vectorized formulation is
equivalent to the less efficient version

for (n in 1:N)
y[n] ~ bernoulli_logit(alpha + beta * x[n]);

Expanding out the Bernoulli logit, the model is equivalent to the more explicit, but
less efficient and less arithmetically stable

for (n in 1:N)
y[n] ~ bernoulli(inv_logit(alpha + beta * x[n]));

Other link functions may be used in the same way. For example, probit regression
uses the cumulative normal distribution function, which is typically written as

X
d(x) = J Normal(y10,1) dy.

The cumulative unit normal distribution function ® is implemented in Stan as the
function Phi. The probit regression model may be coded in Stan by replacing the
logistic model’s sampling statement with the following.

y[n] ~ bernoulli(Phi(alpha + beta * x[n]));

A fast approximation to the cumulative unit normal distribution function @ is im-
plemented in Stan as the function Phi_approx. The approximate probit regression
model may be coded with the following.

y[n] ~ bernoulli(Phi_approx(alpha + beta * x[n]));

9.6. Multi-Logit Regression

Multiple outcome forms of logistic regression can be coded directly in Stan. For in-
stance, suppose there are K possible outcomes for each output variable y,. Also
suppose that there is a D-dimensional vector x,, of predictors for y,. The multi-logit
model with Normal(0, 5) priors on the coefficients is coded as follows.
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data {
int K;
int N;
int D;
int y[N];
vector[D] x[N];
}
parameters {
matrix[K,D] beta;
}
model {
for (k in 1:K)
beta[k] ~ normal(0, 5);
for (n in 1:N)
y[n] ~ categorical(softmax(beta * x[n]));
}

See Section 43.11 for a definition of the softmax function. A more efficient way to
write the final line is

y[n] ~ categorical_logit(beta * x[n]);

The categorical_logit distribution is like the categorical distribution, with
the parameters on the logit scale (see Section 51.5 for a full definition of
categorical_logit).

The first loop may be made more efficient by vectorizing the first loop by convert-
ing the matrix beta to a vector,

to_vector(beta) ~ normal(0, 5);

Constraints on Data Declarations

The data block in the above model is defined without constraints on sizes K, N, and D
or on the outcome array y. Constraints on data declarations provide error checking
at the point data is read (or transformed data is defined), which is before sampling
begins. Constraints on data declarations also make the model author’s intentions
more explicit, which can help with readability. The above model’s declarations could
be tightened to

int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
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These constraints arise because the number of categories, K, must be at least two in
order for a categorical model to be useful. The number of data items, N, can be zero,
but not negative; unlike R, Stan’s for-loops always move forward, so that a loop extent
of 1:N when N is equal to zero ensures the loop’s body will not be executed. The
number of predictors, D, must be at least one in order for beta * x[n] to produce
an appropriate argument for softmax(). The categorical outcomes y[n] must be
between 1 and K in order for the discrete sampling to be well defined.

Constraints on data declarations are optional. Constraints on parameters declared
in the parameters block, on the other hand, are not optional—they are required to
ensure support for all parameter values satisfying their constraints. Constraints on
transformed data, transformed parameters, and generated quantities are also op-
tional.

Identifiability

Because softmax is invariant under adding a constant to each component of its input,
the model is typically only identified if there is a suitable prior on the coefficients.

An alternative is to use (K — 1)-vectors by fixing one of them to be zero. Sec-
tion 11.2 discusses how to mix constants and parameters in a vector. In the multi-
logit case, the parameter block would be redefined to use (K — 1)-vectors

parameters {
matrix[K - 1, D] beta_raw;

}

and then these are transformed to parameters to use in the model. First, a trans-
formed data block is added before the parameters block to define a row vector of
zero values,

transformed data {
row_vector[D] zeros;
zeros = rep_row_vector(0, D);

}
which can then be appended to beta_row to produce the coefficient matrix beta,

transformed parameters {
matrix[K, D] beta;
beta = append_row(beta_raw, zeros);

}

See Section 43.7 for a definition of rep_row_vector and Section 43.10 for a definition
of append_row.
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This is not quite the same model as using K-vectors as parameters, because now
the prior only applies to (K — 1)-vectors. In practice, this will cause the maximum
likelihood solutions to be different and also the posteriors to be slightly different
when taking priors centered around zero, as is typical for regression coefficients.

9.7. Parameterizing Centered Vectors

It is often convenient to define a parameter vector B that is centered in the sense of
satisfying the sum-to-zero constraint,

K
> Bk =0.
k=1

Such a parameter vector may be used to identify a multi-logit regression parameter
vector (see Section 9.6), or may be used for ability or difficulty parameters (but not
both) in an IRT model (see Section 9.11).

K — 1 Degrees of Freedom

There is more than one way to enforce a sum-to-zero constraint on a parameter vec-
tor, the most efficient of which is to define the K-th element as the negation of the
sum of the elements 1 through K — 1.

parameters {
vector[K-1] beta_raw;

transformed parameters {
vector[K] beta; // centered

for (k in 1:(K-1)) {
betal[k] = beta_raw[k];

}

betal[K] = -sum(beta_raw);

Placing a prior on beta_raw in this parameterization leads to a subtly different
posterior than that resulting from the same prior on beta in the original parameteri-
zation without the sum-to-zero constraint. Most notably, a simple prior on each com-
ponent of beta_raw produces different results than putting the same prior on each
component of an unconstrained K-vector beta. For example, providing a Normal(0, 5)
prior on beta will produce a different posterior mode than placing the same prior on
beta_raw.
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Translated and Scaled Simplex

An alternative approach that’s less efficient, but amenable to a symmetric prior, is to
offset and scale a simplex.

parameters {
simplex[K] beta_raw;
real beta_scale;

transformed parameters {
vector[K] beta;
beta = beta_scale * (beta_raw - 1.0 / K);

Given that beta_raw sums to 1 because it is a simplex, the elementwise subtraction
of 1/K is guaranteed to sum to zero (note that the expression 1.0 / Kis used rather
than 1 / K to prevent integer arithmetic rounding down to zero). Because the magni-
tude of the elements of the simplex is bounded, a scaling factor is required to provide
beta with K degrees of freedom necessary to take on every possible value that sums
to zero.

With this parameterization, a Dirichlet prior can be placed on beta_raw, perhaps
uniform, and another prior put on beta_scale, typically for “shrinkage.”

Soft Centering

Adding a prior such as 8 ~ Normal(0, o) will provide a kind of soft centering of a
parameter vector 8 by preferring, all else being equal, that 21,5:1 Bx = 0. This approach
is only guaranteed to roughly center if S and the elementwise addition § + ¢ for a
scalar constant ¢ produce the same likelihood (perhaps by another vector « being
transformed to o — ¢, as in the IRT models). This is another way of achieving a
symmetric prior.

9.8. Ordered Logistic and Probit Regression

Ordered regression for an outcome y, € {1,...,k} with predictors x, € RP is de-
termined by a single coefficient vector B € RP along with a sequence of cutpoints
¢ € RK-1 sorted so that ¢ < cg41. The discrete output is k if the linear predictor x,8
falls between cix_; and ¢, assuming ¢y = —o0 and cx = . The noise term is fixed by
the form of regression, with examples for ordered logistic and ordered probit models.
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Ordered Logistic Regression

The ordered logistic model can be coded in Stan using the ordered data type for the
cutpoints and the built-in ordered_1logistic distribution.

data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
row_vector[D] x[N];

}

parameters {
vector[D] beta;
ordered[K-1] c;

}

model {
for (n in 1:N)

y[n] ~ ordered_logistic(x[n] * beta, c);
}

The vector of cutpoints c is declared as ordered[K-1], which guarantees that c[k]
is less than c[k+1].

If the cutpoints were assigned independent priors, the constraint effectively trun-
cates the joint prior to support over points that satisfy the ordering constraint. Luck-
ily, Stan does not need to compute the effect of the constraint on the normalizing
term because the probability is needed only up to a proportion.

Ordered Probit

An ordered probit model could be coded in exactly the same way by swapping the
cumulative logistic (inv_1og1t) for the cumulative normal (Ph7).

data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> D;
int<lower=1,upper=K> y[N];
row_vector[D] x[N];

}

parameters {
vector[D] beta;
ordered[K-1] c;

}
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model {
vector[K] theta;
for (n in 1:N) {
real eta;
eta = x[n] * beta;
theta[l] = 1 - Phi(eta - c[1]);
for (k in 2:(K-1))
theta[k] = Phi(eta - c[k-1]) - Phi(eta - c[k]);
theta[K] = Phi(eta - c[K-11);
y[n] ~ categorical(theta);
}
}

The logistic model could also be coded this way by replacing Phi with inv_logit,
though the built-in encoding based on the softmax transform is more efficient and
more numerically stable. A small efficiency gain could be achieved by computing the
values Phi(eta - c[k]) once and storing them for re-use.

9.9. Hierarchical Logistic Regression

The simplest multilevel model is a hierarchical model in which the data is grouped
into L distinct categories (or levels). An extreme approach would be to completely
pool all the data and estimate a common vector of regression coefficients . At the
other extreme, an approach with no pooling assigns each level I its own coefficient
vector f; that is estimated separately from the other levels. A hierarchical model is
an intermediate solution where the degree of pooling is determined by the data and
a prior on the amount of pooling.

Suppose each binary outcome y,, € {0, 1} has an associated level, II,, € {1,...,L}.
Each outcome will also have an associated predictor vector x,, € RP. Each level I gets
its own coefficient vector B; € RP. The hierarchical structure involves drawing the co-
efficients B14 € R from a prior that is also estimated with the data. This hierarchically
estimated prior determines the amount of pooling. If the data in each level are very
similar, strong pooling will be reflected in low hierarchical variance. If the data in the
levels are dissimilar, weaker pooling will be reflected in higher hierarchical variance.

The following model encodes a hierarchical logistic regression model with a hier-
archical prior on the regression coefficients.

data {
int<lower=1> D;
int<lower=0> N;
int<lower=1> L;
int<lower=0,upper=1> y[N];
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int<lower=1,upper=L> T1[N];
row_vector[D] x[N];
}
parameters {
real mu[D];
real<lower=0> sigma[D];
vector[D] beta[lL];
}
model {
for (d in 1:D) {
mu[d] ~ normal(0, 100);
for (1 in 1:L)
beta[1,d] ~ normal(mu[d], sigma[d]);
}
for (n in 1:N)
y[n] ~ bernoulli(inv_logit(x[n] = beta[11[n]]1));
H

The standard deviation parameter sigma gets an implicit uniform prior on (0, ) be-
cause of its declaration with a lower-bound constraint of zero. Stan allows improper
priors as long as the posterior is proper. Nevertheless, it is usually helpful to have
informative or at least weakly informative priors for all parameters; see Section 9.3
for recommendations on priors for regression coefficients and scales.

Optimizing the Model

Where possible, vectorizing sampling statements leads to faster log probability and
derivative evaluations. The speed boost is not because loops are eliminated, but
because vectorization allows sharing subcomputations in the log probability and gra-
dient calculations and because it reduces the size of the expression tree required for
gradient calculations.

The first optimization vectorizes the for-loop over D as

mu ~ normal(0, 100);
for (1 in 1:L)
beta[1] ~ normal(mu, sigma);

The declaration of beta as an array of vectors means that the expression beta[1]
denotes a vector. Although beta could have been declared as a matrix, an array of
vectors (or a two-dimensional array) is more efficient for accessing rows; see Sec-
tion 26.3 for more information on the efficiency tradeoffs among arrays, vectors, and
matrices.
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This model can be further sped up and at the same time made more arithmetically
stable by replacing the application of inverse-logit inside the Bernoulli distribution
with the logit-parameterized Bernoulli,

for (n in 1:N)
y[n] ~ bernoulli_Togit(x[n] = beta[11[n]]);

See Section 50.2 for a definition of bernoul1i_logit.

Unlike in R or BUGS, loops, array access and assignments are fast in Stan because
they are translated directly to C++. In most cases, the cost of allocating and assigning
to a container is more than made up for by the increased efficiency due to vectorizing
the log probability and gradient calculations. Thus the following version is faster than
the original formulation as a loop over a sampling statement.

{
vector[N] x_beta_11;
for (n in 1:N)
x_beta_T11[n] = x[n] * beta[11[n]];
y ~ bernoulli_logit(x_beta_11);
}

The brackets introduce a new scope for the local variable x_beta_11; alternatively,
the variable may be declared at the top of the model block.

In some cases, such as the above, the local variable assignment leads to models
that are less readable. The recommended practice in such cases is to first develop and
debug the more transparent version of the model and only work on optimizations
when the simpler formulation has been debugged.

9.10. Hierarchical Priors

Priors on priors, also known as “hyperpriors,” should be treated the same way as
priors on lower-level parameters in that as much prior information as is available
should be brought to bear. Because hyperpriors often apply to only a handful of
lower-level parameters, care must be taken to ensure the posterior is both proper and
not overly sensitive either statistically or computationally to wide tails in the priors.

Boundary-Avoiding Priors for MLE in Hierarchical Models

The fundamental problem with maximum likelihood estimation (MLE) in the hierar-
chical model setting is that as the hierarchical variance drops and the values cluster
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around the hierarchical mean, the overall density grows without bound. As an il-
lustration, consider a simple hierarchical linear regression (with fixed prior mean) of
¥n € R on x,, € RX, formulated as

Yn ~ Normal(x,f,0)
Bk ~ Normal(0,T)
T ~ Cauchy(0,2.5)

In this case, as T — 0 and S — 0, the posterior density

p(B,T,01y,x) < p(¥Ix,B,T,0)

grows without bound. There is a plot of a Neal’s funnel density in Figure 28.1, which
has similar behavior.

There is obviously no MLE estimate for 8, T, 0 in such a case, and therefore the
model must be modified if posterior modes are to be used for inference. The approach
recommended by Chung et al. (2013) is to use a gamma distribution as a prior, such
as

o ~Gamma(2,1/A),

for a reasonably large value of A, such as A = 10.

9.11. Item-Response Theory Models

Item-response theory (IRT) models the situation in which a number of students each
answer one or more of a group of test questions. The model is based on parameters
for the ability of the students, the difficulty of the questions, and in more articu-
lated models, the discriminativeness of the questions and the probability of guessing
correctly; see (Gelman and Hill, 2007, pps. 314-320) for a textbook introduction to
hierarchical IRT models and (Curtis, 2010) for encodings of a range of IRT models in
BUGS.

Data Declaration with Missingness

The data provided for an IRT model may be declared as follows to account for the
fact that not every student is required to answer every question.

data {
int<lower=1> J; // number of students
int<lower=1> K; // number of questions
int<lower=1> N; // number of observations
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int<lower=1,upper=3]> jj[N]; // student for observation n
int<lower=1,upper=K> kk[N]; // question for observation n
int<lower=0,upper=1> y[N]; // correctness for observation n

}

This declares a total of N student-question pairs in the data set, where each nin 1:N
indexes a binary observation y[n] of the correctness of the answer of student jj[n]
on question kk[n].

The prior hyperparameters will be hard coded in the rest of this section for sim-
plicity, though they could be coded as data in Stan for more flexibility.

1PL (Rasch) Model

The 1PL item-response model, also known as the Rasch model, has one parameter
(1P) for questions and uses the logistic link function (L).
The model parameters are declared as follows.

parameters {

real delta; // mean student ability
real alpha[J]; // ability of student j - mean ability
real beta[K]; // difficulty of question k

}

The parameter alpha[j] is the ability coefficient for student j and beta[k] is the dif-
ficulty coefficient for question k. The non-standard parameterization used here also
includes an intercept term delta, which represents the average student’s response
to the average question.” The model itself is as follows.

model {
alpha ~ normal(0, 1); // informative true prior
beta ~ normal(0, 1); // informative true prior
delta ~ normal(0.75, 1); // informative true prior

for (n in 1:N)
y[n] ~ bernoulli_logit(alpha[jj[n]] - beta[kk[n]] + delta);
}

This model uses the logit-parameterized Bernoulli distribution, where

bernoulli_Togit(y|x) = bernoulli (yllogi’(1 ().

5(Gelman and Hill, 2007) treat the § term equivalently as the location parameter in the distribution of
student abilities.
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The key to understanding it is the term inside the bernoulT1i_Tlogit distribution,
from which it follows that

Priyn = 11 = logit " (& jn) — Brkin) + 0).

The model suffers from additive identifiability issues without the priors. For example,
adding a term & to each «; and B results in the same predictions. The use of priors
for & and S located at O identifies the parameters; see (Gelman and Hill, 2007) for a
discussion of identifiability issues and alternative approaches to identification.

For testing purposes, the IRT 1PL model distributed with Stan uses informative
priors that match the actual data generation process used to simulate the data in R
(the simulation code is supplied in the same directory as the models). This is unre-
alistic for most practical applications, but allows Stan’s inferences to be validated. A
simple sensitivity analysis with fatter priors shows that the posterior is fairly sensi-
tive to the prior even with 400 students and 100 questions and only 25% missingness
at random. For real applications, the priors should be fit hierarchically along with the
other parameters, as described in the next section.

Multilevel 2PL Model

The simple 1PL model described in the previous section is generalized in this section
with the addition of a discrimination parameter to model how noisy a question is and
by adding multilevel priors for the question difficulty and discrimination parameters.
The model parameters are declared as follows.

parameters {

real mu_beta; // mean student ability

real alpha[Jl]; // ability for j - mean

real beta[K]; // difficulty for k
real<lower=0> gamma[K]; // discrimination of k
real<lower=0> sigma_beta; // scale of difficulties
real<lower=0> sigma_gamma; // scale of log discrimination

}

The parameters should be clearer after the model definition.

model {
alpha ~ normal(0, 1);
beta ~ normal(0, sigma_beta);
gamma ~ lognormal(0, sigma_gamma);
mu_beta ~ cauchy(0, 5);
sigma_alpha ~ cauchy(0, 5);
sigma_beta ~ cauchy(0, 5);

144



sigma_gamma ~ cauchy(0, 5);
for (n in 1:N)
y[n] ~ bernoulli_Tlogit(gammal[kk[n]]
#* (alpha[jj[n]] - (betal[kk[n]] + mu_beta)));
}

This is similar to the 1PL model, with the additional parameter gamma[k] modeling
how discriminative question k is. If gamma[k] is greater than 1, responses are more
attenuated with less chance of getting a question right at random. The parameter
gamma[k] is constrained to be positive, which prohibits there being questions that
are easier for students of lesser ability; such questions are not unheard of, but they
tend to be eliminated from most testing situations where an IRT model would be
applied.

The model is parameterized here with student abilities alpha being given a unit
normal prior. This is to identify both the scale and the location of the parameters,
both of which would be unidentified otherwise; see Chapter 25 for further discussion
of identifiability. The difficulty and discrimination parameters beta and gamma then
have varying scales given hierarchically in this model. They could also be given weakly
informative non-hierarchical priors, such as

beta ~ normal(0, 5);
gamma ~ lognormal(0, 2);

The point is that the alpha determines the scale and location and beta and gamma
are allowed to float.

The beta parameter is here given a non-centered parameterization, with param-
eter mu_beta serving as the mean beta location. An alternative would’ve been to
take:

beta ~ normal(mu_beta, sigma_beta);
and
y[n] ~ bernoulli_logit(gamma[kk[n]] = (alphal[jj[n]] - betal[kk[n]]1));

Non-centered parameterizations tend to be more efficient in hierarchical models; see
Section 28.6 for more information on non-centered reparameterizations.

The intercept term mu_beta can’t itself be modeled hierarchically, so it is given
a weakly informative Cauchy(0,5) prior. Similarly, the scale terms, sigma_alpha,
sigma_beta, and sigma_gamma, are given half-Cauchy priors. The truncation in the
half-Cauchy prior is implicit; explicit truncation is not necessary because the log
probability need only be calculated up to a proportion and the scale variables are
constrained to (0, o) by their declarations.
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9.12. Priors for Identifiability

Location and Scale Invariance

One application of (hierarchical) priors is to identify the scale and/or location of a
group of parameters. For example, in the IRT models discussed in the previous sec-
tion, there is both a location and scale non-identifiability. With uniform priors, the
posteriors will float in terms of both scale and location. See Section 25.1 for a simple
example of the problems this poses for estimation.

The non-identifiability is resolved by providing a unit normal (i.e., Normal(0, 1))
prior on one group of coefficients, such as the student abilities. With a unit normal
prior on the student abilities, the IRT model is identified in that the posterior will pro-
duce a group of estimates for student ability parameters that have a sample mean of
close to zero and a sample variance of close to one. The difficulty and discrimination
parameters for the questions should then be given a diffuse, or ideally a hierarchi-
cal prior, which will identify these parameters by scaling and locating relative to the
student ability parameters.

Collinearity

Another case in which priors can help provide identifiability is in the case of collinear-
ity in a linear regression. In linear regression, if two predictors are collinear (i.e, one
is a linear function of the other), then their coefficients will have a correlation of 1 (or
-1) in the posterior. This leads to non-identifiability. By placing normal priors on the
coefficients, the maximum likelihood solution of two duplicated predictors (trivially
collinear) will be half the value than would be obtained by only including one.

Separability

In a logistic regression, if a predictor is positive in cases of 1 outcomes and negative
in cases of 0 outcomes, then the maximum likelihood estimate for the coefficient for
that predictor diverges to infinity. This divergence can be controlled by providing a
prior for the coefficient, which will “shrink” the estimate back toward zero and thus
identify the model in the posterior.

Similar problems arise for sampling with improper flat priors. The sampler will
try to draw very large values. By providing a prior, the posterior will be concentrated
around finite values, leading to well-behaved sampling.
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9.13. Multivariate Priors for Hierarchical Models

In hierarchical regression models (and other situations), several individual-level vari-
ables may be assigned hierarchical priors. For example, a model with multiple varying
intercepts and slopes within might assign them a multivariate prior.

As an example, the individuals might be people and the outcome income, with
predictors such as education level and age, and the groups might be states or other
geographic divisions. The effect of education level and age as well as an intercept
might be allowed to vary by state. Furthermore, there might be state-level predictors,
such as average state income and unemployment level.

Multivariate Regression Example

(Gelman and Hill, 2007, Chapter 13, Chapter 17) discuss a hierarchical model with
N individuals organized into J groups. Each individual has a predictor row vector
X, of size K; to unify the notation, they assume that x,; = 1 is a fixed “intercept”
predictor. To encode group membership, they assume individual n belongs to group
jjln] € 1:J. Each individual n also has an observed outcome y, taking on real values.

Likelihood

The model is a linear regression with slope and intercept coefficients varying by
group, so that B; is the coefficient K-vector for group j. The likelihood function
for individual n is then just

¥Yn ~ Normal(x, Bjin), 0) for n € 1:N.

Coefficient Prior

Gelman and Hill model the coefficient vectors ; as being drawn from a multivariate
distribution with mean vector y and covariance matrix 3,

B ~ MultiNormal(u, X) for j € 1:].

Below, we discuss the full model of Gelman and Hill, which uses group-level predic-
tors to model u; for now, we assume p is a simple vector parameter.

Hyperpriors

For hierarchical modeling, the group-level mean vector u and covariance matrix >
must themselves be given priors. The group-level mean vector can be given a reason-
able weakly-informative prior for independent coefficients, such as

uj ~ Normal(0,5).
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Of course, if more is known about the expected coefficient values ;, this informa-
tion can be incorporated into the prior for py.

For the prior on the covariance matrix, Gelman and Hill suggest using a scaled in-
verse Wishart. That choice was motivated primarily by convenience as it is conjugate
to the multivariate likelihood function and thus simplifies Gibbs sampling.

In Stan, there is no restriction to conjugacy for multivariate priors, and we in fact
recommend a slightly different approach. Like Gelman and Hill, we decompose our
prior into a scale and a matrix, but are able to do so in a more natural way based on
the actual variable scales and a correlation matrix. Specifically, we define

Y = diag_matrix(7) Q diag_matrix(T),

where Q) is a correlation matrix and T is the vector of coefficient scales. This mapping
from scale vector T and correlation matrix Q can be inverted, using

Tk=\/§,k

Zij
TiTj ’

and

Qi’j =

The components of the scale vector T can be given any reasonable prior for scales,
but we recommend something weakly informative like a half-Cauchy distribution with
a small scale, such as

Tx ~ Cauchy(0,2.5) for k € 1:K constrained by 1, > 0.

As for the prior means, if there is information about the scale of variation of co-
efficients across groups, it should be incorporated into the prior for T. For large
numbers of exchangeable coefficients, the components of T itself (perhaps excluding
the intercept) may themselves be given a hierarchical prior.
Our final recommendation is to give the correlation matrix QO an LKJ prior with
shape v > 1,
Q ~ LKJCorr(v).

The LK]J correlation distribution is defined in Section 63.1, but the basic idea for mod-
eling is that as v increases, the prior increasingly concentrates around the unit corre-
lation matrix (i.e., favors less correlation among the components of ;). At v = 1, the
LK]J correlation distribution reduces to the identity distribution over correlation ma-
trices. The LK] prior may thus be used to control the expected amount of correlation
among the parameters f3;.
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Group-Level Predictors for Prior Mean

To complete Gelman and Hill's model, suppose each group j € 1:J is supplied with
an L-dimensional row-vector of group-level predictors u;. The prior mean for the B;
can then itself be modeled as a regression, using an L-dimensional coefficient vector
y. The prior for the group-level coefficients then becomes

B; ~ MultiNormal(u; y, )

The group-level coefficients y may themselves be given independent weakly infor-
mative priors, such as
y1 ~ Normal(0, 5).

As usual, information about the group-level means should be incorporated into this
prior.
Coding the Model in Stan

The Stan code for the full hierarchical model with multivariate priors on the group-
level coefficients and group-level prior means follows its definition.

data {
int<lower=0> N; // num individuals
int<lower=1> K; // num ind predictors
int<lower=1> J; // num groups
int<lower=1> L; // num group predictors
int<lower=1,upper=J> jj[N]; // group for individual
matrix[N, K] x; // individual predictors
row_vector[L] u[J]; // group predictors
vector[N] vy; // outcomes

}

parameters {
corr_matrix[K] Omega; // prior correlation
vector<lower=0>[K] tau; // prior scale
matrix[L, K] gamma; // group coeffs
vector[K] beta[]]; // indiv coeffs by group
real<lower=0> sigma; // prediction error scale

}

model {

tau ~ cauchy(0, 2.5);
Omega ~ Tkj_corr(2);
to_vector(gamma) ~ normal(0, 5);
{

row_vector[K] u_gamma[J]];

for (3 in 1:7)
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u_gamma[j] = u[j] * gamma;
beta ~ multi_normal(u_gamma, quad_form_diag(Omega, tau));
}
for (n in 1:N)
y[n] ~ normal(x[n] * betal[jj[n]], sigma);
}

The hyperprior covariance matrix is defined implicitly through the a quadratic
form in the code because the correlation matrix Omega and scale vector tau
are more natural to inspect in the output; to output Sigma, define it as
a transformed parameter. The function quad_form_diag is defined so that
quad_form_diag(Sigma, tau) is equivalent to diag_matrix(tau) * Sigma =
diag_matrix(tau), where diag_matrix(tau) returns the matrix with tau on the di-
agonal and zeroes off diagonal; the version using quad_form_diag should be faster.
See Section 43.2 for more information on specialized matrix operations.

Optimization through Vectorization

The code in the Stan program above can be sped up dramatically by replacing:

for (n in 1:N)
y[n] ~ normal(x[n] * beta[jj[n]], sigma);

with the vectorized form:

{
vector[N] x_beta_jj;
for (n in 1:N)
x_beta_jj[n] = x[n] = beta[jj[nll;
y ~ normal(x_beta_jj, sigma);

}

The outer brackets create a local scope in which to define the variable x_beta_jj,
which is then filled in a loop and used to define a vectorized sampling statement. The
reason this is such a big win is that it allows us to take the log of sigma only once
and it greatly reduces the size of the resulting expression graph by packing all of the
work into a single density function.

Although it is tempting to redeclare beta and include a revised model block sam-
pling statement,

parameters {
matrix[J, K] beta;

modeT {
y ~ normal(rows_dot_product(x, betal[jj]), sigma);
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this fails because it breaks the vectorization of sampling for beta,b
beta ~ multi_normal(...);

which requires beta to be an array of vectors. Both vectorizations are important, so
the best solution is to just use the loop above, because rows_dot_product cannot do
much optimization in and of itself because there are no shared computations.

The code in the Stan program above also builds up an array of vectors for the
outcomes and for the multivariate normal, which provides a very significant speedup
by reducing the number of linear systems that need to be solved and differentiated.

{
matrix[K, K] Sigma_beta;
Sigma_beta = quad_form_diag(Omega, tau);
for (3 in 1:7)
betal[j] ~ multi_normal((u[j] * gamma)', Sigma_beta);
}

In this example, the covariance matrix Sigma_beta is defined as a local variable so as
not to have to repeat the quadratic form computation J times. This vectorization can
be combined with the Cholesky-factor optimization in the next section.

Optimization through Cholesky Factorization

The multivariate normal density and LK]J prior on correlation matrices both require
their matrix parameters to be factored. Vectorizing, as in the previous section, en-
sures this is only done once for each density. An even better solution, both in terms
of efficiency and numerical stability, is to parameterize the model directly in terms
of Cholesky factors of correlation matrices using the multivariate version of the non-
centered parameterization. For the model in the previous section, the program frag-
ment to replace the full matrix prior with an equivalent Cholesky factorized prior is
as follows.

data {
matrix[J, L] u;

parameters {
matrix[K, 1] z;
cholesky_factor_corr[K] L_Omega;

transformed parameters {
matrix[J, K] beta;
beta = u * gamma + (diag_pre_multiply(tau,L_Omega) = z)';

5Thanks to Mike Lawrence for pointing this out in the GitHub issue for the manual.
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}

model {
to_vector(z) ~ normal(0, 1);
L_Omega ~ Tkj_corr_cholesky(2);

The data variable u was originally an array of vectors, which is efficient for access;
here it is redeclared as a matrix in order to use it in matrix arithmetic. The new
parameter L_Omega is the Cholesky factor of the original correlation matrix Omega, so
that

Omega = L_Omega * L_Omega'’

The prior scale vector tau is unchanged, and furthermore, Pre-multiplying the
Cholesky factor by the scale produces the Cholesky factor of the final covariance
matrix,

Sigma_beta
quad_form_diag(Omega, tau)
diag_pre_multiply(tau, L_Omega) =* diag_pre_multiply(tau, L_Omega)'

where the diagonal pre-multiply compound operation is defined by
diag_pre_multiply(a, b) = diag_matrix(a) = b

The new variable z is declared as a matrix, the entries of which are given independent
unit normal priors; the to_vector operation turns the matrix into a vector so that it
can be used as a vectorized argument to the univariate normal density. Multiplying
the Cholesky factor of the covariance matrix by z and adding the mean (u * gamma)’
produces a beta distributed as in the original model.

Omitting the data declarations, which are the same as before, the optimized model
is as follows.

parameters {
matrix[K, J] z;
cholesky_factor_corr[K] L_Omega;
vector<lower=0,upper=pi()/2>[K] tau_unif;
matrix[L, K] gamma; // group coeffs
real<lower=0> sigma; // prediction error scale
}
transformed parameters {
matrix[J, K] beta;
vector<lower=0>[K] tau; // prior scale
for (k in 1:K) tau[k] = 2.5 * tan(tau_unif[k]);
beta = u * gamma + (diag_pre_multiply(tau,L_Omega) = z)';
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}
model {

to_vector(z) ~ normal(0, 1);

L_Omega ~ Tkj_corr_cholesky(2);

to_vector(gamma) ~ normal(0, 5);

y ~ normal(rows_dot_product(betal[jj] , x), sigma);
}

This model also reparameterizes the prior scale tau to avoid potential prob-
lems with the heavy tails of the Cauchy distribution. The statement tau_unif
uniform(0,pi()/2) can be omitted from the model block because stan increments
the log posterior for parameters with uniform priors without it.

9.14. Prediction, Forecasting, and Backcasting

Stan models can be used for “predicting” the values of arbitrary model unknowns.
When predictions are about the future, they're called “forecasts;” when they are pre-
dictions about the past, as in climate reconstruction or cosmology, they are some-
times called “backcasts” (or “aftcasts” or “hindcasts” or “antecasts,” depending on
the author’s feelings about the opposite of “fore”).

Programming Predictions

As a simple example, the following linear regression provides the same setup for
estimating the coefficients beta as in our very first example above, using y for the N
observations and x for the N predictor vectors. The model parameters and model for
observations are exactly the same as before.

To make predictions, we need to be given the number of predictions, N_new, and
their predictor matrix, x_new. The predictions themselves are modeled as a param-
eter y_new. The model statement for the predictions is exactly the same as for the
observations, with the new outcome vector y_new and prediction matrix x_new.

data {
int<lower=1> K;
int<lower=0> N;
matrix[N, K] x;
vector[N] vy;

int<lower=0> N_new;
matrix[N_new, K] x_new;
}
parameters {
vector[K] beta;
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real<lower=0> sigma;

vector[N_new] y_new; // predictions
}
model {
y ~ normal(x = beta, sigma); // observed model

y_new ~ normal(x_new * beta, sigma); // prediction model

}

Predictions as Generated Quantities

Where possible, the most efficient way to generate predictions is to use the generated
quantities block. This provides proper Monte Carlo (not Markov chain Monte Carlo)
inference, which can have a much higher effective sample size per iteration.

...data as above...

parameters {
vector[K] beta;
real<lower=0> sigma;

}
model {

y ~ normal(x = beta, sigma);
}

generated quantities {
vector[N_new] y_new;
for (n in 1:N_new)
y_new[n] = normal_rng(x_new[n] * beta, sigma);

}

Now the datais just as before, but the parameter y_new is now declared as a generated
quantity, and the prediction model is removed from the model and replaced by a
pseudo-random draw from a normal distribution.

Overflow in Generated Quantities

It is possible for values to overflow or underflow in generated quantities. The prob-
lem is that if the result is NaN, then any constraints placed on the variables will be
violated. It is possible to check a value assigned by an RNG and reject it if it over-
flows, but this is both inefficient and leads to biased posterior estimates. Instead, the
conditions causing overflow, such as trying to generate a negative binomial random
variate with a mean of 23!. These must be intercepted and dealt with, typically be
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reparameterizing or reimplementing the random number generator using real values
rather than integers, which are upper-bounded by 23! — 1 in Stan.

9.15. Multivariate Outcomes

Most regressions are set up to model univariate observations (be they scalar, boolean,
categorical, ordinal, or count). Even multinomial regressions are just repeated cate-
gorical regressions. In contrast, this section discusses regression when each observed
value is multivariate. To relate multiple outcomes in a regression setting, their error
terms are provided with covariance structure.

This section considers two cases, seemingly unrelated regressions for continuous
multivariate quantities and multivariate probit regression for boolean multivariate
quantities.

Seemingly Unrelated Regressions

The first model considered is the “seemingly unrelated” regressions (SUR) of econo-
metrics where several linear regressions share predictors and use a covariance error
structure rather than independent errors (Zellner, 1962; Greene, 2011).

The model is easy to write down as a regression,

Yn = XnB+en

€n ~ MultiNormal(0,X)

where x, is a J-row-vector of predictors (x is an (N x J)-matrix), ¥, is a K-vector of
observations, B is a (K X J)-matrix of regression coefficients (vector Bx holds coeffi-
cients for outcome k), and X is covariance matrix governing the error. As usual, the
intercept can be rolled into x as a column of ones.

The basic Stan code is straightforward (though see below for more optimized code
for use with LK] priors on correlation).

data {
int<lower=1> K;
int<lower=1> J;
int<lower=0> N;
vector[J] x[N];
vector[K] y[N];

}

parameters {
matrix[K, J] beta;
cov_matrix[K] Sigma;

}
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model {
vector[K] mu[N];
for (n in 1:N)
mu[n] = beta * x[n];
y ~ multi_normal(mu, Sigma);

}

For efficiency, the multivariate normal is vectorized by precomputing the array of
mean vectors and sharing the same covariance matrix.

Following the advice in Section 9.13, we will place a weakly informative normal
prior on the regression coefficients, an LK] prior on the correlations and a half-Cauchy
prior on standard deviations. The covariance structure is parameterized in terms of
Cholesky factors for efficiency and arithmetic stability.

parameters {
matrix[K, J] beta;
cholesky_factor_corr[K] L_Omega;
vector<lower=0>[K] L_sigma;

}

model {
vector[K] mu[N];
matrix[K, K] L_Sigma;

for (n in 1:N)
mu[n] = beta = X[n];

L_Sigma = diag_pre_multiply(L_sigma, L_Omega);

to_vector(beta) ~ normal(0, 5);
L_Omega ~ 1kj_corr_cholesky(4);
L_sigma ~ cauchy(0, 2.5);

y ~ multi_normal_cholesky(mu, L_Sigma);

}

The Cholesky factor of the covariance matrix is then reconstructed as a local variable
and used in the model by scaling the Cholesky factor of the correlation matrices.
The regression coefficients get a prior all at once by converting the matrix beta to a
vector.

If required, the full correlation or covariance matrices may be reconstructed from
their Cholesky factors in the generated quantities block.
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Multivariate Probit Regression

The multivariate probit model generates sequences of boolean variables by applying
a step function to the output of a seemingly unrelated regression.

The observations y,, are D-vectors of boolean values (coded 0 for false, 1 for true).
The values for the observations y, are based on latent values z, drawn from a seem-
ingly unrelated regression model (see the previous section),

Zn = XnB+eEn
€, ~ MultiNormal(0,X)

These are then put through the step function to produce a K-vector z, of boolean
values with elements defined by

Ynk = I(zpx > 0),

where I() is the indicator function taking the value 1 if its argument is true and 0
otherwise.

Unlike in the seemingly unrelated regressions case, here the covariance matrix X
has unit standard deviations (i.e., it is a correlation matrix). As with ordinary probit
and logistic regressions, letting the scale vary causes the model (which is defined only
by a cutpoint at 0, not a scale) to be unidentified (see (Greene, 2011)).

Multivariate probit regression can be coded in Stan using the trick introduced
by Albert and Chib (1993), where the underlying continuous value vectors y, are
coded as truncated parameters. The key to coding the model in Stan is declaring the
latent vector z in two parts, based on whether the corresponding value of y is 0 or 1.
Otherwise, the model is identical to the seemingly unrelated regression model in the
previous section.

First, we introduce a sum function for two-dimensional arrays of integers; this is
going to help us calculate how many total 1 values there are in y.

functions {
int sum(Cint[,] a) {
int s = 0;
for (i in 1l:size(a))
s += sum(a[il]);
return s;
}
}

The function is trivial, but it’s not a built-in for Stan and it’s easier to understand the
rest of the model if it’s pulled into its own function so as not to create a distraction.

The data declaration block is much like for the seemingly unrelated regressions,
but the observations y are now integers constrained to be 0 or 1.
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data {
int<lower=1> K;
int<lower=1> D;
int<lower=0> N;
int<lower=0,upper=1> y[N,D];
vector[K] x[N];

}

After declaring the data, there is a rather involved transformed data block whose
sole purpose is to sort the data array y into positive and negative components, keep-
ing track of indexes so that z can be easily reassembled in the transformed parame-
ters block.

transformed data {
int<lower=0> N_pos;
int<lower=1,upper=N> n_pos[sum(y)];
int<lower=1,upper=D> d_pos[size(n_pos)];
int<lower=0> N_neg;
int<lower=1,upper=N> n_neg[(N * D) - size(n_pos)];
int<lower=1,upper=D> d_neg[size(n_neg)];

N_pos = size(n_pos);
N_neg = size(n_neg);
{
int i;
int j;
i=1;
i=1
for (n in 1:N) {
for (d in 1:D) {
if (yln,d] == 1 {
n_pos[i] = n;

d_pos[i] = d;
i +=1;

} else {
n_neg[jl = n;
d_neg[j] = d;
j+=1

The variables N_pos and N_neg are set to the number of true (1) and number of false
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(0) observations in y. The loop then fills in the sequence of indexes for the positive
and negative values in four arrays.
The parameters are declared as follows.

parameters {
matrix[D, K] beta;
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[N_pos] z_pos;
vector<upper=0>[N_neg] z_neg;

}

These include the regression coefficients beta and the Cholesky factor of the correla-
tion matrix, L_Omega. This time there is no scaling because the covariance matrix has
unit scale (i.e., it is a correlation matrix; see above).

The critical part of the parameter declaration is that the latent real value z is
broken into positive-constrained and negative-constrained components, whose size
was conveniently calculated in the transformed data block. The transformed data
block’s real work was to allow the transformed parameter block to reconstruct z.

transformed parameters {
vector[D] z[N];
for (n in 1:N_pos)

z[n_pos[n], d_pos[n]] = z_pos[n];
for (n in 1:N_neg)
z[n_neg[n], d_neg[n]] = z_neg[n];

}

At this point, the model is simple, pretty much recreating the seemingly unrelated
regression.

model {
L_Omega ~ Tkj_corr_cholesky(4);
to_vector(beta) ~ normal(0, 5);
{
vector[D] beta_x[N];
for (n in 1:N)
beta_x[n] = beta * x[n];
z ~ multi_normal_cholesky(beta_x, L_Omega);
}
}

This simple form of model is made possible by the Albert and Chib-style constraints
on z.

Finally, the correlation matrix itself can be put back together in the generated
quantities block if desired.
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generated quantities {
corr_matrix[D] Omega;
Omega = multiply_Tower_tri_self_transpose(L_Omega);

}

Of course, the same could be done for the seemingly unrelated regressions in the
previous section.

9.16. Applications of Pseudorandom Number Generation

The main application of pseudorandom number generator (PRNGs) is for posterior
inference, including prediction and posterior predictive checks. They can also be
used for pure data simulation, which is like a posterior predictive check with no
conditioning. See Section 49.6 for a description of their syntax and the scope of their
usage.

Prediction

Consider predicting unobserved outcomes using linear regression. Given predictors
X1,...,Xy and observed outcomes y1,..., Yy, and assuming a standard linear regres-
sion with intercept «, slope B, and error scale o, along with improper uniform priors,
the posterior over the parameters given x and y is

N
p(e, B0 |x,y) o< [ | Normal(y, | & + Bxn, ).

n=1

For this model, the posterior predictive inference for a new outcome y,, given a pre-
dictor X,,, conditioned on the observed data x and y, is

PGl y) = [ Normal(7 | o+ B, o) X plet B, 1%,) d(e B,).
&,p,0

To code the posterior predictive inference in Stan, a standard linear regression is

combined with a random number in the generated quantities block.

data {
int<lower=0> N;
vector[N] y;
vector[N] x;
int<lower=0> N_tilde;
vector[N_tilde] x_tilde;
}

parameters {
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real alpha;

real beta;

real<lower=0> sigma;
}
modeT {

y ~ normal(alpha + beta * x, sigma);
}
generated quantities {

vector[N_tilde] y_tilde;

for (n in 1:N_tilde)

y_tilde[n] = normal_rng(alpha + beta * x_tilde[n], sigma);

}

Given observed predictors x and outcomes y, y_tilde will be drawn according to
p(¥Y|X,y,x). This means that, for example, the posterior mean for y_t1ilde is the
estimate of the outcome that minimizes expected square error (conditioned on the
data and model, of course).

Posterior Predictive Checks

A good way to investigate the fit of a model to the data, a critical step in Bayesian
data analysis, is to generate simulated data according to the parameters of the model.
This is carried out with exactly the same procedure as before, only the observed data
predictors x are used in place of new predictors X for unobserved outcomes. If the
model fits the data well, the predictions for y based on x should match the observed
data y.

To code posterior predictive checks in Stan requires only a slight modification of
the prediction code to use x and N in place of % and N,

generated quantities {
vector[N] y_tilde;
for (n in 1:N)
y_tilde[n] = normal_rng(alpha + beta * x[n], sigma);
}

Gelman et al. (2013) recommend choosing several posterior draws 3, ..., 7™ and
plotting each of them alongside the data y that was actually observed. If the model
fits well, the simulated y will look like the actual data y.
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10. Time-Series Models

Times series data come arranged in temporal order. This chapter presents two kinds
of time series models, regression-like models such as autoregressive and moving av-
erage models, and hidden Markov models.

Chapter 18 presents Gaussian processes, which may also be used for time-series
(and spatial) data.

10.1. Autoregressive Models

A first-order autoregressive model (AR(1)) with normal noise takes each point y, in a
sequence y to be generated according to

Vn ~ Normal(x + Byn_1,0).

That is, the expected value of y, is « + By,_1, with noise scaled as o.

AR(1) Models

With improper flat priors on the regression coefficients for slope (B), intercept (),
and noise scale (o), the Stan program for the AR(1) model is as follows.

data {
int<lower=0> N;
vector[N] y;
}
parameters {
real alpha;
real beta;
real<lower=0> sigma;
}
model {
for (n in 2:N)
y[n] ~ normal(alpha + beta * y[n-1], sigma);
}

The first observed data point, y[1], is not modeled here because there is nothing to
condition on; instead, it acts to condition y[2]. This model also uses an improper
prior for sigma, but there is no obstacle to adding an informative prior if information
is available on the scale of the changes in y over time, or a weakly informative prior
to help guide inference if rough knowledge of the scale of y is available.
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Slicing for Efficiency

Although perhaps a bit more difficult to read, a much more efficient way to write the
above model is by slicing the vectors, with the model above being replaced with the
one-liner

model {
y[2:N] ~ normal(alpha + beta »* y[1:(N - 1)], sigma);
}

The left-hand side slicing operation pulls out the last N — 1 elements and the right-
hand side version pulls out the first N — 1.

Extensions to the AR(1) Model

Proper priors of a range of different families may be added for the regression co-
efficients and noise scale. The normal noise model can be changed to a Student-t
distribution or any other distribution with unbounded support. The model could also
be made hierarchical if multiple series of observations are available.

To enforce the estimation of a stationary AR(1) process, the slope coefficient beta
may be constrained with bounds as follows.

real<lower=-1,upper=1> beta;

In practice, such a constraint is not recommended. If the data is not stationary, it is
best to discover this while fitting the model. Stationary parameter estimates can be
encouraged with a prior favoring values of beta near zero.

AR(2) Models

Extending the order of the model is also straightforward. For example, an AR(2) model
could be coded with the second-order coefficient gamma and the following model state-
ment.

for (n in 3:N)
y[n] ~ normal(alpha + betaxy[n-1] + gammaxy[n-2], sigma);
AR(K) Models

A general model where the order is itself given as data can be coded by putting the
coefficients in an array and computing the linear predictor in a loop.

data {
int<lower=0> K;
int<lower=0> N;
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real y[N];
}
parameters {
real alpha;
real beta[K];
real sigma;
}
model {
for (n in (K+1):N) {
real mu = alpha;
for (k in 1:K)
mu += betal[k] * y[n-kJ;
y[n] ~ normal(mu, sigma);
}
}

ARCH(1) Models

Econometric and financial time-series models usually assume heteroscedasticity (i.e.,
they allow the scale of the noise terms defining the series to vary over time). The sim-
plest such model is the autoregressive conditional heteroscedasticity (ARCH) model
(Engle, 1982). Unlike the autoregressive model AR(1), which modeled the mean of the
series as varying over time but left the noise term fixed, the ARCH(1) model takes
the scale of the noise terms to vary over time but leaves the mean term fixed. Of
course, models could be defined where both the mean and scale vary over time; the
econometrics literature presents a wide range of time-series modeling choices.

The ARCH(1) model is typically presented as the following sequence of equations,
where r; is the observed return at time point t and u, &g, and «; are unknown regres-
sion coefficient parameters.

noo= p+a

a, = O

€ ~ Normal(0,1)
of = oo+ oai,

In order to ensure the noise terms g/ are positive, the scale coefficients are con-
strained to be positive, &g, ®; > 0. To ensure stationarity of the time series, the slope
is constrained to to be less than one, &; < 1.! The ARCH(1) model may be coded
directly in Stan as follows.

lIn practice, it can be useful to remove the constraint to test whether a non-stationary set of coefficients
provides a better fit to the data. It can also be useful to add a trend term to the model, because an unfitted
trend will manifest as non-stationarity.
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data {

int<lower=0> T; // number of time points
real r[T]; // return at time t

}

parameters {
real mu; // average return
real<Tower=0> alphaO; // noise intercept
real<lower=0,upper=1> alphal; // noise slope

}

model {

for (t in 2:T)
r(t] ~ normal(mu, sqrt(alpha0 + alphal * pow(r[t-1] - mu,2)));
}

The loop in the model is defined so that the return at time t = 1 is not modeled; the
model in the next section shows how to model the return at t = 1. The model can be
vectorized to be more efficient; the model in the next section provides an example.

10.2. Modeling Temporal Heteroscedasticity

A set of variables is homoscedastic if their variances are all the same; the variables are
heteroscedastic if they do not all have the same variance. Heteroscedastic time-series
models allow the noise term to vary over time.

GARCH(1,1) Models

The basic generalized autoregressive conditional heteroscedasticity (GARCH) model,
GARCH(1,1), extends the ARCH(1) model by including the squared previous difference
in return from the mean at time t — 1 as a predictor of volatility at time t, defining

2 2 2
of =Xo+ oaa;_q + Pi1of .

To ensure the scale term is positive and the resulting time series stationary, the coef-
ficients must all satisfy «g, &1, 1 > 0 and the slopes «; + 1 < 1.

data {
int<lower=0> T;
real r[T];
real<lower=0> sigmal;
}
parameters {
real mu;
real<lower=0> alpha0;
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real<lower=0,upper=1> alphal;
real<Tower=0,upper=(1-alphal)> betal;
}
transformed parameters {
real<lower=0> sigma[T];
sigma[l] = sigmal;
for (t in 2:T)
sigma[t] = sqrt(alpha0
+ alphal = pow(r[t-1] - mu, 2)
+ betal * pow(sigmal[t-1], 2));

}
modeT {

r ~ normal(mu, sigma);
}

To get the recursive definition of the volatility regression off the ground, the data
declaration includes a non-negative value sigmal for the scale of the noise at t = 1.

The constraints are coded directly on the parameter declarations. This declaration
is order-specific in that the constraint on betal depends on the value of alphal.

A transformed parameter array of non-negative values sigma is used to store the
scale values at each time point. The definition of these values in the transformed pa-
rameters block is where the regression is now defined. There is an intercept alpha0, a
slope alphal for the squared difference in return from the mean at the previous time,
and a slope betal for the previous noise scale squared. Finally, the whole regression
is inside the sqrt function because Stan requires scale (deviation) parameters (not
variance parameters) for the normal distribution.

With the regression in the transformed parameters block, the model reduces a
single vectorized sampling statement. Because r and sigma are of length T, all of the
data is modeled directly.

10.3. Moving Average Models

A moving average model uses previous errors as predictors for future outcomes. For
amoving average model of order Q, MA(Q), there is an overall mean parameter u and
regression coefficients 8, for previous error terms. With €; being the noise at time ¢,
the model for outcome ), is defined by

Ve =M+ 91€t71 + -+ QQGFQ + €,
with the noise term €, for outcome y,; modeled as normal,
€; ~ Normal(0, o).

In a proper Bayesian model, the parameters u, 6, and o must all be given priors.
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MA (2) Example

An MA(2) model can be coded in Stan as follows.

data {
int<lower=3> T; // number of observations
vector[T] vy; // observation at time T
}
parameters {
real mu; // mean
real<lower=0> sigma; // error scale
vector[2] theta; // Tlag coefficients
}
transformed parameters {
vector[T] epsilon; // error terms

epsilon[l] = y[1] - mu;
epsilon[2] = y[2] - mu - theta[l] * epsilon[1l];
for (t in 3:T)
epsilon[t] = ( y[t] - mu
- theta[l] * epsilon[t - 1]
- theta[2] = epsilon[t - 2] );
}
model {
mu ~ cauchy(0, 2.5);
theta ~ cauchy(0, 2.5);
sigma ~ cauchy(0, 2.5);
for (t in 3:T)
y[t] ~ normal(mu
+ theta[l] * epsilon[t - 1]
+ theta[2] * epsilon[t - 2],
sigma) ;

}

The error terms €; are defined as transformed parameters in terms of the observa-
tions and parameters. The definition of the sampling statement (defining the like-
lihood) follows the definition, which can only be applied to y, for n > Q. In this
example, the parameters are all given Cauchy (half-Cauchy for o) priors, although

other priors can be used just as easily.

This model could be improved in terms of speed by vectorizing the sampling
statement in the model block. Vectorizing the calculation of the €; could also be sped

up by using a dot product instead of a loop.
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Vectorized MA(Q) Model

A general MA(Q) model with a vectorized sampling probability may be defined as
follows.

data {
int<lower=0> Q; // num previous noise terms
int<lower=3> T; // num observations

vector[T] vy; // observation at time t
}
parameters {
real mu; // mean
real<lower=0> sigma; // error scale
vector[Q] theta; // error coeff, lag -t
}
transformed parameters {
vector[T] epsilon; // error term at time t

for (t in 1:T) {
epsilon[t] = y[t] - mu;
for (q in 1:minCt - 1, Q))
epsilon[t] = epsilon[t] - theta[q] * epsilon[t - q];
}
}
model {
vector[T] eta;
mu ~ cauchy(0, 2.5);
theta ~ cauchy(0, 2.5);
sigma ~ cauchy(0, 2.5);
for (t in 1:T) {
etal[t] = mu;
for (q in 1:minCt - 1, Q)
eta[t] = eta[t] + theta[q] * epsilon[t - q];
}
y ~ normal(eta, sigma);

}

Here all of the data is modeled, with missing terms just dropped from the regres-
sions as in the calculation of the error terms. Both models converge very quickly and
mix very well at convergence, with the vectorized model being quite a bit faster (per
iteration, not to converge — they compute the same model).
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10.4. Autoregressive Moving Average Models

Autoregressive moving-average models (ARMA), combine the predictors of the autore-
gressive model and the moving average model. An ARMA(1,1) model, with a single
state of history, can be encoded in Stan as follows.

data {
int<lower=1> T; // num observations
real y[T]; // observed outputs

}

parameters {
real mu; // mean coeff
real phi; // autoregression coeff
real theta; // moving avg coeff
real<lower=0> sigma; // noise scale

}

model {
vector[T] nu; // prediction for time t
vector[T] err; // error for time t
nul[l] = mu + phi * mu; // assume err[0] == 0

err[1] = y[1] - nu[l];

for (t in 2:T) {
nul[t] = mu + phi » y[t-1] + theta » err[t-1];
err[t] = y[t] - nu[t];

}

mu ~ normal(0, 10); // priors

phi ~ normal(0, 2);

theta ~ normal(0, 2);

sigma ~ cauchy(0, 5);

err ~ normal(0, sigma); // likelihood

}

The data is declared in the same way as the other time-series regressions and the
parameters are documented in the code.

In the model block, the local vector nu stores the predictions and err the errors.
These are computed similarly to the errors in the moving average models described
in the previous section.

The priors are weakly informative for stationary processes. The likelihood only
involves the error term, which is efficiently vectorized here.

Often in models such as these, it is desirable to inspect the calculated error terms.
This could easily be accomplished in Stan by declaring err as a transformed parame-
ter, then defining it the same way as in the model above. The vector nu could still be
a local variable, only now it will be in the transformed parameter block.
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Wayne Folta suggested encoding the model without local vector variables as fol-
lows.

model {
real err;
mu ~ normal(0, 10);
phi ~ normal(0, 2);
theta ~ normal(0, 2);
sigma ~ cauchy(0, 5);
err = y[1] - mu + phi = mu;
err ~ normal(0, sigma);
for (t in 2:T) {
err = y[t] - (mu + phi * y[t-1] + theta * err);
err ~ normal(0, sigma);
}
}

This approach to ARMA models provides a nice example of how local variables, such
as err in this case, can be reused in Stan. Folta’s approach could be extended to
higher order moving-average models by storing more than one error term as a local
variable and reassigning them in the loop.

Both encodings are very fast. The original encoding has the advantage of vector-
izing the normal distribution, but it uses a bit more memory. A halfway point would
be to vectorize just err.

Identifiability and Stationarity

MA and ARMA models are not identifiable if the roots of the characteristic polyno-
mial for the MA part lie inside the unit circle, so it’s necessary to add the following
constraint.?

real<lower = -1, upper = 1> theta;

When the model is run without the constraint, using synthetic data generated from
the model, the simulation can sometimes find modes for (theta, phi) outside the
[-1,1] interval, which creates a multiple mode problem in the posterior and also
causes the NUTS tree depth to get very large (often above 10). Adding the constraint
both improves the accuracy of the posterior and dramatically reduces the tree depth,
which speeds up the simulation considerably (typically by much more than an order
of magnitude).

Further, unless one thinks that the process is really non-stationary, it’s worth
adding the following constraint to ensure stationarity.

2This subsection is a lightly edited comment of Jonathan Gilligan’s on GitHub; see https://github.
com/stan-dev/stan/issues/1617#issuecomment-160249142.
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read<lower = -1, upper = 1> phi;

10.5. Stochastic Volatility Models

Stochastic volatility models treat the volatility (i.e., variance) of a return on an asset,
such as an option to buy a security, as following a latent stochastic process in discrete
time (Kim et al.,, 1998). The data consist of mean corrected (i.e., centered) returns
v on an underlying asset at T equally spaced time points. Kim et al. formulate a
typical stochastic volatility model using the following regression-like equations, with
a latent parameter h, for the log volatility, along with parameters u for the mean log
volatility, and ¢ for the persistence of the volatility term. The variable €; represents
the white-noise shock (i.e., multiplicative error) on the asset return at time t, whereas
O, represents the shock on volatility at time t.

e = €cexp(he/2),

hip =+ p(hy — ) + 6,0

h Normal | u A
1 ~ b
A1 — 2
€; ~Normal(0,1); & ~ Normal(0,1)

Rearranging the first line, €, = y; exp(—h,/2), allowing the sampling distribution for
V¢ to be written as
Yt ~ Normal(0, exp(h;/2)).

The recurrence equation for h;,; may be combined with the scaling and sampling of
d; to yield the sampling distribution

hy ~ Normal(u + ¢p(hy — p), o).

This formulation can be directly encoded, as shown in the following Stan model.

data {
int<lower=0> T; // # time points (equally spaced)
vector[T] vy; // mean corrected return at time t

}

parameters {
real mu; // mean Tlog volatility
real<lower=-1,upper=1> phi; // persistence of volatility
real<lower=0> sigma; // white noise shock scale
vector[T] h; // log volatility at time t

}
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model {
phi ~ uniform(-1, 1);
sigma ~ cauchy(0, 5);
mu ~ cauchy(0, 10);
h[1] ~ normal(mu, sigma / sqrt(l - phi * phi));
for (t in 2:T)
h[t] ~ normal(mu + phi = (h[t - 1] - mu), sigma);
for (t in 1:T)
y[t] ~ normal(0, expCh[t] / 2));
}

Compared to the Kim et al. formulation, the Stan model adds priors for the parame-
ters ¢, o, and u. Note that the shock terms €, and &; do not appear explicitly in the
model, although they could be calculated efficiently in a generated quantities block.

The posterior of a stochastic volatility model such as this one typically has high
posterior variance. For example, simulating 500 data points from the above model
with y = —1.02, ¢ = 0.95, and o = 0.25 leads to 95% posterior intervals for u of
(—1.23,-0.54), for ¢ of (0.82,0.98) and for o of (0.16,0.38).

The samples using NUTS show a high degree of autocorrelation among the sam-
ples, both for this model and the stochastic volatility model evaluated in (Hoffman
and Gelman, 2011, 2014). Using a non-diagonal mass matrix provides faster conver-
gence and more effective samples than a diagonal mass matrix, but will not scale to
large values of T.

It is relatively straightforward to speed up the effective samples per second gen-
erated by this model by one or more orders of magnitude. First, the sampling state-
ments for return y is easily vectorized to

y ~ normal(0, expCh / 2));

This speeds up the iterations, but does not change the effective sample size because
the underlying parameterization and log probability function have not changed. Mix-
ing is improved by by reparameterizing in terms of a standardized volatility, then
rescaling. This requires a standardized parameter h_std to be declared instead of h.

parameters {
vector[T] h_std; // std Tog volatility time t
The original value of h is then defined in a transformed parameter block.

transformed parameters {
vector[T] h = h_std * sigma; // now h ~ normal(0, sigma)
h[1] /= sqrt(l - phi = phi); // rescale h[1]
h += mu;
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for (t in 2:T)
h[t] += phi * (h[t-1] - mu);
}

The first assignment rescales h_std to have a Normal(0, o) distribution and tem-
porarily assigns it to h. The second assignment rescales h[1] so that its prior differs
from that of h[2] through h[T]. The next assignment supplies a mu offset, so that
h[2] through h[T] are now distributed Normal(u, o); note that this shift must be
done after the rescaling of h[1]. The final loop adds in the moving average so that
h[2] through h[T] are appropriately modeled relative to phi and mu.

As a final improvement, the sampling statement for h[1] and loop for sampling
h[2] to h[T] are replaced with a single vectorized unit normal sampling statement.

model {

h_std ~ normal(0, 1);

Although the original model can take hundreds and sometimes thousands of itera-
tions to converge, the reparameterized model reliably converges in tens of iterations.
Mixing is also dramatically improved, which results in higher effective sample sizes
per iteration. Finally, each iteration runs in roughly a quarter of the time of the origi-
nal iterations.

10.6. Hidden Markov Models

A hidden Markov model (HMM) generates a sequence of T output variables y; con-
ditioned on a parallel sequence of latent categorical state variables z; € {1,...,K}.
These “hidden” state variables are assumed to form a Markov chain so that z; is
conditionally independent of other variables given z,_;. This Markov chain is param-
eterized by a transition matrix 6 where 6y is a K-simplex for k € {1,...,K}. The
probability of transitioning to state z; from state z,_; is

z; ~ Categorical (0,;-17).

The output y; at time t is generated conditionally independently based on the latent
state z;.

This section describes HMMs with a simple categorical model for outputs y; €
{1,...,V}. The categorical distribution for latent state k is parameterized by a V-
simplex ¢,. The observed output y; at time t is generated based on the hidden state
indicator z; at time t,

y: ~ Categorical(¢,[s).

In short, HMMs form a discrete mixture model where the mixture component indica-
tors form a latent Markov chain.
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Supervised Parameter Estimation

In the situation where the hidden states are known, the following naive model can be
used to fit the parameters 0 and ¢.

data {
int<lower=1> K; // num categories
int<lower=1> V; // num words
int<lower=0> T; // num instances
int<lower=1,upper=V> w[T]; // words
int<lower=1,upper=K> z[T]; // categories
vector<lower=0>[K] alpha; // transit prior
vector<lower=0>[V] beta; // emit prior
}
parameters {
simplex[K] theta[K]; // transit probs
simplex[V] phi[K]; // emit probs
}
model {
for (k in 1:K)
thetal[k] ~ dirichlet(alpha);
for (k in 1:K)
phi[k] ~ dirichlet(beta);
for (t in 1:T)
w[t] ~ categorical(phi[z[t]]);
for (t in 2:T)
z[t] ~ categorical(thetal[z[t - 1]]);
}

Explicit Dirichlet priors have been provided for 0y and ¢y; dropping these two state-
ments would implicitly take the prior to be uniform over all valid simplexes.

Start-State and End-State Probabilities

Although workable, the above description of HMMs is incomplete because the start
state z; is not modeled (the index runs from 2 to T). If the data are conceived as
a subsequence of a long-running process, the probability of z; should be set to the
stationary state probabilities in the Markov chain. In this case, there is no distinct
end to the data, so there is no need to model the probability that the sequence ends
at zr.

An alternative conception of HMMs is as models of finite-length sequences. For
example, human language sentences have distinct starting distributions (usually a
capital letter) and ending distributions (usually some kind of punctuation). The sim-
plest way to model the sequence boundaries is to add a new latent state K+1, generate
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the first state from a categorical distribution with parameter vector 6.1, and restrict
the transitions so that a transition to state K + 1 is forced to occur at the end of the
sentence and is prohibited elsewhere.

Calculating Sufficient Statistics

The naive HMM estimation model presented above can be sped up dramatically by
replacing the loops over categorical distributions with a single multinomial distribu-
tion.3 The data is declared as before, but now a transformed data blocks computes
the sufficient statistics for estimating the transition and emission matrices.

transformed data {
int<lower=0> trans[K, K];
int<lower=0> emit[K, V];
for (k1 in 1:K)
for (k2 in 1:K)
trans[kl, k2] = 0;
for (t in 2:T)
trans[z[t - 1], z[t]] += 1;
for (k in 1:K)
for (v in 1:V)
emit[k,v] = 0;
for (t in 1:T)
emit[z[t], w[t]] += 1;
}

The likelihood component of the model based on looping over the input is replaced
with multinomials as follows.

model {

for (k in 1:K)
trans[k] ~ multinomial(thetalk]);
for (k in 1:K)
emit[k] ~ multinomial(phil[k]);
}

In a continuous HMM with normal emission probabilities could be sped up in the
same way by computing sufficient statistics.

3The program is available in the Stan example model repository; see http://mc-stan.org/
documentation.
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Analytic Posterior

With the Dirichlet-multinomial HMM, the posterior can be computed analytically be-
cause the Dirichlet is the conjugate prior to the multinomial. The following example*
illustrates how a Stan model can define the posterior analytically. This is possible in
the Stan language because the model only needs to define the conditional probability
of the parameters given the data up to a proportion, which can be done by defining
the (unnormalized) joint probability or the (unnormalized) conditional posterior, or
anything in between.

The model has the same data and parameters as the previous models, but now
computes the posterior Dirichlet parameters in the transformed data block.

transformed data {
vector<lower=0>[K] alpha_post[K];
vector<lower=0>[V] beta_post[K];
for (k in 1:K)
alpha_post[k] = alpha;
for (t in 2:T)
alpha_post[z[t-1], z[t]] += 1;
for (k in 1:K)
beta_post[k] = beta;
for (t in 1:T)
beta_post[z[t], w[t]l] += 1;
}

The posterior can now be written analytically as follows.

model {
for (k in 1:K)
thetalk] ~ dirichlet(alpha_post[k]);
for (k in 1:K)
phi[k] ~ dirichlet(beta_post[k]);

Semisupervised Estimation

HMMs can be estimated in a fully unsupervised fashion without any data for which
latent states are known. The resulting posteriors are typically extremely multimodal.
An intermediate solution is to use semisupervised estimation, which is based on a
combination of supervised and unsupervised data. Implementing this estimation
strategy in Stan requires calculating the probability of an output sequence with an

4The program is available in the Stan example model repository; see http://mc-stan.org/
documentation.
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unknown state sequence. This is a marginalization problem, and for HMMs, it is
computed with the so-called forward algorithm.

In Stan, the forward algorithm is coded as follows.> First, two additional data
variable are declared for the unsupervised data.

data {

int<lower=1> T_unsup; // num unsupervised items
int<lower=1,upper=V> u[T_unsup]; // unsup words

The model for the supervised data does not change; the unsupervised data is handled
with the following Stan implementation of the forward algorithm.

model {
{
real acc[K];
real gamma[T_unsup, KJ;
for (k in 1:K)
gamma[l, k] = Tog(phil[k, u[1]]1);
for (t in 2:T_unsup) {
for (k in 1:K) {
for (j in 1:K)
acc[j] = gamma[t-1, j] + Tog(thetal[j, k1) + Tog(phil[k, u[t]l]);
gammal[t, k] = Tog_sum_exp(acc);
}
}

target += log_sum_exp(gamma[T_unsup]);

}

The forward values gamma[t, k] are defined to be the log marginal probability of the
inputs u[1],...,u[t] up to time t and the latent state being equal to k at time t; the
previous latent states are marginalized out. The first row of gamma is initialized by
setting gamma[1l, k] equal to the log probability of latent state k generating the first
output u[1]; as before, the probability of the first latent state is not itself modeled.
For each subsequent time t and output j, the value acc[j] is set to the probability
of the latent state at time t-1 being j, plus the log transition probability from state
j at time t-1 to state k at time t, plus the log probability of the output u[t] being
generated by state k. The Tog_sum_exp operation just multiplies the probabilities for
each prior state j on the log scale in an arithmetically stable way.

The brackets provide the scope for the local variables acc and gamma; these could
have been declared earlier, but it is clearer to keep their declaration near their use.

5The program is available in the Stan example model repository; see http://mc-stan.org/
documentation.
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Predictive Inference

Given the transition and emission parameters, 6y and ¢y, and an observation se-
quence ui,...,ur € {1,...,V}, the Viterbi (dynamic programming) algorithm com-
putes the state sequence which is most likely to have generated the observed output
u.

The Viterbi algorithm can be coded in Stan in the generated quantities block as
follows. The predictions here is the most likely state sequence y_star[1], ...,
y_star[T_unsup] underlying the array of observations u[1], ..., u[T_unsup].
Because this sequence is determined from the transition probabilities theta and
emission probabilities phi, it may be different from sample to sample in the pos-
terior.

generated quantities {
int<lower=1,upper=K> y_star[T_unsup];
real Tog_p_y_star;
{
int back_ptr[T_unsup, K];
real best_logp[T_unsup, K];
real best_total_Tlogp;
for (k in 1:K)
best_Tlogp[1l, K] = log(philk, u[1]]);
for (t in 2:T_unsup) {
for (k in 1:K) {
best_logp[t, k] = negative_infinity(Q;
for (j in 1:K) {
real logp;
logp = best_logp[t-1, j]
+ log(thetalj, k1) + log(phil[k, ul[t]l]);
if (Togp > best_logp[t, k1) {
back_ptr[t, k] = j;
best_Togp[t, k] = Togp;
}
}
}
}
log_p_y_star = max(best_Togp[T_unsup]);
for (k in 1:K)
if (best_logp[T_unsup, k] == log_p_y_star)
y_star[T_unsup] = k;
for (t in 1:(T_unsup - 1))
y_star[T_unsup - t] = back_ptr[T_unsup - t + 1,
y_star[T_unsup - t + 1]7;
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}

The bracketed block is used to make the three variables back_ptr, best_logp, and
best_total_Tlogp local so they will not be output. The variable y_star will hold
the label sequence with the highest probability given the input sequence u. Unlike
the forward algorithm, where the intermediate quantities were total probability, here
they consist of the maximum probability best_logp[t, k] for the sequence up to
time t with final output category k for time t, along with a backpointer to the source
of the link. Following the backpointers from the best final log probability for the final
time t yields the optimal state sequence.

This inference can be run for the same unsupervised outputs u as are used to
fit the semisupervised model. The above code can be found in the same model file
as the unsupervised fit. This is the Bayesian approach to inference, where the data
being reasoned about is used in a semisupervised way to train the model. It is not
“cheating” because the underlying states for u are never observed — they are just
estimated along with all of the other parameters.

If the outputs u are not used for semisupervised estimation but simply as the basis
for prediction, the result is equivalent to what is represented in the BUGS modeling
language via the cut operation. That is, the model is fit independently of u, then those
parameters used to find the most likely state to have generated u.
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11. Missing Data & Partially Known Parame-
ters

Bayesian inference supports a very general approach to missing data in which any
missing data item is represented as a parameter that is estimated in the posterior
(Gelman et al., 2013). If the missing data is not explicitly modeled, as in the predictors
for most regression models, then the result is an improper prior on the parameter
representing the missing predictor.

Mixing arrays of observed and missing data can be difficult to include in Stan,
partly because it can be tricky to model discrete unknowns in Stan and partly be-
cause unlike some other statistical languages (for example, R and Bugs), Stan requires
observed and unknown quantities to be defined in separate places in the model. Thus
it can be necessary to include code in a Stan program to splice together observed and
missing parts of a data structure. Examples are provided later in the chapter.

11.1. Missing Data

Stan treats variables declared in the data and transformed data blocks as known
and the variables in the parameters block as unknown.
An example involving missing normal observations!' could be coded as follows.

data {
int<lower=0> N_obs;
int<lower=0> N_mis;
real y_obs[N_obs];
}
parameters {
real mu;
real<lower=0> sigma;
real y_mis[N_mis];
}
model {
y_obs ~ normal(mu, sigma);
y_mis ~ normal(mu, sigma);

}

The number of observed and missing data points are coded as data with non-negative
integer variables N_obs and N_mis. The observed data is provided as an array data

1 A more meaningful estimation example would involve a regression of the observed and missing obser-
vations using predictors that were known for each and specified in the data block.
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variable y_obs. The missing data is coded as an array parameter, y_mis. The or-
dinary parameters being estimated, the location mu and scale sigma, are also coded
as parameters. The model is vectorized on the observed and missing data; combin-
ing them in this case would be less efficient because the data observations would be
promoted and have needless derivatives calculated.

11.2. Partially Known Parameters

In some situations, such as when a multivariate probability function has partially ob-
served outcomes or parameters, it will be necessary to create a vector mixing known
(data) and unknown (parameter) values. This can be done in Stan by creating a vector
or array in the transformed parameters block and assigning to it.

The following example involves a bivariate covariance matrix in which the vari-
ances are known, but the covariance is not.

data {
int<lower=0> N;
vector[2] y[N];
real<Tower=0> varl; real<lower=0> var2;
}
transformed data {
real<lower=0> max_cov = sqrt(varl = var2);
real<upper=0> min_cov = -max_cov;
}
parameters {
vector[2] mu;
real<lower=min_cov, upper=max_cov> COV;
}
transformed parameters {
matrix[2, 2] Sigma;

Sigma[l, 1] = varl; Sigma[l, 2] = cov;
Sigma[2, 1] = cov; Sigma[2, 2] = var2;
}
model {
y ~ multi_normal(mu, Sigma);
}

The variances are defined as data in variables varl and var2, whereas the covariance
is defined as a parameter in variable cov. The 2 x2 covariance matrix Sigma is defined
as a transformed parameter, with the variances assigned to the two diagonal elements
and the covariance to the two off-diagonal elements.

The constraint on the covariance declaration ensures that the resulting covariance
matrix sigma is positive definite. The bound, plus or minus the square root of the
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product of the variances, is defined as transformed data so that it is only calculated
once.

The vectorization of the multivariate normal is critical for efficiency here. The
transformed parameter Sigma could be defined as a local variable within the model
block if

11.3. Sliced Missing Data

If the missing data is part of some larger data structure, then it can often be effectively
reassembled using index arrays and slicing. Here’s an example for time-series data,
where only some entries in the series are observed.

data {
int<lower = 0> N_obs;
int<lower = 0> N_mis;
int<lower = 1, upper
int<lower = 1, upper
real y_obs[N_obs];

}

transformed data {
int<lower = 0> N = N_obs + N_mis;

}

parameters {
real y_mis[N_mis];
real<lower=0> sigma;

N_obs + N_mis> ii_obs[N_obs];
N_obs + N_mis> ii_mis[N_mis];

}

transformed parameters {
real y[N];
y[ii_obs] = y_obs;
y[ii_mis] = y_mis;

}

model {

sigma ~ gamma(l, 1);

y[1] ~ normal(0, 100);

y[2:N] ~ normal(y[1:(N - 1], sigma);
3

The index arrays ii_obs and ii_mis contain the indexes into the final array y of
the observed data (coded as a data vector y_obs) and the missing data (coded as a
parameter vector y_mis). See Chapter 10 for further discussion of time-series model
and specifically Section 10.1 for an explanation of the vectorization for y as well as
an explanation of how to convert this example to a full AR(1) model. To ensure y[1]
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has a proper posterior in case it is missing, we have given it an explicit, albeit broad,
prior.

Another potential application would be filling the columns of a data matrix of
predictors for which some predictors are missing; matrix columns can be accessed as
vectors and assigned the same way, as in

X[N_obs_2, 2] = x_obs_2;
X[N_mis_2, 2] = x_mis_2;

where the relevant variables are all hard coded with index 2 because Stan doesn’t
support ragged arrays. These could all be packed into a single array with more fiddly
indexing that slices out vectors from longer vectors (see Section 16.2 for a general
discussion of coding ragged data structures in Stan).

11.4. Loading matrix for factor analysis

Rick Farouni, on the Stan users group, inquired as to how to build a Cholesky fac-
tor for a covariance matrix with a unit diagonal, as used in Bayesian factor analysis
Aguilar and West (2000). This can be accomplished by declaring the below-diagonal
elements as parameters, then filling the full matrix as a transformed parameter.

data {
int<lower=2> K;
}
transformed data {
int<lower=1> K_choose_2;
K_choose_2 = (K = (K - 1)) / 2;
}
parameters {
vector[K_choose_2] L_lower;
}
transformed parameters {
cholesky_factor_cov[K] L;
for (k in 1:K)
L[k, k] = 1;
{
int i;
for (m in 2:K) {
for (n in 1:(m - 1)) {

L[m, n] = L_lower[i];
L[n, m] = 0;
i+=1;
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}
}

It is most convenient to place a prior directly on L_lower. An alternative would be a
prior for the full Cholesky factor L, because the transform from L_Tower to L is just
the identity and thus does not require a Jacobian adjustment (despite the warning
from the parser, which is not smart enough to do the code analysis to infer that the
transform is linear). It would not be at all convenient to place a prior on the full
covariance matrix L * L’, because that would require a Jacobian adjustment; the
exact adjustment is provided in the subsection of Section 35.1 devoted to covariance
matrices.

11.5. Missing Multivariate Data

It's often the case that one or more components of a multivariate outcome are miss-
ing.? As an example, we’ll consider the bivariate distribution, which is easily marginal-
ized. The coding here is brute force, representing both an array of vector observations
y and a boolean array y_observed to indicate which values were observed (others can
have dummy values in the input).

vector[2] y[N];
int<lower=0, upper=1> y_observed[N, 2];

If both components are observed, we model them using the full multi-normal,
otherwise we model the marginal distribution of the component that is observed.

for (n in 1:N) {
if (y_observed[n, 1] && y_observed[n, 2])
y[n] ~ multi_normal(mu, Sigma);
else if (y_observed[n, 1])
y[n, 1] ~ normal(mu[1], sqrt(Sigma[l, 1]1));
else if (y_observed[n, 2])
y[n, 2] ~ normal(mu[2], sqrt(Sigma[2, 2]1));
}

It’s a bit more work, but much more efficient to vectorize these sampling state-
ments. In transformed data, build up three vectors of indices, for the three cases
above:

2Note that this is not the same as missing components of a multivariate predictor in a regression prob-
lem; in that case, you will need to represent the missing data as a parameter and impute missing values in
order to feed them into the regression.
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transformed data {
int nsl2[observed_12(y_observed)];
int nsl[observed_1(y_observed)];
int ns2[observed_2(y_observed)];

}

You will need to write functions that pull out the count of observations in each of the
three sampling situations. This must be done with functions because the result needs
to go in top-level block variable size declaration. Then the rest of transformed data
just fills in the values using three counters.

int nl2 = 1;
int nl = 1;
int n2 = 1;

for (n in 1:N) {
if (y_observed[n, 1] && y_observed[n, 2]) {
nsl2[nl2] = n;
nl2 += 1;
} else if (y_observed[n, 1]) {
nsl[nl] = n;
nl += 1;
} else if (y_observed[n, 2]) {
ns2[n2] = n;
n2 += 1;
}
}

Then, in the model block, everything’s nice and vectorizable using those indexes con-
structed once in transformed data:

y[ns12] ~ multi_normal(mu, Sigma);
y[nsl] ~ normal(mu[l], sqrt(Sigma[l, 11));
y[ns2] ~ normal(mu[2], sqrt(Sigmal[2, 2]1));

The result will be much more efficient than using latent variables for the missing
data, but requires the multivariate distribution to be marginalized analytically. It'd
be more efficient still to precompute the three arrays in the transformed data block,
though the efficiency improvement will be relatively minor compared to vectorizing
the probability functions.

This approach can easily be generalized with some index fiddling to the general
multivariate case. The trick is to pull out entries in the covariance matrix for the
missing components. It can also be used in situations such as multivariate differen-
tial equation solutions where only one component is observed, as in a phase-space
experiment recording only time and position of a pendulum (and not recording mo-
mentum).
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12. Truncated or Censored Data

Data in which measurements have been truncated or censored can be coded in Stan
following their respective probability models.

12.1. Truncated Distributions

Truncation in Stan is restricted to univariate distributions for which the correspond-
ing log cumulative distribution function (cdf) and log complementary cumulative dis-
tribution (ccdf) functions are available. See the subsection on truncated distributions
in Section 5.3 for more information on truncated distributions, cdfs, and ccdfs.

12.2. Truncated 