Software Cost Estimation:
SLOC-based Models and the Function Points Model

Version 1.1

By
Brad Touesnard

V)
UNB

23 February 2004

Table of Contents

AB ST RA C T ..ttt e e ettt e e e e e e e e e e e e s bbbt reeaaaaa s e nnane 1
NI @ 15 1 L O I 1 1
SLOC-BASED MODELS......cciiiiiiei e emme ittt a e e e e e e nnnes 2
3-1 EStimating SLOC ...ttt e e e e e e 2
3-2 Using SLOC Estimate for Cost EStimationce.ccovvvvveiiiiiiiiiiiiiieeeeeeee,
FUNCTION POINTS MODEL .. cociiiceei et
4-1 Counting Functions and the Calculating Unadjusted Einction Points....... 5
4-2 Calculating the Adjusted FUNCLiON POINTS.........ccouviiiiiiiiiiiiiiieeeeeeee
4-3 Interpreting Adjusted FUNCLION POINES...........ooeivviiiiiiiiiiie e
CONCLUSIONS ... et e e e e e e e e e e e e e s e e s b e e e e eeeeeaeeeensnnnes 8
FURTHER READING ...ttt e e e e 10

1 Abstract

The purpose of this report is to provide an intddpok at estimating software
cost using the Function Points (FP) model as ogptisa more traditional Source Lines
of Code (SLOC) -based model. The report will ale;mment on the advantages and

disadvantages of both approaches and their uselirsiry.

2 Introduction

Estimating software cost is by no means a triaaktand in most cases the larger
the software project, the more cumbersome the asbmprocess. Before the realization
of a need for a software cost estimation modeh@@models were used for estimating
software cost. Today, many small businessesustlad hoc models while larger

businesses tend to embrace a formal model for astighsoftware cost.

“The most interesting difference between estinmatimdels is between models
that use SLOC as the primary input versus modelsdt not.” [1] Source Lines of
Code (SLOC) is the oldest metric for estimatinggecbeffort and thus is the primary
input of older cost estimation models like PutnaBotwareLl fecycleM anagement
(SLIM) from the late 1970’s or Boehm@OnstructiveCOst MO del (COCOMO)
published in 1981. [1] Using SLOC as input fosttestimation can be problematic
simply because estimating the SLOC early in theasok development lifecycle can be
difficult. Therefore, if the SLOC estimate is icacate, the output of the dependant cost
estimation model will be inaccurate. Despite thesdlems, many organizations still
use SLOC-based models:

NASA programs typically measure software size mte
of lines of code. Some authorities recommend o#iee
measures [e.g., function points (see Reference. 17)]
However, no other measure is as well understo@s @asy

to collect as lines of code. [2]

Software Cost Estimation: SLOC-based Models and the Function Points Model Pagelof10

Fortunately for those who do not believe SLOC isppropriate input for cost
estimation, there is an alternative approach thetlatively new. In 1979, IBM’s Allan
Albrecht published the function points (FP) modéieh involves “a measure of the
amount of function provided by the software systdB]. This model offers several

advantages over traditional SLOC-based modelssaddscribed in detail in section 4.

Although these models work very well in the enmimeents in which they were
developed, often times they do not work well inesthituations. Some models have been
developed so specifically for their owative environment that they can not be
generalized for use in other situations. For eXapifemerer could not use the popular
PRICE model in his study because it was “develggedarily for use on aerospace
applications and was therefore deemed unsuitabliaéobusiness applications that
would compromise the database.”[1] The modelsdhageneral enough to be used in a
non-native environment must be carefully calibratedrder to yield acceptable results.
Kemerer's study found that his results seemed tekbeved in favor of the models that
were developed in a similar environment as therenment of the projects that were

used in the study.

The remainder of this report will briefly descrithee SLOC-based approach to
cost estimation and take an in depth look at theptoach.

3 SLOC-based Models

The estimated SLOC in a proposed software systersed as input to many cost
estimation models as described previously in taort. But how are the SLOC

accurately estimated in the early stages of thisvaoé development lifecycle?

3-1 Estimating SLOC

A SLOC estimate of a software system can be obddimen experience, the size
of previous systems, the size of a competitor'sespysand breaking down the system
into smaller pieces and estimating the SLOC of gaebe. [4] Putnam suggests that for

each piece, three distinct estimates should be made

Software Cost Estimation: SLOC-based Models and the Function Points Model Page20f10

= Smallest possible SLOCa-
= Most likely SLOC —n
= Largest possible SLOCl-

Then the expected SLOC for pid€ecan be estimated by adding the smallest estimate,
largest estimate, and four times the most liketyreste and dividing the sum by 6. This

calculation is represented by the following formula

E = a+4m+b
6

The expected SLOC for the entire software sydsmsimply the sum of the expected
SLOC of each piece:

wheren is the total number of pieces. [5]

An estimate of the standard deviation of eaclnefdstimateg; can be obtained
by getting the range in which 99% of the estimataides are likely to occur and dividing
by 6:

o =Ib-al
6

The standard deviation of the expected SLOC foetitee software systefD is

calculated by taking the square root of the suthefsquares of standard deviations of

wheren is the total number of pieces. [5]

each estimat&D;:

Software Cost Estimation: SLOC-based Models and the Function Points Model Page30f10

3-2 Using SLOC Estimate for Cost Estimation

SLIM and COCOMO are among the many models that makeof a SLOC
estimate to estimate software cost in the eamyyitle stages. Unfortunately these
models, like most models are highly dependent erSihOC input and if the SLOC
estimate is inaccurate, it will be reflected in theults obtained by the cost estimation

model.

Generally to obtain a cost estimate for a softvegstem, three variables are
required in addition to the SLOC estimate: alphdhe marginal cost per thousand lines
of code (KLOC); betgs, an exponent of the KLOC; and gammghe additional fixed
cost of the project. The cost estimate calculasaepresented by the following formula:

CostEstimate = a « KLOC? + y

This is a very basic method for estimating softwarst using SLOC, but the
details of SLOC-based estimation models are outkielscope of this report. Further

reading recommendations are presented in sectdnhés report.

4 Function Points Model

The FP metric was originally developed as an adtiiva to SLOC to measure
productivity in the later stages of software depebent. However, Albrecht argued that
the FP model could also be a powerful tool to estinsoftware cost in the early stages of
the software development lifecycle. A detailedadiggion of the software requirements
is all that is needed to conduct a complete FPyarsal This enables almost any member
of a software project team to conduct the FP arsafrsd not necessarily a team member
who is familiar with the details of software devahoent. [1]

Another important advantage of not making use dD6Llis that the estimate is
independent of the language and other implememntatioiables that are often difficult to
take into consideration. To accurately estimat®S]|.the programming language must
be considered because some languages are morgetman others. For example, an

Software Cost Estimation: SLOC-based Models and the Function Points Model Page40f10

estimate of the SLOC for a software project writtedava would undoubtedly differ
from an estimate of the same software in Assemhblyguage. [1]

To properly compare the FP model to SLOC it is ingoat to completely
understand how functions are counted, how the fiffatount is calculated, and how to

interpret the FP count.

4-1 Counting Functions and the Calculating Unadjusted Enction
Points

Even with the software requirements formally spedifit can be a challenge to
get started counting the functions of a softwasdesy. To simplify this process,
Albrecht provides fives categories of functiongtwint: external inputs, external

outputs, external inquiries, external interfaces andinternal files. [3]

External inputs consist of all the data entering the system frater@al sources
and triggering the processing of data. Fields fofren are not usually counted

individually but a data entry form would be countesdone external input. [4], [3]

External outputs consist of all the data processed by the systensandoutside
the system. Data that is printed on a screenrdrte& printer including a report, an error

message, and a data file is counted as an extautpalt. [4], [3]

External inquiries are input and output requests that require an e
response and that do not change the internal d#t@ system. The process of looking
up a telephone number would be counted as onenaktiequiry. [4], [3]

External interfaces consist of all the data that is shared with otloéivwsare
systems outside the system. Examples include @liidgs, shared databases, and

software libraries. [4], [3]

Internal files include the logical data and control files intdroathe system. An
internal file could be a data file containing adses. A data file containing addresses

and accounting information could be counted asitwernal files. [4], [3]

Software Cost Estimation: SLOC-based Models and the Function Points Model Page50f10

When a function is identified for a given categdhge function’s complexity must
also be rated as low, average, or high as showahie 1.

Low Average High
External Input _ x3 x4 X6
External Output x4 x5 X7
Internal File X7 _x10 __x15
External Interface x5 X7 __x10
External Inquiry _ x3 x4 X6

Table 1. Function Count Weighting Factors [6]

Each function count is multiplied by the weighs@sated with its complexity
and all of the function counts are summed to obltaéncount for the entire system,
known as the unadjusted function points (UFP). [Bjis calculation is summarized by
the following equation:

UFP:iZSZWuXiJ

i=1 j=1
wherew; is the weight for row, columnj, andx;; is the function count in cell . [6]

4-2 Calculating the Adjusted Function Points

Although UFP can give us a good idea of the nurfilbgstions in a system, it
doesn’t take into account the environment variafilesletermining effort required to
program the system. For example, a software systatimequires very high performance
would require additional effort to ensure that soétware is written as efficiently as
possible. [1] Albrecht recognized this when depéig the FP model and created a list
of fourteen “general system characteristics thatrared on a scale from 0 to 5 in terms
of their likely effect for the system being countdé] These characteristics are as

follows:

Data communications
Distributed functions
Performance

Heavily used configuration

PwpbPE

Software Cost Estimation: SLOC-based Models and the Function Points Model Page60f10

Transaction rate
Online data entry
End user efficiency
Online update

. Complex processing
10. Reusability
11.Installation ease
12.Operational ease
13. Multiple sites

14. Facilitates change

©WoNOO

The ratings given to each of the characteristiovab; are then entered into the
following formula to get the Value Adjustment FacfgAF):

14
VAF = 065+ 001+) ¢,

i=1
where ¢is the value of general system characterisfior 0 <= ¢ <= 5. [6]

Finally, the UFP and VAF values are multiplied toguce the adjusted FP (AFP)
count:

AFP =UFP « VAF

4-3 Interpreting Adjusted Function Points

In practice, the final AFP number of the proposgstem is compared against the
AFP count and cost of systems that have been mexhsuthe past. The more historical
data that can be compared the better the chan@esofately estimating the cost of the
proposed software system. [1]

To continuously refine estimation accuracy, itgsential that the actual cost is
measured and recorded once a system has been teunpleis this actual cost that

enables the evaluation of the initial estimate.

Software Cost Estimation: SLOC-based Models and the Function Points Model Page70f10

5 Conclusions

Many people believe that counting the functiona gbftware project is a more
logical way to estimate cost than estimating th©6Land running it through a SLOC-
based model. However, some organizations begag &iOC-based models prior to the
conception of the FP model and are very comfortalitle the SLOC approach. It will be
very difficult, if not impossible to convince thesgganizations that the FP model is

superior when their SLOC-based model is produckugkent results for them.

The FP model also has its critics. The proces®ohting functions in a software
system involves some subjective decisions whichdi@r among individuals within an
organization. Some speculate that estimation tefal the same software system can
vary significantly by individual. According to treuthor of a leading software
engineering textbook, “The function point metrigel LOC, is relatively
controversial...Opponents claim that the methodireg some 'sleight of hand' in that

computation is based on subjective, rather thaeabibge, data...” [6]

Another problem with the FP model that has beentified is the difficulty to
automate data collection. Additional efforts tovelep automation tools to help in the

data collection process are needed.

Kemerer believes that despite its minor deficiesidiee FP model is the software
measure that satisfies the need for a robust mmasmt metric for software cost

estimation.

...even the current cost is small relative to tge sums
spent on software development and maintenanceta, to
and managers should consider the time spent on FP
collection and analysis as an investment in process

improvement of their software development capahili]

The FP approach seems to present significant aglyasitover the traditional
SLOC approach for estimating software cost. Argaoization that is beginning to adopt

a formal cost estimation model should first take tilme to carefully consider the FP

Software Cost Estimation: SLOC-based Models and the Function Points Model Page80f10

model before regressing to an older SLOC-based m@&imply choosing a SLOC-based
model because SLOC is a familiar metric or becé#usées a little less effort to collect

data is probably not good reasoning.

Software Cost Estimation: SLOC-based Models and the Function Points Model Page90f10

6 Further Reading

All of the sources referenced in this report aghly recommended for further
details of their given topic. Sources that werereterenced in this report but are also

recommended are as follows:

= International Function Point Users Group (IFPUGittp://www.ifpug.org

= Function Point Calculator kitp://irb.cs.uni-magdeburg.de/sw-eng/us/java/fp/

= A.J. Albrecht, “Measuring Application DevelopmenbBuctivity,” IBM Application
Development Symposium, pp. 83-92, 1979.

= Silvia Abrahdo and Oscar Pastor, “Measuring thetional size of web applications,”
Int. J. of Web Engineering and Technology, Vol. 1, No. 1, 2003.

Software Cost Estimation: SLOC-based Models and the Function Points Model Page100f 10

References

1. Chris F. Kemerer, “An Empirical Validation of Sofane Cost Estimation
Models,” Communications of the ACM, Vol. 30, No. 5, May 1987.

2. Mitchell J. Bassman, Frank McGarry, and Rose PhijetSoftware Measurement
Guidebook,”Software Engineering Laboratory Series, Rev. 1, pp. 21-46, 1995.

3. Unknown, “The Software Measurement Guidebool&iftware Productivity
Consortium, Boston: International Thompson Computer Pres3519

4. David Gustafson, “Schaum's Outline of Software Begring,” New York:
McGraw-Hill Trade, 2002.

5. L. H. Putnam, “Example of an Early Sizing, Cost &thedule Estimate for an
Application Software System,” iffutorial, Software Cost Estimation and Life-
Cycle Control: Getting Software Numbers, IEEE Computer Society, New York:
Computer Society Press, pp. 102-127, 1980.

6. Chris F. Kemerer, “Reliability of Function Points elslsurement. A Field
Experiment,” Communications of the ACM, Vol.36, No.2, pp. 85-97, February
1993.

Software Cost Estimation: SLOC-based Models and the Function Points Model Pagel1lof10

Appendix A: Annotated Bibliography

Chris F. Kemerer, “An Empirical Validation of Softw are Cost Estimation Models,”
Communications of the ACM, Vol. 30, No. 5, May 1987.

Kemerer’'s study compared models that used SLOGlow# that do not. It also
addressed the impact of the environment in whiotodel is developed and whether
models can be calibrated for other environmentsm&rer was also interested to
determine if the proprietary models were as aceusatthe non-proprietary models.

Chris F. Kemerer, “Reliability of Function Points M easurement. A Field
Experiment,” Communications of the ACM, Vol.36, No.2, pp. 85-97, February
1993.

Kemerer’s more recent study of the FP model prav/glreat insight into the reliability of
FP as a measurement and dismisses many of the gopmtoisms of the FP model.
This study included an excellent description ofrdg and calculating FP.

Appendix A: Annotated Bibliography PageAlofl

Appendix B: Related Questions

Question 1: (10 Marks)
Describe advantages and disadvantages of the Barfetiints model of cost estimation.

Advantages Disadvantages

= Estimation data available early in = Difficult to automate data collection

software development lifecycle = Possible subjective counting of function

= Independent of language and other points
implementation variables

= A non-technical member of the
development team can do the
estimation

Question 2: (10 Marks)
Describe advantages and disadvantages of a SLO«Cbasdel of cost estimation.

Advantages Disadvantages

= Easy to automate data collection = Subjective counting of SLOC

= Easy to understand SLOC input = Estimation experience can have drastic
effects on results

= Possible difficulty calibrating for
environments other than the environment in
which the model was developed

Question 3: (10 Marks)

What are the categories used for counting fungimnts? Give a brief description each
category.

External inputs consist of all the data entering the system frottereal sources and
triggering the processing of data. Fields of arf@re not usually counted individually
but a data entry form would be counted as one eaténput.

External outputs consist of all the data processed by the systemsand outside the
system. Data that is printed on a screen or seatprinter including a report, an error
message, and a data file is counted as an extautyalt.

Appendix B: Related Questions PageB1lof2

Appendix B: Related Questions

External inquiries are input and output requests that require an uhtes response and
that do not change the internal data of the systéhe process of looking up a telephone
number would be counted as one external inquiry.

External interfaces consist of all the data that is shared with otha&ftwsare systems
outside the system. Examples include shared fadbgared databases, and software
libraries.

Internal files, include the logical data and control files intdr@athe system. An internal
file could be a data file containing addresses. daa file containing addresses and
accounting information could be counted as tworirgkEfiles.

Appendix B: Related Questions PageB20of2

