な意
 Field Engineering
 Maintenance Manual

For Sale Through IBM Branch Offices

We are pleased to send you this complimentary copy of a newly printed publication. Additional copies are available from the Distribution Center, Mechanicsburg.
G.W. Goesch, Manager Department G24

Author: J. A. Wilson

Rig
 Field Engineering
 Maintenance Manual

For Sale Through IBM Branch Offices

Preface

This manual contains maintenance information for the following units of the IBM Data Acquisition and Control System:

IBM 1801 and 1802 Processor-Controllers
IBM 1803 Core Storage Unit
IBM 1826 Data Adapter Unit
IBM 1828 Enclosure
IBM 1851 Multiplexer Terminal
IBM 1856 Analog Output Terminal
The data processing input/output units used in the 1800 system are provided with separate maintenance manuals that
contain information required to service those units. Other manuals that are used in servicing the 1800 system are listed in the IBM Field Engineering Bibliography, 1800 Data Acquisition and Control System (Order No. SY26-0560).*

It is assumed that the user of this manual is familiar with 1800 system programming techniques and that he understands the functional and operational aspects of all system areas. Hexadecimal numbers, if not otherwise identified, are preceded by a "slash" (e.g., /3000) to distinguish them from decimal numbers.

Service Aids included in this manual are 24, 25, 35, 44, $65,66,69,129,134$, and 172.

Seventh Edition (February, 1970)

This manual (Order No. SY26-5956-6) is a complete revision of, and makes obsolete, Order No. SY26-5956-5. Changes to the text, and small changes to illustrations, are indicated by a vertical line to the left of the change; changed or added illustrations are denoted by the symbol \bullet to the left of the caption.

Significant changes or additions to the specifications contained in this publication are continually being made. When using this publication in connection with the operation of IBM equipment, check the latest FE Publications Systems Sequence Listing, Order No. SY20-0073, for revisions or contact the local IBM Branch Office.

The illustrations in this manual have a code number in the lower corner. This is a publishing control number and is not related to the subject matter.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form for reader's comments is provided at the back of this publication. If the form has been removed, send your comments to the address below.

This manual was prepared by the IBM Systems Development Division, Product Publications, Department G24, San Jose, California 95114.
Safety vi
Abbreviations viii
CHAPTER 1. REFERENCE DATA AND DIAGNOSTIC TECHNIQUES 1-1
Section 1. Reference Data 1-1
1.1 LOGIC DIAGRAMS 1-28
1.1.1 ALD Logic Block Symbology 1-28
1.1.2 FEALD Logic Block Symbology 1-28
1.1.3 Machine Frame and Gate Designations 1-28
1.1.4 Logic Page Identification 1-29
1.1.5 System Paperwork Binder $1-30$
1.2 MANUALLY CONTROLLED WIRING CHANGES $1-30$
1.2.1 Authorization for Wiring Changes 1-32
1.2.2 Data Channel Assignment 1-32
1.2.3 Timer Interval Reassignment 1-33
1.2.4 Interrupt Assignments 1-33
1.2.5 System/360 Adapter Address Reassignment 1-34
1.2.6 Communications Adapter and Line Adapter 1-34
1.2.7 Editing Diagnostic Programs 1-35
Section 2. Diagnostic Techniques 1-35
1.3 ON-LINE SERVICING LIMITATIONS 1-35
1.3.1 Use of Auxiliary Storage 1-35
1.3.2 Power Removal and Component Plugging 1-35
1.3.3 Channel Termination 1-36
1.3.4 System/360 Adapter 1-36
1.4 MARGINAL CHECKING 1-36
1.5 SLT MAINTENANCE 1-37
1.5.1 SLT Contact Wear 1-37
1.5.2 Wire Color Codes 1-37
1.5.3 Machine Cable Installation 1-37
1.6 CRITICAL CIRCUITS AND LEVELS $1-38$
1.6.1 Sample Pulse Drivers (SPD's) 1-38
1.6.2 Singleshots (SS) 1-38
1.6.3 Phase A/B 1-38
1.7 CORE STORAGE $1-40$
1.7.1 Collection of Error Data 1-40
1.7.2 Main Storage Addressing and Selection 1-41
1.7.3 Core Storage Display Procedure $1-42$
1.7.4 Scoping Techniques $1-43$
1.7.5 Swapping BSM Address Assignments 1-44
1.7.6 Array Swapping (Physical) $1-44$
1.7.7 Trouble Diagnosis 1-44
1.7.8 Core Storage Waveforms 1-53
1.7.9 Current Measurement 1-53
1.8 PROCESS IṄPUT/OUTPUT $1-53$
1.8.1 Analog Input 1-53
1.8.2 Analog Input Waveforms 1-55
1.8.3 Multiplexer Troubleshooting Techniques 1-57
1.8.4 1851 Service Voltages $1-60$
1.8.5 Programming Rules and Restrictions $1-60$
1.8.6 Analog Input Repeatability $1-61$
1.8.7 Analog Output 1-62
1.9 DATA PROCESSING INPUT/OUTPUT $1-62$
1.9.1 DP I/O Trouble Diagnostic 1-62
1.9.2 1442 Card Read Punch 1-62
CHAPTER 2. CONSOLE AND MAINTENANCE FEATURES 2-1
2.1 PROGRAMMER'S CONSOLE 2-1
2.1.1 Switches and Message Lamps 2-1
2.1.2 Toggle Switches 2-4
2.1.3 Indicator Lamps 2-4
2.1.4 Register Display Lamps and Switches 2-6
2.2 INITIAL PROGRAM LOAD (IPL) 2-6
2.2.1 1442 Standard IPL Procedure 2-6
2.2.2 1054 Standard IPL Procedure 2-7
2.2.3 IPL into Any Core Location 2-7
2.3 ERROR CIIECK CIRCUITS 2-7
2.4 MAINTINANCE DIAGNOSTIC PROGRAMS 2-8
2.4.1 Program Tests 2-8
2.4.2 Documentation 2-9
2.4.3 Diagnostic Approach 2-9
2.5 I/O MONITOR INTERFACE PANELS 2-9
2.5.1 Interface Connectors 2-9
2.5.2 Functions of Switches - 1801/1802 Interface Panel 2-10
2.6 AUXILIARY STORAGE 2-11
2.7 CE INTERRUPT 2-11
2.8 CE MODE 2-11
2.9 PROGRAMMABLE TEST LATCH 2-12
2.10 CE CYCLE-STEAL TEST 2-12
2.11 GENERAL TEST EQUIPMENT 2-13
2.11.1 I/O Monitor Units 2-13
2.11.2 Oscilloscope 2-13
2.11.3 CE Indicator Latch Card 2-13
2.11.4 Extender Card 2-14
2.11.5 Seven-Position Binary Counter 2-14
2.11.6 Remote Switch Box 2-15
2.12 PROCESS I/O TEST EQUIPMENT 2-16
2.12.1 Fluke DC Differential Voltmeter 2-16
2.12.2 Analog Input Calibration Facility 2-17
2.12.3 Digital Input Test Card 2-18
2.12.4 Digital Output Test Cable 2-18
2.12.5 1856 DAC/PVR Extender 2-19
2.13 CORE STORAGE TEST EQUIPMENT 2-19
2.13.1 Oscilloscope 2-19
2.13.2 Differential Scope Cable 2-19
2.13.3 Current Probe 2-19
2.13.4 Core Storage Current Probing Card 2-19
2.13.5 Card Offset and Four-Inch Jumpers 2-20
2.13.6 Thermometer 2-20
2.13.7 Meter 2-20
CHAPTER 3. PREVENTIVE MAINTENANCE 3-1
CHAPTER 4. CHECKS, ADJUSTMENTS, AND REMOVALS 4-1
Section 1. Basic Unit 4-1
4.1 PANEL LAMPS 4-1
4.1.1 Indicator Lamp Removal/Replacement 4-1
4.1.2 Message Lamp Removal/Replacement 4-1
4.2 GATE BLOWERS 4-1
4.2.1 Blower Removal/Replacement 4-1
4.2.2 Filter Replacement 4-1
4.3 CENTRAL PROCESSING UNIT 4-1
4.3.1 Service Check 4-1
4.3.2 Phase A/B Adjustment 4-1
4.3.3 Operations Monitor 4-2
4.4 CORE STORAGE 4-3
4.4.1 General Precautions 4-3
4.4.2 Service Check 4-3
4.4.3 Core Storage Adjustments 4-3
4.4.4 Array Removal/Replacement 4-3
4.4.5 Core Storage Board (BSM) Removal/ Replacement 4-3
4.4.6 Core Storage Diodes Removal/Replacement 4-4
4.5 CHANNEL CONTROL 4-4
4.5.1 Service Check - Interval Timers 4-4
4.5.2 Service Check - Interrupt 4-4
Section 2. Features 4-4
4.6 1816-1053 ADAPTER 4-4
4.6.1 Service Check 4-4
4.6.2 Singleshot Adjustments 4-4
4.7 1054-1055 ADAPTER 4-4
4.7.1 Service Check 4-4
4.7.2 Singleshot Adjustments 4-4
4.7.3 Oscillator Adjustment 4-5
4.8 1442 ADAPTER 4-5
4.8.1 Service Check 4-5
4.8.2 Singleshot Adjustments 4-5
4.8.3 Read Emitter Strobe Timing 4-5
4.9 1443 ADAPTER 4-5
4.9.1 Service Check 4-5
4.10 $\quad 1627$ ADAPTER 4-5
4.10.1 Service Check 4-5
4.10.2 Plotter Speed 4-5
4.11 1810 DISK STORAGF 4-5
4.12 MAGNETIC TAPE CONTROL 4-5
4.12.1 Service Check - Tape Control Unit 4-5
4.12.2 Oscillator Timing 4-5
4.12.3 Service Check - Read Clock Timing 4-5
4.12.4 Service Check - Write Clock Timing 4-6
4.12.5 Service Check - Delay Counter Timing 4-6
4.12.6 Service Check - Signal Acceptance and Rejection Levels 4-7
4.12.7 Singleshot Adjustment 4-7
4.12.8 Final Amplifier Read/Write Adjustment 4-7
4.13 SYSTEM/360 ADAPTER 4-11
4.13.1 Service Check 4-11
4.13.2 Singleshot Adjustments 4-11
4.14 ANALOG INPUT 4-11
4.14.1 Precautions 4-11
4.14.2 Service Checks 4-12
4.14.3 Analog Input Calibration. 4-12
4.14.4 Singleshot Adjustments 4-12
4.14.5 Resistance Bulb Thermometer 4-12
4.15 ANALOG OUTPUT 4-12
4.15.1 Service Check 4-12
4.15.2 Analog Output Calibration 4-12
4.15.3 1856 Blower Removal/Replacement 4-12
4.15.4 1856 Blower Filter Replacement 4-13
4.16 DIGITAL INPUT 4-14
4.16.1 Service Check - Digital Input and Process Interrupt 4-14
4.16.2 Service Check -- Pulse Counter 4-14
4.17 DIGITAL OUTPUT 4-14
4.17.1 Service Check 4-14
4.17.2 Singleshot Adjustments 4-14
4.18 SELECTOR CHANNEL 4-14
4.18.1 Service Check 4-14
4.18.2 Singleshot Adjustments 4-14
4.19 COMMUNICATIONS ADAPTER 4-14
4.19.1 Service Check 4-14
4.19.2 Adjustments 4-14
CHAPTER 5. POWER SUPPLIES 5-1
Section 1. Basic Unit 5-1
5.1 PRECAUTIONS 5-1
5.2 SYSTEM POWER-ON PROCEDURE 5-1
5.3 SYSTEM POWER-OFF PROCEDURE. 5-1
5.4 ADJUSTMENT AND REMOVAL PROCEDURES 5-1
5.4.1 MPS Power Supply Adjustment 5-1
5.4.2 MPS Power Supply Removal/ Replacement 5-2
5.4.3 Power Supply Filter Replacement 5-2
5.5 TROUBLESHOOTING PROCEDURES 5-3
5.5.1 Power Supply Overload 5-3
Section 2. Features 5-3
5.6 POWER PAC - 1856 ANALOG OUTPUT TERMINAL 5-3
5.6.1 Power Pac Voltage Adjustment 5-3
5.7 PRECISION VOLTAGE REFERENCE 5-3
CHAPTER 6. LOCATIONS 6-1
6.1 LOCATIONS SHOWN IN SYSTEM DIAGRAMS 6-1
6.1.1 System 6-1
6.1.2 1801 and 1802 Processor-Controller 6-1
6.1.3 1826 Data Adapter Unit 6-1
6.1.4 1828 Enclosure 6-1
6.2 FRAME NUMBERING SYSTEM 6-1
6.3 BOARD LOCATIONS 6-1
6.4 WIRED LOGIC (WL) JUMPERING 6-3
6.4.1 Interrupt, Cycle Steal, IPL 6-3
6.4.2 Other 6-3
6.5 COMPONENT LOCATIONS INDEX 6-3
6.5.1 1801 and 1802 Processor-Controller 6-3
6.5.2 1803 Core Storage Unit 6-3
6.5.3 1826 Data Adapter Unit, Models 1 and 2 6-3
6.5.4 1826-3 Data Adapter Unit 6-4
6.5.5 1828 Enclosure 6-4
6.6 LOCATIONS FIGURE LISTING 6-4
APPENDIXES A-1

Safety

PERSONAL SAFETY

Personal safety cannot be overemphasized. To ensure your own safety and the safety of co-workers, make it a practice to observe safety precautions at all times. You should be familiar with the general safety practices and procedures outlined in Order No. S229-1624, which is reproduced here.

CE SAFETY PRACTICES

All Customer Engineers are expected to take every safety precaution possible and observe the following safety practices while maintaining IBM equipment:

1. You should not work alone under hazardous conditions or around equipment with dangerous voltage. Always advise your manager if you MUST work alone.
2. Remove all power $A C$ and $D C$ when removing or assembling major components, working in immediate area of power supplies, performing mechanical inspection of power supplies and installing changes in machine circuitry.
3. Wall box power switch when turned off should be locked or tagged in off position. "Do not Operate" tags, form 229-1266, affixed when applicable. Pull power supply cord whenever possible.
4. When it is absolutely necessary to work on equipment having exposed operating mechanical parts or exposed live electrical circuitry anywhere in the machine, the following precautions must be followed:
a. Another person familiar with power off controls must be in immediate vicinity.
b. Rings, wrist watches, chains, bracelets, metal cuff links, shall not be worn.
c. Only insulated pliers and screwdrivers shall be used.
d. Keep one hand in pocket.
e. When using test instruments be certain controls are set correctly and proper capacity, insulated probes are used.
f. Avoid contacting ground potential (metal floor strips, machine frames, etc. - use suitable rubber mats purchased locally if necessary).
5. Safety Glasses must be worn when:
a. Using a hammer to drive pins, riveting, staking, etc.
b. Power hand drilling, reaming, grinding, etc.
c. Using spring hooks, attaching springs.
d. Soldering, wire cutting, removing steel bands.
e. Parts cleaning, using solvents, sprays, cleaners, chemicals, etc.
f. All other conditions that may be hazardous to your eyes. REMEMBER, THEY ARE YOUR EYES.
6. Special safety instructions such as handling Cathode Ray Tubes and extreme high voltages, must be followed as outlined in CEM's and Safety Section of the Maintenance Manuals.
7. Do not use solvents, chemicals, greases or oils that have not been approved by IBM.
8. Avoid using tools or test equipment that have not been approved by IBM.
9. Replace worn or broken tools and test equipment.
10. Lift by standing or pushing up with stronger leg muscles this takes strain off back muscles. Do not lift any equipment or parts weighing over 60 pounds.
11. All safety devices such as guards, shields, signs, ground wires, etc. shall be restored after maintenance.

KNOWING SAFETY RULES IS NOT ENOUGH
AN UNSAFE ACT WILL INEVITABLY LEAD TO AN ACCIDENT USE GOOD JUDGMENT - ELIMINATE UNSAFE ACTS

229-1264-1

Exposure to Environmental Hazards

The 1800 Data Acquisition and Control System is linked directly to the customer's process, and voltages can be introduced into the system from a number of sources. Even with power removed from the 1800 system, hazardous voltages may be present in the customer termination
12. Each Customer Engineer is responsible to be certain that no action on his part renders product unsafe or exposes hazards to customer personnel.
13. Place removed machine covers in a safe out-of-the-way place where no one can trip over them.
14. All machine covers must be in place before machine is returned to customer.
15. Always place CE tool kit away from walk areas where no one can trip over it (i.e., under desk or table).
16. Avoid touching mechanical moving parts (i.e., when lubricating, checking for play, etc.).
17. When using stroboscope - do not touch ANYTHING - it may be moving.
18. Avoid wearing loose clothing that may be caught in machinery. Shirt sleeves must be left buttoned or rolled above the elbow.
19. Ties must be tucked in shirt or have a tie clasp (preferably nonconductive) approximately 3 inches from end. Tie chains are not recommended.
20. Before starting equipment, make certain fellow CE's and customer personnel are not in a hazardous position.
21. Maintain good housekeeping in area of machines while performing and after completing maintenance.

area. All customer lines are potentially dangerous and should be regarded as live circuits.

When entering any part of the customer's process area, observe all safety precautions and regulations. Check the following items with customer safety personnel:

1. The need for safety glasses, hard hats, or special clothing.
2. Particular route that must be taken to and from installation. Escort required?
3. Smoking restrictions.
4. Restrictions on use of electrical or other sparkproducing tools.
5. Exposure to high voltages.
6. Exposure to heavy machinery or other equipment.
7. Exposure to splashing acids, molten metal, hot liquids, etc.
8. Exposure to toxic gases and vapors.
9. Warning alarms and emergency exits.

When servicing IBM units that are installed in customer consoles or racks, pay particular attention to nearby units or devices that can present a safety hazard.

Machine Warning Labels

Heed the warning labels placed in hazardous areas of the machines. They are placed there for your protection.

Power Supplies

Before working on any power supply, remove power from the unit and allow at least one minute for capacitors to discharge. Although all power supplies are provided with bleeder resistors to drain off capacitor charges when power is dropped, it is wise to check the dc output with a meter before attempting maintenance.

Power Cords

Check power cords periodically for safe condition and proper ground connections.

Line-Powered Equipment

Oscilloscopes and other line-powered equipment must always be grounded through the third-wire grounding conductor in the power cord.

EQUIPMENT PRECAUTIONS

Customer Interface

The 1800 system is an integral part of the customer's operation. Do not, under any circumstances, work on any part
of the system without the knowledge and consent of the customer.

Be especially careful not to impulse a digital or analog output point that is connected to a process device.

Core Storage

Use extreme caution when working around core storage. Do not leave the core storage unit unattended when covers are removed.

Solid-State Components

Avoid operating the system for prolonged periods with the SLT card covers removed.

Care must be exercised when grounding signal lines, in order to prevent applying a voltage instead of a ground, or grounding the output of an emitter-follower circuit. Electrical overloads, for periods of even a few microseconds, can seriously damage or destroy transistors.

Because of the danger of shorting between adjacent cards, it is not advisable to remove or replace SLT cards with power on.

The following types of cards must never be removed with power on:

Drivers and amplifiers
Core storage cards
Power supply cards
Multiplexer cards

Relay Multiplexer Cards

Use care when removing and inserting multiplexer cards. Fingerprints, pencil marks, and other contaminants decrease the leakage resistance of these cards. Do not use cleaning solvents or card contact lubricants, and do not permit the protective coating on the card to become damaged.

Before a relay card is inserted in the card gate, it should be held upright and tapped lightly to clean the contacts of any excess mercury. Sharp blows should be avoided; do not tap the card against a hard surface or drive the card into its socket with a blow from the hand. Improper handling of relay cards can make the relay inoperable or cause it to operate outside specified limits.

If common-mode voltage in excess of 10 volts (ac or dc) is present on the customer input lines, or if there is a possibility of the occurrence of such voltage, the lines must be disconnected by the customer prior to removal or insertion of the multiplexer relay card in that channel. Mercury bridging of the relay points during removal or insertion of the card may impress the entire common-mode voltage across the flying capacitor, relay points, or amplifier, resulting in component damage.

Abbreviations

A-reg	accumulator register	EA	effective address
ADA	analog driver amplifier	EBCDIC	extended binary-coded-decimal interchange
ADC	analog-to-digital converter		code
AI	analog input	EC	engineering change
ALD	automated logic diagram	ECA	engineering change announcement
AMAR	analog multiplexer address register	ECAD	error check analysis diagram
AO	analog output	ECO	electronic "contact" operate
ASCII	American standard code for information	ENQ	enquiry
	interchange	EOC	end of conversion
AWG	American wire gauge	EOT	end of table
aux	auxiliary	EOT	end of transmission
		EPO	emergency power off
B-reg	storage buffer register	ETB	end of transmission block
BCC	block check character	ETX	end of text
bfr	buffer		
BO	branch out		
BS	block switch	F-reg	format register
BSC	binary synchronous communications	FC	feature code
BSM	basic storage module	FEALD	Field Engineering automated logic diagram
		FESRR	Field Engineering Systems Reference Report
CA	communications adapter	FET	field-effect transistor
CAB	channel address buffer	FF	flip-flop
CAF	customer assignment form	FL	flip-latch
CAR	channel address register		
CC	chain command	hex	hexadecimal
CCW	channel command word	HLSE	high-level, single-ended
CD	chain data	HSDA	high-speed data acquisition
CEM	Customer Engineers Memorandum	Hz	hertz (cycles per second)
CMRR	common-mode rejection ratio		
CPU	central processing unit	I-reg	instruction register
CRC-16	cyclic redundancy check (16 bits)	I/A	indirect addressing
CRP	Card Read Punch (IBM 1442)	ICAR	instrument calibration and repair
CS	cycle steal	ILSW	interrupt level status word
CSA	cycle steal acknowledge	I/O	input/output
CSU	core storage unit	IOCC	input/output control command
CSW	channel status word	IPL	initial program load
		ITB	intermediate transmission block
D-reg	arithmetic factor register		
DAC	digital-to-analog converter	LA	line adapter
DAO	digital and analog output	LRC	longitudinal redundancy check
DAU	Data Adapter Unit (IBM 1826)	LSB	least significant bit
DC	data channel		
DCU	data control unit	M-reg	storage address register
DDC	direct digital control	MAR-2	Manufacturing Assembly Report
DET	double-emitter transistor		\#2 (field use)
DI	digital input	MDM	maintenance diagram manual
DIMAL	disk maintenance library	MES	miscellaneous equipment specification
DLE	data link escape	MI	multi-input
DO	digital output	MLC	machine level control
DP	data processing	MLR	machine location report
DPC	direct program control	Mod-reg	modify register
DSW	device status word	MPS	medium power standard

MPX	multiplex(er), R-relay, S-solid-state	SLD
MPX	Multiprogramming Executive (a program-	SLI
	ming system)	SLT
		SMS
NAK	negative acknowledgment	SOH
		SPD
Op-reg	operation code register	SRL
		SS
P	parity	SSC
PC	pulse counter	STX
P-C	processor-controller	SYN
PCI	program control interruption	
PI	process interrupt	T-reg
PID	program identification	tag
PISW	process interrupt status word	TIC
PO	pulse output	TSX
POC	process operator's console	
PVR	precision voltage reference	TTD
Q-reg	accumulator extension register	U-reg
		UDCD
RBT	resistance bulb thermometer	UJT
RO	register output	
RPQ	request for price quotation	VRef
		VRC
		VSA
SAR	storage address register	
S\&H	sample-and-hold (amplifier)	WC
SC	shift counter	
SCR	silicon-controlled rectifier	XIO
SCRID	SCR indicator driver	XR
SI	single instruction	
SIO	start input/output	1

Chapter 1. Reference Data and Diagnostic Techniques

Section 1. Reference Data

Figures 1-1 through 1-24 contain reference data for use in servicing the IBM 1800 Data Acquisition and Control System.

Bits 8 and 9:
$00=$ SLA or SRA
$01=$ SLCA
$10=$ SLT or SRT
$11=$ SLC or RTE
With Tag $=00$, bits $10-15$ contain the shift count.
ligure 1-1. Short Instruction Format

$C($ addr $)=$ Contents of core location specified by address.

Figure 1-2. Long Instruction Format

Figure 1-3. IOCC l'ormat
Figure 1-4. Single-Precision Data Word

Figure 1-5. Double-Precision Data Word

1054 PAPER TAPE READER

Figure 1-6. Data Words -- IPL Mode

interrupt Level	Priority	Vector Address		Interrupt Level Status Word Encode Bits *						Interrupt Poll	$\begin{aligned} & \text { IN } \\ & \text { Bus } \\ & \text { Bit } \\ & \hline \end{aligned}$
		Hex	Decimal	10	11	12	13	14	15		
Internal	1	0008	8	0	0	1	0	0	0	-	-
Trace	26	0009	9	0	0	1	0	0		-	-
CE	27	000A	10	0	0	1	0	1	0	B	15
0	2	000B	11	0	0	1	0	1	1	A	0
1	3	000C	12	0	0	1	1	0	0	A	1
2	4	O00D	13	0	0	1	1	0	1	A	2
3	5	000E	14	0	0	1	1	1	0	A	3
4	6	000F	15	0	0	1	1	1	1	A	4
5	7	0010	16	0	1	0	0	0	0	A	5
6	8	0011	17	0	1	0	0	0	1	A	6
7	9	0012	18	0	1	0	0	1	0	A	7
8	10	0013	19	0	1	0	0	1	1	A	8
9	11	0014	20	0	1	0	1	0	0	A	9
10	12	0015	21	0	1	0	1	0	1	A	10
11	13	0016	22	0	1	0	1	1	0	A	11
12	14	0017	23	0	1	0	1	1	1	A	12
13	15	0018	24	0	1	1	0	0	0	A	13
14	16	0019	25	0	1	1	0	0	1	B	0
15	17	001A	26	0	1	1	0	1	0	B	1
16	18	001B	27	0	1	1	0	1	1	B	2
17	19	001 C	28		1	1	1	0	0	B	3
18	20	001D	29		1	1	1	0	1	B	4
19	21	O01E	30		1	1	1	1		B	5
20	22	00 IF	31		1	1	1	1		B	6
21	23	0020	32		0	0	0	0	0	B	7
22	24	0021	33		0	0	0	0		B	8
23	25	0022	34		0	0	0	1	0	B	9
*Only bits 11 through 15 are placed on the OUT bus for interrupt level decoding at device adapters. Note, therefore, that hex addresses 20, 21 , and 22 are decoded as 0,1 , and 2 at the adapters.											

Figure 1-7. Interrupt Levels

Hex Address	Contents
0001	CE Interrupt (Start of Program)
0004	Interval Timer A
0005	Interval Timer B
0006	Interval Timer C
0008	Internal Interrupt
0009	Trace Interrupt
000A	CE Interrupt (Return Address)
000B	Interrupt Level 0
000C	Interrupt Level 1
000D	Interrupt Level 2
OOOE	Interrupt Level 3
000F	Interrupt Level 4
0010	Interrupt Level 5
0011	Interrupt Level 6
0012	Interrupt Level 7
0013	Interrupt Level 8
0014	Interrupt Level 9
0015	Interrupt Level 10
0016	Interrupt Level 11
0017	Interrupt Level 12 \$
0018	Interrupt Level 13 Special
0019	Interrupt Level 14 Feature
001A	Interrupt Level 15 Group 1
0018	Interrupt Level 16
001 C	Interrupt Level 17
001 D	Interrupt Level 18
OOIE	Interrupt Level 19
001F	Interrupt Level 20 Special
0020	Interrupt Level 21 Feature
0021	Interrupt Level 22 Group 2
0022	Interrupt Level $23 \quad \dagger$

Figure 1-8. Reserved Main Storage Locations

Decimal/Hexadecimal Conversion Chart

The tables printed below are used to convert decimal numbers to hexadecimal and hexadecimal numbers to decimal. In the descriptions that follow, the explanation of each step is followed by an example in parentheses.

Decimal to Hexadecimal Conversion. Locate the decimal number (0489) in the body of the table. The two high-order digits (1E) of the hexadecimal number are in the left column on the same line, and the low-order digit (9) is at the top of the column. Thus, the hexadecimal number 1E9 is equal to the decimal number 0489.

	111111111111111111111111	
N		
N		
	- ¢	
佼		
		∞
NTV		\bigcirc
		\cdots
		7

Dec	Bin	Hex	Dec	Bin	Hex
0	0000	0	8	1000	8
1	0001	1	9	1001	9
2	0010	2	10	1010	A
3	0011	3	11	1011	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15	1111	F

The table to the left gives the decimal, binary, and hexadecimal coding for the full range of four binary bits, from zero through F_{16} and 15_{10}.

To convert a four-digit hexadecimal number to decimal, determine the decimal value of the three low-order hexadecimal digits in the main table, and add the value for the high-order digit, as shown in the

		\bigcirc
		(1)

extended chart to the right.
For conversion of decimal values beyond the main table, deduct the largest number in the table at the right that will yield a positive result. The related digit is the highorder hexadecimal digit. Determine the three remaining hexadecimal digits by converting the product of the above subtraction in the main table.

Hexadecimal	Load and Store Instructions
$\begin{aligned} & \text { C0XX } \\ & \text { C1XX } \\ & \text { C2XX } \\ & \text { C } 3 X X \\ & \text { C400XXXX } \\ & \text { C500XXXX } \\ & \text { C600XXXX } \\ & \text { C700XXXX } \\ & \text { C480XXXX } \\ & \text { C580XXXX } \\ & \text { C680XXXX } \\ & \text { C780XXXX } \end{aligned}$	Load Accumulator (LD)
	Contents of CSL at EA (1+DISP) are loaded into A
	Contents of CSL at EA (XRI+DISP) are loaded into A
	Contents of CSL at EA (XR2+DISP) are loaded into A
	Contents of CSL at EA (XR3+DISP) are loaded into A
	Contents of CSL at EA (Addr) are loaded into A
	Contents of CSL at EA (Addr +XRI) are loaded into A
	Contents of CSL at EA (Addr +XR2) are loaded into A
	Contents of CSL at EA (Addr +XR3) are loaded into A
	Contents of CSL at EA (V in CSL at Addr) are loaded into A
	Contents of CSL at EA (V in CSL at "Addr +XR1") are loaded into A
	Contents of CSL at EA (V in CSL at "Addr +XR2") are loaded into A
	Contents of CSL at EA (V in CSL at "Addr +XR3") are loaded into A
	Double Lood (LDD)
C8XXC9XXCAXXCBXXCC00XXXXCD00XXXXCE00XXXXCF00XXXXCC80XXXX	Contents of CSL at EA ($1+$ DISP) and EA+1 are loaded into A and Q
	Contents of CSL at EA(XRI + DISP) and EA+1 are loaded into A and Q
	Contents of CSL at EA (XR2 + DISP) and EA+1 are loaded into A and Q
	Contents of CSL at EA (XR3 + DISP) and EA+1 are loaded into A and Q
	Contents of CSL at EA (Addr) and EA+1 are loaded into A and Q
	Contents of CSL at EA (Addr +XR1) and EAtl are loaded into A and Q
	Contents of CSL at EA (Addr $+\times$ R2) and EAt1 are loaded into A and Q
	Contents of CSL at EA (Addr +XR3) and EAtl are loaded into A and Q
	Contents of CSL at EA (V in CSL at Addr) and EA+1 are loaded into A and Q
CD80XXXX	Contents of CSL at EA (V in CSL at "Addr +XR1") and EA+1 are loaded into A and Q
CE80XXXX	Contents of CSL at EA (V in CSL at "ADDR +XR2") and EA+1 are loaded into A and Q
CF80XXXX	Contents of CSL at EA (V in CSL at "Addr +XR3") and EA+1 are loaded into A and Q
	Store Accumulator (STO)
DOXX	Contents of A are stored in CSL at EA (I+DISP)
DIXX	Contents of A are stored in CSL at EA (XRI+DISP)
D2XX	Contents of A are stored in CSL at EA (XR2+DISP)
D3XX	Contents of A are stored in CSL at EA (XR3+DISP)
D400XXXX	Contents of A are stored in CSL at EA (Addr)
D500XXXX	Contents of A are stored in CSL at EA (Addr +XRI)
D600xXXX	Contents of A are stored in CSL at EA (Addr +XR2)
D700XXXX	Contents of A are stored in CSL at EA (Addr +XR3)
D480XXXX	Contents of A are stored in CSL at EA (V in CSL at Addr)
D580XXXX	Contents of A are stored in CSL at EA (V in CSL at "Addr +XRI")
D680XXXX	Contents of A are stored in CSL at EA (V in CSL at "Addr +XR2")
D780XXXX	Contents of A are stored in CSL at EA (V in CSL at "Addr +XR3")
	Double Store (STD)
D8xx	Contents of A and Q are stored in CSL at EA (I+DISP) and EA+1
D9XX	Contents of A and Q are stored in CSL at EA (XRI +DISP) and EA+1
DAXX	Contents of A and Q are stored in CSL. at EA (XR2 +DISP) and EA+1
DBXX	Contents of A and Q are stored in CSL at EA (XR3 +DISP) and EA+1
DCOOXXXX	Contents of A and Q are stored in CSL at EA (Addr) and EA+1
DD00xXXX	Contents of A and Q are stored in CSL at EA (Addr $+X$ RI) and EA+1
DEOOXXXX	Contents of A and Q are stored in CSL at EA (Addr $+X$ R2) and EA+1
DF00XXXX	Contents of A and Q are stored in CSL at EA (Addr +XR3) and EA+1
DC80XXXX	Contents of A and Q are stored in CSL at EA (V in CSL at Addr) and EA+1
DD80XXXX	Contents of A and Q are stored in CSL at EA (V in CSL at "Addr +XR1") and EA+1
DE80XXXX	Contents of A and Q are stored in CSL at EA (V in CSL at "Addr +XR2") and EA+1
DF80XXXX	Contents of A and Q are stored in CSL at EA (V in CSL at "Addr +XR3") and EA+1
	Load Index (LDX)
60xx	Load expanded DISP into the Instruction Register
61XX	Load expanded DISP into Index Register 1
$62 \times \mathrm{x}$	Load expanded DISP into Index Register 2
63XX	Load expanded DISP into Index Register 3
6400XXXX	Load Addr into the Instruction Register
6500xXXX	Load Addr into Index Register 1
6600XXXX	Load Addr into Index Register 2
6700xXXX	Load Addr into Index Register 3
$\begin{aligned} & 6480 \times X X X \\ & 6580 X X X X \end{aligned}$	Load contents of CSL at Addr into the Instruction Register Load contents of CSL at Addr into Index Register 1
$\begin{aligned} & 6680 X X X X \\ & 6780 X X X X \end{aligned}$	Load contents of CSL at Addr Into Index Register 2 Load contents of CSL at Addr Into Index Register 3

See Instruction Set Section for Meaning of Symbols

Hexadecimal	Load and Store Instructions
68XX 69XX 6AXX 6BXX 6C00XXXX 6D00XXXX 6E00XXXX 6F00XXXX 6C80XXXX 6D80XXXX 6E80XXXX 6F80XXXX	Store Index (STX)
	Store 1 in CSL at EA (I+DISP)
	Store XRI in CSL at EA (I+DISP)
	Store XR2 in CSL at EA (I+DISP)
	Store XR3 in CSL at EA (1+DISP)
	Store I in CSL at EA (Addr)
	Store XRI in CSL at EA (Addr)
	Store XR2 in CSL at EA (Addr)
	Store XR3 in CSL ot EA (Addr)
	Store I in CSL at EA (V in CSL at Addr)
	Store XRI in CSL at EA (V in CSL at Addr)
	Store XR2 in CSL at EA (V in CSL at Addr)
	Store XR3 in CSL at EA (V in CSL at Addr)
	Store Status (STS)
$\begin{aligned} & 28 X X \\ & 29 X X \\ & 2 A X X X \\ & 2 B X X \\ & 2 C 00 X X X X \end{aligned}$	Store status of indicators in CSL at EA (1+DISP)
	Store status of indicators in CSL at EA (XRI+DISP)
	Store status of indicators in CSL at EA (XR2+DISP)
	Store status of indicators in CSL at EA (XR3+DISP)
	Store status of indicators in CSL at EA (Addr)
$\left\lvert\, \begin{aligned} & \text { 2DOOXXXX } \\ & \text { 2EOOXXXX } \end{aligned}\right.$	Store status of indicators in CSL at EA (Addr+XR1)
	Store status of indicators in CSL at EA (Addr + XR2)
$\begin{aligned} & \text { 2E00XXXX } \\ & \text { 2F00XXXX } \end{aligned}$	Store status of indicators in CSL at EA (Addr + XR3)
2C80XXXX	Store status of indicators in CSL at EA (V in CSL at Addr)
2D80XXXX 2E80XXXX	Store status of indicators in CSL at EA (V in CSL at "Addr +XR1")
$\begin{aligned} & \text { 2E80XXXX } \\ & \text { 2F80XXXX } \end{aligned}$	Store status of indicators in CSL at EA (V in CSL at "Addr +XR2")
	Store status of indicators in CSL at EA (V in CSL at "Addr +XR3")
$\begin{aligned} & 2 F 80 X X X X \\ & 2 C 40 X X X X \end{aligned}$	Clear storage protect bit in CSL at EA (Addr)
2C41XXXX	Write storage protect bit in CSL at EA (Addr)
2D40XXXX	Clear storage protect bit in CSL at EA (Addr +XRI)
2D41XXXX	Write storage protect bit in CSL at EA (Addr +XRI)
2E40XXXX	Clear storage protect bit in CSL at EA (Addr + XR2)
2E4IXXXX2F40XXXX	Write storage protect bit in CSL at EA (Addr +XR2)
	Clear storage protect bit in CSL at EA (Addr + XR3)
2F41XXXX	Write storage protect bit in CSL at EA (Addr +XR3)
2CCOXXXX2CCIXXXX	Clear storage protect bit in CSL at EA (V in CSL at Addr)
	Write storage protect bit in CSL at EA (V in CSL at Addr)
$\begin{aligned} & \text { 2CCIXXXX } \\ & \text { 2DCOXXXX } \end{aligned}$	Clear storage protect bit in CSL at EA (V in CSL at "Addr +XR1")
2DCIXXXX	Write storage protect bit in CSL at EA (V in CSL at "Addr +XRT")
2ECOXXXX 2FCIXXXX	Clear storage protect bit in CSL at EA (V in CSL at "Addr +XR2")
2ECIXXXX2FCOXXXX	Write storage protect bit in CSL at EA (V in CSL at "Addr +XR2")
	Clear storage protect bit in CSL at EA (V in CSL at "Addr +XR3")
2FCIXXXX	Write storage protect bit in CSL at EA (V in CSL at "Addr +XR3")
	Load Status (LDS)
$\begin{array}{\|l} 2000 \\ 2001 \\ 2002 \\ 2003 \end{array}$	
	Set OVERFLOW ON and CARRY OFF Set OVERFLOW OFF and CARRY ON
	Set CARRY and OVERFLOW indicator ON
	Arithmetic Instructions
	Add (A)
80xX	Add contents of CSL at EA (I+DISP) to A
	Add contents of CSL at EA (XRI+DISP) to A
81XX	Add contents of CSL at EA (XR2+DISP) to A
83XX	Add contents of CSL at EA (XR3+DISP) to A
8400XXXX	Add contents of CSL at EA (Addr) to A
8500xXXX	Add contents of CSL at EA (Addr +XR1) to A
8600xXXX	Add contents of CSL at EA (Addr +XR2) to A
8700XXXX	Add contents of CSL at EA (Addr +XR3) to A
8480XXXX	Add contents of CSL at EA (V in CSL at Addr) to A
8580XXXX8680XXXX	Add contents of CSL at EA (V in CSL at "Addr+XRI") to A
	Add contents of CSL at EA (V in CSL at "Addr+XR2") to A
8780XXXX	Add contents of CSL at EA (V in CSL at "Addr+XR3") to A
	Double Add (AD)
$\left.\right\|_{89 x x} ^{88 x x}$	Add contents of CSL at EA (I+DISP) and EA+1 to A and Q
$\begin{aligned} & 89 X X \\ & 8 A X X \end{aligned}$	Add contents of CSL at EA (XRI+DISP) and EAT 1 to A and Q
$8 B X X$	Add contents of CSL at EA (XR3+DISP) and EA+1 to A and Q
$8 \mathrm{COOXXXX}$	Add contents of CSL at EA (Addr+XRI) and EA+1 to A and Q
8E00XXXX	Add contents of CSL at EA (Addr+XR2) and EA+1 to A and Q
$\begin{aligned} & 8 F 00 X X X X \\ & 8 C 80 X X X X \end{aligned}$	Add contents of CSL at EA (Addr+XR3) and EA+1 to A and Q
$\begin{aligned} & \text { 8C80XXXX } \\ & \text { 8D80XXXX } \end{aligned}$	Add contents of CSL at EA (V in CSL at Addr) and EA+1 to A and Q Add contents of CSL at EA (V in CSL at "Addr+XRI") and EA+1
	to A and Q
8E80XXXX	Add contents of CSL at EA (V in CSL at "Addr+XR2") and EA+1 to A and Q

Hexadecimal	Arithmetic Instructions
E8XX E9XX EAXX EBXX ECOOXXXX EDOOXXXX EEOOXXXX EF00XXXX EC80XXXX ED80XXXX EE80XXXX EF80XXXX	Logical Or (OR)
	OR contents of CSL at EA (I+DISP) with A
	OR contents of CSL at EA (XRI+DISP) with A
	OR contents of CSL at EA (XR2+DISP) with A
	OR contents of CSL at EA (XR3+DISP) with A
	OR contents of CSL at EA (Addr) with A
	OR contents of CSL at EA (Addr+XRI) with A
	OR contents of CSL at EA (Addr+XR2) with A
	OR contents of CSL at EA (Addr+XR3) with A
	OR contents of CSL at EA (V in CSL at Addr) with A
	OR contents of CSL at EA (V in CSL at "Addr+XRI") with A
	OR contents of CSL at EA (V in CSL at "Addr+XR2") with A
	OR contents of CSL at EA (V in CSL at "Addr+XR3") with A
	Logical Exclusive Or (EOR)
FOXX FIXX F2XX F3XX F400XXXX F500XXXX F600XXXX F700XXXX F480XXXX F580XXXX F680XXXX F780XXXX	EOR contents of CSL ot EA (1+DISP) with A
	EOR contents of CSL at EA (XRI+DISP) with A
	EOR contents of CSL at EA (XR2+DISP) with A
	EOR contents of CSL at EA (XR3+DISP) with A
	EOR contents of CSL at EA (Addr) with A
	EOR contents of CSL at EA (Addr+XRI) with A
	EOR contents of CSL at EA (Addr+XR2) with A
	EOR contents of CSL at EA (Addr+XR3) with A
	EOR contents of CSL at EA (V in CSL at Addr) with A
	EOR contents of CSL at EA (V in CSL at "Addr+XRI") with A
	EOR contents of CSL at EA (V in CSL at "Addr+XR2") with A
	EOR contents of CSL at EA (V in CSL at "Addr+XR3") with A
	Shift Instructions
	Shift Left Logical A (SLA)
$\begin{aligned} & 10 * x \\ & 1100 \\ & 1200 \\ & 1300 \end{aligned}$	Contents of A shift left the number of shift counts in DISP Contents of A shift left the number of shift counts in XRI
	Contents of A shift left the number of shift counts in XR2
	Contents of A shift left the number of shift counts in XR3
	Shift Left Logical A \& Q (SLT)
$\begin{aligned} & 10 \star x \\ & 1180 \\ & 1280 \\ & 1380 \end{aligned}$	Contents of A and Q shift left the number of shift counts in DISP
	Contents of A and Q shift left the number of shift counts in XRI
	Contents of A and Q shift left the number of shift counts in XR2
	Contents of A and Q shift left the number of shift counts in XR3
	Shift Left And Count A (SLCA)
$\begin{aligned} & 10 \star x \\ & 1140 \\ & 1240 \\ & 1340 \end{aligned}$	Contents of A shift left the number of shift counts in DISP
	Contents of A shift left the number of shift counts in XRI
	Contents of A shift left the number of shift counts in XR2 Contents of A shift left the number of shift counts in XR3
	Shift Left And Count A \& Q (SLC)
$\begin{aligned} & 10 \star X \\ & 11 C 0 \\ & 12 C 0 \\ & 13 C 0 \end{aligned}$	Contents of A and Q shift left the number of shift counts in DISP Contents of A and Q shift left the number of shift counts in XRI
	Contents of A and Q shift left the number of shift counts in XR2
	Contents of A and Q shift left the number of shift counts in XR3
	Shift Right Logical A (SRA)
$\begin{aligned} & 18 * X \\ & 1900 \\ & 1 A 00 \\ & 1 B 00 \end{aligned}$	Contents of A shift right the number of shift counts in DISP
	Contents of A shift right the number of shift counts in XRI
	Contents of A shift right the number of shift counts in XR2
	Contents of A shift right the number of shlft counts in XR3
	Shift Right A \& Q (SRT)
$\begin{aligned} & 18 \star x \\ & 1980 \\ & 1 A 80 \\ & 1880 \end{aligned}$	Contents of A and Q shift right the number of shift counts in DISP
	Contents of A and Q shift right the number of shift counts in XR1 Contents of A and Q shift right the number of shift counts in XR2
	Contents of A and Q shift right the number of shift counts in XR3
	Rotate Right A \& Q (RTE)
$\begin{aligned} & 18 * X \\ & 19 C 0 \\ & 1 A C 0 \\ & 1 B C 0 \end{aligned}$	Contents of A and Q rotate right the number of counts in DISP Contents of A and Q rotate right the number of counts in XR1 Contents of A and Q rotate right the number of counts in XR2 Contents of A and Q rotate right the number of counts in XR3

I'igure 1-10. Instruction Set (Part 2 of 3)

Hexadecimal	Branch Instructions
	Branch Or Skip On Condition (BSC or BOSC)
48* X	Skip the next one-word instruction if ANY condition is sensed
4C*XXXXX	Branch to CSL. at EA (Addr) on NO condition
40*XXXXX	Branch to CSL at EA (Addr+XR1) on NO condition
4E*XXXXX	Branch to CSL at EA (Addr + XR2) on NO condition
	Branch to CSL at EA (Addr +XR 3) on NO condition
	Branch to CSL at EA (V in CSL at Addr) on NO condition
$4 D^{\star} X X X X X$	Branch to CSL ot EA (V in CSL at "Addr+XR1") on NO condition
	Branch to CSL at EA (V in CSL at "Addr+XR2") on NO condition
4F*XXXXX	Branch to CSL at EA (V in CSL at "Addr+XR3") on NO condition
	Branch And Store Instruction Register (BSI)
40XX	Store next sequential address in CSL at EA (I+DISP) and Branch to EA+1
41XX	Store next sequential address in CSL at EA (XRI + DISP) and Branch to EA+1
42XX	Store next sequential address in CSL at EA (XR2+DISP) and Branch to EA+1
43XX	Store next sequential address in CSL at EA (XR3+DISP) and Branch to EA+1
44*XXXXX	If NO condition is true, store next sequential address in CSL at EA (Addr) and Branch to EA+1
45*XXXXX	If NO condition is true, store next sequential address in CSL at EA (Addr+XRI) and Branch to EA+1
46*XXXXX	If NO condition is true, store next sequential address in CSL at EA (Addr+XR2) and Branch to EA+1
47*XXXXX	If NO condition is true, store nextsequential address in CSL at EA (Addr+XR3) and Branch to EA+1
44*XXXXX	If NO condition is true, store next sequential address in CSL at EA (V in CSL at Addr) and Branch to EA+1
$45 * X X X X X$ $46 * x X X X X$	If NO condition is true, store next sequential address in CSL at EA (V in CSL at "Addr+XRI") and Branch to EA+1
46*XXXXX	If NO condition is true, store next sequential address in CSL at EA (V in CSL a: "Addr+XR2") and Branch to EA+1
47*XXXXX	If NO condition is true, store next sequential address in CSL at EA (V in CSL at "Addr+XR3") and Branch to EA+1
	Modify Index and Skip (MDX)
70xx	ADD expanded DISP to I (no skip can occur)
71XX	ADD expanded DISP to XRI
72XX	ADD expanded DISP to XR2
73XX	ADD expanded DISP to XR3
$74 \times X X X X X$	Add expanded positive DISP to CSL at Addr (Add to memory)
7500XXXX	Add Addr to XRI
7600XXXX	Add Addr to XR2
7700XXXX	Add Addr to XR3
74XXXXXX	Add expanded negative DISP to CSL at Addr (Add to Memory)
7580XXXX	Add V in CSL at Addr to XRI
$\left\lvert\, \begin{aligned} & 7680 \times X X X \\ & 7780 \times X X X \end{aligned}\right.$	Add V in CSL ot Addr to XR2
	Add V in CSL at Addr to XR3
	Wait (WAIT)
3000	WAIT until manual start or until completion of an interrupt subroutine
	Compare (CMP)
BOXX B1 X	Compare A with contents of CSL at EA (1+DISP)
$\begin{aligned} & B 1 X X \\ & B 2 X X \end{aligned}$	Compare A with contents of CSL at EA (XRI+DISP) Compgre A with contents of CSL at EA (XR2+DISP)
B3xX	Compare A with contents of CSL at EA (XR3+DISP)
B400XXXX	Compare A with contents of CSL at EA (Addr)
B500xXXX	Compare A with contents of CSL at EA (Addr+XR1)
B600xXXX	Compare A with contents of CSL at EA (Addr+XR2)
B700XXXX B480XXXX	Compare A with contents of CSL at EA (Addr+XR3)
B480XXXX	Compare A with contents of CSL at EA (V in CSL at Addr)

Figure 1-10. Instruction Set (Part 3 of 3)

Compare Result	I Register Modification
' $A>C$ (EA)	$I=I$
$A<C(E A)$	$I=I+1$
$A=C$	$(E A)$

Figure 1-11. Results of Compare Instruction

Hexadecimal	Branch Instructions
$\begin{aligned} & \text { B580XXXX } \\ & \text { B680XXXX } \\ & \text { B780XXXX } \end{aligned}$	Compare A with contents of CSL at EA (V in CSL at "Addr+XRI") Compare A with contents of CSL at EA (V In CSL at "Addr+XR2") Compare A with contents of CSL at EA (V in CSL at "Addr+XR3") Double Compare (DCM)
B8XX B9XX BAXX	Compare A and Q with contents of CSL at EA (I+DISP) and EA+1 Compare A and Q with contents of CSL at EA (XRI+DISP) and EA+1 Compare A and Q with contents of CSL at EA (XR2+DISP) and EA+1
$\left\lvert\, \begin{aligned} & \text { BBXX } \\ & \text { BC00XXXX } \\ & \text { BD00XXXX } \end{aligned}\right.$	Compare A and Q with contents of CSL at EA (XR3+DISP) and EA+1 Compare A and Q with contents of CSL at EA (Addr) and EA+1 Compare A and Q with contents of CSL at EA (Addr+XRI) and EA+1
BEOOXXXX	Compare A and Q with contents of CSL at EA (AddrtXR2) and EA+1
BFOOXXXX	Compare A and Q with contents of CSL at EA (Addr $+X$ R3) and EA+1
BC80XXXX	Compare A and Q with contents of CSL at EA (V in CSL at Addr) and $E A+1$
BD80XXXX	Compare A and Q with contents of CSL at EA (V In CSL at "Addr $+X R 1 ")$ and EA+1
BE80XXXX	Compare A and Q with contents of CSL at EA (V in CSL at "Addr $+X$ R2' $^{\prime \prime}$) and EA+1
BF80XXXX	Compare A and Q with contents of CSL at EA (V in CSL at "Addr $\left.+X R 3{ }^{\prime \prime}\right)$ and EA+1
	1/O Instructions
	Execute 1/O (XIO)
08xX	Execute IOCC in CSL at EA (I+DISP) and EA+1
09XX	Execute IOCC in CSL at EA (XRI+DISP) and EA+1
OAXX	Execute IOCC in CSL at EA (XR2+DISP) and EA+1
OBXX	Execute IOCC in CSL at EA (XR3+DISP) and EA+1
0C00xXXX	Execute IOCC in CSL at EA (Addr) and EA+1
0D00XXXX	Execute IOCC in CSL at EA (Addr+XRI) and EA+1
OEOOXXXX	Execute IOCC in CSL at EA (Addr+XR2) and EA+1
OFOOXXXX	Execute IOCC in CSL at EA (Addr+XR3) and EA+1
0C80XXXX	Execute IOCC in CSL at EA (V in CSL at Addr) and EA+1
0D80XXXX	Execute IOCC in CSL at EA (V in CSL at "Addr+XR1") and EA+1
0E80XXXX	Execute IOCC in CSL at EA (V in CSL at "Addr+XR2") and EA+1
OF80XXXX	Execute IOCC in CSL at EA (V in CSL at "Addr+XR3") and EA+1

Symbol	Meaning
A	Accumulator
Q	Accumulator Extension
Addr	Contents of the address portion of a two-word instruction
CSL	Core storage location
DISP	Contents of the displacement portion of a one-word instruction
EA	Effective address
$E A+1$	Next higher address from the effective address
1	Contents of the Instruction Register
\checkmark	Value
XRI	Contents of Index Register 1
XR2	Contents of Index Register 2
XR3	Contents of Index Register 3
X	Hexadecimal value can be 0-F
*	Used for hexadecimal values that have limits

29071 A

Figure 1-12. Results of Double Compare Instruction

DESCRIPTION OF CHARTS
IOCC control word is given in hexadecimal form with function modifier shown when applicable. Control word is followed by functional description and data word(s). For all areas, Sense Interrupt command is 03XX; modifier XX (ILSW address) is placed on OUT bus automatically by Processor-Controller (see Figure 1-7)
$\mathrm{C}($ IOCC address $)=$ core storage location specified by IOCC address.

Internal (Area Zero)

0240 Read Data Entry Switches: Store contents of switches at C(IOCC address) .
Data Word

0260 Read Program Switches: Store contents of switches at C(IOCC address).
Data Woid

0300 Sense Internal ILSW: Load status of indicators into A. Indicators are reset upon execution of this command.

$\begin{aligned} & \text { terrupt Leve } \\ & 0 \end{aligned}$	Status Word 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Invalid Operation Code		Storage Protect Violation	CAR Check											,	

0420 Control Interval Timers: Start timer with " 1 " bit in designated position of IOCC address word; stop timer with "0" bit.

0480 Control Interrupt Mask Register 0-13: Mask interrupt level with "1" bit in designated position of 1OCC address word; unmask interrupt level with "0" bit.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Level															
0	1	2	3	4	5	6	7	8	9	10	11	12	13		

0481 Control Interrupt Mask Register 14-23: Mask interrupt level with "1" bit in designated position of IOCC address word; unmask interrupt level with "0" bit.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Level															
14	15	16	17	18	19	20	21	22	23						
														m.	

O4AO Control Programmed Interrupt 0-13: Generate interrupt request with "1" bit in designated position of IOCC address word.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Level	,														
0	1	2	3	4	5	6	7	8	9	10	11	12	13		

Internal (Area Zero) Continued

O4AI Control Programmed Interrupt 14-23: Generate interrupt request with "1" bit in designated position of IOCC address word.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Level	Level	Level	Level	Level	Leval	Level	Level	Level	Level						
14	15	16	17	18	19	20	21	22	23						

O4EI Control Operations Monitor: Reset monitor timer to full time period specified by Op Monitor switch. IOCC address word is not used.

0720/0721 Sense Interval Timer DSW: Load status of indicators into A. Indicators are reset by 0721 command only.

*Interrupt Indicators

0740 Sense Data Entry Switches: Load contents of switches into A.

0760 Sense Program Switches: Load contents of switches into A.

07C0/07CI Sense Console Interrupt DSW: Load indicator status into A. Indicator is reset by 07C1 command only.
Data Word

04AO CE Cycle-Stea! Test: Gerierate cycle-steal-request-test signal and cycle-steal-acknowledge-test signal Signals are manually jumpered to desired cycle-steal level See CE cycle-steal test description in text IOCC address word is 0000.

1053 Printer and 1816 Printer-Keyboard

O9XX (1st Adapter) Write: Load adapter buffer from C (IOCC address), analyze data, and send character signals to selected printer(s).
$79 \times \mathrm{X}$
(2nd Adapter)

14159.1 A

Figure 1-13. XIO Operations (Part 2 of 15)

1053 Printer and 1816 Printer-Keyboard - Continued

OAO2 (1st Adapter) Read: Store contents of keyboard contacts at C (IOCC address). 7 AO2 (2nd Adapter)
Data Word

OCO2
7CO2 (1st Adapter)
(2nd Adapter) Control: Transmit signal from adapter to select (unlock) keyboard and turn on Proceed lamp. IOCC address word is not used.
$\begin{array}{ll}\text { FXX (1st Adapter) } \\ \text { FXX } & \text { (2nd Adapter) }\end{array}$ DSW: Load status of device indicators into A.

Device Status Word															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	$* \text { (1) }$ Keyboard Service Response	$\begin{aligned} & *+\quad \text { (1) } \\ & \text { Keyboord } \\ & \text { Request } \end{aligned}$		Printer Busy	Printer Not Ready	(2) (1) Keybard Not Reody		\quad Keyboard Karity Prror	$\begin{aligned} & \text { ' } \\ & \text { Printer } \\ & \text { Parity } \\ & \text { Error } \end{aligned}$			$\begin{aligned} & \text { CE } \\ & \text { Busy } \end{aligned}$	$\begin{gathered} \mathrm{CE} \\ \mathrm{Not} \\ \text { Ready } \end{gathered}$		

*Interrupt Indicators (1) Used by 1816 only (2) If no 1816 in group, this indicator is active ot all times

1054 Paper Tape Reader and 1055 Paper Tape Punch

1900 Write: Load adapter punch buffer from C (IOCC address). Select punch magnet drivers from punch buffer data and energize punch clutch driver.

Data Word															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Channel															
8	7	6	- 5	4	3	2	1								

1 AOO Read: Store contents of adapter read buffer at C (IOCC address). Data word is same as for Write command.

ICIO Control: Load contents of tape sensing contacts into adapter read buffer. Energize reader clutch to advance tape one character position. IOCC address word is not used.

Figure 1-13. XIO Operations (Part 3 of 15)

1054 Paper Tape Reader and 1055 Paper Tape Punch - Continued

IFOO / IFOI Sense DSW: Load status of device indicators into A. Indicators (t) are reset by 1 F01 command only.

vice															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\begin{aligned} & \text { PT } \\ & \text { Reader } \\ & \text { Any } \\ & \text { Enror } \end{aligned}$	${ }^{*}$ * PT Reader Service Request	+ PT Punch Parity Error	${ }^{*}+\mathrm{PT}$ Punch Service Request	$\begin{aligned} & \text { PT } \\ & \text { Reader } \\ & \text { Busy } \end{aligned}$	$\begin{aligned} & \text { PT } \\ & \text { Reader } \\ & \text { Not } \\ & \text { Ready } \end{aligned}$	$\begin{aligned} & \text { PT } \\ & \text { Punch } \\ & \text { Busy } \end{aligned}$	PT Punch Not Ready	f PT Reader Parity Parity Error	$\begin{aligned} & \text { t PT } \\ & \text { Reader } \\ & \text { Storage } \\ & \text { Protect } \end{aligned}$	CE PT Reader Busy	$\begin{aligned} & \text { CE PT } \\ & \text { Reader } \\ & \text { Not } \\ & \text { Ready } \end{aligned}$	$\begin{aligned} & \text { CE PT } \\ & \text { Punch } \\ & \text { Busy } \end{aligned}$	CE PT Punch Not Ready		

* Interrupt Indicators

1800/1801 Control CE Mode: 1801 command places 1054-1055 in CE mode. 1800 command removes 1054-1055 from CE mode. IOCC address word is not used.

1442 Card Read Punch

14XX (1st Adapter) Control: Transmit control signals from adapter to CRP to perform a feed cycle and/or a stacker select operation. IOCC address word is not used. (2nd Adapter)

1500
(Ist Adapter) Initialize Write: Set up adapter data channel controls for transferring data from core storage to the adapter on a cycle-steal basis. Load IOCC address word into CAR. (2nd Adapter)

Note: 1442 adapter does not employ a word counter.

Word	nd sub														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Row															
12	11	0	1	2	3	4	5	6	7	8	9				

[^0]1601 (1st Adapter) Initialize Read (Packed Mode): Set up adapter data channel controls for transferring data from the adapter to core storage on a cycle-steal basis. 8 EOI (2nd Adapter) Load IOCC address word into CAR.

Data Word (First and subsequent cycle-steals)															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Even-Numbered Columns ($n+1$)								Odd-Numbered Columns (n)							
12	11	0	1	2	3		5	12	11	0	1	2	3	4	5

$1700 / 1701$ (1st Adapter) Sense DSW: Load status of device indicators into A. Indicators (t) are reset by modifier 01 only.
$8 F 00 / 8 F O 1$

* Interrupl Indicatóo

[^1]Figure 1-13. XIO Operations (Part 4 of 15)

1443 Printer

3400 Control Carriage: Load IOCC address word (bits 2-7) into adapter print buffer, analyze data, and send carriage control signal to printer.

$3500 / 3501$ Initialize Write: Set up adapter data channel controls for transferring data from core storage to the adapter on a cycle-steal basis. Load IOCC address word into CAR. 3501 command suppresses the line space after print.

Word-Count Word (First cycle-steal)															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
									$\begin{aligned} & \text { wc } \\ & 64 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & 8 \end{aligned}$	$\begin{aligned} & w c \\ & 4 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & \text { I } \end{aligned}$
Data Word (Second and subsequent cycle-steals)															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Left Print Character (Figure 1-14)								Right Print Character (Figure 1-14)				
			A	8		2	1								1

$3700 / 3701$ Sense DSW: Load status of device indicators into A. Indicators (t) are reset by 3701 command only.

inferrupt indicators
$3000 / 3001$ Control CE Mode: 3001 command places 1443 in CE mode. 3000 command removes 1443 from CE mode. IOCC address word is not used.

1627 Plotter

2900 Write: Load adapter buffer from C (IOCC address). Actuate plotter controls from buffer data.

$2 F O O / 2 F O I$ Sense DSW: Load status of device indicators into A. Indicators (t) are reset by 2 F 01 command only.

* Interrupt Indicator
$2800 / 2801$ Control CE Mode: 2801 command places 1627 in CE mode. 2800 command removes 1627 from CE mode. IOCC address word is not used.

Figure 1-13. XIO Operations (Part 5 of 15)

1810 Disk Storage

Model A

(1st Drive) (2nd Drive) (3rd Drive)

Control Carriage: Load IOCC address word into adapter word counter to specify number of cylinders to be accessed. Modifier 00 moves carriage forward. Modifier 04 moves carriage in reverse.
$4-20$
IOCC Address Word (1810A)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
						.	Number of Cylinders								
								128			16		4		1

Model A
$\begin{array}{ll}2400 & \text { (1 st Drive) Control Carriage: IOCC address word specifies the absolute cylinder address. } \\ 4400 & \text { (2nd Drive) } \\ 4 C O 0 & \text { (3rd Drive) }\end{array}$ IOCC Address Word (1810B)

Models A and B

Data Word (Second and subsequent cycle-steals)

Models A and B
26XX (Ist Drive) Initialize Read: Set up adapter data channel controls for transferring data from the adapter to core storage on a cycle-steal basis. Load IOCC address word into CAR.
46XX (2nd Drive) Word-count word and data word are same as for Initialize Write command. A read check operation does not read into core storage, it simply

(1) $0=$ Read into core, $1=$ Read Check

Models A and B

* Interrupt Indicato

Models A and B

| | |
| :--- | :--- | :--- |
| $2000 / 2001$ | (1st Drive) Control CE Mode: Modifier 01 places 1810 in CE mode. Modifier 00 removes 1810 from CE mode. IOCC address word is not used. |
| $4000 / 4001$ | (2nd Drive) |
| $4800 / 4801$ | (3rd Drive) |

Figure 1-13. XIO Operations (Part 6 of 15)

Tape Control Unit

74XX Control: Transmit control signals to the tape unit to perform the designated control function. IOCC address word is not used.

Word-Count Word (First cycle-steal)															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Chain	Suppress EOT Interrupt	WC													
		8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	\|

Data Words (Second and subsequent cycle-steals)

$\begin{gathered} 9-\text { track } \\ 0 \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			Byte								Byte				
0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7

Figure 1-13. XIO Operations (Part 7 of 15)

Tape Control Unit - Continued

Figure 1-13. XIO Operations (Part 8 of 15)

System/360 Adapter

6000 Control (Blast Reset): Generate a d-c reset to all adapter controls and registers. IOCC address word is not used.

600 Initialize Write: Load IOCC control word (6D00) Into adapter buffer and set up adapter data channel controls for transferring data from 1800 core Word-Count Word (First cycle-steal) storage to the adapter on a cycle-steal basis. Load IOCC address word into CAR.

6EOO Initialize Read: Load IOCC control word (6E00) into adapter buffer and set up adapter data channel controls for transferring data from the adapter to 1800 core storage on a cycle-steal basis, Load IOCC address word into CAR. Word-count word and data word are same as for Initialize Write command.

6FXX Sense DSW: If bit $8=0$, load status of device indicators and 360 command byte into A. If bit $8=1$, load contents of word counter into A.

Analog Input

[^2]| Data Word | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| ADC | $A D C$ | ADC |
| Neg | 8192 | 4096 | 2048 | 1024 | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | Overload |
| | | | | | | | | | | | | | | | |

Figure 1-13. XIO Operations (Part 9 of 15)

Analog Input - Continued

(Basic) Control (Blast Reset): Generate a d-c reset to all Al controls and registers except AMAR and Limit Error AMAR Buffer. IOCC address word is not used. (Expander)

5500 (Basic) Initialize Write: Set up data-channel-B controls for transferring MPX addresses and limit words I $_{\text {from core storage to AMAR on a cycle-steal basis. }} \mathbf{8 5 0 0}$. (Expander) Load IOCC address word into CAR-B.

Note: Data-channel-B adapter does not employ a word counter.

(1) Used with Comparator feature only

Neg	High Limit						128	Neg	8192	4096	$\begin{aligned} & \text { Low Limit } \\ & 2048 \end{aligned}$	1024	512	256	128

$56 \times$ (Basic) Initialize Read: Set up data-channel-A controls for transferring data from ADC register to core storage on a cycle-steal basis. Load IOCC address word into CAR-A. $86 \times X$

$\begin{array}{ccc}\text { Word-Count Word (First cycle-steal) } \\ 0 & 1 & 2\end{array}$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Choun	$\begin{aligned} & \text { Suppress } \\ & \text { EOT } \\ & \text { Interrupt } \end{aligned}$	$\begin{gathered} \text { WC } \\ 8192 \end{gathered}$	$\begin{gathered} \text { WC } \\ 4096 \end{gathered}$	$\begin{gathered} \text { wc } \\ 2048 \end{gathered}$	$\begin{gathered} \text { wc } \\ 1024 \\ \hline \end{gathered}$	$\begin{gathered} w c \\ 512 \end{gathered}$	$\begin{gathered} \text { WC } \\ 256 \end{gathered}$	$\begin{aligned} & \text { wc } \\ & 128 \end{aligned}$	$\begin{aligned} & \text { wC } \\ & 64 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { wc } \\ & 16 \end{aligned}$	$\begin{gathered} w c \\ 8 \end{gathered}$	$\begin{aligned} & \text { wc } \\ & 4 \end{aligned}$	$\begin{gathered} \text { wc } \\ 2 \end{gathered}$	$\begin{gathered} \text { wc } \\ \text { I } \end{gathered}$
MPX Address Word (Single-DC operation only--second cycle-steal)															
		\because \because \vdots \vdots \therefore \square	$0=$ Relay $1-$ Soldid State		\square	512	256	128	Multip 64	32	$1-22$ 16	8	4	2	1

Data Word (Single-DC operation--third and subsequent cycle-steals. Two-DC operation--second and subsequent Ch. A cycle-steals.)

$\begin{array}{ll}57 \times X & \text { (Basic) Sense DSW: Load status of device indicators into } A . \\ 87 X X & \text { (Expander) }\end{array}$

* Interrupl Indicetors

Figure 1-13. XIO Operations (Part 10 of 15)

Digital Input

5AXX Read: Store digital input group specified by modifier XX (Figures 1-19 and 1-20) at C (IOCC address).

* Interrupt Indicators - reset by 5A01 or 5FO1

5C20 Control (Blast Reset): Generate a d-c reset to DI controls. IOCC address word is not used.

5FXX Sense DSW: Load digital input group specified by modifier XX (Figures 1-19 and 1-20) into A. Data words are same as for Read command.

Figure 1-13. XIO Operations (Part 11 of 15)

Digital and Analog Output

GIXX Write: Load DAO register specified by modifier XX (Figure 1-21) with data from C (IOCC address).

$\begin{gathered} \text { DO Data } \\ 0 \end{gathered}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16 Bits of ECO, PO, or RO															
13-B,t AO Data															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Neg	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2		
10-B1t AO Dato , 2 , 3															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	8192	4096	2048	1024	512	256	128	64	32	16					

64×0 Control: Perform the control function specified by modifier bits. IOCC address word is not used.

Data words are same as for Write command. (Single address--third and subsequent cycle-steals. Random addresses--third and altemate cycle-steals.)

6700/6701 Sense DSW: Load status of device indicators into A. Interrupt indicators are reset by 6701 command only.

*Interrupt Indicators

6400/640I Control CE Test Pulse: Modifier bit $15=1$ sets test pulse. Modifier bit $15=0$ resets test pulse. IOCC address word is not used.

Figure 1-13. XIO Operations (Part 12 of 15)

Communications Adapter

Byte Count Word (First cycle-steal)

Data Word (Second and subsequent cycle-steals)

AFXX (1st CA) Sense DSW: Load DSW (specified by modifier bits 13 and 14) into A register.
B7XX (2nd CA)
BFXX (3rd CA)
A7XX (4th CA)

Operating Device Status Word

0	1	2	3	4	5	6	7	8	9	10		13	14	15
* \dagger	\dagger	\dagger	\dagger		* \dagger)							
Channel	Stor Prot	Timed	End Char	Table	Parity	BCC	Data	Data Set	Command	Carrier				
Stop	Violation	Out	Decoded or Ringing	Complete	Check	Check	Overrun	Ready	Reject					

* Causes Interrupt
\dagger Reset by Sense DSW. Others reset by their status turn-off.

* If not jumpered, a 1 is set.

* If not jumpered, 1's are set.

Figure 1-13. XIO Operations (Part 13 of 15)

Selector Channel

CSW-1 Selector Channel Status

* Interrupt Indicators

CSW-2 Unit Address/Status

Unit Address
Unit Status
Identifies the control unit and device specified
in the last I/O operation executed or rejected.
CSW-3 Command Address

The CCW Address Register contains an address 3 higher than the address of the CCW being executed or just completed.
CSW-4 Byte Count

The byte counter contains the two's complement +1 of the actual byte count. Example byte count $=/ 0004$, byte counter $=/$ FFFD.
94XX Halt I/O (control) Terminates I/O operation in progress; resets selector channel and/or I/O unit. IOCC address word not used.

Unit Address
95XX Start I/O Performs I/O operation specified by CCW. CCW located at address specified in IOCC address word.

Figure 1-13. XIO Operations (Part 14 of 15)

Selector Channel-Continued

12466.1

Figure 1-13. XIO Operations (Part 15 of 15)

Character	1053/1816 Printer		1816 Keyboard/1442		1443 Printer	
	Lower Case (hex)	Upper Case (hex)	Hex	IBM Card Code	Hex 2 Char/ Word	BCD
A	3C00	3 E 00	9000	12,1	31	B, A, 1
B	1800	1A00	8800	12,2	32	B, A, 2
C	1 C 00	1E00	8400	12,3	33	B, $A, 2,1$
D	3000	3200	8200	12,4	34	B, A, 4
E	3400	3600	8100	12,5	35	B, $A, 4,1$
F	1000	1200	8080	12,6	36	B, $A, 4,2$
G	1400	1600	8040	12,7	37	B, $A, 4,2,1$
H	2400	2600	8020	12,8	38	B, A, 8
1	2000	2200	8010	12,9	39	B, $A, 8,1$
J	$7 \mathrm{C00}$	7E00	5000	11,1	21	B, 1
K	5800	5A00	4800	11,2	22	B, 2
L	5C00	5 E 00	4400	11,3	23	B, 2, 1
M	7000	7200	4200	11,4	24	B, 4
N	7400	7600	4100	11,5	25	B,4, 1
0	5000	5200	4080	11,6	26	B, 4, 2
P	5400	5600	4040	11,7	27	B,4,2,1
Q	6400	6600	4020	11,8	28	B, 8
R	6000	6200	4010	11,9	29	B, 8,1
S	9800	9A00	2800	0,2	12	A, 2
T	$9 \mathrm{C00}$	9 E 00	2400	0,3	13	A, 2, 1
U	B000	B200	2200	0,4	14	A, 4
v	B400	B600	2100	0,5	15	A, 4, 1
W	9000	9200	2080	0,6	16	A, 4, 2
X	9400	9600	2040	0,7	17	A, 4, 2, 1
Y	A400	A600	2020	0,8	18	A, 8
Z	A000	A200	2010	0,9	19	A, 8, 1
0	C400		2000	0	OA	8,2
1	FC00		1000	1	01	1
2	D800		0800	2	02	2
3	DC00		0400	3	03	2,1
4	F000		0200	4	04	4
5	F400		0100	5	05	4,1
6	D000		0080	6	06	4,2
7	D400		0040	7	07	4,2,1
8	E400		0020	8	08	8
9	E000		0010	9	09	8,1
\#	C000		0420	8,3	2A	B, 8, 2
/	BC00		3000	0,1	11	A, 1

Character	1053/1816 Printer		1816 Keyboard/1442		1443 Printer	
	Lower Case (hex)	Upper Case (hex)	Hex	IBM Card Code	$\begin{array}{\|c\|} \hline \text { Kex } \\ 2 \text { Char/ } \\ \text { Word } \end{array}$	BCD
-(dash)	8400		4000	11	20	B
, (comma)	8000		2420	0,8,3	1B	A, 8, 2, 1
\&	4400		8000	12	30	B, A
\$	4000		4420	11,8,3	2B	B, $8,2,1$
@	0400		0220	8,4	0 C	8,4
. (period)	0000		8420	12,8,3	3B	B, A, 8, 2, 1
(FE00	8120	12,8,5	1 C	A, 8, 4
)		F600	4120	11,8,5	3 C	B, A, 8, 4
+		DA00	80A0	12,8,6	10	A
$<$		DE00	8220	12,8,4	3 E	B, A, 8, 4, 2
>		4600	2040	0,8,6	OE	8,4,2
7		F200	4060	11,8,7	2 F	B, $8,4,2,1$
;		D200	40A0	11,8,6	2 E	B,8,4,2
*		D600	4220	11,8,4	2 C	B, 8,4
"		E200	0060	8,7	1F	A, 8, 4, 2, 1
1		C600	8060	12,8,7	3F	B, A, 8, 4, 2, 1
=		C200	00A0	6,8	OB	8,2,1
-_(underscore)		BEOO	2120	0,8,5	1D	A, 8,4, 1
?		8600	2060	0,8,7	OF	8,4,2,1
:		8200	0820	8,2	IE	A, 8, 4, 2
!		4200	4820	11,8,2	2D	B, 8, 4, 1
\%		0600	2220	0,8,4	1A	A, 8, 2
¢		0200	8820	12,8,2	3D	B, A, 8, 4, 1
'(apostrophe)		E600	0120	5,8	OD	8,4,1
\square					3A	B, A, 8, 2
0,8,2			2820	0,8,2		
Erase Char			0004			
Erase Field			0002			
End of Field			0008			
Space	2100		0000	blank		
Carrier Return	8100				For 1443 Carriage Control Characters See Figure 1-15	
Tabulate	4100					
Line Feed		0300				
Back Space	1100					
Shift to Red	0900					
Shift to Black	0500					

Figure 1-14. Character Coding

Immediate Skip to	Hex	Skip after Print to	Hex
Channel 1	01	Channel 1	31
Channel 2	02	Channel 2	32
Channel 3	03	Channel 3	33
Channel 4	04	Channel 4	34
Channel 5	05	Channel 5	35
Channel 6	06	Channel 6	36
Channel 7	07	Channel 7	37
Channel 8	08	Channel 8	38
Channel 9	09	Channel 9	39
Channel 10	0 A	Channel 10	3 A
Channel 11	$0 B$	Channel 11	3 B
Channel 12	0 C	Channel 12	$3 C$
Immediate Space		Space after Print	
1 Space	21	1 Space	11
2 Spaces	22	2 Spaces	12
3 Spaces	23	3 Spaces	13

Figure 1-15. 1443 Printer Carriage Control Characters

Hex Address (Modifier Bits 8-15)	
1	Status Word
00	DSW, without reset
01	DSW, with reset
02	PISW 1
03	PISW 2
04	PISW 3
05	PISW 4
06	PISW 5 (Interrupt points,
07	PISW 6 in groups of four,
08	PISW 7 are assigned to
09	PISW 8 PISW by customer)
0A	PISW 9
OB	PISW 10
$0 C$	PISW 11
OD	PISW 12
OE	PISW 13
OF	PISW 14
10	PISW 15
11	PISW 16
12	PISW 17
13	PISW 18
14	PISW 19
15	PISW 20
16	PISW 21
17	PISW 22
18	PISW 23
19	PISW 24
1A) 38 Addresses (Reserved for RPQ

Figure 1-16. Digital Input DSW and PISW Addresses

Hex Address (Modifier Bits 8-15)				
Digital Inputs		40	Pulse Counters	
Adapter	Group No. (16 pts ea		Counter No. (2/Addr) *	Adapter
First	0		15-14	Eighth
	1	41	13-12	
	2	42	11-10	
	3	43	9-8	
	4	44	7-6	
	5	45	5-4	
	6	46	3-2	
	7	47	1-0	
Second	0	48	15-14	Seventh
	1	49	13-12	
	2	4A	11-10	
	3	4B	9-8	
	4	4C	7-6	
	5	4D	5-4	
	6	4E	3-2	
	7	4F	1-0	
Third	0	50	15-14	Sixth
	1	51	13-12	
	2	52	11-10	
	3	53	9-8	
	4	54	7-6	
	5	55	5-4	
	6	56	3-2	
	7	57	1-0	
Fourth	0	58	15-14	Fifth
	1	59	13-12	
	2	5A	11-10	
	3	5 B	9-8	
	4	5 C	7-6	
	5	5D	5-4	
	6	5E	3-2	
	7	5F	1-0	
Fifth	0	60	15-14	Fourth
	1	61	13-12	
	2	62	11-10	
	3	63	9-8	
	4	64	7-6	
	5	65	5-4	
	6	66	3-2	
	7	67	1-0	
Sixth	0	68	15-14	Third
	1	69	13-12	
	2	6A	11-10	
	3	68	9-8	
	4	6 C	7-6	
	5	6D	5-4	
	6	6 E	3-2	
	7	$6 F$	1-0	
Seventh	0	70	15-14	Second
	1	71	13-12	
	2	72	11-10	
	3.	73	9-8	
	4	74	7-6	
	5	75	5-4	
	6	76	3-2	
	7	77	1-0	
Eighth	0	78	15-14	First
	1	79	13-12	
	2	7A	11-10	
	3	7B	9-8	
	4	7 C	7-6	
	5	7D	5-4	
	6	7E	3-2	
	7	7F	1-0	
* Sixteen-bit counters use even numbers (one counter number per address)				

14162 A

Figure 1-17. Digital Input or Pulse Counter Addresses

Figure 1-18. Digital or Analog Output Addresses

Numbering Within 1851		1851s With Multiplexer/S				Mpx Group 1				With	tipl						
Block Switch Group	Point Number	Mpx Group 0								Mpx Group 2				Mpx Group 3			
		$\begin{gathered} \text { 1st } \\ 1851 \\ \hline \end{gathered}$	$\begin{array}{r} \text { 2nd } \\ 1851 \\ \hline \end{array}$	$\begin{gathered} \text { 3rd } \\ 1851 \\ \hline \end{gathered}$	$\begin{gathered} 4 \text { th } \\ 1851 \\ \hline \end{gathered}$	$\begin{gathered} 5 \text { th } \\ 1851 \end{gathered}$	$\begin{gathered} \text { 6th } \\ 1851 \\ \hline \end{gathered}$	$\begin{gathered} 7 \text { th } \\ 1851 \\ \hline \end{gathered}$	$\begin{gathered} 8 \text { th } \\ 1851 \\ \hline \end{gathered}$	$\begin{gathered} \text { 9th } \\ 1851 \\ \hline \end{gathered}$	$\begin{aligned} & 10 \text { th } \\ & 1851 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 11 \text { th } \\ 1851 \\ \hline \end{array}$	$\begin{aligned} & 12 \text { th } \\ & 1851 \end{aligned}$	$\begin{aligned} & 13 \mathrm{th} \\ & 1851 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \text { th } \\ & 1851 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 15th } \\ & 1851 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \text { th } \\ & 1851 \\ & \hline \end{aligned}$
0	00	000	040	080	OC0	100	140	180	1C0	200	240	280	2 CO	300	340	380	3C0
	01	001	041	081	0 Cl	101	141	181	1 Cl	201	241	281	2 Cl	301	341	381	3 Cl
	02	002	042	082	OC2	102	142	182	1C2	202	242	282	2C2	302	342	382	3C2
	03	003	043	083	0C3	103	143	183	1C3	203	243	283	2C3	303	343	383	3C3
	04	004	044	084	0C4	104	144	184	1C4	204	244	284	2C4	304	344	384	3C4
	05	005	045	085	0C5	105	145	185	1C5	205	245	285	2C5	305	345	385	3C5
	06	006	046	086	0C6	106	146	186	1 C 6	206	246	286	2C6	306	346	386	3C6
	07	007	047	087	0C7	107	147	187	1C7	207	247	287	2 C 7	307	347	387	3C7
	08	008	048	088	0C8	108	148	188	1 C 8	208	248	288	2C8	308	348	388	3C8
	09	009	049	089	0C9	109	149	189	1C9	209	249	289	2C9	309	349	389	3C9
	10	00A	04A	08A	OCA	10A	14A	18A	1CA	20A	24A	28A	2CA	30A	34A	38A	3CA
	11	OOB	04B	08B	OCB	10B	14B	18B	1 CB	20B	24 B	$28 B$	2CB	30B	34B	38B	3CB
	12	00C	04C	08C	OCC	10C	14C	18C	1CC	20C	24C	28C	2CC	30 C	34C	38C	3CC
	13	OOD	04D	08D	OCD	10D	14D	18D	1CD	20D	24D	28D	2CD	30D	34D	38D	3CD
	14	OOE	04E	08E	OCE	10E	14E	18 E	1CE	20E	24E	28E	2CE	30E	34E	38E	3CE
	15	00F	04F	08F	OCF	10F	14F	18F	1CF	20 F	24F	28F	2CF	30F	34F	38F	3CF
1	16	010	050	090	0D0	110	150	190	1 DO	210	250	290	2D0	310	350	390	3D0
	17	011	051	091	0D1	111	151	191	1D1	211	251	291	2DI	311	351	391	3D1
	18	012	052	092	OD2	112	152	192	1D2	212	252	292	2D2	312	352	392	3D2
	19	013	053	093	0D3	113.	153	193	1D3	213	253	293	2D3	313	353	393	3D3
	20	014	054	094	OD4	114	154	194	1D4	214	254	294	2D4	314	354	394	3D4
	21	015	055	095	OD5	115	155	195	1D5	215	255	295	2D5	315	355	395	3D5
	22	016	056	096	0D6	116	156	196	1D6	216	256	296	2D6	316	356	396	3D6
	23	017	057	097	OD7	117	157	197	1D7	217	257	297	2D7	317	357	397	3D7
	24	018	058	098	OD8	118	158	198	1D8	218	258	298	2D8	318	358	398	3D8
	25	019	059	099	0D9	119	159	199	1D9	219	259	299	2D9	319	359	399	3D9
	26	01A	05A	09A	ODA	11 A	15A	19A	1DA	21A	25A	29A	2DA	31 A	35A	39A	3DA
	27	O1B	05B	09B	ODB	11B	15B	19B	1DB	21B	25B	29B	2DB	318	35B	39B	3DB
	28	01 C	05C	09C	ODC	11 C	15C	19C	IDC	21C	25C	29C	2DC	31 C	35C	39 C	3DC
	29	O1D	05D	09D	ODD	11 D	15D	19D	1DD	21 D	25D	29D	2DD	31 D	35D	39D	3DD
	30	OIE	05E	09E	ODE	11E	15E	19E	1DE	21 E	25E	29E	2DE	31 E	35E	39E	3DE
	31	01F	05F	09F	ODF	11F	15F	19F	1DF	21F	25F	29F	2DF	31 F	35F	39F	3DF
2	32	020	060	0AO	OEO	120	160	1 A 0	1E0	220	260	2A0	2E0	320	360	3A0	3E0
	33	021	061	OAI	OE1	121	161	1 Al	1E1	221	261	2AI	2E1	321	361	3AI	3E1
	34	022	062	OA2	OE2	122	162	1 A 2	1E2	222	262	2A2	2E2	322	362	3A2	3E2
	35	023	063	0A3	OE3	123	163	1 A 3	1E3	223	263	2A3	2E3	323	363	3A3	3E3
	36	024	064	OA4	OE4	124	164	1A4	1E4	224	264	2A4	2E4	324	364	3A4	3E4
	37	025	065	0A5	OE5	125	165	1 A 5	1E5	225	265	2A5	2E5	325	365	3A5	3E5
	38	026	066	0A6	OE6	126	166	1A6	1E6	226	266	2A6	2E6	326	366	3A6	3E6
	39	027	067	0A7	OE7	127	167	1A7	1E7	227	267	2A7	2E7	327	367	3A7	3E7
	40	028	068	0A8	OE8	128	168	1 A 8	$1 E 8$	228	268	2A8	2E8	328	368	3A8	3E8
	41	029	069	0A9	OE9	129	169	1 199	1E9	229	269	2A9	2E9	329	369	3A9	3E9
	42	02A	06A	OAA	OEA	12A	16A	1AA	1EA	22A	26A	2AA	2EA	32A	36A	3AA	3EA
	43	02B	06B	0 AB	OEB	12B	$16 B$	1 AB	1EB	22B	$26 B$	2 AB	2EB	32B	36B	3 AB	3EB
	44	02C	06C	OAC	OEC	12C	16C	1AC	1EC	22C	26 C	2AC	2EC	32 C	36C	3AC	3EC
	45	02D	06D	OAD	OED	12D	16D	IAD	IED	22D	26D	2AD	2ED	32D	36D	3AD	3ED
	46	02E	06E	OAE	OEE	12E	16E	1AE	IEE	22E	26E	2AE	2EE	32 E	36E	3AE	3EE
	47	02F	06F	OAF	OEF	12F	16F	1 AF	1EF	22F	26F	2AF	2EF	32F	36F	3AF	3EF
3	48	030	070	OBO	OFO	130	170	1B0	1F0	230	270	2 BO	2F0	330	370	3B0	3F0
	49	031	071	OBI	OF 1	131	171	$1 \mathrm{B1}$	1F1	231	271	2 B 1	2F1	331	371	3B1	3F1
	50	032	072	OB2	OF2	132	172	1B2	IF2	232	272	2 B 2	2F2	332	372	382	3 F 2
	51	033	073	OB3	OF3	133	173	1B3	1F3	233	273	2 B 3	2F3	333	373	3B3	3F3
	52	034	074	OB4	OF4	134	174	1B4	1F4	234	274	2 B 4	2F4	334	374	3B4	3F4
	53	035	075	OB5	OF5	135	175	185	IF5	235	275	2B5	2F5	335	375	3B5	3F5
	54	036	076	OB6	OF6	136	176	186	1F6	236	276	286	2F6	336	376	3B6	3F6
	55	037	077	OB7	OF7	137	177	$1 \mathrm{B7}$	1F7	237	277	2B7	2F7	337	377	3B7	$3 F 7$
	56	038	078	OB8	OF8	138	178	188	1F8	238	278	2 B 8	2F8	338	378	3B8	3F8
	57	039	079	OB9	OF9	139	179	1 B 9	IF9	239	279	289	2F9	339	379	3B9	3F9
	58	03A	07A	OBA	OFA	13A	17A	1BA	IFA	23A	27A	2BA	2FA	33A	37A	3BA	3FA
	59	03B	07B	OBB	OFB	13B	17 B	1BB	IFB	238	27B	2BB	2 FB	33 B	37 B	3BB	3FB
	60	03C	07C	OBC	OFC	13C	17C	1BC	IFC	23C	27C	2BC	2 FC	33C	37C	3BC	3 FC
	61	03D	07D	OBD	OFD	13D	17D	1BD	IFD	23D	27D	2BD	2FD	33D	37D	3BD	3FD
	62	03E	07E	OBE	OFE	13E	17E	1BE	IFE	23E	27E	2 BE	2FE	33E	37E	3BE	3FE
	63	03F	07F	OBF	OFF	13F	17F	1BF	IFF	23F	27F	2 FF	2 FF	33F	37F	38F	3FF

Error	Internal ILSW Bit	Check Stop ON			Check Stop OFF	
		Internal Interrupt	Error Sent to I/O via OUT Bus	Stop P-C Clock	Internal Interrupt	Error Sent to $1 / \mathrm{O}$ via OUT Bus
Invalid Operation	0			X	**	
B-Register Parity	1		X	x	X*	x
Stor Prot Violation	2		X	X	X*	x
CAR Check	3	X**	x		X**	x
* Except XIO data cycle, cycle-steal, or IPL mode ** E2 cycle CAR check only						

14203 A

Figure 1-20. Detection of Internal Errors

Cycle	Set Error Indicator	Ignore Data		
			Data	
	Set Area, Fctn, Modifier	X^{*}		X
Write Data	Load AMAR	X		X
Read Data	Store ADC		X	
Init Rd Data	Load and Check CAR-A			X
Init Wr Data	Load and Check CAR-B			X
Ch A Cyc Steal	Load WCR, Load AMAR Load CAR-A, Check CAR-A	X		X
Ch B Cyc Steal	Load CAR-B, Check CAR-B	X		X
Ch B Cyc Steal	Load AMAR, Limit Compare		X	
Ch A Cyc Steal	Store ADC		X	
* Set by transmission parity error only (P-C parity OK)				

Figure 1-21. AI Parity Error and CAR Check Detection

1.1 LOGIC DIAGRAMS

1.1.1 ALD Logic Block Symbology

1.1.2 FEALD Logic Block Symbology

For detailed information concerning FEALD's see General CEM Index 1.

Basic Logic Block Format

Combinational Logic Block Format

1.1.3 Machine Frame and Gate Designations

Note: Board locations are given in paragraph 6.3.

Frames

| The following frame numbers (Figure 1-22) are used in the ALD's to show the machine type in which the logic is contained. A different frame numbering system is used in the MLR and FESRR to show the frame location of installed features. (See paragraph 6.2.)

$\mid 03$	IBM 1803 Additional Core Storage
10	IBM 1810 Disk Storage
26	IBM 1826 Data Adapter Unit
28	IBM 1828 Enclosure
51	IBM 1851 Multiplexer Terminal
56	IBM 1856 Analog Output Terminal
60	IBM 1801/1802 Processor-Controller or identifies
	component that may be used in more than one
	frame
63	Core storage and I/O monitor unit

Figure 1-22. Logic Page Identification

Gates

$\mathrm{A}-, \mathrm{B}-, \mathrm{C}-, \mathrm{D}-\mathrm{SLT}$ gates (A is also used for 1851 subenclosure)
F-, G- Integrator housings (1801/1802)
H- Channel terminator and mixer panel (1801/1802)
M- Mixer panel (1856)
N- Programmer's console (1801/1802)
Q - I/O Monitor interface panel (1801/1802)
R-Customer termination panel $(1801 / 1826)$
T- Signal tailgate
$\mathrm{X}-, \mathrm{Y}-, \mathrm{Z}$ - Identifies component that may be used in more than one gate (paragraph 6.3)

1.1.4 Logic Page Identification (Figure 1-22)

Major Section

The following listed page prefixes (major sections) are used in the system diagram manuals and maintenance diagram manuals.

Major Section	Logic
A-	Indexes
B-	Reference and cable
CA through CB	Console and indicators, op monitor
CC through CF	CPU controls
CH through CL	CPU registers and controls
CP	Channel control
CQ	Cycle steal, CAR, CAB, auxiliary storage, CE interrupt
CR	Timers, function register, area 0, console interrupt
CS	Interrupt levels
CT through CU	I/O interface
EA through EG	1816 Printer Keyboard and 1053 Printer
EJ through EL	1627 Plotter and 1443 Printer
EN	1442-6, 7 Card Read Punch
ES	1054 Paper Tape Reader and 1055 Paper Tape Punch
FA	1810-A1, A2, A3 Disk Storage
FC	1810-B1, B2, B3 Disk Storage
FS	Selector Channel
FV through FZ	System/360 adapter
GA through GW	Tape control unit
LA through LC	2790 adapter
MA through MM	Communications adapter
QC	1851 Multiplexer Terminal
QD	AI basic and ADC
PA	DI/DAO basic
PB	Digital and analog output basic
PC	DAO data channel adapter
PD	Digital input basic
PE	DI data channel adapter
RA	Digital input adapter

- Figure 1-23. Time Pulses, A, B, and C (CP111)

Major Section	Logic
RB	Pulse counter adapter
RC	Process interrupt adapter
SA and SD	Core storage
TA	1856 analog output terminal
TL	Digital output adapter
WA	I/O monitor
WX	1803 Core Storage Unit
WZ	Core storage interface
XA	Single disk storage
YA	1801/1802 power control
YB	1826 power control
YC	1810 power control
YF	DC power supplies
YS	1803 power control

With the exception of second-order products, such as core storage and single disk storage, only one set of logics is provided for multiple features within a machine type. For example, if the 1826 and the 1801 each contain two digital input adapters, two sets of RA logics will be sent with the system - o one for the 1826 and one for the 1801. Likewise, if a feature is not included in the machine type, no set of logics will be provided for that feature.

Version

The logic version number appears in the lower corner of the logic page. Logic version numbers 000-049 are reserved for basic system and basic system features. Non RPQ logic versions and associated applications are:

000 - Basic system
004 - Installed once with any of the following features: selector channel, communications adapter, 1800/ 2790 adapter, expanded core storage, expanded data channels
005 - Installed with core storage expansion beyond 32 k (1803 attached)
006 - Installed with data channel expander (more than nine data channels)

The highest numbered version of logic always takes precedence according to the features installed on the system.

Note: Version numbers above 050 apply to RPQ's. Version numbers below 050 are used here to identify installed features. When RPQ's are incorporated in a system, ALD's are printed on green paper with a version number. Version priority is not related to the version number but is called out in the RPQ installation instructions.

RPQ Logic Pages

RPQ logic pages are printed on green paper. When an RPQ modifies the information on an existing logic page, the green RPQ logic page will be inserted with the existing page.

1.1.5 System Paperwork Binder

A system paperwork binder is included as part of the maintenance package provided with the 1800 system. The binder contains miscellaneous records and copies of listings pertaining to the individual system. Among these documents are:

1. Quality Assurance Shipping Check List
2. Final Test Shipping Check List (cables)
3. Machine History (hard card)
4. Machine Level Control (MLC) for core storage
5. Cable Order Form
6. Customer Assignment Form (CAF)
7. Summary of Order for System
8. Machine Location Report (MLR)
9. Additional CAF and MLR information for installed RPQ's
10. Field Engineering Systems Reference Report (FESRR)
11. Manufacturing Assembly Report (MAR-2)

The FESRR is a machine listing of all installed features, except RPQ features, showing board and terminal locations, IOCC addresses, and interrupt and data channel assignments. The MAR-2 forms are generated at the factory to identify all unique customer wiring. Both the FESRR and the MAR-2 must be updated by the customer engineer each time a wiring assignment is changed in the field. (See paragraph 1.2.)

1.2 MANUALLY CONTROLLED WIRING CHANGES

Manually controlled (special purpose) wiring is used in certain areas of the 1800 system to provide the flexibility required for customer assignments, options, and additive features. Manually controlled wiring relates to the unique wire connections that adapt the system to the specific needs of the customer or features. That wiring which is assignable by the customer is also referred to as "personality wiring."

Manual wiring connections, both special purpose and personality, are made with violet wire on the probe side of SLT boards or special mixer panels, using pin-to-pin wrapped terminations.

After the system is shipped, all changes and additions to manual wiring are controlled by the customer engineer.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Sign	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	Over- load

$1^{\text {st }} \mathrm{Hex}$ Character	
	Voltage
0	0.0000
1	0.6250
2	1.2500
3	1.8750
4	2.5000
5	3.1250
6	3.7500
7	4.3750
8	(1)
9	(1)
A	(1)
B	(1)
C	(1)
D	(1)
E	(1)
F	(1)

$2^{\text {nd }}$ Hex Character	
	Voltage
0	0.0000
1	0.0391
2	0.0781
3	0.1172
4	0.1563
5	0.1954
6	0.2344
7	0.2735
8	0.3125
9	0.3516
A	0.3906
B	0.4297
C	0.4688
D	0.5079
E	0.5469
F	0.5860

$3^{\text {rd }}$ Hex Character	
0	Voltage
	0.0000
1	0.0024
2	0.0049
3	0.0073
4	0.0098
5	0.0122
6	0.0147
7	0.0171
8	0.0195
9	0.0219
A	0.0244
B	0.0268
C	0.0293
D	0.0317
E	0.0342
F	0.0366

$4^{\text {th }}$ Hex Character	
0	Voltage
	0.0000
1	2
2	0.0003
3	$(2$
4	0.0006
5	2
6	0.0009
7	2
8	0.0012
9	2
A	0.0015
B	2
C	0.0018
D	2
E	0.0021
F	2

Obtain voltage value for each hex character. Sum of four voltage values equals ADC voltage reading. For low-level inputs, reading must be corrected to compensate for differential amplifier gain.
(1) Negative reading. Obtain two's complement (subtract hex reading
(2) Overload bit is on. ADC value is meaningless. from /FFFF and add 1) of ADC value and obtain equivalent positive value from chart.

Figure 1-24. ADC Register Voltage Values

It is the CE's responsibility to update the system records after each change and to edit the diagnostic program decks as necessary.

For additional information on wiring changes, see 1800 Service Aid number 29.

1.2.1 Authorization for Wiring Changes

Customer assigned wiring can be changed by the CE at the customer's request when authorized by the FE branch manager. Other types of manually controlled wiring may be changed when authorized by an MES, RPQ, or engineering change. No altering of customer assignments will result from an engineering change. If an engineering change affects a net containing customer-assigned wiring, the field instructions will specify the action required to maintain the present assignments.

MES and RPQ Orders

These orders usually specify installation or removal of additive or special features and may necessitate rework of existing manual wiring, including customer assigned wiring.

The order will include a new Machine Location Report (MLR) and instructions for accomplishing manual wiring other than customer-assigned wiring. If additional installation information is required, an 1800 MES Requirements form will be supplied. (See 1800 Service Aid number 18.)

If the rework affects customer-assigned wiring, the CE must obtain the new assignments from the customer (see "Customer Request").

Types of feature wiring controlled by MES order include:
Pulse counter 8-bit or 16 -bit option
DI (voltage) high-speed option
AO optional features
IPL wiring for first 1442 (or 1054 if no 1442)
Additive features (interrupts, data channels, I/O adapters, process I/O groups, etc.)
Communications adapter code (EBCDIC or USASCII) and data set clocking

Customer Request

Changes to customer-assigned wiring can be made at the customer's request without the need for an MES order. This provision results in minimum turnaround time for the change. The customer must submit a written request to the FE branch manager, who authorizes the CE to make the change. This request must be filed with the system records.

The following manual wiring assignments are controlled by customer request:

[^3]ILSW bit assignment
PISW bit assignment
System/360 adapter address and select-bypass
Communications adapter wiring to match customer's data sets

Assignments of interrupt level, ILSW bit, and PISW bit are indicated on the Customer Assignment Form provided with the system. Interval timer bases and data channel assignments are indicated in the MLR by $9 x x x$ "specify" codes. The 9 xxx codes associated with interval timers and data channel assignments are unique because they are not under machine level control and, therefore, do not require an MES order for authorization to change.

1.2.2 Data Channel Assignment

Initial assignment of an I/O device to a data channel is designated by the 9 xxx specify code which is recorded on the MLR. Each device that can operate on a data channel has fifteen unique specify codes corresponding to the fifteen data channels.

Reassignment of a device to a data channel must be authorized by MES, RPQ, or customer request with FE branch manager approval.

Wiring Procedure

1. Determine present wiring assignments and make a wire delete list using CU992 and CU993, if marked, or the FESRR and MAR-2 listing. Compare this list against actual system wiring.
2. Make a list of the new cycle-steal assignments, by device, and compare assignments with the order given on BC 101 . If the new assignments accompany a feature installation, verify with the customer that the 9 xxx specify codes listed in the new MLR are correct.
3. Using CT990 and the list of new assignments as a reference, assign the adapters to a CS request line (A-Q) on CU992 by writing the adapter name above the line to which it is assigned. Use existing assignments as much as possible. Erase any existing marks and write new assignments in pencil.
4. On CU992, draw in pencil the new level assignments. For example, if the 1443 is on line F and is to be assigned to level 6 , draw a line from D-A1N7B05 to D-A1M4B05.
5. Hand mark CU993 to exactly agree with CU992. Pin numbers will vary, but the lines, mixing, and priority assignments must agree. When properly maintained, CU992 and CU993 reflect the data channel wiring of the system and can be used to develop a delete list for future changes in customer assignments.
6. Prepare new edit cards (or paper tape) for diagnostic monitor and diagnostic function tests as required. Refer to paragraph 1.2.7.
7. Perform wiring as drawn on CU992 and CU993, using violet wire ($\mathrm{P} / \mathrm{N} 811696$) only.
8. Run diagnostic tests with the new edit cards (or paper tape) to verify proper assignment and editing. Update disk maintenance library (DIMAL) if applicable.
9. Notify the customer that wiring has been completed and have the customer run test case with the new assignments.
10. Update FESRR and the applicable MAR-2 pages.
11. Use service code 31 to cover elapsed time.

1.2.3 Timer Interval Reassignment

Initial assignment of interval timer bases is designated by the 9xxx specify code which is recorded on the MLR. Reassignment of a time base can be authorized by MES or by customer request via the FE branch manager.

Wiring Procedure

1. Refer to system diagram BC150 and convert the 9 xxx interval timer feature code to the corresponding time base, using Table E.
2. Develop delete list, using the MAR-2 wire list as a reference.
3. Develop add list by referring to Table A on BC150. The MAR-2 wire list, when updated, can serve as the add/delete list.
4. Prepare new edit cards (or paper tape) for diagnostic monitor and diagnostic function tests as required. Refer to paragraph 1.2.7.
5. Perform add/delete wiring. (Use only violet wire, P/N 811696.)
6. Run diagnostic tests with the new edit cards (or paper tape) to verify proper assignment and editing. Update disk maintenance library (DIMAL) if applicable.
7. Notify customer that wiring has been completed and have customer run test case with the new assignments.
8. Update FESRR and the MAR-2 page.
9. Use service code 31 to cover elapsed time.

1.2.4 Interrupt Assignments

Initial assignment of interrupt levels, ILSW bits, and PISW bits is indivated on the Customer Assignment Form.

After the system is shipped, all changes and additions to interrupt assignments (including those made in conjunction with a sales MES or RPQ) must be authorized by customer request approved by the FE Branch Manager.

Wiring Procedure -- System Interrupts

1. List the new interrupt levels and ILSW bit assignments per device.
2. Select the appropriate diagrams from the following table:

Device	Logic Page Reference	
Console and Timers	BC 150	CU 991
$1053 / 1816$	EA 001	EA 991
$1054 / 1055$	ES 001	ES 992
1442	EN001	EN991
1443	EJ 005	EJ 991
1627	EJ 001	EJ 991
1810	FA 001	FA991
S/360 Adapter	FV 001	FZ 991
TCU (1802 only)	GA111	GB991
Analog Input	QD041	QD991
Dig \& Anlg Output	PB 000	PA991
Digital Input	PD000	PA991
Selector Channel	FS011	FS013
Communications Adapter	MA008	MB997

3. Refer to the MAR-2 sheets and the wiring tables on the referenced diagrams and develop add/delete lists for the following assignments in each adapter affected:

Interrupt level assignment
 ILSW bit assignment
 Sense ILSW decode
 Poll interrupt level

The MAR-2 wire lists, when updated, can serve as the add/delete list.
4. Prepare new edit cards (or paper tape) for diagnostic monitor and diagnostic function tests as required.
Refer to paragraph 1.2.7.
5. Perform add/delete wiring. (Use only violet wire, P/N 811696.)
6. Run diagnostic tests with the new edit cards (or paper tape) to verify proper assignment and editing. Update disk maintenance library (DIMAL) if applicable.
7. Notify customer that wiring has been completed and have customer run test case with the new assignments.
8. Update FESRR, Customer Assignment Form, and the applicable MAR-2 sheets.
9. Use service code 31 to cover elapsed time.

Wiring Procedure -- Process Interrupts

1. List the new interrupt levels, ILSW bit assignments, and PISW bit assignments for each board group.

Note: Three 16-bit PI (contact or voltage) groups may be installed in the adapter. Process interrupts in each PI group are divided into four "board groups" of four bits. These board groups are numbered 1A, 1B, 1C, 1D, 2A . . . through 3D. Each board group can be
assigned to a unique interrupt level; however, the selected level must be within the range specified for the adapter -- either 0 through 11 or 12 through 23.
2. Refer to Note 1 on system diagram RC841 and determine the appropriate cable plugging for the desired interrupt range of the adapter.
3. Refer to the MAR-2 sheets and the wiring tables on the system diagrams given in the following list. Develop add/delete lists for the wiring assignments in each board group. Observe all notes on these pages. The MAR-2 wire lists, when updated, can serve as the add/delete lists.

4. Prepare new edit cards (or paper tape) for diagnostic function tests as required. Refer to paragraph 1.2.7.
5. Perform add/delete wiring. (Use only violet wire, P/N 811696.)
6. Run diagnostic tests with the new edit cards (or paper tape) to verify proper assignment and editing. Update disk maintenance library (DIMAL) if applicable.
7. Notify customer that wiring has been completed and have customer run test case with the new assignments.
8. Update FESRR, Customer Assignment Form and MAR-2 sheets.
9. Use service code 31 to cover elapsed time.

1.2.5 System/360 Adapter Address Reassignment

The System/360 channel address of the System/360 adapter can be reassigned at the customer's request or as the result of an MES or RPQ order. Select-bypass jumpering for the adapter can also be reassigned by MES, RPQ, or customer request.

Wiring Procedure

1. Refer to the following system diagrams and determine the necessary jumper changes by comparing new assignments with present jumpering of the addressselect/generate card and the select-bypass card.

14193
2. Change placement of program caps on the cards to conform to new assignments.
3. Prepare new edit cards for System/360 diagnostics as required.
4. Run diagnostic tests (System/360) with the new edit cards to verify proper assignment and editing.
5. Notify customer that wiring has been completed and have customer run test case with the new assignments.
6. Indicate new assignments on the affected system diagrams.
7. Use service code 31 to cover elapsed time.

Diagnostic	PID	Features
Monitor Disk Maintenance Library Initial Loader Meter Exerciser	0801	All
	0887	1810A
	08B6	1442
		1443
		1810
		2400
1053/1816 Function Test	0806	1053/1816
2400 Function Test	0807	2400
2400 Timing Test	0889	2400
2400 Interchange and Skew Test	080B	2400
2400 Cyclic Redundancy Check	08BD	2400
1054/1055 Function Test	0804	1054
		1055
1627 Function Test	0805 0808	1627
2315 Initialization	0808 0809	1810A
1443 Function Test	080A	1443
1442 Function Test	080F	1442
Al Data Channel (Random) Function Test	0821	AI, Interval Timers
Al Data Channel (Sequential) Function Test	0822	Al, Interval Timers
Al Direct Program Control Function Test	0823	AI, Interval Timers
DI Data Channel Function Test	0824	
DI Direct Program Control Function Test	0825	
AO Function Test	0826	AO
DO Function Test	0827	DO
System/360 Adapter - Section 1	0828	S/360 Adapter
System/360 Adapter - Section 2	0829	S/360 Adapter
Selector Channel Function Test	0810	Selector Channel
2841 Function Test	0811	Selector Channel
2311 Function Test	0812	Selector Channel
2841 Two-Channel Switch Function Test	0813	Selector Channel
2311 CE Pack Initialization	0814	Selector Channel
2841/2311 MPX On-Line Test	0892	Selector Channel
Comm Adapt Transmit-Receive	080D	Comm Adapt
Comm Adapt Wrap Around	080E	Comm Adapt
Comm Adapt MPX On-Line Test	0891	Comm Adapt
2790 Adapter	082B	2790
	082C	2790

1.2.6 Communications Adapter and Line Adapter

Wiring assignments on the communications adapter (CA) and line adapter (LA) boards are determined by the data sets to
be used, the line type, and the desires of the customer. Reassignment of manual wiring can be authorized by MES or by customer request via the FE branch manager.

The CA and LA require personality wiring in addition to the usual data channel and interrupt assignments. See MA20151 for the purposes of all wired logic lines.

Wiring Procedure

1. Refer to system diagrams MA008, MK008, MB997, MB998, and MB999. Using the wiring tables on these diagrams, together with the MAR-2 list, develop add/ delete list. The MAR-2 list, when updated, can serve as the add/delete list.
2. Prepare new edit cards (or paper tape) for diagnostic monitor and diagnostic function tests as required. Refer to paragraph 1.2.7.
3. Perform add/delete wiring. (Use only violet wire, P/N 811696.)
4. Run diagnostic tests with the new edit cards (or paper tape) to verify proper assignment and editing. Update disk maintenance library (DIMAL) if applicable.
5. Notify customer that wiring has been completed and have customer run test case with the new assignments.
6. Update FESRR and the MAR-2 sheet.
7. Use service code 31 to cover elapsed time.

1.2.7 Editing Diagnostic Programs

The editing procedure for each diagnostic program is outlined in the maintenance diagnostic programs manual. The first page of volume 1 of the maintenance diagnostic programs lists the volume in which the description for a program is located. Paragraph 6.1 of each description details the edit procedure.

The above table lists diagnostics and indicates which feature wiring will affect them.

Section 2. Diagnostic Techniques

1.3 ON-LINE SERVICING LIMITATIONS

Several maintenance features of the 1800 system are designed specifically to permit diagnosis and servicing while the customer program is operating from main storage. However, the customer must be notified prior to performing any on-line maintenance that might affect the process control operation, either directly (via an output device) or indirectly (via the operating program).

Limitations and precautions that should be observed during the on-line maintenance activity are defined in the following paragraphs.

Note: Operating limitations for the MPX On-Line Diagnostics are described in 1800 Service Aid 138 and in the 1800 Multiprogramming Executive Operating System Programmers Guide, Order No. GC26-3720.

1.3.1 Use of Auxiliary Storage

If the auxiliary storage program is destroyed, it is possible for the system to become locked in auxiliary storage. Therefore, the customer should be notified when the CE intends to use auxiliary storage, so that restart procedures can be planned in advance.

The customer option to place two devices on the same data channel imposes limitations on shared-time servicing. When one of these devices is to be serviced on-line from auxiliary storage, it will be necessary to take both devices from the customer and place the second device in a "not ready" condition by some manual means, such as removing power to the device.

If the 1442 shares a data channel with another device, both devices will have to be taken if it is necessary to load an auxiliary program.

See 2.6 for a more detailed explanation of auxiliary storage.

Care should be taken to ensure that any device to be serviced on line from auxiliary storage will not be needed by the operating system, causing the customer's program to hang up. The procedures that must be followed to allow the TSX operating system to select alternate devices are explained in "IBM 1800 TSX System Maintenance" of IBM 1800 Time-Sharing Executive Operating Procedures, Order No. GC26-3754.

1.3.2 Power Removal and Component Plugging

Power cannot be turned on or off at any 1800 system unit without the possibility of system interference.

On-line servicing that requires removal of power from any system unit, or removal and replacement of cables or pluggable components within these units, is not recommended if the customer has no reset-and-restart procedure. Even with the P-C stopped and placed in SI, SSC, load, or display mode (to prevent cycle stealing), there is still a possibility of upsetting the status of latches and flip-flops with transients created by interrupting electrical circuits.

To safely remove power from any 1800 system unit, | without System/360 adapter (See 1.3.4), proceed as follows:

1. Power down the system.
2. Observe proper channel termination. (See 1.3.3)
3. Remove cables or power from system unit to be taken off line.
4. Restore power to system.

To return a system unit to on-line operation, follow the same procedure except that the unit is added rather than removed.

Removal of power places the unit in a "not ready" condition at the adapter interface.

CAUTION

Because of the danger of shorting between adjacent cards, it is not advisable to remove or replace SLT cards with power on. To prevent damage to components, the following types of cards must never be removed with power on:

> Drivers and amplifiers
> Core storage cards
> Power supply cards
> Multiplexer cards

1.3.3 Channel Termination

If an $1826,1856-1$, or 1810 containing channel terminator cards is taken off line, the terminator cards must be removed from the unit and installed in the outbound cable sockets of the preceding unit before starting the $\mathrm{P}-\mathrm{C}$ program. Figure 1-25 lists the channel cables and the logic pages that indicate where cables and terminators can be positioned in each unit. If System/360 adapter is installed in the 1826 being taken off-line, see next paragraph.

1.3.4 System/360 Adapter

The 1800 system may be powered up or down while the System/360 is running if the proper procedure is followed. To power up:

1. Place the on system/off system/bypass-gated (bypass) switch, which is located on the A-gate of the 1826 housing the System/360 channel adapter boards, to the bypass-gated position.
2. Power up the system and the 1826 . Verify that the off-system lamp, which is adjacent to the bypass switch, is on.
3. Move the switch to the on-system position. When the off-system lamp turns off, the channel adapter is on line.

To power down:

1. Place the bypass switch in the off-system position and wait for the off-system lamp to turn on.
2. With the off-system lamp on, place the bypass switch in the bypass-gated position and power down.

If frequent powering up and down is anticipated while servicing the 1800 system, or if the 1826 containing the System/360 adapter is to be taken off line, the 1800 system should be disconnected from the System/360 channel as follows:

1. Stop System/360.
2. a. If the System/360 adapter (in the 1826) terminates the System/360 channel, remove the terminators at the outbound serpent connectors on the 1826 signal tailgate and place them in the outbound cable positions of the preceding System/ 360 device.
b. If the System/360 adapter does not terminate the System/360 channel, remove the inbound and outbound cables at the serpent connectors on the 1826 signal tailgate and butt together.
3. Restart System/360.

Note that this procedure is not necessary if the System/ 360 is the one being powered up/down.

1.4 MARGINAL CHECKING

Marginal checking of 1800 system circuits is not recommended as a routine PM procedure but may be an effective method of isolating certain types of intermittent failures.

Channel	Data	Cable	No. of Lines	Routing
1/0	Out Bus \& Control	IA	20	CT990
		2A	20	СТ990
		3A	20	CT990
	In Bus \& Control	1B	20	CT990
		2B	20	CT990
		3B	20	CT990
	Cyc Steal \& Control	1 C	20	CT990
		2C	20	CT990
		3C	20	CT990
		3D	20	CT990
DAO	Address \& Control	DO-1	12	TL091
		AO-1	12	TA091
	Data Bits	DO-2	16	TL092
		AO-2	16	TA092
DI/PC	Address \& Control	U	10	PD091
	Data Bits	V	16	PD095
PI	Out Bus Bits	W	20	RC091
	Proc Intr Bits	X	20	RC092
	Intr Level 0-11	Y	12	RC093
	Intr Level 12-23	Z	12	RC094
S/360	Tags \& Controls	Tag	14	-
	Bus In \& Bus Out	Bus	18	-
See FESRR for adapter locations				

14202B

- Figure 1-25. Channel Cables

It must be realized that the intermittent circuit may be failing because it is sensitive to some parameter other than voltage (e.g., frequency, temperature, humidity). In this case, application of marginal voltage may cause failure of circuits other than the intermittent circuit being sought.

Marginal Check Procedure

Marginal checking of the 1800 system may be accomplished by varying the $+3,-3$, and +6 voltages ± 4 percent in any combination while running the program which is causing failures. The following combinations have been found most effective for trouble analysis.

	Nominal Voltage	Marginal Voltage
Case 1	+3.00	+3.12
	+6.00	+6.24
	-3.00	-3.12
Case 2	+3.00	+3.12
	+6.00	+6.24
	-3.00	-2.88
Case 3	+3.00	+2.88
	+6.00	+5.76
Case 4	-3.00	-3.12
Case 5	+3.00	+2.88
	+6.00	+5.76
	-3.00	-2.88
Case 6	+3.00	+3.12
	+6.00	+5.76
	-3.00	-3.00
	+3.00	+2.88
	+6.00	+6.24
	-3.00	-3.00

The charts in Figures 5-3 through 5-8 can be used to determine which power supplies provide voltages to the circuit being checked.

Adjust each voltage slowly to the marginal value by turning the adjustment screw (R1) on the applicable power supply. Measure voltage with a Weston 901 meter (0.5% accuracy) or equivalent. Voltage measurement points are listed on the following logic pages:

$1801 / 1802$	YA010
1826	YB140
1810	ZB101

The 1856 power pac voltages are measured at test jacks on the front of the unit.

On completion of testing, adjust each voltage as close as possible to the nominal value.

1.5 SLT MAINTENANCE

Maintenance procedures for standard SLT components are found in the Field Engineering Theory of Operation, IBM Solid Logic Technology Packaging, Tools, Wire Change
Procedure. (See FE Bibliography -- 1800 System, Order No. SY26-0560.)

Voltage levels and delays for many released SLT circuits are listed in the Field Unit System Engineering Document (FUSED) in volume 0 of the 1801/1802 system diagrams.

1.5.1 SLT Contact Wear

Avoid unnecessary removal and replacement of pluggable SLT components. The gold contact surfaces of SLT cards, cable cards, and board pins are rated for 50 insertions. Voltage crossover assemblies and other back-panel connector blocks are rated for five insertions. Serpent connector contacts are rated for 500 insertions.

1.5.2 Wire Color Codes

SLT panel wiring in the 1800 system conforms to the standard SLT color code designations: yellow identifies wiring that is controlled by computer-generated rework instructions, blue/white identifies uncontrolled wiring, blue identifies temporary wiring installed by REA (Request for Engineering Action), and black and yellow twisted pair is used for temporary cable repairs.

In addition, two special colors are used in the 1800 system for the following types of discrete wiring: violet is used for manually controlled wiring (customer-assignable, manual listing or Feature II addition) that cannot be handled by computer-generated rework instructions, and red is used for all RPQ discrete wire adds. Repairs to nets that contain violet or red wire must always have that portion of the net restored completely, using the same color of special wire that existed before the repair. The part numbers for the special colors of No. 30 AWG solid copper wire are: violet, 811696; and red, 811693.

1.5.3 Machine Cable Installation

Cable reference drawings are included in the 1800 shipping group for use during system installation and when making cable repairs or engineering changes. Of particular importance are the diagrams that explain the coordinate system used for routing flat cables:

Frame	Reference Drawing
1801/1802	2195900 (sheets 6 and 9)
1828	2195901 (sheet 2)
1826	2195902 (sheet 2)
1810	2195903 (sheet 3)

Two types of 20 -signal flat cables are used in the 1800 system: single-layer white (60 wires), and bonded yellow
(20 wires). The white cables may be precreased at each fold and marked with a transverse line at each clamp position. Bonded cables are unmarked and are not precreased.

Cables that are marked at the fold position should be folded so that the mark is inside the fold.

Note: The 33 AWG solid copper conductors in white flat cable can be broken by repeated folding and unfolding of the cable. Yellow bonded cables contain 22 AWG stranded wire that is not as susceptible to breakage.

The installation instructions shipped with field bills of material direct the routing of flat cables as per the following example: C-B1A6 via B1S2, B2B2, A2B2, A1V2, C1C7 (loop 10 inches), P1R7, P1F7, S1F7, S1A7, S4A3, S4B6 to power tailgate connector. In this example, $\mathrm{C}-\mathrm{B} 1 \mathrm{~A} 6$ identifies the "from" location as gate C, board B1, connector A6. The "via" locations specify the locations of folds or clamps. The routing of this particular cable is illustrated in Figure 1-26.

The SLT Flat Cable List which is shipped with white flat cables designated fold and clamp positions at each "via" location by channel (CH) and node (ND). Thus, the "via" location B1S2 would be shown as channel B1, node S2. Each "via" location on the cable list also specifies the length of cable, in hundredths of an inch, from the last "via" location to the present one, and specifies the fold type (FT). Fold types are shown in Figure 1-27.

The cable list P / N appearing on the "from" label of each flat cable identifies the cable group to which the cable belongs. The sequence number on the "from" and "to" labels identifies the installation sequence of each cable in the group.

Cable retainers, X-type and straight-type, are supplied in the basic machine shipping group and should be used when installing additional cable groups.

There are occasions when random length white cables are sent to the field. The cable list information must be used to install these cables. Random length cables may be longer than necessary, but will never be shorter. Random length cables are identified by a marking near the cable label, indicating the excess length. For example, a marking of +4 indicates an excess length of 4 inches. The excess length must be taken up at loop positions or by folding back in the channel. Random length cables do not have fold or clamp marks but may be precreased. The precreasing on these cables is to be ignored.

If the "to" end of a cable must be twisted 180° for proper alignment of the connector, this can be accomplished by changing the fold at the last node from type A / B to type D / E or vice-versa. If a cable must be repositioned at the exit point of the channel this can be accomplished at the last fold as shown in Figure 1-28.

1.6 CRITICAL CIRCUITS AND LEVELS

1.6.1 Sample Pulse Drivers (SPD's)

Proper operation of circuits using gated SPD's as inputs requires that the SPD's have proper turn-on transition time and proper voltage shift. The typical transition time for the +3 V to 0 V shift is 10 to 20 nanoseconds. If the transition time is greater than 30 nanoseconds, intermittent failures may result. The magnitude of the voltage shift is also critical and should be in the range of 2.8 to 3.3 volts when the particular SPD is used as a gated input. A lesser amount of shift can cause failures to set or reset a multiinput trigger (flip-flop) or to fire an SPD. Greater shift magnitudes can erroneously set or reset a gated trigger when the gate it not conditioned or erroneously fire a gated SPD when the gate is not conditioned.

Because of differences in ac input impedances, a pulse with a fast transition and proper shift is required to fire a gated input SPD, while a slower pulse with less shift will set a multi-input trigger. Therefore, the most common failures are erroneous setting of multi-input triggers and failure to fire gated SPD's.

When scoping SPD's, to check for transition time and shift magnitude, it is essential to use a probe with the shield grounded at the tip.

Defective SPD's can sometimes be detected by marginal checking. (See 1.4 cases 5 and 6.) Figure 1-29 shows SPD waveforms.

1.6.2 Singleshots (SS)

Singleshots of the 1800 system may be positively triggered by jumpering the ' -DC reset' signal to the turn-on of the singleshot. Each operation of the 1801/1802 console reset switch produces one pulse to trigger the singleshot. The 1800 remote switch box may also be used, and each operation of the IMMED STOP switch produces a pulse to trigger the singleshot.

This method reduces the problem of multiple triggering which occurs when grounding singleshot inputs to trigger them.

CAUTION

Exercise normal SLT circuit caution to assure that the
'-DC reset' line is not tied to the output of an emitter follower.

1.6.3 Phase A/B

The phase A / B adjustment is extremely important for proper CPU operation. Maladjusted phase A / B circuits can cause intermittent errors. Phase A/B problems usually appear first as unstable interval timer bases and failures in arithmetic circuits.

See 4.3.2 for phase A/B adjustment procedure.

Figure 1-26. Flat Cable Routing

Final cable length designation used in FT column on SLT Flat Cable List

Note: All lengths are measured on centerline of flat cable

Figure 1-27. Cable Fold Types

Figure 1-28. Methods of Repositioning Cable at "To" End

1.7 CORE STORAGE

1.7.1 Collection of Error Data

Request that the customer obtain all available data if parity errors occur. Record the B-reg, M-reg (SAR), I-reg, and, if the cycle-steal-service lamp is on, the channel address registers. It is also helpful to record the cycle (I, IA, E1, etc.) as well as the instruction and program. This information helps to reproduce the failure and aids in determining if a logic or instruction failure is associated with the problem.

Note: An 1800 Console Check Sheet is available to aid the customer in reporting intermittent failures. (See $F E$
Bibliography -- 1800 System, Order No. SY26-0560.)
The following information will help prevent recording false and misleading data.

Locating Storage Positions With Parity Errors

The B-reg data is written into storage, even if a parity check occurs. This fact permits searching through storage to find any positions that have even parity.

To search for storage locations with parity errors:

1. Place mode switch in display position.
2. Turn check stop switch on.
3. Place write storage protect bits switch in no (off) position.
4. Place the display address register switch in the SAR position.
5. Display storage (clear storage in display mode).

If a parity check stop occurs, the address register contains the location of the error. The B-reg contains the data in error. (The presence or absence of a storage protect bit and parity bit can be determined by their associated indicators.

Effect of Cycle-Stealing on SAR Display Lamps

If a device initiates a cycle-steal operation after a check stop, the cycle-steal cycle will not occur, but the channel address register bits will be gated onto the storage address in bus and will be indicated in the SAR display lamps. If the SAR display is recorded under these conditions as the M-reg address that caused the check stop, erroneous results will be obtained.

As an example, many programs run with the interval timers as a source of program control. The timers function automatically when the program is at a "wait" or in run mode. They cannot function after a check stop, but the cycle steal used to update the interval timer can be attempted after the check stop. This attempt will prevent the true M-reg value from being indicated in the SAR display lamps.

If a parity error occurs and the cycle-steal-service lamp is on, search for the address that failed in display mode as

Views A and B show the different traces that can be encountered when the same pulse is viewed on different scopes. Wave form (A) was viewed on a Tektronix 453. Wave form (B) was viewed on a Tektronix 561S (note the loss of information in (B).

Signal: B-A2M3B05 (CH111)
Sync:TO
Horiz: $\ldots \ldots .50 \mathrm{~ns} / \operatorname{div}(0.5 \mu \mathrm{~s}$ with $\times 10 \mathrm{Mag})$ Vert: $\quad \ldots \ldots . \mathrm{IV} / \mathrm{div}$ (grounded probe shield)

This is the load end of an SPD that is driven from one board to another. A pulse with a 4 V shift such as this is acceptable only when driving a circuit with a grounded gate (see 1.6).

Signal:B-B2J6D07 (CE311)
Sync:TTO
Horiz: $\quad \ldots . .20 \mathrm{~ns} / \operatorname{div}(0.2 \mu \mathrm{~s}$ with $\times 10 \mathrm{Mag})$
Vert: $\quad \ldots . .1 \mathrm{~V} / \mathrm{div}$ (grounded probe shield)
This SPD pulse is shown on an expanded oscilloscope time base to show the turn-on transition time of 20 nanoseconds.

Figure 1-29. SPD Waveforms
explained in "Locating Storage Positions with Parity Errors" (1.7.1). Failure to do so may result in working on the wrong storage module.

1.7.2 Main Storage Addressing and Selection

To detect a possible address failure pattern, the address must be analyzed in core storage address format.

Bit Function in Address Word

Bit 0: Bit 0 selects upper (on) or lower (off) 32 k of storage if expanded core feature is installed.

Bits 0, 1, and 2: Bits 0, 1, and 2 select the basic storage module (BSM), which is an 8 k increment of storage (one SLT board with cards, and array). This selection (Figure $1-30$) is implemented by wired-logic jumpers (violet wires) on each core storage board.

Bits 3 through 8: Bit 3 selects the lower or upper 4 k of the selected BSM. This bit is used for selecting the appropriate strobe pulse and sense amp and is part of the high- X decode. Bits 3 through 5 select high- X lines and bits 6 thru 8 select low-X lines. This results in a decode of one of 64 X lines.

Storage Capacity	$\begin{array}{\|c} \text { Portion } \\ \text { of } \\ \text { Storage } \end{array}$	$\begin{gathered} \text { Bit } \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { Bit } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Bit} \\ 2 \\ \hline \end{gathered}$		$\begin{aligned} & \text { BSM } \\ & \text { Boca- } \\ & \text { Lion } \end{aligned}$	Hand Wired Logic				
						Bit	From	$\begin{gathered} \hline \text { 2 2s } \\ \text { SAI11 } \\ \text { To } \end{gathered}$	$\begin{gathered} \text { 4 } \mu \mathrm{s} \\ \text { SD331 } \\ \text { To } \end{gathered}$		
4k	ALL		*	*			B-A3	1	*	*	*
						2		*	*	*	
8k	ALL	*	*	*		B-A3	1	*	*	*	
						2	*	*	*		
16k	$\begin{aligned} & \text { 1st } \\ & 8 \mathrm{k} \end{aligned}$	*	*	off			$\mathrm{B}-\mathrm{A} 3$	1	*	*	*
						2		M1E09	N2G09	N2D02	
	$\begin{aligned} & \text { 2nd } \\ & 8 \mathrm{k} \end{aligned}$	*	*	on		B-B3	1	*	*	*	
						2	MIE11	N2G09	N2D02		
24k	$\begin{aligned} & \text { 1st } \\ & 8 \mathrm{k} \end{aligned}$	*	off	off			B-A3	1	N1A09	N2G10	N2D06
						2		M1E09	N2G09	N2D02	
	$\begin{aligned} & \text { 2nd } \\ & 8 \mathrm{k} \end{aligned}$	*	off	oń		B-B3	1	N1409	N2G10	N2D06	
						2	MIE1I	N2G09	N2D02		
	3rd$8 \mathrm{k}$	*	on	*			A-B3	1	N1A11	N2G10	N2D06
						2		*	*	*	
32k	lst8 k	*	off	off		B-A3	1	N1A09	N2G10	N2D06	
						2	M1E09	N2G09	N2D02		
	$\begin{aligned} & \text { 2nd } \\ & 8 \mathrm{k} \end{aligned}$		off	on			B-B3	1	N1A09	N2G10	N2D06
						2		M1E11	N2G09	N2D02	
	3rd8k		on	off		A-B3	1	N1Al1	N2G10	N2D06	
						2	M1E09	N2G09	N2D02		
	$\begin{aligned} & \text { 4th } \\ & 8 \mathrm{k} \end{aligned}$	*	on	on			A-A3	1	N1A11	N2G10	N2D06
						2		M1E1I	N2G09	N2D02	
65k						1801/2	1	N1A09	N2G10		
	8k		off		off	A-B3	2	M1E09	N2G09		
						1801/2	1	N1A09	N2G10		
	8k	f	off		on	A-A3	2	MIE11	N2G09		
	$\begin{aligned} & \text { 3rd } \\ & 8 \mathrm{k} \end{aligned}$	of	on	off		$\begin{aligned} & 1801 / 2 \\ & B-B 3 \end{aligned}$	1	N1A11	N2G10		
						2	M1E09	N2G09			
	$4 \mathrm{kr}$	of	on	on			$\begin{aligned} & 1803 \\ & B-A 3 \end{aligned}$	1	NIAll		N2G10
						2		MIE11	N2G09		
	$\begin{aligned} & \text { 5th } \\ & 8 \mathrm{k} \end{aligned}$	\bigcirc	off			$\begin{aligned} & 1803 \\ & B-B 2 \end{aligned}$	1	N1A09	N2G10		
							2	M1E09	N2G09		
	$\begin{aligned} & \text { 6th } \\ & 8 \mathrm{kh} \end{aligned}$	-	off	on		$\begin{aligned} & 1803 \\ & B-A 2 \end{aligned}$	1	N1A09	N2G10		
						2	M1E11	N2G09			
	$\begin{aligned} & \text { 7th } \\ & 8 \mathrm{k} \end{aligned}$	on	on	off			$\begin{aligned} & 1803 \\ & B-B 1 \end{aligned}$	1	NIA11		N2G10
						2		M1E09	N2G09		
	$\begin{aligned} & \text { 8th } \\ & 8 \mathrm{k} \end{aligned}$	on	on	\|on		$\begin{array}{\|l\|} \hline 1803 \\ B-A 1 \end{array}$	1	NiAll	N2G10		
						2	M1E11	N2G09			

* Not Wired

Note:
On Expanded Core Systems, the bit 1 and 2 wiring is as for two groups of 32 k (lower 32k and upper 32k). Within the logic, bit 0 is used to select the lower or upper 32k groups. For systems with less than 65 k (or if it is desired to wire for less than 65 k in an emergency), the lower 32 k is wired as shown. The upper 32 k group is wired as a portion of a 32 k group. Example: For a 49 k system, wire BSM 1-4 as shown. Wire BSM 5 and 6 as 16 k is wired on the basic 32 k system.

- Figure 1-30. BSM Selection

Bits 9 thru 15: Bits 9 thru 11 select high-Y lines and bits 12 thru 15 select low-Y lines. This selection results in a decode of one of 128 Y lines.

Determining Address Failure Patterns

A single X or Y line is selected by the high- X or high- Y address at one end of the matrix, and by the low-X or low- Y address at the other end of the matrix. If both high X and low X are common to all or most failing addresses, an X line failure pattern is indicated. If only the high-X or low-X portion is common to the failing addresses a high- X or low- X address failure pattern is indicated. The same holds true for Y lines and addresses.

Wraparound Characteristics of Core Storage

The core storage address register (M-register) begins at /0000 and ends at /FFFF. Core storage addresses begin at / 0000 but end at the highest addressable word (asterisked word in Figure 1-31). If an address is used that exceeds the size of available storage, the bits not needed to address the highest storage position are ignored. Thus, in a 16 k system, address /FFFF or /3FFF selects the highest storage position. If either of these addresses is incremented, the lowest storage position is selected. This continuation in storage addressing is known as wraparound. Wraparound in storage addressing is illustrated in Figure 1-31.

In 24 k systems, wraparound is different from that previously described. This difference is caused by bit 2 being ignored when selecting the third 8 k module and decoded when selecting the first and second 8 k modules. See figures $1-30$ and $1-31$.

In 40 k systems, bits 1 and 2 of upper 32 k are not wired (ignored) when bit 0 selects the upper 32 k of core storage. In this wraparound each word in the fifth 8 k module is addressed four times as the address register goes from /0000 to /FFFF.

In 49 k systems, bit 1 of the upper 32 k is not wired (ignored) when bit 0 selects the upper 32 k section of core storage. Each word in the fifth and sixth 8 k modules is addressed twice as the address register goes from /0000 to /FFFF.

In 57 k systems, bit 2 is not wired (ignored) when bits 0 and 1 address the upper 16 k of the upper 32 k words. Thus, the seventh 8 k module words are addressed twice as the address register goes from /0000 to /FFFF.

1.7.3 Core Storage Display Procedure

The following procedure may be used to display core storage data between the execution of single instructions:

I ig ure 1-31. Main Storage Wraparound

1. With the $\mathrm{P}-\mathrm{C}$ in a stopped condition, position the mode switch to SI (single instruction).
2. Start switch depressions may now be used for singleinstruction operations to get the program to the desired point for data display.
3. Record the address appearing in the I-register. The I-register is used to address the data to be displayed, and this recorded address will be needed to return the P-C to the next instruction upon completion of the display procedure.
4. Using the data-entry switches, set up the address of the core storage word to be displayed.
5. Position the mode switch to LOAD; press LOAD I.
6. Set WSPB switch to NO.
7. Position mode switch to DISPLAY.
8. Press START. The selected word is now displayed in the B-register indicator lamps. Successive start-key depressions will display succeeding core locations.
9. To display other areas of core storage, repeat steps 4 through 8.
10. To continue the program:
a. Set data-entry switches to the address recorded in step 3.
b. Position mode switch to LOAD; press LOAD I.
c. Position mode switch to RUN; press START.

Core storage data cannot be displayed between single machine cycles of an instruction without losing the integrity of the $\mathrm{P}-\mathrm{C}$ program.

1.7.4 Scoping Techniques

Clear Storage Approach

Clearing storage in run mode permits scoping while intermittent or solid failures exist. The data is transferred from the data entry switches to the B-reg at T3 time. Therefore, the correct data is known and can be traced all the way into core storage on the write cycle and all the way out to the B-reg on the read cycle. If an error occurs, the original data is restored at T3 time. In other modes of operation, after the error occurs, the erroneous data is regenerated, allowing the failure to occur only once. The clear-storage operation breaks this feedback loop, allowing the failure to recur.

Single Address Operation

Cycling the machine on a single address is an effective technique for scoping core storage. This technique can be used in conjunction with a clear-storage operation. In single address operation, the increment to the I-reg must be blocked by grounding the 'incr I Reg' SPD line at B-A2K6B03, thus forcing the machine to cycle at one address. Insert the ground jumper only when the machine is stopped.

Distinguishing Between Correct and Incorrect Waveforms

Make scoping comparisons between a failing storage module and a non-failing storage module to determine correct or incorrect conditions. See "Core Storage Waveforms" (1.7.8) for typical storage waveforms.

1.7.5 Swapping BSM Address Assignments

Because all BSM's are connected to the same storage interface, the address assignments of two BSM's can be swapped by changing the hand-wired logic on the storage boards.

Without 1803 Adapter

Each BSM (except 4 k and 8 k systems) has handwired logic (violet wire) to decode address bits 1 and/or 2 (Figure 1-30). By changing these decode wires to different pins on the storage board, the address assignments of two BSM's can be exchanged.

For example, on a 16 k system it is only necessary to change one wire on each 8 k BSM to swap the low- and highorder 8 k portions of storage. The two wires are shown in Figure $1-30$ as the bit 2 decode. On a 32 k system, to swap the low- and high-order 8 k portions of storage, two wires must be changed on each BSM (bits 1 and 2 decode).

Note: Physically exchanging the locations of any two BSM's will not change their positions in storage addressing. They will continue to represent the same addresses of main storage until their decode wires are changed.

With 1803 Adapter

The address assignment of a BSM in the upper (32-65k). BSM group cannot be swapped with one in the lower (0-32k) group because the physical position of BSM's in the system determines selection by bit zero position of the address. Bit $0=1$ ('storage select $32-65$ ' line, WZ20101) is sent from the $\mathrm{P}-\mathrm{C}$ to the four BSM locations in the 1803 assigned to the upper 32 k group (BSM V - VIII, Figure 6-16).

The single BSM of the lower 32 k group assigned to a location in the 1803 (BSM IV) is selected by 'storage select SPD 24-32k' when bit $0=0$. 'Storage select SPD $0-24 k$ ' selects the three remaining BSM's of the lower $32 k$ group assigned to the $1801 / 2$ when bit $0=0$.

The upper 32 k group can be operated as the lower 32 k group or vice versa if the technique given on WZ331 is followed. Note, however, that the group that has not been reassigned cannot be addressed during this procedure.

BSM address assignments can be swapped within their own group except that no BSM in the 1803 may be assigned as BSM I. Because of line delays, the interval timers at location /0004, 5 , and 6 (BSM I) operate incorrectly if located in the 1803.

1.7.6 Array Swapping (Physical)

Prior to September 1966 arrays were welded by a resistance welding technique. Since this date arrays have been welded by a method known as tungsten inert gas (TIG) welding. The TIG welded array can be identified by a brass-like ball at the weld.

Resistance Weld

The TIG welded arrays have slightly longer pins than the resistance welded arrays. The TIG welded array cannot be installed in a BSM that was previously fitted with a resistance welded array unless a check is made to ensure that the card guides above the array have had their lower edges cut off. The TIG welded array requires this extra clearance. Otherwise, 8 k arrays are fully interchangeable. Array swapping is an effective troubleshooting technique but it must be done with care; $4 \mu \mathrm{~s}$ and $2 \mu \mathrm{~s}$ arrays are not interchangeable. See array removal procedure in section 4.4.4.

1.7.7 Trouble Diagnosis

When attempting to analyze core storage problems, determine if a failure pattern exists. To determine a failure pattern, console data must be accurately recorded for all failures.

Out-of-tolerance voltages and timings can give a misleading failure pattern. For example, a late strobe timing condition can cause one bit to fail. The earliest peaking core (core causing earliest sense line waveform peak) will fail first if strobe timing is late. The failure pattern for this condition would indicate a component that is common to only the failing bit, but the actual correction would be an adjustment of strobe time.

The Core Storage Diagnostic Guide (Figure 1-32) associates various failure patterns with possible failure causes. Review this entire section (1.7.7) before beginning trouble diagnosis.

1. Problems Common to All BSM's

A failure pattern including more than one BSM generally indicates a failure in the interface to the storage units rather than in the actual storage unit itself. The interface to core storage includes the B-reg, M-reg, CAB reg, channel

Figure 1-32. Core Storage Diagnostic Guide
address registers, cables, connectors, and general control signals.

Check address bits for proper timing and level. To check timing, clear storage to /6000. At storage location /0000 and /0001 enter / 6400 and /7FFF respectively. Place mode switch in run, reset and push start. This permits scoping of the address bits (cannot be done in clear-storage mode). These bits have critical timing requirements. Bits 1 and 2 have earlier timings than the other bits and must be present (at decision level) before the 1.8 V level of 'storage select' $(2 \mu \mathrm{~s})$ or 'read cycle' $(4 \mu \mathrm{~s})$ time. The other bits must be stable 25 nanoseconds after the 1.8 V level of 'storage select' $(2 \mu \mathrm{~s})$ or 'read cycle' $(4 \mu \mathrm{~s})$.

Check basic core storage voltages (SA022 or SD013).

2. X or Y Line Failure Pattern

Check the driver and gate cards by substituting a new card or interchanging cards of the same type. To check for an open line or defective line weld, check continuity of the line through the array (line path example is given on SA012 or SD012).

The following are typical resistances for X or Y lines. The measurements are made from one end of the line to the other end of the line with no diodes in the circuit.

	8 k	
Y-drive line:	5 ohms	2.5 ohms
X-drive line:	8.5 ohms	8.5 ohms

High resistance in the drive line can cause dropping of bits. The high resistance can be caused by poor line welds, high-resistance bottom board pins, poor connection in the connector block, or by a defective diode.

The most difficult drive line problem to diagnose is the defective diode, which can cause several different failure symptoms. There are two diodes associated with each drive line, one for read and one for write. Either can cause a problem but the read diode is more critical. A change in the diode response time will change the timing of the sense-line wave form. The read diode is more critical to response time because the sense line waveform must be timed properly to the strobe pulse.

A diode having improper resistance can usually be detected by a static resistance check. Compare the suspected diode with the readings of other diodes in the BSM. However, a diode with poor response time will usually measure good with a static check and will usually operate properly in a sequential addressing mode, such as display mode. However, it may fail to conduct properly in certain program loops. It may be possible to detect a faulty read diode by moving the strobe later by approximately 20 nanoseconds. If this adjustment improves operation, it is possible that a diode with poor response time has caused the core output to be later
and more compatible with the later strobe. A write diode failure will not be affected by strobe timing.

A high-resistance or poor-response-time diode will have an X- or Y-drive line failure pattern. A shorted diode will have a failure pattern including most drive lines (Figures $1-36$ and $1-45$). If a problem can be related to a suspected diode, replace the diode. For diode replacement information, see 4.4.6.

Check for leakage between the X or Y line and a sense line as explained in item 8.

Scope the failing storage module using the techniques explained in 1.7.4.

3. High-X or Low-X, High-Y or Low-Y Failure Pattern

Possible causes are driver or gate cards, defective connector block, defective diode (see item 2), current balance ($2 \mu \mathrm{~s}$ storage units), or bottom board leakage (see item 8).

Try replacing suspected card or connector. Scope failing addresses.

4. 4 k Increment Failure Pattern

This could be associated with address bit 3 or the 'less than 4 k ' or 'greater than 4 k ' strobe. Check the strobe pulse and strobe timing.

If failure is bit-oriented it could be caused by a defective sense amp, inhibit driver, or sense line. There is one inhibit driver for each of the 18 bit positions in each 4 k of storage. If an inhibit driver never conducts, that bit position enters 4 k of storage continuously. If it always conducts, the bit can never be entered into that 4 k . Any other 4 k segment of core functions correctly. If there is a bit failure through 4 k of core, replace the inhibit driver and sense amplifier cards for that bit position. If the trouble is not a card, but sense/inhibit failure is suspected, check the continuity of the sense/inhibit line. See item 8 for discussion of single bit failures and sense line resistance measurements.

5. Single-Address Failures

This kind of failure is often the result of a weak or earlypeaking core whose output is made more marginal by low VRef (determines drive current level) or poor current balance (2μ s storage units). Other causes can be a late strobe, high Vsa - Ve (determines sense-amp threshold for 1 bit, adjustable only in 4μ s storage), or a large deviation from a nominal ($60^{\circ} \mathrm{F}-90^{\circ} \mathrm{F}$) room environment.

As temperature increases, cores peak earlier and higher, but ideally the strobe does not change its timing. The strobed signal is therefore lower at increased temperatures because the strobe occurs later in the signal.

As temperature decreases, more current drive is required to obtain the same output. Occasionally, some cores give a very low output at low temperatures. The peak also occurs later at lower temperatures. In the 4μ s storage, low-output cores can cause a bit-dropping problem that is severe enough to warrant replacement of the storage unit. A possible temporary fix is to increase Vref, or drop Vsa (adjustable only in the 4μ s storage) to its lower limit.

To isolate the failure, BSM's and arrays may be swapped as explained in 1.7.5 and 1.7.6.

6. One Address Bit Always On or Off in Failing Addresses

Check the level and timing of the bit in question. See procedure for scoping address bits in item 1.

7. All Addresses or Most Addresses Fail

This condition generally indicates something basically wrong in the addressing (current drive) or sense system.

The best way to begin analysis is to scope the sense lines. This scoping indicates whether a current drive or sensing failure exists. Check all basic adjustments and timings. (See 4.4.3.) Review core storage waveforms as shown in Figures 1-32 through 1-44.

If all failing addresses are picking or dropping a common bit, see item 8.

8. Single Bit Failures

If the failure is relatively solid, determine and replace the sense amp ($<4 \mathrm{k}$ or $>4 \mathrm{k}$) associated with the failing bit.

This is the output of the $1 \mu \mathrm{~s}$ delay line which provides base timing control pulses for the $2 \mu \mathrm{~s}$ storage. All delay line outputs should ressemble this. Note 60 ns or greater pulse width at IV level and down level of 0.3 V or lower.

On intermittent problems sense amps can be swapped, but unless the trouble actually moves with the sense amp the results are inconclusive. Sense amps have an area of undefined output between the region of a guaranteed 1 and a guaranteed 0 . Therefore, it is advisable to check basic adjustments on intermittent problems. (See 4.4.3.)

Check for continuity of the sense/inhibit winding. The sense/inhibit loop should measure approximately 8 ohms. Each side of the loop (through 2,048 cores) should measure approximately 4 ohms to the sense-line common. Pin locations for these measurements are shown on system diagrams SA061-062 ($2 \mu \mathrm{~s}$) and SD061-062 (4 $\mu \mathrm{s})$. Unbalanced resistance can cause extra bits. Check the jumper block for high resistance. High resistance pin connections in the bottom board can cause an unbalanced sense line. This imbalance will cause picked bits.

Shorted sense/inhibit lines (between pairs of lines) can cause picking or dropping of one or both of the bits associated with the shorted lines. This condition can be detected by measuring between line pairs. With the sense/ inhibit cards installed, the resistance will be low. With the cards removed, there should be at least 5 megohms resistance and normally 10 to 20 megohms resistance.

Note: To ensure accurate resistance measurements when checking for line leakage, use the following procedure:
a. Use a Simpson 260 meter or meter with equivalent battery potential.
b. Use x 10 k or x 100 k resistance scale.
c. Hold leads on plastic insulated areas only; body resistance can cause erroneous readings.

This is an example of poor output from the $1 \mu \mathrm{~s}$ delay line (should be like (A)). The 50 ns pulse width and marginal down level of 0.8 V to 0.4 V will cause failures to set and reset control flip-flops.
(4)

This picture shows Y read and write current, compare with waveform (B).

Figure 1-34. Y-Current Waveforms (2 $\mu \mathrm{s}$ Storage)

Signal:	H2D09 SA411
Sync:	TO or Read Cycle EIEII
Horiz:	$0.2 \mu \mathrm{~s} / \mathrm{div}$
Vert:	1V/div

This is a typical wave form for 'Y read source' or 'X read source' (J2D09 on SA411). 'X read source occurs 100 ns earlier.

Signal:	N2G02 SA311
Sync:	.TO or Read Cycle EIEII
Horiz:	. $0.2 \mu \mathrm{~s} / \mathrm{div}$
Vert:	IV/div

This is a properly operating short-time latch, which provides base timings for currents and strobe. If an insufficient reset pulse occurs, faint undertraces will be seen where the arrow points.

Same scope setup as A

This current wave form is taken from the same point as (A) . The arrow points out excessive (35 mA) write current oscillation. Any sink source card that exhibits more than 10 mA or write read current oscillation should be changed.

Signal:	J2B12 SA411
Sync:	TO or Read Cycle EIEII
Horiz:	$0.2 \mu \mathrm{~s} / \mathrm{div}$
Vert :	1V/div

This is a typical wave form for ' X write driver time'. 'Y write driver time' is similar but 100 ns later.

This is a typical wave form for ' Y read gate time'. 'X read gate time' is similar but 100 ns earlier.

Figure 1-35. Various Waveforms ($2 \mu \mathrm{~s}$ Storage)
d. Allow meter to remain attached to points being measured for at least 30 seconds if less than several megohms is initially measured. If leakage does exist, a breakdown phenomenon can occur, causing reading to drop after a period of time.

Leakage can occur between a sense line and an X-drive line. Check this condition as follows:
a. Remove sense-line connector block associated with bit to be checked (SA061-062 or SD061-062).
b. Check for resistance between the sense line of the failing bit and the following driver gate pins:

2-Microsecond Storage Units
M3B12, L3D05, F2D05, F2B05

4-Microsecond Storage Units
J3D10, K3D06, J2D10, J2B05

BSM bottom board leakage can occur between a sense line and an X or Y line and will be related to a low- or high- order X or Y address. Check for this leakage as follows:
a. Remove sense line connector block associated with bit to be checked. (SA061-062 or SD061-062).
b. Check for resistance between the sense line of the failing bit and the following pins:

2-Microsecond Storage Units
Card Sockets Pins in Each Socket
C3, D3 B12, D05
E3, F3 D10, D11
L3, M3

G3, H3 B03, B04
J3, K3 B05, B12
D04, D05
D10, D11
4-Microsecond Storage Units
Card Sockets Pins in Each Socket

C3, D3	B08, D05
E3, F3	D06, D10

J3, K3

G3, H3	B04, B05
L3, M3	B08, B12
	B13, D05
	D06, D10

The readings obtained in the previous checks should be approximately 5 to 50 megohms. A unit with 100 k ohms resistance will work but experience has shown that units with a leakage path lower than several megohms will continue to deteriorate and eventually cause intermittent parity errors. Defective units have also exhibited a momentary breakdown from 5 megohms to 5 k ohms under heat, vibration, or extended operation.

Storage adjustment or card swapping can affect a problem caused by sense-line-to-sense-line or sense-line-to-drive-line leakage, but storage replacement is the only permanent solution. Before a storage unit is replaced for leakage, it should be thoroughly checked to ensure that leakage is not caused by external components such as connector pins or connector blocks.

9. Multiple Bits Fail

This condition generally suggests a basic problem in current drive or sensing. Determine whether failing bits share connectors or SLT cards. If no obvious cause is found, check strobe timing and sense line and current waveforms. For core storage waveforms see 1.7.8.

Determine if an address failure pattern exists.

10. Picks Up Bits

a. Low Vsa - Ve (sense level control voltage - offset voltage, sets threshold of a 1 in sense amp).
b. Strobe early.
c. Unbalanced sense line (item 8).
d. Leakage from drive line. (See item 8.)
e. Double strobe (logic failure).
f. Current drive high. (Vref determines current level.)
g. Defective diode. (See item 2.)

11. Drops Bits

a. Weak core (one address, one bit).
b. High Vsa - Ve. (See item 10.)
c. Strobe late.
d. Leakage from drive line. (See item 8.)
e. Current drive low. (Vref determines current level.)
f. Defective diode. (See item 2.)

Signal (Ch 1):	M7B02 (SA561)
Signal (Ch 2):	. . .M7D02 (SA56I)
Sync:	. .T0
Horiz:	$\ldots .0 .2 \mu \mathrm{~s} / \mathrm{div}$
Vert (Ch 1): $20 \mathrm{mV} / \mathrm{div}$
Vert (Ch 2):	. $20 \mathrm{mV} / \mathrm{div}$ (lnv)
Mode:	. . .Add (differential scope cable)

This photo shows a typical sense line while reading or writing all ones. Bit-14 sense line was used ($<4 \mathrm{k}$) during a clear or display storage operation. The arrow points to noise coupled from the inhibit noise of other sense lines.

Same scope setup as (A).

This wave form was viewed with the conditions of clearing storage to all bits and having a shorted diode. Addresses that would normally cause diode to conduct have large signals. ($\langle 50 \mathrm{mV}$), and addresses that would normally prevent conduction of diode have small signals ($20-30 \mathrm{mV}$). This causes the picking-and-dropping-bits symptom that accompanies shorted diodes. Photo (A) shows signal under normal conditions.

Figure 1-36. Effect of Shorted Diode on Sense-Line Waveform (2 μ s Storage)

Signal:B-A2M3DO4 (CHIII)
Sync:
.TO
Horiz: $\ldots \ldots .50 \mathrm{~ns} / \mathrm{div}(0.5 \mu \mathrm{~s}$ with $\times 10 \mathrm{Mag})$ Vert: $\quad \ldots \ldots . \mathrm{lV} / \mathrm{div}$ (grounded probe shield)

Signal:	$\ldots \ldots \cdot$ B-A2M3B05 (CH111)
Sync:	$\ldots \ldots \cdot$ T0
Horiz:	$\cdots \cdots 50 \mathrm{~ns} / \operatorname{div}(0.5 \mu \mathrm{~s}$ with $\times 10 \mathrm{Mag})$

This is the load end of an SPD that is driven from one board to another. A pulse with a 4 V shift such as this is acceptable only when driving a circuit with a grounded gate (see 1.6).

Same scope setup as (A)
Views A and B show the different traces that can be encountered when the same pulse is viewed on different scopes. Wave form(A) was viewed on a Tektronix 453. Wave form (B) was viewed on a Tektronix 5615 (note the loss of information in (B)).

Signal:B-B2J6D07 (CE311)
Sync:TTO
Horiz: $\quad \ldots . .20 \mathrm{~ns} / \mathrm{div}(0.2 \mu \mathrm{~s}$ with $\times 10 \mathrm{Mag})$
Vert: $\quad1 \mathrm{l} /$ div (grounded probe shield)
This SPD pulse is shown on an expanded oscilloscope time base to show the turn-on transition time of 20 nanoseconds.

Figure 1-37. Sense Line Waveform for Single-Bit, Single-Address Operation ($2 \mu \mathrm{~s}$ Storage)

This is a typical sense line wave form of a one bit in a single address. The arrow points to the write noise coupled from other sense lines that are inhibiting bits. The data used is /FFFF.

Same scope setup as (A).

This is a typical sense line wave form of all zero bits in a single address. It is the same sense line that is viewed in (A) while sensing a one bit. This wave form illustrates the importance of strobe timing to ensure the noise present (see arrow) is not mistaken for a bit.

Figure 1-38. Sense Line Waveform for Single-Address Operation (2 μ s Storage)

This is a typical read envelope while running core adjust program. Note that single polarity signals exist. Center arrow points to zero signals. Bright center trace results from another 4 k increment being addressed. Left arrow shows decay of X, Y, and Z noise. The delta* noise above center arrow should decay to less than 7 mV at strobe time. Right arrow shows normal read-turn-off noise.

* Delta noise is signal on sense line from half selected cores (cores with either X or Y drive current but not both).

Same scope setup as (A).

The discrete trace away from the center line in this photo is caused by magnetostrictive ringing. This condition is normal in 2μ storage units and usually can be seen only while running the core storage adjust programs. This condition is associated with worst-case data patterns as in the storage adjust programs. The ringing can cause a bit picking and/or dropping problem. The symptoms would generally be high temperature associated failures and failures that follow a cycle having extended T-7 times. The condition can be aggravated by improper current balance (read $>$ write). If magnetostrictive ringing is causing a problem and current balance is correct, try replacing the associated sense amp. Under severe conditions replace the storage unit.

Figure 1-39. Sense Line Waveforms with Core Adjust Program ($2 \mu \mathrm{~s}$ Storage)
Normal

Signal (Ch 1): ... M7B02 (SA561)
Signal (Ch 2): ... M7D02 (SA561)
Sync: ...TO
Horiz: $\quad \ldots 0.2 \mu \mathrm{~s} /$ div
Vert (Ch 1): $\ldots 20 \mathrm{mV} / \mathrm{div}$
Vert (Ch 2): ... $20 \mathrm{mV} / \operatorname{div}(\ln v)$
Mode: ... Add (differential scope cable)

> Program: | Address |
| :---: |
| |
| |
| 0000 to $/ 007 \mathrm{E}=/ 1002$ |, $\begin{aligned} & \text { Data }\end{aligned}, ~$

This is a typical wave form for the bit-14 sense line while running the program given above (X00 address).

With Leakage

Same scope setup as (A)

This is the bit-14 sense line viewed while running the program given in (A). Note the distortion in this picture as compared with (A). This distortion is caused by bottom board leakage.

Figure 1-40. Effect of Bottom Board Leakage on Sense Line Waveform (2μ s Storage)

This is a typical sense line wave form for all ones in $<4 \mathrm{k}$ or $>4 \mathrm{k}$ addresses. Absence or center trace (left-most arrow) during signal indicates that this is the only 4 k segment of storage selected and all signals are ones. Right-most arrow points to write turn-off noise and inhibit turn-off noise from other lines. The amount of noise can vary depending on data.
(B)

Same scope setup as (A)

This is a typical sense line wave form for all zeros in $<4 k$ or $>4 k$ addresses. The strobe time is approximately 900 ns from left edge of scope face. Inhibit transients are shown in last half of trace.

Figure 1-41. Sense Line Waveforms with Multi-Address Operation (4 $\mu \mathrm{s}$ Storage)

This is a normal wave form for reading and writing a one bit in a signal address. Compare to (B) which shows same sense line while sensing a zero bit.

Same scope setup as (A).

This is a normal wave form for reading and writing a zero bit in single address. Strobe time would be approximately 900 ns from left edge of trace. Arrow points to large Z turn-off transient.

Figure 1-42. Sense Line Waveform with Single-Address Operation (4 $\mu \mathrm{s}$ Storage)

12. Picks and Drops Bits

a. Defective diode. (See item 2.)
b. Leakage from drive line (item 8).

1.7.8 Core Storage Waveforms

Typical timings for the 2- and 4-microsecond storage units are shown on ALD pages SA031 and SD031 respectively.

Actual photos of core storage waveforms are shown in Figures 1-33 through 1-45. Waveforms are shown for both correct and incorrect core storage conditions.

When scoping core storage, ground the scope shield at the probe tip. See 1.7.4 for core storage scoping techniques.

1.7.9 Current Measurement

Core storage current measurements are made only at the array connector block as described on system diagram SA031 or SD031. The appropriate array connector block must be replaced by the current probing card (2.13.4) for use with the oscilloscope current probe. Use the jumper block removal tool ($\mathrm{P} / \mathrm{N} 2108860$) to remove the array connector block.

Power down the system while exchanging connector blocks and current probing cards. If it is necessary to remove any minibus plugs, they should be carefully replaced prior to powering up the system for measurement.

Current drive cards are factory balanced and should be replaced if current balance is incorrect, provided that no lines through the array are shorted, grounded, or otherwise defective.

1.8 PROCESS INPUT/OUTPUT

1.8.1 Analog Input

Troubleshooting Techniques

Control Parity Errors: A control-parity error activates the 'parity reset' line. 'Parity reset' resets the AI basic circuitry, thus concealing many of the conditions that existed at the time of the control-parity error. As a troubleshooting aid, 'parity reset' can be prevented by applying a ground jumper to A-B2J6B07 (QD241). Do not disable the 'parity reset' line while the customer is using AI, as program hang-ups can result.

Mode of Operation: Determine which modes of operation fail (direct program control, data channel random, etc.). Use the simplest mode for troubleshooting.

Programming Violations: Check for possible programming violations as described in 1.8.5.

Reducing Secondary Effects: It is sometimes helpful to ground a logic point or alter a program to prevent a complete sequence of events from taking place. This procedure reduces the secondary effects of a problem, making the problem easier to solve. For example, if an 'XIO read' instruction fails to reset the 'DPC solid state busy' flip-flop, the failure will not be noticed until the next 'XIO write' operation is rejected because of the busy condition. The failure to reset the busy condition would erroneously show up as
(A)

Signal:	. J6B02 (SD561)
Sync: T0
Horiz: $0.5 \mu \mathrm{~s} / \mathrm{div}$
Vert: $100 \mathrm{~mA} / \mathrm{div}$ (current probe)

This photo shows a typical X drive current wave form. Note long rise time of read drive, and chopped up rise time of write portion. The equivalent voltage signal is available at M 2 B 09 .

Figure 1-43. X and Y Drive Current Waveforms ($4 \mu \mathrm{~s}$ Storage)

This is a typical strobe pulse at input to sense amp. This pulse is extremely important as it gates the sense line signal to the sense amp when there is maximum read signal and minimum noise present. The arrow points to portion of pulse that has varying shape depending on data that is read out.

This photo shows a typical Y drive current wave form. Note similarity to wave form (A). Differences are later turn on and shorter duration. The equivalent voltage signal is available at B2B09.

$$
\begin{aligned}
& \text { Signal: M7B04 (SD781) } \\
& \text { Sync: T0 } \\
& \text { Horiz: } 0.1 \text { usec/div } \\
& \text { Vert: IV/div }
\end{aligned}
$$

This is a typical sense amp output wave form indicating a bit has been read from corresponding sense line. Note saturated down-level.

Figure 1-44. Sense Amp Waveforms (4 μ s Storage)

This is a normal sense-line read and write wave form. Note that read signals are smaller than write signals. Compare with (B) which is the same except for shorted diode.

Same scope setup as (A).

This is a typical sense-line wave form with shorted diodes. The characteristics of multiple read and write envelopes is obvious. Compare to correct wave form as shown in (A).

Figure 1-45. Effect of Shorted Diodes on Sense Line Waveforms (4 μ s Storage)
a failure to accomplish an 'XIO write'. If the sequence was halted after each 'XIO read', the real cause of the problem would be more easily seen because the 'DPC solid state busy' indicator, which should be reset, would be left on.

Do not overlook the selective data trapping capabilities of the I/O monitor unit for such problems.

ADC Conversion Sequence

Regardless of the mode of operation, the following sequence occurs for every ADC conversion and can be quickly checked for possible failure.

1. Load analog multiplexer address register (AMAR) and set 'AMAR busy' flip-flop to indicate that AMAR has been loaded (QD261, QD471, QD481, and QD491).
2. Get through either the solid-state or the relay interlock (QD261).
3. Load the solid-state or relay X and Y drivers and turn off the 'AMAR busy' flip-flop (QD261, QD601, and QD741).
4. Fire either the solid-state or relay multiplexer startdelay singleshots (QD271).
5. Perform the ADC conversion (QD821).
6. Receive the 'ADC end of convert' signal (QD821).
7. Reset the X and Y drivers. On Mod 2 ADC's, the solid-state drivers are reset at the start of the conversion (QD601, QD741).
8. Fire the multiplexer end-delay singleshot for relay or for solid-state (SS delay B). There is no solid-
state end delay period with Mod 2 ADC's (QD271, QD930).
9. Request service by setting the conversion-complete flip-flop if in DPC mode, or request a cycle steal if in a data-channel mode (QD231, QD361).

Read All Bits -- Service Hint

To read all bits from the ADC, remove the connector from pin A-A1A1C11 on the ADC logic board. This connector brings the output of the ADC comparator to the ADC register reset circuits. When it is disconnected, the sign trigger cannot be set and no other trigger in the ADC register can be reset. This results in a positive overload. Tie down the overload bit by grounding A-A1D2B12; the maximum positive reading will then be obtained in the ADC reg. This procedure is helpful in troubleshooting many ADC problems; it is also helpful in troubleshooting data parity errors because it provides a constant ADC value which can be followed through the parity assignment circuits and into the processor-controller B-reg via the I/O in bus (QD891).

1.8.2 Analog Input Waveforms

Figures 1-46 through 1-54 show photos of various analog input waveforms. Oscilloscope setup information is given with each figure.

(A)

(C)

Differential view of selected signals shown above.
OV Relay is picked during time wave form is below 0 V line.

Setup:	
Signal (ch 1):	A-A2B6B09 (QD631)
Signal (ch 2):	A-A2B7B08 (QD601)
Sync:	Int (delayed sweep was used to allow viewing of leading edge of wave form)
Horiz:	$2 \mathrm{~ms} / \mathrm{div}$
Vert (ch 1):	20V/div
Vert (ch 2):	20V/div (inv for wave form (C))
Mode:	Chopped (add for wave form (C))

These photos show the X and Y drive lines for a relay multiplex point. Note that the inductive spike from the relay coil is clamped to $\pm 30 \mathrm{~V}$ by diodes. X and Y must be selected to pick the relay.

Figure 1-46. Relay Multiplex Point Selection

(C)

Differential view of selected lines shown above. Solid state point is selected during time 0 V signal is below OV line.

Setup:
Signal (ch 1): A-A2J6B09 (QD771)
Signal (ch 2): A-A2J7B08 (QD741)
Sync: $\quad \mathrm{A}-\mathrm{B} 2 \mathrm{~F} 3 \mathrm{~B} 02$ (Write Function)
Horiz: $\quad 5 \mu \mathrm{~s} / \mathrm{div}$
Vert (ch 1): $5 \mathrm{~V} / \mathrm{div}$
Vert (ch 2): $\quad 5 \mathrm{~V} / \mathrm{div}$ (inv for wave form (C))
Mode:

These photos show the X and Y drive lines for a solid-state multiplex point. The double traces are due to the free-running ADC clock. X and Y must be selected to select a solid-state input point.

Signal (ch 1): Sample and hold (S \& H) amp input A-AIA3G07 or G08 (QD940 or QD891)
Signal (ch 2): Conversion time A-AlE5D09 (QD821)
This photo illustrates $S \& H$ amp operation. Input voltage is not present during conversion time.

Signal Ch 1: S \& H amp output A-AlA3J12 (QD891) Signal Ch 2: Same as (A)
This photo illustrates the S \& H amp inversion and ability to hold input voltage. Compare with photo (A).

Figure 1-48. Sample-and-Hold Amplifier Waveforms

1.8.3 Multiplexer Troubleshooting Techniques

Verifying AMAR

Use the I/O monitor (2.11.1) to verify that given addresses are being loaded into AMAR, and that AMAR is being incremented following each load. The increment AMAR signal occurs after the load X and Y drivers signal and is a good indication that the load drivers signal did occur.

If the system has the comparator special feature, AMAR can also be checked by programming to force an out-oflimits condition in the data-channel-random mode of operation. The comparator DSW, on an out-of-limits condition, contains the multiplexer address of the point that was out of limits.

Multiple Selections

Multiple selections cause many difficult-to-analyze failure patterns. For example, if a Y driver is shorted, the group using the shorted driver will work properly and all other groups will have erroneous readings. If an X driver is

Signal (ch 1): S \& H amp test point A-A 1A3P04 (QD891)

Setup:	DPC sampling of +2 V on solid-state input point (mod 2 ADC)
Sync:	,+ A-B2L7D10 '+ amp or Solid-state Delay' (QD271)
Horiz:	$10 \mu \mathrm{~s} /$ div
Vert (ch 1):	$1 \mathrm{~V} / \operatorname{div}$ (upper trace)
Vert (ch 2):	$5 \mathrm{~V} /$ div (lower trace)
Mode:	Alternate

shorted, the points using the shorted driver will work properly and other points will have erroneous readings.

If multiple selections are suspected, they may be confirmed by removing all but the selected X and Y driver cards in the A-A2 panel or removing all but the selected multiplex card in the 1851 . It may also be helpful to remove all coaxial cables from the analog-in bus except the one being used by the selected point.

Scoping Drivers

Scope the X and Y drivers. See Figures 1-46 and 1-47. Be aware that the solid-state multiplexer and amplifier-block-switch drivers are reset near the start of the ADC conversion in a Mod 2 ADC , and at the end of the conversion in a Mod 1 ADC. The relay drivers are always reset at the end of the conversion.

Open Relay or Pulse Transformer

If an open relay coil or solid-state pulse transformer is suspected, the X and Y drivers should be checked for cor-

Signal (ch 1): S \& H amp input A-A1A3G07 or G08 (QD940 or QD891)
Signal (ch 2): Conversion time A-AIE5D09 (QD82I)

This photo illustrates S \& H amp operation with an overload condition.

Signal (ch 1): S \& H amp output A-AIA3J12 (QD891)
Signal (ch 2): Same as A

Figure 1-49. Sample-and-Hold Amplifier Waveforms with Overload
rect operation. A 300 ohm to 2 k ohm resistor may be connected between the X and Y driver outputs to determine that the drivers are operating correctly by providing a resistive load which develops a clean waveform for scoping. This resistor can then be moved back to the 1851 end of the cable to check for opens in the X-Y driver path. When available, a current probe is useful in troubleshooting X or Y driver problems or open circuit problems. No current indicates a bad driver or open circuit.

Current Limiter

In the multiplexer, the voltage to the X drivers is provided by a current limiter. The main functions of the limiter is to restrict the current to the X drivers under a fault condition. The solid-state multiplexer, because of back circuits, will operate marginally even if the current limiter card is removed. An X-driver output pulse of 5.2 to 6 volts indicates a properly operating current limiter card. If the X-driver pulse is not within these limits, the current limiter card should be replaced.

Signal (ch 1): S \& H amp test poinf A-AIA3P04 (QD891)
Signal (Ch 2): Same as (A)

Block Switch

The function of the block switch is to reduce leakage paths between groups of input points. Each group of 16 input points contains four multiplexer cards. The first card in each group contains the block switch. The card containing the block switch has five relays or five transformers (solid state); the other three cards each have four relays or transformers.

If trouble is suspected in the block switch area, the block switch card can be swapped with another card in the group to help isolate the problem. When a multiplexer card not having a block switch is used in place of a card with a block switch, the block switch points are bypassed. The system will perform satisfactorily in this configuration on a temporary basis, but care should be taken to ensure that the proper filter elements are present for each customer input point. For emergency repairs, block-switch cards and non-blockswitch cards may be interchanged until the correct part is available.

Signal (Ch 1): Relay 1851 input to amp block switch, upper pin N (QC400)
Signal (Ch 2): Conversion time (lower trace) A-A 1E5D09 (QD821)

Signal (Ch 1): Relay 1851 output of amp block switch, upper pin S (QC400)
Signal (Ch 2): Same as (A)
This photo shows the multiplexed input voltage as applied to a $\operatorname{Mod} 2$ ADC.

This photo shows transients at amp block switch select and deselect times and the signal beginning to float when the relay block switch is opened.

Setup: Program in DPC mode sampling +9 mV applied to a 10 mV input point on a Mod 2 ADC.

Sync:	,+ A-B2D7D04 start of overlap delay (QD271)
Horiz:	$50 \mu \mathrm{~s} /$ div and $10 \mu \mathrm{~s} /$ div using delayed sweep
Vert (Ch 1):	$2 \mathrm{~V} / \mathrm{div}$
Vert (Ch 2):	$2 \mathrm{~V} / \mathrm{div}$
Mode:	Alternate

Figure 1-50. Amplifier Block Switch Input and Output

This photo illustrates large overshooting at multiplex select and deselect time.

This photo shows the input voltage as seen by the ADC during the conversion. Note the noise level.

Setup:	DPC sampling of short on solid-state input points.
Sync:	,+ A-B2C3D12 function write (QD221)
Horiz:	$50 \mu \mathrm{~s} /$ div and $10 \mu \mathrm{~s} /$ div using delayed sweep
Vert (ch 1):	Stated with photo (upper trace)
Vert (ch 2):	$5.0 \mathrm{~V} /$ div (lower trace)
Mode:	Alternate

Figure 1-51. Input to ADC

Failure Area

To locate the failure area, insert shorts one at a time at various points in the analog path. Refer to system diagram QC050 for test points and additional information. Disconnect the customer voltage from the input point being tested before the shorts are applied. This procedure is helpful in troubleshooting cable and connector failures.

A 1.5 V dry cell provides a floating voltage source that can be quickly applied to a high-level input point to locate a failure if the shorted input fails to indicate the problem. By removing the shorting switch drive card (A-A1B4, QD826), the multiplex circuitry can be bypassed and the voltage applied directly to the ADC input.

1.8.4 1851 Service Voltages

DC voltages for multiplexer components are supplied via a flat power cable from the A-B2 board in the 1801, 1802, or 1826 model 1. These voltages are listed in Figure 1-55 and are measured with a Weston 901 meter (0.5% accuracy) or equivalent. See 5.5 to determine power supplies used.

1.8.5 Programming Rules and Restrictions

Many difficult-to-analyze AI problems are caused by programming errors. Understanding the following limitations and rules of AI programming should precede an attempt to diagnose an AI problem.

1. An 'XIO read' or an 'XIO blast reset' instruction must be executed for every 'XIO write' instruction given.

Signal (ch 1): Error amp output
A-A1B5J07 (QD881)
Signal (ch 2): Conversion time (lower trace)
A-A1E5D09 (QD821)
Sync: $\quad+$ A-A1C6B04 ADC clock A0
(QD841)
Horiz: $\quad 5 \mu \mathrm{~s} / \mathrm{div}$
Vert (ch 1): $2 \mathrm{~V} / \mathrm{div}$
Vert (ch 2): $2 \mathrm{~V} / \mathrm{div}$
This photo shows a typical ADC conversion. For this conversion ADC Reg bits S, 8192, 4096, 2048, and 128 remained on; bits 1024, 512, $256,64,32,16$, and 8 were reset off; and bits 4,2 , and 1 were indecisive, resulting in a repeatability of three digits. A DPC conversion of +0.586 V , applied to a solid-state input point with a Mod 2 ADC, was used.

Figure 1-52. Typical ADC Conversion

Failure to do this will result in the 'relay conversion' flip-flop remaining on for direct program control (DPC) relay operations, or the 'DPC solid state busy' flip-flop remaining on for solid-state operations.
2. An 'XIO sense device' instruction with reset must be executed, following every interrupt request, to reset the interrupting condition.
3. To obtain the best analog performance, a single relay address should be sampled no more than three times per second.
4. An 'XIO read' performed during an analog-digital conversion may result in a data parity error. The ADC data word is stored in memory regardless of whether the parity is good.
5. If an 'XIO initialize read' is given while either the 'AMAR busy' or 'DPC solid state busy' is on, the 'initialize read' instruction will be ignored with no error indicators set.
6. If an 'XIO write' instruction is given when either 'cycle steal busy' or 'DPC solid state busy' is on, the 'XIO write' will be ignored with no error indication other than a missing interrupt because of the failure to perform the write.
7. When a program attempts to store an ADC value into a storage-protected memory location, a 'storage protect violation' interrupt will occur in analog input basic. A meaningless data parity error in analog input basic may also occur.
8. In overlap operation, having a relay point selected inhibits a solid-state operation from changing the

This photo shows multiplex switching transients and typical noise level with a short on the input of a 10 mV differential amp. Wave forms are from a Mod 1 ADC in DPC mode.

28106

Figure 1-53. ADC Input with Shorted Differential Amplifier Input

Signal (Ch 1): Calibrate point X drive (upper trace) A-A2F7D07 (QD741)
Signal (Ch 2): Conversion time (lower trace) A-A1E5D09 (QD821)
Sync: $\quad+$ A-B2G5B04 AMAR busy (QD261)
Horiz: $\quad 10 \mu \mathrm{~s} / \mathrm{div}$
Vert (Ch 1): $5 \mathrm{~V} / \mathrm{div}$
Vert (Ch 2): 5V/div
Mode: Alternate
This photo shows the X drive wave form while addressing CE calibrate address in DPC mode with a Mod 2 ADC.

Figure 1-54. X-Drive for CE Calibrate Point
ADC resolution. The resolution can be changed after the relay conversion is complete, or if the solid-state operation is initiated during the 'relay end delay' period.
9. In relay external-sync mode, the relay operation is performed as usual up to the time of the 'amplifier block switch delay' ($18 \mu \mathrm{~s}$ singleshot). At this time a 'ready' signal is sent to the customer's device. When the customer's device 'sync start' pulse is returned, the operation proceeds to completion. However, it must be realized that the value that is converted is the value that was saved in the flying capacitor at the beginning of the relay multiplexer operation. The 'sync start' pulse must be returned within 330 milliseconds to assure no more than 0.01% error due to capacitor discharge.
10. The last point of a data table must not be a relay point if one is using random data channel mode with the overlap special feature installed. The last data table entry being a relay point will prevent proper completion of the data channel cycle-steal operation.

Voltage	Limits	Measure
+6	+5.5 to +5.9	LO2H to LO2F
+12	+11.4 to +12.6	LO2J to LO2F
+30	+28.5 to +31.5	LO2R to LO2F
-30	-28.5 to -31.5	LO2P to LO2F

14083 C

1.8.6 Analog Input Repeatability

Repeatability is the ability to consistently repeat a value of digital output for several conversions of a fixed analog input. AI diagnostic programs provide repeatability and accuracy measurements (Figure 1-56).

There are three general areas that can cause repeatability problems: the ADC , the multiplexer, and the input source.

Single Point: If only a single point has repeatability problems, the ADC and multiplexer are usually functioning properly. The cause of the problem is either the individual multiplexer point or the input source. The easiest way to determine the cause is to replace the multiplexer card in the failing circuit. If replacing the multiplexer card does not eliminate the problem, the trouble is probably associated with the input source.

If the input source is suspected of being in error, the calibration source or a short can be applied to the input terminals of the failing circuit to confirm correct operation of the analog input path. The input source can cause repeatability problems if there is a high level of noise or ac common-mode voltage present.

Note: Common-mode voltage and AI repeatability and accuracy specifications are described in the IBM 1800 Data Acquisition and Control System Installation Manual - Physical Planning (see FE Bibliography, 1800 System, Order No. SY26-0560).

In all such cases, the customer should be consulted, as the failure area is not within the customer engineer's responsibility.

The main cause for repeatability problems on solid-state inputs is the voltage source. The most common type of input is an amplifier whose purpose is to provide isolation and signal gain. A limitation with most amplifiers is that they cannot be multiplexed. The multiplexing operation creates transient loading of the amplifier, thus causing the amplifier to become unstable and not settle out in time for the ADC conversion. This type of problem can be corrected by obtaining amplifiers (customer requirement) that meet the specifications covered in the 1800 system physical planning manual.

All Input Points: If all or many of the analog input points fail to meet repeatability specifications, the trouble is usually in the ADC or multiplexer units. Noise induced on the system ground wire causes repeatability problems; refer to the 1800 physical planning manual for proper grounding procedures.

Determine if the ADC is functioning properly. With the input cable removed and the input shorted, check the performance for zero input. With the short removed and the calibration cable attached to the ADC input, check the operation with the plus and minus calibration supply voltages.

> *Expressed as a percentage of ADC
> full scale value

Figure 1-56. AI Repeatability and Accuracy

If the ADC fails to operate properly with the input shorted, short the output of the buffer (or sample-andhold) amplifier. This test, with the input and output of the amplifier shorted, eliminates the amplifier, and the ADC should operate with a repeatability of approximately two digits. This procedure of shorting the input and, if necessary, both the input and output of the buffer or sample and hold amplifier, should isolate the problem area. If the problem is associated with the amplifier or ADC, a complete readjustment (4.14.3) should be attempted before troubleshooting begins.

Multiplexer problems can be diagnosed only after it is determined that the ADC is functioning properly. For multiplexer troubleshooting techniques, see 1.8.3.

1.8.7 Analog Output

Analog output service information is given on system diagram TA002.

1.9 DATA PROCESSING INPUT/OUTPUT

1.9.1 DP I/O Trouble Diagnosis

For locating DP I/O failures, the I/O monitor unit can be used in conjunction with customer programs, diagnostic function tests, or auxiliary exerciser programs for all but the 1816,1053 , and 1627 units. Some functions of the 1816,1053 , and 1627 units can be tested with the I/O monitor unit by using the channel interface.

If the trouble is traced to a DP I/O unit, refer to the FE maintenance manual for that unit to find the correct diagnostic procedure. The 1053/1816 and 2401/2402 can be operated off-line with external service aids (testers).

1.9.2 1442 Card Read Punch

Power-Down Procedure

All cards should be run out of the card read punch before removing power. Removing power from the card read punch when the card punch is loaded with cards results in lacing of a card column.

Chapter 2. Console and Maintenance Features

2.1 PROGRAMMER'S CONSOLE

The programmer's console (Figure 2-1) provides the means for manual control of the processor-controller during troubleshooting or operating phases.

The basic operating features and controls provide the facility to:

1. Start or stop instruction execution.
2. Set up and store data or instructions.
3. Communicate with the program via sense and program switches.
4. Indicate machine conditions and status.
5. Display core storage words and register data.
6. Write or clear storage-protect bits.
7. Initial program load.
8. Trace each instruction.
9. Interrupt the program manually.
10. Control the cycling rate by the run, single-storagecycle, single-instruction, or single-step mode.
11. Clear core storage.
12. Reset all control circuitry.
13. Turn power on and off.

2.1.1 Switches and Message Lamps

There are two rows of pushbutton switches and message lamps. One row is at the top of the console and one row is at the bottom.

Clear Storage

This pushbutton switch has four functions (Figure 2-2). However, none of the four functions can be executed until CLEAR STORAGE (CA151) is held pressed, then START is pressed. This dual action requirement prevents the accidental clearing of storage. Note in Figure 2-2 that each clear-storage function is dependent on the positions of the mode switch and the write-storage-protect-bits switch.

The P-C continuously cycles through all core storage addresses during the clear-storage operation.

Program Load

This pushbutton switch (CA151) is used to load an IPL card (1442) or IPL tape record (1054) into main or auxiliary storage. The IPL card or tape record must contain instructions that will load the remaining cards or tape records, unless the entire program is contained in the IPL card or tape record. (See paragraph 2.2, "Initial Program Load.")

Ready

When on, this lamp (YA141) indicates that power is supplied to all P-C circuits and that the P-C is ready to operate. This
lamp does not indicate the ready status of individual DP I/O units.

On

This pushbutton switch (YA140) is used to power-up the 1800 system. Pressing the on button starts the power-on sequence (1.7 seconds to ready condition) and generates a power-on reset signal.

Off

This pushbutton switch (YA140) is used to power-down the 1800 system. Presssing the off button drops all power in the system with the exception of the $115-\mathrm{Vac}$ convenience outlets, the $24-V a c$ sequencing voltage, and line voltage at the 1053 Printer and 1816 Printer-Keyboard, which have their own power cords.

Power On

This lamp (YA141) is turned on when the on button is pressed. The lamp remains on to indicate that power is delivered to the P-C power supplies and blowers, and to external units that receive their power from the P-C.

Lamp Test

This pushbutton switch (CA151) is pressed to test the operation of all SCRID-actuated lamps (the small, round indicator lamps on the console).

Wait

When on, this lamp (CA151) indicates that the P-C is in either load or display mode, or that it has been halted by a 'wait' instruction.

Run

When on, this lamp (CA151) indicates that the P-C is operating under program control.

Alarm

This lamp (YA141) turns on to indicate that the operations monitor preselected time interval has expired. The lamp remains on until the operations-monitor switch is turned off.

Emergency Pull

This switch (YA140) is for emergency use only. If pulled off, all electrical power (except 24-Vac sequencing voltage) is immediately removed from all system units except the 1053 Printer and 1816 Printer-Keyboard, which have their own power cords.
TODO Data coustrion

Ress register				
1 Registr		-® ©® ©® © ®®		
в ReGIster	© © © © ®® ®®			$\bigcirc(0)_{12}^{13}{ }^{14} \underbrace{15}_{0}$
o REEIITER	(®) © © ®® ®®			
A Relister	© © © ®®®®®		©® ®® ®® ®®	
Data Register	(®) © ©®®®®)	- © ®® ®® ®®		

[17412B]

Figure 2-1. Programmer's Console

Function	Mode Switch	WSPB Switch
1. Store Contents of Data Entry Switches in all Core Storage Locations. Storage-Protect Bits are Removed and Parity is Corrected as Required Because of Bit Removal. If All Data Entry Switches Are Off, Only Parity Bits are Left in Storage.	Run	Yes
2. Store Contents of Data Entry Switches in Each Core Storage Location that is Unprotected. Locations having Protect Bits are Unchanged.	Run	No
3. Clear Storage Protect Bits. All Other Data Remains Unchanged. Parity is Automatically Corrected in Each Word in Storage.	Display	Yes
4. Search for Parity Errors. The P-C Cycles Through Storage Until Stopped by the Stop Key or a Parity Error. The Check Stop Switch Must be on for a Parity Error to Cause a Stop.	Display	No

Figure 2-2. Clear Storage Functions

To reset the switch after it has been pulled off, it is necessary to open the panel and remove the plastic console cover to gain access to the spring in the rear of the switch that locks it in the off position.

Console Interrupt

This pushbutton switch (CA151) enables the operator to interrupt P-C operation. The console interrupt level is assigned by the customer. The program switches may be used in conjunction with the console-interrupt switch to specify the console interrupt routine. However, this relationship between the program switches and the console interrupt switch exists only by virtue of the program.

Load I

This pushbutton switch (CA111) is used with the mode switch in the load position to transfer the contents of the data-entry switches into the I-register. The P-C is in the stopped condition when it terminates the load-I operation.

Reset

This pushbutton switch (CA151) is used to reset all basic timing, controls, registers (except index registers and address registers), and I/O devices (except DI and DAO registers). The interrupt-mask register is reset with all bits on. The reset switch is active only when the P-C is stopped (not run).

Immediate Stop

This pushbutton switch (CA151) stops the P-C at the end of the $2,2.25$ or 4μ s core storage cycle in operation when the immediate-stop contacts close.

All basic timing, controls, registers (except index registers and address registers), and I/O devices (except DI and DAO registers) are reset. The immediate-stop switch also ends data-channel (cycle-stealing) operation.

Start

This pushbutton switch (CA151) initiates P-C operation as specified by the mode switch.

Stop

This pushbutton switch (CA111) stops the P-C (T-clock) at the end of the instruction in operation. Cycle-steal operations (X-clock) are not affected.

If, at the same time the stop key is pressed, an interrupt occurs that can force a BSI (i.e., on an unmasked level higher than any in progress), the stop key must be pressed again to be effective. Pressing the start key causes the program to resume operation.

Mode Switch

This eight-position rotary switch (CA111) is used with the start key to extend operator control of the P-C.

Single Instruction with Cycle Steal (SI W/CS): A start key depression with the mode switch on SI W/CS causes the execution of one instruction. Data-channel operations can occur in this mode.

Note: Parity checks may occur during cycle steal cycles on 4 microsecond systems when operating in SI W/CS mode.

Single Instruction (SI): A start key depression with the mode switch on SI causes the execution of one instruction. Data-channel operations are prevented.

Single Storage Cycle (SSC): A start key depression with the mode switch on SSC causes one core storage cycle ($2 \mu \mathrm{~s}$, $2.25 \mu \mathrm{~s}$ or $4 \mu \mathrm{~s}$). Single-storage-cycle operations can be used in conjunction with the cycle lights to step through instructions and to analyze P-C operation.

Data-channel operations are prevented in this mode.

Single Step (SS): In this mode, each depression of the start key advances the T-clock (or X-clock) one step. (T1 and X1 are two steps long when an 1803 is attached.) One depression of the start key is required for each extended T-7 time. (See "Indicator Lamps, Clock.")

Once single-stepping has begun, the clock cycle should be stepped past T4 or X4 time before pressing the reset key or switching out of SS mode.

The SS mode is normally used with direct program control. This mode can be used with data channel operations; however, data overruns can usually be expected.

Run: A start key depression with the mode switch on run initiates normal program operation of the P-C.

Trace: This position of the mode switch causes a trace interrupt after the execution of each instruction (except XIO).

The trace interrupt is a unique interrupt. It has no device status word and no interrupt level status word, and it cannot be masked. The trace interrupt is the lowest priority customer interrupt. Once initiated, it is delayed by the occurrence of any other interrupt. It cannot occur while other interrupts are being serviced. When the trace interrupt occurs, the P-C executes the forced BSI and branches to the routine whose address is stored at /0009.

Data-channel operations can occur in trace mode.
Load: A start key depression with the mode switch on load causes the contents of the data-entry switches to be stored at the address specified by the I-register. (The P-C must be in a stopped condition.) The I-register is incremented following each load operation caused by pressing the start key.

A load-I key depression with the mode switch on load causes the contents of the data-entry switches to be stored in the I-register.

Data-channel operations are prevented in load mode.
Display: A start key depression with the mode switch on display causes the data at the I-register address to be displayed in the console B-register lights. The I-register is incremented after each display. Successive words are displayed with successive depressions of the start key.

Data-channel operations are prevented in display mode.

2.1.2 Toggle Switches

Sense and Program

The contents of these eight switches (CA221) may be stored in bit positions 0-7 of the A-register or a core storage location. An XIO instruction with a function of 'read' stores the contents of the sense and program switches at the core storage address specified by the IOCC. A function of 'sense device' stores the switch data in the A-register.

Operations Monitor

This switch (CA151) is used to start the operations monitor. The off position disables the operations monitor.

Disable Interrupt

This switch (CA151) is used to suspend all interrupts, including internal errors. While the switch is on, any interrupt that is not masked will latch its 'level' flip-flop in the normal manner, but the active output of the flip-flop will be inhibited. When the switch is turned off, the latched interrupts will be serviced on a priority basis.

Check Stop

When the check-stop switch (CA151) is on, the P-C program will be stopped by any of the following internal errors: invalid operation, B-reg parity error, or storage-protect violation. Each of these errors turns on an associated indicator (red lamp) on the console.

The stop occurs at the end of the core storage cycle in which the error is detected. All operations, including cyclestealing, are suspended during the check-stop. START must be pressed to restart the system; reset is not necessary. (A check-stop can also be activated via the I/O channel wired interface when the I / O monitor unit is used to trap data. See paragraph 2.11.1.)

The check-stop switch can be used during a clear-storage operation to stop the P-C if a B-reg parity error is detected.

(See Figure 2-2.)

When the check-stop switch is off, and the disable-interrupt switch is off, an internal error will cause an internallevel interrupt except on data transfer cycles. (See Figure 1-20.) The P-C program continues to run, and the internal ILSW indicates to the program the cause of the interrupt.

Note in Figure 1-20 that the check-stop switch has no control over the functions of a CAR-check error.

Write Storage Protect Bits

This switch (CA151) enables the writing or clearing of stor-age-protect bits using the 'store status' instruction or the clear-storage pushbutton (Figure 2-2). This switch must not be operated while the P-C is running or a parity error may result.

Data Entry Switches

The contents of these 16 toggle switches (CA211) can be stored by either manual or program control. Manual control is described under "Mode Switch, Load." Program control requires an XIO (area 0), 'read' or 'sense device' instruction (Figure 1-13, Part 1).

2.1.3 Indicator Lamps

These lamps show the status of significant controls and indicators in the P-C.

Arithmetic Control (ARITH CTL)

On during arithmetic operations (CB511), including effective address generation. Driven by 'arithmetic control’ flip-flop.

Shift Control (SHIFT CTL)

On during shift operations (CB511).

Add

On during add operations (CB511). Driven by ‘add' flipflop. Subtract operations are indicated by the ARITH CTL lamp being on and the add lamp being off.

Arithmetic Sign (ARITH SIGN)

On when bit position 0 in the A-register does not initially equal bit position 0 in the B-register (CB511).

Zero Remainder (ZERO REM)

On when the A-register contains a zero balance during a divide operation (CB511).

Branch

On during extended T7 time of a branch instruction (CB511).

Storage Protect Bit (STOR PROT BIT)

On when a storage-protect bit is transferred with the 16 data bits between the B-register and core storage (CB511).

Parity Bit (PTY BIT)

On when a parity bit is transferred with the 16 data bits between the B-Register and core storage (CB511).

Interrupt Service (INTR SERV)

Turned on when any interrupt level is active (CB521).

Cycle Steal Service (CS SER V)

On when any cycle-steal level is active (CB521).

Auxiliary Storage (AUX STOR)

On when auxiliary storage is being used (CB521).

Op Code Check

Turned on when an invalid op code is placed in the op register. The op-code-check indicator (CB521) is turned off and the check indicator is turned on (internal interrupt) at the end of the cycle in which the error is sensed, allowing the op-code-check indicator to indicate any subsequent error.

Storage Protect Check (STOR PROT CHECK)

Turned on when an attempt is made to write into a storageprotected location, except location $/ 000 \mathrm{~A}$ in conjunction with a CE interrupt, or locations /0004, /0005, and /0006 during interval timer updating.

The storage-protect-check indicator (CB521) is turned off and the check indicator is turned on (internal interrupt) at the end of the cycle in which the error is sensed. This is to allow the storage-protect-check indicator to indicate any subsequent storage-protect error.

Parity Check (PTY CHECK)

Turned on when a parity error (even number of bits) is detected in the 18 -bit word transfer between the B-register and core storage. The presence or absence of storage-protect and parity bits in each word is indicated by their respective console indicators.

The parity-check console indicator (CB521) is turned off and the check indicator is turned on (internal interrupt) at the end of the cycle in which the error is sensed, allowing the parity-check indicator to indicate any subsequent parity error.

Clock

These eight lamps ($0-7$, shown on CB631) indicate the status of the T-clock or X-clock. Normally used during start-key depressions when the mode switch is on single-step (SS).

Cycle

These five lamps (I1, I2, IA, E, and E1, shown on CB651) indicate the progress of an instruction that is being singlestepped (SS mode) or single-cycled (SSC mode).

Timers

These three lamps (A, B, and C, shown on CB651) indicate the status of their respective interval timers. An on condition indicates that the timer is in operation.

Interrupt Levels

An interrupt-level indicator (CB681) is turned on for each interrupt level requesting service or being serviced. Once on, an interrupt-level indicator can be reset by either of two instructions:

1. A 'mask' instruction that is executed before servicing of the interrupt begins. (The interrupt request is not lost but merely detained until the interrupt level is unmasked, at which time the indicator is turned back on. The only exception to this is 'programmed interrupt.')
2. A 'branch out of interrupt' (BOSC) instruction is executed to complete servicing of the interrupt.

Both of the above instructions are quasi-instructions; that is, they are variations of the XIO and BSC instructions.

The last three interrupt-level indicators - CE, trace, and check (internal interrupt) - cannot be masked. The CE interrupt (2.7) can be initiated only from the P-C monitor interface panel or from a device operating in CE mode.

Operation Code (OP CODE)

These five lamps ($0-4$, shown on CB751) display the op code of each instruction.

Format (F)

On when a two-word instruction is specified (CB751).

Tag

These two lamps indicate the register (XR-1, XR-2, XR-3, or I-register) specified in the instruction. (See Figures 1-1 1-2 and page CB751.)

Indirect Addressing (IA)

On when there is a bit in position 8 of the long-format instruction, which indicates indirect addressing. (See Figure $1-2$ and page CB751.)

Branch Out (BO)

On when there is a bit in position 9 of the instruction. In a BSC instruction, this bit specifies a 'branch out of interrupt' (BOSC). (See Figure 1-2 and page CB751.)

Carry (CAR)

On when there is a carry condition in the A-register (CB751).

Overflow (OFLO)

On when an overflow occurs in the A-register (CB751).

2.1.4 Register Display Lamps and Switches

Six rows of indicators and two rotary switches facilitate the display of data registers in the P-C.

Address Register

These 16 lamps (CB781) display the contents of the storageaddress register (M-register) or one of the channel-address registers, depending on the position of the display-address rotary switch. The selected register is displayed each time the P-C comes to a stop or wait condition.

Note: Under certain conditions, a channel address register may be displayed while the display-address rotary switch is in the SAR position. See "Effect of Cycle-Stealing on SAR Display Lamps" (1.7.1).

Display Address Register Switch

This 10- or 16-position rotary switch (CA111) is used to select the storage-address register (M-register) or a channeladdress register for display in the address-register lamps.

Permanent Register Displays: I (CB821), B (CB861), D (CB901), and A (CB941)

The contents of these four registers are always displayed.

Data Register

These 16 lamps (CB981) are driven directly from the A-regis-ter-in bus. Each time the P-C is stopped at the end of a cycle (T-7 end-op or X-7 time), the lamps display the contents of the register selected by the display-data register rotary switch. In single-step mode, the lamps display the data that is present on the A-register in bus at each step of the cycle in progress.

Display Data Register Switch

This five-position rotary switch (CA111) is used to select the Q-register, an index register, or the shift counter for display in the data-register lamps. (See "Data Register.")

2.2 INITIAL PROGRAM LOAD (IPL)

In the 1800 system, the first 1442 Card Read Punch is always wired as the IPL device. If there is no 1442 in the system, the 1054 Paper Tape Reader is wired as the IPL device.

The IPL program can be loaded into either main storage or auxiliary storage, depending upon the position of the forceauxiliary switch on the P-C monitor interface panel (2.5.2).

2.2.1 1442 Standard IPL Procedure

When the 1442 is used for initial program load, it operates in packed mode, reading the 80 columns of the first card into the first 40 core storage locations (/0000/0027). Each core storage location stores the binary data from two card columns. For example, binary data from card column 1 (rows 12-5) is read into bit positions $8-15$ or core storage location $/ 0000$ and binary data from card column 2 (rows $12-5$) is read into bit positions $0-7$ of the same core storage location. Rows 6-9 of the card are not read into core storage.

The remainder of the first card is entered in the same manner, entering all odd numbered card columns into bit positions 8-15 of their respective core storage locations, and entering all even numbered card columns into bit positions $0-7$ of their respective core storage locations.

1. Place program deck in 1442 hopper and press 1442 start key to cause a run-in cycle.
2. Press RESET on P-C console.
3. Set console mode switch to RUN (or SI W/CS) and press PROGRAM LOAD.

After the first card is read into core storage, the P-C begins (at /0000) executing the instructions that were stored from the first card if in run mode. The first card must contain instructions to load the remainder of the program cards.

2.2.2 1054 Standard IPL Procedure

When the 1054 Paper Tape Reader is used for initial program load, tape data is loaded into core storage, starting at location / 0000 and loading successively higher core storage locations until an end-of-record punch is sensed in the tape. Each core storage location stores the binary data from four tape characters. For example, binary data from the first tape character (channels 4-1) is stored in bit positions $0-3$ of core storage location / 0000 and binary data from the fourth tape character (channels 4-1) is stored in bit positions 12-15 of core storage location /0000. Channels 5-8 of the paper tape are not loaded into core storage during initial program load.

The remainder of the tape data is entered in the same manner (four characters per word) until a channel-5 punch is sensed (any channel-5 punch except when it is in a delete character). The channel-5 punch is the end-of-record character and is not read into core storage. An entire program may be loaded from paper tape in IPL mode.

Interrupt requests from the 1054 are suppressed while in IPL mode.

1. Load IPL tape.
2. Press RESET on P-C console.
3. Set console mode switch to RUN and press PROGRAM LOAD.

After the IPL tape record is read into core storage, the P-C begins (at /0000) executing the instructions that were stored in IPL mode. If the entire program was not included in the IPL tape record, the IPL record must contain instructions for loading the remainder of the tape records (program).

2.2.3 IPL into Any Core Location

In IPL mode, the I-register setting specifies the starting address for the program-load operation. When the console reset key is pressed, the I-register is reset to address $/ 0000$. However, the contents of the I-register can be set to any desired starting address before loading the program. This choice of starting address makes it possible to load a small program, one that uses displacement addressing exclusively, into an area of core storage without disturbing the contents of the normal IPL area.

Method 1 -- Loading But Not Executing the Program

1. Insert IPL-type program into IPL device and ready device.
2. Press RESET on P-C console.
3. Set I-register to desired load address.
4. Set console mode switch to SI and press PROGRAM LOAD. The program will IPL into the location specified by the I-register and then will stop.

Method 2 -- Loading and Executing the Program

1. Insert IPL-type program into IPL device and ready device.
2. Record contents of core locations /0000 and /0001, then load /4C00 into location / 0000 .
3. Load desired IPL load address into location /0001.
4. Press RESET on P-C console.
5. Set I-register to desired load address.
6. Set console mode switch to RUN and press PROGRAM LOAD. The program will IPL into the location specified by the I-register and then will branch to / 0000 for its first instruction, which is a BSC to the loaded program whose address is in location 0001.
7. Restore contents of locations / 0000 and /0001 recorded in step 2.

2.3 ERROR CHECK CIRCUITS

Within the processor-controller, all data is parity checked as it is written from the B-reg to storage. The P-C also checks for invalid operation codes appearing in the op-code register, and it checks for an attempt to write into a storage-protected position of core storage.

Channel address register (CAR) checking is provided to ensure that the first word addressed by a selected CAR is the first word of the correct data table.

A CAR check is made for all devices after the address from the IOCC word is transferred to the selected CAR. During the E2 data cycle, a bit-by-bit comparison is made between the contents of the selected CAR (channel address bus) and the contents of the B-register (channel data bus). If any of the corresponding bits are not equal, a CAR check error has occurred. This E2-cycle CAR check error terminates subsequent cycle-steal requests for the assigned I/O device and initiates an internal interrupt. The I/O device cannot request a cycle steal until the interrupt level status word for the internal interrupt is sensed and the I/O device is reinitialized by another XIO instruction.

Another CAR check is made for chaining each time the I/O device chains to a different data table. The CAR check at the beginning of the second data table and all subsequent data tables in the chain is accomplished as follows: The first word of the data table (second data table, third data table, etc.) must contain its own address. After the first word of the data table is addressed and loaded into the B-register, a bit-by-bit comparison is made between the contents of the selected CAR (channel address bus) and the contents of the B-register (channel data bus). If any of the corresponding bits are not equal, a chaining CAR check error has occurred. Subsequent cycle-steal requests are terminated and a bit is set in the DSW of the device.

The action taken by the processor-controller when an internal error is detected depends on the type of error and the position of the check-stop switch. (See Figure 1-20).

The B-reg parity error, storage-protect violation, and CAR-check error are sent to each I/O adapter via the out bus. If one of these errors occurs while a device is selected, the I/O adapter may take one or more of the following actions:

1. Initialize a device interrupt.
2. Reject the command.
3. Ignore the data.
4. Indicate the error in the device status word.

The I/O adapters also contain checking circuits. The outputs of these circuits are the sensed indicators which make up the device status word. The DSW, through proper programming, can be used to identify the type of error and to guide corrective action in the operating program. The DSW can also be used to log errors during customer run time for later analysis by the customer engineer.

The device status word indicates three types of information: (1) error or exception interrupts, (2) normal data or service interrupts, and (3) routine status. By means of the I/O monitor (2.11.1) these signals can be displayed and identified.

Error check analysis diagrams (ECAD) are provided in the maintenance diagram manual to assist in tracing errors to their source.

2.4 MAINTENANCE DIAGNOSTIC PROGRAMS

The maintenance program system was developed to test, as completely as possible, all machine functions - including data transfer, checking circuits, timings, adjustments, and I/O interaction. In addition, the programs provide fault detection, degrees of localization, and indications of machine status to assist the CE in diagnosing troubles rapidly.

The maintenance programs are provided on cards and paper tape and are fully documented in the diagnostic program manuals provided with the system.

Note: The MPX on-line diagnostics are described in 1800 Service Aid 138 and in the 1800 Multiprogramming Executive Operating System Programmer's Guide, Order No. GC26-3720.

2.4.1 Program Tests

The following types of maintenance programs are available for the 1800 system:

1. Basic non-monitor programs.
2. Monitor-controlled programs.
3. Auxiliary exercisers.
4. I/O scope routines.
5. Non-monitor timing programs.
6. Utility programs.
7. Disk maintenance library.
8. RPQ monitor-controlled programs.

Basic Non-Monitor Programs

These programs include the monitor header and basic CPU programs (interrupt, interval timer, core, $\mathrm{P}-\mathrm{C}$ function test, etc.). The monitor header program is used for initial checkout to verify correct operation of the processor-controller.

Monitor-Controlled I/O Function Tests

These tests operate under control of the diagnostic monitor and may be overlapped. Errors are indicated by error messages printed out on the assigned monitor logging device (1443, 1816, or 1053).

Programs can be run one at a time, run in a predetermined sequence, or run simultaneously in any combination, except as limited by core size. Program selection is via the data-entry switches on the console.

The monitor program controls the I/O function tests and incorporates the functions of housekeeping, program loading and execution, interrupt handling, error handling, and customer engineer communication, such as printouts.

A brief description summarizing the objectives of each program is contained in the "System Summary" part of the diagnostic test documentation.

Auxiliary Storage Programs or Exercisers

These programs allow DP I/O device functions to be exercised with minimum interference or dependence on the operating program. The auxiliary programs can be loaded and run from auxiliary storage concurrently with customer operation.

The auxiliary storage loading operation requires a resident loader which can be reloaded if necessary by the CE, but not concurrently with customer operation.

I/O Scope Routines

These are a series of one-card programs that provide the customer engineer with the ability to exercise all DP and process I/O devices with simplified routines. These programs are easily modified when desired and are fully documented with descriptions, flow charts, listings, and service hints.

Timing Programs

These are special purpose input/output programs, each of which is designed to measure some specific parameter, such as the length of inter-record gap, or to facilitate the manual adjustment of mechanical clearance, linkage, speed, etc.

CE Utility Programs

A comprehensive package of utility programs is provided specifically for the customer engineer. These programs include: one-card hex loader, hex dump (core), punch IPL
card, 1053 Dump (core), $80-80$ reproduce, $80-80$ aux list (aux program to list cards on 1443), and trace-address stop. The utility programs do not provide any testing function in themselves.

Disk Maintenance Library (DIMAL)

On systems with an 1810A only, the DIMAL system generates a disk maintenance library of diagnostic function tests for the 1800 system and provides a method of bringing these tests into core storage for program execution.

The DIMAL system performs the following functions:

1. Loads monitor and non-monitor programs onto the CE disk.
2. Loads selected programs from disk storage into core storage and executes the programs.
3. Makes edit changes.
4. Lists edit table and program directory.

RPQ Monitor - Controlled Programs

The RPQ monitor and associated programs are shipped with all RPQ systems. The programs provide the capability of running RPQ features in overlap mode with all standard system features and I/O devices. The package consists of basic exerciser programs and provides ease of operation (simple printouts). All cards are in hex format, providing ease in program modification and ability to run CE-originated programs under RPQ monitor control.

The RPQ monitor can also be useful on non-RPQ systems. The RPQ monitor package can be obtained by ordering B/M 2147778.

2.4.2 Documentation

The documentation provided for the maintenance program system is contained in two parts.

Program Description

The purpose, requirements, operating parameters, and operating instructions for each of the programs are given in the section titled "System Summary." The basic operating instructions for each program are summarized in the section titled "Operation Summary." Both sections are arranged by PID (program identification) number.

Program Listings

The listings are written in the standard assembler program format and include comments, explanations, and detailed descriptions to help the CE understand and follow the program operation.

2.4.3 Diagnostic Approach

When a trouble is reported in some area of the system, the available programs to test that area can be found in the "System Summary" section of the documentation.

If the failure is in a DP I/O device that the customer does not need while he is running his process, and the customer wishes to continue running the process, the auxiliary program should be used if one is available for that device.

If auxiliary storage is not to be used, select the simplest program that will provide the desired diagnostic or exerciser functions.

CAUTION

Before testing digital and analog output functions, take necessary precautions to ensure that the tests will not interfere with the customer's process.

Since all I/O programs assume that the processor-controller is working properly, whenever the monitor program is to be used, it should be preceded by a test using the basic loader and the monitor header programs to verify correct functioning of the P-C.

When a program is selected for use, a summary of its function can be found in the "Operation Summary" section of the documentation. More detailed information can be obtained by referring to the program write-ups that accompany the program listings.

2.5 I/O MONITOR INTERFACE PANELS

The I/O monitor interface panels are provided for Field Engineering use in servicing the 1800 system. The interface panel in the 1801 or 1802 Processor-Controller is shown in Figure 2-3. It contains manual controls and signal interface connections to permit the use of the various diagnostic facilities. Interface panels are also provided in the 1826 Data Adapter Unit (for AI expander and System/360 adapter) and in the 1810 Disk Storage; however, these panels contain only the requisite interface connectors and no controls.

2.5.1 Interface Connectors

Each interface panel contains a power connector (except 1826-2) and signal connectors for attachment of the I/O monitor unit (paragraph 2.11.1). The power connector delivers SLT voltages and ground to the monitor. Each device attachment that employs the I/O monitor unit provides three signal connectors (A, B, and C) on the interface panel. The following device attachments are monitored via signal connectors on the 1801 or 1802 interface panel:

I/O channel
Analog input
Digital and analog output
Digital input
1443 Printer
1054/1055 Paper Tape
1442 Card Read Punch
2401/2402 Tape Control Unit

Figure 2-3. I/O Monitor Interface Panel 1801/1802

The signal selection capability of the I/O channel interface makes it possible to use the I/O monitor unit with the 1816,1053 , or 1627.

The 1810 Disk Storage attachment circuits are monitored from the signal connector panel in the 1810. A power connector is provided, and one set of signal connectors (A, B, and C) is provided for each single disk storage. Thus, an 1810 may have one, two or three sets of signal connectors depending upon the model (A1, A2, A3, B1, B2, or B3).

The 1826 Data Adapter Unit includes monitor connections for the AI expander, System/360 adapter, selector channel, or communications adapter if these features are installed. These features are monitored from panel "P" in the 1826 (system diagram YB650). The panel contains one power connector and sets of signal connectors (A, B, and C) for each adapter.

The signal interface lines on the various I/O monitor interface panels provide a convenient means of delivering prime test point data to the I/O monitor unit from the device under test. Some devices also receive manual control signals from the monitor via the signal interface lines.

2.5.2 Functions of Switches -- 1801/1802 Interface Panel

Force Auxiliary On/Off: This toggle switch (number 9, CA311) is set to the on position to initially load (from card or paper tape into auxiliary storage) a resident loader program for diagnostic routines. The entire processor-controller
is used, but main core storage cannot be addressed. After the loader program is in auxiliary storage, the switch is turned off and the manual CE interrupt is used to load the diagnostic program into auxiliary storage.

Use Meter Switch: In the customer position, this keyoperated switch (CA311) enables the use meters in DP I/O equipment. In the CE position, this switch disables all use meters.

The switch must be in the CE position whenever a DP I/O device is being serviced, unless CE mode is utilized. (See paragraph 2.8.)

Interrupt to Auxiliary/Main Storage: In the auxiliary position, this toggle switch (number 10 on CA311) will cause a CE interrupt branch vector into auxiliary storage address /0001. The return address is stored in 000A of main storage. In the main-storage position, this switch will cause a CE interrupt branch vector into main storage address $/ 0001$. The return address is stored in $/ 000 \mathrm{~A}$ of main storage.

CE Level Interrupt: This pushbutton switch (CA311) causes a CE interrupt into auxiliary storage or main storage, depending upon the position of the interrupt-to-auxiliary/ main-storage switch.

DC Circuit Breaker Trip: This lamp (YA145) turns on if an overcurrent CB trips in any MPS (medium power standard)
power supply in the $1801 / 1802$ or 1826 . The +48 V supply and the power-failure-protect supply are not MPS power supplies and have no circuit breakers.

CE Sense Switches: These eight toggle switches (CA311) are used to direct diagnostic exercises in conjunction with sense and program switches on the programmer's console. On a 'read' command or 'sense device' command, the information contained in the CE sense switches is placed in bit positions 8 through 15 of the data word, and the information contained in the sense and program switches is placed in positions 0 through 7.

Operations Monitor: This rotary switch (CA321) is used to select one of six time intervals ($5,10,15,20,25,30$ seconds) by which to check P-C operations. Once the operations monitor is activated by the switch on the programmer's console, an 'XIO control' instruction (reset timer) must be executed during programmed operations at appropriate intervals to prevent timing out. If the reset command is not given during the selected time interval, the timer expires and the alarm circuit is activated. Timeout can also be caused by a power failure, program hangup, looping, or departure from predicated sequence.

2.6 AUXILIARY STORAGE

Auxiliary storage provides the capability of removing a DP I/O device from control of the customer's program for the purpose of operating the device with an exerciser program. The auxiliary storage program, plus the resident loader and any required control, are limited to 256 words. These short exerciser routines can be loaded and run from auxiliary storage concurrently with the customer's program in main storage.

The loader program for the exerciser is entered into auxiliary storage from the card or paper tape IPL device (2.2) by means of the force-auxiliary switch on the I/O monitor interface panel. Thereafter, auxiliary storage is entered by means of a CE interrupt with the interrupt-to-auxiliary main-storage switch in the auxiliary position. The CE interrupt may be initiated from the CE level interrupt switch or from the I/O device attachment operating in CE mode. The CE interrupt is serviced in auxiliary storage by the exerciser program; then control is returned to the main program by an indirect BOSC (branch out) instruction.

No interrupt polling takes place while operating in auxiliary storage; therefore, only internal interrupts can occur until after exiting auxiliary storage.

Note: If an internal interrupt occurs while in aux storage, the CE interrupt level will be reset and the system will branch to the main storage internal interrupt routine. Upon completion of the routine, instead of returning to the aux storage address in use at the time of the internal
interrupt, a BOSC indirect instruction will branch to the corresponding main storage address. Thus, any program that branches out of an internal interrupt routine will return to an address undefined by the program if the interrupt routine was entered from aux storage.

When a data channel operation is initiated in auxiliary storage, an additional CAR register flip-flop is set along with the CAR register. There is an auxiliary CAR bit for each CAR register, and when cycle stealing occurs, this auxiliary CAR bit controls cycle stealing into auxiliary storage. Thus, cycle stealing into auxiliary storage can occur during the main program, and cycle-stealing into main storage can occur during the auxiliary program.

2.7 CE INTERRUPT

The CE interrupt is used specifically for calling diagnostic routines in either auxiliary storage or main storage.

There are two ways that a CE interrupt can be initiated:

1. Depressing the CE-level-interrupt pushbutton on the I/O monitor interface panel.
2. A device previously placed in CE mode has been selected and is attempting its normal interrupt.

The CE interrupt is on the lowest priority level in the system and does not respond to a sense-interrupt command. The CE interrupt is not program maskable; however, all interrupts can be suppressed by the disable-interrupt switch on the programmer's console.

The CE interrupt entry differs from the normal interrupt in the following ways:

1. The program will branch to location / 0001 in either main or auxiliary storage, as determined by the setting of the interrupt-to-auxiliary/main-storage switch.
2. The return address (for the mainline program) is stored in location / 000 A of main storage regardless of the setting of the interrupt-to-auxiliary/main-storage switch.

2.8 CE MODE

The CE mode of operation allows a DP I/O device to be serviced on-line with minimum interference with the customer's program. While in CE mode, the device will place its interrupt request on the CE interrupt level and not on its regularly assigned level. No provision is made for operating the process I/O features or the tape control unit in CE mode.

A device must be placed in CE mode for proper operation with the exerciser program in auxiliary storage. The device is placed in CE mode, usually at the start of the auxiliary
program, by executing a special XIO instruction. The IOCC contains the device area code, a function code of 000 , and modifier bit $15=1$. The device is removed from CE mode by the same instruction with modifier bit 15=0.

Modifier bits 11 through 14 are used only for 1816 and 1053 selection as follows:

Only one device is placed in CE mode at one time.
In addition to placing its interrupt request on the CE interrupt level during CE mode, the device adapter changes its device status word in the following manner:

1. The ready status bit is forced into a "not ready" condition.
2. The busy status bit is forced into a "not busy" condition.

When the device is not in CE mode, the true ready and busy conditions are presented by the standard indicators, and the two special indicators remain off (zero).

The reset key on the programmer's console will remove devices from CE mode.

2.9 PROGRAMMABLE TEST LATCH (CE TEST PULSE)

A programmable test latch (system diagram PC071) provides $\mathrm{a}-12 \mathrm{~V}$ to 0 V signal for use as an external sync or as an impulse to the pulse counters. The test signal is carried on black-and-yellow twisted pair from the DAO basic board to the external-sync terminal block (TB19) in the 1801/1802. The signal is available at TB19-12 and dc common at TB1913.

Test pulses are generated by alternately setting and resetting the test latch with a DAO 'control' command.

Note: The test latch is a feature of DAO basic and requires that the system have DAO capability.

Console reset or power-on reset conditions the test signal to -12 V . The $/ 6401$ command drives the signal to 0 V and the / 6400 command restores it to -12 V . The pulse duration and repetition rate are controlled by the program.

For pulse counter testing, the programmable test signal is used in conjunction with diagnostic program 08C8. After first removing the customer's pulse input, terminals TB19-12 and TB19-13 are jumpered to the desired pulse-counter input terminals on gate R of the 1801 or 1826 . (The analoginput twisted-pair test cable can be used for this purpose.)

Note: The customer shall assume responsibility for disconnecting his terminals.

The test signal is made available at remote 1826 units by jumpering terminals TB19-12 and TB19-13 to the CE phone line (paragraph 2.11.6), then connecting jumpers from the phone line to the pulse-counter input terminals at the remote unit.

2.10 CE CYCLE-STEAL TEST

Provision is made for the CE to selectively test the cyclesteal control circuits with the area-0 programmed interrupt (XIO control function).

The instruction does not set any interrupt level flip-flops but does turn on the 'program interrupt selected' line.

On the XIO data cycle, the 'program interrupt selected' line generates a 'cycle steal request test' signal and a 'cycle steal acknowledge test' signal. The 'cycle steal request test' signal is manually jumpered to the desired 'CS request level'
terminator (system diagram CT971), and the 'cycle steal acknowledge test' signal is manually jumpered to the corresponding 'CS level acknowledge' terminator (system diagram CT971).

The CAR exerciser program 08B5 is designed to be used with the CE cycle-steal test function.

2.11 GENERAL TEST EQUIPMENT

A list of tools and test equipment necessary to service the 1800 Data Acquisition and Control System is given in the Appendix.

2.11.1 I/O Monitor Unit

The I/O monitor unit is a service tool capable of displaying the status of registers, latches, and control signals in I/O device attachments while the I/O device is stopped or in operation.

Information concerning the I/O monitor unit is in the Field Engineering Theory-Maintenance Manual, IBM 1800 Data Acquisition and Control System, I/O Monitor Unit (See FE Bibliography -- 1800 System, Order No. SY26-0550.)

2.11.2 Oscilloscope

The scope used on the 1800 system should meet or exceed the specifications of the Tektronix Model 453 Oscilloscope.

2.11.3 CE Indicator Latch Card (P/N 5801358)

An optional CE indicator latch card (Figure 2-4) is available from Mechanicsburg as a troubleshooting aid for SLT machines. Thirty-three inch jumpers ($\mathrm{P} / \mathrm{N} 4203785$) with SLT connectors for use with the latch card and replacement lamp assembly ($\mathrm{P} / \mathrm{N} 5711078$) are also available as needed.

The CE latch is a 2-12 SLT card which plugs into the pin side of the SLT board. It can be plugged into any two vertically adjacent locations except edge connectors. The card is intended for use in socket locations with no discrete wiring; however, with care, it can be used in socket locations with no more than one discrete wire wrap on any pin. If the card is left on the SLT board for extended lengths of time, normal machine vibrations may cause it to work out on the pins and lose contact.

Plugging the card into the board provides voltages (+3 , $-3,+6)$ and ground only. The card was designed for use with medium- and high-speed SLT circuits which require +3 volts on pin D03.

CAUTION

Slow-speed circuits have +12 volts on pin D03. If there is any doubt, measure pin D03 with a voltmeter or scope.

The card must be plugged in with the lamp on top and the modules on the right. If the card is
plugged in upside down or in the card side of the board, circuit damage may result.

The card extends far enough to cause damage if gates are closed with card installed.

16240
Figure 2-4. CE Indicator Latch Card

The CE latch has an indicator bulb, a reset switch, a reset line, plus and minus sync points for scope triggering, and two five-legged AND blocks ORed to turn on the latch. Inputs are brought to the card by jumpers.

Note: If only one input to an AND block is to be used, it must go to the high-impedance input. If two or more inputs are used, one must go to the high-impedance input. These high-impedance inputs are so designed that the CE latch is not set if the input is floating.

The CE latch can be used in a variety of ways. Some of them, with examples, are listed below.

1. Baby Sitter: To find out if several inputs are all plus at the same time, plug the card into the pin side of the SLT board and jumper the suspected lines to one of the AND blocks. Be sure that one of the jumpers goes to the high-impedance input. If all the lines go plus together, the latch will turn on and light the indicator. Reset the latch by pressing the reset button on the card.
2. Meter or Scope Substitute: A scope may show a line at or near ground level which may or may not be floating. Jumper the line to the appropriate highimpedance input. If the line is floating, the latch will not set. If the line is not floating, the latch will set.
3. One-Time Pulse Detection: If a line should not change during a particular sequence of events, jumper the line to the appropriate high-impedance input. For example, if the line is plus and should never go minus, jumper it to the minus high-impedance input. If the line changed value or had a pulse on it, the latch will turn on.
4. Scope Sync Point: The necessary signal lines for the syncing condition can be jumpered to one of the AND blocks. Jumper a reset signal, such as a clock pulse, to the reset line on the card. The latch will then turn on with the ANDing conditions and turn off under control of the reset line, furnishing a stable sync point. The scope sync lead is plugged into the plus or minus sync point on the latch card.
5. Temporary Fix: Turn the latch on and reset as described in item 4. Use either the plus or minus sync output to condition circuit requiring the temporary fix.

2.11.4 Extender Card

Having available logic blocks to develop sync signals etc. is often helpful in servicing the 1800 system. The extender card (Fig. 2-5) is used to connect spare SLT cards to the pin side of an SLT board.

Use jumper wires to connect signals to the input pins of the spare card. The output pins make the newly developed signal available for use with the CE indicator card (2.11.3), I/O monitor (2.11.1), oscilloscope, etc. Use any spare SLT card that contains the desired functions; two extender cards are needed to connect a double SLT card. Four common SLT cards and their input and output pins are shown in Figure 2-6.

Part numbers:

> Extender card - 5808354
> Jumper 15" -2197864
> Jumper 36" -2200079

CAUTION

Exercise care to ensure proper orientation of extender card and spare SLT card (Figure 2-5).

The CE indicator latch card must not be plugged into the extender card. The voltage pins on the CE latch card are only oriented for SLT backpanel plugging.

Do not plug the extender card into a cable connector position on the SLT board as the proper voltages are not present.

2.11.5 Seven-Position Binary Counter

Intermittent errors may be simplified or localized by means of this counter. Sequential movements of clocks or rings or the logical progression of an adapter can be studied by this method of diagnosis.

As an example, Figure $2-7$ shows the necessary connections to determine the failing column on a 1442 data error problem. Because the counter starts at 0 and the card columns are numbered from 1, the number of the failing column will be one more than the accumulated count.

Figure 2-5. Extender Card

- Figure 2-6. Common SLT Cards

Part numbers:

AND/OR card	-5800000
Seven-position binary counter	-5803793
Light indicator card	-5803975

2.11.6 Remote Switch Box

The remote switch box ($\mathrm{P} / \mathrm{N} 2105671$) permits limited control of the processor-controller from remote locations. The switch box is provided with a 30 -foot cable that can be connected to the $1801 / 1802,1826-1$, or $1828-1$. The $1826-1$ and and the 1828-1 are free-standing units that can be located at distances up to 100 feet from the processor-controller.

The remote switch box contains four control keys: start, stop, immediate stop (causes dc reset), and CE interrupt. These keys perform the same functions as do their counterparts in the 1801/1802.

Cable connections for the remote start circuit are shown in Figure 2-8. Connections for the stop and CE interrupt are similar. The immediate-stop circuit uses only the normally open and common connections.

Three connectors, A, B, and C, are provided on the 1801/ 1802 power tailgate. The connectors are wired in parallel and can be used interchangeably. Cables to the remote units are normally plugged into connectors A and C , and a shorting plug is placed in connector B. At each remote location, two interchangeable connectors are provided to receive the cable from the 1801/1802 and the cable from the remote switch box.

To use the remote switch box, the shorting plug is removed and the remote switch box is plugged into the available connector at the 1826-1 or 1828-1, or it may be plugged into the 1801/1802 connector vacated by the shorting plug.

The remote switch box cable must be disconnected when it is not being used, and the shorting plug must be replaced in the 1801/1802 connector.

CAUTION

The processor-controller switches that are duplicated by the remote switch box should not be used when the remote box is connected, as their operation will be unpredictable.

CE Phone Line

A two-conductor phone line is included in the signal cable to the remote switch box connectors. The line is terminated at phone jacks adjacent to the remote switch box connectors in the 1801/1802, 1826-1, and 1828-1.

The phone line permits voice communication between customer engineers at widely separated units, using IBM sound-powered phones.

With the phones disconnected, the phone line can be used as an extension of the meter leads for checking continuity of interconnecting machine cables. For external-sync or pulsecounter testing, the phone lines can be jumpered to TP19-12 and TB19-13 in the processor-controller to make the programmed test signal available at the remote 1826.

- Figure 2-7. Seven-Position Binary Counter

Figure 2-8. Cable Connections to Remote Start Circuit

2.12 PROCESS I/O TEST EOUIPMENT

2.12.1 Fluke* DC Differential Voltmeter

The analog output features are calibrated using a Fluke 885A/AA Precision Voltmeter (Figure 2-9) obtainable from the area ICAR center.

The Fluke meter is a general-purpose, precision voltmeter that operates on 115 Vac . It compares the input voltage with a self-contained reference voltage by means of a high-inputimpedance null detector.

An instruction booklet is included with the meter.

[^4]

Figure 2-9. Fluke Precision Voltmeter (P/N 453191)

2.12.2 Analog Input Calibration Facility

The analog input calibration facility (Figure 2-10) is housed in the 1828-2 Enclosure that abuts the 1801, 1802, or 1826 containing the AI basic boards. The calibration facility is mounted inside the upper right-hand side of the 1828-2 frame and is accessible from the rear of the enclosure.

Primary power is supplied to the calibration facility through the AI calibration switch on the left side of the 1828 bonnet.

The calibration facility consists of a 30 -volt ungrounded power supply, a precision voltage reference unit of 6.3 volts, a resistive divider network, and a high-level solid-state multiplex switch. The circuit schematic is shown on system diagram YD120.

The calibration facility provides the following dc reference voltages (nominal) for calibration of AI features:

+5 volts	100 mV
-5 volts	50 mV
500 mV	20 mV
200 mV	10 mV

Figure 2-10. Analog Input Calibration Facility

Exact voltages between terminals are measured at the factory and are recorded (to five significant digits) on the reference unit.

The analog reference voltage can be connected to the special multiplex switch (terminals A and C) for direct switching onto the analog input coaxial cable under program control. The coaxial output of the calibration facility connects to the AI coaxial input cable at the " T " connector (terminal 5) of the last 1851 Multiplexer Terminal installed in the 1828. The special multiplex switch is selected by multiplexer address /13E8, which is outside the normal range of MPX/S addresses. (Actually, any address / 13 xx will select the special switch.)

When the analog reference voltage is not being used for calibration, the coaxial cable is left connected for +5 V switched input to the analog input bus, and the AI calibration switch is left on. The multiplexed calibration point can be addressed at any time by the customer program or diagnostic program for an operational check on the ADC.

For ADC calibration, and for checking accuracy and repeatability on systems with MPX/S inputs, the output of the multiplexed calibrate point (terminals A and B) is connected directly to the input terminal block on the ADC board. The coaxial cable is disconnected at each end and is replaced by a twisted-pair cable that is provided with the calibration facility.

For calibration of differential (low-level) amplifiers, the analog reference voltage is disconnected from the multiplex switch input and is connected via twisted pair from the appropriate low-level output terminals on the calibrate card to an unused MPX/R input point assigned to the amplifier being calibrated. The reference voltage is connected in this same manner when running accuracy and repeatability checks on systems with MPX/R inputs.

Precautions

The following precautions should be observed to prevent damage to the calibration source or impairment of its accuracy.

1. Do not connect calibration source to customer terminals until current element and customer lines have been removed by customer.
2. Do not connect calibration source to more than one analog input at a time.
3. Do not permit prolonged shorting of calibration source output terminals.
4. Because of impedance mismatch, accurate measurements are not possible if the calibration source is connected directly to a solid-state input point.

2.12.3 Digital Input Test Card

The digital-input test card $(\mathrm{P} / \mathrm{N} 2195669)$ is used in conjunction with diagnostic programs 0824 and 0825 to test the
digital-input and process-interrupt features. The test card provides a known digital-input bit configuration to any desired DI or PI group (16 points) for reading by the program.

The DI test card consists of a specially wired SLT connector card fitted with two 12 -inch leads. Lead 1 is connected to bit positions 0-2-4-6-8-10-12-14 of the test card, and lead 2 is connected to bit positions 1-3-5-7-9-11-13-15.

For testing digital inputs or process interrupts, the input cable from the " R " gate is disconnected at the socket on the adapter board, and the test card is plugged onto the pins of the same socket on the reverse (pin) side of the board.

CAUTION

The SLT board can be destroyed if the test card is installed upside down. The card is labeled to indicate proper orientation.

DI	PI	
Group	Group	Socket
0	1	N2
1	2	N3
2	3	N4
3		N5
4		N6
5		N7
6		A6
7		A7

The test leads are connected to either +3 V (D03 pin) or -3 V (B06 pin), depending on the bit pattern desired. Pin connections for various bit patterns are shown in the following table.

Pin Connection		Resulting Bit Pattern	
Lead 1	Lead 2	Hex	
D03	B06	1010101010101010	AAAA
B06	D03	0101010101010101	5555
D03	D03	111111111111111	FFFF
B06	B06	000000000000000	0000

14179

2.12.4 Digital Output Test Cable

The digital-output test cable ($\mathrm{P} / \mathrm{N} 2195696$) is used in conjunction with diagnostic program 0827 to test the digital output feature.

The DO test cable consists of a 10 -foot cable with a serpent connector on one end and an SLT connector card on the other end.

For testing a digital output group (16 points), the signal cable that connects the DO adapter to the " R " gate is disconnected at the socket on the adapter board, and the test cable is plugged onto the pins of the same socket on the reverse (pin) side of the board. Do not disconnect the return cable used with ECO and PO groups.

DO Group	Signal Cable
0	
	A6
1	
2	A7
3	
N2	
N6	

The other end of the test cable is plugged to either the A or B signal cable of the I/O monitor unit. (The I/O monitor unit power cable must be connected to the monitor interface panel.)

The data that is sent to the DO group by the program will appear in the monitor display lamps as the true value for register output, and as the l's complement value for electronic "contact" operate and pulse output.

2.12.5 1856 DAC/PVR Extender

The DAC/PVR extender ($\mathrm{P} / \mathrm{N} 2182700$) allows access to the components in a DAC or PVR module while the module is connected into the system. The extender (Figure 2-11) is a hollow shell that occupies one unit space in the 1856. Connectors at each end of the extender are wired together internally.

In use, the extender is plugged into the 1856 in place of the module to be extended, and the module is then plugged into, and supported by, the extender.

Note: The extender is intended for diagnostic purposes only. Do not use extender when calibrating the analog output features.

Figure 2-11. 1856 DAC/PVR Extender (P/N 2182700)

2.13 CORE STORAGE TEST EOUIPMENT

2.13.1 Oscilloscope

The scope used for troubleshooting and adjusting core storage should meet or exceed the specifications of the Tektronix Model 453. Scopes not meeting this requirement should be used in an emergency only.

2.13.2 Differential Scope Cable

The differential scope cable ($\mathrm{P} / \mathrm{N} 218907$ is a shielded, twisted pair with 150 -ohm termination to scope ground. It is used to scope sense lines differentially, with the scope in "Ch. 1 added to Ch. 2 (INV)" mode.

These leads can pick up noise even though they are twisted and shielded. They should be plugged and removed from the sense amps only when the machine is stopped, or extra bits will result. The leads should not be left attached to the core storage unit during long-term tests, because of impedance characteristics and noise pickup. Do not leave only one lead attached to a sense line.

2.13.3 Current Probe

The Tektronix P6016 current probe ($\mathrm{P} / \mathrm{N} 451213$), or equivalent, should be used to scope core storage waveforms. The terminator ($\mathrm{P} / \mathrm{N} 451214$) must be used with the probe. Fuzzy signals will sometimes be seen when using a current probe; this condition is normal and is caused by the dc flux buildup in the probe.

2.13.4 Core Storage Current Probing Card

The current probing card ($\mathrm{P} / \mathrm{N} 2182906$) is used with the oscilloscope current probe for measuring X - and Y -drive currents. The current probing card consists of a card offset that is wired with 3 -inch jumpers to provide current loops in the core drive lines.

When it is necessary to measure core storage drive currents, the array connector block containing the desired drive lines is removed with the jumper block removal tool ($\mathrm{P} / \mathrm{N} 2108860$) and replaced with the current probing card (Figure 2-12).

Figure 2-12. Core Storage Current Probing Cards

CAUTION

System power must be removed when removing or installing connector blocks. Excessive connectorblock removals must be avoided (see 1.5.1). Insert probing card with red wires on left (D pins).

2.13.5 Card Offset and Four-Inch Jumpers

The card offset ($\mathrm{P} / \mathrm{N} 452530$) with 4 inch jumpers (P / N 452655) is an unassembled version of the core storage probing card ($\mathrm{P} / \mathrm{N} 2182906$). The jumper block and jumpers provide flexibility to the CE , allowing X - or Y-drive lines to be swapped at the block or between several blocks (Figure 2-12).

CAUTION

Extreme care should be exercised to prevent destructive shorting when using the jumper block. This tool should
not be used on sense lines because of excessive noise pickup. See 2.13.4 for information concerning connectorblock removal.

2.13.6 Thermometer

The thermometer ($\mathrm{P} / \mathrm{N} 5392366$) is recommended as an onsite tool for 2 - and 4 -microsecond systems. The thermometer is used to set the temperature tracking voltages to the actual intake air temperature at the core storage unit being adjusted (see 4.4.3).

2.13.7 Meter (Weston 901)

The Weston 901 ($\mathrm{P} / \mathrm{N} 460879$) has an accuracy of 0.5%. A meter with equivalent or greater accuracy should be used to set core storage voltages. A less accurate meter should be used in emergencies only.

Chapter 3. Preventive Maintenance

The 1800 system is designed for minimum routine maintenance, as shown in Figure 3-1.

Filter cleaning and replacement is the primary preventive maintenance function. In a relatively clean and air-conditioned environment, filters should not require changing more often than the six-month interval. In particularly dusty environments, it will be necessary to check and replace filters on a schedule learned by experience on the particular system.

Fans and blower motors in the SLT gates and power supplies have sealed bearings that are permanently lubricated.

Electromechanical DP I/O units require maintenance according to their published schedules. As with filter replacement, these schedules will have to be adjusted according to the dictates of usage, rate of wear, and environment.

It should not be necessary to run diagnostic programs on a scheduled basis. The exception is where the customer's programming detects the possibility of failures of a specific or nonspecific nature or where the diagnostic program is utilized as a calibration or adjustment check.

Code		Location Operation	Freq	Operation	Reference
U	R				
0		Filter, Blower	$\begin{aligned} & \text { As } \\ & \text { Req } \end{aligned}$	Check for dirty filters; replace as required. Check cooling fans for proper operation.	Sections $\begin{aligned} & 4.2 .2 \\ & \\ & 5.4 .3\end{aligned}$
8		ADC	6	Check ADC accuracy and repeatability and recal ibrate if necessary. Refer to system logics for calibrate procedure.	System Diagrams QD810, QD815
3		Amplifier		Check and recalibrate, if necessary, the buffer or sample and hold amplifier in the 1801/1802/1826 and the differential amplifiers in 1851's. Refer to system logic for calibrate procedure.	
1		Analog Output		Check and recalibrate, if necessary, the Analog Output feature. Note: Fluke 885 A/AA Precision Voltmeter is required and can be obtained from Area ICAR Center.	$\begin{aligned} & \text { System Diag } \\ & \text { TA002 } \end{aligned}$
9		Misc		Inspect for loose connectors, SLT boards, modules, etc. Check system grounding network and line cord for correct operation and safe condition.	

Figure 3-1. 1800 System Preventive Maintenance Chart (Series 4)

Chapter 4. Checks, Adjustments, and Removals

Section 1. Basic Unit

4.1 PANEL LAMPS

Indicator lamps and message lamps used in the IBM 1800 Data Acquisition and Control System are removable from the front of the panel.

4.1.1 Indicator Lamp Removal/Replacement

1. Grasp burned-out lamp with thumb and forefinger and pull straight out.
2. Insert new lamp in socket. The lamp and socket are keyed for correct alignment.

4.1.2 Message Lamp Removal/Replacement

1. Remove message button by pulling straight out.
2. Remove old lamp and insert new one, using tool, P/N 461163.
3. Reinstall message button by pressing straight in.

4.2 GATE BLOWERS

4.2.1 Blower Removal/Replacement

The gate blower assemblies are designed for quick removal. Blower motor lubrication is not required.

1. Remove mainline power.
2. Disconnect the blower power plug at the hinge end of the gate.
3. Support the blower assembly with one hand. Turn the latch (Figure 4-1) counterclockwise and uncouple the latch.
4. Support the blower assembly with both hands and pull the assembly away from the hinge end of the gate.
5. Replace the blower assembly by reversing the removal procedure.
6. Turn on mainline power and check blower for proper operation.

4.2.2 Filter Replacement

All blower assemblies in the SLT gates contain replaceable filters. These filters must be inspected regularly on a schedule dictated by the environment and replaced whenever air flow is obviously being restricted. It is not necessary to remove power when replacing gate filters; however, care must be taken not to contact electrical connections with filters that have metal frames.

1. Open SLT gate.
2. Grasp sides of filter at end of gate opposite gate hinges and pull down to release filter from the plunger retainer.
3. Pull filter from the lip on the hinge end of the gate and lift out.

Note: Plastic filters can be cleaned by vacuuming or by washing in warm water that contains a mild soap or detergent. If filters are cleaned by washing, a system of rotation should be set up whereby a thoroughly dry filter is available to replace the one that is presently removed. Filters that are cleaned by vacuuming should be reinstalled so that the direction of airflow is the same as it was before removal. Discard any filter that shows signs of deterioration.
4. Install clean, dry filter by inserting under lip at hinge end of gate and snapping into position.

4.3 CENTRAL PROCESSING UNIT

4.3.1 Service Check

The diagnostic monitor header program 0800 provides a quick check of basic CPU functions, and indicates those areas that require further checking.

4.3.2 Phase A/B Adjustment

Phase A and phase B pulse durations should be equal within 10%. Favor a shorter phase B pulse duration. Adjustment is made at the 1 -volt level of positive transition.

Set up scope as follows:
Vert (Chan 1 and 2): $1 \mathrm{~V} /$ div
Horizontal: $50 \mathrm{~ns} / \operatorname{div}(2 \mu \mathrm{~s}) ; 100 \mathrm{~ns} / \operatorname{div}(4 \mu \mathrm{~s})$
Sync: - B phase
Mode: Alternate

To adjust:

1. Place mode switch in run position.
2. Scope '+A phase power' at B-B2F2J05 (system diagram CC021).
3. Scope ' +B phase power' at B-B2F2J10.
4. Adjust oscillator potentiometer at B-B2J4 for correct phase-A and phase-B pulse widths.

Figure 4-1. Gate Blower Removal
5. After adjustment, check interval-timer time bases for proper duration and run CPU diagnostics.

4.3.3 Operations Monitor

Service Check

Use the following procedure to check the monitor time periods.

1. Turn off operations-monitor toggle switch to reset the timer circuit.
2. Select time period with the op-monitor rotary switch on the I/O monitor interface panel.
3. Turn on operations-monitor toggle switch and measure the time required for the alarm lamp to turn on. Time periods should measure within $\pm 10 \%$ of the selected value.

Adjustment

If any time period requires adjustment, use the procedure outlined in the Service Check and adjust the corresponding pot on the card at B-A1L5 to obtain the correct timing within $\pm 10 \%$.

The following table lists the pot locations on the card. If any time interval is adjusted, each succeeding time interval must also be adjusted in the order given.

Op Monitor Period (seconds)	B-AIL5 Pot (Top to Bottom)
5	1
10	2
15	3
20	4
25	5
30	6

4.4 CORE STORAGE

4.4.1 General Precautions

1. Do not remove a core storage card with system power on.
2. Do not apply power to the system with a core storage card removed.
3. When removing or inserting SLT cards adjacent to the core array, take care not to disturb the pressure contacts on the sides of the array.
4. Do not disturb the core planes.
5. Do not leave the array unit unattended when the covers are removed.
6. Do not remove minibus plugs unless absolutely necessary to the maintenance procedure. Use extreme caution when replacing plugs; plugging to the wrong pins can damage the core array.
7. Use an SLT scope-probe tip when probing with power on. Shorting of adjacent pins can cause circuit damage.

4.4.2 Service Check

Core function tests $08 \mathrm{CA}, 08 \mathrm{CB}$, and 08 CC are nonmonitor programs that verify proper operation of core storage.

Core adjustment programs 08 C 0 and 08 C 1 exercise core storage for adjustment purposes.

The core adjustment programs ($08 \mathrm{C} 0,08 \mathrm{C} 1$) should be run if the function tests fail to show a suspected core storage problem.

4.4.3 Core Storage Adjustments

Core Storage adjustments are set for optimum core storage operation. Do not change these adjustments unless a card is changed that contains a core storage adjustment pot, or failure patterns indicate that adjustments are needed (review section 1.7). For adjustment procedures, see logic page SD013 at EC731503A or later for 4-microsecond storage units, or logic page SA022 at EC731506C or later for 2-microsecond storage units.

A sealing compound has been added to core storage adjustment pots to maintain integrity of factory settings. The seal can be broken whenever adjustment is required in the field.

To avoid shorting to adjacent components, use the plastic alignment screwdriver, $\mathrm{P} / \mathrm{N} 460811$, when adjusting pots in the core storage circuits.

Refer to paragraph 2.13.4 for information on the current probing card provided for scoping X and Y drive lines.

Proper operation of core storage temperature tracking circuits requires that the core storage cover be closed except for brief periods of time. New production machines include a hole in the cover to allow adjustment of the VRef pot while the cover is closed. An 1800 Service Aid (number 67) explains how to install holes in existing covers.

4.4.4 Array Removal/Replacement

1. Remove all power to the system.
2. Remove adjacent cards.
3. On the wiring side of the board, remove the minibus connectors to allow removal of the array connector blocks.
4. Remove the array connector blocks.
5. Remove the four clamping screws that secure the array to the board.
6. Pull array out straight to prevent damage to pins and land patterns on the core unit. Place the array in a safe and secure working area.
7. Replace the array in the reverse order.

4.4.5 Core Storage Board (BSM) Removal/Replacement

When it is necessary to replace the core storage unit, the core array and board are replaced as an assembly.

1. Remove all voltage crossover connections to the laminar bus.
2. Remove temperature tracking wires as required:
a. Four-microsecond core storages - none.
b. Two-microsecond core storages and no 1803 from board at B-A3.
c. System with 1803 - from boards at B-B3 in 1801/ 1802 and at B-B2 in 1803.
3. Unplug SLT flat cables at board connectors.
4. Remove cable clamp on outer edge of board (card side) and remove SLT cards in outer columns of board.
5. Remove eight mounting screws with allen wrench, P/N 2018490.
6. Carefully withdraw core storage unit from gate directing the assembly away from the laminar bus so as to clear the voltage crossover wires.
7. Replace the assembly in the reverse order.

4.4.6 Core Storage Diodes Removal/Replacement

Diodes are field replaceable. To remove, cut the leads as close to the defective diode pack as possible. Solder the new diode pack to the existing leads. Diode pack part numbers are:

	Formed leads		Unformed leads
Common anode	2192714		2391100
Common cathode	2192721		2391101

A discrete GY diode ($\mathrm{P} / \mathrm{N} 2414891$) may be used in an emergency if the diode packs are not available. This diode can be used to replace the single diode that is failing.

4.5 CHANNEL CONTROL

4.5.1 Service Check - Interval Timers

Diagnostic program 08B2 is a non-monitor program that verifies correct operation of the interval timers.

4.5.2 Service Check - - Interrupt

Diagnostic program 08B3 is a non-monitor program that verifies correct operation of the interrupt circuits.

Section 2. Features

When any maintenance is performed on a DP I/O unit, its use meter must be disabled by setting the use-meter switch (1800 monitor interface panel) to the CE position.

4.6 1816-1053 ADAPTER

4.6.1 Service Check

Diagnostic program 0806 is a monitor-controlled function test that checks the performance of all 1053/1816 printers on the system.

Auxiliary program 08A4 tests the operation of the 1816 Printer-Keyboard. Auxiliary program 08A5 exercises the printing functions of the 1053 or 1816 by printing a programmed test pattern.

4.6.2 Singleshot Adjustments

Adjust singleshots with the CE alignment screwdriver, P / N 460811. Adjust each singleshot duration to that specified in the system diagrams. Figure 4-2 is a list of $1816 / 1053$
adapter singleshots, their durations, limits, pin locations, and logic page locations.

For adjustment service hint see paragraph 1.6.2.

4.7 1054-1055 ADAPTER

4.7.1 Service Check

Diagnostic program 0804 is a monitor-controlled function test that verifies proper operation of the status indicators and data handling by the paper-tape reader and punch.

Auxiliary program 08A8 tests the reading function of the 1054 Paper Tape Reader and the punching function of the 1055 Paper Tape Punch.

4.7.2 Singleshot Adjustments

Adjust each singleshot duration to that specified in the system diagrams. Figure 4-3 is a list of the 1054-1055 adapter singleshots, their durations, pin locations, and system diagram page numbers. For adjustment service hint see paragraph 1.6.2.

Single - Shot	Duration		Pin Location*	Logic Page
	Nominal	Limits	H6 D11	EC 701
Keyboard Restore (Upper Pot)	25 ms	$22.5-27.5 \mathrm{~ms}$	H6 D12	EC 701
Keyboard Service Request (Lower)	25 ms	$22.5-27.5 \mathrm{~ms}$		
* Board C-Al for 1st adapter; Board D-B1 for 2nd adapter				

Singleshot	Duration	Pin Location	System Diagram
Top Pot	5 milliseconds	D-A1 J3B03	ES281
Bottom Pot	30 milliseconds	D-A1J3B07	ES181

Figure 4-3. 1054-1055 Singleshots

4.7.3 Oscillator Adjustment

While scoping the oscillator flip-flop output (D-A1F3B09, system diagram page ES242), adjust the two pots on the oscillator card (D-A1G6) for a symmetrical waveform as shown:

4.81442 ADAPTER

4.8.1 Service Check

Diagnostic program 080F is a monitor-controlled function test that verifies correct operation of the 1442 Card Read Punch and adapter circuitry.

Auxiliary program 08A9 tests the operation of the CRP, using the image read mode. Auxiliary program 08AA tests the operation of the CRP, using the 8-8 (packed) read mode.

4.8.2 Singleshot Adjustments

Adjust 'read SS1 gate' and 'punch CB1 gate' singleshots per logic page EN521. For adjustment service hint see paragraph 1.6.2.

4.8.3 Read Emitter Strobe Timing

Adjust read emitter strobe timing per EN70121, items 19 and 20.

4.91443 ADAPTER

4.9.1 Service Check

Diagnostic program 080A is a monitor-controlled function test that verifies proper operation of the 1443 Printer and adapter circuitry.

Auxiliary program 08 AB checks character selection and ripple registration of the printer.

4.101627 ADAPTER

4.10.1 Service Check

Diagnostic program 0805 is a monitor-controlled function test that executes the various movements of the plotter and permits checking of cables for correct adjustment.

Auxiliary program 08A6 is a registration exerciser. Auxiliary program 08A7 is a stress exerciser.

4.10.2 Plotter Speed

Plotter speed is not adjustable. If, for any reason, there is a need to change the speed of the plotter, contact Plant FE Technical Operations (San Jose).

4.11 1810 DISK STORAGE

Service checks, adjustments, and removals for the 1810 Disk Storage are in the Field Engineering Theory-Maintenance, IBM 1810 (2310) Disk Storage, Models A and C. (See FE Bibliography -- 1800 System, Order No. SY26-0560.)

Service Check

Diagnostic program 0809 is a monitor-controlled function test of the 1810 Disk Storage and adapter circuitry.

4.12 MAGNETIC TAPE CONTROL (1802 ONLY)

4.12.1 Service Check -- Tape Control Unit

Diagnostic program 0807 is a monitor-controlled function test that checks for proper operation of the magnetic tape control.

Diagnostic program 080B is a monitor-controlled function test that verifies the ability of tape units to write varying length records and read them back correctly on the same or another drive.

Diagnostic program 08B9 is a non-monitor timing test that verifies proper adjustment of the magnetic tape drive.

Diagnostic program 08BD is a non-monitor function test that verifies proper operation of the tape error correction function.

No auxiliary programs are available for the TCU because it cannot be operated in CE mode.

4.12.2 Oscillator Timing

The oscillators listed in Figure 4-4 provide drive pulses to operate the control clocks for character densities of 200 bpi (bytes per inch), 556 bpi , and 800 bpi and to provide motion control for $112.5-\mathrm{ips}$ (inches per second), $75.0-\mathrm{ips}$, and $37.5-$ ips tape units.

4.12.3 Service Check - Read Clock Timing

The read clock consists of three binary flip-flops stepping in a cyclic fashion. (For each stepping pulse only one flip-flop changes state.) Figure 4-5 lists specifications for the gated outputs.

Oscillator	Type	Period (\%sec)		Function
		Nominal	Limits	
5.0 kc	Xtal	200.0	199.8-200.2	DC Msec Control
1.0 mc	Gated	1.0000	0.9174-1.0526	RC 556 BPI
1.0 mc	$X_{\text {tal }}$	1.0000	0.9990-1.0010	WC, DC μ sec Control 556 BPI
1.44 mc	Xtal	0.6944	0.6938-0.6951	WC, DC usec Control 800 and 200 BPI
1.40 mc	Gated	0.7143	0.6557-0.7519	RC 800 and 200 BPI

24137A

Figure 4-4. Tape Control Unit Oscillators

4.12.4 Service Check - Write Clock Timing

The write clock consists of four binary flip-flops stepping in a cyclic fashion. (For each stepping pulse only one flip-flop changes state.) Figure 4-6 lists specifications for the gated outputs.

4.12.5 Service Check - - Delay Counter Timing

The delay counter consists of nine binary flip-flops stepping in a cyclic fashion. (For each stepping pulse only one flipflop changes state.) Figures 4-7 and 4-8 list specifications for the gated output in microsecond and millisecond modes.

	- Start Read Clock (GN113)			
Read Clock Signal	Logic Page	Pulse Timing in Microseconds by Tape Unit Model		
		Model 1	Model 2	Model 3
800 BPI		Start (A) - End (B)	Start (A) - End (B)	Start (A) - End (B)
RC 0 and 1 RC 2 RC 4 Not Check Char RC 6 RC 7 RC Reset Read Skew Gate and RC Reset Write Skew Gate Set	$\begin{aligned} & \text { GC232 } \\ & \text { GC232 } \\ & \text { GM213 } \\ & \text { GC232 } \\ & \text { GC233 } \end{aligned}$	$\begin{array}{r} 0-4.2 \\ 4.2-6.4 \\ 8.6-10.8 \\ 12.8-15.0 \\ 15.0-15.4 \\ 15.4-15.7 \\ 21.4-21.7 \\ 10.8-12.8 \end{array}$	$\begin{array}{r} 0-2.1 \\ 2.1-3.2 \\ 4.3-5.4 \\ 6.4-7.5 \\ 7.5-7.9 \\ 7.9-8.2 \\ 10.7-11.0 \\ 5.4-6.4 \end{array}$	$\begin{aligned} & 0-1.4 \\ & 1.4-2.1 \\ & 2.9-3.6 \\ & 4.3-5.0 \\ & 5.0-5.4 \\ & 5.4-5.7 \\ & 7.1-7.4 \\ & 4.3-5.0 \end{aligned}$
556 BPI				
RC 0 and 1 RC 2 RC 4 Not Check Char RC 6 RC 7 RC Reset Read Skew Gate and RC Reset Write Skew Gate Set	GC232 GC232 GM2 13 GC232 GC232 GC232 GC232 GC233	$\begin{array}{r} 0-6.0 \\ 6.0-9.0 \\ 12.0-15.0 \\ 18.0-21.0 \\ 21.0-21.4 \\ 21.4-21.7 \\ 30.0-30.3 \\ 12.0-15.0 \end{array}$	$\begin{array}{r} 0-3.0 \\ 3.0-4.5 \\ 6.0-7.5 \\ 9.0-10.5 \\ 10.5-10.9 \\ 10.9-11.2 \\ 15.0-15.3 \\ 6.0-7.5 \end{array}$	$\begin{array}{r} 0-2.0 \\ 2.0-3.0 \\ 4.0-5.0 \\ 6.0-7.0 \\ 7.0-7.4 \\ 7.4-7.7 \\ 10.0-10.3 \\ 4.0-5.0 \end{array}$
200 BPI				
RC 0 and 1 RC 2 RC 4 Not Check Char RC 6 RC 7 RC Reset Read Skew Gate and RC Reset Write Skew Gate Set	$\begin{aligned} & \text { GC232 } \\ & \text { GC232 } \\ & \text { GM213 } \\ & \text { GC232 } \\ & \text { GC233 } \end{aligned}$	$\begin{array}{r} 0-16.8 \\ 16.8-25.2 \\ 34.6-43.0 \\ 51.6-60.0 \\ 60.0-60.4 \\ 60.4-60.7 \\ 85.2-85.5 \\ 34.6-43.0 \end{array}$	$\begin{array}{r} 0-8.4 \\ 8.4-12.6 \\ 17.3-21.5 \\ 25.8-30.0 \\ 30.0-30.4 \\ 30.4-30.7 \\ 42.6-42.9 \\ 17.3-21.5 \end{array}$	$\begin{array}{r} 0-5.6 \\ 5.6-8.4 \\ 11.5-14.3 \\ 17.2-20.0 \\ 20.0-20.4 \\ 20.4-20.7 \\ 28.4-28.7 \\ 11.5-14.3 \end{array}$

Figure 4-5. Read Clock Timings

24139B

Figure 4-6. Write Clock Timings

4.12.6 Service Check -- Signal Acceptance and Rejection Levels

The signal acceptance and rejection levels shown in Figure 4-9 are the criteria for correct operation of the final amplifiers. The signal levels of each channel are measured by scoping the output of the final amplifier (high and low clip pulse lines) shown on GD111, 112, and 113. For the read operation, a master signal-level tape ($\mathrm{P} / \mathrm{N} 432152$) should be run to obtain a standard amplitude signal.

4.12.7 Singleshot Adjustment

Adjust singleshots with CE alignment screwdriver, P / N 460811. Adjust each singleshot duration to that specified in the system diagrams. Figure 4-10 is a list of magnetic
tape control singleshots, their durations, limits, pin locations, and logic page locations.

For adjustment service hint see paragraph 1.6.2.

4.12.8 Final Amplifier Read/Write Adjustment

If a TCU final amplifier card ($\mathrm{P} / \mathrm{N} 5807218$ or 5806835) is replaced, all the following checks and adjustments must be performed. All voltages are to be measured with a Weston 901 meter (0.5% accuracy) or equivalent.

For these checks and adjustments, the tape unit must be attached with power on, and there must be no signal input to the amplifier (tape not moving). Room temperature must be between $60^{\circ} \mathrm{F}$ and $90^{\circ} \mathrm{F}$.

24140 C

Figure 4-7. Delay Counter Timings - - Microsecond Mode

Ref					
Delay Signal	Logic Page	Function	Reference	Timings in Milliseconds	
				9-Track	7-Track
Model 3 Tape Unit				Min. Max.	Min. Max.
End WDD D31 or 53 MS not LP D 160 TA D96 TA End Read Delay Bksp Reset Rd Cond. WD 320 WD 32	GM 131 GM132 GM 133 GMI33 GM 132 GM131 GM 133 GM 132	Reset Go on Write End WD not LP Set Go in Backspace Set Bkwd RD or WR End RD not LP End RD Backspace End RD LP Reset Rd. Cond \& Go on Bksp End WD OP Set Read Cond On	+ MS Control GM2 14 Rise of Go GM2 15 + MS Control GM2 14 +MS Control GM2 14 Rise of Go GM215 Rise of Go GM215 Rise of Go GM215 +RDD GM2 13 Rise of Go GM2 15 Rise of Go Write	See Note 1 $\begin{array}{rr} 5.2-5.8 \\ 15.9-17.6 \\ 9.5-10.3 \\ 1.4-1.6 \\ 1.1-1.3 \\ 15.9-17.6 \\ 0.6- & .8 \\ 31.9-35.2 \\ 3.1- & 3.5 \end{array}$	$\begin{array}{rr} 1.7- & 2.0 \\ 5.2- & 5.8 \\ 15.9-17.6 \\ 9.5-10.3 \\ 2.7- & 3.1 \\ 1.1- & 1.3 \\ 15.9-17.6 \\ 1.9- & 2.2 \\ 31.9-35.2 \\ 3.1- & 3.5 \end{array}$
Mode 2 Tape Unit					
End WDD D31 or 53 MS not LP D 160 TA D96 TA End Read Delay Bksp Reset Rd Cond WD 320 WD 17	GM131 GM132 GMI33 GM133 GM132 GM131 GM133 GM214	Reset Go on Write End WD not LP Set Go in Bksp Set Bkwd RD or Wr End RD not LP End RD Bksp End RD LP Reset Rd. Cond \& Go on Bksp End WD LP Set Read Cond on Write	See Note 2 Rise of Go GM2 15 +MS Control GM2 14 + MS Control GM2 14 Rise of Go GM2 15 Rise of Go° GM215 Rise of Go GM215 +RDD GM213 Rise of Go GM215 Rise of Go GM215	Check Char $\begin{array}{r} 6.1-6.8 \\ 31.9-35.2 \\ 19.1-21.1 \\ 3.4-3.7 \\ 1.5-1.6 \\ 20.5-22.7 \\ 2.1-2.4 \\ 63.9-70.4 \\ 3.3-3.7 \end{array}$	Check Char $\begin{array}{r} 6.1-6.8 \\ 31.9-35.2 \\ 19.1-21.1 \\ 6.1-6.8 \\ 1.5-1.6 \\ 20.5-22.7 \\ 4.1-4.6 \\ 63.9-70.4 \\ 3.3- \end{array}$
Model 1 Tape Unit					
End WDD D31 or 53 MS not LP D 160 TA D96 TA End Read Delay Bksp Reset Rd Cond WD 320 WD 17	GM131 GM132 GMI33 GM133 GM 132 GM131 GM133 GM214	Reset Go on Write End WD not LP Set Go in Bksp Set Bkwd RD or WR End RD not LP End RD Bksp End RD LP Reset Rd Cond \& Go on Bksp End WD LP Set Read Cond on Write	See Note 2 Rise of Go GM215 + MS Control GM214 + MS Control GM214 Rise of Go GM215 Rise of Go GM215 Rise of Go GM215 +RDD GM213 Rise of Go GM215 Rise of Go GM215	Check Char $\begin{array}{r} 12.3-13.6 \\ 63.9-70.4 \\ 38.3-42.2 \\ 6.7-7.5 \\ 1.9-2.2 \\ 41.1-45.3 \\ 5.5-6.2 \\ 127.9-140.8 \\ 6.7-7.5 \end{array}$	Check Char $\begin{array}{r} 12.3-13.6 \\ 63.9-70.4 \\ 38.3-42.2 \\ 12.3-13.6 \\ 1.9-2.2 \\ 41.1 \text { - } 45.3 \\ 9.5 \text { - } 10.6 \\ 127.9-140.8 \\ 6.7 \text { - } 7.5 \end{array}$
Notes 1: End WDD for 9-track model 3 occurs with WDD 403. 2: WDD ends with the reset of write release, Go falls with the set of first check characters with Model 1 or Model 2.					

Figure 4-8. Delay Counter Timings - Millisecond Mode

Operation	Acceptance Levels (Minimum Volts, p-p)		Rejection Levels (Maximum Volts, p-p)	
	7-Track	9-Track	7-Track	9-Track
High-Clip Write	3.25	3.25	2.75	2.75
High-Clip Read	2.75	2.25	2.25	1.75
Low-Clip Read	1.55	-	1.05	

Figure 4-9. Signal Acceptance and Rejection Levels

Single-Shot (See Note)	Duration (Nanoseconds) Location		Logic Page	
	200	$180-220$	B3 H2B02	GC113
Gate Byte A (L)	350	$315-385$	B3 H2D02	GC113
R-W Gate (U)	300	$270-330$	B3 C2B02	GC111
Reset R-W Register (L)	150	$135-165$	B3C2D02	GC111
RC 7 (U)	350	$315-385$	A2L3B02	GC232
RC Reset (L)	350	$315-385$	A2L3D02	GC232
DC Reset (U)	350	$315-385$	A2C6B02	GM124
Read Clock VRC (L)	200	$180-220$	A2C7D02	GE221
Write Clock VRC (U)	200	$180-220$	A2C7B02	GE231
Delay Counter VRC (L)	200	$180-220$	A2C6D02	GE241
Note: Letters refer to pot position on card (U = Upper, L Lower)				

14104B

Figure 4-10. Magnetic Tape Control Singleshots

The I/O monitor unit may be attached to indicate signal status at each step of the adjustment procedure.

Integrator Voltage Level Check:

1. Voltage from D-B3C4D05 to dc common should measure $+3.5 \mathrm{~V}(\pm 10 \%)$ if model 1 or 2 tape unit is attached.
2. Voltage from D-B3C4D05 to dc common should measure $+12 \mathrm{~V}(\pm 10 \%)$ if model 3 tape unit is attached.

If voltage is incorrect, replace the card $(\mathrm{P} / \mathrm{N}$ 5807219) at D-B3C4 and recheck voltage.

Low-Clip "Fixed"Setting, Seven-Track Read: Disregard this check if seven-track feature is not installed.

1. Press reset key on P-C console or I / O monitor unit.
2. Measure voltage between D-B3C5B03 (-12 V) and the following emitter test points (shown on GD111, 112, 113). All readings must be within $0 \pm 0.02 \mathrm{Vdc}$.
D-B3C5D07
D-B3F5D07
D-B3J5D07
D-B3D5D07 D-B3G5D07 D-B3K5D07 D-B3E5D07
D-B3H5D07
D-B3L5D07
3. If the reading on any card is not within the limits of $0 \pm 0.02 \mathrm{Vdc}$, replace the card ($\mathrm{P} / \mathrm{N} 5806835$), then recheck the voltage at its test point.

High-Clip "Fixed" Setting, Nine-Track Read:

1. Connect jumper between D-B3M5D13 (GB114) and dc common.
2. Press reset key on P-C console or I/O monitor unit.
3. Measure voltage between D-B3C5B03 (-12V) and the following emitter test points. If all readings are within 0.6 to 1.2 Vdc , proceed to "High-Clip Adjustment, Seven-Track Read."

D-B3C5B09	D-B3F5B09	D-B3J5B09
D-B3D5B09	D-B3G5B09	D-B3K5B09
D-B3E5B09	D-B3H5B09	D-B3L5B09

4. If the reading on any card is not within the limits of 0.6 to 1.2 Vdc , replace the card $(\mathrm{P} / \mathrm{N} 5806835)$. Then remove the jumper (step 1) and repeat checks and adjustments, beginning with "Low-Clip 'Fixed' Setting, Seven-Track Read."

High-Clip Adjustment, Seven-Track Read: Disregard this adjustment if seven-track feature is not installed.

1. Remove jumper between D-B3M5D13 and dc common. Connect jumper between D-B3M5D12 and dc common.
2. Press reset key on P-C console or I/O monitor unit.
3. Connect voltmeter $(+)$ lead to D-B3C5B09 and $(-)$ lead to D-B3C5B03 (-12 V).
4. Adjust upper pot on card at D-B3C4 until the meter reads 1.75 V . If this is not possible, replace card $(\mathrm{P} / \mathrm{N}$ 5807219) at D-B3C4 and adjust upper pot for 1.75 V .
5. Measure voltage between D-B3C5B03 $(-12 \mathrm{~V})$ and the following emitter test points. All readings must be within 1.65 to 1.85 Vdc .

D-B3C5B09	D-B3F5B09	D-B3J5B09
D-B3D5B09	D-B3G5B09	D-B3K5B09
D-B3E5B09	D-B3H5B09	D-B3L5B09

6. If all readings are within the limits of 1.65 to 1.85 Vdc, proceed to "Write Adjustment." If any reading is outside these limits, determine the voltage spread between the lowest and highest readings.
a. If the maximum spread is within 0.2 V , adjust the upper pot on card at D-B3C4 to bring all output readings (step 5) within the specified range.
b. If the maximum spread is greater than 0.2 V , record the readings, then delete only those readings
necessary to bring the spread of the remaining readings within 0.2 V . Replace the cards $(\mathrm{P} / \mathrm{N}$ 5806835) in the channels whose readings were deleted. Then remove the jumper (step 1) and repeat the entire adjustment procedure, beginning with "Low-Clip 'Fixed' Setting, Seven-Track Read."

Write Adjustment:

1. Remove jumper between D-B3M5D12 and dc common. Connect jumper between D-B2E5B13 (GB341) and dc common.
2. Press reset key on P-C console or I/O monitor unit.
3. Connect voltmeter $(+)$ lead to D-B3C5B09 and $(-)$ lead to D-B3C5B03 (-12 V).
4. Adjust lower pot on card at D-B3C4 (level-setter) until the meter reads 2.5 V . If this is not possible, replace card (part 5807219) at D-B3C4 and adjust for 2.5 V , then repeat adjustments, beginning with "HighClip Adjustment, Seven-Track Read."
5. Measure voltage between D-B3C5B03 (-12 V) and the following emitter output pins. All readings must be within 2.4 to 2.6 Vdc .

D-B3C5B09	D-B3F5B09	D-B3J5B09
D-B3D5B09	D-B3G5B09	D-B3K5B09
D-B3E5B09	D-B3H5B09	D-B3L5B09

6. If all readings are within the limits of 2.4 to 2.6 Vdc , proceed to step 7. If any reading is outside these limits, determine the voltage spread between the lowest and highest readings.
a. If the maximum spread is within 0.2 V , adjust the lower pot on the card at D-B3C4 to bring all output readings (step 5) within the specified range.
b. If the maximum spread is greater than 0.2 V , record the readings, then delete only those readings necessary to bring the spread of the remaining readings within 0.2V. Replace the cards ($\mathrm{P} / \mathrm{N} 5806835$) in the channels whose readings were deleted. Then remove the jumper (step 1) and repeat the entire adjustment procedure, beginning with "Low-Clip 'Fixed' Setting, Seven-Track Read."
7. Remove jumper between D-B2E5B13 and dc common.
8. Run diagnostic program 0807. If test does not perform correctly, check signal acceptance and rejection levels (paragraph 4.12.6).

4.13 SYSTEM/360 ADAPTER

4.13.1 Service Check

Diagnostic programs test the operation of I/O commands, status indicators, data buffer, drivers, and gating controls.

Description

1. PID 08 CD enables the CE to test the 1800 side of the adapter while it is off-line to the System/360 channel.

The System/360 reset line has to be tied down on the 1826 boards to run this test.
2. PID F4D4 may be used to test the System/360 side of the adapter when the 1800 channel has been reterminated or has bypassed the System/360 adapter feature by means of special jumper boards ($\mathrm{P} / \mathrm{N} 2242726$). Routines A and B of this section test the transfer of data between the two systems provided that tiedown jumpers are installed as called for on the System/360 printouts when execution of these routines is called for by setting section switch 2 or by instructing the diagnostic monitor to cycle routines A, B, or A and B.
3. PID's 08CE for the 1800 and E4D5 for the System/ 360 running concurrently, will test all the functions of the adapter. The System/360 CPU must have available 16 k bytes of storage for this test and requires the use of DMA 4, DMA 8-9, DME, or DM44. PID 08CE does not use the 1800 monitor, but uses the relocatable loader.

4.13.2 Singleshot Adjustments

Adjust the 'transfer' singleshot and the 'tag sample' singleshot per the following procedure. Use the CE alignment screwdriver, $\mathrm{P} / \mathrm{N} 460811$.

1. Refer to FY141 and connect a jumper from 26AB3F2D11 to 26A-B3L3D10. With P-C clock running, scope pin 26A-B3L3B13 and adjust bottom pot on card at 26A-B3L3 so that 'tag sample' pulse (negative) is $300(\pm 30)$ nanoseconds wide.
2. Refer to FY201 and connect a jumper from 26AB3F2D11 to 26A-B3L3B07. Scope pin 26A-B3L3D13 and adjust middle pot on card at 26A-B3L3 so that 'transfer SS' pulse (negative) is $300(\pm 30)$ nanoseconds wide.
3. Refer to FV250 and connect a jumper from 26AB3F2D11 to 26A-B3L3D02. Scope pin 26A-B3L3D12 and adjust the top pot on card at 26A-B3L3 so that the output pulse (negative) is $300(\pm 30)$ nanoseconds wide.
4. Remove jumpers attached in steps 1, 2, and 3.
5. While running PID 08 CD , do the following:
a. Scope pin 26A-A3H7B07 and adjust bottom pot on card at 26A-A3H7 for a 30 -millisecond negative pulse.
b. Scope pin A26-A3H7B03 and adjust top pot on card at 26A-A3H7 for a 30 -millisecond negative pulse. (Refer to ALD FW902 for preceding adjustments.)

4.14 ANALOG INPUT

4.14.1 Precautions

1. Do not remove or install a card in the 1851 Multiplexer Terminal with system power on.
2. If common-mode voltage in excess of 10 volts (ac or dc) is present on the customer input lines, or if there is a possibility of the occurrence of such voltage, the lines must be disconnected by the customer prior to removal or insertion of the multiplexer relay card in that channel. Mercury bridging of the relay points during removal or insertion of the card may impress the entire common-mode voltage across the flying capacitor, relay points, or amplifier, resulting in component damage.
3. Multiplexing cards and amplifier cards in the 1851 units must be kept dry and free from contamination. Do not allow the protective coating on the cards to become damaged.
4. Handle the cards only by the edges. Fingerprints, pencil marks, and other contaminants will decrease the leakage resistance of the cards and impair the accuracy of the analog input subsystem.
5. Do not use cleaning solvents on cards or components in the low-level circuits.

4.14.2 Service Checks

Diagnostic program 0821 is a monitor-controlled function test that checks the analog input feature under two-datachannel (random) control.

Diagnostic program 0822 is a monitor-controlled function test that checks the analog input feature under single-datachannel (sequential) control.

Diagnostic program 0823 is a monitor-controlled function test that checks the analog input feature under direct program control.

Accuracy and Repeatability

Specifications for system accuracy and repeatability are given in the IBM Data Acquisition and Control System Installation Manual -- Physical Planning. (See FE Bibliography -- 1800 System, Order No. SY26-0560.) Accuracy and repeatability can be checked with diagnostic program 0823.

4.14.3 Analog Input Calibration

The ADC calibration procedure is given on system diagram QD810. The differential amplifier calibration procedure is given on QD815. The following reference drawings are provided: ADC analog board on QD935, differential amplifier on QC935, sample-and-hold amplifier on QD931. Information on the AI calibration facility is given in paragraph 2.12.2.

4.14.4 Singleshot Adjustments

The analog input singleshot adjustment procedures are given on system diagram QD930. Adjust singleshots with the CE alignment screwdriver, $\mathrm{P} / \mathrm{N} 460811$.

For adjustment service hint see paragraph 1.6.2.

4.14.5 Resistance Bulb Thermometer (1851 Model 2)

The RBT assembly is mounted on the rear surface of the isothermal terminal block. The resistive element is sealed in a tubular metal case and the leads are brought out to a terminal plate. Padder resistors are mounted on the underside of the terminal plate and are factory calibrated to make the RBT fit a linear resistance-temperature curve.

The RBT circuit requires no service or adjustment during normal operation. If circuit failure occurs, matching elements may be changed without affecting accuracy. However, the RBT element and its padder resistors mounted on the isothermal block are a matched set, and failures in any one of the components therein will require replacement of the entire set.

A check to verify correct operation of the RBT, the ana\log input path, and the ADC can be made as follows:

1. With the ADC , read the RBT output voltage $\mathrm{V}_{\text {rbt }}$ (the second address in the 1851-2 containing the RBT) and record this value.
2. With the $A D C$, read the $R B T$ reference voltage $V_{\text {ref }}$ (the first address in the 1851-2 containing the RBT) and record this value.
3. Using one of the following formulas, determine the temperature of the 1851-2 isothermal terminal block.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{rbt}}\left({ }^{\circ} \mathrm{F}\right)=51.876 \frac{\mathrm{~V}_{\mathrm{rbt}}}{\mathrm{~V}_{\text {ref }}}+41.0 \\
& \mathrm{~T}_{\mathrm{rbt}}\left({ }^{\circ} \mathrm{C}\right)=28.82 \frac{\mathrm{~V}_{\text {rbt }}}{\mathrm{V}_{\text {ref }}}+5.0
\end{aligned}
$$

The computed temperature should be within approximately $10^{\circ} \mathrm{F}$ of the room in which the $1851-2$ is installed.

4.15 ANALOG OUTPUT

4.15.1 Service Check

Diagnostic program 0826 is a monitor-controlled function test that exercises and tests the reliability of the AO registers in all modes. Proper operation is verified by scoping.

4.15.2 Analog Output Calibration

Analog output calibration is performed using the Fluke 885/AA Precision Voltmeter obtainable from the area ICAR center. (See 2.12.1.)

The analog output calibration procedure is given on system diagram TA002. A reference drawing for this calibration is provided on TA004.

4.15.3 1856 Blower Removal/Replacement

The two blower assemblies in the rear compartment of the 1856 must be removed for access to terminals and connectors.

Removal

1. Remove ac power to the 1856 unit.
2. Disconnect blower power connector located above blower assembly.
3. Support blower assembly with one hand and disconnect the two quarter-turn fasteners by turning counterclockwise with a screwdriver.
4. Using care not to bend or loosen any connectors, pull blower assembly straight back.

Replacement

The blower assemblies rest against some of the cables in the rear of the 1856 . All cables must be properly positioned before the blower assembly is installed.

1. Insert the blower power plug.
2. Carefully insert the blower assembly so that the blower exhaust ports enter the 1856 plenums.
3. Secure the two fasteners (at the top of the assembly) by turning clockwise.
4. Check that no connectors become bent or loosened when the blower assembly is pushed against the flat cables to permit closing the rear cover.

4.15.4 1856 Blower Filter Replacement

Each blower assembly (Figure 4-11) contains a plastic foam filter that wraps around the blower motor.

1. Turn off the 1828 mainline switch.
2. Grasp filter and remove by pulling straight out.

Note: Plastic filters can be cleaned by vacuuming or by washing in warm water that contains a mild soap or detergent. If filters are cleaned by washing, a system of rotation should be set up whereby a thoroughly dry filter is available to replace the one that is presently removed. Filters that are cleaned by vacuuming should be reinstalled so that the direction of air flow is the same as it was before removal. Discard any filter that shows signs of deterioration.
3. Install clean, dry filter by feeding the ends fully into the channels on the blower assembly.

CAUTION

Exercise care that cables under filter are not disturbed.

Figure 4-11. 1856 Analog Output Terminal -- Filter Replacement

4.16 DIGITAL INPUT

4.16.1 Service Check - Digital Input and Process Interrupt

Diagnostic program 0824 is a monitor-controlled function test that checks the operation of digital input features under data-channel control.

Diagnostic program 0825 is a monitor-controlled function test that checks operation of digital input features under direct program control.

The digital-input test card (paragraph 2.12.3) is used with each of these tests to provide a known input bit configuration.

4.16.2 Service Check - - Pulse Counter

Diagnostic program 08C8 (I/O scope routine) is used in conjunction with the programmable CE test pulse (2.9) to check pulse counter operation.

4.17 DIGITAL OUTPUT

4.17.1 Service Check

Diagnostic program 0827 is a monitor-controlled function test that exercises the digital output registers in all modes.

The digital-output test cable (2.12.4) is used with the function test to permit displaying the DO group (16 bits) on the I / O monitor unit.

4.17.2 Singleshot Adjustments

Adjust singleshots with CE alignment screwdriver, P / N 460811. Adjust each singleshot duration to that specified in the system diagram. Figure 4-12 is a list of digital output singleshots, their durations, limits, pin locations, and logic page locations.
For adjustment service hint see paragraph 1.6.2.

4.18 SELECTOR CHANNEL

4.18.1 Service Check

The following monitor-controlled function tests are provided for checking the operation of the selector channel:

Single - Shot	Duration		Pin Location	Logic Page
	Nominal	Limits		
PO Busy (Lower Pot)	1.5 ms	$1.35-1.65 \mathrm{~ms}$	B3 E3 D04	PB 051
PO Busy Reset (Lower Pot)	1.5 ms	$1.35-1.65 \mathrm{~ms}$	B3 E4 D04	PB 051
PO Reset (Upper Pot)	$1.5 \mu \mathrm{sec}$	$1.35-1.65 \mu \mathrm{sec}$	B3 E2 B02	PB 051

Figure 4-12. Digital Output Singleshots

$$
0810-\quad \text { Selector channel function test }
$$

0811 - 2841 function test
0812 - 2311 function test
0813 - Two-channel switch function test
0814 - CE pack initialization
0892 - 2841/2311 MPX on-line test

4.18.2 Singleshot Adjustments

The selector channel singleshot adjustments are given on system diagram FS011. Adjust singleshots with the CE alignment screwdriver, part number 460811.

4.19 COMIMUNICATIONS ADAPTER

4.19.1 Service Check

The following monitor-controlled function tests are provided for checking the operation of the communications adapter:

| 080 E | - \quad Communications adapter Wraparound |
| :--- | :--- | :--- |
| 080D | $-\quad$ Communications adapter transmit/receive |
| $0891 \quad$ - \quad Communications adapter MPX on-line test | |

4.19.2 Adjustments

No adjustments are required for the communications adapter feature.

Chapter 5. Power Supplies

Power on/off sequencing for the 1800 system is described in the FE Theory of Operation, Processor-Controller, and is
shown graphically in the maintenance diagram manual (FEMDM).

Section 1. Basic Unit

The 1800 system operates from one three-phase mainline power cord. The primary voltage input is $208 / 230$ Vac $(+10 \% ;-8 \%)$ at 60 Hz , or $195 / 220 / 235 / 380 / 408 \mathrm{Vac}(+10 \%$; $-8 \%)$ at 50 Hz .

Primary power enters the 1801 or 1802 through a line filter and a $50-\mathrm{amp}$ mainline power circuit breaker (CB1) and is sequenced to all system units except the 1053 Printer and the 1816 Printer-Keyboard. The 1053 and 1816 have their own mainline power cords.

For all normal maintenance operations, the circuit breakers on the 1801 or 1802 power sequence box are left on and the system is powered up and down from the on and off switches on the programmer's console. The circuit breakers are provided for isolation of branch circuit overloads, but they may also be tripped manually as a safeguard against power being restored to a unit that has been shut down for servicing.

5.1 PRECAUTIONS

1. Before connecting or disconnecting ac power cables in any system unit, remove primary power as directed in paragraph 1.3.2.
2. Before working on any power supply, remove power from the unit and allow at least one minute for capacitors to discharge. Check the dc output voltage with a meter before attempting maintenance.
3. Remove power before replacing power supply regulator cards.
4. Each power supply heat sink is at an electrical potential when power is on. Do not permit heat sinks to become shorted to one another or to the machine frame.
5. Do not defeat the functions of power sequence relays or sense relays by picking them manually or by jumpering the points, as damage to solid-state components may result.
6. Do not operate power supplies without at least 25% rated load. (See 5.5.1.)

5.2 SYSTEM POWER-ON PROCEDURE

1. Check that operations-monitor switch is off.
2. If System/ 360 adapter is installed, check that System/ 360 is in a stopped condition.
3. Press the on button. Power-on lamp should light and gate blowers should operate in all units. After a delay of several seconds, the ready lamp should turn on to indicate that dc voltages are present and the system is ready for operation.
4. The lamp-test button may be pressed to check operation of all console indicator (small) lamps.

5.3 SYSTEM POWER-OFF PROCEDURE

1. If System/ 360 adapter is installed, see 1.3.4.
2. Turn off operations-monitor switch.
3. Press the off button. The off button drops all power in the system with the exception of the 115-Vac convenience outlets and the 24-Vac sequencing voltage. In the 1828 Enclosure, the 115 Vac is used to power the AI calibration facility, and the 24 Vac is used to power the PVR-2 zener reference supply.

5.4 ADJUSTMENT AND REMOVAL PROCEDURES.

With the exception of the $48-\mathrm{Vdc}$ supplies and several special-purpose supplies, the 1800 system uses standard MPS (medium power standard) power supplies. They are housed in vertically mounted tubs at the rear of each unit. Servicing access is by opening the rear cover of the bay and by opening the swinging gates at the front.

5.4.1 MPS Power Supply Adjustment

It will be necessary to adjust a power supply output voltage if the regulator card is replaced or if the setting of the voltage adjustment has been changed for marginal checking purposes (1.4) or as a result of vibration.

Before adjusting or replacing a power supply whose output voltage is incorrect, determine that the input voltage at the primary of the power supply transformer is within $+10 \%,-8 \%$ of the nominal value.

An adjustment pot (R1) on each MPS power supply permits adjusting the output voltage at least $\pm 8 \%$. The lock nut on the adjustment shaft should be tight enough to prevent the shaft from turning due to vibration, but not so tight that the shaft cannot be turned with a screwdriver. Tightening the lock nut after adjustment may cause the shaft to turn and change the voltage setting.

Voltages should be adjusted as close as possible to the nominal value and should be measured with a Weston 901 meter (0.5% accuracy), or equivalent, at the points specified on the following logic pages:

$1801 / 1802$	YA010
1803	YS240
$1826-1$ or 2	YB140
$1826-3$	YB240

Voltage measurements are considered valid only after power has been on for at least 15 minutes to allow temperatures to stabilize.

The output of each MPS power supply is adjusted at installation and will change only slightly with aging of regulator components. A change in output voltage in conjunction with a machine failure is often a result of the failure rather than the cause. Do not attempt to correct the trouble by adjusting the power supply voltage.

5.4.2 MPS Power Supply Removal/Replacement

1. Remove mainline power and take necessary measures to prevent its being restored. Wait at least one minute for capacitors to discharge.
2. Disconnect external leads to the power supply terminal board.
3. Remove the two retaining clips (one at the top, one at bottom) on the exposed ends of the power supply rails. Slide the supply out of the machine.
4. Reverse this procedure to install the supply.

CAUTION

If power supply is being replaced, make certain that correct input transformer is provided (50 or 60 Hz) and that transformer primary is wired correctly for the input voltage.

5.4.3 Power Supply Filter Replacement

Fans are mounted at the bottom of each power supply tub. The fan housing contains a replaceable plastic filter (Figure $5-1$) that must be periodically inspected, and replaced as required.

Plastic filters can be cleaned by vacuuming or by washing in warm water that contains a mild soap or detergent. If filters are cleaned by washing, a system of rotation should be set up whereby a thoroughly dry filter is available to replace the one that is presently removed. Filters that are cleaned by vacuuming should be reinstalled so that the direction of

Figure 5-1. Power Supply Fan Assembly and Air Filter
air flow is the same as it was before removal. Discard any filter that shows signs of deterioration.

5.5 TROUBLESHOOTING PROCEDURES

The recommended troubleshooting procedure for 1800 system power malfunctions is shown in Figure 5-2. Figures 5-3 through 5-7 show the dc voltage distribution from power supplies in the various system enclosures. These tables are useful in tracing program-detected failures to a particular power supply.

5.5.1 Power Supply Overload

Problems related to loading of dc power supplies can be analyzed by application of Ohm's law. The minimum load resistance to be expected can be found by dividing the power supply output voltage by the rated output current. For example, a $6 \mathrm{~V}, 4 \mathrm{amp}$ power supply can safely supply power to a load of 1.5 ohms.

The power supply and regulator circuit are designed to accommodate moderate overloads of short duration. If the overload exceeds 25 to 50% of rated load, the overcurrent CB will trip or the fuse in the primary circuit will open. Surge-type overloads usually cause the CB to trip before the fuse opens.

A power supply can be overloaded by any condition that causes excessive current to be drawn from the supply. This could result from a sudden rise in input voltage, failure of the regulator circuit, or a decrease in load resistance.

Some power supplies in the 1800 system have load requirements that vary according to the number of machine features installed. Each of these supplies has the maximum load rating, and the regulator circuit maintains the initial voltage setting over wide variations of load. However, the regulator circuit does not function properly if the supply is operated with less than 25% rated load. To counter this condition, preload resistors are connected in the output circuits of the supplies as described on YA010 $(1801 / 1802)$ and YB140 (1826).

Section 2. Features

5.6 POWER PAC -- 1856 ANALOG OUTPUT TERMINAL

DC service voltages for the analog output modules are listed in Figure 5-8. These five voltages are supplied by the power pac module, which receives 208 V or 230 V at 60 Hz (or 220 V at 50 Hz) from the power outlet bus in the 1828 Enclosure.

The power pac contains a power on/off switch and two line fuses. Each dc supply has a voltage adjustment screw and an overcurrent fuse mounted adjacent to the voltage test jack on the front of the power pac. The regulator cards (SMS) for each supply voltage are accessible from the front of the power pac and are positioned in the same vertical relationship as the corresponding test jacks.

CAUTION

Turn off power pac switch before replacing regulator cards. Refer to 1.3.2.

5.6.1 Power Pac Voltage Adjustment

DC voltages supplied by the power pac are measured and adjusted on the front panel of the power pac module, using the same procedure outlined for MPS power supplies in 5.4.1.

5.7 PRECISION VOLTAGE REFERENCE

The PVR model 1 receives +30 V from the power pac module and supplies a +20 V (nominal) reference voltage for operation of unipolar digital-analog converters, model 1 and model 2. The PVR model 2 receives +30 V and -30 V from the power pac module and supplies +20 V and -20 V (nominal) reference voltages for operation of bipolar digital-analog converters, model 3 and model 4. The PVR-2 also receives 24 Vac from the processor-controller to power a circuit that maintains temperature stability of the zener reference during power-off periods.

Note: From a cold start, a warmup period of approximately 24 hours is required for the zener reference in the PVR-2 before accuracy will meet specifications.

PVR output voltages can be checked at the test jacks on the front of the PVR and DAC modules; however, voltage adjustment must be performed using the analog output calibration procedure given on system diagram TA002.

The PVR short-circuit protect feature (installed on EC 411740) senses either a drop in output voltage or excessive current in the PVR output circuit, and drops the output voltage to zero if either condition exists. To reset the shortcircuit protect feature, it is necessary to turn off the power pac ac switch for approximately 5 seconds. When the switch is turned on, PVR output voltage will be restored only if the fault condition has been removed.

- Figure 5-2. Power Supply Troubleshooting Guide

14196A

Figure 5-3. DC Voltages -- 1801/1802 Processor Controller

Power Supply	DC Voltage	TB	Sense Relay	Distribution		
1	+12	$4-4$	$\mathrm{~K}-2$	Gate B Bus 4		
2	+6	$4-3$	$\mathrm{~K}-2$	Gate B Bus 8		
3	-3	$4-2$	$\mathrm{~K}-2$	Gate B Bus 10		
4	+3	$4-1$	$\mathrm{~K}-2$	Gate B Bus 12		
5	-15	$4-5$	(1)	Gate B Bus 6		
6	-10	$4-6$	(1)	Gate B Bus 2	(1) Ready indicator on from -10V and -15V supplies after K-1	is picked by K-2.
:---:						

Figure 5-4. DC Voltages - - 1803 Core Storage Unit

Power Supply	$\begin{aligned} & \text { DC } \\ & \text { Volts } \end{aligned}$	TB	Pri Ckt via CB2 (1801/2) \& Mainline Switch	Sense Relay	1826 Distribution	Other
1	$+6$	4-4	F 1	-	Gate A (bus 8 (2)) SLT diode-gate voltage, MPX solid-state X drivers; Gate B (bus 8) SLT diode-gate voltage (boards A1, B 1)	1/O monitor (1) 1851: Solid-state block switches
2	- 3	4-3	F5	-	Gate A (bus 10 (2)) and Gate B (bus 10) SLT bias voltage	1/O monitor (1)
3	+ 3	4-1	F3	-	Gate B (bus 12 (3), 4 (4)) SLT collector voltage and digital I/O subchannel termination	1/O monitor (1)
4	+ 6	4-5	F2	-	Gate B (bus 6) SLT diode-gate voltage (boards A2, B2, A3, B3)	
5 (5)	$+3$	4-2	F4	-	Gate A (bus 12) SLT collector voltage and 1/O channel termination (1800 and 360); Gate B (bus 4 (4))	
6	+36	4-6	F6	-	Gate B (bus 2) contact-sense source voltage (via +36 v overvoltage-protect circuit)	
7 (6)	+12	$\begin{gathered} 5-2 \\ \text { via RY3 } \end{gathered}$	$\begin{aligned} & \text { RY4 } \\ & \text { F8 } \end{aligned}$	-	Gate A (bus 4) S\&H or buffer amplifier, MPX relay X drivers	1851: relay block switches
8 (6)	+30	$\begin{gathered} \text { 4-14 } \\ \text { via RY1, } \\ \text { RY2, RY3 } \end{gathered}$	F9	1	Gate A (bus 2) AI amplifiers and current source card	1851: differential amplifiers, RBT
9 (6)	-30	$\begin{gathered} \text { 4-13 } \\ \text { via RY }, \\ \text { RY2, RY3 } \end{gathered}$	F 10	2	Gate A (bus 6) Al amplifiers, current source card, sync-ready driver	1851: differential amplifiers
9 (7)	-12	4-14	F10	-	Gate A (bus 2)	-
(1) Model 11826 only (2) AI Expander or System/360 Adapter only (3) Boards $A 1, B 1, A 3, B 3$ (4) Boards A2, B2 (from supply 3 if supply 5 is not installed) (5) Used for AI Expander, System/360 Adapter, or when more than eight groups of DO are installed (6) AI Expander only (7) Communication Adapter only						

14197 A

Figure 5-5. DC Voltages - 1826 Data Adapter Unit, Models 1 and 2

Power Supply	DC Vol tage	TB	Pri ckt via CB2 Mainline Sw	Sense Relay	1826-3 Distribution	Other
1	-12	$4-4$	F1	-	Gate A Bus 2 Gate B Bus 2	
2	+6	$4-3$	F2	-	Gate B Bus 8 Gate A Bus 8	I/O Monitor Plug A1
3	-3	$4-2$	F3	-	Gate A or B Bus 10	I/O Monitor Plug A12
4	+3	$4-1$	F4	-	Gate B Bus 12	l/O Monitor Plug A3
5	+3	$4-6$	F6	-	Gate A Bus 12	

Figure 5-6. DC Voltages - - 1826-3 Data Adapter Unit

Power Supply*	1856 Distribution
$+30 v$	DAC voltage switches, analog driver amplifier, PVR mod 1, PVR mod 2
$-30 v$	DAC voltage switches, analog driver amplifier, PVR mod 2
$+6 v$	SLT diode-gate voltage, 0.45a drivers
$+3 v$	SLT collector voltage $\quad 1$
$-3 v$	SLT bias voltage
* Measure voltage from test jack to logic-common jack	
IT DAO subchannel termination on last	
1856 only.	

Figure 5-8. Power Pac DC Voltages 1856 Analog Output Terminal

Power Supply	TB	$\|$Pri Ckt via Mainline Sw and Fuse		1810 Distribution	Other
		$\begin{gathered} 2310 \mathrm{~A} \\ \mathrm{~F} 10 \\ \hline \end{gathered}$	$\begin{gathered} 2310 C \\ F 4 \\ \hline \end{gathered}$		
+ 6 V	2-5	F5	F5	Gate A (bus 8) and each Single Disk Storage (TB1-3), SLT diode-gate voltage	I/O monitor
-3v	2-3	F6	F6	Gate A (bus 10) and each Single Disk Storage (TB1-2), SLT bias voltage	1/O monitor
+ 3v	2-1	F7	F7	Gate A (bus 12) SLT collector voltage and I/O channel termination; Each Single Disk Storage (TB1-1) SLT collector voltage	1/O monitor
+48v	$\begin{gathered} 2-7 \\ \text { via } \mathrm{FQ} \\ \text { and } \mathrm{RY} \end{gathered}$	F4	$\begin{aligned} & \text { F9 } \\ & \text { F10 } \end{aligned}$	Each Single Disk Storage (TB1-5) operator switches and lamps, magnet voltage, access and detent controls, +35 v regulator (for write drivers)	

14198 A

Figure 5-7. DC Voltages - - 1810 Disk Storage

Chapter 6. Locations

6.1 LOCATIONS SHOWN IN SYSTEM DIAGRAMS

6.1.1 System

Card Feature Codes and Locations, BA001
I/O Channel Interface Cable Routing, CT990-997

6.1.2 1801 and 1802 Processor-Controllers

Analog Board Adjustment and Test Points, QD935
Channel Interface to I/O Monitor, CU901-931
Core Storage Board, Four-Microsecond:
Bottom Board Terminals, 4k, SD072
Bottom Board Terminals, 8k, SD071
Core Storage Board Connectors, SD012
Diodes on Diode Board, 4k, SD082
Diodes on Diode Board, 8k, SD081
Sense Connections, 4k, SD062
Sense Connections, 8k, SD061
Core Storage Board, Two-Microsecond:
Bottom Board Terminals, 4k, SA072
Bottom Board Terminals, 8k, SA071
Core Storage Board Connectors, SA012
Diodes on Diode Board, 4k, SA082
Diodes on Diode Board, 8k, SA081
Sense Connections, 4k, SA062
Sense Connections, 8k, SA061
DI Adapter Location Assignment, RA000
DO Adapter Location Assignment, TL000
Gate Power Distribution, YA159
PC Adapter Location Assignment, RB000
PI Assignment Chart, RC000
Power and Signal Connectors, BP001
Programmer's Console Assembly, BL001
S\&H Amplifier Adjustment Points, QD931
Special Voltage Distribution, YA231-232
1054 Adapter Interface to Reader, ES821-831
1055 Adapter Interface to Punch, ES871-881
1442 Adapter Interface to CRP, EN831-891
1443 Adapter Interface to Printer, EL121, 221, 401, 421, 431, 441
1627 Adapter Interface to Plotter, EK271
1816-1053 External Connections, EG101

6.1.3 1826 Data Adapter Unit

Analog Board Adjustment and Test Points, QD935
CA Data Set Interface MK031
CA Personality Wiring MA008, MK008
DI Adapter Location Assignment, RA000
DO Adapter Location Assignment, TL000
PC Adapter Location Assignment, RB000
PI Assignment Chart, RC000

S\&H Amplifier Adjustment Points, QD931
| Selector Channel Interface FS021-061
Signal and Power Tailgates, YB650
System/360 Adapter Interface, FV201-271,
FV401-411

6.1.4 1828 Enclosure

Signal and Power Tailgates, YD210
1851 Card Receptacle Wiring, QC110-120
1851 Differential Amplifier Adjustment and Test
Points, QC935
1851 Mixer Panel, QC100
1851 Multiplexer Addresses, QC060
1851 Multiplexer Configuration, QC040
1851 Multiplexer Drive Line Tracing Chart, QC130
1851 Terminal Location and Range, QC070
1856 AO Assignment Chart, TA000
1856 AO Configuration, TA003-004
1856 AO to Customer Terminal, TA007
1856 Tailgate Area, TA950

6.2 FRAME NUMBERING SYSTEM

System enclosures are identified in the MLR and FESRR by the following frame numbers.

14195A

6.3 BOARD LOCATIONS

In the following tables, board locations for expandable features are listed in order of installation priority within each frame. For locations (such as 01D-B3) that are shared
by digital I/O features, installation priority is (1) digital output, (2) process interrupt, (3) digital input, (4) pulse counter.

1801, 1802, 1826-1

ALD Block	Board Description	Locations		
Symbol		1801	1802	1826
02D-A2	TCU Controls TCU Clocks, Regs TCU Channel TCU Final Amps		D-A2	
02D-A3			D-A3	
02D-B2			D-B2	
02D-B3			D-B3	
26A-A3	360 Adapter, Data 360 Adapter, Control			A-A3
26A-B3				A-B3
60A-A1	ADC	A-A1	A-AI	A-AI
60A-A2	Al Comp, Matrix Dr	A-A2	A-A2	A-A2
60A-B1	Channel, Al Basic	A-B1	A-B1	A-B1
60A-B2	Analog In Basic	A-B2	A-B2	A-B2
60B-A1	Channel	B-A1	B-Al	
60B-A2	CPU Registers	B-A2	B-A2	
60B-B1	Channel	$B-B 1$	B-B1	
60B-B2	CPU Control	B-B2	B-B2	
*60C-Al	$\begin{aligned} & \text { 1816/1053 Adapter }{ }^{\#} 1 \\ & \text { 1816/1053 Adapter }{ }^{\#} 2 \end{aligned}$	C-AI	C-A1	
		D-B1	D-B1	
60C-A2	Digital In Basic	C-A2	C-A2	
60C-A3	DI-DAO Basic	C-A3	C-A3	
60C-B1	1443/1627 Adapter	C-B1	C-B1	\cdots
*60C-B2	1442 Adapter \# 1 1442 Adapter \#2	C-B2	C-B2	
		D-A1	D-A1	
60C-B3	Dig \& Anal Out Basic	C-B3	C-B3	
60D-A1	1054/1055 Adapter	D-AI	D-AI	
60E-AI	Core Storage Mixer	E-AI	E-AI	
60H-AI	Cycle-Steal Mixer	H-Al	$\mathrm{H}-\mathrm{Al}$	
60X-X5		F-AI	F-AI	
		G-A1	G-AI	
60X-Y1	Digital Out Adapter	D-A3		B-A3
		D-B3		B-B3
				B-B2
				B-A2
$60 \mathrm{Y}-\mathrm{VI}$	Proc Intrpt Adapter	D-A2		B-B2
		D-B3		B-A2
$60 \mathrm{Y}-\mathrm{Wl}$	Pulse Ctr Adapter	D-A2		B-AI
		D-B3		B-B2
				B-A2
60Y-X1	Digital In Adapter	D-B2		B-B1
		D-B3		B-AI
				B-A2
63Z-Z1	Core Storage $\begin{array}{r}\text { 4k/8k } \\ \\ \\ \text { 2nd } 8 \mathrm{k} \\ \text { 3rd } \\ \\ \\ \\ 4 \mathrm{k} \\ \text { 4th } 8 \mathrm{k}\end{array}$	B-A3	B-A3	
		B-B3	B-B3	
		A-B3	A-B3	
		A-A3	A-A3	
* Although board can be used in two locations, only the location of the first adapter board is shown in ALD block.				

ALD Block Symbol	Description	Locations (factory build)	
		1826-2	1826-3
26A-B 3	S/360 Adapter, Control	A-B 3	
26A-A3	S/360 Adapter, Data	A-A3	
$\begin{array}{r} 26 \mathrm{Z}-\mathrm{Z1} \\ \mathrm{Z2} \\ \mathrm{Z3} \end{array}$	Selector Channel (Bd 1) Selector Channel (Bd 2) Selector Channel (Bd 3)	$\begin{aligned} & \mathrm{A}-\mathrm{Al} \\ & \mathrm{~A}-\mathrm{A} 2 \\ & \mathrm{~A}-\mathrm{A} 3 \end{aligned}$	$\begin{aligned} & \text { A-A1 } \\ & \text { A-A2 } \\ & \text { A-A3 } \end{aligned}$
$\begin{array}{\|r\|} \hline 26 Z-X 3 \\ \times 1 \\ \times 2 \end{array}$ $26 \mathrm{Y}-\mathrm{BI}$ AI B2 A2	Line Adapter 0 of 1 st Comm Adapter Line Adapter 1 of 1 st Comm Adapter 1st Comm. Adapter Line Adapter 0 of 2 nd Comm Adapter Line Adapter 1 of 2nd Comm Adapter 2nd Comm. Adapter Line Adapter 0 of 3rd Comm Adapter Line Adapter 1 of 3rd Comm Adapter 3rd Comm. Adapter Line Adapter 0 of 4th Comm Adapter Line Adapter 1 of 4th Comm Adapter 4th Comm Adapter 1st 2790 Adapter (Bd 1) 1st 2790 Adapter (Bd 2) Ist 2790 Adapter (Bd 3) 1st 2790 Adapter (Bd 4) 2nd 2790 Adapter (Bd 1) 2nd 2790 Adapter (Bd 2) 2nd 2790 Adapter (Bd 3) 2nd 2790 Adapter (Bd 4)	$\begin{aligned} & A-B 3 \\ & A-B 1 \\ & A-B 2 \\ & A-A 3 \\ & A-A 1 \\ & A-A 2 \end{aligned}$ A-B 1 A-Al A-B 2 A-A2	A-B 3 A-B 1 A-B 2 A-A3 A-A1 A-A2 B -A3 B -A1 B -A2 B-B 3 B -B 1 B -B 2 B-AI B -B 1 B -A2 B -B 2 A-B 1 A-Al A-B 2 A-A2
60X-Y1	1st Digital Output Adapter 2nd Digital Output Adapter 3rd Digital Output Adapter 4th Digital Output Adapter	$\begin{aligned} & \mathrm{B}-\mathrm{A} 3 \\ & \mathrm{~B}-\mathrm{B} 3 \\ & \mathrm{~B}-\mathrm{B} 2 \\ & \mathrm{~B}-\mathrm{A} 2 \end{aligned}$	
60Y-V1	1st Process Interrupt Adapter 1st or 2nd Process Interrupt Adapter	$\begin{aligned} & \mathrm{B}-\mathrm{B} 2 \\ & \mathrm{~B}-\mathrm{A} 2 \end{aligned}$	
60Y-X1	1st Digital Input Adapter 2nd Digital Input Adapter 3rd Digital Input Adapter	$\begin{aligned} & B-B 1 \\ & B-A 1 \\ & B-A 2 \end{aligned}$	
60Y-W1	1st Pulse Counter Adapter 1st or 2nd Pulse Counter Adapter 1st, 2nd, or 3rd Pulse Counter Adapter	$\begin{aligned} & \mathrm{B}-\mathrm{Al} \\ & \mathrm{~B}-\mathrm{B} 2 \\ & \mathrm{~B}-\mathrm{A} 2 \end{aligned}$	

1851, 1856

ALD Block Symbol	Board Description	Locations	
		1851	1856
$\begin{aligned} & 51 A--- \\ & 51 A-X 3 \end{aligned}$	Multiplexer Mixer Board	$\begin{aligned} & \text { A - - } \\ & \text { A - } \end{aligned}$	
$\begin{aligned} & 56 \mathrm{M}-\mathrm{X} 1 \\ & 56 \mathrm{M}-\mathrm{X} 2 \\ & 56 \mathrm{M}-\mathrm{X} 3 \\ & 56 \mathrm{Y}-\mathrm{A} 7 \\ & 56 \mathrm{Y}-\mathrm{B} 7 \\ & 56 \mathrm{Y}-\mathrm{B} 8 \\ & 56 \mathrm{Y}-\mathrm{C} 1 \\ & 56 \mathrm{Y}-\mathrm{C} 7 \\ & 56 \mathrm{Y}-\mathrm{D} \\ & 56 \mathrm{Y}-\mathrm{D} \\ & 56 \mathrm{Y}-\mathrm{D} 8 \\ & 56 \mathrm{Y}-\mathrm{F} \\ & 56 \mathrm{Y}-\mathrm{F} 7 \\ & 56 Y-G 1 \\ & 56 \mathrm{Y}-\mathrm{Y} 7 \end{aligned}$	Mixer Board Mixer Board Mixer Board DAC Conn Socket DAC Conn Socket Terminal Boards Prec Volt Ref - 2 PVR Conn Socket Power Pac Pwr Pac Conn Socket Terminal Boards DAC Conn Socket DAC Conn Socket Anlg Chan Control DAC \#1 \# 2 \#3 \#4		M-G8 M-H 8 M-E 8 M-F 8 Y-A 7 Y-B7 Y-B 8 Y-C 1 Y-C 7 Y-D 1 Y-D 7 Y-D 8 Y-E 7 Y-F 7 Y-G1 Y-A 1 Y-B 1 Y-E 1 Y-F 1
$56 Y-Y 8$	Prec Volt Ref - 1		Y-C 1

6.4 WIRED LOGIC (WL) JUMPERING

6.4.1 Interrupt, Cycle Steal, IPL

Analog Input and Comparator, QD041, QD042, QD991
Cycle Steal (Channel Board), BC101, CU991, CU995
Cycle Steal (Mixer Board), BC101, CT997
| Communications Adapter, MA008, MB997
Digital and Analog Output, PB000, PA991
Digital Input, PD000, PA991
Interrupt (Additional Levels), BC150, CU995
Interval Timers and Console, BC150, CU991, CU995
| Selector Channel, FS011, FS013
System/360 Adapter, FV001, FZ991
Tape Control Unit, GA111, GB991
1053-1816 Printer and Printer-KB, EA001, EA991
1054-1055 Paper Tape Reader-Punch, ES001, ES992
1442 Card Read Punch, EN001, EN991
1443 Printer, EJ005, EJ991
1627 Plotter, EJ001, EJ991
1810A Disk Storage, FA001, FA991, FA992
| 1810B Disk Storage, FC001, FC991

6.4.2 Other

AO Addressing, TA001, TA051
AO Optional Features, TA001, TA661, TA631, TA991
Core Storage Module Selection, $2-\mu \mathrm{s}$, SA111
Core Storage Module Selection, 4- $\mu \mathrm{s}$, SD331
| Communications Adapter, MA008, MB997, MB998, MB999
DI Group Addressing, RA002, RA021
DI High-Speed Voltage Input, RA111-821
DO Control, TL001, TL051
DO Group Addressing, TL001, TL110, TL120, TL130, TL140
Interval Timer (Time Selection), CU991
| Line Adapter, MK008, MM998, MM999
PC Coupler, RB991
PC Group Addressing, RB005, RB021
PI High-Speed Input, RC111-821
PI ILSW Bit Jumpering, RC004, RC981
PI Level Decode Jumpering, RC002, RC981
PI Request Jumpering, RC001, RC991
System/360 Adapter Address Decode, FV005, FY101
System/360 Adapter Select-Bypass, FV005, FV251
| 2790 Adapter LA005, LC991

6.5 COMPONENT LOCATIONS INDEX

6.5.1 1801 and 1802 Processor-Controllers

Console switches and lamps are shown on BL001, BL005, and BL009. ALD page locations of other components are shown on YA700-710.

Fuses (YA700)

F1 thru F36
F37
F38, F39
Relays (YA700)
RY1 thru RY16
RY17 thru RY19
RY20 thru RY23
Contactors (YA710)
K1 thru K4
K5
Circuit Breakers (YA700)
CB1 thru CB4

Edge Connectors (YA710)
EC1 thru EC12
EC15 thru EC20
Terminal Boards (YA710)
TB1 thru TB6
TB6B
TB7
TB8
TB9
TB10
TB11
TB12, TB13
TB14, TB15, TB16
TB17
TB18 thru TB20
TB21
TB22
TB23
6.5.2 1803 Core Storage Unit

Lamps
CB Figure 6-13 YS210
Power on Neon Figure 6-14 YS210
Ready . Figure 6-13 YS240
Fuses
F1 through F7 Figure 6-14
Contactors
K1 Figure 6-14 YS210
K2 Figure 6-14

YS210
Figure 6-3, 6-4
Figure 6-1
Figure 6-2

Figure 6-5
Figure 6-6
Figure 6-5

Figure 6-3, 6-4
Figure 6-4

Figure 6-3, 6-4

Figure 6-5
Figure 6-1

Figure 6-3, 6-4
Figure 6-4
Figure 6-6
Figure 6-5
Figure 6-3, 6-4
Figure 6-1
Figure 6-2
Figure 6-6
BL001
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-2
Figure 6-1

YS210

YS240

Edge Connectors

EC1 and 2

Mainline $C B$
Terminal Board
6.5.5 1828 Enclosure

Fuses

F1, F2

Terminal Boards

TB1, TB2
TB4

Figure 2-28

YD210
Figure 2-28
6.5.3 1826 Data Adapter Unit, Models 1 and 2

Fuses

F1 thru F10

Relays

RY1 thru RY3
RY4, RY5
Edge Connectors
EC1

Terminal Boards

TB1 thru TB3
TB4, TB5
TB6
6.5.4 1826-3 Data Adapter Unit

Lamps
CB \quad Fi
Power On Neon
Fi
Fuses (YB110)
F1 through F7 Fi
Relays (None)
Contactors (None)

Circuit Breakers (None)

Main Line Switch Figure 6-23 YB210
Edge Connector
EC1
Figure 6-25

Terminal Boards

TB1
TB2

TB4
Figure 6-24
Figure 6-24
Figure 6-25

Figure 6-18

Figure 6-19
Figure 6-18

Figure 6-18

Figure 6-18
Figure 6-19
Figure 6-18

YB220
YB210

YB210
YB210, YB220 and YB250 YB240

6.6 LOCATIONS FIGURE LISTING

Figure 6-1. 1801/1802 Processor-Controller (Front)
Figure 6-2. 1801/1802 Processor-Controller (Rear)
Figure 6-3. 1801/1802 Power Sequence Assembly $(60-H z)$
Figure 6-4. 1801/1802 Power Sequence Assembly ($50-\mathrm{Hz}$)
Figure 6-5. 1801/1802 Relay Panel A
Figure 6-6. 1801/1802 DC Distribution Assembly
Figure 6-7. 1801 Customer Termination Area
Figure 6-8. \quad Customer Terminal Block (Digital I/O)
Figure 6-9. Fault Protection Boards (Digital I/O)
Figure 6-10. 1801 SLT Board Locations
Figure 6-11. 1802 SLT Board Locations
Figure 6-12. 1803 Core Storage Unit (Front)
Figure 6-13. 1803 Core Storage Unit (Rear)
Figure 6-14. 1803 AC Power Distribution Assembly
Figure 6-15. 1803 DC Power Panel
Figure 6-16. 1803 SLT Board Locations
Figure 6-17. 1826 Data Adapter Unit (Mod 1 and 2)
Figure 6-18. 1826 Power Sequence Assembly (Mod 1 and 2)
Figure 6-19. 1826 DC Power Panel (Mod 1 and 2)
Figure 6-20. 1826 SLT Board Locations (Mod 1)
Figure 6-21. 1826 Customer Termination Area
Figure 6-22. 1826 Data Adapter Unit, Model 3 (Front)
Figure 6-23. 1826 Data Adapter Unit, Model 3 (Rear)
Figure 6-24. 1826-3 Power Distribution Assembly
Figure 6-25. 1826-3 DC Power Panel
Figure 6-26. 1826-2 SLT Board Locations
Figure 6-27. 1826-3 SLT Board Locations
Figure 6-28. 1828 Enclosure
Figure 6-29. 1851 Multiplexer Terminal (Front)
Figure 6-30. 1856 Analog Output Terminal (Front)
Figure 6-31. 1856 AO Board Coordinates

[^5]Figure 6-1. 1801/1802 Processor Controller (Front)

NOTE:
Circled numbers are used to identify the corresponding power supply in the System Diagrams. See Figure 5-3 for power distribution to gates.

Figure 6-2. 1801/1802 Processor-Controller (Rear)

Figure 6-3. 1801/1802 AC Power Distribution Assembly (60 Hz)

Figure 6-4. 1801/1802 AC Power Distribution Assembly (50 Hz)

Silicon Controlled Rectifier (Power Failure Protect)

Figure 6-5. 1801/1802 Power Sequence Relay Panel A

Figure 6-6. 1801/1802 DC Distribution Assembly

Priority Scan: DO - PI - DI -
Viewed From Rear of 1801

A2
Group 1
of
1st DO

14188

Figure 6-7. 1801 Customer Termination Area

Figure 6-8. Customer Terminal Block (Digital I/O)

Figure 6-9. Fault Protection Boards (Digital I/O)

Figure 6-10. 1801 SLT Board Locations

- Figure 6-11. 1802 SLT Board Locations

- Figure 6-12. 1803 Core Storage Unit (Front)

(2) Figure 6-13. 1803 Core Storage Unit (Rear)

(2) Figure 6-14. 1803 AC Power Distribution Assembly

Gate B

Core Storage (BSM VII) B1	Core Storage (BSM VIII) A1				
Core Storage (BSM V) B2	Core Storage (BSM VI) A2				
1803 to P-C Adapter B3	Core Storage (BSM IV) A3				
12456					

- Figure 6-16. 1803 SLT Board Locations
- Figure 6-15. 1803 DC Power Panel

Figure 6-17. 1826 Data Adapter Unit, Models 1 and 2

Figure 6-18. 1826-1,-2 AC Power Distribution Assembly

Figure 6-20. 1826-1 SLT Board Locations

12457

- Figure 6-22. 1826 Data Adapter Unit, Model 3 (Front)

- Figure 6-23. 1826 Data Adapter Unit, Model 3 (Rear)

- Figure 6-24. 1826-3 Power Distribution Assembly

Figure 6-25. 1826-3 DC Power Panel

Gate A

Priority Scan: S/360, Sel Chan, Comm Adapt, 2790

Gate B

1st Digital Input Adapter	2nd DI or lst PC Adapter
B1	A1
3rd DO or 1st PI or 1st/2nd PC Adapter	4th DO or 1st/2nd PI or 3rd DI or 1st/2nd/3rd PC Adapter
B2	
2nd Digital Output Adapter	1st Digital Output Adapter (\& Control)
B3	A3
Priority Scan: DO, PI, DI, PC	
	12461

- Figure 6-26. 1826-2 SLT Board Locations

Gate A

2nd Line Adapter of 1st Comm Adapt or 2nd 2790 Adapt (Bd I)	Sel Chan (Bd 1) or 2nd Line Adapt of 2nd Comm Adapt or 2nd 2790 Adapt (Bd 2)
B1	A1
1st Comm Adapter or 2nd 2790 Adapt (Bd 3)	Sel Chan (Bd 2) or 2nd Comm Adapt or 2nd 2790 Adapt (Bd 4)
B2	A2
1st Line Adapter of 1st Comm Adapt	Sel Chan (Bd 3) or 1st Line Adapt of 2nd Comm Adapt
B3	A3

Priority Scan: Sel Chan, Comm Adapt, 2790

Gate B

2nd Line Adapter of 4th Comm Adapt or 1st 2790 Adapt (Bd 2)	2nd Line Adapter of 3rd Comm Adapt or 1st 2790 Adapt (Bd 1)
B1	A1
4th Comm Adapter or 1st 2790 Adapt	3rd Comm Adapter or 1st 2790 Adapt
B2	A2
1st Line Adapter of 4th Comm Adapt	1st Line Adapter of 3rd Comm Adapt
B3	A3
Priority Scan: Comm Adapt, 2790	
	12462

© Figure 6-27. 1826-3 SLT Board Locations

[^6]Figure 6-28. 1828 Enclosure

Analog Signal Cable Connectors

Amplifier Switch X Drive (MPX/R Only)

+ First MPX Level Output, First Amplifier Input
- First MPX Level Output, First Amplifier Input
+ Second MPX Level Output, Second Amplifier Input
- Second MPX Level Output, Second Amplifier Input Analog Input to ADC

14058 C

Figure 6-29. 1851 Multiplexer Terminal (Front)

Figure 6-30. 1856 Analog Output Terminal (Front)

Figure 6-31. 1856 AO Board Coordinates

Appendixes

APPENDIX A. SPECIAL CIRCUITS
This manual makes no distinction between special and
standard circuits.
APPENDIX B. WORLD TRADE
World Trade differences are covered in their logical places
in the manual.
APPENDIX C. TOOLS AND TEST EQUIPMENT
Shipped with System
Description
I/O Monitor - shipped with each 1801/1802

A-Register Display 2-6
Abbreviations viii
AC Power Distribution Assembly 6-7,6-8,6-14,6-17,6-21
Accuracy and Repeatability AI 4-13
ADC (Analog to Digital Converter) Conversion Sequence 1-55
ADC (Analog to Digital Converter) Register Voltage Values, Conversion Table 1-31
Add Lamp 2-5
Address Bits Service Check 1-44
Address Register Lamps 2-6
Address Register Switch 2-6
Adjustments, Removals, and Checks
Analog Input 4-12
Analog Output 4-12
Array, Core Storage 4-3
BSM (Basic Storage Module) 4-3
Central Processing Unit 4-1
Channel Control 4-4
Communications Adapter 4-14
Core Storage 4-3
Core Storage Diode 4-4
Digital Input 4-14
Digital Output 4-14
Filter Replacement 4-1
Gate Blowers 4-1
Interrupt 4-4
Interval Timers 4-4
Magnetic Tape Control 4-5,6 and 7
Operations Monitor 4-2
Panel Lamps 4-1
Phase A/B 4-1
Power Supplies 5-1
Selector Channel 4-14
System/360 Adapter 4-11
1054-1055 Adapter 4-4
1442 Adapter 4-5
1443 Adapter 4-5
1627 Adapter 4-5
1816-1053 Adapter 4-4
1856 Analog Output Power Pac 5-3
1810 Disk Storage 4-5
AI (See Analog Input)
Alarm Lamp 2-1
Analog Input (See Also Multiplexer and 1851)
Accuracy and Repeatability 4-12
ADC (Analog to Digital Converter) Conversion 1-60
ADC (Analog to Digital Converter) Conversion Sequence 1-55
ADC (Analog to Digital Converter) Input 1-59,1-60
Amplifier Block Switch Input and Output 1-59
Block Switch 1-58
Calibration 4-12
Calibration Facility 2-17
Common-Mode Voltage 1-61
Control Parity Errors 1-53
Current Limiter 1-58
Failure Area, Multiplexer 1-60
Monitoring 2-9
Multiple Selections 1-57
Multiplexer Troubleshooting Techniques 1-57
Parity Error Detection 1-28
PM 3-1
Precautions 4-11
Programming Rules and Restrictions 1-60
Read All Bits -- Service Hint 1-55
Reducing Secondary Effects 1-53
Relay Multiplex Point Selection 1-56
Relay or Pulse Transformer Problems 1-57

Analog Input (Continued)
Repeatability 1-61
Sample-and-Hold Amplifier Waveforms 1-57,1-58
Scoping Drivers 1-56
Service Checks 4-12
Solid-State Multiplex Point Selection 1-56
Troubleshooting Techniques 1-53
Waveforms 1-55
XIO Operations 1-17
X or Y Driver Problems 1-57
1851 Service Voltages 1-60
Analog or Digital Output Addresses 1-26
Analog Output
Board Coordinates 6-26
Calibration 4-12
Service Check 4-12
Subchannel Termination 1-36
Terminal 6-26
XIO Operations 1-20
Appendixes A-1
Arithmetic Control (ARITH CTL) Lamp 2-5
Arithmetic Sign (ARITH SIGN) Lamp 2-5
Arrays (See Core Storage)
Auxiliary Exercisers 2-9
Auxiliary Storage
Program Load 2-11
Selection 2-11
Auxiliary Storage (AUX STOR) Lamp 2-5

B-Register Display 2-6
Back Panel Connector Blocks 1-37
Basic Non-Monitor Programs 2-8
Basic Storage Module (BSM)
Address Assignments, Swapping 1-44
Bottom Board Leakage 1-49
Decode Wires 1-44
Locations
1801 6-10
1802 6-11
1803 6-15
Physically Exchanging 1-44
Removal/Replacement 4-3
Selection 1-41
Blower 4-1
Blower Motors 3-1
Board Locations 6-1
Bottom Board Leakage 1-49,1-52
Branch Lamp 2-5
Branch Out (BO) Lamp 2-6
BSM (See Basic Storage Module)

Cable Installation and Routing 1-37
Cables, Signal 1-37
Calibration, Analog Input 4-12
Calibration Facility
Description 2-17
Precautions 2-18
Calibration, Analog Output 4-12
CAR (Channel Address Register) Check 2-7
CAR (Channel Address Register) Check Detection 1-25
Card Offset and Four-Inch Jumpers 2-20
Card Read Punch Power-Down Procedure 1-62
Carry (CAR) Lamp 2-6
CE Cycle-Steal Test 2-12
CE Indicator Latch Card 2-13

CE Interrupt 2-11
CE Level Interrupt Switch 2-10
CE Mode 2-11
CE Phone Line 2-15
CE Sense Switches 2-11
CE Test Pulse 2-12
Central Processing Unit 4-1
Chaining CAR (Channel Address Register) Check 2-7
Channel Address Register (CAR) Checking 2-7
Channel Control 4-4
Channel Termination 1-36
Character Coding, I/O Devices 1-24
Check Sheet, Console 1-40
Check Stop Circuits 2-7
Check Stop Switch 2-4
Checks (See Adjustments, Checks, and Removals)
Circuit Breakers 6-3,6-4
Clear Storage Switch 2-1
Clear Storage Functions 2-3
Clock Lamps 2-5
Communications Adapter
Board Locations 6-22,6-23
Monitoring 2-10
Service Check 4-14
Wiring Changes $1-34$
XIO Operation 1-21
Compare Instruction 1-8
Component Locations Index 6-3
Console 2-1,2-2
Console and Maintenance Features 2-1
Console Check Sheet 1-40
Console Interrupt Switch 2-3
Contactors 6-3
Conversion Tables
ADC (Analog to Digital Converter) Register Voltage Values 1-31
Decimal/Hexadecimal 1-4
Core Storage
Address Bits Service Check 1-44
Address Failure Patterns 1-42
Address Word 1-41
Addressing and Selection 1-41
Adjustment 4-3
Array Removal/Replacement 4-3
Array Swapping (physical) 1-44
Array Swapping (with 1803) 1-44
Array Swapping (without 1803) 1-44
Auxiliary 2-11
Basic Storage Module (BSM) 1-41
Bottom Board Leakage 1-49
Card Offset and Jumpers 2-20
Collection of Error Data 1-40
Current Driver Card Balance 1-53
Current Measurement 1-53
Current Probing Card 2-19
Cycle Stealing on SAR (Storage Address Register) Display, Effect of 1-40
Defective Diode 1-46
Delay Line Output 1-47
Differential Scope Cable 2-19
Diode Removal/Replacement 4-4
Display Procedure 1-42
Error Data, Collection of 1-40
Interval Timer Operation 1-44
Line Leakage Measurement 1-49
Meter (Weston 901) 2-20
Parity Errors 1-40
Removal/Replacement 4-3
Scoping Comparisons 1-44
Scoping Techniques 1-43
Sense Amplifier Waveforms 1-54
Single Address Operation 1-43
Swapping BSM (Basic Storage Module) Address Assignments 1-44
Temperature, Effect of 1-46
Test Equipment 2-19
Thermometer 2-20

Core Storage (Continued)
Trouble Diagnosis 1-44
Waveforms 1-53
Wraparound Characteristics of Core Storage 1-42
X and Y Drive-Current Waveforms 1-54
X or Y Line Resistance 1-46
Y-Current Waveforms 1-48
Counter, Test Equipment 2-14
CPU 4-1
Critical Circuits and Levels
Phase A/B 1-38
Sample Pulse Drivers (SPD's) 1-38
Singleshots (SS) 1-38
Current Probe 2-19
Current Probing Cards 2-19,2-20
Customer Assignments 1-28
Customer Terminal Block (Digital I/O) 6-9
Customer Termination Area 6-9,6-18
Cycle Lamps 2-5
Cycle Steal Service (CS SERV) Lamp 2-5
Cycle-Steal Test 2-14
Cycle Stealing on SAR (Storage Address Register) Display, Effect of 1-38

D-Register Display 2-6
DAC/PVR (Digital to Analog Converter/Precision Voltage
Reference) Extender 2-19
Data Channel Assignment
Authorization 1-32
Wiring Procedure $1-32$
Data Entry Switches 2-4
Data Processing Input/Output 1-62
Data Register 2-6
Data Register Switch 2-6
Data Words - - IPL (Initial Program Load) Mode 1-3
DC Circuit Breaker Trip Lamp 2-10
DC Distribution Assembly 6-9
Decimal/Hexadecimal Conversion Table 1-4
Delay Counter Timing, TCU (Tape Control Unit) 4-6
Delay Counter Timings -- Microsecond Mode, TCU
(Tape Control Unit) 4-8
Delay Counter Timings -- Millisecond Mode, TCU
(Tape Control Unit) 4-9
Device Status Word (See Also XIO Operations) 2-10
Diagnostic Approach 2-9
Diagnostic Programs
Auxiliary Storage Programs or Exercisers 2-8
Basic Non-Monitor Programs 2-8
Caution 2-9
Diagnostic Approach 2-9
Disk Maintenance Library (DIMAL) 2-9
Documentation 2-9
I/O Scope Routines 2-8
Monitor-Controlled I/O Function Tests 2-8
MPX (Multiprogramming Executive) 2-8
On-Line 2-8
Program Description 2-8
Program Listings 2-8
RPQ (Request for Price Quotation) Monitor-Controlled Programs 2-9
Timing Programs 2-8
Utility Programs 2-8
Diagnostic Techniques 1-31
Differential Scope Cable 2-19
Differential Voltmeter 2-16
Digital Input
Addresses 1-25
Customer Termination Area 6-9
DSW (Device Status Word) and PISW (Program Interrupt Status Word) Addresses 1-25
Fault Protection Boards 6-10
Service Check 4-14
Subchannel Termination 1-36
Test Card 2-18

Digital Input (Continued)
Test Card Caution 2-18
XIO Operations 1-19
Digital Output
Addresses 1-23
Checks and Adjustments 4-14
Customer Termination Area 6-9
Fault Protection Boards 6-10
Singleshots 4-14
Subchannel Termination 1-34
Test Cable 2-18
XIO Operations 1-20
DIMAL (Disk Maintenance Library) 2-9
Diode, Core Storage 4-4
Diode, Defective Core Storage
Description 1-46
Effect on Waveforms 1-50,1-55
Disable Interrupt 2-4
Disk Maintenance Library 2-8
Display Address Register Switch 2-6
Display Data Register Switch 2-6
Display Mode 2-4
Double Compare Instruction 1-8
Double-Precision Data Word 1-3
DP I/O Trouble Diagnosis 1-62
DSW (Device Status Word) 2-8

Edge Connectors 6-3

Editing Diagnostic Programs 1-35
Emergency Pull Switch 2-1
Environmental Hazards, Exposure to v
Equipment Precautions vi
Error Check Circuits 2-7
Extender Card 2-14
Extender, DAC/PVR (Digital to Analog Converter/Precision Voltage Reference) 2-19
E2-Cycle CAR (Channel Address Register) Check 2-7

Fans 3-1
Fault Protection Boards 6-10
Features Installed 1-30
FESRR (Field Engineering Systems Reference Report) 1-30
Field Unit System Engineering Document (FUSED) 1-37
Filter 4-1
Filter Cleaning and Replacement 3-1
Final Amplifier Read/Write Adjustment, TCU 4-10
Fluke DC Differential Voltmeter 2-16
Force Aux On/Off Switch 2-11
Format (F) Lamp 2-6
Frame Numbering System 6-1
Fuses 6-3

Gate Blowers 4-1

Hexadecimal Numbers, Identification ii
Hexadecimal/Decimal Conversion Table 1-4

I-Register Display 2-6
I/O Checking Circuits 2-7
I/O Monitor Interface Connectors 2-9
I/O Monitor Interface Panels 2-9
DC Circuit Breaker Trip 2-10
Switches - 1801/1802 Interface Panel 2-10
I/O Monitor Unit 2-13
I/O Scope Routines 2-8
Immediate Stop Switch 2-3
Indicator Latch Card 2-13
Indicators (See Lamps, Indicator)
Indirect Addressing (IA) Lamp 2-6

Initial Program Load (See IPL)
Installed Features 1-30
Instruction Set 1-6
Interface Connectors, I/O Monitor 2-9
Interface Panels
I/O Monitor 2-9
1801/1802 Interface Panel 2-10
Internal Error, Detection 1-28
Interrupt
Assignments 1-33
Disable 2-4
Level Lamps 2-5
Levels 1-3
Service Check 4-4
Service (INTR SERV) Lamp 2-5
To Auxiliary/Main Storage Switch 2-11
Trace 2-4
Wiring Procedure -- Process Interrupts 1-33
Wiring Procedure - System Interrupts 1-33
Interval Timers
Address Considerations 1-44
Service Check 4-4
Interval Reassignment 1-33
IOCC (Input/Output Control Command) Format 1-2
IOCC (Input/Output Control Command) Words (See XIO Operations)
IPL (Initial Program Load) 2-6
IPL (Initial Program Load) into Any Core Location 2-7
IPL (Initial Program Load) Mode, Data Words 1-3

Jumper Block 2-20

Lamp Test Switch 2-1
Lamps (See also Switches and Message Lamps) 2-1
Lamps, Indicator
Add 2-5
Arithmetic Control (ARITH CTL) 2-5
Arithmetic Sign (ARITH SIGN) 2-5
Auxiliary Storage (AUX STOR) 2-5
Branch 2-5
Branch Out (BO) 2-6
Carry (CAR) 2-6
Clock 2-5
Cycle 2-5
Cycle Steal Service (CS SERV) 2-5
Format (F) 2-6
Indirect Addressing (IA) 2-6
Interrupt Level 2-5
Interrupt Service (INTR SERV) 2-5
Op Code Check 2-5
Operation Code (OP CODE) 2-6
Overflow (OFLO) 2-6
Parity Bit (PTY BIT) 2-5
Parity Check (PTY CHECK) 2-5
Removal/Replacement 4-1
Shift Control (SHIFT CTL) 2-5
Storage Protect Bit (STOR PROT BIT) 2-5
Storage Protect Check (STOR PROT CHECK) 2-5
Tag. 2-6
Timers 2-5
Zero Remainder (ZERO REM) 2-5
Lights (See Switches and Message Lamps, or Lamps, Indicator)
Load 2-4
Load I Switch 2-3
Locations
Board Locations 6-1
Component Locations Index 6-3
Figure Listing 6-4
Frame Numbering System 6-1
System 6-1
1801 and 1802 6-1
1803 Components 6-12
1828 Enclosure 6-1
Locations Figure Listing 6-4

Logic Diagrams
ALD (Automated Logic Diagrams) Logic Block Symbology 1-28
FEALD (Field Engineering Automated Logic Diagrams) Logic Block Symbology 1-28
Logic Page Identification 1-29
Machine Frame and Gate Designations 1-28
Manufacturing Assembly Report 1-30
RPQ (Request for Price Quotation) Logic Pages 1-32
Version 1-30
Long Instruction Format 1-2

Machine Cable Installation 1-37
Machine Frame and Gate Designations 1-28
Magnetic Tape Control Unit (TCU) 4-5
Magnetic Tape Control Singleshots 4-11
Main Storage (See Core Storage)
Maintenance Features 2-1
Manually Controlled Wiring
Authorization for Wiring Changes 1-32
Communications Adapter 1-34
Customer Request 1-32
Data Channel Assignment 1-32
Editing Diagnostic Programs 1-35
Interrupt Assignments 1-33
MES (Miscellaneous Engineering Specification) and RPQ
(Request for Price Quotation) Orders 1-32
System/360 Adapter Address Reassignment 1-34
Timer Interval Reassignment 1-33
Manufacturing Assembly Report 1-30
Marginal Checking
Chart 1-37
Intermittent Failures 1-36
Procedure 1-37
Voltage Chart 1-37
Voltage Measurement Points 1-37
Memory (See Core Storage)
Message Lamps (See Switches and Message Lamps)
Meter 2-20
Mode Switch
Display 2-4
Load 2-4
Run 2-4
Single Instruction 2-3
Single Instruction with Cycle Steal 2-3
Single Step 2-3
Single Storage Cycle 2-3
Trace 2-4
Monitor Interface Panels, I/O 2-9
Monitor-Controlled Programs 2-9
MPS (Medium Power Standard) Power Supply Adjustment 5-1
MPX (Multiprogramming Executive) Diagnostics 2-8
MPX (Multiprogramming Executive) Programming System 2-8
Multiplexer Addresses 1-27
Multiplexer (See Also Analog Input) 1-57
Multiplexer Terminal 6-25

Non-Monitor Timing Programs 2-8

Off Switch 2-1
On Switch 2-1
On-Line Diagnostics 2-8
On-Line Servicing
CE Interrupt 2-11
CE Mode 2-11
Channel Termination 1-36
Limitations 1-35
Power Removal and Component Plugging 1-35
Shared Time Servicing 1-35
System/360 Adapter 1-36
TSX (Time Sharing Executive) Operating System 1-35
Use of Auxiliary Storage 1-35
Op Code Check Lamp 2-5

Operation Code (OP CODE) Lamps 2-6
Operations Monitor 4-2
Operations Monitor Switch 2-4,2-11
Operator's Console 2-1
Oscilloscope 2-13,2-19
Overflow (OFLO) Lamp 2-6
Parity Bit (PTY BIT) Lamp 2-5
Parity Check 1-40
Parity Check (PTY CHECK) Lamp 2-5
Parity Errors 1-40
Personal Safety vi
Personality Wiring (See Wiring Changes)
Phase A/B 1-38,4-1
Phone Line, CE 2-15
Plotter Speed 4-5
PM 3-1
Power-On Lamp 2-1
Power-On Switch 2-1
Power Pac-- 1856 Analog Output Terminal 5-3
Power Removal and Component Plugging
Channel Termination 1-36
Precautions 1-35
System/360 Adapter 1-36
Power Sequence Relay Panel A 6-8
Power Supplies
Adjustment and Removal Procedures 5-1
Filter Replacement 5-2
Overload 5-3
Precautions 5-1
Preload Resistors 5-3
PVR (Precision Voltage Reference) 5-3
Troubleshooting Guide 5-4
Troubleshooting Procedures 5-3
1856 Analog Output 5-3
Power Supply Overload 5-3
Power-Off Procedure 5-1
Power-On Procedure 5-1
Precautions, Equipment
Analog Input Calibration Facility 2-17
Common-Mode Voltage vii
Core Storage vii
Customer Interface vii
Power Removal 1-35
Power Supplies 5-1
Relay Multiplexer Cards vii
SLT Card Removal vii
Solid-State Components vii
Precision Voltage Reference 5-3
Preventive Maintenance 3-1
Primary Power 5-1
Process I/O Test Equipment 2-16
Process Input/Output 1-53
Process Interrupt
Channel Termination 1-36
Check, Service 4-14
PISW (Program Interrupt Status Word) Addresses 1-25
PISW (Program Interrupt Status Word) Bit Assignment 1-33
Wiring Procedure 1-33
Program Load 2-1,2-6
Programmable Test Latch 2-12
Programmer's Console 2-1,2-2
Programming, AI 1-60
Pulse Counter, Service Check 4-14
Pulse Counter or Digital Input Addresses 1-25
PVR (Precision Voltage Reference) 5-3
Read Clock Timing, TCU (Tape Control Unit) 4-5
Read Emitter Strobe Timing 4-5
Ready Lamp 2-1
Reference Data 1-1
Register Display Lamps and Switches
Address Register 2-6
Data Register 2-6
Data Register Switch 2-6
Display Address Register Switch 2-6
Register Displays I, B, D, and A 2-6

Relays 6-3
Remote Switch Box 2-15
Removals (See Adjustments, Checks, and Removals)
Repeatability, Analog Input 1-61
Reserved Main Storage Locations 1-3
Reset Switch 2-3
Resistance Bulb Thermometer 4-12
RPQ (Request for Price Quotation) Logic Pages 1-28
RPQ (Request for Price Quotation) Monitor-Controlled Programs 2-9
Run Lamp 2-1
Run Switch 2-4

Safety
Exposure to Environmental Hazards vi
Line-Powered Equipment vii
Machine Warning Labels vii
Oscilloscopes vii
Personal vi
Power Cords vii
Power Supplies vii
Sample Pulse Drivers (SPD's) 1-38
Selector Channel
Board Locations 6-22,6-23
Monitoring 2-10
Service Check 4-14
Singleshot Adjustment 4-14
XIO Operation 1-22
Sense and Program Switches 2-4
Serpent Connector Contacts 1-37
Service Checks (See Adjustments, Checks, and Removals)
Servicing Limitations
Channel Termination 1-36
Power Removal and Component Plugging 1-37
Shared Time Servicing 1-35
System/360 Adapter 1-36
TSX (Time Sharing Executive) Operating System 1-36
Use of Auxiliary Storage $1-35$
Shift Control (SHIFT CTL) Lamp 2-5
Short Instruction Format 1-1
Signal Acceptance and Rejection Levels, TCU 4-7
Signal Cables 1-37
Single Instruction 2-3
Single Instruction with Cycle Steal 2-3
Single Step 2-3
Single Storage Cycle 2-3
Singleshot Triggering 1-38
Single-Precision Data Word 1-2
SLT Contact Wear 1-37
SLT Maintenance
Field Unit System Engineering Document (FUSED) 1-37
Machine Cable Installation 1-37
SLT Contact Wear 1-37
Voltage Levels and Delays 1-37
Wire Color Codes 1-37
Sound-Powered Phones 2-15
SPD's (Sample Pulse Drivers) 1-38
Special Circuits A-1
Special Purpose Wiring 1-30
Start Switch 2-3
Stop Immediate Switch 2-3
Storage Protect Bit (STOR PROT BIT) Lamp 2-5
Storage Protect Check (STOR PROT CHECK) Lamp 2-5
Storage (See Core Storage)
Storage-Protect Bit 2-5
Switch Box (Remote) 2-15
Switches and Message Lamps
Alarm Lamp 2-1
Clear Storage 2-1
Console-Interrupt Switch 2-3
Emergency Pull 2-1
Immediate Stop 2-3
Indicator Lamps 2-4
Lamp Test 2-1
Load I Switch 2-3

Switches and Message Lamps (Continued)
Mode 2-3
Off 2-1
On 2-1
Power On 2-1
Program Load 2-1
Ready 2-1
Register Display Lamps and Switches 2-6
Removal/Replacement 4-1
Reset 2-3
Run 2-4
Start 2-3
Stop 2-3
Toggle Switches 2-4
Wait 2-1
Switches-- 1801/1802 Interface Panel 2-10
CE Level Interrupt 2-10
CE Sense 2-10
Force Auxiliary On/Off 2-10
Interrupt to Auxiliary/Main Storage 2-10
Operations Monitor 2-11
Use Meter 2-10
Switches, Toggle 2-4
System Paperwork Binder 1-30
System Power-Off Procedure 5-1
System Power-On Procedure 5-1
System/360 Adapter
Address Reassignment 1-34
Adjustment and Service Check 4-11
Disconnecting 1800 System $\quad 1-35$
Monitoring 2-10
Service Check 4-1
To Power Down 1-35
To Power Up 1-35
Wiring Procedure 1-34
T-Clock Lamps 2-5
Tag Lamps 2-6
Tape Control Unit 4-5
TCU 4-5
Temperature Tracking 4-3
Terminal Boards 6-3
Test Cable 2-18
Test Equipment
Core Storage 2-19
General 2-13
List of Test Equipment A-1
Process I/O 2-16
Seven Position Counter 2-14
Thermometer 2-20
Time Intervals, Op Monitor 2-11
Time Pulses A, B and C 1-29
Timer Interval Reassignment
Authorization 1-33
Wiring Procedure 1-33
Timer Lamps 2-5
Toggle Switches
Check Stop 2-4
Data Entry 2-4
Disable İnterrupt 2-4
Operations Monitor 2-4
Sense and Program 2-4
Write Storage Protect Bits 2-4
Tools and Test Equipment 2-13,A-1
Trace 2-4
Triggering Singleshots 1-38
Troubleshooting Procedures, Power Supplies 5-3

Use Meter Switch 2-10
Utility Programs 2-8

Vector Addresses, Interrupt 1-3
Voltage Crossover Assemblies 1-37

Voltage, Primary 5-1	1442 Card Read Punch
Voltages	Adapter Location 6-10,6-11
1801/1802 5-5	Character Coding 1-24
1826 Data Adapter Unit 5-6	Checks and Adjustment 4-5
1856 Analog Output 5-7	DC Voltages 5-5
2310 Disk Storage 5-6	IPL (Initial Program Load) Data Word 1-3
	IPL (Initial Program Load) Procedure 2-6
	Power Down Procedure 1-62
Wait Lamp 2-1	XIO Operations 1-12
Wire Color Codes 1-37	1443 Printer
Wired Logic (WL) Jumpering	Adapter Location 6-10,6-11
Interrupt, Cycle-Steal, IPL 6-3	Carriage Control Chars. 1-25
Other 6-3	Character Coding 1-24
Wiring Changes, Manually Controlled	Service Check 4-5
Authorization for Wiring Changes 1-32	XIO Operations 1-13
Customer Request 1-32	1627 Plotter
Communications Adapter 1-34	Adapter Location 6-10,6-11
Data Channel Assignment 1-32	Service Check 4-5
Description 1-30	Speed Change 4-5
Editing Diagnostic Programs 1-35	XIO Operations 1-13
Interrupt Assignments 1-33	1800 System
Line Adapters 1-34	Console Check Sheet 1-40
MES (Miscellaneous Engineering Specification) and RPQ	1801, 1802 Processor-Controllers
(Request for Price Quotation) Orders 1-32	Checks and Adjustments 4-1
System/360 Adapter Address Reassignment 1-34	Locations 6-1 through 6-11
Timer Interval Reassignment 1-33	PM 3-1
World Trade A-1	Power Supplies 5-5
Wraparound Characteristics of Core Storage 1-42	1810 Disk Storage
Write Clock Timing, TCU (Tape Control Unit) 4-6	Service Check 4-5
Write Storage Protect Bits Switch 2-4	Voltages 5-7
	1803 Core Storage Unit
	Address Swapping 1-44
	BSM (Basic Storage Module) Locations 6-15
X or Y Line Resistance, Core Storage 1-46	Interval Timer Operation 1-44
X-Clock Lamps 2-5	Locations 6-12
XIO Operations	Selection 1-41
Analog Input 1-17	Time Pulses A, B, and C 1-29
Communications Adapter 1-21	Wraparound 1-42
Digital and Analog Output 1-20	1816-1053 Printers
Digital Input 1-19	Character Coding 1-24
Internal (Area Zero) 1-9	Checks and Adjustments 4-4
Selector Channel 1-22	DC Voltages 5-5
System/360 Adapter 1-17	XIO Operations 1-10
Tape Control Unit 1-15	1826 Data Adapter
1053 Printer and 1816 Printer-Keyboard 1-10	Channel Termination 1-36
1054 Paper Tape Reader and 1055 Paper Tape Punch 1-11	Locations 6-1 through 6-23
1442 Card Read Punch 1-12	PM 3-1
1443 Printer 1-13	Power Supplies 5-6,5-7
1627 Plotter 1-13	1828 Enclosure
1810 Disk Storage 1-14	Locations 6-1 through 6-24
	1851 Multiplexer Terminal
	(See Also Analog Input)
Zero Remainder (ZERO REM) Lamp 2-5	Locations 6-1 through 6-25
	1856 Analog Output Terminal
	Channel Termination 1-36
	Blower Filter Replacement 4-13
	Blower Removal 4-12
	DAC/PVR (Digital to Analog Converter/Precision Voltage
1053 (See 1816)	Reference) Extender 2-19
1054-1055 Paper Tape	Locations 6-1 through 6-26
Adapter Locations 6-10,6-11	PM 3-1
Adapter Service Check 4-4	Power Pac 5-3
Adjustments 4-4	Precision Voltage Reference 5-3
DC Voltages 5-5	2401-2402 Magnetic Tape
IPL (Initial Program Load) Data Word 1-3	Adapter Location 6-11
IPL (Initial Program Load) Procedure 2-7	Checks and Adjustments 4-5
XIO Operations 1-11	XIO Operations 1-15

[^0]: 1600
 (Ist Adapter) Initialize Read (Card Image Mode): (2nd Adapter)

 Set up adapter data channel controls for transferring data from the adapter to core storage on a cycle-steal basis. Load IOCC address word into CAR. Data word is same as for Initialize Write command.

[^1]: $1000 / 1001$ (1st Adapter) Control CE Mode: Modifier 01 places 1442 in CE mode. Modifier 00 removes 1442 from CE mode. IOCC address word is not used. (2nd Adapter)

[^2]: $5200 / 5280$ (Basic) Read: Store contents of ADC register at C (IOCC address). Modifier 80 increments AMAR and initiates conversion of input signal at new address (sequential operation). (Expander)

[^3]: Data channel assignment
 Interval timer bases
 Interrupt level assignment

[^4]: *Trademark of John Fluke Mfg. Co., Seattle, Washington

[^5]: Note:

 Circled numbers are used to identify the corresponding power supply
 in the System Diagrams. See Figure 5-3 for power distribution
 to gates.

[^6]: * 1828 Model 2 Only

