
Systems

5Y28-0764.;O
File No. 5370-36

OS!VS2
System Logic Library
Volume 4

VS2.03.805
VS2.03.807

Pages numbered as duplicates in this publication must be retained because
each of these documents information specific to individual Selectable Units.

This minor revision incorporates the following Selectable Units:

Supervisor Performance # 1
Supervisor Performance #2

VS2.03.805
VS2.03.807

The selectable unit to which the information applies, is noted in the upper corner of the page.

First Edition (July, 1976)

This is a reprint of SY28-0716-0 incorporating changes released in the following
Selectable Unit Newsletters:

SN28-2687 (dated May 28, 1976)
SN28-2693 (dated May 28,1976)

This edition applies to Release 3.7 of OS/VS2 and to all subsequent releases of OS/VS2 until
otherwi.';e indicated in new editions or Technical Newsletters. Changes are continually made to .
the information herein; before using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 Bibliography, GC20-o00l, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, J.>ublications Development,
Department 058, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. Comments become
the property of IBM.

©Copyright International Business Machines Corporat.ion 1976

System Logic Library comprises seven volumes.
Following is the content and order number for each
volume.
OS /VS2 System Logic Library,
Volume 1 contents: SY28-0713

MVS logic introduction
Abbreviation list
Index for all volumes

Volume 2 contents: SY28-0714
Method of Operation diagrams for
Communications Task
Command Processing
Region Control Task (RCT)
Started Task Control (STC)
LOGON Scheduling

Volume 3 contents: SY28.;.0715
Method of Operation diagrams for
System Resources Manager (SRM) -
System Activity Measurement Activity (MF /1)
JOB Scheduling

-Subsystem Interface
-Master Subsystem
-Initiator /Terminator
-SW A Create Interface
-Converter /Interpreter
-SW A Manager
-Allocation/Unallocation
-System Management Facilities (SMF)
-System Log
-Checkpoint/Restart

Volume 4 contents: SY28-0716
Method of Operation diagrams for
Timer Supervision
Supervisor Control
Task Management
Program Management
Recovery /Termination Management (R/TM)

Volume 5 contents: SY28-0717
Method of Operation diagrams for
Real Storage Management (RSM)
Virtual Storage Management (VSM)
Auxiliary Storage Management (ASM)

Volume 6 contents: SY28-0718
Program Organization

Volume 7 contents: SY28-0719
Directory
Data Areas
Diagnostic Aids

Preface

Please note that if you use only one order
number, you will only receive that volume. To
receive all seven volumes, you must either use all
seven form numbers or, simply the following
number: SBOF-8210. If you use SBOF-8210, you
will receive all seven volumes.

The publication is intended for persons who are
debugging or modifying the system. For general
information about the use of the MVS system, refer
to the publication Introduction to OS / VS Release
2, GC28-0661.

How This Publication is Organized
This publication contains six chapters. Following! is
a synopsis of the information in each section:

• Introduction and Master Index - an
overview of each of the functions this
publication documents, an abbreviation list of
all acronyms used in the publication, and a
complete index for all seven volumes.

• Method of Operation - a functional
approach to each of the subcomponents, using
both diagrams and text. Each subcomponent
begins with an introduction; all the diagrams
and text applying to that subcomponent
follow.

• Program Organization - a description of
module-to-module flow for each
subcomponent; a description of each module's
function, including entry and exit. The
module-to-module flow is ordered by
subcomponent. The module descriptions are
in alphabetic order without regard to
subcomponent.

• Directory - a cross-reference from names in
the various subcomponents to their place in
the source code and in the publication.

• Data Areas - a description of the major
data areas used by the subcomponents (only
those, however, that are not described in
OS / VS Data Areas, SYB8-0606, which is
on microfiche); a data area usage table,
showing whether a module reads or updates a
data area; a control block overview diagram
for each subcomponent, showing the various
pointer schemes for the control blocks
applicable to each subcomponent; a table
detailing data area acronyms, mapping- macro
instructions, common names, and symbol
usage table.

Preface 3

• Diagnostic Aids - the messages issued,
including the modules that issue, detect? and
contain the message; register usage; return
codes; wait state codes; and miscellaneous
aids.

4 OS/VSl System: Logic Libnry:Volumc 4 (VSl Release 3 .. 7)

Corequisite Reading
The following publications are corequisites:

• OS/VS2 JES2 Logic, SY2S-0622
• OS/VS Data Areas, SYBS-0606 (This

document is on microfiche.)
• OS/VS2 Syslem Initialization Logic,

SY2S-0623

Contents

Section 2: Method of Operation
Timer Supervision

Method-of-Operation Diagrams
18-1. TIME Service Routine (lEAVRTOl)
18-2. STIMER Service Routine (IEAVRTOO)
18-3. TTIMER Service Routine (lEAVRTOO)
18-3A. SETDIE Routine (lEAVRT02) (VS2.03.807)
18-4. TQE Enqueue Routine (lEAVRTIO)
18-5. TQE Dequeue Routine (lEAVRTIO)
18-6. TQE Purge Routine (lEAVRTIl)
18-7. Timer Second Level Interrupt Handler (IEAVRTIO)
18-8. Set Clock Comparator Routine (lEAVRTIO)
18-9. TQE Processing Routine (lEAVRTIO)
18-10. Timer Functional Recovery Routine (lEA VR TI 1)
18-11. Set Specific Clock (SSC) Routine (lEAVRTOD)
18-12. TOD Clock Operator Communication Routine (IEAVRTOD)
18-13. TOD Clock Synchronization Routine (lEAVRTOD)
18-14. TOD Clock Status Test Routine (lEAVRTOD)
18-15. Synchronous Timer Recovery Routine (lEAVRTI1)
18-16. Asynchronous Timer Recovery Routine (lEAVRTOD)

Supervisor Control
Service Manager
Dispatching Work
Handling Interruptions
Interprocessor Communications (lPC)
Scheduling Exit Rout.ines . .
Serializing System Resources
Supervisor Control Recovery
Validity Checking
Method-of -Operation Diagrams

19-1. Dispatcher (lEAVED SO)
19-2. GloBal SRB Dispatcher (lEAVED SO)
19-3. Local SRB Dispatcher (lEAVED SO)
19-4. Local Supervisor Dispatcher .(lEAVEDSO)
19-5. Task Dispatcher (lEAVED SO)
19-6. Wait Task Dispatcher (lEAVED SO)
19-7. Memory Switch (lEAVEMSO) . -....
19-8. SVC Interruption Handler (lEA VESVC)
19-9. I/O Interruption Handler (IEAVEIO)
19-10. External First Level Interruption Handler (IEAVEEXT)
19-11. Program Check Interruption Handler (PC IH) (lEA VEPC)
19-12. Restart Interruption Handler (lEAVERES)
19-13. Signal Service Routines (lpe) (lEA VERI, lEA VERP, IEAVEDR)
19-14. External Call Second Level Interruption Handler (lEAVEXS) ..
19-15. Emergency Signal Second Level Interruption Handler (lEA VEES)
19-16. Stage 1 Exit Effector (lEA VEFOO)
19-17. Stage 2 Exit Effector (lEA VEEE2)
19-18. Stage 3 Exit Effector (lEA VEEEO)
19-19. SCHEDULE Processing (lEAVES CO)
19-20. PURGEDQ Processing (lEA VEPDO)
19-21. SETLOCK Processing (lEA VELK)
19-22. Validity Check Processing (lEA VEV AL)
19-23. ASCBCHAP Processing (lEA VEACO)
19-24. Trace Processing (lEA VTRCE)
19-25. Queue Verification (lEAVEQVO) .. .
19-26. Super FRR (lEA VESPR)
19-27. Address Space/Lock Verification Processing (IEAVELCR)
19-28. Suspend Routine (lEA VETCL) (VS2.03.807)
19-29. Transfer Control-Transfer Logical (TCTL)

(lEA VETCL) (VS2.03.807)
19-30. Resume Routine (lEA VETCL) (VS2.03.807)

Task Management
Creating and Deleting Subtasks
Controlling Task Execution . .

Direct Control of Tasks
Indirect Control of Tasks

Providing Informational Services

4-1
4-3
4-6
4-6
4-8

4-10
· 4-11
· 4-12
· 4-14
· 4-16
· 4-18
· 4-20
· 4-22
· 4-24
· 4-26
· 4-30
· 4-32
· 4-34
· 4-36
· 4-38
· 4-41
· 4-42
· 4-43
.4-44
.4-44
· 4-46
· 4-58
· 4-58
· 4-59
· 4-54
· 4-54
.4-72
· 4-74
· 4-76
· 4-78
· 4-82
· 4-84
· 4-86
, 4-94
· 4-98
4-104
4-116
4-120
4-126
4-128
4-130
4-132
4-134
4-138
4-144
4-148
4-162
4-164
4-168
4-170
4-172
4-176

4-191.0

4-191.2
4-191.6

4-193
4-193
4-196
4-196
4-196
4-196

Contents 5

Method-of-Operation Diagrams
20-1. ATTACH Processing (lEA VEATO)
20-2. DETACH Processing (lEA VEEDO)
20-3. CHAP Routine (lEA VECHO) . .
20-4. WAIT Processing (lEA VSY50)
20-5. POST Processing (lEAVSY50)
20-6. EVENTS Processing (lEA VEVTO) .
20-7. ENQ/Reserve Processing (lEA VENQ 1)
20-8. DEQ Processing (lEAVENQ1)
20-9. ENQ/DEQ/Reserve Recovery (lEAVENQ1)
20-10. SPIE Processing (lEAVTBOO)
20-11. EXTRACT Processing (lEAVTBOO)
20-12. EXIT Processing (lEA VEOR)
20-13. EXIT Prolog Processing (lEAVEEXP)
20-14. STATUS Processing (lEA VSETS)
20-15. MODESET Processing (lEAVMODE)
20-16. TEST AUTH Processing (lEA VTEST)

Program Management
Searching For and Scheduling Modules
JP A Storage Areas
LP A Storage Areas
Auxiliary Storage Libraries
Synchronizing Exit Routines
Fetching Modules into Storage
Method-of-Operation Diagrams

21-1. LINK Routine (lEAVLKOO)
21-2. Routing to Searching Routines (lEAVLK01)
21-3. Searching the LPA Directory (lEAVLKOO) .
21-4. BLDL/Program Fetch Interface (lEAVLKOl)
21-5. SYNCH Routine (lEAVLKOO) ..
21-6. LOAD Routine (lEAVLKOO)
21-7. DELETE Routine (lEAVLKOO)
21-8. IDENTIFY Routine (lEAVIDOO)
21-9. XCTL Routine (lEAVLKOO)
21-10. Overlay Supervisor (lEWSUOVR, IEWSWOVR)
21-11. Program Fetch (lEWFETCH)

Recovery/Termination Management (R/TM)
RTM 1 Functions

SLIH Mode Processing
Service Mode Processing
Hardware Error Mode .

RTM2 Functions
Normal Termination
Abnormal Termination

Address Space Termination
Recovery/Termination Management Support Functions

ST A Services
Alternate CPU Recovery (ACR)
SETFRR
Initializing FRR Stacks
Dumping
Formatted Dump-SNAP Dump
Unformatted Dump-SVC Dump
CHNGDUMP Operator Command
Recording Services

Method-of -Operation Diagrams
22-1. RTM 1 Overview (lEA VTRTM)
22-2. RTMI Initialization (lEAVTRTl)
22-3. Process Hardware Error (lEAVTRT2)
22-4. Processing SLIH Requests (lEA VTR TM)
22-5. Routing to FRRs (lEA VTRTS)
22-6. RTM 1 Recursion Processing (lEA VTRTR)
22-7. Reschedule RTMI (lEAVTRTM)
22-8. System-Directed Task Termination (lEAVTRTM)
22-9. Reschedule Locally Locked Task or SRB (lEAVTRTM)
22-10. RTMI Clean-up Processing (lEAVTRTM)
22-11. RTMI Exit Processing (lEAVTRTl)
22-12. RTM2 Overview (lEAVTRT2) ...
22-13. RTM2 Initialization (lEA VTRT2)
22-14. Recursion Processor 1 (lEAVTRT2)
22-15. Recursion Processor 2 (lEAVTRTE)

6 OS/VS2 System Logic Library Volume 4 (VS2.03.807)

4-198
4-198
4-206
4-214
4-220
4-222
4-234
4-242
4-246
4-248
4-250
4-254
4-256
4-258
4-260
4-268
4-270
4-273
4-273
4-273
4-275
4-275
4-275
4-275
4-278
4-278
4-284
4-286
4-288
4-290
4-292
4-294
4-296
4-300
4-306
4-308
4-319
4-319
4-319
4-319
4-320
4-320
4-320
4-320
4-nl
4-321
4-322
4-322
4-322
4-322
4-322
4-322
4-323
4-323
4-323
4-342
4-342
4-344
4-348
4-352
4-354
4-362
4-366
4-370
4-372
4-374
4-376
4-378
4-382
4-384
4-386

Inde1(

22-16. Recover Task Processing (lEA VT AS 1)
22-17. ABDUMP Processing (lEA VT ABD) .
22-18. Synchronize Failing Tasks (lEAVTRTC)
22-19. Task Purge Processing (lEAVTSKT) .
22-20. Task Purge Resource Managers (lEA VTSKT)
22-21. Addres~ Space Purge Processing (lEA VTMMT) .
22-22. Address Space Purge Resource Managers (lEA VTMMT)
22-23. RTM2 Exit Processing (lEA VTRTE)
22-24. Address Space Termination Processing (lEA VTMTC) .
22-25. ST AE/EST AE Processing (lEA VST AO)
22-26. Alternate CPU Recovery (ACR) Overview (lEA VT ACR)
22-27. FRR Stack Initialization (lEA VTSIN)
22-28. SETFRR (SETFRR)
22-29. SVC 51 Overview (lEAVADOO)
22-30. SNAP Dump Processing (lEA V AD 1)
22-31. SVC Dump Processing (lEA V ADOO) .
22-32. Schedule Dump Processing (lEA VTSDX)
22-33. CHNGDUMP (lEEMB815)
22-34. Recor4ing Processing (lEA VTRER)

4-388
4-392
4-396
4-398
4-402
4-408
4-410
4-420
4-426
4-430
4-436
4-440
4-442
4-444
4-446
4-452
4-458
4-462
4-466

. 1-1

Contents 7

Figures
Figure 2-32 Timer Supervision Visual Contents . . . •.
Figure 2..;33 SRB Scheduling Pointer Structure
Figure 2'-34 Asynchronous Exit Effector Data Structure .
Figure 2-35 Supervisor Control Recovery Data Structure
Figure 2-36 Supervisor Control Visual Contents
Figure 2-37 The TCB Ready Queue
Figure 2'-38 The TCB Family Queue '.' ..•.....
Figure 2.;.39 Task Management Visual Contents
Figure 2-40 STATUS-Action Codes and Fields They Change
Figure 2-41 Control Blocks for Modules in the JPA
Figure 2-42 Program Management Visual Contents .
Figure 2-46 Page I/O Error Processing
Figure 2-47 Hardware Error Processing
Figure 2-48 The Process of Normal Task Termination
Figure 2-49 Abnormal End-of-Task
Figure 2-50 Retry
Figure 2-51 Cancel
Figure 2-52 The Process of Terminating an Address Space
Figure 2-53 ABEND/SNAP Dump Processing
Figure 2-54 SVC Dump Overview •
Figure 2-55 Recovery/Termination Management Visual Contents

8 OS/VS2 System Logic Library Volume 4 (VS2.03.807)

• 4-4
· 4-42
· 4-47
· 4-50
· 4-51
4-194
4-195
4-197
4-265
4-274
4-277
4-324
4-326
4-328
4-330
4-331
4-332
4-333
4-335
4-336
4-339

)

This section uses diagrams and text to describe the
functions performed by the scheduler, supervisor,
MF /1, SRM, and ASM functions of the OS/VS2

operating system. Tl1e diagrams emphasize
functions performed rather than the program logic
and organization. Logic and organization is
described in "Section 3: Program Organization."

The method-of-operation diagrams are arranged
by subcomponent as follows:

• Communications Task.
• Command Processing (includes

Reconfiguration Commands).
• Region Control Task (RCT).
• Started Task Control (STC) (includes

ST ART/LOGON/MOUNT).

• LOGON Scheduling
• System Resources Manager
• System Activity Measurement Facility

(MF/l)
• Job Scheduling:

- Subsystem Interface.
- Master Subsystem.
- Initiator/Terminator.
- SW A Create Interface.
- Converter /Interpreter.
- SW A Manager.
- Allocation/Unallocation.
- System Management Facilities (SMF).

- System Log.
- Checkpoint/Restart.

• Timer Supervision.
• Supervisor Control.
• Task Manageme,nt.
• Program Management.

Section 2: Method of Operation

• Recovery/Termination Management (R/TM).
• Real Storage Management (RSM).

• Virtual Storage Management (VSM).

• Auxiliary Storage Management (ASM).

The diagrams for each subcomponent are
preceded by an introduction that summarizes the
subcomponent's function. Following each
introduction is a visual table of contents that
displays the organization and hierarchy of the
diagrams for that subcomponent.

The diagrams cross-reference each other using
diagram numbers and module names. As an aid in
locating the diagrams that are cross-referenced, an
alphabetic list of all diagram names and their
corresponding page numbers follows this
introduction.

Method-of -operation diagrams are arranged in
an input-processing.,.output format: the left side of
the diagram contains data that serves as input to
the processing steps in the center of the diagram,
and the right side contains the data that is output
from the processing steps. Each processing step is
numbered; the number corresponds to an amplified
explanation of the step in the "Extended
Description" area. The object module name and
labels in the extended description point to the code
that performs the function.

Note: The relative size and the order of fields
within input and output data areas do not always
represent the actual size and format of the data
area.

Section 2: Method of Operation 4.1

am;: iT; A';: ",dd AQX

.. Primary pro lng - Indicates major functionaillow .

••• _~ Secondary processing ~ indicates fUhctional flow within Ii diagram.

'--_--.> Data movement, modifldltion, Ot' use.

- - Data reference - indicates the testing Ot' reading of a data area to
determine the course of SUbsequent processing.

--........ ~ Pointer - indicates that a data area contains the address of another
data area.

(~ Indirect pointer - indicates Intermediate pointers haVe been omitted.

--D Connector - indicates that a diagram Is continued on the next page.

Figure 2·1. Key to Symbols Used in Method-of·Operation Diagrams

4·2 OS/VS2System Logic Library Volume 4 (VS2 Release 3.7)

The timer supervision routines support the
System/370 time-of-day clock, clock comparator,
and CPU timer. The routines use these components
to obtain the time of day and the date, schedule
activity after a specified interval, and schedule
activity after a specified time of day. Other timer
routines set the time-of -day clock and synchronize
the TOO clocks in a multiprocessing system.

For TIME macro instructions, the TIME routine
returns the date and time of day to the requester.

For STIMER macro instructions, the STIMER
routine sets a requested time interval that expires
after the specified time has elapsed or at the
specified time of day. When the requested time
interval expires, a timer or clock comparator
interruption occurs and the Timer Second Level
Interruption Handler processes it. If the requester
specifies the task timing option, the time interval is
decreased only when the requester's task is active.
If the requester specifies wait timing, his task is
placed in a wait state until the time interval
expires. If the requester specifies real timing, the
time interval is decreased continuously.

For TTIMER requests, the TTl MER routine
returns the amount of time remaining in an interval
previously set by a STIMER macro instruction. The
routine can also cancel the remaining time interval
if so requested.

Timer supervision also provides a SETDIE
routine that allows system programs (programs
executing in supervisor state and with a protect key
of 0) to specify a real time interval, after which a
disabled interrupt exit (DIE) is to be given control.
With SETDIE, the system program supplies timer
supervision with a pre-built TQE. When the timer
SLIH processes such a TQE (called a DIE TQE), it
gives control directly to the specified exit routine
(DIE).

VS2.03.807

Timer Supervision

Timer supervision maintains two queues of TQES
(timer queue elements): one for task timing ._.
requests, pointed to from the TCB of the reqeusting
task and containing only one TQE at a time; and,
one for real and wait timing requests, pointed to
from the TPC (timer work area) and containing all
real wait type TQES in the system. TQES (other
than a DIE TQE) are constructed by the STIMER
routine, and each element represents a request for
a timed interval. Each new TQE is placed on the
appropriate queue in the order in which the
requested interval expires. When an interval
expires, a timer interruption occurs. The Timer
Second Level Interruption Handler removes the top
TQE from the appropriate queue and determines
what action to take.

Other timer routines pro~ide for the initialization
of the TOO clock at IPL (see OS/VS2 System
Initialization Logic, SY28-0623) and when a CPU
is being varied online, and the resetting or
resynchronizing of a TOO clock that has suffered a
machine check.

In either case, the Set Specific Clock routine
searches for a TOO clock in the system to which
the new or error TOO clock in the system to which
the new or error TOO clock can be synchronized. If
one is found, the synchronization is done and the
results are validated. If no other valid TOO clock is
found, a routine is entered that ensures that the
TOO clock will be set with the correct value.

A set of service routines provide common
services to the timer supervision functions. TQE
Enqueue and TQE Dequeue provide for the
movement of TQES to or from the timing queues.
TQE Purge purges all timer TQES and SRBs during
task termination. An FRR and two hardware
recovery routines are also included.

Section 2: Method of Operation 4-3

~
~

o
{I)

~
.N
{I)

I
.t"'"

~.
t"'"

~
~
~
~
(D

~

~
N
o
c..J

00
~

18,1

TIME
Service
Routine
(lEAVRT01)

TOE Enqueue
Routine
(lEAVRTIO)

18-2 L 18-3

STiMER TTIMER
Service Service
Routine Routine
(IEAVRTOO) (IEAVRTOO)

TOE Dequeue
Routine
(lEAVRTIO)

!18-3A

SETDIE
(IEAVRT02)

Figure 2-32. Timer Supervision Visual Contents (Part 1 of 2)

Timing
Services
Overview
(no diagram)

L 18-6 1
TOE Purge

I Routine
(lEAVRTI1)

18-8

Set Clock
Comparator
Routine
(lEAVRTlO)

18-7 I 18-10
Timer Timer I Second Level Functional
Interrupt Recovery
Handler Routine Routine
(lEAVRTlO) (I EAVRTI 11

18-9 118-15

TOE Synchronous

Processing Timer

Routine Recovery

(IEAVRTIO) Routine
(lEAVRTI1)

18-16
"'-

Asynchronous
Timer Recovery
Routine
(lEAVRTOD)

!

18-13
TOO Clock

TOO Clock
Operator

Synchronjzation
Communication

Routine
Routine (JEAVRTOD)
(JEAVRTOD)

1
18-11

Set Specific
Clock
Routine
(JEAVRTOO)

l1!-14

TOO Clock
Status Test
Routine
(lEAVRTOD)

<:
{I)

~
<:>
c..J
00
S'

Section 2: Method of Operation 4-5

4:0-
0.-

o
en

~
N
en
'<
~
:3
r"'"
~ (5.

r"'"

!
~
~
(I)

4:0--

'< en
N

~
~
~
r6
w
~

Diagram 18-1. TIME Service Routine (IEAVRTOl) (part 1 of 2)
j,

From SVC First
Level Interrupt /

I!

- f
·f~ ,)

Input Handler (IEAVESVC) p / rocess
..... : 1:~S;Th~~te3i!{5:i~tccf'0:*!-:~~:~.tc~'<~o~:c2!:;;"~:':Vo'~,,;:i~ 'ci,c~2l::(:;;~'1zs0zb;c;~' r$~~" :c>i;~

CVT

Return Address

Register 14

1 Check for timer initialization.

2 Get local date.

3 Get local time from a valid
TOO clock.

4 Convert the local time to the units
requested.

For TU, BIN, GMT, or DEC

For MIC or STCK.

5 Abnormally terminate if an error
occurs.

6 Return.

EXIT Prolog
(lEAVEEXP)

I c) C ~.[

l. () vet S-Jt S_J2.-C __ -

Register 1

Register 0 ,

2 words in storage

Requested Time

C'-l
(II

~ o·
=
~
a;::
(II

[
o
o

"0
~
a o·
=
~
...J

Diagram 18-1. TIME Service Routine (IEAVRTOl) (part 2 of 2)

Extended Description Module Label

The TIME routine (IEAVRT01) services TIME·macro
instructions. It obtains the local date, calculates the local
time of day, and returns both to the caller as specified in
the macro instruction.

1 TIME checks the midnight value in the TPC. If it is I EAVRT01 I GCdOO1 A
zero, initialization has not taken place. TIME sets

register 0 to zero and sets register 1 to 15.

2 TIME gets the date and time zone constant from the
CVT. It stores the date in register 1.

3 TIME stores the TOO clock. If the operation fails, IEAVRT01 OTHERCLK
TIME gets the correct TOO clock setting from another

clock in the system. If the time cannot be obtained, TIME
puts an 8 in register 15.

Extended Description

4 TIME converts the local time into the units requested
and stores it in either register 0 or, if STCK or MIC is

specified, in the user-specified storage area. For STCK and
MIC requests, if the caller is not in a system protect key
(key 0-7), TIME ctJecks the validity of the user-specified
storage area key. (The key of the storage area passed by
the caller should match the caller's TCB protection key.)
If the check fails, TIME so indicates by placing '12' in
reg 15.

5 If the validity check in step 4 failed ('12' in reg 15),
TIME abnormally terminates the caller's task with

a code of X'10b'. If, however, the caller's protect key is
valid but the TIME request failed for another reason,
TI M E checks for an error return address. If no error
return address is found, it abnormally terminates the
user with a code of X'20B'.

6 If ERRET has been specified and no usable TOO
clock was found (reg 15 = '08'), or the request

was successful (reg 15 = 0), TIME gives control through
reg 14 to the EXIT routine.

"----

Module Label

IEAVRT01 IGC0001A

~

00

~
~
~

en
~ a
~
~.
t'"

~
~
<
[
('I)

~

'< en
~

o
~

00 o
-...I
'-'

Diagram 18-2. STIMER Service Routine (lEA VRTOO) (part 1 of 2)

From SVC First
Level Interrupt
Handler OEAVESVC)

Register 0

I Code I I J\.
User Asynch - rv 1 Get space for TOE.
Exit Address

Register 1

l 1 Time Interval
I '-- -- 2 Convert requested time interval

to timer units.
Register 3

I I TPC

~ CVT fI
TPCHDCCO '-- 3 Build new TOE. CVTTPC ~

MNIGHT
Register 4 CVTTZ

I I TOE 4 Put new TOE on proper timer ~ ~TCB V '--- -
~ 1-

queue. ~

TCBTME ..

5 If TOE is a wait type,
issue WAIT.

Register 14

I Return I ... 6 Return. Address I v

(lEAVEEXP)

RB

'"
v RBOPSW

"

",TOE

v TOETOE

TOEAID

TOESADDR

TOETCB

TOEASCB

TOEFLGS

TOEFLGS2

TOEEXIT

TOELHPSW !

TOETYPE
I

TOEVAL
I

TOEFLGS3 I

~
t-J o
~

00
o
-,.l

til
(D

Sl.
5'
= N

=:::
(D

[
o
o

"0
~
~
5'
=
~

~

Diagram 18-2. STIMER Service Routine (IEAVRTOO) (part 2 of 2)

Extended Description

The STIMER routine (lEAVRTOO) processes STiMER macro
instructions. The routine sets a time interval which expires
after a specified time has elapsed or at a specified time of
day.

Module Label

1 STIMER checks for existing TOEs and dequeues them. IEAVRTOO IGC0004G
If the type of the old TOE is the same as the type

requested, STIMER indicates that old TOE space may be
used. Otherwise, old TOE space is freed. Then STIMER
obtains space in LSOA for a task TOE or from SOA for a
real type TOE.

2 STIMER checks the type of request. If it is a task type
request with TOO or GMT specified, a 4 is set in

register 15. If it is a real or wait request, STIMER stores
the TOO clock.

If that fails, it attempts to set the TOO clock value with
the TIME routine. If it fails, STIMER sets register 15 to 8.
If the time is obtained, STIMER converts it to the units
requested. If GMT or TOO requests specify more than
2400, a 4 is placed in register 15.

IEAVRT01 IGC0001A

Extended Description

3 STIMER initializes the TOE identifier field, the ASID,
the TCB address, and the ASCB address fields in the

newly obtained storage area. Then it builds the common
portion of the TOE.

4 STIMER determines whether the timing components
necessary to service the request are usable. If they are

not, it puts an 8 in register 15. If the necessary components
are usable, STIMER enqueues the new TOE on either the
real or the task timing queue.

5 If this is a wait request, STIMER passes control to
the WAIT routine.

6 If a 4 is set in register 15, the user is abnormally ter-
minated with a code of X'12F'. If an 8 is set in

register 15 and no error exit address was specified, STI MER
abnormally terminates the user with a code of X'22F'.
Otherwise, STIMER passes control to the EXIT routine.

Error Processing

When an STIMER error is passed from R/TM, the ESTAE
routine records error information in the SDWA, if one
exists. Then, it passes control to R/TM to record the error
and to continue with termination.

Module Label

IEAVRTOO IEAVOTEOO

IEAVRTOO TTSTSTAE

t Diagram 18-3. TTIMER Service Routine (IEAVRTOO) (part 1 of 2)
o

o
In

"<
In
t-J
In
'<
~
~

3
t"'" o

(JQ ;;.
t"'"
c: e
'<
<:
o

= 3
~

.;:.

'< In
N

::0
~

if
~
w
~

Input

Register 4

Register 14

From SVC
Second Level
Interrupt Handler Process

1 Find TOE for requesting task.

Output

For TU For MIC
,-----, '----l

I Register 0 i I Register 0 I
II Interval II II Unchanged II
I OR I I

2 Calculate interval remaining and
convert it to units requested.

I Register 1 I I Storage I
-----------"'----'J/ I Unchanged II II Interval II

I I I I

3 If CANCEL is specified, remove
TOE from queue and free the
storage.

4 If the necessary clocks are
damaged, go to the user exit
if one is specified. I n all other
cases, abnormally terminate
the task.

5 Return.

EXIT Prolog
(lEAVEEXP)

L ____ J L-____ J

t"'-l
~

Sl
S·
= N

s::
sa.
5'
~

a.
o

'"0

~ g.
=
t

Diagram 18-3. TTIMER Service Routine (IEAVRTOO) (part 2 of 2)

Extended Description

The TTIMER routine (lEAVRTOO) processes TTIMER
macro instructions. The routine calculates the time remain
ing in a timer interval previously set by STIMER; optionally,
it cancels the interval. The time remaining in the interval is
returned to the caller as specified in the macro instruction.

1 TTIMER checks a TCB field to find a TOE. If none is
found, TTIMER sets the time interval to zero.

2 If a TOE is found, TTIMER converts the interval to
the units specified for the type of request. If the

time cannot be obtained, TTIMER puts an 8 in register 15.

3 If CANCEL has been specified, TTIMER dequeues
the TOE and frees the TOE space by using

FREEMAIN.

4 TTIMER checks register 15 for an error condition. If
one is found, it checks for a user error exit address. If

the user exit address is specified, control is passed to that
address. If no error exit is specified, TTIMER abnormally
terminates the user with a code of X'22E'.

5 If no error has occurred, TTIMEA returns control
through register 14 to the EXIT routine.

Error Processing

When an error is passed from RITM, the ESTAE routine
initializes the SDWA, if one is present. Then it returns con
trol to R/TM for error recording and further termination
processing. If the error is due to storing into a user area,
the user is abnormally terminated with a code of X'12E'.

Module Label

IEAVRTOO IGC0004F

IEAVRTIO IEAOTDOO

IEAVRTOO TTSTSTAE

~

~
Q

o
rIl

"< rIl
N
rIl
'<

~
b qg.
(')

r-'

J
~
:3
('I)

~

~
N o
~

00 o
.::::!

Diagram 18-3A. SETDIE Routine (IEAVRT02) (part 1 of 2)

From any system
caller (tEAVRDIE)

,,~ ',,~. a.. ..
Register 1

;

I ok " , ...

~I TQE
~
I

TQEAID 1
ASID 1

I TQEVAL -

I Requested
Interval

I ,:1
<,

'WI

TQEEXIT - I • DIE

,

Register 2 -12
t

DIE input 1
l

parameters

Register 14

I Return
Address I

I I ..

""'

,"

1 Initialize user supplied TQE. %I i!W
~"

,

<,

ili

2 Enqueue TQE on the real
time queue.

<,

iM

} 3 Return to caller.

I

Return to Caller

REAL Time Queue

TPC

TPCHDCCG

TQE

I
UserTQE ..
initialized .. and
enqueued

0
Registers 1-10 -
Same as entry ..
Register 15 -

-v Return code
0= success
4 = failure

-< rIl
N
Q
~

00
S

rJ:)
(p
(")

g.
=
~

a::
(p

go
8-
o
~

o
'e
~
~. o =
f" -:-

Diagram 18-3A. SETDIE Routine (lEA VRT02) (part 2 of 2)

Extended Description

The SETDI E routine (I EAVRT02) enqueues a user
supplied TOE on the system's real time queue.

1 The following fields in the user supplied TOE are
initialized:

TOETOE (TOE I D word)

TOEFLGS (X'87')

TOEFLGS2 (X'40')

TOEFLGS3 (X'80')

TOEVAL (clock comparator value)

TOEREGS (DIE parameter registers)

2 The completed TOE is then enqueued on the
- system's real time queue using the timer supervision
enqueue routine.

3 SETD I E returns to the caller via register 14.

Module Label

IEAVRT02 IEAVRDIE

lEA VRTIO I EAOTEOO

~
N
o
W
00
o
~

~ -N

0
til

"< til
N
til
'<
~

~
~

<e.
~

C
er ...
~
-<
0

= :3
~

~

'< til
N

<=>
toN
00

" 0
.::!

Diagram 184. TQE Enqueue Routine (IEAVRTIO) (part 1 of 2)

From a timing
service routine

Input or other caller

TOE (New)

- 1 Determine type of TOE.

2 For task type TOE, put TOE on
task timing queue and set
CPU timer.

3 For real or wait type TOE, put
the TOE on the real time queue.

4 If the new TOE is at the head
of the real time queue, ensure that
it is being timed.

5 Return.

Caller

Output

TCB

•

c;I)
(D

~ o·
= N

~
(D

8'
~

o ..,
o

'"0

S g.
=
~ -tN

Diagram 184. TQE Enqueue Routine (lEA VRTIO) (part 2 of 2)

Extended Description

The TOE Enqueue routine (I EA VRTIO) enqueues the sub
ject TOE (Timer Oueue Element) on the proper timing
queue: the real time queue for real or wait type TOEs; or
the task queue for a task type TOE.

1 TOE Enqueue determines from the TOETYPE field
what type of TOE is being processed.

Field Setting
00
01
11

TQE Type
Task
Wait
Real

2 TOE Enqueue enqueues a task type TOE from a TCB
by setting the TCBTME field and setting the TOE

fields to indicate the TCB with which the TOE is associated,
and to indicate that the TOE is on a timer queue. Then it
sets the CPU timer and, for recovery purposes, saves the
time-of-day when the CPU timer was set.

3 TOE Enqueue sets a TCB flag to indicate a real or
wait type TOE. This flag is not set, however, for a

01 E TOE. Then it searches the real time queue and places
the subject TOE in the proper place. It indicates that the
TOE is on the real timer queue.

4 TOE Enqueue verifies that the top TOE in the real
timing queue is being timed and if not, sets the clock

comparator.

5 TOE Enqueue returns control to the caller.

Module Label

IEAVRTIO IEAOTEOO

IEAVRTIO SETCC

<
(;f.l
N
o
tN

00
o
........

~ -~
&5 -~
~

til

~
(D

EI
t"'"
~ n·
t"'"
0: ...
~

~
<:
0 c
EI
(D

~

'< til
~

b
c..J
00 .. 0 ..., -

Diagram 18-5. TQE Dequeue Routine (IEAVRTIO) (part 1 of 2)
From a timing
service routine
or other caller

'.
TOE ~

< Register 1

J ~I TOEFLGS 1- ~ ----I I- 1 Determine type of TOE.

~ 2 Remove the TOE from the
appropriate queue.

CVT

CVTPCCAT
~PCCAT > " "" 3 For a task type TOE, set the

. 1 CPU timer .

.. ~ PCCA

~ 4 If a user TOE was being timed,
clear the PCCA indicators for
all CPUs timing it.

5 For a rea I type TOE, ensure
that the top TOE in the real
timer queue is being timed.

I Register 2
.~" "-I Return Address I) 6 Return.

y

TCB

'" TCBTME
y

-V-

TOE
Task Type

'") TQEFLGS

I ReallWait Type I
y

'" TOEOFF

P II &.0:

14
" I.'

",'- PCCA
.>

'" PCCATOEP

V----~

•

til
(\)
C') g.
::s
~

so:
(\)

~
Q.

o
o
"0

~ o·
::s

f'--<.11

Diagram 18-5. TQE Dequeue Routine (IEAVRTIO) (part 2 of 2)

Extended Description

The TOE Dequeue routine (I EA VRTIO) dequeues the sub
ject TOE from the real time queue for a real or wait type
TOE, or from the task queue for a task type TOE.

1 TOE Dequeue checks the TOETYPE field in the TOE
to determine its type.

Field Setting
00
01
11

TQE Type
Task
Wait
Real

2 TOE Dequeue resets the pointers to the TOE, and
marks the TOE to indicate that the TOE is off a timing

queue.

3 TOE Dequeue sets the CPU Timer to a high value to
insure against timer interruptions.

4 TOE Dequeue clears fields in the PCCA (Physical
Configuration Communication Area) entries to indicate

that the TOE is no longer being timed.

5 TOE Dequeue verifies that the top TOE in the real
timing queue is being timed.

6 TOE Dequeue returns control to the caller.

Module Label

IEAVRTIO IEAVOTDOO

lEA VRTIO SETCC

of" -01

0 en
"< en
N
en
'<
f!4.
~
S
l!9.

COl

~ ...
~
-<
0 = :3
(p

~

'< en
N

~
~ • ~
ril
~

~

Diagram 18-6. TQE Purge Routine (IEAVRTIl) (part 1 of 2)

Input

CVT

CVTTPC

RMPL

TPC

RMPLFLG1

RMPLASID

RMPLASCB

RMPLTCBA
RMPLRMWA

TOE

TOESRB

TPCHDCCO

Real Timer Oueue

TOE

[JJ

From End-of-Task
(lEAVTSKT)

-,
L __

1 Determine whether task or address
space is being terminated.

2 Cancel time limit checking and
dequeue and free TOEs.

3 Purge timer SRBs.

4 Return.

End-of-Task
(lEAVTSKT)

Output

ASCB

Register 15

,1

..

til
(D
(')

S·
= t-J

== (D
S
P-
o
o

'1:1

~ o·
=
t
'-I

Diagram 18-6. TQE Purge Routine (lEA VRTll) (part 2 of 2)

Extended Description

The TOE Purge routine (I EA VRTI1), entered when a task
or address space terminates, purges all TOEs for the task
or address space. In addition, the routine purges all timer
SR Bs that have not yet been scheduled for the specified
task or address space.

1 TOE Purge tests a field in the RMPL to determine
whether an address space or a task is being terminated.

2 For address space termination, TOE Purge sets bits in
the ASCB to cancel time limit checking. Then, it finds

the real or wait type TOEs belonging to the address space,
dequeues them and frees the storage. For task termination,
TOE Purge cancels time limit checking only if the TCB is
a job step TCB or higher. Then, TOE Purge checks for
TOEs for the TCB, dequeues them, and frees the space.

3 TOE Purge purges all timer SRBs for the address space
or task, whether the SRB is embedded in the TOE or

is built separately in the SOA.

4 TOE Purge returns control to Address-Space Purge
Processing or Task Purge Processing .

Module Label

lEA VRTI1 I EAOPGTM

IEAVRTIO IEAOTDOO

IEAVRTIO IEAOTDOO

lEA VRTl1 lEA VRSPG
IEAVEPDO IEAVEPDO

t Diagram 18-7. Timer Second Level Interrupt Handler Routine (IEAVRTIO) (part 1 of 2)
00

~
~
tv
CIl
'<
~

3
~
5·
t""" g:
~
~
=-3
('D

~

'<
CIl
tv

~

f
tH

~

From External First
Level Interrupt
Handler (lEAVEEXT)

Loc 135

I nterruption Code r----

Real Time Oueue

TOt:

[JJ

Process

- 1 Determine type of interruption.

2 For a synchronization check,
indicate it in the TPC and disable
further synchron ization checks.

For a CPU timer interruption,
process the task TOE and
schedule an SR8 for exiting.

For a clock comparator
interruption, process the top
TOE on the real time queue.

5 Return.

External FLIH
(tEAVEEXT)

Output

TPC

80

en
~

~ o·
= IV

s::
~
=o
0.
o
o

'"c::l
a;
~ o·
=
~ -\0

Diagram 18-7. Timer Second Level Interrupt Handler Routine (IEAVRTIO) (part 2 of 2)

Extended Description

The Timer. Second level Interrupt Handler (TSlIH)
routine (I EAVRTIO) processe~s CPU timer interruptions,
clock comparator interruptions, and synchronization check
interruptions detected by the external interrupt handler.

1 TSLI H checks the interruption code in location 135.

Code

X'03'
X'Q4'
X'05'

I nterrupt Type

Synchronization Check
Clock Comparator
CPU Timer

2 TSLIH indicates the interruption in the TPC (Timer
Work Area) and disables synchronization checks.

3 TS LI H resets the CPU timer and processes any task
TOEs, by dequeuing the TOE, and building and

scheduling an SRB for it.

4 TSLIH processes the top TOE in the real time queue
by either scheduling the SRB routine for a user TOE

. or by performing special processing for a system TOE.

5 TSLIH passes control to the EXIT routine.

Module label

IEAVRTIO IEAOTIOO

IEAVRTIO IEAOTDOO
AECTlRTN

lEA VRTIO SETCC
PROCTOE

~

~
o

o
til

"< - til
N
til
'<
~

3
£'
n'
t"'"

~
~
<:
o
E"
3
~

~

'< til
N

::t'
~

if
r6
IN

~

Diagram 18-8. Set Clock Comparator Routine (IEAVRTIO) (part 1 of 2)

Inout

Register 2

From a timing
service routine

- -,
I
I
I
I
I L- _

- 1 Ensure that the clock comparator can
be used. If it cannot be used, go to
step 4.

- 2 Determine whether the top TOE in the
Real TOE Timing Oueue is being timed
and whether the CPU is timing a _real
type TOE.

- - 3 If the top TOE is not being timed or if
the CPU is not timing a real type TOE,
set the clock comparator for the top
TOE and go to step 6.

4 If the top TOE is not being timed, find
a CPU with a good clock comparator
and signal that CPU to set its clock
comparator .

5 If no usable clock comparator can be
found, schedule all users with real
type TOEs for abnormal termination.

6 Return.

PCCA

Do

\I)
(D

g.
= N

a=
a
[
o
o
'0

~ o·
=
~
N -

Diagram 18-8. Set Clock Comparator Routine (IEAVRTIO) (part 2 of 2)

Extended Description

The Set Clock Comparator routine (lEAVRTIO) verifies that
the top TOE in the real timer queue is being timed. It also
sets the executing CPU's clock comparator, if the CPU is
not timing a TOE.

1 Set Clock Comparator checks the PCCA to determine
whether the clock comparator can be used.

2 Set Clock Comparator determines from the PCCA and
the TOE whether the CPU is timing a real TOE and

whether the top TOE is being timed.

3 Set Clock Comparator sets the clock comparator,
marks the top TOE as being timed, and indicates, in

the PCCA, the TOE being timed. Then it returns to the
caller.

4 Set Clock Comparator searches the PCCA entries for
one with a working clock comparator. When it finds

one, Set Clock Comparator signals the CPU to set its clock
comparator using the Set Clock Comparator routine.

5 Set Clock Comparator schedules all users with real
type TOEs for abnormal termination.

6 Set Clock Comparator returns control to the caller.

Module Label

IEAVRTIO IEAVRCKO

IEAVERP IEAVERP

IEAVRTIO PROCTOE

t Diagram 18-9. TQE Processing Routine (IEAVRTIO) (part 1 of 2)
t-J

o
C".Il

~
t-J
C".Il
'<
~
(!)

:3
t"'"
~
(=).

t"'"
CT

~
B c
:3
(!)

~

'<
C".Il
t-J o
(,H

00
o
'-'

Input

Register 1 TOE

ASVT

0
:6 ASCB

I--
~

ASCBJSTL --
ASCBSWTL -"

I
I

I

From Timer SLIH (lEAVRTJO)
or Set Clock
Comparator (I EAVRTIO)

fr{~b%~;5J~~~kF<*tf>~Ettk~IDi5~;;*hl\i*t!t;£i¥)i.1:fi~*~hhtI;}§;'~t{t±i¥i~4rt;:?;tt~t.£b~;d;E~±;:?4:::%E)·~:~D

,1 Dequeue TOE and determine type.

~-

-,
I
I
I
I
I
I
I
L

1-
_J

I 2 For a user TOE, schedule an SRB if
not a 01 E TOE. In this case, branch
enter specified exit routine.

3 For the channel reconfiguration hardware
(CRH) TOE, pass control to the CRH SRB
scheduling routine if the interval is expired,
and then return. Otherwise, go to step 9 to
enqueue the TOE.

4 For a System Resource Manager TOE, notify
the SRM if the time interval expired and
return. Otherwise, go to step 9.

5 For an MF/I TOE, notify MF/I if the time
interval has expired and return. Otherwise,
go to step 9.

6 For a job step timing TOE, check for
violations of job step CPU time and
wait limits.

7 For any violation, scheduie an SRB to
pass control to SMF. Update the
Job Step Timing 1"OE 4 Go to step 9.

8 For a midnight TOE, clear the hardware
error counts for timer components not
permanently damaged, update the date
in the CVT, and update the midnight
value in the TPC.

9 Enqueue the TOE on the proper queue.

10 Return.

Caller

Output
1(!~;;i0$ii

SRB

~
N
o
(,H

00
o

I.f.l
("l)

!l o·
= IV

s::
sa.
[
o
o
'0

("l)
'"1
~

S·
=
""" N
w

Diagram 18-9. TQE Processing Routine (IEAVRTIO) (part 2 of 2)

Extended Description

The Process TOE routine dequeues the top TOE on the
real timer queue and either does special TOE processing
for a system TOE or it schedules an SRB for a user TOE.

1 PROCTOE dequeues the TOE from the real timer
queue and determines from the TOEUSER bit

whether the TOE is a user TOE or a system TOE.

2 If the user TOE is not a 01 E TOE, PROCTOE builds
"and schedules an SRB (corresponding to the user

TOE),into the address space requesting the interval. If the
TOE specifies a user exit, an IRB is built by the SRB
routine and is scheduled by the Stage II Exit Effector.
The user exit will execute under this IRB. If the TOE
specifies a wait type request, the SRB routine posts the user.

If the user TOE is a 01 E TOE, the user's exit (01 E)
routine is branch entered directly from PROCTOE.

3 If the interval is complete, PROCTOE gets the address of
IECVCRHS and branches to it (using BALR).

4 If the time interval is complete, PROCTOE notifies
the System Resources Manager with a SYSEVENT

macro instruction that the interval is complete.

5 PROCTOE notifies MF/I, using the MFROUTER
macro instruction, when the interval being timed by

the MF/I TOE has completed.

Module Label

I EAVRTIO PROCTOE
IEAVRTIO IEAOTOOO

IEAVRTIO AECTLRTN

Extended Description

6 PROCTOE checks all address spaces for violations
of a job step's time limit or a waiting job step's wait

time limit by checking the ASCBJSTL and ASCBSWTL
fields.

7 For any violations, PROCTOE passes control to SMF
via an SRB to check for a possible time interval

extension. To do this, PROCTOE builds a partial TOE

and then schedules an SRB to pass control to SMF.
This SRB will then use the Stage II Exit Effector to
schedule the IRB for the initiator's TCB under which
IEATLEXT will execute. PROCTOE then updates the
Job Step Timing TOE.

8 If the time interval is complete, PROCTOE clears
hardware error counts for the usable timer compo

nents in the PCCA. PROCTOE also updates the date in
the CVT and adds 24 hours to the TOEVAL field in the
midnight TOE.

Module Label

IEATLEXT IEATLEXT
IEAVRTIO AECTLRTN

9 PROCTOE enqueues the TOE on the real timer queue. IEAVRTIO IEAOTEOO

10 PROCTOE returns control tl) the calling routine.

-<
I.f.l
IV o
<.N

00
o

t Diagram 18-10. Timer Functional Recovery Routine (IEAVRTIl) (part 1 of 2)
~

&1
"< til
N
til
'<
~

~

i
t""
;:

~
<:
g.
= :I
(D

~

'< til
N o
~

00
o
--J
'-'

Input

SDWA

SDWARCDE

TFRRPARM

From R/TM
(lEAVTRTS)

- 1 Check for recursion and
initialize SDWA.

2 Save recovery information
depending on error condition.

3 Verify and enqueue System
TQEs for clock comparator
processing errors.

4 Re-initialize recovery SRB, if
error in scheduling
routine.

5 Stop the VARY operation,
if error in CPU hold routine.

6 Validate real TQE queue, if
dispatcher lock held or if TQEs
being enqueued or dequeued.

7 Verify that real TQE queue is
active.

8 Return.

Output

R/TM
(IEAVTRTS)

TFRRPARM
.I

<:
til
N o
~

00
:3

C"Il
(I)

a o·
= N

a::
~
Q.

o
000)

o
"t:I

~ o·
=
f'"
N
VI

Diagram 18-10. Timer Functional Recovery Routine (IEAVRTIl) (part 2 of 2)

Extended Description

The Timer Functional Recovery routine (I EA VRTI1) proc·
esses program errors in timing components. It records error
information and checks the validity of system timer queues.

1 The Timer Functional Recovery Routine (FRR)
checks for possible recursion or re-entry to the

recovery routine. If recursion has occurred, the Timer
FRR immediately returns to R/TM. Then the Timer FRR
initializes identifier fi~lds in the SOWA.

2 The Timer FRR records error information in the
TFRR Parameter Area and in the TPC for each type

of error for later recording in the SDWA.

3 If the error is in a clock comparator interruption, the
Timer FRR updates the system TOEs and re-enqueues

them.

Module Label

IEAVRTI1 IEAVRFRR

lEA VRTI1 lEA VRTVR
I EAVRTIO I EAOTEOO

Extended Description

4· If the error is in the asynchronous recovery scheduling
routine, the Timer FRR marks the recovery SRB not

in-use.

5 If the error occurs in the CPU hold routine, the Timer
FRR determines whether to cancel the VARY_process.

6 After the TFRR Parameter List has been recorded in
the SDWA, the Timer FRR determines whether the

error occurred when a dispatcher lock was held, or when
a TOE enqueue or TOE dequeue was in process. If one of
the conditions is true, it verifies the real TOE queue. If the
TPC is found to be invalid, the Timer FRR indicates the
invalid TPC and returns control to R/TM.

7 The Timer FRR verifies that the real TOE queue is
active.

8 The Timer FRR returns to R/TM through register 14.

Module Label

IEAVRTI1 IEAVEADV
IEAVRTI1 IEAVEOVO

IEAVRTIO IEAVRQCK

t Diagram 18-11. Set Specific Clock (SSC) Routine (IEAVRTOD) (part I of 4)
<:f\

~
N

~
'<
~

S
t""
ti
~.

I:"'"
0:

~
< e.
= :3
('I)

.1:;0.

'<
r.t.l_
h)

~
('I)

if
~
~

~ -

Input

Real Time Oueue

TOE

r-I-

I
T

From VARY Command
Processor (lEAVCPU) or
Asynchronous Recovery

1 Get space for TCWA.

2 Search for valid online clock.

3 If found, initialize TCWA for
two clocks.

4 Check status of new clock agai nst
online clock. Repeat steps 2 and
3 if online clock is not set.

5 Synchronize new clock to online
clock, if required.
Repeat the status check to verify
the synchronizing procedure.
Then go to step 9.

6 If a valid online clock is not
found, dequeue the midnight and
job step timing TOEs and check
new clock status.

TCWA

t;I'.l
~ a
~.

::I
N

~
~
5'
Q.

So

~ ...
~
~.

::I

of"
!j

Diagram 18-11. Set Specific Clock (SSC) Routine (IEAVRTOD) (part 2 of 4)

E;xtended Description

The Set Speci.fic Clock (SSC) routine (I EAVRTOD) proc·
esses requests to set a particular TOO clock. It attempts to
find a valid clock, synchronizes the new clock to the valid

clock, if found, and tests the validity of the synchronization.
It is called from the VARY command processor OEEVCPU)
and from the clock asynchronous recovery routine that is
located in module IEAVRTOD (entry point IEAVRCLA).

Module Label

1 SSC obtains storage for the TCWA (TOO Clock Work IEAVRTOD IEAVRSSC
Area) from subpool 245. If the GETMAIN is unsuccess

ful, SSC saves the return code in register 15 and indicC!tes
the VARY operation should be halted, or that recovery was
unsucces.sful, by returning a non-zero return code to the
caller.

2 Using the bit mask in the CSD indicating the active
processing units in th.e system, SSC finds an onli.ne

CPU. Then it tests the status byte in the PCCA (Physical
Configuration Communication Area) for a valid TOO clock.

Extended Description

3 SSC initializes the PCCA address and the CPU address
in the TOO Clock Work area entries: one for the CPU

being varied online or being recovered, and one for the CPU
with the valid TOO clock.

Module Label

4 IEAVRSSC tests the new clock against the valid clock IEAVRTOD IEAVRTST
for synchronization. If the valid clock is not set (return

code 4 from TOO Clock Status Test), SSC continues search-
ing the PCCA entries for another valid clock.

5 If the return code from TOO Clock Status Test is 8, IEAVRTOD IEAVRSYN
12, or 16, SSC tries to synchronize the new clock to

the valid clock. Then it tests for success of the synchronization. I EAVRTOD I EAVRTST

6 If a valid TOO clock is not found, SSC dequeues the
midnight and job step timing TOEs and disallows

external SET commands. Then it initializes a single TCWA
entry and checks the status of the new clock.

IEAVRTIO IEAOTDOO

IEAVRTOD IEAVRTST

;t Diagram 18-11. Set Specific. Clock (sse). Routine (IEAVRTOD) (part 3 of 4)
00

o
C"Il

~
N
C"Il
'<

~
~
'e.
n
t'""

~
~
~
a
:3
(D

.01:0.

<:
C"Il
N

~
~
~
r6
w
~ -

Input

Register 0

CVT

CVTCSD

CVTTPC

TPC

I TPCHDCCQ 111

CSD

Real Time Queue

TQE

t-I-

I

Register 14

l

Process ,

7 Notify operator of TOO clock
status and process the replies.

8 Initialize the midnight and job
step TQEs and re-enqueue them.

fJ : > 9 Update the PCCA and the CSD
and release the "new" processing
unit, if VARY is caller.

t-----------.---v 10 Ensure that the top TQE on the
• Real Time Queue is being timed.

j,

..11.
y 11 Return.

Caller

Output

MNIGHT JST
TQE TOE

DD "
v

PCCA

~PCCATMSTI CSD

CSDGDTOD

CSDGDCC

CSDGDINT
..J>,

..".
LCCA

=!){LCCATIMR

Register 15

" • li)l Return Code J

c:n
n>
(")

S·
=
t..)

==
~
o
0.
o
o

"'0
n>
i3
S·
=
~
t..)
~

Diagram 18-11. Set Specific Clock (SSC) Routine (IEAVRTOD) (part 4 of 4)

Extended Description

7 If the return code from TOD Clock Status Test is 0,
SSC issues message I EA888A; if the return code is

non-zero, SSC issues message I EA886A. Then it tests the
clock to be sure it is set.

8 If the new clock is set, SSC re-enqueues the midnight
and job step timing TOEs and notifies the System

Resources Manager that there is now a valid TOD clock
and clock comparator in the system.

9 If the caller is VARY, SSC initializes the timer
status bytes in the PCCA, updates the count of usable

TOD clocks, clock comparators, and CPU timers in the CSD,
and releases the new CPU from its holding state.

10 ssc ensures that the top TOE on the real TOE
queue is being timed.

11 ssc allows external SET commands, frees the TCWA
space, and returns to the caller.

Error Recovery

When an SSC routine error is detected and passed by
R/TM, the ESTAE routine sets up information so that
R/TM will cause SSC to be re-entered at a point at which
resources can be cleaned up and a return can be made to
the caller.

Module Label

lEA VRTOD I EAVRCOM

IEAVRTOD IEAVRTST

IEAVRTOD TOEINIT

IEAVRTIO IEAVROCK

IEAVRTOD SSCESTAE

~
o
se
~
N
fIl
'< =. e
£" r;.'

;
!
<
~
59
(II

~

'< fIl
N

::c
(II r
~

~

Diagram 18·12. TOD Clock Operator Communication Routine (IEAVRTOD) (Part 1 of 2)

I

ill
1

-

From TOO Clo·ck
I:nitialization or
Set Specific Clock

~>, ~

CVT TPC . TCWA ..
/TPcrCNA J TCWAGFLG ~~ CVTDATE '-----

CVTTPC
TCWARPLY

V--CVTMSER ,/'~

I Operator Reply ~

MSRDA

%'j

MSTODWTO

I Operator Reply t

Register 14
I

Return Address I
,I

~ - 1 Issue the message to the
operator that the TCWA flags
indicate.

i

;

2 Process the reply and set the
" clock if the reply is other

than 'U'.

3 Check for fai.lure of command
and repeat steps 1 and 2 if
fai lure occurred.

-"- 4 Display the time and date to
q II' the operator.
:l

i 1'..) 5 Process the operator's reply and
[ll!" repeat steps 2-4 if needed.

to. ..> 6 Return.

.....
. Messageto

I'
Operator

CVT

.....
CVTDATE

il II II'

y Message to
Operator

(I)
(D
n g.
=
~

a::
(D

8-
Q.

o .-.
o
"= (D

;
g.
=
~
~ -

Diagram 18-12. TOD Clock Operator Communication Routine (IEAVRTOD) (part 2 of 2)

Extended Description

The TOO Clock Operator Communication routine
OEAVRTOD) handles operator communication for TOO
clock status. The routine issues messages and processes the

operator's replies, issuing SET commands to update the
TOO clock and local time and date. It is called from
eitherTOD Clock Initialization located in IEAVRTOD
(entry point IEAVRINT) or Set Specific Clock located
in IEAVRTOD (entry point IEAVRSSC).

1 Operator Communication issues the message that the
flags in the TCWA indicate. The flag settings depend

on return codes from the Clock Status Test routine.

Return Code

o
Message

IEA888A
IEA888A
IEA886A
IEA887A

8 or 12 (1 clock set)
4 or 16
8 or 12 (> 1 clock set)

If message IEA888A is to be issued, go to step 4.

2 Operator Communication processes the reply according

to the message sent:

Message
IEA888A

IEA886A

IEA887A

Valid Replies
CLOCK=nn,DATE=nn [,GMT] [,IPS=]
CLOCK=nn [,GMT] [,IPS=]
DATE=nn [,GMT] [,IPS=]
IPS=
CLOCK=nn,DATE=nn [,GMT] [,IPS=]
DATE=nn [,GMT] [,IPS=]
ID=nn [,IPS=]
CLOCK=nn,DATE=nn [,GMT] [,IPS=]
DATE=nn [,GMT] [,IPS=]

If a syntax error is found, the message is repeated until a
correct reply is made. When the operator enters a reply,
Operator Communication performs the indicated function
as requested by issuing an internal SET command.

Module label

IEAVRTOD IEAVRCOM

Extended Description

3 If the SET command fails, Operator Communication
issues the message and processes the new reply.

4 Operator Communication obtains a current TOO
clock value, calculates the local time, ar1d initializes

the date field in the CVT. It also calculates the GMT time
and date and, if prompting is to be done (indicated by bit
MSTODWTO), displays both the local and Greenwich Mean
time values in message IEA888A.

5 If the operator accepts the values or if no prompting
is allowed, Operator Communication returns. If the

operator enters new values, Operator Communication sets
the clock or local time and date values accordingly with
the SET command, reissues message I EA888A, and processes
the reply until the values are accepted.

6 Operator Communication returns to the caller.

Module label

IEAVRTOD DELTA3

IEAVRTOD CUTODATE

t Diagram 18-13. TOD Clock Synchronization Routine (IEAVRTOD) (part 1 of 2)
N

o
~
CIl
N
!ill
'<
~

9

i
r-
~
~
~
=-9
(D

~

'< CIl
N

~

i
~
~

~

In

CVT TCWA

From TOO Clock
Initialization or
Set Specific Clock

1 Find a clock requiring
synchronization.

2 Notify operator to press clock
security switch.

3 Get varue from- '''mas:Cer'r clock
for settIng unsyncbrooiized clo-eks.

4 set unsyru:hroaJ:zed db'€ks. tCil' matm,
"master" clock:.

5 Store the "master" clock value and
meck time required for synchronizing.

6 Return.

Caller

Output

Massage to
Operatoff

C"'-l

~
6'
==
N

a::
~
Q.

o
o
'"0
(II

;t
5'
==

~
w w

Diagram 18-13. TOD Clock Synchronization Routine (IEAVRTOD) (part 2 of 2)

Extended Description

The TOO Clock Synchronization routine (lEAVRTOD)
processes requests to synchronize TOO clocks. After get
ting a master clock value, it sets all clocks that need
synchronization. It is called from either TOO Clock
Initialization located in IEAVRTOO (entry point
IEAVRINT) or Set Specific Clock located in
IEAVRTOO (entry point IEAVRSSC).

1 Synchronization searches the PCCA (Physical Config·
uration Communication Area) via the TCWA entries

to find a TOO clock requiring synchronization.

2 Synchronization issu~s message I EA889A asking the
operator to press the TOO clock security switch and

wails for him to acknowledge receipt of the message. If
the switch is not pressed within 30 seconds after acknowl·
edgement, Synchronization repeats the message.

3 Synchronization calculates the master TOO clock
value and initializes a TCWA field with the value.

4 Synchronization checks each PCCA, via its TCWA
entry, for a flag indicating that the clock needs

synchronizing. If it finds one, Synchronization tries to set

the clock with the master clock value. Then it repeats
step 4.

5 When all clocks have been set, Synchronization stores
the master clock and verifies that all clocks were set

within 220 microseconds.

6 If, during the synchronizing process, the operator
releases the TOO clock security switch, or if the

operation cannot be completed within 220 microseconds,
Synchronization repeats the procedure from step 2. If the
operation has been completed successfully, Synch~onization
returns to the caller.

Module Label

IEAVRTOD IEAVRSYN

IEAVRTOO DELTA4

IEAVRTOO DELTA3

t Diagram 18-14. TOD Clock Status Test Routine (IEAVRTOD) (part 1 of 2)
~

o
fIl

"<
fIl
W
{Il
'< =.
(D

=
£
(:i'

f
<:

~
= (D

~

'<
fIl
N
~
(D r
~
C.H

~

,

, c~'"

CVT TPC

Ii
CVTTPC'

CVTPCCAT.
TPCTCWA

L..------

PCCAT

,~

If
TCWA

TCWAA1

L,.........-...

From TOO Clock
I niti ali zationor
Set Specific Clock p .. ,

PCCA Entry

r ~ :

~ ,

Register 14

l I
Return Address I

'w __ ,,,£6'=TIC~

1 Store the "master" clock.

2 Store the other clocks, if any
are online.

3 Enable synchronization checks
and indicate those clocks that
need synchronizati~n.

-"

r
4 Return.

Output

TCWA

...
TCWAA1 ..

j

TCWAA2

Entry ~

" TCWACLKE < ..

PCCA

" PCCASYNC
y

~
Register 15

"I

.. ~ Return Code I

CiIl a
~.

N

~ a
i
~
.i c
Q1 ;.
:;

~
t:

Diagram 18-14. TOD Clock Status Test Routine (IEAVRTOD) (part 2 of 2)

Extended Description

The TOO Clock Status Test routine (I EA VRTOO) processes
rEKIuests for the status of the TOO clocks in a system. The
routine determines which clocks are set and which clocks
needs synchronization. It then indicates these conditions
through a return code in register 15. It is called ffom
either TOO Clock Initialization located in IEAVRTOO
(entry point IEAVRINT) or Set Specific Clock located
in tEAVRTOO (entry point IEAVRSSC).

1 Sta.tus Test stores the first clock listed in the TCWA.
If the clock is not set, Status Test puts a return code

of 4 in register 15 to indicate that fact.

2 If other clocks exist, Status Test stores them in the
system. It then verifies that the operation of steps 1

and 2 took less than 220 microseconds ..

3 Status Test allows synchronization checks through
the interruption handler. If such an interruption

occurs, a bit in the TPC is set by the timer SLlH, and
Status Test sets the return code to 8 and marks the PCCA
entries out-of-synchronization. If no check occurs, Status
Test ciisables synchronization checks and then tests for
high-order synchronization, with a return code of 12
indicating an out-of-synchronization condition.

4 If all clocks are set and synchronized, Status Test
sets a return code of 0 and returns to the caller. If no

status can be determined after 5 tries (steps 1 and 2 cannot
be performed within 220 microseconds), Status Test sets
a return c;:ode of 16 and returns.

Module Label

IEAVRTOD IEAVRTST

IEAVRTOD DELTA1

IEAVRTOD DELTA1

t Diagram 18-15. Synchronous Timer Recovery Routine (lEA VRTIl) (part 1 of 2)
0'1

o
se
~
~
fI.)

1
~

E n·
re:
!
<
~
= c
olio-

<:
fI.)
~

~
c
i
~
~

~

From R/TM
. (I EA VTRTH)

I-

PSA LCCA

EB±rbAACRje-

I
I
I
I
I

"I
I
I
I

If Machine Check:
1

If ACR:
ster 0

Failing CPU
Address

LRB

L __

1 Determine reason for invocation
and where error is located.

2 For ACR, update CSD and
schedule recovery routine.

- 3 For machine check, check for
initialization and validity of
error.

4. Process the error and schedule
the recovery routine.

5 Return.

R/TM
(lEAVTRTH)

o

CSD

TQE

SRB

rn
(D

a o·
=:I
~

== (D g
Q.

o
o
'e

~ o·
=:I

~

~
-...J

Diagram 18-15. Synchronous Timer Recovery Routine (lEA VRTll) (part 2 of 2)

Extended Description

The Synchronous Timer Recovery routine (I EAVRTI1)
processes timer hardware errors, either machine checks or
alternate CPU retry (ACR) checks. The routine checks each
timer component for permanent damage and indicates its
condition.

1 By checking a bit in the LCCA, Synchronous Recovery

determines whether an ACR or a machine check
caused it to be called.

2 For alternate CPU recovery (ACR), Synchronous
Recovery checks the PCCA for indications of per

manent damage to the timer components, updates the
count of the component in error in the CSD, and marks any
TOEs as no longer being timed. Then it schedules the
asynchronous recovery routine.

3 For the machine checks, lEA VRCLS verifies that the
timing components have been initialized and that the

machine check is valid. If either condition is false, Syn
chronous Recovery exits.

4 Synchronous Recovery checks each component for
errors and determines whether that component is

permanently damaged. If a clock comparator or CPU timer
is permanently damaged, Synchronous Recovery indicates
that message IEA8981 should be issued. If either of the
components is not permanently damaged, Synchronous
Recovery schedules the asynchronous recovery routine
for further recovery.

5 When it has completed its processing, Synchronous
Recovery returns control to R/TM (lEAVTRTH).

Module Label

IEAVRTI1 IEAVRCLS

IEAVRTI1 IEAVRCLX

IEAVRTI1 IEAVRCLX

t Diagram 18 .. 16. Asynchronous Timer Recovery Routine (IEAVRTOD) (Part 1 of 2)
QO

~
'< CIl
N
CIl «
~ ;
~
(S'

t"""

f
~
'<
<: o

= = (D

4:;0.

'<
CIl
N
~
(D

if
~
~

:....
....."

CVT

Real Time Oueue

TOE

[JJ]

From Timer
Synchronous
Recovery (JEAVRIT1)

Process

1 Find processing unit clock in
need of recovery.

2 Attempt to set the clock in
error.

3 Check the clock comparator
for damage.

4 Check the CPU timer for
damage.

, v 5 Ensure that top TOE .inreal TOE
,~, t queue is being timed.

6 Check for more clock hardware
errors during recovery.

7 Return.

o ut

CSD

]];1 I. --------........

: ", "J

=rJ

(I)
(I)

$? o·
=
~

~
(I) g
c:;I.

o
o
'0

S g.
=
~

W
\0

Diagram 18-16. Asynchronous Timer Recovery Routine (IEAVRTOD) (part 2 of 2)

Extended Description

The Asynchronous Timer Recovery routin& (I EA VRTOD)
attempts recovery of TaD clock hardware errors processed
by the Synchronous Recovery routine. It also issues mes
sages indicating permanent damage to any timer compo
nents, if necessary.

1 Asynchronous Recovery, after fixing the page con
taining itself, scans the timer status bytes in the PCCA

entries for error indications.

2 When it finds an error indication, Asynchronous
Recovery checks for a TaD clock error and, if it finds

Module Label

IEAVRTOD IEAVRCLA

one, tries to reset or resynchronize the clock. If it ca!1not lEA VRTOD I EAVRSSC

be fixed, Asynchronous Recovery marks the TaD clock and, if
necessary, the clock comparator, permanently damaged,
and issues message I EA8981 to inform the operator of the
TaD clock failure.

3 Asynchronous Recovery checks the clock comparator
status. If it needs recovery, Asynchronous Recovery

checks to see if Synchronous Recovery tried to recover and
failed. If so, Asynchronous Recovery marks the clock com
parator.permanently damaged and issues message IEA8981
to the operator to inform him of the clock comparator

failure.

Extended Description

4 Asynchronous Recovery checks the CPU timer status.
If it needs recovery, Asynchronous Recovery tests to

see if Synchronous Recovery tried to recover it and failed.
If so, Asynchronous Recovery marks the CPU timer per
manently damaged and issues message I EA898 I to the
operator to inform him of the CPU timer failure~

5 Asynchronous Recovery ensures that the real TOE
queue is active.

6 Asynchronous Recovery tests whether another error,
that requires recovery, occurred during the recovery

process. If so, Asynchronous Recovery is re-entered at the
PCCA scanning part of step 1.

7 Asynchronous Recovery frees the page containing
itself and returns to the dispatcher.

Module Label

IEAVRTIO IEAVROCK

Error Processing IEAVRTOD CLAESTAE

Errors in Asynchronous Recovery code are processed on
entry from R/TM. The SDWA is initialized or, if no SDWA
is supplied, a return code of 4, indicating retry, is placed in
register 15. Then control is returned to R/TM, which causes
Asynchronous Recovery to be re-entered at a point where
resources can be cleaned up and a return made to the
dispatcher.

4-40 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

Supervisor Control performs control routing
services. These include:

• The service manager which schedules
requests.

• The dispatcher which dispatches work.
• The various interruption handlers which route

control to appropriate routines for given
interruptions.

• Interprocessor communications (IPC).
• The exit effectors which provide a mechanism

for scheduling asynchronous exits.
• The lock manager which serializes system

resources.
• A validity checking routine which validates a

storage location's protect key.
• Supervisor control recovery routines which

provide functional recovery for supervisor
control.

Service management is a set of functions which
allow'S system components to execute their own
routines enabled, in parallel in an MP
(multiprocessor) environment, in a mode
independent of the normal task structure. This
consists of the following services:

• SCHEDULE. The SCHEDULE macro instruction
allows a requester to schedule a system
service.

• PURGEDQ. The PURGEDQ macro instruction
allows a requester to cancel a
previously-scheduled service request. In
effect, PURGEDQ is the inverse of SCHEDULE.

Dispatching work consists of the following
services:

• Dispatcher. The dispatcher chooses the units
of work to be executed. The dispatcher may
receive control after a task is interrupted or
enters a wait state, after a service request
completes or is suspended, or from other
system routines that want the highest priority
work dispatched.

• Memory switch. Memory switch chooses the
highest priority address space (memory) that
can process ready work.

Handling interruptions consists of the following
services:

• SVC IH (interruption handler). The SVC IH
routes control to the appropriate SVC routine
after a requester issues an SVC (supervisor
call) instruction. The svc IH receives control
from the SVC new PSW (program status

Supervisor Control

word). The extended svc router, a logical
extension of the SVC IH, routes control to
extended SVC routines.

• I/O IH. The I/O IH routes control to the I/O
supervisor after the hardware receives an I/O
interruption. The I/O IH receives control from
the I/O new PSW.

• External FLIH (first. level interruption
handler). The external FLIH routes control to
the appropriate SLIH (second level
inte"rruption . handler) after an external
interruption occurs. The external FLIH
receives control from the external new PSW.

• Restart IH. The restart IH routes control to
either DSS (dynamic system support) or R/TM
(recovery /termination-management) after the
operator strikes the restart button on the
console, or after a system program issues a
restart SIGP (signal processor) instruction.
The restart IH receives control from the
restart new PSW.

• Program IH. The program IH routes control to
the appropriate service routine after a
program check interruption occurs. The
program IH receives control from the program
new PSW.

Interprocessor communications consists of the
following services:

• Signal Service Routines. The signal service
routines - the remote immediate, the remote
pendable, and the direct routines - provide
the signal sending capability between CPUs in
a multiprocessor system.

• Emergency Signal SLIH. The emergency signal
SLIH routes control to the appropriate
receiving routine after a requester issues a
remote immediate signal request. Control
comes from the external FLIH.

• External Call SLIH. The external call SLIH
routes control to one of six service routines
after a requester issues a remote pendable
signal request. The external call SLIH receives
control from the external FLIH.

The Exit effectors provide a mechanism to
schedule supervisor or problem program routines
(ETXR, Timer Exit, attention exit) to execute under
the normal task structure.

Serializing of system resources is provided by
the SETLOCK interface. The SETLOCK service
obtains and releases the necessary "locks" to

Section 2: Method of Operation 4-41

•

prevent one CPU on a multiprocessor system from
using a resource needed by another CPU.

Validity check determines the validity of an
address or address range for the requester.

Supervisor control recovery routines receive
control from:

• A direct interface with R/TM.
• The normal FRR (functional recovery routine)

mechanism.
• The II super FRR I I mechanism.

They may verify and correct queues or other
system data, abnormally terminate ABEND the
current routine, or simply resume system operation
through the dispatcher.

Service Manager
In order to facilitate multiprocessing, OS/VS2 uses a
neW catagory of facilities, called service
management, to schedule system services. Service
management consists of:

• A new macro instruction, SCHEDULE, which
allows new service requests to be entered into
the queue of dispatchable work with a
minimal amount of overhead.

CVT

CVTGSMQ

CVTGSPL

CVTLSMQ

PSA

PSAANEW

Figure 2-33. SRB Scheduling Pointer Structure

4-42 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

• A new control block, supplied to SCHEDULE
as input and called a Service Request Block
(SRB), (44 bytes), represents a service
request. The SRB contains information needed
to dispatch the routine.

• A second new macro instruction, PURGEDQ,
which allows service requests to be
terminated.

The dispatcher (described under the topic,
"Dispatching Work") utilizes new queues to
dispatch SRBs.

Figure 2-33 depicts the basic pointer structure
utilized by the service management facilities. This
structure incorporates two levels of system priority,
global and local. Service requests queued at the
global level have a priority above that of a
address space, regardless of the actual address
space in which they will be dispatched. Service
requests queued at the local level have a priority
equal to that of the address space in which they
will be dispatched but higher than that of any task
within that address space.

SRa

A Service Priority List (SPL) exists at each level
(global or local). This lists consists of a static,
contiguous list of queue anchors and simply serves
to give priorities to the various types of service
requests. Each element of the SPL serves as an
anchor for a queue of service requests so that the
dispatcher can start at the top of an SPL and take
any request queued at the first element prior to
looking for a request queued at a lower element.
Thus, the SPL is effectively a list of priority levels,
with a single global SPL for the system and one
local SPL per address space.

These scheduled routines have the following
characteristics:

• They receive control in supervisor state.
• They may execute enabled for interruptions,

but will not lose control to higher priority
work unless they page fault or are suspended
off a lock.

• They may free the SRB storage once they get
control.

• They may take page faults.
• They may not issue SVcs.
• They may execute in any designated address

space, and thus provide the primary vehicle
for cross-memory communication.

Dispatching Work
Dispatching consists of routing control to the
highest priority ready unit of work. The units of
work consist of the following:

• Special exits, which are subroutines branched
to by the dispatcher when indicated.

• Service requests, which are represented by
SRBs on the dispatcher queues, queued via the
SCHEDULE macro.

• Tasks, which are represented by TCBs. There
is one TCB queue per address space, residing
in the private storage of that address space.

The dispatcher searches for ready work in a
specific order:

• Special exits.
• Global priority SRBS.
• The highest priority ready address space and

within that address space the local priority
SRBs and tasks.

• Wait task.

The process involved in scheduling service
requests is as follows:

1. The user must:
• construct the SRB.
• schedule it, via the SCHEDULE p:lacro
instruction.

2. The SCHEDULE macro instruction, via the CS
instruction, places the SRB on one of the two
staging queues (the GSMQ or the LSMQ) in
LIFO order. The SCHEDULE macro performs
the queueing in line. The user will continue
to execute until he is interrupted, causing a
dispatcher entry.

3. The dispatcher checks for SRBs on the
GSMQ, and completes scheduling of global
SRBS using the global scheduling routine
(IEAVESCl).

4. Global schedule moves the SRBs from the
GSMQ to the correct priority level of the
GSPL.

S. When all SRBs have been moved, an external
call SIGP (issued via RPSGNL) will signal any
waiting CPus.

6. The dispatcher then dispatches SRBS from the
global SPL. It dequeues SRBs from the GSPL
and passes them to the SRB routine. If an
SRB cannot be dispatched for sollie reason,
(for example, the address space is swapped
out) it will be rescheduled at local priority.

7. The dispatcher checks for SRBs on the LSMQ
and schedules them using the local schedule
routine (IEAVESC2).

8. Local schedule moves each SRB to the local
SPL specified by the SRBASCB value.

9. The SRM (system resource manager) is
notified if the address space is swapped out.
The address space will be eventually swapped
in.

10. If the address space is still on the dispatching
queue, Memory Switch will be invoked. to
eventually update the PSAANEW indication.
When all SRBs have been moved, control
returns to the dispatcher.

11. The dispatcher looks for the highest priority
ready address space, beginning its search
with the value specified by PSAANEW.

12. SRBS will next be dequeued and dispatched
from the local SPL of the highest priority
ready address space. Then, tasks will be
dispatched from that address space.

Section 2: Method of Operation 4-43

Handling Interruptions
The interruption handlers route control to the
appropriate routines after machine interruptions
occur. Any interruption causes CPU control to be
taken. from the executing program and given to an
interruption handling routine.

Any interruption causes the current psw to be
saved as the old psw, and the new PSW to be
loaded. This new PSW passes control to the
appropriate interruption-handling routine.

The interruption handlers process:
• SVC interruptions, which occur when an SVC

instruction is executed. The SVC IH
determines which SVC routine the requester
wants and passes control to it.

• I/O interruptions, which occur when a channel
or device signals a change of status. For
example an I/o operation terminates, an error
occurs, or a device becomes ready.) The I/O
IH branches to the I/O Supervisor, which
performs the I/O services and handles I/o
errors.

• External interruptions whiCh occur, for timer
interruptions (for CPU timer expiration, Clock
comparator interruption, or clock
synchronization failure); hitting interrupt key
(when the operator presses interrupt key on
the console); external calls (when remote
pendable signal routine signals another cpu);
emergency signals (when machine check
handler or remote immediate signal routine
signals another CPU);' or malfunction alerts
(caused by machine failure of another cPu).
The external IH determines the cause of the
interruption and branches to the external
service routine.

• Restart interruptions, which occur when the
operator strikes the restart button on the
system operator's console, or when a system
program issues a SlOP (signal processor)
instruction for a restart. The restart IH routes
control to DSS (dynamic support system),
R/TM (recovery/termination management) or
both.

• Program interruptions, which may be caused
by program errors (invalid operation,
protection exception, segment exception);
page fault (caused by referencing a page not
in main storage); event monitoring (caused by
a monitor call instruction called an MC or a
program event recording interruption, called a
PER). The program IH determines the cause

4-44 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

of the interruption, and does one or more of
the following:

• Calls Real Storage Mangement on paging
exceptions to determine. if this is a valid page
fault, and if so, to initiate processing to bring
the page into real storage.

• Calls OTF for tracking.
• Calls R/TM if the program exception appears

to be a program error.
• Sets up to give control to a user's SPIE exit.

Interprocessor Communications (IPC)
Inte~rocessor communications include the signal
service routines, plus the external call and
emergency signal SLIHs (second level interruption
handlers). The main purpose of IPC consi~ts of
sensing or changing the hardware status of another
CPU or causing special routines to be invoked on
another CPU.'

The signal service routines perform two different
types of signal services- direct and remote.
Direct signal service, invoked via the DSONL macro
instruction, uses the SlOP (signal processor)
instruction to modify, sense or alter the physical
state of one or more CPUs.

The SlOP functions are:
• External call
• Emergency signal
• Start
• Stop
• Sense
• Program reset
• Initial program reset
• Stop and store status
• Initial microprogram load
• Initial CPU reset
• CPU reset
• Restart.

Remote services route control to specified
routines on one or more CPUs, using the emergency
signal and external call functions of DSONL to issue
the signals. There are two types of remote signal
functions: Remote Immediate Signal, provided via
theRISONL macro and Remote Pendable Signl,
provided via the RPSGNL macro. They cause
designated receiving routines to receive control on
a specified CPU. A comparison of the two functions
follows:

Remote Immediate Remote Pendable

1. The entry point to the receiving routine is
provided by the issuer of the RISGNL.

The receiving routines are predefined to the system.
The issuer of the RPSGNL designates which one of
those routines is to receive control.

2.

3.

The receiving routine is synchronized with. the The receiving routine is not synchronized with the
sending routine. If the caller desginates a "serial" sending routine. The receiving routine cannot receive
request, the sender will not receive control back control until the CPU is enabled for external
from the RISGNL routine until the receiving interruptions.
routine has completed. If the. caller designates a The sending routine cannot be ensured that the
"parallel" request, then the caller will receive receiving routine on the other CPU received the
control after the signal was received on the other signal.
CPU, but will be able to operate at the same time
as the receiving routine.
An Emergency Signal (EMS) class of external
interrupt is generated oil the receiving CPU.

The External Call class of external interrupt is
generated on the receiving CPU.

4. The receiving routines for both RISGNL and
RPSGNL operate as subroutines of the external
first level interruption handler.

Section 2: Method of Operation 4-45

Remote Pendable Signal Operation
The Remote Pendable signal function consists of
three ()bje~t modules:

• lEA VERP (executing in the sending cpu) tells
the receiving cpu what functions to perform.

• lEA VEDR (Direct Signal) also executing in the
sending cpu, issues the external call SIGP.

• IEAVEXS (the External Call SLIH) which
receives the signal and routes control to the
receiving routine executes in the receiving
cpu.

Remote Immediate ~ignal Operation
The Remote Inimediate signaling function consists
of:

• IEAVERI (remote immediate), executing in the
sending cpu, sets up one interface to the
receiving routine.

• lEA V-';:D R (Direct Signal) executing in the
sending cpu issues the emergency signal SIGP

instruction.
• lEA VEES, (the EMS SLIH) receives the signal

executing in the receiving cpu and routes
control to the receiving routine.

Scheduling Exit Routines
A user program may request the future execution
of an exit routine to handle an asynchronous event,
such as an end-of-task condition, expiration of a
timer interval, or special I/O handling (for example,
tape label checking or I/O error checking).

The scheduling of user exit routines, called
asynchronous exit routines, i~ handled by three
supervisor routines: the Stage 1 Exit Effector, the
Stage 2 Exit Effector, and the Stage 3 Exit
Effector.

In order to schedule a routine to execute
asynchronously under a specific task, an interrupt
request block, IRB, must be placed on that task's
RB chain. The following describes the control flow
for that mechanism.
1. The user must first create and format the IRB

via the CIRB macrO instruction. CIRB invokes the

4·46 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

Stage 1 Exit Effector which obtains storage from
LSQA and formats the IRB. (See Figure 2-34).

2. The user must set up the interface to Stage 2
Exit Effector, which is in one of the following
forms:
a).!nterrupt Queue Element (IQE). This contains

the TCB and IRB addresses.
b) Request Queue Element (RQE). This is

exclusively a data management interface,
allowing asynchronous exits to be scheduled
from 1/0 appendages. The RQE will contain
the address of the DEB, which will contain the
TCB and IRB addresses.

c) SRB. This is used by only lOS when
schedUling a non-resident Error Recovery
Procedure. In each address space there is a
pre-determined task designated as the error
task. (Its address is contained in ASXBETSK.

Each address space also has a preformatted
System IRB (SIRB). An SRB passed to Stage 2
Exit Effector represents a request to schedule
the SIRB to the error task. The SIRB will
always give control to the lOS error recovery
procedure loader.

The user branch enters Stage 2 Exit Effector
with either the address of an IQE, RQE, or SRB.

Stage 2 queues the request off of the ASXB for
the current address space and returns to the caller.
(See Figure 2-34).
3. The user will eventually lose control, and the

dispatcher will be entered. When the dispatcher
checks an address space for available work, it
determines if there are queued requests. If so, it
invokes the Stage 3 Exit Effector.

4. Stage 3 will then process the queued requests.
Stage 3 dequeues the requests (IQE, RQE, or
SRB) from the asynchronous exit queue and
places the IRB on that task's RB chain. (See
Figure 2-34).

When the dispatcher dispatches that task, since the
IRB is highest on the RB chain, the asynchronous
exit will get control.

IOE

IRB

RBOPSW PSW for asynchronous exit entry point

- Entry address of asynchronous exit

Part 1

TCB

PSA

Part 2

IRB

TCB
PSW for asynchronous exit entry point IOE, ROE, or SRB

- EP for asynchronous exit

Part 3

Figure 2·34. Asynchronous Exit Effector Data Structure

Section 2: Method of Operation 4·47

Serializing System Resources
In a multiprocessing system, some method of
serialization must be employed to prevent
interference between CPus competing for a
resource. OS/VS2 utilizes "locking" to serialize
resources.

Locks consist of two types - spin and suspend.
A request for a spin lock causes a disabled loop on
the CPU until the lock becomes available if it
cannot be immediately obtained. A request for a
suspend lock suspends the requester, if it cannot be
obtained immediately, to allow that CPU to process
other work. The local and CMS locks are suspend
type locks; all others are spin locks. The owner of
a spin lock must run disabled (cannot take a pag~
fault or I/O or external interruptions). The owner
of a suspend lock may run enabled (taking page
faults and I/O or external interruptions).

Since a request for a spin lock results in a
disabled loop until the other CPu releases the lock,
some mechanism is necessary to receive· an
emergency signal or maifurtctibn alert interrupt in
the event of a machine failure on the other CPU.

Therefore, in the course of spinning, they must
open a "window" or a series of instructions that
enable for those interruptions. The WINDOW macro
instruction provides this facility.

To prevent deadlocks between cpus, the locks
must be requested in a specific order. For this
reason, a lock hierarchy is defined. Certain spin
locks, called class locks, have multiple locks at a
specific level in the hierarchy. (For example, there
is one lock per UCB.) The caller of SETLOCK, for a
class lock request, must supply the lockword
address.

The following locks have been defined and are
listed in hierarchical order, highest first:
Dispatcher (DISP) - This is a global, spin type lock.
Its function is to serialize all functions associated
with dispatching.
Auxiliary Storage Management (ASM) - This is a
global spin class lock used by ASM for global
serialization.
Space Allocation (SALLOC) - This is a global, spin
type lock. It will serialize the global portions of
real storage management (RSM) and virtual storage
management (VSM).
lOS SYNCHRONIZATION (IOSSYNCH) - This is a
global spin class lock. This lock serializes the lOS
Purge func~ion and other parts of lOS.
I/O Supervisor Channel Availability Table
(IOSCAT) - This is a global spin class lock. There is

4-48 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

only one. lOS uses this lock when selecting a
channel.
lOS Unit Control Block (IOSUCB) - This is a global
spin class lock. There is one of these locks per
UCB. lOS uses this lock to serialize the changing of
status in the UCB.
lOS Logical Channel Queue (tOSLCH) - This is a
global spin class lock. There is one of these per
logical channel.
System Resource Manager (SRM) - This is a global
spin lock. It is used by the SRM to serialize its
control blocks when not using CS.
Cross Memory Services (CMS) - This is a global,
suspend lock. This lock will be used by all other
global functions in the system. This is the only
enabled global lock. The local lock must be held
when this lock is requested, and not released
before CMS.
Local - There is one local lock per address space.
It is a suspend lock used by functions needing to
serialize address space related resources. The
lockword for this lock is in the ASCB for the
private address space.

The hierarchy scheme works as follows:
• May only unconditionally request lock(s)

higher in the hierarchial structure, than
lock(s) currently held.

• May only request locks of type different from
locks already held (e.g., may not request
10SUCB if already hold a different- 10SUCB
lock).

• It is not necessary to hold any locks lower in
the hierarchy.

• Owning the CMS lock requires that the Local
Memory lock be held.

Supervisor Control Recovery
Supervisor control recovery routines can receive
control by one of three mechanisms:

• Direct interface with R/TM
• Normal FRR stack
• Supervisor control FRR stack

Special Interface With RTM: There are a number
of routines (lEA VELCR, lEA VELKR, lEA VEVRR)
called on every entry to R/TM to validate certain
basic system information.

Normal SETFRR/ESTAE Mechanism: A number
of supervisor control functions use the standard
SETFRR/EST AE mechanism to control the recovery
environment.
lEA VEPDR - PURGEDQ FRR and EST AE

lEA VEV AL - Validity check FRR
lEA VEPC - Program IH SPIE processing
lEA VEIPR - IPC recovery
lEA VELKR - Setlock FRR
lEA VEVRR - ASVT reconstruct FRR

Super Stack Mechanism: In order to bypass
SETFRR overhead on high-performance paths, a
multiple FRR stack mechanism was employed to
provide recovery for Supervisor Control routines.

Control Structure For Multiple Stacks
There is a pointer in the PSA to the FRR stack that
this CPU is using currently. When an error occurs,
R/TM will route control only to FRRs on that stack.
(See the Recovery/Termination Management
section for a description of routing to FRRS.)

F or each CPU there are 8 FRR stacks - a normal
stack and 7 "super stacks", which are used to
provide recovery for supervisor control functions.
The current stack pointer will always point to one
of the stacks. (See Figure 2-35.)

If the dispatcher or any of the interruption
handlers receives control, rather than issuing a
SETFRR to establish recovery, it will "flip" the
current stack pointer to point to the appropriate
"super" FRR stack. (See Figure 2-35).

If a routine called by a supervisor control
function issues a SETFRR, the FRR entry will
appear on the super stack. If an error occurs while
a super stack is current, then R/TM will first route
control to all the FRRs on that stack and will then
route control to the Super FRR Routine
(IEAVESPR). (See Figure 2-35.)

Validity Checking
The validity check routine determines whether the
storage protect key for a specified address or
address range matches the task's assigned protect
key.

Section "2: Method of Operation 4-49

Part 1

Normal Stack

-FRR

;-- FRR

Part 2

DispatcherlSVC/l/O
FLiH Stack

"IEAVESPR"

DispatcherlSVC/l/O
FLiH Stack

"IEAVESPR"

--- FRR

-----FRR

Figure 2-35. Supervisor Control Recovery Data Structure

4-50 OS!YS2 System Logic Library Volume 4 (yS2 Release 3.7)

CI)

a o·
=
~

~

~
Q.

o
~
~
~.

=
~

Global SRB
Dispatcher
(lEAVEDSO)

Local SRB
Dispatcher
(lEAVEDSO)

Dispatcher
(lEAVEDSO)

194

Local
Supervisor
Dispatcher
(JEAVEDSO)

Figure 2-36. Supervisor Control Visual Contents (part 1 of 2)

Task
Dispatcher
(lEAVEDSO)

Memory
Switch
(JEAVEMSO)

Wait

Supervisor
Control
Overview
(no diagram)

Task
Dispatcher
(lEAVEDSO)

To Part 2

Queue
Verification
(lEAVEQVO)

SVC
Interruption
Handler
(JEAVESVC)

Suspend
(lEAVETCL)

Supervisor
Control
Recovery
Overview
(no diagram)

19-26

Super FRR
(lEAVESPR)

I/O
Interruption
Handler
(JEAVEIO)

Supervisor
Control
Overview
(no diagram)

Transfer 12.::29
Control
Transfer
Logical
(TCTL)
(lEAVETCL)

Address
Space/Lock
Verification
Processing
(IEAVELCR)

Resume
(lEAVETCL)

<:
CI)
N
o
~

00
S

~
u.
~

o
VJ

"< VJ
~

VJ
'<
~

3
t""
~
($'

t""
0:

~
<:
o

= :3
CD
~

~
N o
t..I

00
o
~

I
119-10 I

External
Interruption
Handler
(lEAVEEXT)

T
119-11

Program
Check
Interruption
Handler
(lEAVEPC)

I
119-18

Stage 3 Exit
Effector
(lEAVEEEO)

r
119-22

Validity
Check
Processing
(lEAVEVAL)

*These diagrams are discussed with the SVC First Level
Interrupt Handler,

Figure 2-36. SupeIVisor Control Visual Contents (part 2 of 2)

T
119-12

Restart
Interruption
Handler
(IEAVERES)

1
119-19

SCHEDULE
Processing
(lEAVESCO)

1
Extended*
SVC Router
(lGC109,
IGC116,and
IGC122)

From Part 1

119-13

Signal Service
Routines (lPC)
(lEAVERI,
IEAVERP, and
IEAVEDR)

119-14
External
Signal
SLiH
(lEAVEXS)

lT9-20

PURGEDQ
Processing
(lEAVEPDQ)

119-23

ASCBCHAP
Processing
(lEAVEACO)

1

(19-16
1

Stage 1 Exit
Effector
(lEAVEFOO)

1
\19-15

Emergency
Signal
SLiH
(IEAVEES)

1
119-21

SETLOCK
Processing
(lEAVELK)

1
119-24

Trace
Processing
(lEAVTRCE)

1
119-17

Stage 2 Exit
Effector
(lEAVEEE2)

Section 2: Method of Operation 4-53

t Diagram 19-1. l)isp~tcher (IEAVEDSO) (PaJt 1 of 18) ,.
~
"< C'Il
N

ft
~

F rQrn a supervisor
routine to give
control to the highest
priority work

p

~
b
~. FRR Swck

PSA 11 ~'I ~
r-

i
i
(D

.....

'< C'Il
N

~
~
~
SN -

D
IEAGSMQ

I @SRBs

IEAGSPL

I @SRBs

IEALSMO

I @SRBs

~

PSATNEW "' ; 1

PSATOLD

PSAANEW

PSAAOLD

SRBs

~
SR8s

VlJJ
SRBs V·lJJJ

, . l:l

I

'"

Test for ready work in the following
order:

.. • Test for special exits.
'"

Step 2

..
• Test for SRBs on the GSMQ.

. '" Step 4
(global service management queue). ..

• Test for SRBs on the GSPL. Step 6
(global service priority list). ~

..
• Test for SRBs on the LSMQ.

'" (local service management queue).
Step 8

..
• Test for an address space switdl ,. Step 10

condition.

...
Test for SRBs on the LSPL. • cd

,.
(local service priority list).

Step 16

..
Test for 10~1 supervisor routines. • ,. Step 18

• Test the TeB queue.
..
",.

Step 19

• No ready work, dispatch wait.
task.

Diagram 19-1. Dispatcher (IEAVEDSO) (part 2 of 18)

Extended Description

The dispatcher selects the highest priority ready work from
various queues and gives it control. The ready work that the
dispatcher searches for can be either service requests -
represented by SRBs - or tasks - represented by TCBs. The
dispatcher searches for work in a particular order, by first
searching for ready SRBs, and next searching for TCBs. This
ensures_ that the most important work in the system receives
control first. When the dispatcher finds ready work, the
status of ":he previous work is saved and job step timing is
completed. The dispatcher receives control at the following
entry points:

• I EAODS. This is the main dispatcher entry point.

• IEAPDS2. The SETLOCK suspend routine enters the
dispatcher at this entry point.

• IEAPDS6. EXIT processing uses this entry point for end
of-task processing.

• IEAPDSRT. SRBs return to the dispatcher at this entry
point.

• IEAPDS7. The 1/0 FLlH, SVC FLIH use this entry point.

1 The dispatcher searches for ready work in the order
indicated. The dispatcher follows this sequence to dis

patch ready work:

• Give control to special exits.

• Dispatch a GLOBAL SRB.

• Redispatch a suspended or local SRB.

• Dispatch a locally locked routine.

~ • Dispatch a task.
('";) g.
=
N

~
a
S-
o.
o
o

"C
~
~ o·
=
~
VI
VI

Module Label

IEAVEDSO

~ Diagram 19-1. Dispatcher (IEAVEDSO) (part 3 of 18)
0"1

o
CI'.l

~
CI'.l
~

CI'.l
'<
~

3
t"'"
~ r;.
t"'"
c;:

~
< o

=-3
(l)

~

'<
CI'.l
~

~
(l)

;-
~
fI.I
(l)

~

~

~:
dY 'Cd y,:"""

t:L LCCA

~
LCCADSF1

LCCADSF2

yy ,A% •• d

! ~
i~

;
j ~ L ..
~y v

,~
>\

f
\ •
«

<fA" ,.;;-

,:
~:

:l

j

"

'~.

~:

~~
~"

Special Exit Processing

2 Save status and obtai n dispatcher
lock.

3 Determine the type of special exit.

• ACR (Alternate CPU Recovery).

• Vary CPU.

• DSS (Dynamic System Support).

• Timer Recovery.

" I

AI
~ ~ PSA ASCB
v

'" PSATNEW ASCBSRBS
v

I PSATOLD I ASCBCPUS t

; \ ACR 1:% PSAANEW

f~ . ~;i

...
PSAAOLD k:

~i
~ .~ :'

" TCB i:

DI
'HSA ASXB ~

Vary CPU

I ',:] I~·
r~

AA_A.

~ (1"$" ,@

LCCA ..
\ LCCADSF2\

,..

Give Control
: to Master

Address Space

, M

A

....
,..

Timer
Recovery

tI'l
(D

~
5·
=
~

~
$a.

8:
S
O

"0

~ o·
=
~
CIt
-..l

Diagram 19-1. Dispatcher (IEAVEDSO) (part 4 of 18)

Extended Description

2 Special exits require immediate response. The dis
patcher checks first for this condition, and then saves

the status of the interrupted task, and obtains the dispatcher
lock.

3 The dispatcher determines the type of special exit, and
gives it control except for DSS. I n that case, control is

given to the Memory Switch routine to switch to the master
address space. Special exit returns control to the dispatcher.

Module Label

t Diagram 19-1. Dispatcher (lEA VEDSO) (part 5 of 18)
00

o
rI.)

"< rI.)
w
rI.)

~
a
E t;.

t:
~
~
<: g.
c::
a
o
0l:Io

~
W

~
2-
S
iC
w
~ -

Input
.~,

IEAGSMQ

~ ~ @SRB.

~IEAGSPL
I

1

~

IEAGSPL SRBs

I @SRBs Y-lJJ
~

Process r
GSMQ Processing

J\.
4 Save status and obtain dispatcher

y
lock.

5 Dequeue any ready work sti II on
GSMQ.

• Ready work on queue.

• No work on queue.

M

GSPL Processing

JI. 6 Save status and' Obtain dispatcher
y

Jock.

7 Dequeue an SRB from the GSPL.

• Dispatchable SRB on queue.

• Non-dispatchable SRB on
queue.

Step 7

M

• No SRB on queue.
,~

,
- '---

Output

IEAGSMQ

:0 I I
II " SRBs IEAGSPL

~lJlJ ~ "< I @SRBs
.. SCHEDULE

r Schedule
~ SRB on
~ " GSPL

..
r

Step 7

c~

";t A
y

III. Global SRB .. Dispatcher

..
SCHEDULE ,.
Schedule
SRB on
LSMQ

III.

Step 9

!

{;I'.)
~
g. ,r
= N

s::
~ g
c::;l.

o
o

'-c::I
~
a o·
=
.a::.
V.
\0

Diagram 19-1. Dispatcher (lEA VEDSO) (Part 6 of 18)

Extended Description

4 The dispatcher next checks the GSMQ (global service
management queue) for any ready work. The dis

patcher saves the status of the interrupted program and
obtains the necessary locks if it finds SRBs on the GSMQ.

5 The dispatcher dequeues any ready work on the
GSMQ via the CS (Compare and Swap) instruction.

Work on the GSMQ will be placed, via the SCHEDULE
service, on the GSPL (global service priority list). If the
GSMQ has no ready work, the dispatcher next checks for
work on the GSP L, as indicated by step 7.

6 The third check the dispatcher makes is for ready work
on the GSPL. The dispatcher saves the status of the

interrupted program and obtains the necessary locks if it
finds ready work.

7 The dispatcher dequeues any ready work (the first dis-
patchable SRB) on the GSPL and gives control to the

global SRB dispatcher subroutine. If an SRB is not immedi
ately dispatchable, it is dequeued and scheduled to the
LSMQ. If the GSPL has no ready work, the dispatcher next
checks for work on the LSMQ (local service manager queue),
as indicated by step 9.

Module Label

~ Diagram 19-1. Dispatcher (ffiAVEDSO) (part 7 of 18)
o

~
~
N
tfJ

~
~
r-
ei (;.

r
es:
~
<:
o
C
= CD
~

'<
tfJ
N

~
~
~ :..., -

Input
." .
IEALSMO SRBs

I @SRBs I----" -lJJ
ASCB

[}-I LSPL I
~y- ., ,

~

Register 8

CCS
@ASCB J

ASCBLOCK
'\ LSPL J
~ SRB

ASCBASXB ~
QASCBSPL

ASCBSTOR

ASXB ~ Segment , ~&JO
(IHSA ~

"'~

Process

LSMQ Processing
' 8 Save status and obtain dispatcher

y
lock.

9 Dequeue any ready work still
on LSMO.

• Ready work on queue.

~
£, • Address space switch indicated. '"

No

Yes

Address Space Switch Processing

10 Save status and obtain dispatcher

~ lock.

...
Y) 11 Obtain the address space.

?

12 Check LSPL for ready work.

• Ready work.

• No ready work.

I
~ 13 Check whether the loca I lock =
v interruption 10.

',W

It - '--

Output
' ,

IEALSMO

>0 I I
I :~

.,> ASCB SRBs

. D ·ILSPL ~ .. SCHEDULE

r Schedule SRB
on LSPL .

..
Step 17

~ Control Register 1 Segment
r Step 12

I Table
@STOR

Register 4

>0 ~ I @LSPL •)

'I Y PSA
'LSPL ,

PSAANEW
w

... PSAAOLD
r Step 17 I

",ic

...
Local supervisor

r . 0 ispatcher, Step 3

{;I.l
(I>

a o·
= !';J

~
~
5'
Q.

Sa
o

"0
(I>

~ o·
=
~
0'1 -

Diagram 19-1. Dispatcher (IEAVEDSO) (part 8 of 18)

Extended Description

8 The dispatcher saves the status of the interrupted pro
gram and obtains the necessary locks.

9 The dispatcher dequeues any ready work on the
LSMO(via the CS instruction) and schedules it to be

placed on the LSPL (local service priority list). When
the LSMO has no ready work, control goes to step 12
if an address space switch has been indicated.

10 The dispatcher saves the status of the interrupted
program and obtains the dispatcher lock.

11 If ready work exists in the new address space, the
dispatcher updates the PSAANEW and PSAAOLD to

reflect the new address space, and loads the STOR (segment
table origin register) for that address space.

12 The dispatcher then checks the LSP L for ready work.
If the LSP L has ready work queued on it, control

goes to step 17; otherwise, processing continues at step 13.

13 By checking the local lock lockword for an inter-
ruption 10, the dispatcher can determine whether a

local supervisor routine was processing (Note: A local
supervisor routine would be a supervisory-type service, such
as ATTACH, performing a service needed at a local level,
such as by a problem program). If the dispatcher finds an
interruption 10, control goes to the local supervisor dis
patcher subroutine.

Module Label

::
N

o
~

~
N
~
'<

~
i-
t:
~
~
~ ;:
9
('D

~

'<
~
N

i
~
~

~ -

Diagram 19-1. Dispatcher (rnA VEDSO) (part 9 of 18)

I
t?~
I
I~

I It • ASCB Queue

I ASCB ASCB ,',

[YLJ < ~

i "

,,,"Md"& d<'_W

,.
ASCB

SRBs -
C 12]

LSPL

>

14 Determine whether the local lock
contains this CPU's ID.

• ID in local lock = CPU.
,

0 • Local lock available.

• Local lock not available, continue.

-'" y 15 Check ASCB queueJor end.

• End of queue.

• Next ASCB.

LSPL~
' ..

16 Save status and obtain
dispatcher lock.

Jo. (17 Dequeue first dispatchable SRB
from the LSPL.

1
0 • Ready work on queue.

• No work on queue.

• #

* "

Local Supervisor Routine Processing

18 Determine whether this is a
local supervisor routine.

... ..
Ito.. ..

~

... ..
...
,.

III.

..
;

III..

;' "

Local
Dispa

Step'

Waitl

Step'

Jo-I

y-'

Local

Local
Step'
Step:

rvisor
Step 3.f

Dispatcher

Dispatcher

rvisor Dispatcher,
terrupt 10) or

CPU 10)

Diagram 19-1. Dispatcher (IEAVEDSO) (part 10 of 18)

Extended Description

14 If the local lock contains the CPU 10, this indicates
that a local supervisor routi ne received an interrup

tion and status has not yet been saved. This routine can be
redispatched immediately (step 18), If the local lock does
not contain the CPU 10, the dispatcher attempts to obtain
the local lock, via a CS instruction. If the dispatcher obtains
the local lock, the task dispatcher receives control (step 19).

15 When the CS instruction fails, the dispatcher tests if
this is the WAIT ASCB. If this is the WAIT ASCB,

and a recursive search of the dispatching queues, the dis
patcher gives control to the WAIT ASCB. If this is the WAIT
ASCB, but not a recursive search through the dispatching
queues, the dispatcher searches the dispatching queues for a
second time. If this ASCB is not the WAIT ASCB, control
goes to step 10 to dispatch the next ASCB.

16 The dispatcher saves the status of the interrupted
program and obtains the necessary locks.

17 The dispatcher dequeues any ready work on the
LSPL and gives control to the local SRB dispatcher.

If the SRB is a suspended SRB (from local lock or page
fault suspension processing), the dispatcher restores status
from the SSRB and redispatches the SRB. Otherwise, the
dispatcher uses the global SRB dispatcher to dispatch the
SRB. If the LSPL has no ready work, control goes to
step 18.

18 The dispatcher determines whether a local super-
visor routine should receive control, and gives control

t"'-l to the local supervisor dispatcher subroutine, if necessary.

a
5'
=
~

~

[
o
'"" o
'0
~
~
5' =
~
0\
~

Module Label

~

~
~

o
fJ'l

~
t-.)

fJ'l
'<
~

i
i
(=;.

r"" a:
~
-<
~ a
(D

~

< fJ'l
t-.)

~

f
(,0,)

~

Diagram 19-1. Dispatcher (IEAVEDSO) (part 11 of 18)

.
TeB Queue Processing

19 Dispatch the task.
.. Task

• Task can be dispatched. " Dispatcher ..
• No task to dispatch, obtain

lock. ...
IEAVELK ...

, --.
Then " Step 11

It
- I..-

C'-l
(D

a o·
= N

a::
(D g

.0-
o
o
"0

~ o·
=
~
0\
CJI

Diagram 19-1. Dispatcher (IEAVEDSO) (part 12 of 18)

Extended Description

19 The dispatcher checks for ready work on the TCB
queue, and gives control to the task dispatcher to

dispatch ready tasks. The dispatcher tests the ASCBS3S
field of the ASCB to determine wheiher the stage 3 exit
effector has any asynchronous exits to process.

The dispatcher will always begin searching from the top
of the TCB ready queue. If it finds a dispatchable TCB,
it tests this TCB to determine whether the task is active
on another CPU. If the TCB is active, the dispatcher
searches for the next ready TCB.

The dispatcher does not save the status of TCBs active on
the current CPU; these TCBs can be redispatched after
restoring the registers and PSW. After there are no more
ready tasks left on the TCB queue, control goes to step 11
to process any ready work in any address spaces.

Module Label

b: Diagram 19-1. Dispatcher (IEAVEDSO) (part 13 of 18)
0'1

o .re
~
N
{I.)

'<
~
:I

£
(I)'

t::
~
~
'<

~
2"
:I
(11

~

'< {I.)
N

:;tl
(11

i
~
~

~

From
Dispatcher
(lEAVEDSO)
when ready
work has been

I nput found Process t Output
II

PSAHLHI

PSANSTK

PSATOLD

20 Save Status Routine

• Wait task
ASCB

• Unlocked task
Save FPRs in TCB prefix.

ASCBLOCK I Save task TOE CPU timer
value, if one exists.

TCBTME

TCBACTIVE

Clear task active and
CPU-id indicators.
Call the job step timing
subroutine.

• Locked task
Save FPRs in IHSA.
Save FRR stack in IHSA.
Save CPU timer value in
IHSA.
Save PSATNEW/PSATOLD
in IHSA.
If CMS lock held, set
indicator in ASCB.
Compare and swap interrupt
ID in local lock.
Clear 'CPU locks held'
indicators (PSAHLHI).
Call job step timing
subroutine.

• For all three modes
Clear PSATNEW/PSATOLD.
Decrement ASCBCPUS.
Return to caller.

PSATNEW

I 0

PSAHLHI

0

FPR

To Caller

PSATOLD

0

ASCB

ASCBLOCK

CPUTIMER

FPRs

FRRs

tI.l
(D

~ o·
::I

~

a::
(D g
~
o
o
"0

i o·
::I

f"
0\
-..J

Diagram 19-1. Dispatcher (IEAVEDSO) (part 14 of 18)

Extended Description

20 When the dispatcher finds ready work of higher
priority than the current work or if the current work

is no longer dispatchable, the status of the current work is
saved and its elapsed job step time is calculated and
accumulated. The type of status saved and where it is saved
depends on whether the current work is the wait task, an
unlocked task, or a locked task. SRB status is never saved in
the dispatcher since a SRB is non-preemptable. When a SRB
returns to the dispatcher entry point, IEAPDSRT, the count
of active SRBs are decremented and the SRB mode bit is
turned off.

Whenever a SRB is suspended for a lock or a page fault, the
common suspend routine (lEAVSPCR) in lock manager
(lEAVELK) saves the SRB status and calls the job step
timing routine (DSJSTCSR) in the dispatcher (see step 21
below).

Module Label

~ Diagram 19-1. Dispatcher (IEAVEDSO) (part 15 of 18)
00

o re
<
f'-)
~

~
"" ;-
a
~ «e.
n

t:

!
~
=-
~
~

~
~

~
(I)
~

~
w
~

DSJSTCSR -
call by
Dispatcher

~.iII.IIIIII._III ra. (JEAVEDSO),
• Common

TOO clock

LCCA

LCCADTOD

LCCAITOD

LCCASRBM

ASCB

B

suspend
routine
(I EA VSPCR),
or IEAVRTIO

Process

21 Job Step Timing Subroutine

A.. If TOO clock is damaged,
return

• If SRB mode

• If RCT task, return

,. If LCAAITOD :/= 0, then

LCCAITOD
-LCCADTOD

~
+ ASCBEJST

= ASCBEJST

to caller

I , Step
21B

to caller

return .. to caller

else

• Store TOD in ASCBEWST,
then

ASCBEWST
-LCCADTOD

~
+ ASCBEJST

= ASCBEJST

B. SRB time .

return

•. Store TOO in ASCBEWST,
then

ASCBEWST
-LCCADTOD

~
+ ASCBSRBT

= ASCBSRBT

to caller

return .. to caller

Output,

ASCB

ASCBEJST

ASCBEWST

ASCBSRBT

t"/.)
(D

$? o·
= N

== sa. g
~

o
o
"0
~ a o·
=
~

~
\C

Diagram 19-1. Dispatcher (lEA VEDSO) (part 16 of 18)

Extended Description

21 Job step timing subroutine (DSJSTCSRI. Whenever the
dispatcher is switching away from current work, its

elapsed job step time must be accumulated. If the dispatcher
was entered from an interrupt handler, the time of day of
interrupt (LCCAITOD) will have been stored on interrupt to
eliminate the time spent iA the interrupt handler. The
dispatched time (LCCADTOD) will be subtracted from the
LCAAITOD to obtain the task time. This time will be
accumulated into ASCBEJST field. If the dispatcher was
entered from another caller, the dispatcher will first store the
TOO clock in ASCBEWST and then perform the above
calculation and accumulation. SRB time is accumulated in a
separate field (ASCBSRBTI. Time spent in RCT's task is not
accumulated to eliminate the swap out/swap in time. Job
step initiation/termination, SMF, and job step time limit
will use this accumulated time, initialize the value to zero,
and record the appropriate value in SMF records. -

Module Label

of" Diagram 19-1. Dispatcher (lEA VEDSO) (part 17 of 18)
c:J

&1
~
~

rn

I
i
($'

t::
~

~

~ a
(D

~

~
~

~
S!.
i
r6
w
!.J -

~

dispatcher
h

Register 1

r J

\"SDWA

PSA

D

...

"

i

~

...
)

--y

< ,

'f

~ <

SDWA

'" 22 Record the error.
"

23 Verify queues and control blocks
if DISP lock is held.

...
IEAVESCR • SRB queues. " ...

....-

• SRB control blocks.
..

IEAVESRB
" "'-

....--

• ASCB ready queue. ..
"

IEAVEQV3
.oIL

....

• If local lock held, verify
..

IEAVEEER
TCB queue and exit effector

-,.

queues. ...

24 Return to super FRR.

t'I}
(I)

~
(S-

= ~
a::
~
6
~

o
'"'>

o
't:I
~
a o·
=
~
~ -

Diagram 19-1. Dispatcher (IEAVEDSO) (part 18 of 18)

Extended Description

22 The dispatcher FRR records the error in the SOWA.

23 The dispatcher FRR verifies the queues and control
blocks only if the dispatcher lock was held at the

time of the error. The FRR verifies:

• The SRB queue.

• The SR B control block.

• The ASCB ready queue.

The dispatcher FRR verifies the TCB queue if the local
lock was held at the time- of the error, and if the error was
not a OAT (dynamic address translation) error and if
control register 1 is valid.

The dispatcher FRR routes control to the stage 3 exit
effector FRR at this time.

24 The dispatcher FRR returns control to the Super
FRR.

Module Label

IEAVEOSR

~ Diagram 19-2. Global SRB Dispatcher (IEAVEDSO) (part 1 of 2)
N

o
fIJ

~
N
fIJ

~ a
E
n'
t"'"
CT

8
<
~
:3
('D

~

~
N
:;c

i
~
w
:.... -

Input

Register 2

E @SRB

... --"- SRB -
SRBPKF

'SRBPARM

SRBEP

Register 5

ASCB

ASCBSRBS

From the dispatcher,
step 7, to dispatch
a Global SRB

1 Indicate SRB mode and
increase the SRB count.

2 Set up the SR B PSW and
register values.

3 Trace the event using GTF or
Trace.

4 Release any lock and give
control to the SRB via an
LPSW instruction.

OR

Control to SRB

LCCA

I ~CCADSF21

r/}
~
() g.
= ~

a::
sa.
g
(:I.

o
o
"C
~

~ o·
=
~

.!.J
w

Diagram 19-2. Global SRB Dispatcher (IEAVEDSO) (part 2 of 2)

Extended Description

The global SRB dispatcher subroutine of the dispatcher
gives control to the ready SRB that has been dequeued
from the GSPL by issuing an LPSW (load PSW) instruction.

1 The global SRB dispatcher"indicates SRB mode in the
LCCA and increases the count of SRBs in the
ASCBSRBS field.

2 Next, the global SRB dispatcher places values in the
PSW that will allow the SRB to gain control. These

values includ.e desired key, supervisor state, enabled, and
the SRB's entry point address. The registers contain:

• Register 0 - SR B address

• Register 1 - parameter list address

• Register 14 - return address in dispatcher

• Register 15 - entry point

3 Either the trace routine or GTF traces the occurrence
of the event.

4 The global SRB dispatcher releases the dispatcht'r
lock, and issues an LPSW instruction to give the

selected SR B control.

Module

IEAVEDSO

Label

t Diagram 19 .. 3, Local SRB Dispatcher (IEAVEDSO) (part 1 ()f 2)
~

~.
{I}

~.
~

~
~

9
~
n'
~.

~
~.
a
S
CD

~

'<
tI.l
N
~

i
r6
~

~ -

Register 2

@$SRB

EJ

From the dispatcher,
step 17, to dispatch
a Local SRB

1 Set SRB mode indicator.

2 Determine whether the SRB is a
suspend SRB.

3 Restore Status from SSRB
(suspend Si={B Save Area.)

a) FPRs.

b) Normal Stack.

Yes

No

c) Locks (CMS and Local, if held.)

d) Move GPRs and PSW to Low
Core Save Area.

4 Release Dispatcher Lock.

5 Free the storage used by SRB using
FREECELL or FREEMAtN

OR

6 Trace the event using GTF or Trace.

OR

7 Restore registers and give control
to the SRB via an LPSW.

J. , Step 3

Global SRB Dispatcher
(tEAVEDSO)

Control to SRB

Output

o
PSA

D
LCCA

D

tI.l a er =
~

at:
a
5'
/:l.

~
o

I e· =
~ ...,
VI

Diagram 19-3. Local SRB Dispatcher (IEAVEDSO) (part 2 of 2)

Extended Description

The local SRB dispatcher suproutine of the dispatcher
gives control to the ready SR Bs that have been dequeued
from the LSPL by using an LPSW instruction.

1 The local SRB dispatcher first indicates SRB mode in
the LCCA.

2 The local SRB dispatcher checks the SRBRMTR field
to determine whether the SRB represents a suspended

SRB (suspended for a page fault or suspend lock request).
Control goes to the local SRB dispatcher for SRBs not
representing suspend processing.

3 The local SRB dispatcher restores status from the
SSRB (suspended SRB) save area.

4 The local SR B ,dispatcher frees the dispatcher lock.

5 The local SRB dispatcher frees the SSRB with either
FREEMAIN or FREECELL, depending on how the

storage for the SSRB was obtained initially.

6 Either the trace routine Or GTF traces the occurrence
of the event.

7 The local SRB dispatcher gives control to the selected
local SRB by issuing an LPSW instruction.

Module

IEAVEDSO

Label

t Diagram 19-4. Local Supervisor Dispatcher (IEAVEDSO) (part 1 of 2)
0'1

i
~
N
fI.)

'<
~

a
r-
ei t;.

r"'"

J
~ g
~

~
N

i
~
w
~

Input

ASCB

{ASCBASXBI
~

~
-..,IHt

PSATOLD

PSATNEW c-

From the dispatcher,
step 18A, to dispatch a
Local Supervisor Routine

From the
dispatcher
(lEAVEDSO)
step 13 or
18

From the
dispatcher
(lEAVEDSO)
step 14

Process

1 Save the status of the interrupted
program.

2 CPU affinity to another CPU

No Yes, obtain dispatcher

,J.
lock.

Obtain next ASCB.

3 Restore Status from IHSA.

a) CPU Timer.

b) PSATOLD, PSATNEW.

c) Floating Point Registers.

d) FRR Stack.

e) Locks.

f) General Registers.

4 Obtain the PSW from the IHSA.

5 Trace the event using GTF
or Trace.

6 Give control to the interrupted
local supervisor via LPSW.

step 15
T O;spatcher.

Control to Interrupted
Local Supervisor Routine

o

PSATNEW

PSATOLD __ H)

FRR Stack

D

(.f.l
~
g.
o·
= N

a::
~ g
~

o
~

o
"0
~
~ g.,
~

.!J

........

Diagram 19-4. Local Supervisor Dispatcher (IEAVEDSO) (part 2 of 2)

Extended Description

The local supervisor dispatcher subroutine gives control to
interrupted supervisory routines that were performing a
local service for a single address space. The interrupted
supervisory routine receives control via an LPSW
instruction.

1 The local supervisor dispatcher saves the status of the
interrupted routine in the appropriate area.

2 The local supervisor dispatcher determines whether the
interrupted routine had CPU affinity, and if it can

process on this CPU. The local supervisor dispatcher stores
the interruption I D in the local lock if the routine cannot
be processed, and processes the next address space.

3 The interrupted routine has its status restored from the
IHSA (interruption handler save area).

4 The local supervisor dispatcher obtains the PSW from
the IHSA and moves it to the PSA.

5 Either the trace routine or GTF traces the occurrence
of the event.

6 The local supervisor gives control to the interrupted
supervisory routine by issuing an LPSW instruction.

Module Label

IEAVEDSO

~ Diagram 19-5. Task Dispatcher (lEA VEDSO) (part I of 4)
OJ

~
~
~

·cn

l a
.~
("l

t"'"
;:

~
<:
So = a
(\)

~

'< cn
~

~

i
~
CoW
!..J -

Input

ASCB

ASCBS3S r- --

QTCB

£~

\,,-~~

From the dispatcher,
step 19, to dispatch
a ready task

- 1 Determi ne whether .any
asynchronous exits exist.

INa Yes

2 Determine whether any ready
tasks exist.

lNa
3 Release the local Jock and

obtain the dispatcher lock.

Yes

4 Locate the highest ready TCB.

5 Save status of old work if a
different TeB has been selected.

Step 4

Dispatcher
Step 10

til
~ a
5'
= ~
~
sa.
[
0;
0:

'1::1'
~
~

~
0'
=
~
1.0

Diagram 19-5. Task Dispatcher (IEAVEDSO) (part 2 of 4)

Extended Description

The task dispatcher subroutine gives ready tasks control by
issuing an lPSW instruction. If no ready tasks can be dis
patched, control goes to the dispatcher to dispatch a ready
address space.

1 The TO will give control to the stage 3 exit effector to
process any asynchronous exits if the stage 3 switch

indicates any requests.

2 If there are ready tasks on the TCB queue, control
goes to step 4. If no ready tasks exist, control goes to

step 3.

3 The task djspatcher will obtain the dispatcher lock
and go to the main dispatcher routine to locate a ready

address space.

4 The task dispatcher locates the highest priority, ready
task from the TCB queue. The task dispatcher tests if

this task is active on another CPU (in multiprocessing
systems); the task will not be dispatched if active.

5 Next" the task dispatcher saves the status of any pre
empted work.

Module

IEAVEOSQ

label

t Diagram 19-5. Task Dispatcher (lEA VEDSO) (part 3 of 4)
Q

~
"< fI)
N
fI)

~
(D

,

= £ 6 Restore status from the TCB.

c:;. • CPU Timer for TOE .
t"'"

f
~ • Psw .

<
~
=

7 Indicate TCB active, store CPU
(D 10, and release loca I lock.
~

~
N

" ~
5
w

8 Trace the event using GTF
or Trace.

~

or

9 0 ispatch the task via the

I LPSW instruction.

"
~

~

...

~

...

~

....-

ready tas

PSA

PSATNEW

PSATOlD

PSAANEW
'"

¥ PSAAOLO ..
SET LOCK

".

TCB

g

TCBACTIV ..
Trace ,

TCBCPUJD

.. GTF
ASCB FRR Stack

,
IA~BCPUS I D

C"'-l
(1)
CO) g.
=
~

rc
~

8:
a
o

'"<:)

i o·
=
i"'
~

Diagram 19-5. Task Dispatcher (lEA VEDSO) (part 4 of 4)

Extended Description

6 The task dispatcher prepares the highest priority, ready
task by restoring its status from its TCB and RB. The

TCTL function enters the dispatcher at this special entry to
transfer control to a selected TCB.

7 The task dispatcher releases the local lock.

8 Either the trace routine or GTF traces the occurrence
of the event.

9 The task dispatcher gives the ready task control by
issuing an LPSW instruction for that task.

Module Label

IEAVDSTC

<:
C"'-l
t-.)

o
eN

00
S

t Diagram 19-6. Wait Task Dispatcher (IEAVEDSO) (part 1 of 2)
N

£
"< !ill
N
!ill
~ ...
~ :;

£ g.

t:

!
~
!3
(\)

~

~
N
Q
~

00 o
~

From the dispatcher,
step 15, to dispatch
the wait task

Process

1 Trace the event using GTF
or Trace.

2 Zero the general registers.

OR

3 Load the enabled WAIT PSW to
dispatch the wait task.

Control to
Wait Task

Output

PSA

PSATNEW

PSATOLD

PSAANEW

PSAAOLD

ASCB F.RR Stack

~D i i)~II I I
Regs

0--
1
2

~
15 '-----..,

{I.l
~
.~
5'
=
~

~
~ ...
[
0
0

"1:1

~
5'
::s

t-
oe
~

Diagram 19-6. Wait Task Dispatcher (IEAVEDSO) (part 2 of 2)

Extended Description

The wait task dispatcher gives control to the wait task by
using an LPSW instruction, if no ready work can be found in
the system.

1 Either the trace routine or GTF traces the occurrence
of the event.

2 The wait task dispatcher zeros the general registers.
The PSATNEW, PSATOLD, PSAANEW, and PSAAOLD

fields reflect the wait task and wait ASCB, and the STOR
(segment table origin register) contains the wait ASCB's
STOR value.

3 The wait task dispatcher gives the wait task control
via an LPSW instruction.

~

Module

IEAVEDSO

Label

t Diagram 19-7. Memory Switch (IEAVEMSO) (part 1 of 2)
~

o
~
fIl
N
fIl

1
~

~ n·
~
~
<
~ a
(D

~

~
N

f
w
~

Input

PCCAVT
PCCA

Branch entry from
Supervisor routines to
cause memory switch

®

Process

~1 Check contents of register 1 .
• Zero . O/~_

~PCCAPSAV

PSA ®

I-- i • ASCB address (true or

PCCA CD
-

I
I

U I

PSA <D If' I r~
ASCB \!I I I

~ r""" .. ~ .. VI SEaN I ASCB 0 I

LCCA <D LCCA~~ i
-SRBM

OR

~ ,I
~ I

Register 1

I - 0 t----,
Register 1

@ ASCB (true or
complement)

~ ASCB

I
I

Y
I
I

.-1

~ 2

complement) :
Determine CPU runn ing the
lowest priority address space
in the system.

• ASCB address is a complement
(negative): .

CPU affinity exists and the
address of the CPU required
appears in Register O.

Compare the priority of the CPU in
Step 1 with the priority of the ASCB
in Register 1 and indicate the higher
priority in PSAANEW.

• Completed.

3 Register 1 contains a zero value.
Zero the PSAAN EW for all CPUs.

4 Signal the other CPUs if PSAAOLD
contains the WAITASCB.

Output

I _ Step 3
....

- .r/

-r : S.ep4.

LA

tA:

• IEAVERP
Signal
Service
Memory
Switch

Routine

ASCBSEQN
To Supervisor routines

Register 0

CPUW/Affinity}--- --i1 __ J

PSA

IpSAANEW I
PSA

I PSAANEW I

Diagram 19-7. Memory Switch (IEAVEMSO) (part 2 of 2)

Extended Description

Memory switch selects the next address space that can be
dispatched on a specific CPU. Memory switch compares
the priority of the address space currently selected against
the input address space's priority. The address space with
the highest priority will be indicated in PSAANEW.

1 Memory switch checks the contents of register 1. If
zero, proceed at step 3. If ASCB address, memory

switch finds the CPU running the lowest priority address
space in the system. Additionally, if register 1 contains a
negative ASCB address (a complemented value), this indi
cates that the task to execute in the address space requires
CPU affinity, and only those CPUs will be considered.
When register 1 contains a negative ASCB address, register
o contains the address of the CPU with affinity.

2 Memory switch stores the input ASCB in the
PSAANEW field, if the input ASCB has a higher

priority than the ASCB in PSAANEW on the sel.ected
CPU. Otherwise, memory switch leaves the original value
in PSAANEW, indicating that the input ASCB was of a
lower priority.

3 If register 1 contains a 0, memory switch stores a 0
value in each PSAANEW field. The dispatcher, upon

receiving control, will search from the top of the ASCB
dispatching queues.

4 If memory switch was required on another CPU
(whose PSAAN EW value was changed) and if the pre-

vious address space was the WAIT ASCB, then memory
til switch calls the remote pendable service routine. This a causes an external call interruption to be presented to the
~. selected CPU. This interruption causes entry into the dis-
~ patcher to find the selected work.

~
CD g
~

o ...,
~
~ o·
=
of"
00
VI

Module Label

IEAVEMSO IEAVEMSO

t Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 1 of 10)
0'\

o
C"n

""<
C"n
N
C"n
'<
~

3
£
(5.

t::
c:J' ;
'<
-< o

= :3
(to

~

< C"n
t-J
o
W

00 o
~

ICJ
LCCA

I LCCASRBM I

PSA

FLCNPSW

FLCSOPSW

FLCSVILC

FLCSVCN

SST

SVC Entry

Flags

From SVC New PSW
after Hardware
stores SVC Old PSW

]

---l
I
I
I

I
I

I
I
f
L

p

IEAQSCOO

1 Save registers.

2 Check for

• Locks

• SRBs Lock,
SRB, or

• Disabled State. disabled state.

3 Save PSW, interruption code,
and instruction length.

4 Check for SVC screening. When
SVC is not allowed, use the
subsystem SVC entry rather than
the SVC table entry.

- 5 Get SVC number. rf an Extended
SVC (SVC 109, 116, or 122) has
been issued, use extended SVC
routine (ESR) code in register 15
to get correct entry in ESR table.

Output
- ;:("~"'~"""."7-«::<.:~--~Z'-~-:-:-"""c;',,~,, ~%~

LCCA

I LCCAGPGR I

Input for Step 6,
8, and 12

Lock, SR B, or
ABEND Code disabled state ~

t-J

Code - X'OF8' o
W

Recovery/
00
~

Termination
Management

RB

RBOPSW

RBINTCOD

RBINLNTH

Diagram 19-7. Memory Switch (IEAVEMSO) (part 2 of 2)

Extended Description

Memory switch selects the next address space that can be
dispatched on a specific CPU. Memory switch compares
the priority of the address space currently selected against
the input address space's priority. The address space with
the highest priority will be indicated in PSAAN EW.

1 Memory switch checks the contents of register 1. If
zero, proceed at step 3. If ASCS address, memory

switch finds the CPU running the lowest priority address
~'<- space in the system. Additionally, if register 1 contains a

negative ASCS address (a complemented value), this indi
cates that the task to execute in the address space requires
CPU affinity, and only those CPUs will be considered.
When register 1 contains a negative ASCS address, register
o contains the address of the CPU with affinity.

2 Memory switch stores the input ASCS in the
PSAANEW field, if the input ASCS has a higher

priority than the ASCS in PSAANEW on the selected
CPU. Otherwise, memory switch leaves the original value
in PSAANEW, indicating that the input ASCS was of a
lower priority .

3 If register 1 contains a 0, memory switch stores a 0
value in each PSAANEW field. The dispatcher, upon

receiving control, will search from the top of the ASCe
dispatching queues.

4 If memory switch was required on another CPU
(whose PSAANEW value was changed) and if the pre-

vious address space was the WAIT ASCe, then memory
CI.) switch calls the remote pendable service routine. This a causes an external call interruption to be presented to the
~. selected CPU. This interruption causes entry into the dis-
!'t patcher to find the selected work.

a::
~
o· =o
o
"0
~

=~.
:I

~
00
u-

Module Label

IEAVEMSO IEAVEMSO

f-
00

'"
o
t"I)

"< t"I)
~

t"I)

'<
~

~

E rs·
t:
~
~
~
~
(0

~

'< t"I)
~

<:>
~

00

~

I Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 1 of 10)

I
I

e.

I .,

1

2

{
255

~"'"

{O
LCCA

I LC~SRBM I
PSA

FLCNPSW

FLCSOPSW

FLCSVILC

From SVC New PSW
after Hardware
stores SVC Old PSW

- ..
"

J
-

r
I
I

FLCSVCN ~---
___ ...J

SVCTable r
I

Entry Flags I
Point @ A _ I

rv-. A I Entry Flags Point @ I
~-

____ J

--0 Entry Flags ~-Point @

(SVC Table entries are
a doubleword)

IEAOSCOO
...J\

1 Save registers.
r

-" 2 Check for
r

• Locks

• SRBs Lock,

• Disabled State.
SRB, or
disabled state.

3 Save registers, PSW, interruption
code, and instruction length.

"- - 3.1 Get SVC number. If an Extended
SVC (SVC 109, 116, or 122) has
been issued, use extended SVC
routine (ESR) code in register 15
to get correct entry in ESR table.

-- 4 Check authorization.

..,.'

....-

• Not authorized. Move
registers from
LCCA to TCB Not A uthori zed
save area and
terminate the To L

routine. Dispatcher ...-

~

"I I
A

Input for Step 3 <;::=

Lock, SR B, or
disabled state

...... Recoveryl
...

Termination
Management

I

Not AuthorizecJ

..... TESTAUTH ,.

Recoveryl
10..

,. Termination
Management

,-

...J\ LCCA
r

I LCCAGroR I

ABEND Code

Code - X'OF8'

RB

" RBOPSW
r

RBINTCOD

RBINLNTH

ABEND Code

)f Code - X'Q47'
r

TCB Save Area

...J\

y

J

J

-<
t'I:
N
C
t..l

00
o
-...I

CI.l
g
g.
=
N

s::
~
::s
o
Q.

o
~

o
'" ~ '"I
I» g.
=
f"
00
-...J

~:--"~

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 2 of to)

Extended Description

The SVC interruption handler sets up the proper operating
environment for a requested SVC (supervisor call) by
obtaining any necessary I~cks and initializing registers. The
SVC interruption handler routes control to the appropriate
SVC routine after setting up the operating environment.

Module Label

1 The SVC interruption handler (IH) immediately saves IEAVESVC IEAOSCOO
the requester's registers in the LCCA. The LCCA resides

in the SOA and acts as a temporary location to save the
requester's status. The SVC I H will later move the status to
a permanent location.

2 Requesters in the disabled state, that are SR Bs, or
that are locked cannot issue SVCs. Therefore, the

SVC IH passes control to RITM, which begins termination
of those requesters. The caller will be abnormally terminated
with an ABEND code of X'OF8'.

3 The SVC IH, after determining that the requester can
issue SVCs, saves the interruption code, and saves the

instruction length.

4 If screening is active for this task rrCBSVCS=l),
the SVC interrupt handler determines if the

caller can issue the SVC as indicated in the Subsystem
Screen Table. If the SVC cannot be issued, control is
given to the screening SVC rather than the SVC that
was req uested.

5 If the Extended SVC Router (ESR) has been
invoked (that is, either SVC 109, 116, or 122

has been issued), the caller's ESR code in register 15
is used to obtain the appropriate ESR table entry.
The table entry provides the proper entry environment
(locking, type, APF authorization, etc.) for the
invoked service routine.

\,,:;: ... ~

-<
CI.l
N
o
I.>J

00 o
VI

f" Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 3 of 10)
00
00

o c:n
<-
til
N

~ Input
~
3
t"'"' o

<e.
~

t"'"'
0:

!
< o
2"
3
('D

.j:o.

< til
N o
I.H
00
o
~

1

2

{
255

SVC Table

Entry Flags Point @
A

Entry Flags "
Point @

~--

Entry
Point @

Flags 04......,. ...,..

(SVC Table entries are
a doubleword)

J
I ,

~

_.

r
I
I
I
I
I

_J

®

1'-- 6 Check authorization.

~

....

• Not authorized. Move
registers from
LCCA to TCB Not Authorized
save area and
terminate the To i.

routine. Dispatcher ""

Not Authorized

... TESTAUTH ..

Recovery/ ...
.. Termination

Management

ABEND Code

'")I Code - X'047'

TeB Save Area

'"
I'

I

<: c:n
N

o
I.H
00
~

Cf.l
<I)

a o· =
t,j

a::
2-g
Q.

o
o
~

~
~.

=
~

cio
-...I

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 2 of 10)

Extended Description

The SVC interruption handler sets up the proper operating
environment for a requested SVC (supervisor call) by
obtaining any necessary locks and initializing registers. The
SVC interruption handler routes control to the appropriate
SVC routine after setting up the operating environment.

Module Label

1 The SVC interruption handler (IH) immediately saves IEAVESVC IEAOSCOO
the requester's registers in the LCCA. The LCCA resides

in the SOA and acts as a temporary location to save the
requester's status. The SVC I H will later move the status to
a permanent location.

2 Requesters in the disabled state, that are SRBs, or
that are locked cannot issue SVCs. Therefore, the

SVC IH passes control to R/TM, which begins termination
of those requesters. The caller will be abnormally terminated
with an ABEN D code of X'OF8'.

3 The SVC IH, after determining that the requester can
issue SVCs, saves the interruption code, and saves the

instruction length.

3.1 If the Extended SVC Router (ESR) has been
invoked (that is, either SVC 109, 116, or 122

has been issued), the caller's ESR code in register 15
is used to obtain the appropriate ESR table entry.
The table entry provides the proper entry environment
(locking, type, APF authorization, etc'! for the
invoked service routine.

4 Since some SVCs can only be issued by users with
APF authorization, the SVC IH determines whether the

SVC requires authorization. The SVC IH refers to the SVC
table, using the value in the FLCSVCN field of the PSA
as an index value into the SVC table. If TEST AUTH retur'ns
a non-zero return code, th is indicates that the user does not
have authorization. Then, the SVC I H gives control to R/TM
to abnormally terminate the user with an ABEND code of
X'047'.

<:
en
t,j

b w
00
o
-...I

t I Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 3 ,of 10)
00

~
"<
foil
N
foil

~
~

Input Process

SVC Table

? Oultput
2

TCB

i EPA 1 Flags I
I

!- 4.1 Check for non-preemptable SVC.
If it is, make task non-preemptable. _........lMfl __________ ____

f:)'

to:
~
<:
~
a c
~

'< foil
N
(:,
~

00
S
'-'

2 EPA I Flags

t-

255 EPA I Flags

_J

~--

5 Check SVC type.
• Type 1 (Step 6).

• Type 2, 3, or 4 (Step 10>-
• Type 6 (Step 15).

Type 1 SVC Processing

6 Move the registers from the
LCCA to the TCB, and obtain
Local Lock.

• If not obtained immediately,
alter PSW to point to the
SVC instruction.

To CalJer who wilJ be re
dispatched, and enter the
SVC IH at Step 1.

7 Indicate Type 1 SVC processing.

-8 Enable for interruptions and
obtai nany locks needed by
the SVC routine.

6

...

PSA

Co PSATOLD

.. TOB

--,.-
SET LOCK ...

~ .. Q TCBRBP I

RB

....
RBOPSW I _I Dispatcher

....

--v ... _____ -1

"SVC Instruction"

"'" ASCB

- .. "J ASCBTYP1
--v

• I -I SmOCK

,

;3
·N
C
(W

1lo
'c
....:J

rr.
a
o' =
N

a::
~

;.
8-
o
o
"0
~

~ o·
=
~

do
\0

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 4 of 10)

Extended Description

6 Since some SVCs can only be issued by users with
APF authorization, the SVC I H determines whether the

SVC requires authorization. The SVC IH refers to the SVC
table, using the value in the F"LCSVCN field of the PSA
as an index value into the SVC table. If TEST AUTH returns
a non-zero return code, th is indicates that the user does not
have authorization. Then, the SVC IH gives control to R/TM
to abnormally terminate the user with an ABEND code of
X'047'.

Module Label

.. -

<:
t"'-l
N
(:,
c..J

00
~

f' Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Page 5 of 10)
\0 o

@
"<
rJ)
N
rJ)

'<
.~

~

£' c;.
t"'"
0:

~
< o
=:I
~

""'" '<
rJ)
~ o
w
00
o
VI
'-'

Process 2
7 Check SVC type.

• Type 1 (Step 8l-

• Type 2, 3, or 4 (Step 12).

Type 1 SVC Processing

8 Move the registers from the
LCCA to the TCB, and obtain
Local Lock.

• If not obtained immediately,
alter PSW to point to the
SVC instruction.

To Caller who will be re-
dispatched, and enter the
SVC IH at Step 1.

9 Indicate Type 1 SVC processing.

~ --110 Enable for interruptions and
obtai n any locks needed by
the SVC routine.

f

III.. SETLOCK

"
~

---.. Dispatcher

"
~

III..

"1 SETLOCK

~

Output

PSA

o PSATOLD

TCB
I\.

'" t-I -----......

TGBRBP

RB

~

RBOPSW
¥ t-I ------1

"SVC Instruction"

ASCB

1\.. ASCBTYP1
y

<
rJ)
N
<:>
w
be
~

r.n
(D

g.
o·
= ~
a=
~
5
~

o
o

"0

!
(5'
:=

~

do
\0

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 4 of 10)

Extended Descri}:)tion

4.1 If the SVC is non-preemptable (SVCNP=1), then the
task is made non-preemptable (TCBNONPR=1).

5 Based on the SVC type, this step branches to the
appropriate processing routine. Note that steps 8

and 9 show processing common to SVC types 1, 2, 3,
and 4.

SVCtype Steps

1 6-9

2,3,4 10"12

6 15-16

Type 1 SVC Processing

6 To process Type 1 SVCs, the SVr. IH must move the
caller's registers in the TCB and obtain the local lock.

A request is made conditionally, since the SVC I H cannot be
suspended (see the SETLOCK routine). Operation continues,
at step 7, if the local lock is obtained. Otherwise, the SVC
IH changes the RBOPSW in the requester's RB to indicate
that it will be redispatched to reissue the SVC instruction,
and gives the dispatcher control. The requester will eventu
ally be red~spatched.

7 The SVC IH indicates Type 1 processing in the
ASCBFLG1 field, bit ASCBTYP1.

8 Interruptions can now be processed, with the status
of any interrupted programs being saved in the I HSA

(interruption handler save area). The operating environment
for the requested SVC routine can now be set by the SVC
IH. As the first step, the SVC IH obtains any locks that the
SVC routine needs, as indicated by the SVC table.

Module Label

~
~
Q
~

00
S

of" I Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 5 of 10)
\C
o

o
CI:l

~
l-.J
CI:l

I
t"'" o «e.
~

t"'"
c;:

~
-<
~
51
(D

~

< CI:l
l-.J o
W
00
o
-..J -

Process

Type 2, 3, or 4 Processing

10 Acquire an SVRB. The SVRB pool is
managed by the SVC FLIH. If an
SVRB pool element is available,
perform s~ep b. If not, do step a and
continue with b.

a) Initialize SVRB pool.

, ~ Get pool.
Build SVRB pool.
Chain SVRB pool.

I b) Normal Request.

I Get an SVRB element.
Initialize SVRB.
Chain SVRB to TCB/RB queue.

I Move the Registers from the
LCCA save area to the SVRB.

I
I
i
!Wi
Wi
I
I
I
I

Output

ASCB

;;3
l-.J o
W
00
S

SVRB

RBLINK

TCB

TCBRBP

RB

RBTCBP

tf.)

~,
= N

~.
<D g
~

o
o
'e

~
(5'

=
~

.c -

Diagram 19-8. SVC Interruption Handler (lEA VESVC) (part 6 of 10)

Extended Description

7 Steps 8-11 show Type 1 SVC processing, while steps
. 12-14 show Type 2, 3, and 4 SVC processing. Note
that steps 10 and 11 show processing common to all
SVC routines.

8 To process Type 1 SVCs, the SVr. IH must move the
caller's registers in the TCB and obtain the local lock.

A request is made conditionally, since the SVC IH cannot be
suspended (see the SETLOCK routine). Operation continues,
at step 9, if the local lock is obtained. Otherwise, the SVC
IH changes the RBOPSW in the requester's RB to indicate
that it will be redispatched to reissue the SVC instruction,
and gives the dispatcher control. The requester will eventu
ally be redispatched.

9 The SVC IH indicates Type 1 processing in the
ASCBFLG1 field, bit ASCBTYP1.

10 Interruptions can now 6e processed, with the status
of any interrupted programs being saved in the I HSA

(interruption handler save area). The operating environment
for the requested SVC routine can now be set by the SVC
IH. As the first step, the SVC IH obtains any locks that the
SVC routine needs, as indicated by the SVC table.

Module Label

,~

-<
tf.)
t-J o
!,H.

00·
o·
(A;

f"' Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 7 of to)
\C
N

o
CI}

"< CI}
t-J
CI}

'<
~

3
~ (; ..
C go
~
'<

~ = :I
~

.c:..

'< CI}
N
o
W
00
o
~

CVT
(Location 1 6)

D 10
PSA

PSATOLD

PSAAOLD

TCB

~

.,

..
11 Prepare registers for SVC

--y
routine.

Type 2, 3, or 4 Processing

12 Obtain, initialize, and chain
SVRB. Set fields in TCB.
Move the registers from the
LCCA to the SVRB.

Step 14

OR

Step 14

OR

To Dispatcher

13 Suppress attention exits.

• ToSVC
Routine

GETCELL ..,.
....
....

.. GETMAIN
--,.

...
.....

.. Recovery/ ..
.... Termination

Management

SVRB

...
RBLINK

7 TCB

TCBRBP

TCBATT

\RB ~
RBTCBP ,

... Register 3

CVT@

Register 4

TCB@

Register 5

Top RB @

Register 6

SVC Routine @

Register 7

ASCB@

Register 14

@ Exit Prologue

1
1

1

1

1
1

<:
(;I')
~

o
w
00
o
(Jl

til
(fj
(')

ct. g
~.

~

~
8-
o
o
~
~.

;1
g.
;:I

~

Y:>
"""'

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 6 of 10)

Extended Description

Types 2, 3, and 4 SVC Processing

10 Type 2, 3, or 4 SVCs need SVRBs (supervisor
request blocks) built. The SVC interruption

handler obtains the storage for an SVRB, moves the
registers from LCCA, and initializes the SVRB. The SVC
IH (interrupt handler) obtains the storage for an SVRB
in the following manner:

• Attempts to directly obtain an SVRB pool chained
off the ASCB.

• If the ASCBSVRB pOinter is zero (no SVRBs
available), the SVC I H determines whether an ABEN D
or ABTERM is in process. If so, the SVC IH uses
GETMAIN to acquire a single SVRB. If this
GETMAIN fails, the address space will be terminated.
If no AaEND or ABTERM is in progress, the SVC IH
will issue a GETMAIN to expand the pool. If the pool
cannot be expanded, R/TM will be called with a
X'OF9' ABEND code. If the pool is obtained, it will
be initialized and chained to the ASCBSVRB pool
queue.

Module Label

-< til
N
o
c..J

00
o
-..J

to I Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 7 of 10)
\Q
N

o
rI.I

~
N

1
s
~.

j
~ a
(D

~

~
N

S
00
§

Process

12 Indicate Type 3 or 4 SVC
processing.

IGCERROR

13 Terminate caller who issues
invalid SVC.

14 Clear the SVC IH bit and restore
the pointer in the FRR stack
to the normal FRR stack.

To R/TMto
terminate
thecaUer

S~ep8

SVRB

ABEND Code

X'Fxx' - xx equals SVC
number

Normal
FRR Stack ,

PSACSTK

Code

~
N

S
00 s

CIl
(II
(') g.
=
~
f(
~

[
a.
o

"0
~ a o·
=
~

~
w

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 8 of 10)

Extended Description

111 As the last step, the SVC IH sets the proper values in
input registers used by the SVC routine, and gives the

SVC routine control using the address in the SVC table.
Registers 0,1, 13 and 15 contain the same value as when
the requester issued the SVC.

12 Type 2,3, or 4 SVCs need SVRBs (supervisor request
blocks) built. The SVC IH obtains the storage for an

SVRB, moves the registers from the LCCA and initializes it.
The SVC I H obtains the storage for the SVRB in the manner:

• Attempts to use the GETCELL routine to obtain the
necessary storage for an SVRB.

• If the GETCELL fails, the SVC IH determines whether an
ABEND or ABTERM is in process. If so, the SVC IH uses
the GETMAIN routine to obtain the storage for a single
SVRB . .The address space will be terminated if this
GETMAIN fails. If no ABEND is in process, the SVC IH
will try to expand the SVRB cell pool via a GETMAIN. If
the SVRB cell pool cannot be expanded, the SVC IH
gives control to R/TM to abnormally terminate the SVC
requester with an ABEND code of X'OF9'. The SVC IH
will obtain a single cell for the SVRB from the expanded
SVRB cell pool if the attempt succeeded.

• After obtaining an SVRB, the SVC IH indicates whether
the SVRB was obtained by GETMAIN or GETCELL.
When the SVC routine completes, EXIT or Exit Prologue
frees the storage with either FREEMAIN or FREECELL.

13 The SVC I H suppresses attention exits from processing.
The TCBA IT bits indicate this.

Module Label

<
CIl
N

o
W
00
~

~ Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 9 of 10)
IC
c...J
Q

o
ell

~
ell
~

ell

'S
;-
s
t'
~.
r-'
0-

~
< a
= s
«11
~

'< ell
~ o
c...J
00
&; -

F
R

~

y
I

. Process •
14 Indicate Type 3 or 4 SVC

processing.

IGCERROR

15 Terminate caller who issues·
invalid SVC.

16 Clear the SVC IH bit and restore
the pointer in the FRR stack
to the normal FRR stack.

.....
I'"

..
I'"

e

Output

SVRB

~ RBSTAB1

Step 10

ABEND Code

" Code ..
ABEND

X'Fxx' - xx equals SVC
number

Normal
FRR Stack

!
I PSA

" PSASVC
y

PSACSTK

Completion Code

~ X'1FC'
.. I

I

I

<:
ell
N

o
c...J
Oc
o
V\

til
CD
~
5'
= ~
iC

~
c::;I.

a.
o
"0

i
5'
=
~
I.Q
IN

Diagram 19-8. SVC Interruption Handler (lEA VESVC) (part 8 of 8)

Extended Description

12 The SVC IH indicates in the requester's RB that the
SVC is either Type 3 or Type 4.

13 The IGCERROR entry point receives control when
the requester issues an SVC not listed in the SVC

table. This routine terminates the requester with a code of
X'Fxx', where xx equals the number of the invalid SVC.

14 The SVC IH FRR (functional recovery routine)
clears the SVC indicator in the PSA, sets the FRR

stack pointer to the normal stack, and terminates the caller
with a X'1 FC' completion code.

Module Label

IEAVESVR

-<
til
~

<=> IN
00
o
-....J

~ I Diagram 19-8. SVC Interruption Handler (IEAVESVC) (part 9 of 10)
w
<=>

o
til

~
~

til

~

i
~
~.
t""
;:

~
<
~
:3
(D

~

'< til
~

<=> w
00
o
-J --

Input

CVT (location 16) ,

Registers

o

15

Process

Type 6 SVC Processing

15 Type 6 SVC

• Save entry registers in TCB.

• Prepare registers for Type 6
SVC routine.

16 IEAVET6E: T6EXIT option
selected determines what step is
active.

a. RETURN=CALLER or BR14

• Save registers i~ the TCB.

• Dispatch the task.

b. RETURN=DISPATCH

• Exit to Dispatcher.

c. RETURN=SRB

• Is an SRB in this address
space?

Yes, continue.

• Save the task status.

• Perform job step timing.

Exit
Prolog
(IEAVEEXP)

Dispatcher
(IEAVEDSO)

..
'" ABEND

No" CALL RTM

• Take task out of task mode.

• Dispatch the SRB. Dispatcher
(IEAVEDSO)

Output

TCB

Register 4

I Tea add~ess --I
Register 5

I Top RB address

Register 6

I SVC Routine address

Register 7

I ASCB address

Register 14

T6EXIT return address

PSA

<
til
~

<=> w
00
~

tf}
~
n
C'.
g
l-.j

~
~

[
o
o
"0
~ ...
~ g.
4:-

~

Diagram 19-8. SVC Interruption Handler (lEA VESVC) (Part 10 of 10)

Extended Description

14 The SVC IH indicates in the requester's RB that the
SVC is either Type 3 or Type 4.

15 The IGCERROR entry point receives control when
the requester issues an SVC not listed in the SVC

table. This routine terminates the requester with a code of
X'Fxx', where xx'equals the number of the invalid SVC.

16 The SVC IH FRR(functional recovery routine)
clears the SVC indicator in the PSA, sets the FRR

stack pointer to the normal stack, and terminates the caller
with a X'1 FC' completion code.

Module Label

IEAVESVR

< tf}
l-.j

<=>
~

00
~

:t Diagram 19-9, I/O Interruption Handler (lEA VEIO) (Part 1 of 4)
......

~
~
N
CIl
~
~
(II

;I

i
(;'
t""
0:

~
-< o
=-3
t'D
~

~
N
Q
w
00
~ -

PSA

PSAIO

FLCIOPSW

(PSALCCAV

PSATOLD ~

LCCA TCB

LCCASRBM

From I/O New PSW
after Hardware stores
I/O Old PSW

--p

IEAQIOOO

j...

1 Determine whether this is an
v I/O recursion,

I/O processing
occurring

'" 2 Store TOO clock value, indicate an
v lOS interruption, save registers,

PSW, and establish recovery.

3 Determine the type of program that
caused the I/O interruption and save
its status,

• SRB.

• Locally locked TCBs.

• Unlocked TCBs.

4 Go to I/O Supervisor.

To DISMISS Entry
Point in IEAVEIO

o

PSA

PSACSTK
"-

v PSAID

.. Go to Step 4 PSAAOLD
~ASCB r-

PSATOLD

\ ~ ASCBASXB

LCCA t:: ASXB
'" LCCAITOD v

'"
v LCCAIOPS

LCCAGPGR
v

c:::-I
~

"- IHSAGPRG
r

TCB
'"

TCBGRS

~ r- TCBRBP
RB

...
RBOPSW ..

...
r- I/O Supervisor

L

~
IECINT entry

c:n
(D
f)

g.
=
~

~
(D

[
o
0001

o
"0
~
~ g.
~

~
t..I

~

Diagram 19-8. SVC Interruption Handler (IEAVESVC) (Part 10 of 10)

Extended Description

Type 6 SVC Processing

15 The Type 6 SVC processor saves the registers
stored in LCCA in the TCB and then sets up input

registers for the Type 6 SVC routine.

Type 6 Exit Processing

16 When a Type 6 SVC exists, there are three options:

a. RETURN=CALLER or BR14 results in registers 0,1,
and 15 being saved in the TCB and an exit made to
exit prolog to directly re-dispatch the task.

b. RETURN=DISPATCH results in a direct entry into
the dispatcher.

c. RETURN=SRB results in a check of the SRB being
scheduled for this address space. If there is no SRB, an
ABEND is issued. If there is a SRB, the SVC IH saves
the task status (floating point registers and timing
datal, calls the dispatcher job step timing routine
(DSJSTCSRI, decrements the ASCBTCBS count, sets
PSATOLD to zero to take the task out of task mode,
and calls the global SRB dispatcher routine to
directly dispatch the specified SRB.

Module Label

TYPE6SVC

IEAVET6E

~
N o
W
00
o
-...I

~

~
o
(I}

'< (I}
N
(I}

'<
~

~

~
(5.

t:
~
~
'<

~
8"
:I
(II

~

'< (I}
N
<:>
W
00
o
,:;!

Diagram 19-9. I/O Interruption Handler (IEAVEIO) (part 1 of 4)

t

PSA

PSAIO

FLCIOPSW

I
PSALCCAV

I PSATOLD

~ LCCA

LCCASRBM

~TCB

,;,

From 1/0 New PSW
after Hardwa re stores
1/00ldPSW ...

;
;

;

;

;;;,;,,;&~

IEAOIOOO
...
} 1 Determine whether this is an

--y 1/0 recursion.
1/0 processing
occurring

...

[~,~ v 2 Indicate an lOS interruption, save
registers, PSW, and establish recovery.

f!

3 If the interrupted program was a
task, store the TOD clock value.

~::~
t;;
f£,

4 Go to 1/0 Supervisor.

I;
I~ To DISMISS Entry
I:;; Point in IEAVEIO be,

o

PSA

PSACSTK
...

PSAID
~~, v

...

it
PSAAOLD

r
Go to Step 4

PSATOLD

~~;
~i ... LCCA

~
N
<:>
w
00

LCCAGPGR

II f;~ :
LCCAIOPS

S

f;~~ :
:¥

II
LCCAITOD.

;;:: v ft; ,~:

~:;

ii

~

!;
... ,~
,. 1/0 Supervisor ~

~

""
IECINT entry

til
(II

~
5'
=
~

is::

[
o
o

"1:1
~ a
5'
=
~

..D
<.1\.

Diagram 19-9. I/O Interruption Handler (lEA VEIO) (part 2 of 4)

Extended Description

The I/O interruption handler (lH) saves the requester's
status prior to giving the I/O supervisor (lOS) control.
Furthermore, the I/O IH routes recursive I/O interruptions
directly to the I/O supervisor .

1 The I/O IH looks at the recursive bit (PSAIO) in the
PSA to check for a recursive entry. lOS immediately

receives control for recursive conditions. (I/O recursions
will occur only if lOS enables for I/O interruptions.) Other
wise, normal processing occurs at step 2.

2 The I/O IH sets the recursion hit in the PSA,
PSAIO, to indicate that it is currently processing

an I/O request. It then saves the registers and PSW, and
sets the FRR stack pointer to the I/O stack.

3 If the interrupted process was a task, the I/O
interrupt handler stores the TOO clock value

for job step timing.

4 lOS receives contr()1 to process the I/O request.
lOS reenters the I/O IH at the entry point

DISMISS.

Module

IEAVEIO

LabeJ

~
N
(:,
~

00
~

~ Diagram 19-9. I/O Interruption Handler (IEAVEIO) (part 3 of 4)

'" 0\

o
til

"< til
N
til
'<
!4

3
f rj"
t:::
t:r

~
'<

~
2'
3
~

~

'<
til
N o
W
00
o
~

Input

LCCA

LCCASRBM

LCCAGPGR

LCCAIOPS

From
step 4

Process

DISMISS

'" .---_--.....,..-,) 5 If interrupted program was an
SRB or a preemptable task
whose time interval has not yet
expired, reload registers and
PSW to return control.

... _ _ v 6 Move status to correct save area.

• Unlocked task- the interrupted
task's status is saved in the TCB
and RB .

To Interrupted
Program

• Locked task - the interrupted I
task's status is saved in the IHSA. ___ L-_________ -'

7 If the interrupted process was the
wait task, accumulate the wait
time.

10..
IEAQWAIT

" Accumulate
Step 7 H I CPU wait time

8 Go to Dispatcher.

IEAVEDSO
Dispatcher routes
control to the
next ready
program

Output

PSW

t\.

--v

I DReg,

15

PSA

PSAAOLD t-----.... AseB 1 --,\....--------.1
ASCBASXB

I

ASXB

~IHSA
I ASXBIHSA

11HSAGPRG

IHSACPSW

~RB
: RBOPSW I

<::
til
N o
W
00
~

{J'l
(p

a
~.

= N

a::
(p s-
o
Po

e.
o
'0

~
5'
=
.p.
\0
~

Diagram 19-9. I/O Interruption Handler (IEAVEIO) (Part 2 of 4)

Extended Description

The I/O interruption handler (IH) saves the requester's
status prior to giving the I/O supervisor (lOS) control.
Furthermore, the I/O IH routes recursive I/O interruptions
directly to the I/O supervisor.

1 The 1/0 IH looks at the recursive bit (PSAIO) in the
PSA to check for a recursive entry. lOS immediately

receives control for recursive conditions. (I/O recursions
will occur only if lOS enables for I/O interruptions.) Other
wise, normal processing occurs at step 2.

2 The I/O IH stores the TOO clock value for CPU wait
time calculations. The I/O IH sets the recursion bit in

the PSA, PSAIO, to indicate that it is currently processing
an I/O request. It then saves the registers and PSW, and sets
the FRR stack pointer to the I/O stack.

3 The I/O IH handles the processing for SRSs, locked
TCSs, and unlocked TCSs. The processing differs, as

follows:

• SRSs - The requester's status is saved in the LCCA.

• Locked TCSs - The I/O IH saves the requester's status in
the IHSA.

• UnlockAd TCSs - The requester's status is saved in TCS
and RS.

4 lOS receives control to process the I/O request. lOS
reenters the I/O IH at the entry point DISMISS.

Module

IEAVEIO

Label

~ I Diagram 19·9. I/O Interruption Handler (lEA VEIO) (part 3 of 4)

'"

~
N

i
i
f
~ a-
S c
•
~
N
b
IN
00
S -

Input

LCCA

LCCASRBM

LCCAGPGR

LCCAIOPS

Process

DISMISS

5 Determine the type of prog;r8m
returning from I/O supervisor.

• SRB - Step 6 •

• Tea.

Step 7 • Ct'U wait time I

6 Reload reg,isters and PSW to
give SRBs control.

7 Go to Dispatcher.

8 Clear the I/O indicator and
restore the FRR stack pointer
to point to the normal FRR stack.

To Interrupted
Program

IEAODS
Dispatcher routes
control to the
next ready
program

Output

PSW

IO
PSA Normal

I::~:K VI
Completion Codes

X'2FC'

k

~
N
b
IN
00
S

en
(D
(')

g.
:=
~

:::
(D

g
c::;l.

o
o

"1::1

5 g.
:=

~

~

Diagram 19-9. I/O Interruption Handler (lEA VEIO) (Part 4 of 4)

Extended Description

5 SRBs do not have CPU wait time calculations done.
SRBs have their status restored by loading the PSW and

registers. The I/O IH resets the PSAIO bit, and restores the
FRR stack pOinter as it was before the I/O interruption
occurred.

If a task has not executed for a specific interval, the interrupt
processing time is deducted from this execution time.
Control is returned to the interrupted routine after its status
is restored.

6 Status is stored in a different area depending on the
interrupted process.

7 The wait task has CPU wait time calculations done by
the I EAQWAIT routine.

8 The I/O IH routes control to the dispatcher. The
I/O I H saves the registers and PSW and resets the

PSAIO bit.

Module Label

< en
N o
W
00
~

.~ Diagram 19-10. External First Level Interruption Handler (lEAVE EXT) (part lof6)
00

o
CI.l

"<
CI.l
I>.J

CI.l
'<
(Il

~
£ r;.

C
r::r
~
'<
<:
.0
E"
3
(p

~

'<
CI.l
I>.J

<0
c...I

00

~

l[D
LCCA

From .External New PSW
afterH ardware stores
Externa 10 Id PSW

~--- r-----

PSA

B--- 1-----

Routine Code

Timer - - - - - - - - X'10'

Comm Task - - - - - , X'0040'
External Call - - - - - X'1202'

Emergency Signal - - - X'1201 '

Malfunction Alert - - - X'1200'

p

IEAQXOO

'" 1 Save caller's registers. -
--v

....
....

OR

..0lIl

....
r- - 2 Check for recursions.

• No Recursions (Steps 3-7)

• 1 Recursion (Steps 8-10)

• 2 Recursions (Steps 11 -12)

3 Store status after the interruption, -
move regs, set external interruption
indicator, set a recursion indicator,
and establish recovery. Store TOO
if in TCB mode.

- - 4 Determine the type of the external
interruption and give control to the
appropriate second level interruption
handler (SLlH)

• Timer (IEAOTIOO).

• Communications Task (IEEBC1PE).

• External Call (lEAVEXSI.

• Emergency Signal (lEAVEES).

• Malfunction Alert (lGFPXMFA).

if - ~

Output

LCCA

~ LCCAXGR1
v ...

GTF C LCCAITOD ,..

S
LCCAXGR2

.. Trace
LCCAXRC1

,..

PSA

e PSASUP1

PSAEXPS1
·V

PSACSTK

External FRR Stack

... ,.
Appropriate
SLiH

j ~
Step 5 - None
Step 10 - One
Step 12 - Two

c;n
~
(')

g.
::;s
~

~
(D.

[
~
o

'1:1
::!l
~ g.
::;I

f'o
I,Q
...,.;]

Diagram 19-9. I/O Interruption Handler (IEAVEIO) (Part 4 of 4)

Extended Description

5 SRBs do not have CPU wait time calculations done.
The wait task has CPU wait time calculations done by

the I EAQWAIT routine. SRBs and non-preemptable tasks
have their status restored by loading the PSW and registers.

6 The I/O IH resets the PSAIO bit, and restores the
FRR stack pointer as it was before the I/O interrup

tion occurred.

7 The I/O IH routes control to the dispatcher. The
I/O IH restores the registers and PSW and resets the

PSAIO bit.

8 The I/O IH FRR (functional recovery routine) clears
the I/O interruption indicator, and points the FRR

stack pointer in the PSA to the normal FRR stack. It also
terminates the interrupted program, with a completion
code of X'2FC'.

Module Label

<:
c;n
~ o
w
00
o

f"
\0
00

o
C"I'l

"< C"I'l
N
C"I'l
'<
~

3
S

OQ

n'
r"'
0: ;
'<
<:
o = 3
('D ..
'<
C"I'l
N

o
W

00

~

Diagram 19-10. External First Level Interruption Handler (IEAVEEXT) (part 1 of 6)

t

From External New PSW
after Hardware stores
External Old PSW p Out t

o Regs ; ~ IEAQXOO "1 LCCA

lD r?}:" ,,~ 1 Save caller's registers. LCCAXGR 1
-:] 1:;1' ... y

15 Ii;: GTF ~~.J\. i-L-C-C-A-I-T-O-O---i
):; I:> ,..
;; fi' ... c(LCCAXGR2

C' OR
.. race '," I v ;i~' f't: T .i -) LCCAXRC1

~ LCCA ,t t~; ..'" if

r~); ~CCAIHR1 ___ '~_---J} -2 Check for recursions. "If Ii " j. No Recursions (Steps 3 -7)
I~' ":, • 1 Recursion (Steps 8-10) PSA
~ • 2 Recursions (Steps 11-12) t I ,,~:::::::::=i
I, ,';;,"~ ;;",,~,,;;;;; ; c-" PSASUP1

I 3 Store status after the ;nterrupt;on. "; PSAEXPSl
il move regs, set external interruption rli t} Y t------f

indicator, set a recursion indicator, ';; if rpSACSTK
PSA and establish recovery. Store TODD:

B
if in TCB mode. I External FRR Stack

FLCEICOD - -...., - - - - - - 4 Determine the type of the external
interruption and give control to the

. ,; appropriate second level interruption
Routine Code handler (SLlH)
Timer - - - - - - - - X'10'
Comm Task -- - - - X'OO4Q' • Timer (lEAOTIOOI.
External Call - - - - - X'1202'
Emergency Signal- - - X'1201' • Communications Task (tEEBC1PEI. [;

Malfunction Alert - - - X'1200' W-----I
• External Call (lEAVEXS). ,. t-------I

: .
Vi • Emergency Signal (I EAVEES). ~rr~oPriate

• Malfunct;on Alert (lGFPXMFAI. J~

Step 5 - None
r Step 10 - One

_"-- Step 12 - Two

Diagram 19-10. External First Level Interruption Handler (IEAVEEXT) (part 2 of 6)

Extended Description

The external first level interruption handler (F II H) routes
control to the appropriate second level interruption handler
routine after an external interruption. The external FliH
saves the status of the program operating at the time of the
interruption. The external FLiH can handle recursions, when
external interruptions - either EMS or MFA - occur in an
external second level interruption handler. Two levels of
recursions can be processed by the external F LI H.

1 The external FliH initially saves the status of the pro
gram currently operating in a temporary location in

the LCCA. The status will be moved later. The external
FLiH then tracks the interruption with GTF or trace.

2 The external F LI H can process two levels of recursions.
Steps 3 - 7 show processing for no recursions; steps

8 - 10 show processing for one recursion; and steps 11 - 12
show processing for two recursions. Note that all levels of
recursions use the function in step 4.

3 The external FlIH:

• Saves the TOO (time-of-day) value in the LCCAITOD
field if in TCB mode.

• Stores the PSW in the PSAEXPS1 field.

• Moves the register from the LCCAXGR1 field to the
LCCAXGR2 field (to prevent overlaying the LCCAXGRl
field in the event of a recursion).

• Sets the external interruption bit, LCCAXRC1, in field
LCCAIHR1, to indicate one level of recursion.

~ • Sets the recovery indicator in field PSASUP1.
~ S" • Sets the current FRR stack pointer to the external
:= FliH FRR stack.
N

ac

i
~
o

I
~.

:=

to
\C)
\C)

Module Label

IEAVEEXT IEAQEXOO

Extended Description

4 The external FliH determines which one of the five
types of external interruption occurred. These inter

ruptions, and how they occur, follow:

• Timer. Occurs when a selected timer interval expires.

• Comm Task. Occurs when the operator presses the
external interruption key on the operator's console.

• External call. Occurs after a user issues a SIGP (signal
processor) via an RPSGN L request.

• Emergency signal. Occurs after a user issues a SIGP.

• Malfunction alert. Occurs if another CPU fails.

The external F LI H routes control to the appropriate
second level interruption handler (SlIHL Control returns
to the external FliH from the SLlHs at:

• For no recursions - entry point EXRTNl (step 5).

• For one recursion - entry point EXRTN2 (step 10).

• For two recursions - entry point REC2RTN (step 12).

Module Label

PROCESS

~

§
o se
~
N
C"'-)

'<
~

~
r-
~ c:;.
t:
~

~
~
[
(P

.r;..

'< C"'-)
N

~

~
~

~
tN
~ -

Diagram 19-10. External First Level Interruption Handler (IEAVEEXT) (part 3 of 6)

Input

(

PSA

PSACLHS

PSALCCA

LCCA

LCCASRBM

LCCASPIN

TCB

From
Appropriate
SLiH

"

y
EXRTNl
5 Check the type of routine and save

status in the correct save area.

• SRB or Spin-type routine.

• Locally locked TCB.

• Unlocked TCB.

I,.','.,,' .. '.','::.':". 6 Perform wait time accumu1qting
g:g for wait TCB.
h c

%<

f/N

''<,

+1
*,~

7 Clear exterQal interruption
indicator, recursion indicator,
and recovery.

8 Set recursion indicator, move
registers, save PSW, and establish
recovery.

9 Determine type of interruption.

··cs

.oIIl

"III

.... Step 7 ,.

--...
"'1 IEAQWAIT 1

~ ill ,.

Timing

To Dispatcher for
TCB, or
i nterru pted
routine for SRBs
and spin-type
locks.

lW ~ Step 4

Output

I P:PITE

" ...

LCCA

"

II"

PSA

IPSASUPl I

LCCA

I LCCAIHRl I

1

PSA

" J PSAEXPS2

-". PSACSTK ..

rI.l
(D

~
~r
= t.J

== (D

[
o
o

"0
~
~ o·
=
~ -o -

Diagram 19-10. External First Level Interruption Handler (lEA VEEXT) (part 4 of 6)

Extended Description

5 After receiving control from the appropriate SLlH, the
external FLiH performs these actions:

• For SRSs or spinning routines, the external FLiH clears
the recovery bit PSAEXT and the externai interruption
indicator LCCAXRC1, and returns to the interrupted pro
gram (via an LPSW instruction).

• For locally locked TCSs, the external FLiH moves the
registers from LCCAXGR2 and the PSW from PSAEXPS1
into the I HSA.

• For unlocked TCSs, the registers are moved into the TCS
and the PSW is moved into the RS.

6 If the interrupted routine was the WAIT TCS, the
external F LI H passes control to the Wait routine

(lEAQWAIT) to perform wait time accumulation.

7 The external FLiH clears the PSAEXT bit and the
LCCAXRCl field for SRSs or spinning routines. Con

trol goes to the dispatcher for TCSs.

8 For one recursion, the external FLiH sets a recursion
indicator (a bit) in LCCAI HR 1. The routine also moves

the registers and PSW to LCCAXGR3, to prevent overlaying
them in case of another recursion. The PSW goes to
PSAEXPS2.

9 The external FLiH determines the type of interruption,
and gives the appropriate SLiH control (step 4). Con

trol returns from the SLiH to EXRTN2 (step 10).

Module Label

~ Diagram 19-10. External First Level Interruption Handler (IEAVEEXT) (part 5 of 6) S .
o
c:n

~
N
c:n
'<
~ a
~
f5'
t""t

~
.5
-<
t
(D

~

~
N

::c
(D

~

5
eN

~

Input

PSA

IFLCEO~I
LCCA

I LCCAXGRll

EXRTN2

10 Clear recursion indicator and
restore recovery.

11 Establish recovery and determine ./\
the type of interruption.

REC2RTN

Return to interrupted program
a nd restore recovery.

Clear the external interruption
indicator, according to the level
of recursion. Clear the signal
service flags,

14 Restore the FRR stack pointer
to point to the normal FRR
stack.

To interrupted
program via
LPSW

To R/TM to terminate the program
that received the external interruption

Output

Completion Code

X'3FC'

til
(D

~ o·
=
~

~
(D

~
~
o
'""' o
i
=~r
=
~ -o
w

Diagram 19-10. External First Level Interruption Handler (IEAVEEXT) (part 6 of 6)

Extended Description

10 The external FLiH clears the recursion indicator,
and returns to the interrupted program, via an LPSW

instruction. Note that the interrupted program will be an
appropriate external SLiH.

11 For second level recursions, the external FLiH deter
mines the type of interruption, and gives control to

the appropriate SLiH (step 4). Control returns at entry point
REC2RTN (step 12).

12 The external FLiH second level recursion FRR
stack has been set at entry to step 11; it is reset at

step 12. The external FLiH returns to the interrupted
program.

Module Label

EXRTN2

REC2RTN

Extended Description

13 The external IH has three FRRs (functional recovery
routines), one for each level of recursion. They all

clear various indicators, restore the FRR stack pointer to
point to the current FRR stack, and terminate the program
that received the interruption.

For no recui"sions, the first FRR clears the external inter
ruption indicator, PSAEXT, clears the recursion indicator,
LCCAXRC1 in the LCCA, and clears any signal service
indicators in the PSA fields PSAIPCES and PSAIPCEC.

Module

IEAVEE1R

For one recursion, the second FRR clears the recursion IEAVEE2R
indicator in the LCCA, LCCAXRC2, and the emergency
signal service routine recursion indicator, PSAIPCE2. Note
that the emergency signal primary indicator, PSAIPCES,
will not be cleared if it is not an emergency signal (EMS)
recursion. The external FLIH restores the FRR stack pointer.

For the second recursion, the last FRR clears the EMS
recursion indicator, PSAIPCE2.

14 All the FRRs point the PSACSTK field to the
normal FRR stack, and terminate the program that

received the external interruptions with a X'3FC' comple
tion code.

IEAVEE3R

IEAVEE1R
IEAVEE2R
IEAVEE3R

Label

t Diagram 19-110 Program Check Interruption Handler (PC IH) (IEAVEPC) (part 1 of 12)

~
F rom Program Check

~ new PSW after hardware stores
"< the program check old PSW
(I)
N

i
t"'"
~
n°
t::
~
~
~
2'
:I
(D

~

'< (I),
N

~

t
~
c.N
~
'-'

10
I

" w ., .
,

"

" v> 1 Save registers, ensure the correct CVT
pointer value, and determine the type
of program check.

• Recursion.

• Address, segment, or translation
exception.

• Other, continue.

2 Move registers and PSW, set program
check indicator in the PSA.

3 Perform necessary tracing.

4 Determine whether the program check
was an MC or PER only.

Yes

No, continue.

5 Determine whether this is a page fault.

• If not, go to step 8.

• Otherwise, continue.

..

I ,~ LCCA
...

tf,'
,;

LCCAPGR1

..
Step 9

p

..
--,r

Step 10

PSA

PSAPI

r---V
LCCA

.. GTF
LCCAPGK2 ,

~

~ ... LCCAPPSW

OR ..
Trace

LCCAPINT

".
~ LCCAPVAD
...

; .

Exit ..
Return to

r interrupted
program

.. .. Step 8

r e'
::I

~

a:::

i
o
""' o
1
=e'
::I

of" -~

Diagram 19-11. Program Check Interruption Handler (PC HI) (lEA VEPC) (part 2 of 12)

Extended Description

Thtt program check IH (interruption handler) receives con
trol from the program check NPSW after a program c eck
occurs, traces the program check via GTF or the trace
facility, and routes control to the appropriate routine. The
program check IH processes page faults by giving control to
real storage management, processes Me (monitor call instruc
tions) and PER (program event recording) interruptions by
noting their occurrence and returning to the interrupted
program, and processes the remaining types of program
checks by routing control to R/TM.

1 The program check IH saves the registers in LCCAPGR1
and ensures that the CVT pointer points to the

CVT. Step 9 shows how the program check IH processes
recursions, and step 10 shows processing for address, seg
ment, and translation exceptions.

2 The program check moves the registers from
LCCAPGR1 to LCCAPGR2, and the PSW from

FLCPOPSW to LCCAPPSW, saves the interruptions code
in LCCAPINT, and the translation address in LCCAPVAD
to prevent losing this information if a recursion occurs. The
recursion indicator in the PSA is also set at this time.

3 The program check I H gives control to GTF or, option
ally, the trace facility, to record the ,occurrence of the

interruption.

4 The program check IH returns control to the inter
rupted program if either an MC or PER interruption

alone occurred. (A PER condition can occur with any other
program check,)

5 The program check IH determines whether a page
fault caused the program check. For page faults, con

trol continues at step 6. If the program check was flot
caused by a page fault, control goes to step 8, to continue
processing.

Module Label

IEAVEPC IEAOPKOO

~

i
o
fI.I

~
N
fI.I
'<
~

~

oi c:;.
~
;:

~
< Q

C a
(II

.a;:.

'<
fI.I
N

f
w
~

Diagram 19-11. Program Check Interruptio-n :IIaBdier ~ilH) (tEA VEPC) (part 3 of 12)

Input

Register 15
J. __ .. Code r-

Process 7
I) Determine whether super SPIE

processing is requested.

• cSuper SPIE.

'. Otherwise, continue.

7 Ha:md'ie 'the :page fault and perform
~ :processjng .(Step 13).

- .-.------Ie-- --T;est retumoode.s from prx

• Betumcode = O.

• Return ,code =4.

• Return'code = 8, <COntinue.

• RettUmcode:> C.

8 ;Process norma! program dlec:iks:

• Move lregtsters and psw.

• Perform anySPtE processing if
necessary.

~

'!II

To caller's
:SPI Er.out ine

'1
,..

xU

it? :Rea:1 Storage
~(

Management -To
PIX procesSing
(IEAVPJX}

~ To D1:S,pat.Cher

~ To lnterrupted
Program

+ ToStep8

+t .ABEND

I t To Step 11

• l:rdicateprogram check and give 1i _I R/TM
control to RITM. £~

Output

TeB

I\.. rL
RS

~

rI'l
~
g.
o·
= ~
~
~ g
t:Io
o
100)

o
'C
~ e. o·
=
~ -o

Diagram 19-11. Program Check Interruption Handler (PC ill) (lEA VEPC) (part 4 of 12)

Extended Description

6 The program check I H will determine whether control
should be routed to the caller's super SPJE routine.

If the caHer's super SPIE routine should receive control the
program check IH:

• Sets up the PIE and P1CA.

• Sets ,up the TeB and AB to enter the SPIE exit.

• Route control to the caller's super SP J E routine via an
LPSW instruction.

If thecaHer does not have a super SPI Erout1oe, pr.ocessing
continues at ,step 7.

7 Cantrolgoes to the P I X r,outine, part of Real Storage
Management" to perform the actual paging. PIXi:nter

acts with the program dhec'k IH's suspend routine
(I EA VSUSP) to logically suspend the program that received
the page fault if this is a valid page fault and paging I/O .is
required.

PIX ,passes one of four return codes to the programchec'k
IH in register 15. These codes and the actions taken by the
program check IHfollow:

o - The program was suspended. Control goes to the drs
patcher, to dispatch the next ready unit of work.

4 - Either the real storage frame containing the page 'Was
reclaimed ora valid ,page has been referenced ior the
first time - no paging I/O was necessary. Control goes
back to :the program that received the page fault.

8 - The page was not valid. This will be treated:asan
X'OC4'abend. Control goes to the next series of ,opera
tionsin the program check IH.

C or greater - An internal error occurred in PIX. The task
will be abnormally terminated with a X'028'
code.

8 The,program check IH performs processing fOLnan
DATtype program checks:

• For'unlocked TCBs, it stores the status of the interrupted
program in the TCB and RB.

• Any SPI E processing will be performed (step lH, if
requested by the caller.

• For all other cases, control goes to R/TM.

Module Label

t Diagram 19-11. Program Check Interruption Handler (pC IH) (IEAVEPC) (part 5 of 12)

i

~
~

Ul
'<
r¢

~
S"
~.
t:

f
~ ;-
(D

01:>0

~
N
:;0
(D

i
fe
CN
~ -

Input

LCCA

!LCCAPDATI

:

,

Process ,

....
01'> 9 Process recursion

1st recursion for segment, address, or
translation exception.

• Set control register 1 to address
of master segment table.

• Indicate first recursion.
m

• Terminate the current address
space.

2nd recursion for segment, address~ or
translation exception.

• Terminate the system.

PIE recursions

• Process the original page fault.

Other recursions

• Give control to R1TM.

"

,It
........; L...,;,;.-

Output

CRt J @Mastersegment
... table l
y

LCCA
,,"'

y LCCAPDAT ..
r'

R1TM

... MCH
r System

Termination

I Routine

...
Step 7

r
"

"

; Register 1
... ~ 1 X'FFFFFFFF' ... r ..

r RtrM

,-

c;n
~ a o·
=
~

a:
,~

g-
o.
o
~
~ a o·
=
~ -o
IC

Diagram 19-11. Program 'Check Interruption .Handler (PC HI) (lEA VEPC) (part 60f 12)

Extended :D.escription

9 Recursions in the.program check IH for address, seg-
ment, and translation exceptions imply that the inter

ruptionhandlermay be unable to access critical data. There
:fore, the first recursion will terminate the address space

while the second recursion will terminate the system.

APIErecursionmeans that a page fault has occurred while
trying to perform super SPI E processing. The program check
IH discontinues super SPIEprocessing,and process the
original page 'fault.

R/TM handles other program check recur.sions.

Module Label

t Diagram 19-11. Program Check Interruption Handler (PC nI) (lEA VEPC) (part 7 of 12) -o

o
fI}

~
N
fI}

'<
~

9
£
n'
~
~
<: o a
S
~

.a:.

'<
fI}
N

::c
~

i
~
~

~

TCB

Process

10 Process segment, address, or translation
exceptions.

Segment exception
• Set recursion indicator.
• Perform normal program

check processing.

Address exception
• Set recursion indicator.

• Give R /TM control.

Translation exception
• Validate control register 0 if it is not

valid.

Output

LCCA

." ••• Step2

• Set recursion indicator if CR 0 is valid. '14 liM '\j, -~ •.

• Give R /TM control.

11 Perform SPIE processing

• Schedule SRB to enter at entry
point IEAVPSRB.

• Give Dispatcher control.

12 Determine the validity
of the PIE/PICA.

• Not Valid.

Step 12

• Valid, set up for entry to user's SPIE
routine and return to interrupted program.

Diagram 19-11. Pro~m Check Interruption Handler (PC IH) (lEA VEPC) (part 8 of 12)

Extended Description

10 The program check IH handles segment, address, or
translation exceptions in the following manner:

• Segment exception. First, it sets the recursion indicator
(to indicate any recursion conditions) in the LCCA. It
then performs normal program check handling at step 2.

• Address exception. Like segment exceptions, the program
check IH sets a recursion indicator in the LCCA. Then, it
sets a X'FFFFFFFF' value in register 1, to indicate to
R/TM that the interrupted program's status remains in the
LCCA. Control then goes to R/TM.

• Tanslation exception. It validates control register 0
with the default values if necessary. Then it sets
the recursion indicator, and gives control to R/TM
with a x'FFFFFFFF' value in register 1.

11 The program check IH readies the caller's SPIE
routine, as follows. First, it schedules an SRB. The

SRB will enter the program check IH SPIE subroutine at
entry point IEAVPSRB. (The task is set non-dispatchable
until the SRB rout/ine completes.) After scheduling the SRB,
control goes tothe dispatcher to dispatch the SRB at a later
time.

12 The SRB enters at entry point IEAVPSRB. Here, the
program checks the validity of the PIE/PICA. Control

goes to R/TM to terminate the task if the PIE/PICA is not
valid. If the PIE/PICA is valid, the program check IH sets
the proper values in the TCB, RB, PIE, and PICA to give

~ control to the user's SPIE routine. Control then goes to the
g. disp~tcher, which dispatches the task to the caller's SPI E
:= routine.
~

~
(D

[
o
o
"0
~ a
5·
:=

i"" --

Module Label

IEAVPSRB

t 'Diagram 19~:ll.Program Check Interruption Handler(pCm) (IEAVEPC) (part 9 of 12) -N

o
.re -<
'fI.)
'N
'fI.)
'< :=.
'.§

i ps.

i
~
~
f
~

~

'< fill
N

~
~

i s
CN
:.., -

Input

LCCA
/'

LCCAPGRS

LCCAPPSW

~,A

liuspena ~MDS ana V
locally locked TCBs. p

... rocess. t
• 0iW

""
II'

13 Perform page fault suspension.

• For unlocked TCB, save
registers, PSW, and translation
exception address; set R B in
a wait state; and decrease

) the count of ready TCBs.

• For.locally locked TCBs,
save registers, PSW, and
translation exception address;
and suspend via the common
suspend routine.

(For local lock TCB and
SRBs)

• For SRBs, a(XIuire SSRBs;
save registers, PSW, and
translation exception
address; and suspend via the
common suspend routine.

OR

Output
, .

TCB ASCB

IASCBTCBsl TCBRB

I TCBGRS

RB ...
)

I
v RBOPSW

RBWCF

"
IHSA

II' IHSAGPRS

IHSACPSW

Common Sus-
~ ... pend R outi ne

r

~ IEAVSPCR SSRB
...-

I~RBGPRsl .. I)
II'

....
GETMAIN

r

....

..
GETCELL -,.

~

...

To Real Storage
Management
UEAVPIX)

tI.l
(D

~
5·
:s
~

ac
(D

g-
Q.
o
"'" o
'C
Q
a e·
:s

-t-....
w

Diagram 19-11. Program Check Interruption Handler (PC IH) (lEA YEPC) (part 10 of 12)

Extended Description

13 The program check IH suspends routines with a page
fault in the following manner:

• For unlocked TCBs, suspend processing saves the registers
.... and PSW in the TCB and RB, and saves the translation

exception address in the RB. Suspend processing sets the
RB in the wait state by adding a 1 in the RBWCF field.
Finally, suspend processing decreases the count of ready
tasks in the ASCBTCBS field of the ASCB by 1 .

• For locally locked TCBs, suspend processing saves the
registers, PSW, and translation exception address. Then,
suspend processing gives control to the common suspend
routine to complete suspension .

• For SRBs, suspend processing first obtains an SSRB.
Either GETMAIN or GETCELL will be used to acquire
the storage for the SSRB, depending on various condi
tions. Suspend processing saves the registers, PSW, and
translation exception address. The common suspend
routine finishes suspend processing.

Module Label

IEAVSUSP

~ --•
o
!e
~
to.»
f'-I
'<
=-9
~ n·

j
~
f
CD

•
'<
f'-I
to.»

i
I
w
~

Diagram 19-11. Program Check Interruption Handler (pC ill) (IEAVEPC) (part 11 of 12)

From RrrM to
recovery SPI E
routine processing

From
RrrM

14 Route control to the task with
the SPIE routine to continue
with termination.

15 Clear the program check
interruption indicator and point
the FRR pointer to the current
FRR stack.

To R/TM to
abnormally terminate
the active program

Output

Completion Code

PSA
Current
FRR Stack

Completion Code

X'4FC'

rn
~ a o·
:=
!':J
~
~

[
o
o

"0
~
~ o·
:=

of" --<.11

Diagram 19-11. Program Check Interruption Handler (PC IH) (lEA VEPC) (put 12 of 12)

Extended Description

14 The program check I H will recover errors that occur
during the SRB portion of SPIE processing. Control

goes to the task with the SP I E routine to continue with
termination. The recovery routine passes an X'6FC' com
pletion code.

15 The program check IH FRR (lEAVEPCR) clears the
program check interruption indicator and points the

FRR stack pointer, PSACSTK, to the current FRR stack.
The FRR abnormally terminates the active program with a
completion code of X'4FC'.

The program check IH RMTR frees the SSRB.

Module Label

IEAVEPCR IEAVEPCR

IEAVEFRE

f" -.... 0'1

i
~
N
C'I.l
'<
=-a
i r;.
t""t
&

~
i a
(D

•
'< C'I.l
N

~
i
;
!oN

~

Diagram 19-12. Restart Interruption Handler. (lEA VERES) (part 1 of 4)

From Restart New PSW
after Hardware stores
Restart Ole! PSW

Input

/
/

PSA

PSARECUR

PSADSSGO

CVT

CVTDSSAC

CVTRSTWD

/ \
/ CVTRSTWD \

I CP~ 10 I C1e I
o 1 2 3 (Bytes)

Code
C'Of'
C'RF'

Meaning

DSS Processing

R/TM Processing

"4

...
II"

-

-

,':i ~ "
w

IEAVRSTR

~~ 1 Check for a recursion.

• Recursion.

2 Store registers.

3 Check for one of three conditions:

i-- • DSS Active (To Step 4).

..... - • DSS Initialization (To Step 5).

!-- - • RtrM Processing (To Steps 6 - 7.).

DSS Active

~-. 4 Get the restart resource.

• Restart Resource
Available.

• DFor RF code. .~
• Not OF or RF code.

- '--

...
To program ,
processing when LCCA
jiestart occurred

..
LCCARSGR

(y i
j

f

CVT
-.-

~
,

...
CVTRSTW6

/I ..
~

DSS (Dynamic
,

Support System) !

..
To program processing r when Restart occurred

~ g.
= !'t
a:::

[
o
""».

o
1 a eo
=
~

Diagram 19-12. Restart Interruption Handler (IEAVERES) (part 2 of 4)

Extended Description

The restart interruption handler (lH) routes control to
RecoveryfTermination or to DSS (Dynamic Support
System) after the operator hits the restart key on the
console or a routine issues a Restart SIGP instruction.

1 The restart I H ignores recursive entries by giving con
trol back to the program executing when the restart

interruption occurred. Otherwise, normal processing
continues.

2 The restart I H saves current status in the LCCA.

3 The restart IH handles any of three separate condi
tions; DSS active; OSS initialization; or R/TM

processing.

4 The restart IH will try to obtain the restart lock after
determining that oSS is active by placing the CPUlo

and OF code into the lockword. If the lockword equals 0
or if the lockword already contains either the OSS .code
(OF) or R/TM code (RF), control goes to oSS at entry
point 100RIHOO. The OSS routine may return control to
the restart IH at step 6 if it determines that R/TM should
receive control. The restart IH will return control to the
interrupted program if the restart lock could not be
obtained.

Module Label

IEAVRSTR IEAVRSTR

t Diagram 19-12. Restart Interruption Handler (IEAVERES) (part 3 of 4) -00

~
~
~

~
'<
=-9
i
n'
r-'
~
~
~
~
(I)

"" '<
~
~

~

i
~
w
~

®-,
I
I
I
I
I r
I
I
I
~

Process

DSS Initialization
- 5 Get the restart resource code.

• Restart Resource Available.

• Not Available.

R/TM Processing

- 6 Get the restart resource code.

• Restart R.esource AvailabJe.

• Not Available, continue.

-- 1 Determine who owns the resource.

• RF code.

• Not'RF ccx:le.

8 Clear the restart indicator, zero the
restart resource, and point the
FRR stack pointer to the normal
FRR stack.

Terminate the program that
was current when the restart
interruption occurred.

I I To Step 6

] I To program
processing
when
Restart
occurred

To R/TM to
terminate the
current program

o
CVTRSTWD

--~-U 10 I OF I

CVTRSTWD

- -.J CPU 10 I RF I

PSA

PSARECUR

PSACSTK

Completion Code

Normal
FRR Stack

t:I.l
~

$l. o·
= ~
:::
~ g
Q.

o -.
o
l
~ o·
=
t -1.0

Diagram 19-12. Restart Interruption Handler (IEAVERES) (part 4 of 4)

Extended Description

5 If the o~erator (by setting manually the bit
PSADSSGO) has requested that DSS be initialized,

then the restart I H tries to obtain the restart lock, using the
DF code. The restart IH passes control to DSS only if the
lock initially equals O. When the lock cannot be used, pro
ceed at step 6.

6 R/TM uses the restart interruption as a method of
breaking program loops. The restart I H passes control

to R/TM if the restart lock (CVTRSTWDrequals 0 or is
already owned by R/TM.

7 Control goes to R/TM if the resource code indicates
current R/TM processing. Otherwise, control goes to

the program executing at the time the restart interruption
occurred.

Module label

8 The restart FRR (functional recovery routine) clears IEAVERER IEAVERER
the restart interruption indicator in PSARECUR, zeros

the restart resource in the CVTRSTWD field of the CVT,
and points the FRR pointer, PSACSTK, to the normal
FRR stack. It then terminates the program executing when
the interruption occurred with a X'5FC' completion code.

f' ..
~

~
~
w
CIl
'<
~

~

oi
n°
~
~

f
•
~
w

f
w
~

Diagram 19-13. Signal Seryice Routines -IPC (IEAVERI) (part 1 of 6)

Reg'1

From supervisor
routines to signal
a CPU via
RISGNL macro

IEAVERI

@ of Receiving CPU's PCCA ~ 1 Determine the validity of the
PCCA addresso

CSD

ICSDCPUAL I

Reg 0

[RI function code

Reg 15

@ IPC direct service
routil'le

Reg 12

Receiving routi nes entry
point

Reg 11

[- Parameter address

2 Determine whether the CPU
receiving the request
is still active. Not Active

3 Set value in sending CPU's PCCA.

4 set parameters for the direct
signal service routine'to
perform the SIGP request.

---It .• Jilt •• 5 Check return codes.

• If signal is successful, then
spin until the receiving CPU
clears the PCCA EMS I.

6 Set return code.

Not a valid
PCCA address

Output

ABEND Code

Reg 15

X'07B'-1

Code = X'04'

PCCA

PCCAEMSI

PCCAEMSE ---,---
, PCCAEMSP

d iA0' SIGP function code (EMS)

I • To Step 12

Input
for
Step 12

Supervisor
routines

Reg 1

Reg 15

Code -I
X'OO' - Successful
X'04' - CPU not online
X'OS' ~ Unsuccessful
X'12' - CPU not operational
X'16' - UniJ)rocessor system
X'20' - CPU taken offline

~
(0

ta.
5'
=
~

a::
(0

~
c.
o
o

"0
Q
~
5'
=
~ -N -

Diagram 19-13. Signal Service Routines - IPC (IEAVERI) (part 2of6)

Extended Description

Signal service routines causes communication
between the CPUs in a multiprocessor system. The signal
service routines, combined with the emergency signal second
level interruption handler (SLlH) and the external call
SLlH, produce the new IPC (jnterprocessor communication)
feature. The signal service routines provide the signal-issuing
capability, while the two SLlHs provide the signal receiving
and routing capability. The signal service routines consist
of three functionally related modules:

• IEAVERI - which performs the remote immediate signal
(using emergency signal)

• IEAVERP - which performs the remote pendable signal
(using external call)

• IEAVEDR - which performs the direct signal, and issues
the SIGP (signal processor) instruction for
IEAVERI and IEAVERP.

The SIGP instruction, issued by the direct signal routine,
contains 12 functions:

• Start
• Stop

• Sense
• Program reset
• Initial program reset
• Stop and store status
• Initial microprogram load
• Initial CPU reset
.CPU Reset

• Restart
• Emergency signal
• External call

The publication OS/VS2 System Programming Library:
Supervisor, GC28.Q628, explains RtSGNL, RPSGNL,
and DSGNL instructions in detail. The publication
IBM System/370: Principles of Operation, GA22-7000,
expains the hardware signals explained above.

Module Label Extended Description Module

1 The remote immediate signal routine (part of the I EAVER I
remote signal routines) performs the functions

described in steps 1-6. First, it determines the validity of the
PCCA (physical configuration communication area)
address. This routine gives control to ABEND if it finds
the PCCA address invalid. The caller receives a X'07B'
ABEND code. Otherwise, normal processing follows.

2 Control returns to the caller if the receiving CPU is
not online, with a return code of 4 in register 15.

3 Next, the remote immediate routine sets the function
code, entry point address, and parameter address in

the PCCAEMSBfield of the sending CPU's PCCA.

4 The remote immediate routine sets the input values
for the direct signal routine, which actually issues the

SIGP instruction.

5 The direct signal routine (steps 12-14) sets a return
code (see step 14) and passes this code back to the

caller. The remote immediate routine checks this code .

For serial or parallel requests, if the signal was successful,
the remote immediate routine spins until the receiving CPU
clears the PCCAEMSI field.

6 The caller receives a return code, indicating the status
of the request, from the remote immediate routine.

Label

IEAVERI

f' Diagram 19-13. Signal Service Routines - IPC (IEAVERP) (part 30f6) -~
~

~
"< CI)
~

CI)

'<
~
§

~
PS"
t'"'

~
~
~
~
(D

~

'< CI)
~

:=
i
~
tN
~
'-'

Input

CSD

D
RegO

[Request code q! ! "'-

Reg 1

[@PCCA

IEAVERP

7 Determine the validity of the
PCCA add ress.

8 Determine whether the
CPU receiving the
request is still
active. Not Active

9 Set value in receiving CPU's
PCCA.

Set parameters for the direct
signal service routine to
perform the SIGP for
external call request.

11 Check return codes.

Not a valid
PCCA address

U I To Step 12

Input for
Step 12

Caller

Output

Reg 1

Code = X'07B' ---I

Reg 0

SIGP function code
(external call)

Reg 1

Reg 15

Code -,

X'OO' - Successful
X'04' - CPU not online
X'OS' - Unsuccessful
X'12' - Other CPU not operational
X'16' - Uniprocessor system

C"I'l
n>
(") g.
= N

a::
n>

[
o
o

"0
~ e.
5·
=
~ -N
(,N

Diagram 19-13. Signal Service Routines - IPC (IEAVERP) (part 4 of 6)

Extended Description Module Label

7 The remote pendable signal routine (part of the IEAVERP IEAVERP
, remote signal routines) performs the functions

described in steps 7-11. First, it determines the validity of the

PCCA address. The remote pendable routine gives control
to ABEND if it finds the PCCA address invalid. The caller
receives a X'07B' ABEND code. Otherwise, normal process
ing follows.

8 The remote pendable routine determines whether the
CPU receiving the request is still active, since it could

have stopped processing. Control goes back to the caller,
with a return code of 4 in register 15, if the receiving CPU
is not active. Otherwise, normal processing continues.

9 Next, the remote pendable routine sets the function
code in the PCCARPB field of the receiving CPU's

PCCA.

10 The remote signal routines set the input values for
the direct signal routine, which actually issues the

SIGP instruction for an external call request.

11 The remote signal routine checks the return codes,
and returns to the caller with a code in register 15

indicating status of the request.

t Diagram 19-13. Signal Service Routines -IPC (IEAVEDR) (part 5 of6)
N . .a:.

o
CIl

~
N
CIl
'<
~ c
:1

oi c:;.
t"'I

~
.~
~ = e
c
~

~
N

f
~

~ -

Input

(Input from Steps 4 and 10)

From steps 4, 10,
or system routines
issuing DSGNL
macro instructions Process

IEAVEDR

12 Determine the validity of the
PCCA address.

13 Determine whether this is a multi·
processing configuration.

• No, go to caller wjth
retu rn code = 16.

14 Issue SIGP instruction and check
condition codes.

• Successful.

• Access to CPU blocked.

• Unsuccessful.

• CPU not operational.

~
~
]

Recovery for Remote Immediate

15 Clear buffers and indicators.

Not a valid
PCCA address

caller

To caller
(Step 5 for
IEAVERI;
Step 11 for
IEAVERP)

Output

ABEND code

X'07B'

Reg 15

I Code]

o - Successful
4 - Access blocked
8 - Unsuccessful

12 - CPU inoperational
16 - Uniprocessor

PCCA

D

f(l
~ o·
= !'!
==:
(I)

[
o
o

"C
~.

~
g'
t' -N
VI

Diagram 19-13. Signal Service Routines - IPC (IEAVEDR) (part 6 of 6)

Extended Description

12 The direct signal routine checks the validity of the
PCCA address, and gives control to ABEND for an

invalid address.

13 The direct signal routine checks to see if this is a
multiprocessing configuration. If it is not, control

goes back to the caller, with a return code of 16 in
register 15.

14 The direct signal routine issues the SIGP instruction
dnd receives a condition code. Control then returns

to the caller.

Module

IEAVEDR

15 The signal services FRR (functional recovery routine) IEAVEIPR
handles errors occurring during the R ISGN L sending

processing (module IEAVERI). The signal services FRR
ensures that recovery occurs on the same CPU that the error
occurred. The signal services FRR then clears the EMS
buffer in the PCCA, clears the super bit, PSAIPCRI, and
clears the spin bit, LCCASIGP. Control returns to RITM,
which subsequently gives control to the caller's error
recovery routine.

Label

~ -N
0'\

~
~
N
fI'l
'<
~

~

~
f;'
r-'
6'

~
~
[
(II .,..
'<
fI'l
N

~
i
w
~ -

Diagram 19-14. External Call Second Level Interruption Handler (IEAVEXS) (part 1 of 2)

Input

PSA

From the External
First Level Interruption
Handler (lEAVEEXT)
to process an external
call interrupt

B·--~ l PCCARBP

Obtains the PCCA of the
receiving CPU.

2 Perform the service requested by
the RPSGNL macro.

• For memory Switch.

• For SIO.

• For RQCH ECK.

• For GTF.

• For MODE.

• For MF/1.

• Clear indicator.

3 Return to caller.

Output

PCCA

To External First

I:"Il
~ a
~.

= !'!
a::
~

~
Q.

o
o
"i a. o·
=
~ -~ ~

Diagram 19-14. External Call Second Level Interruption Handler (IEAVEXS) (part 2 of 2)

Extended Description

The external call second level interruption handler (SLlH)
routes control to any of six service routines requested by
the RPSGNL (remote pendable) function. The external call
SLiH can pass control to these routines:

• Memory switch routine.

• Start I/O receiving routine.

~. RQCHECK routine.

• Generalized Trace Facility routine (GTF).

• MODE routine.

• Measurement Facility (MF/1).

Control returns to the external call SLiH from these rou
tines; the external call SLiH returns control to the external
call FLiH.

Module Label Extended Description

1 The external call SLiH locates the PCCA (physical
control communications area) of the CPU executing

by referring to the PSA (prefixed storage area).

2 The PCCA contains an indicator, in the remote pend-
able buffer (PCCARPB), of the service requested in the

RPSGNL function. The external call SLiH checks the
PCCARPB field, sequentially for each possible condition, to
determine which services should receive control. In each
case, the external SLlH:

• Determines the actions requested in the RPSGN L
function.

• Turns the indicator in the PCCARPB off.

• Branches to the appropriate service routine.

• Double-<:hecks the PCCARPB to ensure that no new
requests have occurred during the previous processing.

3 Control returns to the external call F LI H.

Module Label

IEAVEXS IEAVEXS

of" -~
~
~
N
en
«'
=-~.
i
(IS'

t:'!
:it
~
~
= e
~

~

'< rI:l,
N

~

i
~
IN

~

Diagram 19-1S. Emergency Signal Second Level Interruption Handler (IEAVEES) (part 1 of 2)

From External First Level
Interruption Handler (lEAVEEXT)
to process Emergency Signals:

1 Checks whether this is the first
entry into the emergency S LI H.

• First Entry.

• Recursive.

2 Obtai n the address of the
sending CPU's PCCA.

3 Give control to Recovery
Management Support. if
necessary:

• Parallel - clear indicator
and route control.

• Serial request - clear
indicator.

4 Clean up PSA fields.

~

,

~; ..
:/: ."

:;~

!

Processes
the request

Receiving Routine

Performs
requested
service

External First Level Interruption
Handler (I EAV EEXT)

Output

PSA

PCCA

t.:

""

f(J
Q.
e'
:::t
~

ac
~

g
Q.

Q
o
1
~ e'
:::t

to
~

Diagram 19-15. Emergency Signal Second Level Interruption Handler (lEA VEES) (part 2 of 2)

Extended Description

The emergency signal second level interruption handler
(SlIH) receives control from the external FliH and
routes control to a specified receiving routine to' process an
emergency signal (EMS),

The emergency signal SliH handles these types of requests:

• RMS (recovery management support)

• Serial

• Parallel

For RMS requests, the emergency signal SliH branches to
the RMS service routine, For serial requests, the emergency
signal S 1I H turns off an indicator bit after receiving control
back from the specified receiving routine; for parallel
requests, the emergency signal Sli H turns off an indicator
bit before it branches to the specified receiving routine,
Control always returns to the emergency signal SlIH,

Module Label Extended Description

1 The ~mergency signal SLI H checks the PSA SUPER
bit to determine whether this is a recursive entry, and

then indicates the type - either first entry or recursive
entry - in the same PSASUPER field.

2 The emergency signal SLiH indexes into the PCCA
vector table, using the PSASPAD, to obtain the sending

CPU's PCCA.

3 At this point, the emergency signal SliH processes
RMS, serial, or parallel requests. Control goes to RMS,

to process the request using the address in a VCON. To
process serial or parallel requests, the emergency signal
SLI H obtains the entry points for the specified receiving
routine from thePCCAEMSE field of the sending CPU's
PCCA. The emergency signal SLiH clears the PCCAEMSI
indicator to allow the sending CPU to proceed.

4 The emergency signal Sli H cleans up PSA fields, and
returns to the external FliH.

Module Label

1EAVEES

t Diagram 19-16. Stage 1 Exit Effector (IEAVEFOO) (part 1 of 2)
CN o

~
~
~

rt.I

a
~

i
(;.

t""
6'

~

i
(D

~

'<
rt.I
~

~
i
CN

~

From SVC IH to
begin scheduling an
asynchronous
exit routine Output

••••••••••••••• 11 • b iLlifmm. fIM:_:, - iiii
IGC043

IGC043BR

1 Obtain storage for an IRB.
GETMAIN
Routine

I I I RMBRANCH

RegO

[@o~i~r~utin;]

Reg 1

coPtio-;t;iu - T - -r-JI_ - - --

Size workarea)

2 Obtain a work area if requested
with IRB.

3 .Obtain a save area if requested
with IRB.

4 Initialize the IRB.

For branch entries,
to caller via branch

For SVC entries, to
caller via Exit Prologue

Process

Reg 1

Address of the IRB

72 Byte Probler m
. Program Save
Area

1/ I

IRB
I

RBPPSAV
I

> ~---- I

Work
Area

CIl
(1)

S4.
5·
= N

~
(1)

~
o
~

o -.
o
'0
~ a
5·
=
f" -w -

Diagram 19-16. Stage 1 Exit Effector (IEAVEFOO) (part 2 of 2)

Extended Description

The Stage 1 Exit Effector is called by supervisor or data
management routines. Its purpose is to create and initialize,
according to input parameters, an IRB (interruption request
block) to control a user exit routine whose future use is
requested by the caller.

1 The stage 1 exit effector calis GETMAIN to obtain
storage for the IRB from LSQA, subpool 253.

2 The caller may request a work area to be appended to
the IRB. This work area will be released when the IRS

is freed.

3 Stage 1 exit effector obtains storage for the save area
from the problem program's subpool 0, if requested.

4 The information placed in the IRS during initialization
includes the save area address, the entry-point address

of the user exit routine, the size of the RB, the PSW to be
loaded to start execution of the asynchronous exit routine,
and bits indicating whether the IRB should be freed by

EXIT.

Module Label

IEAVEFOO IGC043
IGC043SR

of'"
~
N

~
~
rI:l
'<
~

S
{
t': go
s
f
~

~
N
'!:I!'
~
~
~
~
~ -

Diagram 19-17. Stage 2 Exit Effector (lEA VEEE2) (part 1 of 2)

Input

RegO

From supervisor and
data management routines
to perform the second
step in scheduling an
asynchronous exit routine

[~, O~;SRB@ J.-

Reg 1

I A, ddress of IOE, J I ROE, or 0

IOE: Complemented addres$

ROE: True address, high-order
byte == X'OO'.

0: Register 0 contains an
SRB@

IEAOEFOO

1 Calling routine has built on
IOE, ROE, or SRS. Oueue it
on the appropriate exit q'ueue.

2 Set the Stage 3 switch for the
dispa~cher and the Stage 2
switch for SET LOCK.

Branch to
Caller

Register 1

1%1 m, ~ Address of IOE, SRB or ROE in
OAi I I ti VI&... _tr_u_e _fo_r_m ________ ..1

IOE on ASXBFIOE
ROE on ASXBFROE
SRB on ASXBFSRS
(See Stage 3 Exit Effector for
the queue structure)

en
~

a o·
= N

;s::
~

~
c:;l.

o
o

"'l:I
~
a o·
=
t
eN
eN

Diagram 19-17. Stage 2 Exit Effector (IEAVEEE2) (part 2 of 2)

Extended Description Module Label

1 The exit queue on which the Stage 2 Exit Effector IEAVEEE2 IEAOEFOO
places the input queue element depends on whether

the queue element is an IOE (interruption queue element),
an ROE (request queue element), or an SRB (service request
block).

Type of Type of
Queue Exit
Element Purpose Queue

IOE Supervisor routine wants to ASXBFIOE
schedule an asynchronous ASXBLIOE
exit routine.

ROE Data management routine ASXBFROE
wants to schedule an ASXBLROE
asynchronous routine.

SRB 1/0 supervisor wants to ASXBFSRB
schedule an error recovery ASXBLSRB
procedure (ERP).

2 This indicates to the dispatcher that an asynchronous
event is available for scheduling and causes the dis

patcher to call the Stage 3 Exit Effector.

The SETLOCK service checks the stage 2 switch (ASCBS2S)
when it releases the local lock.

t Diagram 19-18. Stage 3 Exit Effector (lEA VEEEO) (part 1 of 4)
~
~

o
tI)

~
N
tI)

'<
~

3
t""'
ci t;.
t""'

~
.$
<:
o = = ~

~

'< tI)
N

:;::cI
~ ;-
~

~
~

~

Branch from the
dispatcher to complete
scheduling an
asynchronous exit routine

1 Dequeue IQEs, if possible

• IQE dequeued .

2 Dequeue RQEs,if possible

• RQE dequeued.

3 Dequeue SRBs, if possible

• SRB dequeued.

4 Queue the IRB or SIRB to
the TCB and dispatch the
asynchronous exit.

Output

TCB

TCBGRS

___ I ••• Step 4
~ TCBRBP

RB or SIRB

RBFACTV

___ I ••• Step4 RBOPSW

RBGRSAVE

RBIQE

ASCB

__ .. I ... Step4 I ASCBTCBS I

C"'-)
(I)
(') g.
=
N

a::
(I)

S-
o
Q.

o
o
'e
(I)

3. o·
=
of" -tH
tit

Diagram 19-18. Stage 3 Exit Effector (IEAVEEEO) (part 2 of 4)

Extended Description

The stage 3 exit effector is the last routine used to schedule
an asynchronous exit. The stage 3 exit effector dequeues
IOEs (interruption queue elements), ROEs (request queue
elements) or SRBs for asynchronous exit queues pointed
to by the ASCB. The dispatcher enters the stage 3 exit
effector as a subroutine.

1 Supervisor services use IOEs as a general interface for
requesting scheduling of an asynchronous routine.

For each IOE on the asynchronous exit queue, stage 3
exit effector does the following:

• It will first determine if the IOE can be dequeued at this
time. An JOE will not be dequeued if:

A. The IOE has been purged by DUMP (JOEPURGE=11.

B. The IRB (interruption request block) is already being
used (RBFACTV=11.

C. The task that the asynchronous exit is to process is
executing on another CPU.

D. The asynchronous exit is being scheduled to the error
task and an error recovery procedure is in process on
that task.

E. Asynchr.onous exits have been suppressed for the
intended task (TCBFX=11.

F. This is an attention exit being scheduled and either
all asynchronous exits or attention exits are suppressed
(TCBFX=1 or TCBATT=1) for the intended task or
any of the task's descendants in the task tree.

G. The transfer control function is in process for the TCB
that stage 3 is checking (TCBS3A=11. If this flag is
not on, it is turned on by stage 3.

• For all IOEs that can be dequeued, the IOE will be
removed from the queue, and the IRB associated with the
IOE will be enqueued to the specified TCB.

2 Data management uses ROEs as a special interface in
scheduling an asynchronous exit.

For each ROE on the asynchronous exit queue, a series of
tests will be made to determine if it can be dequeued at
this time. It will not be dequeued if:

A. Asynchronous exits are suppressed for the task
(TCBFX=1).

B. The task it is being scheduled to is active on another
CPU.

C. The IRB is already in use (RBFACTV=11.

Module

IEAVEEEO

Label Extended Description

D. The asynchronous exit is being scheduled to the address
space's error task and an error recovery procedure is
already executing on the error task.
For those ROEs that may be dequeued, the ROE will be
removed from the queue, and the specified IRB will be
enqueued to the TCB.

E. The transfer control function is in process for the TCB
that stage 3 is checking (TCBS3A=11. If this flag is not
on, it is turned on by stage 3.

3 SRBs on the queue represent requests by lOS to
schedule non-resident error recovery procedures. There

is a single system IRB per address space, and stage 3 exit
effector will try to schedule this SIRB for only the top SRB
on the queue. The SIRB will not be scheduled if the error
task is already executing on another CPU, or if an error
recovery procedure is in process in that address space. The
transfer control function is in process for the TCB that stage
3 is checking (TCBS3A=11. If this flag is not on, it is turned
on by stage 3. If the ERP can be scheduled at this time, the
top SRB will be enqueued to the task specified as the error
task in that address space.

4 In order to schedule the asynchronous routine, stage 3
exit effector must do the following processing:

A. The IRB must be placed on the RB chain of the specified
task. The IRB becomes the current RB for that task.

B; The saved registers of the previously current routine are
moved from the TCB to the I RB General Register save
area.

C. The IRBis marked active (RBFACTV=1) so that any
other requests for use of the same IRB will be deferred .

Module

D. The address portion of the RBOPSW is set to the address
specified in the RBEP field. This ensures that the dispatcher
gives control to the asynchronous routine at the specified
entry point.

E. The RBIOE is set to point to the queue element that
scheduled the asynchronous routine (JOE, ROE, or SRB)
area so that the asynchronous exit gets control with
specific register contents.

F. If this task has been made ready and it previously was
not, the count of ready TCBs (ASCBTCBS) is incre
mented by one.

G. Registers are initialized in the TCB to set up for entry
to the asynchronous exit.

H. Stage 3/TCTL intersect flag is turned off (TCBS3A=O).

Label

<:
C"'-)
N o
tH
00
9

t Diagram 19 .. 18. Stage 3 Exit Effector (IEAVEEEO) (part 3 of 4)
w
0'\

o
~
r.f.l
N
r.f.l
'<
~
§
t'""

J6
r;'
Co
~

~
~
[
~

~

'< r.f.l
N o
W
00
S -

Input

Reg 1

~SDWA

From dispatcher
recovery (lEAVEDSR) Output

Stage 3 Exit Effector Recovery iMd iM& ./1

5 Verify and correct the
asynchronous exit queues.

• Verify IOE queue.

• Verify ROE queue.

• Verify SR B queue.

Verifies the
queues

PSA

Recorded
Errors

PSAAOLD

ASCB

ASCBAXB

ASXB

ASXBFIOE

ASXBUOE

ASXBFROE

ASXBLRQE

ASX8FSRB

ASXBLSRB

IQE

~
$lo·
=
~

~
(D

[
o
o
1
a o·
= ,. -~

Diagram 19-18. Stage 3 Exit Effector (IEAVEEEO) (part 4 of 4)

Extended Description Module Label

5 The stage 3 exit effector recovery routine verifies and IEAVEEER IEAVEEER
corrects the Exit Effector queues (which consist of an

IOE queue, and ROE queue, and an SRB queue). It uses the
Oueue Verifier (lEAVEOVO) to perform this verification.
It calls the routine three times, once for each queue. After
each call, it will store a word of zeroes into the recording
area to delimit the end of the recorded output. The verifica
tion of each queue element is performed as follows:

• For an IOE, the Address Verification routine ensures that
the IOE address, the TCB address contained in the IOE,
and the IRB address contained in the IOE are all reference
able.

• For an ROE, verification includes ensuring thatthe ROE
storage and the IRB and TCB storage pointed to by
ROERRO and ROETCB are all referenceable.

• For an SRB, verification ensures that the SRB storage is
referenceable.

f" -IN
00

o
t"I'.l

~
N
t"I'.l

'! a
r-
«i
(;"
t""I e:
~
~
=a
~

~

'<
t"I'.l
N

~
~

~
IN

~

Diagram 19-19. SCHEDULE Processing (IEAVESCO) (part 10f6)

Input

CVT

D
, GSMQ

\

~ SRB

SRBPRIOR

,

, SRB

From the Dispatcher (I EAVEDSO)
to Process a
schedule request

IEAVESC1 Global

1 Determine the priority of
the req uest.

2 Queue the SR B from the
GSMQ to the GSPL at the
appropriate priority"

3 Notify waiting CPUs to
process SR B ~

To Dispatcher
OEAVEDSO)

Output

Non-quiesce
able priority

System
priority

SRB

~ a
~r
==
N

~
(D

i
o
""' o

't:I
Q
a
5'
==

t" -W
\Q

Diagram 19-19. SCHEDULE Processing (IEAVESCO) (part 2 of6)

Extended Description

The Schedule service allows the requester to schedule
system services. These system services can be scheduled to
execute in any address space at either global or local prior
ities. System services scheduled at the global priority have
a priority higher than that of the address space; those
scheduled at a local priority have a priority higher than any
task in the address space.

The Schedule routine has two entry points - one for local
priorities, one for global priorities.

1 Schedule determines the address of the specific
priority level. Schedule indexes by the value in

SRBPRIOR into a table which contains the address of the
specific level (Global Priority Index Table).

2 Schedule queues the SRB from the GSMQ (global
service management queue) to the GSP L (global

service priority list! in FIFO order.

3 Schedule tests for CPUs dispatched to the wait task.
Waiting CPUs will be activated to dispatch the SRBs

on the GSPL. This will be tested by checking the count of
CPUs disPatched to tasks, ASCBCPUS, in the wait ASCB.
Schedule signals waiting CPUs (via RPSGNL, using the
external call) forcing an entry to the dispatcher.

Module Label

IEAVESCO IEAVESCl

t Diagram 19-19. SCHEDULE Processing (lEA VESCO) (part 3 of 6)

~

o
~
;;3
N
fIl
'<
~
§
t""
Ji o·
1:
~

~
~
[
(II

~

~
N

~
i
Y6
w
:... -

Input

LSMQ

D
~ SRB

, SRBASCB

ASCB

ASCBSPL

From the

IEAVESC2 Local

4 Queue the SRB to be
processed to the local SPL.

5 Notify the System Resource
Manager that a swapped out
address space has ready
work.

6 Indicate ready work to
Memory Switch.

Output

Reg 0

-....L------"J ASID Code

System Res.
Manager

Memory
Switch

To Dispatcher
(lEAVEDSO)

ASCB

(I)
~ a
5'
=
~

~
~

~
o
~

o
~
Q

=-5'
='

~ -~ -

Diagram 19-19. SCHEDULE Processing (lEA VESCO) (part 4 of 6)

Extended Description

4 Schedule locates the local SPL via ASCBSPL, from
the ASCB indicated in SRBASCB. Schedule locates

the priority level in the SPL by indexing by the value of
SRBPRIOR into the Local Priority Index Table (LPIT)
assembled in the schedule routine. Schedule queues the
SRB to the requested priority level at the end of the
queue.

5 Schedule notifies SRM (system resource managed
of work ready to be dispatched to an address space

already swapped out. This will cause an eventual swap-in
of that address space.

Schedule also notifies the timer supervisor, by turning off
ASCBTMLW, that the address space is no longer in a long
wait.

6 Schedule calls memory switch to determine whether
the ready address space has a higher priority than the

current address space. Schedule will indicate if the SRB has
CPU affinity, if necessary, by sending a complemented
value in register 1.

Module Label

IEAVESC2

t Diagram 19-19. SCHEDULE Processing (lEA VESCO) (part 5 of 6)

~

~
~
~

c:Il

'i
~
r-
ei c:r
raz
!
~
c g
~

~
~

~

i
~
w
~

F rom dispatcher
recovery
(lEAVEDSR) or

Input
~ PURGEDQ

PSA

LCCA

LCCASMQJ

Process

Schedule Recovery
IEAVESaV
IEAVESCR

7 Verify the SRB journal queue.

8 Reschedule SRBs on the journal

Output

queue. : ®.~.~ •. ~!.:,.. SDWA

! 1
I.:'." ~ r

,~§

CVT • 9 Verify the GSPL and th~ LSPL '.TY "1;'&.0 Errors
for every address space In the ., I I $p Recorded
~ '" .. • ~ A "'~'" '" ____ tt system.

ASCB

SRB

To dispatcher recovery (lEAVEDSR)
or PURGEDQ recovery (lEAVEPDR)

~
~ o·
=
~

~
~

[
o
o

'1:;j

~
a o·
=
~ -~ w

Diagram 19-19. SCHEDULE Processing (lEA VESCO) (part 6 of 6)

Extended Description

7 The Schedule FRR verifies the SRS journal queue,
which is anchored out of LCCASMQJ field and

removes SRSs with bad information. The journal queue is
used by Schedule to prevent losing SRSs that are being
processed.

8 Schedule FRR then re-schedules any SRSs remain
ing on the journal queue.

9 The Schedule FRR uses the Queue Verifier to verify
SRS queues - the GSPL, and the LSPL for every

address space in the system. Errors detected are recorded
in the SDWA; elements removed are also noted in the
SDWA.

Module Label

of" -~
~

o en

~
N
en
'<
~

~
r-
ei n·
r-
§=
~
~
c: a
CD
~

'< en
N

::c
<D ;-..,
16
eN
:....
'-'

Diagram 19-20. PURGEDQ Processing (lEA VEPOO) (part 1 of 4)

Input

@ Parm List

@RMTR

SRBASCB

SRBPASID

SABPTCB

SRBRMTR

From the SVC IH to process

PURGEDQ requests Process

1 Check the validity of
the parameter list.

2 A lIow the active SR Bs to
complete processing if
request is for current
address space.

3 Dequeue the SRBs after
search ing the appropriate
queues.

4 Start SRBs.

5 Give control to the correct
Resource Management
Termination Routine for
each SRB being dequeued.

PURGEDO Functional
Recovery Routine

6 Verify and correct the SPl
queues.

Output

Abend Code

I X'17B' ABEND code]

Internal Queue Used by PURGEDQ

InternalVVorkarea

F @SRBs
/

SRB

@RMTR

- ~SRB -

@RMTR

~

til
~
g
o·
= N

a=
~ g
Q.

o
o

"0
~
a o·
=
~ -~

Diagram 19-20. PURGEDQ Processing (lEA VEPDO) (part 2 of 4)

Extended Description

Supervisor services use PURGEDO to cancel SRSs that,
for various reasons, should not be executed. The schedule
routine queues SRSs on a queue; and these SRSs execute
asynchronously to the schedule request. PURGEDO cancels
SRSs, when necessary.

1 PURGEDO terminates callers with invalid parameter
lists.

2 PURGEDO will wait for SRS completion by using
the STATUS STOP SRS function. STATUS STOP

ensures that SRSs dispatched to the address space have
completed.

PURGEDO bypasses the waiting operation if the address
space specified by the 'ASID=' parameter on the
PURGEDO macro is not the current address space.

Module Label

IEAVEPDO IGC123

Extended Description

3 PURGEDO dequeues the SRS by:

a. Locating the Dispatcher queue to be searched. PURGEDQ
will search the following queues:

• Global Service Management Queue (I EA VGSMQ)

• Local Service Management Queue (I EALSMQ)

• Global SPL (IEAGSPL)

• The local SPL for the address space specified in the

'ASID' parameter.

b. Scanning the queues searching for a match on the
specified inputs.

c. Dequeuing those SRSs that match the inputs.

4 PURGEDO starts SRSs via STATUS, if they had pre
viously been stopped (in step 2).

5 PURGEDO routes control sequentially to the RMTR
for each dequeued SRB. When all RMTR routines

have been called, PURGEDQ returns to the caller.

6 PURGEDQ enters its FRR if an error occurred during
the queue scanning or updating portion of the

PURGEDQ mainline. The FRR attempts to verify and cor
rect the SPL queues, since bad data on those queues may
be causing the errors by invoking a secondary entry point
to the SCHEDULE recovery, IEAVESQV, which performs
verification and correction of those queues.

Module Label

IEAVEPDR IEAVEPDF

t Diagram 19-20. PURGEDQ Processing (IEAVEPDO) (part 3 of 4)

~

o
f'-l

~
~

f'-l
'<
~

~

~
(;.

Input Process

7 Indicate the error in the SDWA

t""
0:

~
TRP

~ a
~

~

'< SDWA
f'-l
~

~
~ ;- SDWAPARM
~

~
IN

~

Work area

To Step 6

ESTAE

8 Start any SRBs stop
the error occurred.

.II. ...

;>eel when

9 Record address of SRB if an
'RMTR was in control at time
of error.

10 Attempt to retry the PURGEDQ
request.

Exit
• Retry.

...
....

u

To Step 1 I I

• No retry. Exit

...
--..

...

...

RITM

STATUS

L---..

Give control
to caller's
recovery.

Output

SDWA

r--~--

1 Recording

I
Area
~------

I

tf.l
Q

g.
o·
= ~
s::
Q

g
~

o
o

"C:I
~ a o·
=
~
~

Diagram 19-20. PURGEDQ Processing (IEAVEPDO) (part 4 of 4)

Extended Description

7 Upon receiving control back from that routine, the
FRR issues the SETRP macro to set fields in the

SOWA for recording information and to indicate that the
error should be processed by the PURGEDO ESTAE
routine. It then returns to R/TM, which percolates the error
to the ESTAE.

8 The PURGEDO ESTAE routine receives control if an
error occurred anywhere in the PURGEDO mainline

function. It performs cleanup to ensure correct system
status. It starts SRSs, via STATUS, if they had been stopped
when the error occurred.

9 If an error occurred in an RMTR routine, EST AE
records (in the SDWA) the address of the SRS that

the RMTR was cleaning up.

10 The PURGEDO ESTAE routine determines if the
PURGEOO function should be retried. It sets up for

the retry to the beginning of the PURGEDO mainline if either
this error occurred for the first time during this in-v'ocation
of PURGEDO or if the error occurred during the processing
of an RMTR routine. If neither of these conditions is true,
then the error will be processed by the caller of PURGE DO.

Module Label

IEAVEPDE

t Diagram 19-21. SETLOCK Processing (lEA VELK) (part 1 of 14)
~

~
til
N
til
'<

I
t"'"
ci
pr
c:
~
.$
~
C
:3
~

~

~
N

~

i
~
w
;;

From supervisor routines
to obtain a lock, via

Input SET LOCK macro instructions

PSA

PSACLHS

PSACLHT

PSACPULA

Register 11 r @ of lock, or 0

Register 12

Hierarchy mask of
locks requested

Register 13

Entry point address
for lock request

Register 14

[Caller's return address 1

-I
I
I
I
I
I
1--
I
I
I
I
L_

Obtaining Locks

1 Perform hierarchy violation check
for unconditional requests.

• No violation, continue .

Violation.

2 Determine if the CPU.already owns
the lock.

Owned

3 Try to obtain the lock and indicate
that this CPU owns it, if
obtained.

• If not obtained, continue.

Output

Completion Code

1- X'073' -]

Yes Register 13

Return Code = 4 1
Caller

Register 13

Return Code = 0 - -]

Lockword

CPUID/or ASCB@
To Caller

PSA

PSACLHT

PSACLHS

CIl
(D

s:a. e·
= N

a:
(D

[
o
o

'"C
l.l a.
~5"

=
f" -~

Diagram 19·21. SETLOCK Processing (lEA VELK) (part 2 of 14)

Extended Description

SETLOCK provides the means for a user to obtain "locks"
that serialize the use of a resource. SETLOCK provides
13 locks:

• OISP (for dispatcher lock)

• 10SCAT (for lOS channel availability lock)

• 10SUCB (for lOS unit control block lock)

• 10SLCH (for lOS logical channel queue lock)

• 10SYNCH (for lOS synchronization lock)

• ASM (for auxiliary storage management lock)

• SALLOC (for space allocation lock)

• SRM (for the system resource management lock)

, • CMS (for the cross-memory services lock)

• LOCAL (for local address space lock)

SET LOCK both obtains and releases locks. There are two
distinct methods of obtaining locks; conditional obtain and
unconditional obtain. SETLOCK will immediately return
control to the caller if no lock can be obtained for a condi
tional request; SETLOCK will not return control until the
lock is obtained for an unconditional request.

Module

IEAVELK

Label Extended Description

1 SETLOCK determines whether the caller has violated
the locking hierarchy by:

• Requesting unconditionally a lock lower in the hierarchy
while a higher lock is held.

• Requesting the CMS lock while not holding the local
lock.

• Requesting a class lock when another lock in that class
is already held.

• Requesting a suspend lock while disabled.

SETLOCK abnormally terminates callers who violate the
hierarchy, with a X'073' completion code.

2 First, SETLOCK determines whether this CPU already
owns the requested lock. If this CPU owns it, SETLOCK

returns a code of 4 in registe~ 13, and returns control to the
caller. Otherwise, processing continues.

3 SETLOCK tries to obtain the lock. If the lock is avail-
able (the lockword contains 0), SETLOCK indicates

ownership by placing the logical CPUIO in the lockword,
setting the indicator in the CPU locks held string, PSACLHS,
and for class locks, by storing the address of the lockword

into the CPU locks held table, PSACLHT. SETLOCK will
then return to the caller with a zero return code. If the
lock is not available, proceed to step 4.

Module Label

IEAVELK

;t' Diagram 19-21. SETLOCK Processing (IEAVELK;) (Part 3 of 14)
CIa
c:>

i
~
w
fI)

1
9

i
t""
5'

~
~ ;:
i
~

~
w ,.,
e.
I
w
~

Process

4 Perform the necessary processing if
the CPU cannot obtain the lock,
according to the type of request.

• For conditional requests.

• For unconditional requests of
a suspend-type lock.

• For unconditional requests of a
spin-type lock, issue the Window
Macro instruction, and check for
ACR processing.

• Again try to obtain the lock.

Output

Register 15

Return Code = 8

C"n
('I>

~ o·
=
~

s::
('I>

;.
o
~

o
o

"0
~
~ o·
=
f' -VI

Diagram 19-21. SETLOCK Processing (IEAVELK) (part 4 of 14)

Extended Description

4
• For conditional requests, SETLOCK will indicate a return

code of 8 and return control to the caller.

• For unconditional requests of suspend locks (local or
CMS), proceed to step 5.

• For unconditional requests of spin locks, enable for EMS
(emergency signal) and MFA (malfunction alert) interrup

tions via the WINDOW macro. (This is done to prevent
deadlock in case of failure on the other CPU.) SETLOCK
will then determine if an ACR (alternate CPU recovery)
condition has occurred. If so, it will route control to
R/TM. SETLOCK again attempts to obtain the lock in
step 3.

Module Label

~ ...

;t Diagram 19-21. SETLOCK Processing (IEAVELK) (part 5 of 14)
(It

N

&i
"< fIl
N
rn
~

f
i
i
~
~
[
CD
~

~
N

f
w
~ -

,~

Process Output -------5 Perform suspend prooessing when the
CPU cannot obtain the lock.

• Acquire storage for SSRB. ~ B ,.
...

GETMAIN
r

~ TCB
~ r------------------

... GETCEll
~ ~ TCBGRS

~ ~

For unlocked TCB
• Save register values and PSW in the ~RB

appropriate locations. " ,

RBOPSW

For locked TCB " IHSA

y 1--------------------
IHSAGPRS !

I

I HSACPSW

For SRB SSRB

ill 1--___________ ----__

Tasks requesting the local lock To Dispatcher SSRBGPRS ! . I r (tEAVEDSO) I

• P.laoe the.ASCB or SSRB on the) (See Input ~ SSRBCPSW
lock suspend queue, " for Step 17) ~

'------------------....1

."'--~

f:I.)
(\)
(')

i·
::I

~

~
(\)

[
o
o

"0
~ a e
::I

~ -VI
W

Diagram 19-21. SETLOCK Processing (lEA VELK) (part 6 of 14)

Extended Description

5 For callers in SRB mode, SETLOCK will acquire
storage from SQA for a suspended SRB (SSRB) in

which to save the suspend status. SET LOCK will then set
resume registers and PSW to cause reentry to SETLOCK.
The location of the saved status depends upon the mode of
the caller. SET LOCK places either the ASCB (for tasks
requesting the CMS lock) or the SSRB on the lock's suspend
queue.

For callers in task mode and owning no locks, SETLOCK
will exit to the dispatcher. For callers in SRB mode or
that own the local lock, continue at step 6.

Module Label

t Diagram 19-21. SETLOCK Processing (lEA VELK) (part 7 of 14)
u. •
~
~
N
(I.)

~
~

i n·

~
~
~
E' a
(D

•
~
N

::c
(D'

r
~

~

Input

PSA

FRR Stack
PSATOLD 1 (In PSA)

PSATNEW I ,
PSACLHS I ,

I
PSALCCAV /

LCCA

LCCASRBM

--- - ~-- - - -w --

from the program check
I H suspend routine Process

IEAVSPCR

6 Perform common suspend processing
for SRBs and unlocked TCBs.

• Save floating point registers.

• Save PSATO LD and PSATN EW.

• Save CPU timer value.

• Save FRR stack.

• Decrease count of CPUs.

• Indicate lock held.

• Fill in SSRB fields.

• Clear lock and SRB indicators.

• Perform job step timing.

From SET LOCK

Releasing Spin -type Locks

7 Determine if the CPU still owns the
lock.

• Lock now owned.

• Lock owned, continue .•

Output

LCCA PSA

0 0
IHSA ASCB

0 0
TICB SSRS

0 0
IEAVEDSO

Job Step

Timing

To pr.ogram check
I H suspend routine
when entered from
this .routine~
Other entries
give control to
dispatcher

Lookword
Owned

.1 ·0 0

Not owned/Owned
by another CPU '~g'ister 13

4 -Not owned

To Caller Code 8 - Ow.ned by
another CPU

CI'.l
(D

Sl.
5·
= ~
a;::
(D
S
Q.
o
o

"0
~ a
5·
=
t
CII
CII

Diagram 19-21. SETLOCK Processing (lEA VELK) (part 8 of 14)

Extended Description

6 This is the common suspend routine, entered from
step 5 or from the program check I H suspend routine.

If suspending a locked task:

• save PSATOLD and PSATNEW in IHSAOTCB and
IHSANTCB

• decrease count of CPUs (ASCBCPUS)

• save floating point registers in IHSAFPRS

• save value of CPU timer in I HSACPUT

• save current FRR stack in IHSAFRRS

If suspending an SRB:

• clear SRB mode indicator
• set up SSRB for redispatch
• save floating point registers in SSRBFPRS
• save value of CPU timer in SSRBCPUT
• save current FRR stack in SSRBFRRS

For all suspend processing:

• Perform job step timing via the dispatcher's job step
timing subroutine (DSJSTCR).

• If suspend lock is held, clear the lock held indicator in
PSACLHS.

• If the local lock is held, store the suspend I D
(X'7FFFFFFF') into the lockword to prevent any other
routine from obtaining it.

Return to the program check I H suspend routine for
entries from program check IH. Otherwise, exit to the
dispatcher.

Module Label Extended Description

7 SETLOCK releases locks when the caller issues the
SETLOCK macro using the RELEASE operand. Steps

7-9 describe release of spin locks, while steps 10-14
describe release of suspend locks.

Determine if the lock is held by this CPU.

• If lock is not held by this CPU, then return to the caller
with a return code in register 13. The return code equals
4 if no on& owns the lock and equals 8 if another CPU

owns the lock.

• If the lock is owned, the lock will be released by setting
the lockword to zeros.

Module Label

t Diagram 19-21. SETLOCK Processing (lEA VELK) (part 9 of 14)
VI
O'i

o
CIl

~
N
CIl
'<
~
§
S
~.
Co
~
~.
~
is''
!3
~

~

'< tI.)
N

~.

i'
~
~

~

PSA

ii
PSASUPER

PSACLHS

.~.

~l

:f

t:i
--y

fl

From SETLOCK
macro to release t~

a suspend-type ,;
t~ lock

.. >

,~
~£
~1

f'?
:~~
:~.'

:~,:

'''i
~::

~.~

8 Update the lock indicators.

9 Determine the ret.urn environment.

Release of Suspend -type Lock

10 Test for a hierarchy violation.

• Hierarchy.violation.

11 Determine whether this CPU owns
the lock.

• Not owned.

• Otherwise, continue.

".' ,,, ,~,

I "'

I
PSA

...
PSACLHS

PSACLHT

Register 13
....

I I) Code = 0
If .. v

Return to Caller
--"r • Enabled if no spin,

locks held, no
super. bits on, and
caller has not
requested a
disabled release.

• Disabled when
conditions above
not met.

Completion Code
:~ I I -y i,.'

X '073'
..
"

ABEND

~

... Register 13 + To Caller

--y Code
4 - Not owned by

;, any CPU
8 - Owned by a

'i different CPU

if'

en
(1)

s:;
5'
= N

~
(1)

[
o
o
't:I
~
a
5'
=
~ -VI
-...I

Diagram 19-21. SETLOCK Processing (IEAVELK) (part 10 of 14)

Extended Description

8 Update lock indicators by clearing the bit in the locks
held string and clearing the entry in the locks held

table if this is a class lock.

9 Return to the caller disabled if any spin locks are
held, any super bits are set, or the caller requested

control returned disabled. Otherwise, enable the PSW.
Return to the caller with a zero return code.

10 SET LOCK tests for a hierarchy violation. The only
violation on a release occurs if the caller tries to

release the local lock while holding the CMS lock. If this
occurs, the caller will be abnormally terminated with a

X'073' completion code.

11 If this CPU does not own the lock, return immedi·
ately to the caller.

Module Label

t
(II

00

o
II}

"< II}
N
II}

'<
~
~

3

~ ;:;.
t'"'
0: ...
~

.:!
<:
o
C
3
~

"'"
~
II}
N
o
W
00
o
~

Diagram 19-21. SETLOCK Processing (IEAVELK) (part 11 of 14)

Input

ASCB

ASCBTCBS

ASCBCPUS

ASCBS2S

I
I

--j
I

---1..-_

12

- 13

14

Prepare the suspended routines
to become ready.

• Reschedule suspended SRBs .
(For local lock, reschedule

"'-
only the top SRB, place the
suspend id in the local lock,

...

and mark the SRB as owning
the local lock.!

• Remove suspended ASCBs .

~

"

Determine whether additional work
has become ready in the
address space.

Yes

..If

"

Update the PSACLHS.

Caller

..
y Schedule

to..

y

......
Memory Switch y

......
y

Memory Switch

to..

y

I Interrupt 10

PSA

E:j
Register 13

I Code = 0

I

I

< en
N o
W
00
o
til

f(l
~
(S'

=
~

fie:
(D

;.
8-
o
""")

o
"C
~ a
(s'

=
~ -VI
1.0

Diagram 19-21. SETLOCK Processing (IEAVELK) (Part 12 of 14)

Extended Description

12 If this is a suspend lock, make ready the routines
suspended off the lock.

For local lock - dequeue and schedule the top SRB on
that lock's suspend queue.

For CMS lock - reschedule any suspended SRBs that
are on that locks suspend queue. Reset suspended
tasks by placing the "interrupt I D" into the local lock
word for each address space on the CMS suspend queue.

SETLOCK invokes Memory Switch for each readied
address space.

13 For the local lock release invoke Memory Switch-
for the current address space if there is ready work

to be processed in the address space.

SETLOCK checks for the following conditions:

• ASCBTCBS greater than ASCBCPUS
• ASCBS2S s~t to one.

14 SETLOCK updates the PSACLHS, and returns to
the caller with a 0 in register 13.

Module Label

-<:
{I)
~ o
~

00 g

t Diagram 19-21. SETLOCK Processing (lEA VELK) (part 13 of 14)
0\
Q

o
til

"< fI'.)

'N
til
'<

§
£
(;.

t""

~
~
~
~
(D

~

~
t-.)

<=> w
00
~

Input

ASCB Local Lock Suspend Queue

SSRB ~ SSRB

ASCBLSLQ,
ASCBFSLQ ~

CMS Lock Suspend Queue

CMS ASCB1

CMSASBF V ~
CMSASBL h\ CMSSRBF 0

CMSSRBL 7F-.-- F

~ ~

/ ./

., SSRB 1 ASCB2

V SRBFLNK r\
ASCBCMSF

7F--F

./

\(SSRB \~SCB3
0

ASCBCMSB .-/
7F--F

"
From Process ,
R/TM - 15 Indicate which CPU owns the

lock SETLOCK is waiting
~

for, if necessary.
"'

16 Clean up SETLOCK indicators.

17 Release any locks obtained
by SETLOCK.

".

...

Jo./ 18 Clean up the suspend queues.
r

19 Determine whether to retry the
error or continue with termination.

• Retry - if SETLOCI< was
suspending and suspension
has completed.

• Continue with termination.

Set completion code.

RITM

Output

SETRP Macro ..
r SDWA

D --"

"
PSA

.J\

" -----
SETRP Macro ..

y

SDWA

D J.

y

RtrM

--.
y Completion code

t.. I I X'074'
"

~
~

~ o·
= !':J
a::
~

g
c;::I.

o
o
'0
~ a o·
=
~ -Q\ -

Diagram 19-21. SETLOCK Processing (IEAVELK) (part 14 of 14)

Extended Description

15 The SETLOCK FRR (functional recovery routine)
frees any locks that SETLOCK obtained before the

error occurred, cleans up any indicators set by SETLOCK,
and corrects the suspend queues in use when the error
occurred. The SET LOCK FRR then gives R/TM control
either to continue with termination or, if one of two condi
tions occur, to retry the failing operation. The two retry
condittons follow:

• A restart interruption occurred while one CPU spins on
a lock, or

• An error occurred after lock suspension processing had
completed.

If SETLOCK was spinning on a lock and a restart inter
ruption occurred, it indicates to R/TM which CPU owns
the lock. The SETLOCK FRR uses the SETRP macro

instruction to indicate the CPU and to accumulate record
ing information in the SDWA.

Module Label

IEAVLKRR IEAVELKR

Extended Description

16 The SETLOCK FRR cleans up indicators in the PSA.

17 The SETLOCK FRR requests that R/TM, via the
SETRP macro instruction, release any locks obtained

by SETLOCK during its processing.

18 The SETLOCK FRR removes SSRBs from the CMS
lock suspend queue, SSRBs from the current local

lock suspend queue, and ASCBs from the CMS lock suspend
queue. It resets all routines suspended on the lock, so that
all these routines must re-request the lock .

19 Two conditions result in retry of the failing opera-
tion: a restart interruption occurs whi Ie one CPU

waits for a lock owned by another CPU; or an error occurs
during CMS lock or local lock suspend processing and the
suspend processing has completed. Any other errors result
in control going to R/TM with a X'074' completion code
and an indication to continue with termination.

Module Label

i" -0\
N

~
~
N
C'Il
'<
=-9
oi c:;.
r-

J
<
[
(D

~

'< C'Il
N

i
~
eN

~

Diagram 19-22. Validity Check Processing (ffiAVEV AL) (part 1 of 2)

Input

Branch from Supervisor
routines to
validate addresses

nK ... , ___ __

Ending@ or 0

TCB @ or 0

R~1 SOWA

I @SOWA ~

1 Check whether starting address is on a
full word boundary.

Not on a fullword boundary.

2 Obtain TCB address.

3 Determine the n umber of pages to be
validated, change protection key from
0, and establish recovery.

4 Refer to the specified pages

• Unsuccessful; program check
occurred.

• Successful, no program check,
continue to check the validity
of additional pages, if requested.

5 Set condition code, change protection
key back to 0, and return to caller.

VLCKFRR

6 Check program check code for OC5,
OC4, 000, or 001.

VALRETRY

7 Set condition code, return to caller,
and delete recovery.

To Caller

To RfTM, then
to Step 6

To Caller

To RfTM, then
to Step 7 for
OC5, OC6, 000,
or 001. To
user error
routine if not.

To Caller

Output

P&N

c-~ C~de

CC = 0 - Valid address

CC +0 - Invalid address

t"'-l
(D

a
5'
=
~

:::
(D

[
o
o
"0.

~
a
5·
=
~ -0'1
IN

Diagram 19-22. Validity Check Processing (IEAVEV AL) (part 2 of 2)

Extended Description

The validity check processing determines whether an
address or address range belongs in the key of a specified
program. Supervisor service routines branch into validity
check, giving as input the address (or range) of the area
being checked.

1 Validity check gives control back to the caller for
starting addresses not on a fullword boundary. Validity

check passes a non-zero condition code (in the PSW) to the
caller. Processing continues for address on a fullword bound
ary (at step 2).

2 Validity check obtains the current TCB address from
PSATOLO if the requester did not specify one.

3 Validity check next determines how many pages must

be validated. Then, validity check changes its protec
tion key to match the key specified by the caller's TCBPKF
field. Validity check establishes a recovery routine to inter
cept any program checks.

Module Label

IEAVEVAL IEAOVL01

IEAOVLOO

Extended Description

4 Validity check uses a compare and swap instruction
for validation. The compare and swap (CS) instruction

will do both a fetch and store into the specified address.
If the check is successful, validity check loops to check
the requested address range, if necessary. A program check
error will result if the compare and swap instruction referred
to an invalid address, resulting in the recovery routine gain
ing control via R/TM. R/TM gives control to the recovery
routine at step 6, entry point VLCKFRR.

5 Validity check sets a condition code of 0 indicating a
valid address. The protection key is changed back to

0, and control returns to the caller.

6 R/TM gives control to validity check at entry point
VLCKFRR if a program check occurred. The validity

check recovery routine determines whether an expected
program check occurred - either a OC4, OC5, 000, or 001 .
If one of the four expected errors occurred, control goes to
R/TM to retry at entry point VALRETRY. Otherwise,
control goes to R/TM to give the caller's error routine
control.

7 R/TM reenters validity check at entry point
VALRETRY. Here, validity check sets the condition

code to a non-zero, and returns to the caller.

Module Label

VLCKFRR

VALRETRY

~
""" 0'\
oIlo>

o
1:1)

~
~
1:1)

'i
~

~
n'
t"'"

~
~
~
~
(D

oIlo>

'< 1:1)
~

~
(D

i
~
~

~

Diagram 19-23. ASCBCHAP Processing (lEA VEACO) (part 1 of 4)

Input

I
Reg 0

Code 0, 1, or 2

0- MOVE
1-ADD
2 - DELETE

Reg 1

+ Parm list, or

Branch entry from Memory
Delete, Memory Create, Swap,
or System Resource Manager p rocess

IEAVEACO

~ 1 Determine the type of request:

• MOVE (to Steps 2-4>.

• ADD (to Steps 3-4>.

• DELETE (to Steps 5-6).

MOVE

ASCB being changed
2 Dequeue given ASCB and insert r- new dispatching priority.

I
I
I MOVE and ADD

+ First ASCB
I

3 Enqueue ASCB at given priority.

S
Flags

+ Last ASCB 4 Reorder ASCB sequence
numbers.

DELETE

5 Wait for processing in the ASCB
to stop.

6 Oequeues given ASCB.

Outout
" '"''''

Reg 14

I Code

0- Successful

4 - For MOVE: at least one ASCB
not found
For ADD: not used
For DELETE: the ASCB not
found.

Code

ASCB

ASCBDP

ASCBSEQN

------ ~ "ASCBFWDP

I ~ ASCBBWDP=O

ASCB Memory
Switch

ASCBSEQN I
Sets /
Code

CVT ~ASCBFWDP

V \ ASCBBWDP
CVTASCBH- ASCB to

\

~ ! \

CVTASCBL ASCBSEQN
Caller

ASCBFWDP=O J
ASCBBWDP

C"I.2
CD
sa.
!'
1:1

!'t
a::
CD r
a.
o
'a q
a.
!'
1:1

of" -~

Diagram 19-23. ASCBCHAP Processing (lEA VEACO) (part 2 of 4)

Extended Description

ASCBCHAP alters the dispatching priority of ASCBs at the
request of the system resource manager, and adds or
deletes ASCBs to the ASCB queue for memory create·or
memory delete (see Obtaining a New Virtual Memory
(lEAVEMCR) and Deleting a Virtual Memory (lEAVEMDL)).
The ASCBCHAP routine has no SVC entry; it only has
branch entry. Only privileged programs use the
ASCBCHAP routine.

The ASCBCHAP routine obtains the global dispatcher lock
(if it is not alr~ady held).

1 ASCBCHAP determines the type of request according
to the code in register 1.

2 ASCBCHAP changes the priority of several ASCBs at
one time. This enhances performance. The parameter

list that register 1 points to contains the list of ASCBs being
changed. This parameter list must be in non-pageable stor
age, because ASCBCHAP refers to it with the globql dis
patcher lock held. ASCBCHAP dequeues the ASCBs being
changed.

Module Label Extended Description

3 For ADD requests, ASCBCHAP refers to register 1,
which contains the address of the ASCB being added

to the ASCB ready queue. The ASCBDP field has the new
dispatching priority prior to entering ASCBCHAP.

4 To resequence the ASCB ready queue, ASCBCHAP
changes fields in the ASCB and CVT, as illustrated.

Memory switch (see Memory Switch (lEAVEMSO))
receives control to process the ASCB with the highest
dispatching priority.

5 For DELETE requests, ASCBCHAP refers to register
1, which contains the address of the ASCB being

deleted.

6 ASCBCHAP frees the global dispatcher lock, unless it
was already held upon entry.

Module Label

;t Diagram 19-23. ASCBCHAP Processing (lEA VEACO) (part 3 of 4)
0\
0\

i
~
w
CI'J

1
m
r-'
~
(is.

r-'
&

i
<
t
(D

.a:..

'< CI'J
W

~
i
~
CoN

~

Input

~ Reg 0

I @ 200 Byte Workarea I
Reg 1

1 @SDWA 1
~SDWA

CVT

CVTASCBH ~--

CVTASCBL ~--

;

r-
I
I
I
I
I
I
I
I'
I

------1
I
I ___ J

Process

IEAVEAC3

7 Dump the trace tables.

8 Recover ASCB dispatching
queue.

To RtrM

Output

SDWA

SDWARECP

SDWAVRA

SDWARCDE

!;I}
(1)

~
5·
= N

~
(1) ..
[
o
o
"0
~
~
5·
=
~ -0'1
-..J

Diagram 19-23. ASCBCHAP Processing (IEAVEACO) (part 4 of 4)

Extended DescriPtion

7 The ASCBCHAP FRR calls SVC DUMP to dump the
contents of the trace table.

8 Control goes to the lEA V EQV3 routine to recover the
ASCB dispatching queue. Then, control goes to RITM,

with a return code of 0, indicating no retry.

Module

ASCBCHAP

Label

t I Diagram 19-24. Trace Processing (IEAVTRCE) (Part 1 of 10)
0\
00

o
~
<:
rI}
~

C"I'.l
'<
~
9
to

<19.
f)

t
c:
~
<:
~
~
~

~
~ o w
00
~

Input

FLCTRACE

[TQEAID

I TQETCB

or

I ASCBASID

PSATOLD

or

branch entered
from external
FLIH
(lEAVEEXT)

branch entered
from 105

Process

1 Update current trace table entry
pointer.

2 External interrupt

• Perform step 1.

• Build trace entry.

3 1/0 interrupt

• Perform step 1 .

• Build trace entry.

to external
FLiH
(lEAVEEXT)
via branch

to 105 via

Output

<:
C"I'.l
~ o
w
00
~

CI:l
('!)

~ o·
::s
~

~
('!)

;;
o
~

o -,
o
"0
('!)
~ o·
::s

~ -0\
\&I

Diagram 19-24. Trace Processing (lEA VTRCE) (Part 2 of 10)

Extended Description

VS2 system trace routine (I EA VTRCE) records system
activity in the trace table.

The following system activities are recorded in the trace
table and are discussed in detail in the following steps:

• External interrupts

• I/O interrupts

• Program interrupts

• SVC interrupts

• SIO EVENT

• Dispatcher event

• Initial SRB dispatcher event

• SRB re-dispatch event

Identifier

1

5

3

2

o
7

4

6

The identifier for each activity is located in bit
positions 17-19 of the Trace Table Entry. Control is
returned to the caller via a branch.

1 The current trace table entry is updated to the
system activity being recorded. This step is first

for all entries. (The timer value for all trace events is
bytes 2-5 of the clock value obtained by a STCK
instruction. The CPU id for all trace events is obtained
by adding X'40' to the physical CPU id (PSACPUSA) to
produce the logical CPU id.)

2 External interrupt
System data is gathered into trace records.

ASCBASID and PSATOLD are traced if the interrupt
is not a clock comparator. If it is a clock comparator, the
TOE and TOETCB are traced. If the TOE address is 0,
neither ASID nor TCB are traced.

If the system is waiting and a clock comparator interrupt
occurs, it is not traced. This prevents the trace table
from overlaying itself with useless information while the
system is waiting. The external old PSW id in the output
is the EC mode external old PSW with appropriate
external interrupt code inserted into the BC mode
PSW interrupt code position (bits 16-31).

Module Label

IEAVTRCE TREX

IEAVTRCE TRIO

IEAVTRCE TRPI

IEAVTRCE TRSVC

IEAVTRCE TRSIO, TRACE

IEAVTRCE TRDISP

IEAVTRCE TRSRB1

IEAVTRCE TRSRB2

IEAVTRCE TREX

Extended Description

3 I/O interrupt
System data is gathered into a trace record. The I/O old

PSW id in the output is the EC mode old PSW with the
device address inserted into BC mode interrupt code
position (bits 16-31).

Module Label

IEAVTRCE TRIO

~,
N
b
1".1
0.)
5:

! I Diagram 19-24. Trace Processing (IEAVTRCE) (Part 3 of 10)
0'1
\0 o
o
~

"<
~
N
~
'<
~
~

3
r-' o

!!9.
(")

t"" c;:

~
< o
2"
3
~

~

~
N
o
~

00
o
~

Input

branch entered
from Program
FLiH (lEAVEPC) Process

branch entered
from SVC
FLIH
(lEAVESVC)

4 Program interrupt

• Perform step 1.

• Build trace entry.

5 SVC interrupt

• Perform step 1.

• Build trace entry.

to Program
FLiH
(lEAVEPC)
via branch

to SVC FLiH
(lEAVESVC)
via branch

Output

~
N o
~

00
~

til
(D

a
cS"
=
!;J

== (D

:;
o
Q.

o
o

"'0
~
I» g.
=
~
~
~ -

Diagram 19-24. Trace Processing (IEAVTRCE) (Part 4 of 10)

Extended Description

4 Program interrupt
System data is gathered into a trace record. The

last page fault address (FLCTEA) is traced for all
program interrupts.
The program old PSW id in the output is the EC mode
old PSW with a program check interrupt code inserted
into the BC mode PSW interrupt code position
(bits 16-31).

5 SVC interrupt
System data is gathered into a trace record.

The SVC old PSW id in the output is the ECB old PSW
with SVC interrupt code inserted into the BC mode
PSW interrupt code position (bits 16-31).

Module Label

IEAVTRCE TRPI

IEAVTRCE TRSVC

<:
til
N o
~

00
~

~ I Diagram 19-24. Trace Processing (IEAVTRCE) (Part 5 of 10)
~
I,Q

N

o
til

branch entered "< til
~

C"I)

'<

Input from 105 Process

~
3
ro

'19.
(')

t'"'
0:

~
<:
~
3
(D

~

~
N
C::>
W
00
~

register 12

6 510 event

• Perform step 1.

• Build trace entry.

10SB

Output

(jd = 0)

To 105
via branch

~
N
C::>
W
00
~

til
~ n
g.
= N

~
~ =-8-
o
o

"'0
~ ...
~
cS-
=
~ -0'1
100
~

Diagram 19-24. Trace Processing (IEAVTRCE) (Part 6 of 10)

Extended Description Module

6 SIO EVENT
System data is gathered into a trace record.

Label

<
til
N
o
<..J

00
o
VI

f" I Diagram 19-24. Trace Processing (IEAVTRCE) (Part 7 of 10)
~
\C
~

o
~ branch entered from DISPATCHER
"<
~
N

Input and EXIT PROLOG (lEAVEEXP) Process
~
'<
~
(D

3
I:"'" o
!fl.
~

I:"'"
0:

~
-< sa.
= 3
(D

~

'<
~
N
(:,
~

7 Dispatch -event (Task
related)

• Perform step 1.

• Bui Id trace entry.

Output

DISP New

00 o
~

I ~ To IEAVEDSO 0'
IEAVEEXP
via branch

TCBRBP

• reg15 I ,e~ I <:
~
~

(:,
ASID I ~ TCB I time w

00
0
VI

CI'}
I'D
!? o·
= N

is:
I'D

ET
o
~

~
o
"0
I'D ...
~ o·
=
~
0-
\C
V.

Diagram 19-24. Trace Processing (IEAVTRCE) (Part 8 of 10)

Extended Description

1 Dispatcher event
System data i:s gathered into a trace record.

Only the initial dispatch of the wait task is traced.
Subsequent dispatches of the wait task while the
system is waiting are not traced.

If a TCS is available (PSATOLD /0), the interrupt
information (I LC and code) is gathered from the top
RS's prefix and incorporated in the PSW.

Module Label

IEAVTRCE TRDISP

<:
CI'}
N
(:,
W
00
~

! I Diagram 19-24. Trace Processing (IEAVTRCE) (Part 9 of 10)
0\
1.0
0..

c
~
-< en
N
en
'<
~
I'D
3
r
o

ct9.
~

r
a: ...
~
-< o
C
3
I'D ...
< tI'}
N o
<.H

00
o
~

Input

branch entered from
DISPATCHER
(IEAVEDSOI Process

8 Initial SRB dispatch event

• Perform step 1.

• Build trace entry.

9 SRB re-dispatch event

• Perform step 1.

• Build trace entry.

To IEAVEDSO
via branch

To IEAVEDSO
via branch

Output

old
ASID

TCB

old
ASID

reg 0

time

reg 0

TCB time

-<
tI'}
N

<::>
<.H

00
~

CIl
~
t'l g.
=
~

:::
~

g.
8-
o
o
1
;;
g'
f"
;:
\C
~

~

Diagram 19-24. Trace Processing (IEAVTRCE) (Part 10 of 10)

Extended Description Module Label

8 Initial SRB dispatch event IEAVTRCE TRSRB1
System data is gathered into a trace record.

9 SRB re-dispatch event IEAVTRCE TRSRB2
System data is gathered into a trace record.

<:
CIl
N
Q
~

00
~

t Diagram 19-25. Queue Verification (IEAVEQVO) (part 1 of 2)
--J
o

~
~
"" VJ
'<
fIl

~
r-
<i n·
r
a=
~
<:
o = 3
~

~

<:
c:Il

"" o
~

00
o
~

Input

Reg 0

@ Parameter for EVR

Reg 1

f @QVPL

Queue Verificatio

-::.. Parameter List

@ Work area

@ Element
Verification
Routine

@Queue
Header *

@Queue
Trailer *

(~ @QVOD

Queue Verifi4
~ Output Data

Reg 13

'j @ 72 Byte save are; ---- J

From supervisor
recovery routines
to verify a
queue structure

* Queue header and trailer point to queue(s) being verified

IEAVEOVl
or

IEAVEOV2
or

IEAVEOV3 }

Entry point
depends on
queue type

1 Check the va lidity of the
parameter list.

• Invalid.

2 Verify and correct the
queue structure and remove
elements with bad data.

• Queue structure bad.

• Elements with bad data.

• No errors.

3 Record errors

To Caller

To Caller

Verification
Routine

o

• ----.. - y'

~
(D

a
~r

= N

ac
(D

[
o
o
"0
~

=-5'
=
of" --...J -

Diagram 19-25. Queue Verification (IEAVEQVO) (part 2 of 2)

Extended Description

1 The Queue Verifier performs some validity checking
of input parameters to minimize the possibility of the

caller incorrectly coding the interface. Queue Verifier

returns control to the caller immediately with a return code
of 24 in register 15 if it detects invalid input parameters.

2 Queue Verifier corrects queues as follows:

• Single-threaded queues with header only: Since th is type
of queue contains no duplicate information, queue recon
struction is not possible. Therefore, if any errors in the
chaining are found, the queue is truncated at the point
of error •

• Single-threaded queues with header and trailer: For this
type of queue, the end of the queue found by scanning
the forward chain might not coincide with the value in
the trailer. In general, if the trailer comains the address
of a queue element, that element is considered the "real"
last element.

If the header has been destroyed, Queue Verifier tries
to salvage the element pointed to by the trailer.

If the trailer has been destroyed, it is restored from the
forward chain.

If a forward chain pointer has been destroyed, all the
previous elements on the chain will be connected to the
element pointed to by the trailer.

Module

IEAVEQVO

Label Extended Description

• Double-threaded queues: If the header and trailer contain
addresses of elements, those elements are considered the
real first and last elements, respectively.

As long as the forward chain is valid, it has precedence
over the backward chain. (When scanning the forward
chain, the "next" element should always point back to
the "current:" If it does not, the backward pointer will
be corrected.)

If the header is bad, it is restored from the backward
chain.

If the trailer is bad, it is restored from the forward chain.

If either the forward or backward chain is bad, one is
reconstructed from the other. If both are bad, they are
connected at their last valid points.

• All types of queues: The Queue Verifier detects circular
queues. The last element found before the queue "repeats"
is considered the last good element on the chain.

All elements that contain bad "data", as defined by a
return code of 4 from the Element Verification Routine,
will be removed from the queue.

3 All errors encountered are recorded in the Queue
Verification Output Data (QVOD) area. The QVOD

maps into the recording area of the SDWA. Generally, the
following information will be supplied.

• Error code, describing the specific error.

• If an element had bad chain information, then the
address of the element, the old (bad) chain information,
and the new (corrected) information are recorded.

• If an element was removed because it contained bad
data, then the address of the element, the address of
the previous element on the queue, and the address of
the next element on the queue are recorded.

Module Label

t Diagram 19-26. Super FRR (IEAVESPR) (part 1 of 4)
....,
N

~
~

From R/TM to
recover a supervisor
control routine

Proce
N
fI}

'<
~

~
S"
~.
t:
~

~
~
~
(D

~

'< fI}
N

~ ;
w
~ -

" ~ , ,,)~

1 Determine whether this is a
recursive entry.

Yes
No, continue.

2 Route control to the appropriate
recovery subroutine.

a) Dispatcher recovery.
....

Via i
SETRP'&

b) Interruption handler
recovery.

"'"

IEAVERTN

3 Terminate the address
space if an address space
termination was requested. ~

"'"

Terminate the task if a task
termination was requested. ~

...

4 Record error information in SDWA.
;3

:S

It
- L......

OutDut

t.
} Step 6 SDWA

....
SDWARTYA

r\ y

.. IEAVEDSR ..

... Appropriate

.. ~

IH FRR Appropriate
FLiH
recovery

~ routine

.. R/TM r'

.. ~

.. R/TM ABEND Code

'" ..
) X'07C' I

~
~ er
=
~

a::
(D

[
o
o
't:I
~ a er =
~ --...J
W

Diagram 19-26. Super FRR (IEAVESPR) (part 2 of 4)

Extended Description

The Super FRR determines the routines processing when an
error occurred. routes control to that routine's recovery
routine (if one exists) and performs actions based on return
information.

Module

1 The Super FRR checks for a recursive entry. Control IEAVESPR
goes to step 6 for recursive entries; otherwise, process-

ing continues. If a DAT error occurred, Super FRR requests
an address space termination (see step 3).

2 The Super FRR uses SETRP to indicate a retry address
to one of the F LI H recovery routines. After Super

FRR returns to R/TI'vl, R/TM routes control to the specified
retry address. The recovery routines that protect the dis
patch~r and the interruption handler are:

• Dispatcher - IEAVEDSR

• SVC IH - IEAVESVR

• I/O IH - IEAVEIOR

• External IH - IEAVEE1 R, IEAVEE2R, and IEAVEE3R

• Program check IH - IEAVEPCR

• Restart IH - IEAVERER

3 The Super FRR, after receiving control back from the
recovery routine, will terminate the address space or

the task, as requested by the dispatcher FRR or as in
step 6.

4 The Super FRR records error information in the
SDWA (system diagnostic work area).

Label

t Diagram 19-26. Super FRR (IEAVESPR) (part 3 of 4)
-...J
~

~
~
N
r.I.)

'<
~

Process

9
t""
ri
n'
r-'

~
~
~
C
9
('D

~

~
N

~
;.
~
IN

~

5 Purge translation lookaside buffers
(issue PTLB).

6 Process recursion.
• 1 st recursion

- Clear indicators.
- Request an address space

termination.

• 2nd recursion
- Terminate system with

X'01C' wait state code.

Output

Console Message

IEA967W
'Unsuccessful
recovery attempt by
Supervisor control'.

CI.I
(D

a o·
=
~

rc
(D

[
o
o
'C
~ a o·
=
~ -....J
(.II

Diagram 19-26. Super FRR (lEA VESPR) (part 4 of 4)

Extended Description

5 The Super FRR purges the translation lookaside
buffers via a PTLB (purge translation lookaside buffers)

iristruction. Control returns to R/TM when the PTLB opera
tion completes.

6 For one recursion, the Super FRR terminates the
address space in which the error occurred. If a second

recursion occurs during Super FRR processing, the system
will be terminated. System termination prints an IEA967W
message at the console: 'Unsuccessful recovery attempt by
Supervisor control'. The Super FRR issues a system wait
state code of X'01C'.

Module Label

IGFPTERM

t Diagram 19-27" Address Space/Lock Verification Processing (lEA VELCR) (part 1 of 4)
0\

~
~
N
CIl

1
l"'"
ci
;:;"
l"'" e: ...
.$

i ...
~
N

i
w
:.... -

~nput

CVT

CVTGSDA~

r\GSDA

Duplex
values

VCONs

f-- Refresh-
~values -

~, -
,

PSACLHS

I Hierarchy mask of
locks held

From RITM, to
repair any possible
address/lock errors

,>

"

, ,

,

"

¢

,..

- 1----

Process

Low Main Storage Refresh

'
1 Validate the refresh values

v
for the CVT.

• Valid - Refresh the CVT
and ASVTMAXU.

• Not Valid - Use the .--
values from the CVT and
ASVTMAXU for the refresh
values.

,"' Lock Refresh

2 Determine whether SETLOCK
wasprocesslng when the error
occurred.

Yes - Issue SETFRR so the
SETLOCK FRR gets
control when RITM

...
[goes to the FRR routines~

No - Continue.

!-- 3 Ensure that the hierarchy mask
agrees with the contents of
the lockwords.

Output
, .

CVT

"

~--o
v

1--
I ASVT
I ____ .1.. ___

--- ASVTMAXU'

..
SETLOCK ,.. Recovery

if
~
e'
=
~

iC c

[
o
o
~
Q
a
e' =
~ --..I -..I

Diagram 19-27. Address Space/Lock Verification Processing (IEAVELCR) (part 2 of 4)

Extended Description

Address/lock verification processing consists of 3 modules
that correct errors in the addressing/locking mechanism.
The modules are entered from R/TM on every error before
any recovery routine receives control.

1 The low main storage refresh routine replaces the
current, and possibly inaccurate, values in the CVT

and ASVT with accurate, valid values from VCONs, and
duplex values in the GSDA (global system duplex area). If
the refresh values are not accurate, the low main storage
refresh routine uses copies of the CVT and ASVT values,
to refresh the GSDA and VCONs.

2 The lock refresh subroutine first determines whether
an error occurred during SETLOCK processing. If so,

a SETFRR is issued so the SETLOCK FRR will get control
when R/TM goes to the FRR routines. Otherwise, normal
processing continues.

3 The lock rttfresh subroutine ensures that the hierarchy
mask - the mask that shows the sequence of locks

held -'- agrees with the value in the lockwords. If it does not
agree, the lock refresh subroutine will ensure the agreement.
The subroutine may also seize the CMS lock if it determines
that the owner of the CMS lock was suspended because of
a page fault which was never resolved. Finally, the sub
routine terminates the address space that owned the eMS
lock.

Module Label

IEAVELCR IEAVELCR

IEAVELKR IEAVELKR

t Diagram 19-27. Address Space/Lock Verification Processing (rnA VELCR) (part 3 of 4)
......
co

~
~
N

~
i a
i n
t:

I
~ =
~
~
N

~
(D

I
w :.., -

CVT

CVTASCBH - { ASCB

Dispatching From .. Queue

~

1

ASVT Verification

4 Search for bad entries in the ASVT.

• No bad entries •

;

• Bad entries: Issue
SETFRR so that ASVT
Repair gets control.

ASVTRepair

"') 5 Refresh the ASVT entries
., v for each ASCB on the ASCB

dispatching queue.

6 Remain all the available
entries in the ASVT.

~
,.

To RITM

.... RfTM
...

...
RfTM ...

ASVT
ASCB

ASVTFRST

/'
..... ASVTENTY-

v ASVTENTY'~

"
ASCB

~
~ o·
= ~
~
(D

[
o
o
"0
~
~ o·
=
~ -.....
I,Q

Diagram 19-27. Address Space/Lock Verification Processing (IEAVELCR) (part 4 of 4)

Extended Description

4 The ASVT (address space vector table) verification
routine searches for invalid ASVT entries. If the

routine finds no bad entries, control returns to R/TM.
Otherwise, if bad entries are found, a SETFRR is issued so
the ASVT repair routine will receive control later.

Module label

IEAVEVRR IEAVEVRR

5 The ASVT repair routine refreshes the entries in the IEAVEVRR IEAVVFRR
ASVT for each address space that is on the dispatching

queue.

6 ASVT repair chains the available entries in the ASVT
to show which ASIDs have not !'leen assigned to any

address space.

t Diagram 19-28. Address Verification (IEAVEADV) (part 1 of 2)

!
o
~
.~
N
fIl

I
r-
~.
r-
~
~
~
2' a
(D

~

'< fIl
N

~
i
~
CoN

~

Input

RegO

From Supervisor
Routine

LENGTH OF STORAGE RANGE I i&Jj fA V

Reg 1

r~@-SOWA 1
Reg 2

[iEGI-NNING @ STORAGE RANGE I

1 Check if storage check occurred.
No - continue at step 4.

2 Insure SDWA storage error range
contains valid data.

Not valid - continue at
step 4.

3 Notify caller when input
storage range intersects with
storage error range indicated in
SDWA.

• Storage intersects.

4 Check page fault or segment
exception by loading
beginning address of range and
ending address of range.

Successful load.

Unsuccessful load.

To Caller

Output

Reg 15

RETURN 8

To Caller

~
sa.
is'
=
~

a::
<D

[
2.
o

"C:I ". a
is'
=
of" -00 -

Diagram 19-28. Address Verification (lEA VEADV) (part 2 of 2)

Extended Description

1 The Address Verification routine checks the SDWA
flags for indication of a storage check error. If a

storage check did not occur processing continues at step 4.

2 The error range validity is checked via the SDWA
flags. If it is not valid, processing continues at

step 4.

3 A check is made to see if the input storage range
intersects with the storage error range indicated in

the SDWA. If so, return is to the caller with a code of
8 in register 15.

4 The final test is to check if the indicated storage is
in real storage by doing an LRA on the beginning

and ending addresses. If not in storage, a return code of
4 is returned to the caller in register 15. If it is in s-torage,
a return code of 0 is returned to the caller,

Module

IEAVEADV

Label

t Diagram 19-29. Control Block Verification Routine (IEAVECBV) (part 1 of 10)
00
N

~
N
fIl
'<

I
~ t;.
t"'"

I
<

f
~

'< fIl
N

f
w
~

Input

Reg2

POTENTIAL Asee @

Process

IEAVECAS ENTRY:
CURRENT ASCB
VERIFICATION CHECKS

1 Verify ASee storage is referenceable.

• Not referenceable.

2 Verify that ASIO is less than or equal
to maximum.

• Invalid.

3 When ASID is not zero, verify that
the input ASeB address matches the
address found by indexing into ASVT.

• Invalid.

4 When ASID is zero the input address
must match the address of "WAIT
ASCB".

• No match.

5 Verify that ASCe contains valid
acronym.

• Invalid.

Output

Reg 15

To Caller

To Caller

~ETURN8

Reg 15

To Caller

~RETURN8

Reg 15

To Caller

~ETURN8

15

To Caller

rI.l
(D

Sl.
5'
=
~

::
(D

~
8-
o
o
"0
~ a
5-
=
f-
1-0
00
~

Diagram 19-29_ Control Block Verification Routine (IEAVECBV) (part 2 of to)

Extended Description

This module will determine whether an input address is
the address of a valid 1) current ASCB, 2) general ASCB,
3) SRB, or 4) TCB.

1-5 For current ASCB verification (I EA V ECAS),
the input address must pass the following

criteria:

• Referenceable potential ASCB storage.

• ASID ~ maximum.

• When ASID + 0, input address matches the address
found by indexing into ASVT.

• When ASID = 0, input address must match the address
of "WAIT ASCB".

• Valid acronym (ASCB).

• Referenceable and valid SPL address.

• Referenceable ASXB.

• ASXB must have valid acronym, referenceable I HSA,
and referencpable local work/save area vector table.

A return code of 0 indicates valid control block.

A return code of 4 indicates control block contains
bad information.

A return code of 8 indicates not a control block.

Module Label

t Diagram 19-29. Control Block Verification Routine (IEAVECBV) (part 30f 10)

:
.@
~
~.

t:
" I
r"" .2.
lit
r""

f .s
~
J
'< rn
to.l

~ r
I
w
~ -

Process

6 Verify that SPL is referenceable.

• Not referenceable.

7 Verify ASXB is referenceable.

• Not referencable.

8 Verify that ASXB contains valid
acronym.

• Invalid.

9 Verify that IHSA is refer:enceable.

• Not referencable.

Output

Reg 15

RETURN 4

Reg 15

RETURN 4

15

RETURN 4

Reg 15

RETURN 4

To Caller

~ g.
=
~

fie
(Ii

i
So
~

i
=*

~ e:

Diagram 19-29. Control Block Verification Routine (IEAVECBV) (part 4 of 10)

Extended Description

6-9 For current ASCB verification (lEAVECAS),
the input address must pass the following

criteria:

• Referenceable potential ASCB storage.

• ASIO < maximum.

• When ASIO :f. 0, input address matches the address
found by indexing into ASVT.

• When ASIO = 0, input address must match the address
of "WAIT ASCB".

• Valid acronym (ASCB).

• Referenceable and valid SPL address.

• Referenceable ASXB.

• ASXB must have valid acronym, referenceable IHSA,
and referenceable local work/save area vector table.

A return code of 0 indicates valid control block.

A return code of 4 indicates control block contains
bad information.

A return code of 8 indicates not a control block.

Module Label

t Diagram 19-29. Control Block Verification Routine (ffiAVECBV) (part 5 of 10)
00
0'1

o c:n
"< c:n
N
c:n
'<
~ a
t"'"
ti
(:i'

t"'" c: ...
~
~ c a
(D

,f::o.

'< c:n
N

::c
(D

i
~(
IN

~

Process

10 Verify that local work/save area
vector table is referenceable.

• Not referenceable .

• Referenceable.

IEAVEGAS ENTRY:
General ASCB Verification

11 Verify that potential ASCB
storage is referenceable; ASID~
maximum; when ASIO is not
zero, input ASCB address matches
that found by indexing into
ASVT; and when ASIO is zero,
input ASCB matches address of
WAIT ASCB.

• Fail.ure on any test.

1~ Verify ASCB acronym is present

• No acronym.

13 Verify that SPL is referenceable.

• Not referenceable.

Output

Reg 15

RETURN 4

RETURN 0

RETURN 8

Reg 15

RETURN 4

Reg 15

RETURN 4

c:I.l
~ a
~.

= N

a:
~ g
0-
o
o

"C
~
~
5'
=
~ -oc
-...I

Diagram 19-29. Control Block Verification Routine (IEAVECBV) (Part 6 of 10)

Extended Description

10 See the extended description for steps 6-9.

11-13 For general ASCB verification (lEAVEGAS),
the input address must pass the first six

criteria listed under current ASCB verification. Return
codes indicate same conditions.

Module Label

t Diagram 19-29. Control Block Verification Routine (lEA VECBy) (part 7 of 10)
00
00

~
~
~

I:Il
'<
~

9

i-
t:
Sf'
.$

f o .,.
~
~

~
~

I
CN

~

Process

IEAVESRB ENTRY:
SRB Verification Routine

14 Verify SRB is referenceable.

• Notreferenceable.

15 Verify that the ASCB pointer
associated with SRB is valid.

• Invalid.

16 Verify that the save area is
available.

• No save area.

17 When save area address is not zero,
the address of the resource manager
routi ne must be that of the resource
manager for suspended SRB's.

• Invalid address.

Output

Reg 15

RETURN 4

To Caller

Reg 15

RETURN 4

Reg 15

RETURN +4

To Caller

Reg 15

RETURN +4

To Caller

J.
::s
!':t
a::
CD

[
Q
""t

i q
a e' ::s

~ -CD
\0

Diagram 19-29. Control Block Verification Routine (lEA VECBV) (part a of 10)

Extended Description

14 .. 17 For SRB verification, the following criteria
must be met:

• Referenceable SRB storage.

• Valid ASCB pointer.

• Valid save area data.

• When save area address += 0, the address of the
resource manager routine must be that of the resource
manager for suspended SRB's.

• When save address = 0, routine entry point address
must be non-zero.

Return codes indicate same conditions as indicated under
current ASCB verification.

Module Label

t Diagram 19-29. Control Block Verification Routine (lEA VECBV) (part 9 of 10)
I,Q
o

o
Je
~
~

{;I}

1 e
r-
~
~;-

r-
~
~
~
2' e
CD
~

"< {;I}
~

:;0

i
~
w
~

Process

IEAVETCB ENTRY:
TCB Verification

18 Verify that the TCB address is
referenceable.

• Not referenceable.

19 Verify that the last 4 bits of storage
protect key are zero.

• Not zero.

20 Verify valid TCB acronym.

• Invalid.

21 Verify that AOS/2 common extension
pointer is valid and that RB is in fixed
storage.

• Any failure.

Output

Reg 15

RETURN 8

To Caller

Reg 15

RETURN 8

To Caller

Reg 15

RETURN 4

Reg 15

RETURN +4

__ ToCalier

til
(D

~
5-
= N

== ~
5
~

o -.
o

"C
~
~,
6-
=
f" -\0 -

Diagram 19-29_ Control Block Verification Routine (IEAVECBV) (part 100f 10)

Extended Description

18-21 For TCB verification, the following criteria
must be met:

• Referenceable potential TCB storage.

• Last 4 bits of storage protect key must be zero.

• Valid acronym.

• Valid AOS/2 common extension pointer.

• Current RB in fixed storage.

Return codes same as for current ASCB verification
routine.

Module Label

f"
\0
b

o
Ie
~
N

ff
~
t""

<§.
(')

to:
~
g:
= ~
~

~
N
b
w
00

~

Diagram 19-28. Suspend Routine (IEAVETCL) (part 1 of 2)

Register: 1
i
l
I

PSATOLD

J 1
!{TCB

l----.RB

If

RB

PSAAOLD

ICseB
1

From Issuer of
Suspend Macro

a.. l,
j

't

".

I'

..
~

Suspend

L

-y"} 1 If RB=PREVIOUS (Register 1 =FO)
then continue at step 3.

"'

L"} 2 Process RB=CURRENT " .
- Decrement ASCBTCBS.

- Increment suspend count in
current RB.

- Return.

.
I
I .. ') 3 Does previous RB exist?

--v -No

- Yes
Increment suspend count in
previous RB.

- Return.

II

~,,~,

'"

t
I

:,* w'l • II w

• ~) To issuer of
suspend
macro

ABEND "

.'" I -y
i

• To issuer of ...
suspend
macro

"

".

~" <

[:

I

--v

(
.

Register 0

>l + Suspended TCB 1
Register 1

I + Suspended RB I

RB ASCB

.. T ASCBTCBS -1

I

I
RBSCF + 1

..... _' ... nl'w'

o. RB

"

(
~I

RBSCF + 1

-< til
N
<:> w
Co o
-....J

CI'.l
g
g
~

a::
(D

~
o
o

't:S a o·
::I

f' -IC
t"" -

Diagram 19-28. Suspend Routine (lEA VETCL) (part 2 of 2)

Extended Description

The Suspend routine (lEAVETCL) is a fast means for
placing a TeB in the wait state.

1 Suspend checks the contents of register 1. If it is
nonzero, then RB=PREVIOUS was requested and

processing continues at step 3. If it is zero, then
RB=CURRENT was requested.

2 Since the TCB will no longer be dispatchable, the
count of ready TCBs in the current ASCB must be

decremented by one (ASCBTCBS). Next, the suspend
count in the current RB (RBSCF) is incremented by one
to place the task in the suspended state. Registers 0
and 1 are initialized with the TCB and RB addresses,
respectively, and control is returned to the caller.

3 If no previous RB exists, the caller is terminated
with an abend code of 070 and register 15 is zeroed.

Otherwise, the previous RB is obtained and the RBSCF
field is incremented by one. Since this is done in the
previous RB, the ability to dispatch the task is not
changed. Registers 0 and 1 are initialized with the TCB
and RB addresses respectively, and control is returned to
the caller.

Module Label

IEAVETCL IEAVSUSP

PREVIOUS

<:
tIJ
~ o
~

00
9

~
IC
N

o
rJ'l

~
~

rJ'l

~
[
b
'!9.
(')

to:
~

i
(I)

4:00

'< rJ'l
~

b
I.N
00
~ -

Diagram 19-29. Transfer Control - Transfer Logical (TCTL) (lEA VETCL) (part 1 of 4)

Input

LCCA

LCCASRBM

Register 4

RBWCF

TCBXSCT

TCBFLGS4

From Issuer of
TCTL Macro

1 If caller is not in SRB mode, issue
an abend. Otherwise,
proceed to step 2.

2 Set up to do transfer control.

3 Turn on intersect flag;;. If they
are already on, go to step 7.

4 Test if the TCB can be dispatched.
If not go to step 7.

5 Perform SRB exit function.

6 Exit to special dispatcher routine
to pass control to requested TCB.

Output

TCB

TCBXSCT

-< rJ'l
~

b
I.N
00
o
.......

Diagram 19-29. Transfer Control - Transfer Logic (TCTL) (lEA VETCL) (part 2 of 4)

~
~

Extended Description

1 A transfer control - transfer logical (TCTL) can only
be issued by an SRB routine. If the caller is not in

SRB mode, it is terminated.

2 The following is done to set up for the transfer of
control:

• Disable I/O and external interrupts.

• Set up super FRR.

• Turn on CDAL TCTL to indicate transfer control
is active.

• If status is active (ASCBSTA=ON), go to the normal
SRB exit.

3 Turn on the intersect flags in the TCB via a compare
and swap. If already on, go to the normal SRB exit.

4 If the TCB cannot be dispatched, go to the normal
SRB dispatcher. (To test whether the TCB can be

dispatched, check to see that TCBFLGS4=O, TCBFLGS5=O,
RBWCF=O, and ASCBSTND=O. If one_or more are not
zero, the TCB cannot be dispatched.)

5 Perform the following SRB functions:

• Call job step timing.

• Turn off SRB mode flag.

• Decrement count of SRBs by one.

• Increment count of CPUs by one.

&. I 6 A special entry in the dispatcher accepts a TCB
g address as input and passes control to that TCB.
~

== ~ go
8-
g,
o
't:I
~

~. g

f" -\0 -W

Module Label

IEAVTCTL IEAVTCTL

~
N
<:>
~

00
o
'-I

t I Diagram 19-29. Transfer Control - Transfer Logical (TCTL) (lEA VETCL) (part 3 of 4)
\Q .-
:.:a.

~
w
C'I.l
~
Sa
S
~.
t'"

~
~

~ a
(D

~

~
w
(:,
CN

00
§

TCB

TCBXSCT

PSA

PSASUPI

PSACSTK

CVT

CVTSRBRT

I

..

-

-

.. 1.> 7 Turn off intersect flags.

'"
"V

8 Reset FRR flags and FRR stacks.

'" :v 9 Go to normal SRB exit.

Handles Normal SRB Exit
(JEAPDSRT Entry Point
in IEAVEDSO)

TCB

'" :v _ TCBXSCT

~ - ~

S
00
9

PSA ---
'" ,)

PSASUPI

PSACSTC

r:Il
(D
(')

g.
= t-..)

a::
(D

[
~
o

"t:I
(D a
g'
~ -\.Q -U.

Diagram 19-29. Transfer Control - Transfer Logic (TCTL) (IEAVETCL) (part 4 of 4)

Extended Description

7 Intersect flag TCBACTIV is turned off.

8 Flags PSADISP and PSATCTL are turned off and the
current FRR stack (PSACSTK) is set to normal

(PSANSTK).

9 The normal SRB exit routine (I EAPDSRT) in the
dispatcher is called.

Module Label

TCTL003

<:
r:Il
t-..)

o
t.,)

00
S

f"
~

\0
~

~

o
C"J':l

"< C"J':l
N
C"J':l
'< ;.
e
S
~.
t""
0:

~
~
= e
(1)

~

~
N
o
~

00
§

lh~'

Register 4 ..
l 1

__ TCB

Register 5

I 1
RB --.

PSAAOLD

I 1
-"" ASCB

I
\R

",,--,

Register 14

I 0 or return I
address

,,< ~ <- ", ~}

<;k

Resume

>1 Turn on intersect flags.
v If compare and swap fails, go

to Step 7.

...
) 2 Decrement suspend count.

v

... 3 If work is now dispatchable, i -v increment ASCBTCBS by 1.

<,'

" 4 If RETURN=NO specified
go to Step 13.

...
;;> If HETURN=YES specified,

continue.
;

.L

..
r

Step 7

~ ..

r
Step 13

, " "
"

RB

'" '1 ~

ASCB

.. /V" 1,>

ASCBTCBS + 1

"

I- RBSCF -1

~
N

<=> C,N

00
o

(I}

a c)"
=
~

a::
~
~

o
100)

o
't:I

i
~ -\0 -~

Diagram 19-30. Resume Routine (IEAVETCL) (part 2 of 6)

Extended Description

1 Turn on TCB intersect flags (TCBS3A and TCBACT)
via a compare and swap. (If TCBS3A=1, the stage 3

exit effector is locked out. If TCBACT=1, the dispatcher
is locked out.) If an intersect flag is already on, the local
lock must be acquired after branching to step 7.

2 The suspend count in the RB (RBSCF) is
decremented by one.

3 If the Resume was for the top RB and the unit of
work is not dispatchable, the count of ready TCBs

(ASCBTCBS) must be incremented by one.

4 If register 14 is zero, RETURN=NO was requested.
Therefore, Resume will attempt to do a TCTL to

the resumed TCB at step 13. If register 14 is a return
address, Resume will not do a TCTL to the resumed TCB.

Module Label

IEAVETCL IEAVRSME

<
C7.l
N o
~

Co
S

t I Diagram 19-30. Resume Routine (IEAVETCL) (part 30f 6)

'" .-
00

o
.t"'-I

~
N
t"'-I
'<

~
Lo
f5. n
L-
0:

~
<:
~
:3 c
01:0-

~
N
Q
eN
00
~

From Mainline When
Intersect Flags are
Already On

I Local Lock I
..

§ '. RBSCF

TCB

TCBXSCT

Register 14

.[Oor return J
address

.
5 Turn off intersect flags.

6 Return.

" > 7 Obtain the Local Lock. v

,..
8 Decrement suspend count

v in RB(RBSCF).

9 Try again to turn on intersect
flags as in Step 1. If the flags
are turned on, go to Step 3.

'")
- If compare and swap fails, v

continue.

10 Release the Local Lock.

11 If R ETURN=NO specified,
go to SRB exit.

A

,/ If RETURN=YES specified,
continue.

12 Return.

To issuer of
RESUME
RETURN=YES

..
, Step 3

SRB Exit ..
,

? To Issuer 01
RESUME
RETURN=YES

,§
-V RBSCF-l

... TCB
.y

TCBXSCT

~
N
Q
eN
00 o
-...I

j

f:I)
(\)
(')

~.
~

a::
(\)

~
Q.

a
o
1
~.

f"' -\C) -\0

Diagram 19-30. Resume Routine (lEAVETCL) (part 4 of 6)

Extended Description

5 The intersect flags turned on in step 1 are turned off.

6 Return to the caller.

7 If the TCB was active or the stage 3 exit effector
was active for this TCB, the local lock is acquired.

8 The suspend count in the RB (RBSCF) is decremented
by one.

9 A second attempt is made to turn on the intersect
flags. If successful, control goes back to normS!

mainline processing.

10 Otherwise, the local lock is released.

11 If register 14 is zero (RETURN=NO was specified),
control is passed to the normal SRB routine. If

the caller was not in SRB mode, he is terminated. If
register 14 is not zero (RETURN=YES was specified or
implied) then go to the next step.

12 Return to the caller.

Module Label

GETLOCK GETLOCK

~,
~

o w
00
S

~
\Q -;...
c:>

~
~

t"'-l

I
t""I

ci. n
t""I a:
~
<:
~
~
.a:o.

~
~

s
00 s -

LCCA

LCCASRBM

ASCB

ASCBSTA

..
.... 1/ 13 If caller is not in SRB mode,

issue ABEND.

14 Otherwise set up to go to TCTL.

....
-y) 15 !f STATUS is active

(ASCBST A=ON), go to
TCTL to cause the SRB
to exit.

16 Otherwise, go to TCTL
to transfer control to the
resumed TCB.

ABEND
..
7'

;

TCTL

...
T

See Step 7

TCTL
..
-y See Step 4

TCBS3A
.... I)

--v I
~
~ o
~

00
c:>
-...J

C"Il
ttl n
g.
=
~

~
ttl

~
o
o
'C
~ g.
=
f" -\0
!"'" --

Diagram 19-30. Resume Routine (lEA VETCL) (part 6 of 6)

Extended Description

13 Only SRBs are allowed to specify RESUME
RETURN=NO. If the caller was not in SRB mode,

it is terminated.

14 The following is done to be able to enter TCTl at a
special internal entry:

• Turn off TCBS3A.

• Disable I/O and external interrupts.

• Set up super FRR.

• Turn on DCAl TCTl to indicate transfer control is active.

15 If STATUS is active, TCTl is entered at a point that
will cause normal SRB exit to occur.

16 If STATUS is not active, TCTl is entered to transfer
control to the resumed TCB.

Module label

RESU006

<::
C"Il
N
<:>
c...l
00
o
-.I

4-192 OS/VS2 System Logic Library Volume 4 (VS2.03.807)

Task Management performs services for both
problem and system programs. These services fall
into three catagories: creating and deleting
subtasks, controlling the execution of tasks in one
or more address spaces, and providing
informational services for the requester.

Creating and deleting subtasks consists of the
following services:

• Creating a new subtask. The requester issues
an ATTACH macro instruction to perform this
service.

• Terminating or deleting a subtask. The
requester issues a DETACH macro instruction
to perform this service.

Controlling the execution of tasks in one or more
address spaces consists of the following services:

• Changing the dispatching priority of a
subtask. The requester issues a CHAP macro
instruction to perform this service.

• Allowing a program to stop executing until a
specified event or number of events occur.
The requester issues aWAIT macro instruction
to perform this service.

• Allowing a program to stop executing until
one of n events completes and be directly
informed which events have completed. The
requestor issues a sequence of EVENTS macro
instructions to perform this service.

• Signifying the completion of an event. The
requester issues a POST macro instruction to
perform this service.

• Providing a serialization mechanism for a
resource or resources. The requester issues
ENQ, DEQ, or RESERVE macro instructions to
perform this service.

• Specifying a program check interruption
routine. The requester issues a SPIE macro
instruction to perform this service.

• Handling the exiting procedures for programs
other than type 1 SVcs. The requester issues
an EXIT SVC to perform this service.

• Handling the exit procedures for SVC
routines. The requester uses EXIT Prolog to
perform this service.

• Manipulating the dispatchability indicators of
system control blocks. The requester issues a
STATUS macro instruction to perform this
service.

Providing informational services consists of the
following services:

• Providing programs with information from
system control blocks. The requester issues an
EXTRACT macro instruction to perform this
service.

· ~::g :ro:=:::~ ::~::~~: !~q:ster .•..
issues a TESTAUTH macro instruction to
perform this service.

Creat;n, and Delet;n, S"btask,
Services related to creating and deleting subtasks
involve the TCB (task control block). When a
problem or system program issues an ATI ACH
macro instruction, the ATTACH routine receives
control from the svc IH (interruption handler) and
creates a TCD. (See Supervisor Control, section 19,
for the description of interruption handling).
ATTACH then places the newly created TCBon1he
TCB ready queue in the appropriate address 'space,
according to the priority written on the ATTACH
macro. Figure 2-37 illustrates the task queue. It
shows the relationship between the address space
- represented by the ASCB (address :spacecontrol
block) - and the tasks running in it -
represented by the TCBs. Figure 2-38 depicts the
family subtask queue. It shows the relationship
between job step tasks and subtasks.

ASCB 1 ASCB 2 ASCB n

TCB

Two chaining fields indicate the relationship of tasks on the task queue:
TCBTCB - Points to the TCB for the next lower task on the task queue.
TCBBACK - Points to the TCB for the next higher priority task on task queue.

Figure 2·37. The TeD Ready Queue

4·194 OS/VS2·System LOgic library Volume 4 (VS2 Release 3.7)

Four chaining fields indicate the relationship of subtasks on a subtask queue:

TCBOTC - Points to the TCB for the task that attached this sUbtask.
TCBL TC - Points to the TCB for the task last attached by this task.
TCBNTC - Points to the TCB for the task previously attached by the task that attached this task.
TCBJSTCB - Points to the first TCB for the job step.

Figure 2-38. The TCB F.amily Queue

Section 1: Method of Operation 4-195

After the requester issues a DETACH macro, the
DETACH routine receives control from the .SVC IH,
and removes the pointers from other TCBs to the
deleted TCB. This effectively.takes the specified
TCB from the TCB queue.

Controlling Task Execution
Task management services control task execution
directly and indirectly. Direct control of task
execution means that the requester uses a task
management service to immediately alter the
execution of a task. Indirect control of task
execution means that the requester uses a task
management service to perform a service that alters
task execution sometime in the future.

Direct Control of Tasks
Requesters can use the following task management
services to alter immediately task execution:
• CHAP
• WAIT
• POST
• STATUS
• MODESET
• EVENTS
• EXIT
• EXIT Prologue.

The CHAP, STATUS, and MODESET services alter
the dispatching of tasks. (See the Supervisol
Control section for a discussion of task
dispatching.) Requesters alter the dispatching of
tasks to indicate or to cause changes in task
execution. After CHAP receives control from the
SVC IH, the CHAP routine replaces the value that
represents the dispatching priority in the TCB with
the new value that represents the changed
dispatching priority. Then, CHAP changes the
position in the TCB queue of the TCB to reflect the
changed priority. STATUS, after receiving control
from the svc IH, changes dispatchability indicators;
and MODESET, after receiving control from the SVC
IH, changes the mode or system key of the
requester.

The POST and WAIT services operate as a pair to
indicate the occurrence of an event to the
requester. The WAIT service receives control from
the svc IH, and then indicates a wait condition in
an ECB (event control block). The POST service
receives control from the SVC IH and "posts" the
occurrence of an event in an ECB. POST marks the
completion of an event, and WAIT waits for the
event. In effect, these two services control task
execution by synchronization.

A new service EVENTS has been added to
further enhance the synchronization previously
provided only by WAIT and POST. EVENTS and

4-196 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

POST also operate as a pair to indicate the
occurence of an event to the requester. The
EVENTS service routine first receives control from
the SVC IH through the Extended SVC router to
create an events table for the user. Then the
EVENTS service routine receives control from the
SVC IH to initialize the ECB. The ECB is initialized
with the WAIT bit on in the high-order byte; the
low-order three bytes contain the event table
address, with bit 32 turned on. EVENTS service
routine mayor may not wait on an EVENT-type
event to complete.

EXIT and Exit prolog perform the exiting
services for system and user programs.

EXIT performs the exiting procedures for system
and user programs; Exit prolog performs the
exiting procedures for SVcs.

Indirect Control of Tasks
Requesters can use the following task management
services to alter tasks at a later time:
• ENQ/DEQ/RESERVE
• SPIE

The ENQ/DEQ/RESERVE services·enable a
requester to gain control of the specified resources
needed to execute the requester's program.
ENQ/DEQ/RESERVER queue requests for resources
after receiving control from the SVC IH.

The SPIE service constructs an SCA (SPIE control
area) which contains information that enables a
task to regain control after a program interruption.
(See the Supervisor Control section for a
description of interruption types.) SPIE receives
control from the SVC IH after a SPIE service request
occurs. SPIE constructs the SCA, and sets indicators
in the TCB and RB of the requester.

Providing Informational Services
Two task management services, EXTRACT and
TESTAUTH, provide requesters with task-related
information, such as contents of control blocks,
and authorization of requesters. The EXTRACT
service enables a requester to extract control
information from the TCB, JSCB (job step control
block), or CSCB (command scheduling control
block) or combinations of those control blocks.
EXTRACT receives control from the SVc IH to
furnish the specified information for the requester.
TEST AUTH ensures that a caller of a supervisor
service has the necessary authorization to use the
service. (The Introduction to VS2 discusses
authorization.) TESTAUTH receives control from
the svc IH, or after a branch entry from a
supervisor routine.

I:Il c a eo
= !:»
a::
c r
Q
000)

o
"C:J
Q
a eo
=
~ -\C,

Task
Management
Overview
(no diagram)

20,1 - -I:ro:j I 20-8 120:S
ENOl· ENQ/DEQ/

ATTACH DETACH CHAP WAIT POST EVENTS RESERVE DEQ RESERVE
Processing. Processing Processing Processing Processing Processing Processing. Processing Recovery
(lEAVEATO) (lEAVEEDO) (lEAVECHO) (lEAVSY50) (lEAVSY50) (lEAVEVTO) (lEAVENQ1) (lEAVENQ1) UEAVENQ1)

.....

120-10

SPIE
Processing
(lEAVTBOO)

Figure 2-39. Task Management Visual Contents

(20-11

EXTRACT
Processing
(IEAVTBOO)

EXIT EXIT Prolog
Processing Processing
UEAVEOR) (lEAVEEXP)

20~15 120-16

STATUS MODSET TESTAUTH
Processing Processing Processing
(lEAVSETS) (lEAVMODE) (IEAVTEST)

~ -~
~
~
N
CI)

~
9
t"'"

<i cr
t"'"

~
~
< o c a
(D

~

~
N

:;:tI
~
(D
~

r6
IN

~

Diagram 20-1. ATTACH Processing (IEAVEATO) (part 1 of 8)

From SVC IH

- 1 Checks the validity of the
parameter list.

2 Obtains a workarea and saves
the parameter list. • J, I
Obtains SVRB.

Output

Register 15

Return Code

00 ...:... Successful
04 - ATTACH issued from a STAE exit
08 - Insufficient storage for SCB
OC - Invalid ST A I exit routi ne or ST A I parameter

list address
14 - System task specified JSTCB =YES, was not

a job step task
18 - Both job step and non -job step tasks as

sub tasks invalid

Register 1

ABEND Code

X'12A' - User requested giving a subpool shared
by task

X'22A' - User requested giving or sharing subpool
with SPID greater than 127

X'42A' - Invalid ECB address
X'52A' - I nsufficient storage for SCB JST AI

not specified)
X'72A' - Invalid ATTACH parameter address
X'82A' - Invalid SPID specified with

NSHSPL or NSHSPV
X'92A' - Uncontrollable environment error

occurred

Register 15

I ReasonCode for X'92A'1

00 - Error occurred in ESTAE to establish recovery
for ATTACH

04 - Storage not available for new SVRB. SPQE,
or DE save area

08 - Error occurred in SVC 60 issued to process
STAI/ESTAI parm

OC - Error in SETLOCK obtaining local lock
10 - Error in SETLOCK releaSing local lock

c:I.l
(D

$lo·
::I
N

ac
(D

~
~
o
~

o
"CI
~
ao·
::I

~
\C)
\C)

Diagram 20-1. A IT ACH Processing (lEA VEA TO) (part 2 of 8)

Extended Description

ATTACH processing allo\l\lS a problem program or a system
program to attach a subtask. The ATTACH routine creates
a new TCB that represents a subtask of the original task,
fills in control information in the new TCB, places the new
TCB on the TCB queue and branches to the LINK routine
to provide the linkage to the first program to be executed
under the new subtask.

1 ATT ACH checks the validity of the input, and passes
control to ABEND to terminate the caller if any

invalid input. (Refer to the OS/VS2 Debugging Handbook,
OS/VS2 SPL: Supervisor, or OS/VS2 Supervisor Services
and Macro Instructions for a more detailed description of
the ATTACH input parameter list.) ATTACH uses
MODESET to change the key to that of the caller. Then
ATTACH refers to the input data while in the caller's key.
ATTACH uses MODESET to change back into key O. If
invalid input is found, a program check error occurs, and
the FRR gets control, and diagnoses the error.

2 ATTACH obtains a workarea and saves the input
parameters. The workarea also includes storage for the

DE operand, if specified, and provides storage for the
SVRB (supervisor request block) constructed for ATTACH
re-entry and LINK processing. (See step 6) ATTACH
passes the DE parameter area to the LINK routine, if
requested. This storage resides in subpool 255.

Module Label

IEAVEATO CHKPARM

t Diagram 20-1. A 1T ACH Processing (lEA VEATO) (part 3 of 8)

8

i
~
N
rn
1
B
i
(')

r0-
ts:
8
~

f

~
N

~
i
R

~

.

f

i

Register 4

~CB I
CurrentTCB

II TCBRBP

RB , SVRB

il
RBLINK

Register 15

G+ ~pMvdor P.~nMW' Lid

Supervisor
Parameter List

I I

.- r> 3 Obtains storage for new
TCB, and IQE and IRB if
necessary.

a) For ETXR parameter.

b) No ETXR parameter.

...... => 4 SCB built (via SVC 60) to
satisfy (E)STAI requests, or
to propagate a~y existing
(E)$TAI SCBs •
Completes TCB initialization.

5 Builds and chainsSPQEs.

..1>..> 6 Initializes new SVRB.
"

I

w
r-~

..
p-

~

...
..
y

~

...

to.

y

~

...

I

..
P'

.
I ..1>.. NewTCB IQE

8·
I ~ TCBlaE -----TeBSCB

J (
r- IQEtRB

" TCBECB
CIRB

TCBPQE

Creates the TCBTCT IRB

Necessary IRB TCBJLB

TCBJSCB

TCBJSTCB
GETMAIN

TCBEXT2 SCB

Obtains Storage TCBATT
in Subpool 253 TCBFSM ~ SCBSCB

TCBPKF

~SCB to.
TCBANDSP

8 TCBTRN --v
TCBRBP
TCBGRS2

GETMAIN

Obtains Storage
in Subpool 255

.... NewSVRB
A· ~///LL.L I

y

... RBLINK

" RBSIZE
....)(8 RBSTAB
y

RBTCBNXT

Exit Prologue RBOPSW

RBGRSAVE

RBEXSAVE

RBATTN

~//////

f a e'
::I

!':»
at

i
o
o
1 a
~

~ o -

Diagram 2~ 1. A IT ACH Processing (lEA VEA TO) (part 4 of 8)

Extended Description

3 ATTACH obtains storage for an I QE (interruption
queue element) and IRB (interruption request block)

when the request contains the ETXR parameter, as well as
the storage for the new TCB (task control block). Before
ATTACH builds a new IRB, the current TCB's subtask
queue is searched for an existing IRB with the same ETXR
address using the TCBIQE and IQEIRB fields. ATTACH
increases the RBUSE count by one if an IRB exists having
the same EXTR address, and then chains the IRB off of the
new IQE. ATTACH creates a new IRB, as well as an IQE,
and a TCB when one does not exist, using the CI RB
(Create IRB) routine .. The storage for these control blocks
resides in subpool 253.

4 The SVC 60 (STAI/ESTAI) routine builds SCBs
(ST AE control blocks) to satisfy any requests for

STAI or ESTAI on the ATTACH request. SVC60also
propagates any STAI/ESTAI existing SCBs from the
current TCB to the new TeB.

The ATTACH routine sets other fields in the new TCB
according to the parameters on the ATTACH request, to
zero if they are not explicitly set, or propagates the value
from the current TCB.

Module Label

GETCBS

STAIRTN

Extended Description

5 The ATTACH routine builds a queue of SPQEs off of
the TCBMSS field according to the values specified in

the SHSPL, SHSPV, GSPL, GSPV, and SZERO operands.
New SPQEs are built from subpool 255. ATTACH builds
shared SPQEs for subpools 236 and 237 if these SPQEs
existed for the current TCB, and in accordance with the
NSHSPV or NSHSPL parameter. These shared SPQEs are
chained off the TCBSWA field.

6 The new SVRB contains control information:

• RBGRSAVE - contains caller's register 1 through
12. Register 1 contains the address of problem program
parameter list.

• RBEXSA VE - contains control information previously
stored in the current SVRB's RBEXSAVE.

• RBOPSW - contains entry point IGC042R 1.

The TCBGRS field contains the registers used by the
IGC042R1 entry point. ATTACH branches to EXIT pro
log; control returns to ATTACH at entry point
IGC042R1.

Module Label

SHARESP
GIVESP
SPCONTRL
SHARESWA
SWARTN

• N
2

i
~
N
C"IJ

1
.g

t"""
.i n·
~
8
~
C"
i
•
~
N

f
1M
:.... -

Diagram 20-1. A IT ACH Processing (lEA VEATO) (part 5 of 8)

From Dispatcher CJ
(lEAVEDSO) under newTCB Process l ... Output -TCB

j

Save Area

Register 1

m '*1 " I I plioi' + DCB, or 0 §'1l1,_
7 Obtain problem program save area,

if necessary. Set indicator in 'lr--;:::======~I:II
new TCB. .

Register 0

@ 200 Byte Workarea
From

Register 1

@SDWA J
RITM _

,.
SDWA FRR Workarea

SDWAPARM

Workarea

Current SVRB

\J'"t----' ------I

RBEXSAVE

...

lito..

---,..

IGC042R2

Obtains Storage
in Subpool 250

LINK Routine
(IEAQCS01)

- ~ 1111 RITM 8 Ensure that th~ FRR is processing .@._' •• 6"'--":":":"::"':':":--~
in the correct address space and ,;"
has not been previously entered.

Problem
NewSVRB Program

Parameter
List

tu:s\;:t1~13

RBGRS1

RBEXSA

Current SVR B

9 Set recursion indicator. ~ ~ >l RBEXSAVE
I I ' ------.

10 Determine whether a validity
check error occurred, and reset
completion codes, if necessary.

6

RITM ..
r

~

Return Code=O

Completion Code

42A - Invalid ECB
72A - Invalid Parameter List

rIl
(D

~ o·
=
~

a::
(D

[
So
o
'" " a. o·
=
t
c:::>
eN

Diagram 20-1. ATTACH Processing (IEAVEATO) (part 6 of 8)

Extended Description Module Label

7 Obtains a problem program save area from subpool IEAVEATO IGC042R1
250 for SVAREA=YES requests, and places the

address of the save area into TCBFSA and RBGRS13. Then
the ATTACH re-entry routine initializes the RBEXSAVE
field in the SVRB for use by LINK.

8 After receiving control from R/TM, the ATTACH
FRR (functional recovery routine) ensures that it is

operating in the address space used by the ATTACH
routine. If the FR R is processing in the wrong address
space, or if recursion has occurred, control goes to R/TM,
with a no-retry indicator.

9 The ATTACH FRR sets a recursion indicator in the

workarea of the current SVRB's RBEXSAVE field.

10 If a validity check error occurred, the ATTACH FRR
changes the completion code to X'42A', for an

invalid ECB (event control block) or X'72A', for an invalid
parameter list. Control then goes to R/TM, with a return
code of 0, indicating that there will be no retry of the failing
operation.

IEAVEATO IGC042R2

t Diagram 20-1. A1T ACH Processing (IEAVEATO) (part 7 of 8)

2
o rn
< ,(11.)

N

f
J
;~

OQ

c·
.t:
'2"
~
~
E g
"~

'< ,go
N

i
~
'W
':'" -

Input

Register·O

SDWAlndicator
Value4= X'12'

:Re.gister 1

@:SDWA

'.Register 2

@ .ATTACH Workarea,
if .no;·SDWA

SDWA

SDWAPARM:

F:lB,EXSAVE'

:Process

11 RecoverTCB dispatching queue.

IGC042ES

12 Determines whether an SOWA exists:

• NoSDWA.

• Yes, one exists, continue.

13 Determine whetherFRHhas been
entered:

• Ves.

• No, continue.

14 Set recording information and

15 Perform cleanup.

ToRITM

Output

'I I Step 15

SDWA

SDWARCDE

I I .step 15

LJ
Tca

D

~
sa.
~.

::I
N

a::
~

I
o
"'" o

"I:S

" =~.
':I

to
~
VI

Diagram 20-1. ATTACH Processing (IEAVEATO) (part 8 of 8)

Extended Description

11 The ATTACH FRR recovers the TCB dispatching
queue by routing control to a CHAP recovery routine

UGC044R2). Control returns, and the ATTACH FRR gives
R/TM control with a return code of O. The SDWA contains
recording information. The variable recording area
(SDWAVRA) contains the contents of ATTACH's perma
nent workarea, which contains a code that isolates the por
tion of ATTACH processing in which the error occurred,
the addresses of the new TCB and the current TCB, and
other information. This is followed by the recording
information supplied by routine IGC044R2 (see the descrip
tion of CHAP SVCL The recording area, SDWARECP, con
tains the module name (lEAVEATO), the CSECT name
o GC0004B), and the FRR name (lGC042R2L

12 The ATTACH ESTAE (extended STAE) routine
receives control from R/TM. First, the routine checks

register 0 for a non X'12' value. (A X'12' value indicates
that no SDWA exists.) If a SDWA exists, control goes to
Cltep 13; otherwise, control goes to step 15.

Module Labet

IGC042E5 IGC042ES

Extended Description

13 The ATTACH ESTAE routine next determines
whether the ATTACH FRR routine has already

received control by checking the recursion indicator in the
RBEXsAvE field of the current SVR3. If it has, no record
ing is done and control goes to step 15; otherwise, control
goes to step 14.

14 The variable recording area SDWA VRA is set to the
contents of the permanent workarea (from the current

SVRB's RBEXSAVE field), as described in step 11. The
recording area SDWARECP is set to the module name
(I EAVEATO), CSECT name UGCOOO4B), and ESTAE
routine name (lGC042EsL

15 The following internal ATTACH subroutines perform
clean-up functions:

• RTN1

.RTN2

• RTN3

• LOCK

.UNLOCK

Control goes to R/TM, with a 0 completion code, indicating
that no retry of the failing operation will occur.

Module Label

~
N

~

~
~
N
fIl

i
E n·
rea
~
~
Ii:
~
~

~
N

~
I
w
~

Diagram 20-2. DETACH.Processing (IEAVEEDO) (part 1 of 8)

Input

TCB

TCBFLGS5~

TCBFEXTR

Problem Prog
Save Area

From SVC IH
to process
DETACH requests

--I
I

--I
1

I

_-1

~
-

Process

1 Checks the validity of the parameter
word and DETACH TCB
address.

Normal DETACH Processing

" 2 If detach TCB has finished
processing.

3 Frees IRB, IOE, and IRB problem

" program save area if necessary.

4 Terminates subtask if necessary.

lit
-

~

"'

...
"'

Output

II "
Register 1

I Completion Code I r

.. ABEND 13E - STAE = NO
r 23E - Invalid Parameters

33E - STAE = YES
43E - Invalid ECB address in TCBECB

t-

BI
r

--.
Step 6 ..

FREEMAIN ~

.. IOE, IRB in

r
SP 253; IR3 1M

problem program
save area in
SP 250 TCB

TCBIOE=O
"
r

TCBFEXTR=O

TCBECB= @of

"
workarea ECB

A ..
...

ABTERM
r

")l B
I ..

til
(D g.
::I
N

ac
(D

~
c:;I.

o -.
o

"0
~
fa.
e'
::I

~
~
....,J

Diagram 20-2. DETACH Processing (IEAVEEOO) (part 2 of 8)

Extended Description

DETACH processing frees subtask resources - the subtask
TCB, and possibly a problem program save area - still held
after the task has completed. End of task processing frees
these resources automatically, except when the creating
task had specified the ECB (used to indicate termination
of the task) or the ETXR (used to indicate the address of
an exit routine) operands on the ATTACH macro. DETACH
also provides a means for mother tasks to purge any sub
tasks not yet terminated.

The DETACH routine has defined a branch entry available
for certain privileged programs. The branch entry provides
two functions:

• Provides a directed detach for use by ABEND to detach
subtasks not belonging to the current TCB .

• Provides a clean-up routine for end-of-task (End-of-task
Resource Manager).

Module Label Extended Description

1 Register 1 supplies the address of a fullword
containing the address of the subtask TCB

to be detached. If an abend code is necessary and
bit 0 of Register 1 is 1 (that is, STAE=YES was
specified), the abend code is 33E; if bit 0 of
Register 1 is 0 (that is, STAE=NO was specified),
the abend code is 13E. DETACH checks the
input, and passes control to ABEND to terminate
callers with invalid input.

2 DETACH frees TCB resources if the TCBFC bit of the
TCBFLGS5 field is set to one. DETACH sets a return

code of 0 and returns to the caller (see Step 6). DETACH
will stop an active TCB by using the STATUS routine (see
ST A TUS Processing diagram).

3 DETACH checks for an ETXR (end-of-task exit
routine) for the TCB being detached. An ETXR exists

if the TCBIQE field does not equal zero and bit TCBFETXR
equals 1. DETACH uses FREEMAI N to free the IQE and
DETACH sets TCBIQE and bit TCBFETXR to zero if an
ETXR exists. If the IRB use count (RBUSE) equals 1,
DETACH uses FREEMAIN to free the IRB and its associ
ated problem program save area. If the IRBuse count
exceeds 1, DETACH decreases the IRB use count by one.

4 DETACH passes control to terminate the subtask.

Module Label

IEAVEEDO

i Diagram 20..2. DETACH Processing (IEAVEEOO) (part 3 of 8)

~ w Input
i I • iiiiAii'
I

i
t: ..
~
~
§
CD

•
~
N

~ r
I
w
!..,. -

Register 0

Entry Code -r
O-EOT
1-ABEND

Branch
Entry ...

r

--_.-

5 Detach the subtask.

Allow subtask
to complete

~

For ATTACH
ECB only

..L ..

6 Frees TCB resources, removes
TCB from family queue.

7 Sets return code.

IGC062R1

Branch Entry for EOT and ABEND.

/-8 For ABEND clear TCBECB,
go to Step 2.

"" *' ;,.; >'~

-

I ..
)(A

v

..
r WAIT f,

'f.,

.. POST ATTACH ECB
,. ... 1 Completion Code I

)I (From TCBCMPC) vI

-.. FREEMAIN ,.
Problem
Program
Save Area,TCB

, Register 15

')I Code 1 m ... EXIT Prolog
-YI

0- Normal completion. (lEAVEEXP) .,..
4 - Subtask terminated with code

33E, all subtask resources freed.

~
~ o·
= ~

a:
(D

i
S
O

"C:S
~ a o·
=
~
~
\D

Diagram 20-2. DETACH Processing (IEAVEEDO) (part 4 of 8)

Extended Description

5 DETACH saves the TCBECB, resets with the address
of the workarea ECB, allows the subtask to complete

processing, and posts the TCB completion code if an
ATTACH ECB exists.

6 DETACH frees the TCB problem program save area,
located in subpool 250, if one exists, unchains the TCB

from the family queue, and frees the detach TCB.

7 DETACH sets the return code for SVC entry
according to completion conditions.

8 ABEND processing is the same as normal processing,
3xcept the TCBECB field is cleared to zeros.

Module Label

~ Diagram 20-2. DETACH Processing (IEAVEEDO) (part 5 of 8)
~ -Q

~
~
~

rI.l

1 a
r-
~
n'
r-
~
~.

f
(D ..
~
~

~

i
~
w
~

Input
"" ... ~ ,

Tca
.'

TCBFEXTR ~---,-'"
TCBECB ~-i

I } '~_J , TCBIOE .: .:

<

, Register 0 :

; I @ 200 byte workarea] .;

.~.
.;,

:
Register 1

:. 1 I . ';
@SDWA .,

,
~: ~ SDWA FRR Workarea ;.

;, V SDWAPARM" Flags ;

:
@TCB "

,

i.~
. '

i"

\~DETACH ~~ ..
,;

;;; workarea

;~
d.

~{

:~
DETACH
Workarea ~~ :~

t~ Flags
i • .-

..

f
Return @ ~

ECB
:0
.3

(2-15 for branch Registers
entries) 0-15 :

Process T
:\ ~·x .i.;;,S;~.:F(

----- "; 9 Checks the subtask for ECB
and ETXR. :~

.'.~' POST ECB
II. .

L
.r

,
...

"

J ETXR II.
Stage 2 Exit

.,
y

'" L Effector
~

~,l ie, 10 Unchains TCB from the .. , . . ~ii ; dispatching queue .
>;~

II.. To EXIT Prolog • For ECB or EXTR. + (lEAVEEXP) ;
.,:. • Otherwise, Step 6

.~

~
FromRTM ... >;i

: IGC062R2 ,.

"). C 11 Ensure that the FRR is processing
y

in the correct address space. y

RITM
Invalid Address
Space

II.

II r

>@ 12 Reset completion code

'.:
(23E or 43E) for invalid ..
parameter or ECB. RITM :;~, "

6

Output
',.e.

'" ~.'.'.'
Tca

TCBACTN=Q ~y
'") TCBFC='J..

S(
\; TCBIOE=Q

I~:~ TCBECB=O

I;:~ TCBFEXTR=O

l

l...J\. ASXB

y

f'·
til ASXBTCBS
s';

.'~ ASXBLTCB

I

ASXBLTCB

~;1

~ a
~r
=
~

is::
(D

[
Q -o

"C
~ a o·
=
~
~

'"""
'"""

Diagram 20-2. DETACH Processing (lEA VEEOO) (part 6 of 8)

Extended Description

9 DETACH gives control to the POST routine (see
the POST Processing (IEAVSY50) diagram) for

an ATTACH ECB, and gives control to the Stage 2
Exit Effector (see the Stage 2 Exit Effector (I EAVEEE2)
diagram) for end~f-task exit routine processing.

1 0 DETACH unchains the TCB from the dispatching
queue, and decreases the count of TCBs on the dis

patching queue in field ASXBTCBS. DETACH clears
TCB fields TCBECB and TCBIQE, and TCBFEXTR
when either ECB or ETXR conditions exist for the detach
TCB, sets TCBFC to equal 1 , but does not free the TCB
itself. If neither ECB or ETXR conditions exist, FR EEMAI N
frees the TCB and its problem program save area (if one
exists).

11 After receiving control from R/TM, the DETACH
FRR (functional recovery routine) ensures that it is

operating in the address space used by the DETACH routine.
If the FRR is processing in the wrong address space, control
goes to R/TM.

12 If DETACH was entered via SVC, field SDWACMPC
is set to X'23E' tor an invalid parameter or to X'43E'

for an invalid ECB address. Control then goes to R/TM with
a return code of 0 in field SDWARCDE. If DETACH was
branch-entered, an indicator is set and step 13 is done.

Module Label

t Diagram 20-2. DETACH Processing (IEAVEEDO) (part 7 of 8) -~
o
~
f'-)
~
f'-)
'<
=-S
t"'"

<2 n·
t:
2"
~
~
~
(D

~

~
~

:=c

i
~
CH

~ -

Input

Register 0

o or Completion Code J.--...

Register 4

@TCB J.--

@ D ET ACH Workarea

DETACH
...io.. Workarea

Registers
0-15

From
RfTM
to

Retry ~

-- ,. T--
I
I
I
I
I
I
I

Process It

13 Perform appropriate error
processing.

IGC062R3

r- 14 Check register 0 for a completion
code:

-
~ IGC044R2

I I
~ RfTM

• Contains 0 ___ l1li1111"_ Step 16

• Contains completion
code: continue.

Output

SDWA

-V

I II I SDWARCDE

I~
I IRW Return Code:

0- No Retry
4 - Retry

TCB

r- L - ,= 15 Terminate the originating task. :; :>I
t TCBCMPC

'"
,. iy~ v 16 Restore registers, cancel the

FRR, and return to the branch
entry caller.

~

..

To Branch Entry
Caller

~I------------~

Completion Codes:
X'43E' - Invalid ECB
X'53E' - Error before ECB

and ETXR
processing complete

Diagram 20-2. DETACH Processing (ffiAVEEDO) (part 8 of 8)

{;I'.I

Extended Description

13 The DETACH FR R recovers the TCe dispatching
queue by routing control to a CHAP recovery routine

(lGC044R2). Control returns. If DETACH was branch
entered for end-of-task resource manager processing, the
terminating TCe is removed from the family queue; if an
invalid Ece was detected, ABTERM code X'43E' is passed
to retry routine IGC062R3. If end-of-task resource man
ager processing had not yet completed processing the end
of-task ECB or EXTR, ABTERM code X'53E' is passed to
the retry routine. Otherwise, no ABTERM is indicated for
t"is routine. The DETACH FRR gives R/TM control with a
return code of 0 for SVC entries or 4 for branch entries. The
SDWA contains recording information. Field SDWA VRA
contains re.cording information as set by routine IGC044R2.
(See extended description of CHAP SVC for description of
this information.) Also, field SDWARECP is set to module
name (lEAVEEDO), CSECT name (lGC062), and FRR
name (lGC062R2). For branch entries, general register 0
contains a completion code of X'43E' to indicate a validity
check error, a X'53E' to indicate an error in end-of-task
processing, or 0 for no error. Control goes to R/TM.

14 The DETACH recovery retry routine checks register
o for a completion code. If register 0 does not con

tain a completion code, control goes to step 16. Otherwise,
processing continues.

15 If a completion code exists, the DETACH recovery
retry routine terminates the originating task by

giving control to R/TM.

g 16 Control returns to the caller that entered DETACH
g. via a branch.
= ~
a::
(1)

g
~

o
~

o
'C
~ a
5'
=
~
~
w

Module Label

IGC062R3

~
~ -.f;Io.

o
Ie
~
~

rn
'<
=-
~

i
n°
r-
61

~
~
~
(D

.f;Io.

~
~

f
w
~

Diagram 20-3. CHAP Processing (lEA VECHO) (part 1 of 6)

Input

Register 1

t To Fullword with
Address of TCB, or 0

Register 0

Value to Add to
Dispatching Priority

Register 4

• Caller's TCB

Fullword

+ ofTCB
to be
Chapped

TCBFC

From SVC I H to
process a
CHAP request

-1
I
I

..l..-

IGC044

1 Ensure that the input address is
valid (for non-authorized caller's) °

InValid Caller

Output

X'22C' - Address of parameter word
is invalid.

X'12C' - TCB not a subtask, or task
already terminated.

TCB (after CHAP)

. 2 Find the specified TC~ and set the .il VI I \Jtsu'>
dispatching priority for the task.. 111 1------""'4

-3 Re-order task queue if necessary. • .. all I "'UU,","'''

Caller (via
Exit Prologue)

r.I)
(D

g,
e'
= ~

a::
(D

[
o
~

o
"0

" a
e'
=
~
~ -VI

Diagram 20-3. CHAP Processing (IEAVECHO) (part 2 of 6)

Extended Description

The CHAP routine permits a problem program or system
program to alter its dispatching priority or the dispatch
ing.priority of one of its subtasks. Thesubtask must belong
to·the issuer; that is, the subtask must have been attached
by a routine belonging to the caller's task, and its TCB
must therefore be on the caller's subtask queue. In addition,
an authorized caller can change the dispatching priority
of any task in the address space.

A program issuing the CHAP macro instruction may change
the dispatching priority of a specified task to any value
between 0 and the issuer's limit priority. The distinction
between dispatching and limit priorities follows in the next
paragraphs.

Although both priorities are specified as parameters of
the ATTACH macro instruction, they serve different func
tions. The dispatching priority determines the appropriate
position of a TCB in the task queue, and also the next
routine to be placed in execution by the dispatcher. The
dispatcher gives control to the ready TCB with the highest
dispatching priority.

In contrast, the limit priority is used by the CHAP routine
to determine the maximum value to which it may increase
the dispatching priority of the task.

Module Label

IGC044

Extended Description

1 If 0 is supplied in register 1, the dispatching priority
of the caller is to be changed. The address of the

caller's TCB was placed in register 4 by the SVC Interrup
tion Handler (lH), and no validity check of the address is
required. The CHAP routine holds the local lock.

2 If a valid address is supplied in register 1 and if the
caller is not authorized, CHAP compares the specified

TCB address with the addresses of the TCBs that represent
the caller's subtasks. If the subtask is not found, CHAP
abnormally terminates the caller.

The CHAP routine does not make this test if the caller's
TCB (address in register 4) is the subject.

The dispatching priority is in field TCBDSP, and the limit
priority is in field TCBLMP.

3 CHAP queues the TCB according to its dispatching
priority, but at the end of the group with the same

priority level.

Module Label

IEAVECHO

of" Diagram 20-3. CHAP Processing (IEAVECHO) (part 3 of 6)
N
0\

i
~
N

i
i-n
r:
Sf'
~
~

f ...
~
N

f
w
:... -

nput

Register 0

I @ 200 Byte Workarea

Register 1

@SDWA I
I, SDWA

FR R Workarea

SDWAPARM- /

PSA ASCB

/'
PSAAOLD~ \ ASCBASXB

ASXB

Register 2

I @ Dump Header I

~

From RrrM Process
~

~ IGC044R1

I _ ~ ...
-.;> 4 Ensure that the FRR is processing

incorrect add ress space.

5 Recover the TCB queue.
From
ATTACH,
DETACH,
STATUS, or

~ ...
.,.> 6 Verify current ASCB and ASXB

.t. ~
for no errors.

~

f'
!

I ...
) 7 Dump the SOA, LSQA, and

Trace Table.

..L

Output

SDWA
,

... - y SDWACMPC

RrrM

..
r ;~

;;;
...

SDWARCDE
y

. " ... ""

Not Valid
Register 15

"'.1 1 ~l y~ Return Code = 4 .. ;
IEAVECAS

.~ ~
r

Verify ...
~ ..

ASCB/ASXB

,

..
SVC DUMP

~
r

...

fI)
(D

sa. e·
=
~

a::
(D

[
o
o
"0 q

=e·
=
~ -.....

Diagram 20-3. CHAP Processing (lEA VECHO) (part 4 of 6)

Extended Description

4 After receiving control from R/TM, the CHAP FR R
ensures that it is operating in the address space used by

the CHAP routine. If the FRR is processing in the wrong
address space, control goes to R/TM. If an invalid parameter
is detected, the CHAP FRR sets the SDWACMPC field of
the SDWA to a X'22C' completion code and control goes to
R/TM,' If "percolation" has occurred, the CHAP FRR speci
fies 'no recording' and control goes to R/TM. The return
code is zero for all three cases.

5 Then, the CHAP FRR calls routine IGC044R2 (an
external entry) to recover the TCB dispatching queue,

sets a 0 return code, and gives control to R/TM. Recording
information has been set in field SDWA VRA by routine
IGC044R2. In addition, field SDWARECP contains the
module name.(lEAVECHO), the CSECT name (lGC044),
and the FRR name (lGC044R1').

6 The CHAP TCB queues recovery routine verifies the
accuracy of the current ASCB and ASX B by goi ng

to IEAVECAS. If the ASCB and ASXB are not valid,
register 15 contains a return code of 4.

7 SVC DUMP dumps the LSOA, SOA, and trace table,
via the SDUMP macro instruction.

Module Label

t Diagram 20-3. CHAP Processing (lEA VECHO) (part 5 of 6) -co

o ,
~
~

)rocess ,It
fIl

1
~

i
r""

J
< e.
§
CD
.....

~
~

~
I
w

~

8 Recover TCB dispatching queue in the
current address spare.

9 Scan TCB family queue in current
address space, and correct invalid
fields.

10 Update count of TCBs.

/

11 Update count of ready TCBs.

< , " "'

Output

Queue Empty
Register 15

-"h I)1 Return COde = 8

...
IEAVEQV3

r
~

... SDWA

" SDWAVRA ..

;f-

ASXB

" ASXBTCBS ..

"' ASCB

"
v ASCBTCBS

~
(')

go
:=
~

~
(II

[
a.
o
'0
~

=-3·
:=

~
N -IQ

Diagram 20-3. CHAP Processing (IEAVECHO) (part 6 of 6)

Extended Description

8 The IEAVEQVO routine (entry point IEAVEQV3)
recovers the TCB dispatching queue. If the queue is

empty, register 15 contains a return code of 8.

9 The CHAP queues recovery routine corrects any
invalid fields in the TCB family queue. The SDWA

contains descriptive information about the errors found
and corrected. Field SDWAVRA contains the queue verify
routine name, lEA VEQV3, followed by recording infor
mation supplied by that routine. Following this recording
information is the name IGC044R2 and a four-byte
descriptor field. The format of the descriptor follows:

Byte Bit Description
1 0 Set to 1: errors were detected but not recorded.

Set to 0: all errors detected were recorded.

1-7 Reserved

2 0-7 Number of errors r:ecorded

3 0-7 Number of errors detected.

4 0-7 Return code from IGC044R2.

Following the descriptor is a 16-byte entry for each error
detected. The entry format follows:

Bytes
1-4

Desc,ription
NTC~ or L TC~ to indicate whether TCBNTC
or TCBLTC was updated.

5-8 Address of TCB with invalid field.

9-12 Contents of the invalid field.

13-16 The replacement address (new contents for
that field).

Recording terminates whenever SDWA VRA becomes filled
(indicated bv fields SDWAVRAL and SDWAURAL).

10 The count of ready TCBs in the ASCB (ASCBTCBS)
is updated to reflect the TCBs on the dispatching

queue. The total number of TCBs on the dispatching queue
is updated in the ASXB (ASXBTCBS). Control then returns
to the caller. CHAP itself, ATTACH, DETACH, and STATUS
all call routine IGC044R2 to recover the TCB queue.

Module Label

;t Diagram 204. WAIT Processing (lEA VSYSO) (part 1 of 2)

~

o
til

~
t-J
til

~
§
r-
«i
tr
r-
~
~
~
~
(D

~

'< til
t-J

~
S2.
i
r6
~

:..... -

Input

Register 0

Number of events; sign bit
on for long WAIT

True Form
Address of ECB

Complemented Form
Address of ECB List

List of ECBs

ECBs

From SVC IH to
process WAIT request

Branch
Entry

I

I
I
I

__ ..J

I
I
I
I
I r---

L __ _

IGC001

1 Check the wait count.

OutDut

Register 1

Completion C~

X'201' -Invalid ECB @

Exit via Exit
Prologue for SVC
entry. Exit to
dispatcher for'
branch entry.

2 Check list addresses and each ECB ill' "J!,1

X'101' - Number of ECBs is less
than the wait count

X'301' - Attempt to set wait bit
wh ich is a I read y set

address in the list (Supervisor key
callers are not checked). Check
individual ECB addresses.

3 Check whether number of
ECBs is less than wait count,

4 Determine if requester should

ECB

Address of RS
wait, and set ECB wait bit if this)I

is so. Set requester's RB address in Fbi li'0,v----0&'-------.......

ECB. Set RBWCF to number of
events. Set RBXWAIT field.

"'~ ~7: uecrealit: ~ 5 Decrease count of ready TCBs. .,*: ~w ~ A ~""D""''''''''<C'

6 Checks for Long Wait request,

Exit via Exit Prolog (JEAVEEXP) for SVC entry.
Exit to dispatcher (J EA V EDSO) for branch entry.

CJ'}
(1)

~ o·
= N

a;::
~

[
o
000)

o
"CI

i o·
=
i"
N
N -

Diagram 20-4. WAIT Processing (IEAVSYSO) (part 2 of 2)

Extended Description

WAIT processing permits a problem program or system
program to stop its execution until a specified number of
events have occurred, such as the completion of one or
more I/O operations. When the specified events have
occurred, the POST routine indicates the occurrence of the
awaited event or events via the CS (compare and swap)
instruction, and makes the program ready (no longer wait
ing), so that its execution can continue.

1 Control returns to the caller if the events waited on
have already occurred (wait count = 0).

2 WAIT checks the specified ECB address or the list
addresses and ECB addresses only for non super

visor key callers.

3 WAIT sets the RBECBWT bit in the caller's RB
when the caller specifies a wait count less than

number of ECBs. This means that the caller awaits fewer
events than the maximum number that can occur. For
example, if a WAIT request is fulfilled by the completion
of one of three possible I/O operations, the wait bit set in
each of the two ECBs not yet posted is now misleading.
If-the R BECBWT bit is set, the POST routine clears the
wait bit in each of the ECBs not yet posted, and also
clears the RBECBWT bit. This removes the misleading
indicators.

Module

IEAVSY50

Label

EN DWTCT

ADDROK

ECBWT

Extended Description

4
Event
Complete?
Yes

Yes

No

No

Wait
Flag
Set
NA

NA

Yes

No

Decrease
Wait
Count
=0

4=0

NA

NA

Action
• Reset RBECBWT=O and

clear wait flags in any
ECBs in the list.

• Continue processing E.CBs.
• Go to Step 5 if this is

the last ECB.

• ABEND - code X'301'.

• Set ECB wait flag.
• Put address of caller's

RB in ECB for POST.
• Continue processing

ECBs. If this is the
last ECB, store wait
count in RBWCF and go
to Step 5.

5 Decrease ASCBTCBS count (ready TCBs); if the
ASCBTCBS count reaches 0, WAIT increases the

ASCBSWCT by 1.

6 If the user issued a long wait request, the long wait
bit is set, and if all the TCBs in the address space

are either in a wait condition or nondispatchable, then go
to System Resource Manager.

Module Label

CSTCBSDN

LONGRBCK

f"
I',j
N
I',j

o
l:I.l

"<
l:I.l
I',j

l:I.l
'<

~
t"'"
~
()'

t"'"
c:;:
~
~
-<
2-= 3
(I)

"'" < l:I.l
N
b
Y.I

00
o
Ul
'-'

Diagram 20-S. POST Processing (IEAVSYSO) (part 1 of 12)

Input

ECB

Register 1 PARM List

~ ECB

~ASCB
~ ERRET

~

From SVC IH to
process a POST
request

Branch
entry for
callers in

•••••••••••••••••••• 1 key zero,
supervisor

Register 10

I Comp Code I
Register 12

I ~ ERRET

Register 10

~RB

RBWCF

Register 11

I ~ ECB

Register 13

~ ASCB

TCB

EVNTRBP

I
]

state, and
holding
local lock

-ri-
I

iJ

IGC002:

1 For problem callers,
ensure that referenced
address is valid.

2 Test cross memory POST
requests for authorization.

IEAOPT01:
IEAOPT03:

3 If I EAOPT01 branch entry,
I EAOPT03 bra nch entry, or
XMPOST, check for zero
ECB address:

a) If zero ECB address,
decrease wait count in
RB and clear all waiting
event tables for this RB.

I f wait count reaches 0
on 'this step, go to
step 11.

b) If XMPOST request,
go to step 10.

Otherwise, continue.

ABEND

ABEND
Caller
(Code 102)

IEAVTEST

Test User's
Authorization

Output

TCB

__ TCBRBP

TCBEVENT

RB

RBXWAIT

RBECBWT

RBLONGWT

RBWCF

EVNT

V
EVNTRBP

I

I ASCBTCBS I

'-< CJ:l
I',j

o
w
00
&;

til
<D
~ o·
=
~

:::
<D g.
Q.

o
100)

o
'0
~
~ o·
=
~
~
~
w

Diagram 20-5. POST Processing (lEA VSY50) (Part 2 of 12)

Extended Description Module

POST processing signals to a waiting program the occurrence I EAVSY50
of an expected event (such as the completion of an I/O
operation). To signal the event occurring, POST changes an
indicator in an ECB (event control block) via the CS (compare
and swap) instruction. The program issuing the POST and
the waiting program share the same ECB.

POST places a code in the ECB, as specified by the issuer.
The waiting program inspects the code to determine the
type of event that occurred.

POST also determines whether the waiting program can be
dispatched.

If the ECB was an event type ECB, POST places the address
of the completed ECB at the end of the event table and
moves the end-of-list indicator.

If the ECB was an extended ECB that identifies a valid
POST exit routine, POST will route control to the

ident ified exit routi ne.

1

2

POST ensures that the ECB address referenced is valid
for problem program callers.

Only authorized users can use the cross-memory post
service.

Label

ECBVALID

AUTHXMP

Extended Description

3 I f the caller specifies an ECB address of 0, register 10
contains the RB address. The RB wait count field

(RBWCF) is decreased by 1. Also, if any event tables are
waiting on this RB, they are taken out of the wait state
(EVNTRBP=O).

a) If the RB wait count goes to zero, the RBXWAIT,
RBECBWT, RBLONGWT wait bits are reset to make the
RB ready. If the TCB is made ready, the count of ready
TCBs (ASCBTCBS) count is updated for use by the

/':
Dispatcher.

/ b) A XMPOST request is determined by testing bit 0,

\
-----~

register 11. If it is one, or a parm list was specified on '
the SVC entry, an XMPOST is requested. Go to step
10 to schedule an SRB in the specified address space.

Module Label

< IJ'j
~

o
w
00
~

of"
~

~

~
~
~

C"Il
'<
~

9
t"'"
Ii
(=s'

t::
~
.$
~
J
C'O
~

~
~ e
00
~ -

Diagram 20-S. POST Processing (IEAVSYSO) (part 3 of 12)

Branch entry for

Register 10 Register 11 -..
I COMP Code I I ECB I ... -,--

ECB I

~VNT I
I
I

EVNTTCBP .. r--.J
EVNTRBP

ASXB Post Exit
queue

ASXBPTOE ~ ~ Next Blk + I
I Exit Addr I

ECB ECB Extension

~ SOxxxxxx I 01000000

I Exit Addr I

II
ECB

r:::: RB --

IEAOPT02

.. TCB - 4 If ECB is an EVENTS ECB: .", Step 3
TCBEVENT

a) Check if table address is "
a valid table address.

... EVNT

~
b) Check if waiting RB is

authorized to change ECB.

~

(:,
w
00

c) Post completed EVENTS EVNTLSTA ~
ECB to event table and
goes to step 3a. EVNTENTP ,. ABEND

If caller is wrong protect
ABEND Caller

key, if event table is full, or (Codes 402
if table address is invalid. and 502)

ECB
"-V 4.5 If an ECB Extension exists: I I Invalid I
v

A. Insure all restrictions on ABEND RiM ECB and ECB Extension
are met. Code

B. Post the completed event. 702

C. Invoke post exit routine, ..
then go to step 11. User

.... .. Exit
... Routine
;>5 If ECB is not an EVENTS

.,
ECB or an extended ECB
but has been waited on:

IEAOVL01
... Test Key

a) Check if R B address is a ,.. and
valid RB address. Alignment ..

b) Check if waiting RB is
ABEND authorized to change ECB. ~

ABEND Caller

0
(Code 202)

~
(") g.
1:1

!':»
ac:
a
[
o
"'" o
1 a
e'
1:1

to
N
N
(/I

Diagram 20-5. POST Processing (IEAVSY50) (part 4 of 12)

Extended Description

4 An EVENTS ECB is determined by checking the low
order bit of a waited on ECB. If that bit is on, the

ECB is assumed to be an EVENTS ECB.

a) The event table address is taken from the ECB, and the
TCB address is gotten from the event table. The TCB
ready queue is searched for this TCB. When it is found,
the event table queue is searched for the event table.
If it is found, the table address is valid.

b) If an RB is waiting on this event table, it is chec;:ked for
problem key (keys·8-15). If it is problem key, the ECB
is referenced in the key of the waiting TCB. I f the
waiting TCB was not in the proper key, the EVENT FRR
will receive control, change the completion code to
'402', and percolate.

d The completed event is added to the event table, unless
the table is full, in which case the user will be abended
with '502'. The complete bit and the completion code
are stored in the ECB, and control is given to step 3a .

. 4.5 It is assumed that an ECB extension exists when the
low order two bits of a waited-on ECB are on.

a) The ECB and ECB extension are checked to ensure that
they pass all post restrictions. Failure to pass a
restriction results in a 702 ABEND. The reason code
associated with the abend identifies the cause of the
abend.

b) The completion bit and completion code are stored
into the ECB.

d The exit routine identified in the ECB extension is
invoked via a branch. This routine executes as a
closed subroutine of post. The interface to the exit
routine is described in the OS/VS2 System
Programming Library: Supervisor. Upon return,
control is given to step 11.

Module Label

IEAVSY50 RBCHECK

lEA VSY50 EXTECB

Extended Description

5 If the ECB is w~ited on and the low order bit is not on,
the ECB is a standard ECB.

a) The TCB RB queue is searched, comparing the RB address
in the ECB to that of the RB in the address space. If an
equal compare is made, the ECB is valid.

b) If the waiting RB is problem key (key 8-15), the ECB
address is passed to validity check to verify the waiting
TCB's authorization to change that ECB. If validity
check fails, the caller will be abended with '202'.

Module Label

NOEVENTS

<:
CI)
~

<=> w
00
Q
(/I

~

N
N
0\

o
til

'< til
N
til

~
~

3

r ;:s.
r""
&

~
< o
C
3
~

~

'< til
N o
VJ

00 o
~

Diagram 20-5. POST Processing (lEA VSY50) (part 5 of 12)

Input

ECB

I 00000000 I ~-

ECB

I 4xxxxxxx I ~-

ECB d 80+RB

RB

~-

RBXWAIT

RBWCF

r
I

---J
I
I
L

From Step 3

-

--

--

......
r

ECB
A, I I I- 6 If ECB has not been waited on, 4xxxxxxx v

store post code and go to
step 11.

ECB
f\. I I '- 7 If ECB has been posted, go 4xxxxxxx -v

to step 11.

RB

'" r- 8 If explicit wait bit is on, do RBXWAIT v POST processing, store post
code, and go to step 11. RBECBWT

RBLONGWT

RBWCF

ASCB

I ASCBTCBS I I- 9 If explicit wait bit is not on,
store post code, and go to
step 11.

ECB

I 4xxxxxxx I
10 Schedule SRB to be dispatched ...

in requested address space. --y
ECB

I I GETMAIN 4xxxxxxx ..
r'

~ GETMAIN SRB
..... in SP245

~
~ (5.

=
~

ac
(11

[
Q
"'"a

o
"CI
~ a.
(5.

=
of"
N
N
...,j

Diagram 20-5. POST Processing (IEAVSY50) (part 6 of 12)

Extended Description

6 If POST finds neither the wait bit nor complete bit
set in the ECB, POST updates the ECB with the post

code specified by the caller, setS the complete bit, and goes
to step 11.

7 If the ECB has been posted already, no processing is
necessary. Go to step 11.

8 If POST finds the ECB waited on and the explicit wait bit
on (RBXWAIT), it will decrease the wait count, set the

complete bit and post code. If the wait count is not equal to
zero, go to step 11.

If the wait count goes to zero, POST resets the wait bit in all
the ECBs, if RBECBWT is set (the wait was on a list and the
wait count is less than the number of ECBs). POST increases
the number of ready TCBs (ASCBTCBS) in the ASCB for use
by the Dispatcher, if the post makes the task ready. POST
also resets the RBECBWT, RBLONGWT, and RBXWAIT
bits to make the RB ready, then goes to step 11.

9 If POST determines that the ECB-specified RB is not
in an explicit wait (RBXWAIT), it posts the ECB as

if the wait bit were off, and goes to step 11. ,

Module Label

lEA VSY50 POSTIEST

POSTIEST

SUP KEY

Extended Description

10 The·POST routine gives control to GETMAIN to get
the storage for an SRB, if necessary. (Note: POST

maintains a queue of available SRBs and usually uses these.
POST uses G ETMAI N on Iy when no storage blocks exist
in the queue, but does not use FREEMAIN to free these
blocks.) Also, POST puts the ECB address, completion
code, and the ERRET address into the SRB parameter
list. The ASCB cross memory post queue (XMPQ) is updated
(see description of step 20). Then, the SRB is scheduled
to the specified address space. The caller gets control back
from POST after POST schedules the SRB.

The SRB eventually receives control from the Dispatcher to
perform the POST request in the specified address space.

Module Label

QJ12

t Diagram 20-S. POST Processing (IEAVSYSO) (part 7 of 12)

~

o
~
fI!I
W
fI!I
'<

§
E
n'
t:
~

~
~
J
c
0l:Io

~
W

~

t
r6
w
~ -

Input·

IGCOO1 ~S_RB __ -----.

I CHAINHD J,IA
1-1-------1

SRB

regi~r 1 1 SDWA I

SRB entry
from the

From R/TM

Process

11 If not branch entry, return
to exit prologue.

To EXIT
Prolog
(lEAVEEXP)

Output

IGC001

CHAINHD

12 If running under XMPOST':':)t"j
SRB, chain the SRB to the
XMPOST SRB available
queue for XMPOST
requests.

13 SRBPOST:

Execute POST request in
the requested address
space.

14 SRBFRR:

I ndicate to RTM that
retry is to be at
SRBRETRY (Step 15).

Return to
caller which
entered
branch entry
(IEAOPT01)
or to the
Dispatcher
OEAVEDSO)

Step 3

Return to
R/TM

Register 1

I

SRB

SDWA

,pr
SDWARTYA

SDWARECP

Off
~
~.

l:I
.~

a::

i
Sa
o
."

" a
~.

l:I

~
N

o~

Diagram 20-5. POST Processing (IEAVSY50) (part 8 of 12)

Extended Description

11 If this was an SVC entry, control is returned to
exit prologue.

12 If code was running under XMPOST's SRB, the SRB
is put back on the XMPOST available queue. The

XMPOST available queue consists of the available SRBs
to be used to schedule XMPOST requests.

Return to calJer.

13 The scheduled SRB enters POST at this point.
XMPOST gets the local lock and extracts the

necessary information from the SRB parameter list.
Control goes to step 3 at ECBCHECK. Normal POST
processing follows, as in a local POST service request
(to be executed in the caller's address space). The only
differences are that the POST request occurs in an
address space other than the one that issued the POST,
and that an FAR covers the processing. (Local POST
does not have an FRR, except for the EVENTS ECB
processing.)

14 The XMPOST FRR specifies retry at SRB retry
(step 15) and gives control to RTM. The

XMPOSTFRR records the following information:

IEAVSY50 I GCOO1 IGCOO2

Module

IEAVSY50

Label

SRBPOST

SRBFRR

~ Diagram 20-5" POST Processing (lEA VSY50) (part 9 of 12)
~
c.u
o

~
~
~

fIl

I
i
r;"
r-'

J
~
~
o

•
'<
fIl
~

i
~
c.u
~

Input

Register 1

J ~SRB
(SRB

From
RTM

SRB error
entry from
Dispatcher
(lEAVEDSO) - [t , !;

4- ___ - - - _______

15 SRBRETRY:

16

17

Schedules the SRB to the
caller's address space so the
caller's ERRET can be
prepared at step 1 6.

If originating address
space has terminated.

ERRET:

Set up caller's register values
to execute the caller's
ERR ET routine.

SPOST:

If not ERRET SRB, branch
enter POST routine to
complete cross memory
POST function. .. 0
If ERR ET SRB,
reschedule SRB.

SDUMP

Dump Trace,
SOA, LSOA

To Dispatcher
(JEAVEDSO)

Output

Return to PURGEDO
(JEAVEPDO)

Register 0

It ECB

Register 1

I t ASCB

Register 2

Comp Code

Register 3

System Comp
Code from .
Failing Memory

Register 14

Return
Address

Register 15

t User Error
Routine

rJ'j
(D

~ o·
= N

a=
(D

g
c::l
o
o

"0
~
a o·
=
~
N
CN

Diagram 20-5. POST Processing (IEAVSY50) (part 10 of 12)

Extended Description Module Label

15 The POST FRR retry routine schedules an SRB to IEAVSY50 SRBRETRY
execute in the caller's address space, unless bit 0 of

the ERRET address was on. In this case, the SRB will be
scheduled to the master's address space, where the user's
error routine (ERRET) will be executed. Control goes
to the dispatcher. The dispatcher will dispatch the
scheduled SRB to execute at step 16. If the originating
address space has gone through termination, and thus no
ERRET routine is available, XMPOST branch enters
SDUMP to dump trace table, LSOA, and SQA. (See
step 20 explanation.) The DUMP header is:

IEAVSY50 IGC001 IGC002 XMPOST FAIL - NO ERRET

16 After the SRB has been put back on the available
queue, POST branches, in SRB mode, to the user's

error routine with the registers as indicated.

17 The XMPOST resource manager termination
routine (RMTR) is called by PURGEDO. The

XMPOST RMTR attempts to complete the cross
memory operation. This operation can be the result
of the issuance of an SPOST macro or of the issuance
of PURGEDO in I EAR POST task termination.

ERRET

~
w
CN
W

~
~
N
rn
'<
~

)
t""
.i <S.

r:
~
~
<:
S?.
§
(D

~

~
N

.~
~
~
~
CN

d

Diagram 20-5. POST Processing (lEA VSY50) (part 11 of 12)

Input

Register 1

RMPL

RMPLASCB

ASCBXMPO

Register 1

SOWA ~

From RITM
During a Task
or Address
Space Termination

From R/TM

Process

18 IEARPOST:

I f address space
terminated, ~o to step 20.

Otherwise, continue.

19 Issue PURGEOO SVC to
complete out~tanding
XMPOSTs.

20 Dequeue any XMPOST
SRBs that were initiated
from this address space.

21 EVNTFRR:

Change completion code
to '402' and percolate to
caller.

EOO

Return to R/TM

Return to R/TM

Output ...

RMPLASCB

ASCBXMPQ

Register 1

f
,. SOWA

SOWACMPC

SOWARCOE

g>
(") g.
= ~
a::
(D

[
o
o
"0
~
~ cr
=
~

~
~
~,

Diagram 20-5. POST Processing (IEAVSY50) (part 12 of 12)

Extended Description

18 For an address space termination, go to step 20.
Otherwise, continue.

19 The Task Resource Manager issues a PURGEOO SVC
to complete any outstanding XMPOST requests.

20 XMPOST maintains a list of XMPOST SRBs called
the XMPO (cross memory post queue) anchored at

ASCBXMPO. These SRBs have originated from this
address space. On address space termination, the SRBs
are marked as not having an address space to schedule an
ERRET SRB to. If ERRET scheduling is attempted, the
XMPOST FRR issues an SOUMP to dump the trace table,
LSOA, and SOA.

21 Entry is because failure occurred during EVENTS
processing.

Module Label

lEA VSY50 I EARPOST

EVNTFRR

t I Diagram 20-5. POST Processing (lEA VSY50) (Part 12.0 of 12)
w
w o
o r.n
"< r.n
~

r.n
'<
~

~
.r:-
~ (=).

r:-
0:

~
~
= 3
(D

~

'< r.n
~

o
w
00
o
~

Input

Register 1

L----,

Parameter
Address

FRR work area

from R/TM

EXECBFRR:

22 If error expected, change
completion code and go
to step 25.

23 Prime SDWA variable
recording area and
indicate that recording
is to be performed.

24 The extended save area
indicator is zeroed to
indicate that the save
area is no longer in use.

25 Percolate the error.

Output

R/TM

SDWA

SDWACMPC

SDWARCDE

SDWAVRA

<:
en
N

o
W
Oc
o
Ul

CIJ
(D
(')

g.
=
~

a::
(D

[
o
o
"0
~
a
5·
=
~
N
~

~ -

Diagram 20-5. POST Processing (IEAVSY50) (Part 12.1 of 12)

Extended Description

22 The FRR work area is tested to determine if
the error was expected. If value tested is zero,

the error was not expected. If non-zero, the completion
code is changed to 702 and the reason code is set to
X'14'. The error is percolated. If the error was not
expected, continue.

23 The SDWA variable recording area is primed to
indicate the associated exit routine and the

record indicator is turned on in the SDWA.

24 The extended save area in-use indicators
(located in the POST save area) are zeroed to

indicate that the extended save areas are no longer
in-use.

25 Issue SETRP to percolate error.

Module Label

IEAVSY50 EXECBFRR

-<
CIJ
N

o
~

00
~

;t I Diagram 20-5. POST Processing (lEA VSY 50) (Part 12.2 of 1"2)
w
w
~.

o en
~
en
N
CIl
'<
~
~

3
t""

<§.
~

t""
c:
~
<:
o

= 3
~

~

'< en
N
b
w
00
o
~

tnput

Register 0

I F unction code

Register 1

Exit rtn address

Register 14

Return address

Register 15

Entry point address 1

From any caller
desiring this function

IEAOPTOE:

26 Insure a valid function code
is specified.

27 If exit creation is requested:

A. Obtain storage and
initialize.

B. Queue block to post
exit routine queue.

28 If exit deletion is requested:

A. Dequeue associated block
from post exit routine
queue.

B. Free block storage.

29 Return to caller.

Output

ASXB

I ASXBPTOE 1

...
~ Next Blk

Exit Addr

Caller

<:
CIl
N
b
w
00
~

"-l
(D
(')

i·
~

== (D

g
Q.

o
o

I g.

~
N
~
~

1M

Diagram 20-5. POST Processing (IEAVSY50) (Part 12.3 of 12)

Extended Description Module Label

26 This entry point to post currently identifies/deletes lEA VSY50 I EAOPTOE
exit routine addresses used by the post exit function.

As input, register 0 contains the requested function code.
A request specifying an undefined function code results in
a 702-0 ABEND.

27 A function code of 4 is an exit creation request.

A. GETMAIN is invoked for 8 bytes of LSQA
(subpool 255). This block is initialized using the
first word as a queue chaining field, and the
second word contains the new exit routine address.

B. The initialized block is placed on the post exit
routine queue in a pushdown (last-in, first-out)
manner. The header of the post exit routine queue
is located in the ASXB (ASXBPTOE).

28 A function code of is an exit deletion request.

A. The block containing the associate post exit
routine address is removed from the post exit
routine queue. Failure to find the block results
in a 702-4 ABEND.

B. FREEMAIN is invoked to free the block storage.

29 Control is returned to the caller via a branch.

~
N o
~

00
~

t Diagram 20-6. EVENTS Processing (lEA VEVTO) (part I of 8)

~

o
tI.I

"< tI.I
N
tI.I
'<
~

3
£'
n'
r-'

~
~
< o

= 3
(D

~

~
N o
(,oJ

00
o
~

Input

PSAAOLD

ASCB

ASCBASXB

ASXBSPSA

WSALEVNT

EVENTS
local save
area

PSA

PSATOLD

TCBRBP

...

~

Branch entry from
caller in ke,y 0 and
supervisor state
with local lock

--r
I
I
I
I
I
I

_J

IEAVEVTO:

1 Save caller's registers.

2 Establish SVC interface .

3 If WAIT=YES, return to
dispatcher.

4 If WAIT is not YES,
return to caller.

branch
IGC125

EVENTS SVC
mainline
routine

(See step 5 in parts 3 and 4,)

• I Dispatcher
(lEAVEDSO)

Caller

f'-)
(I>

~ e'
= ~
a:
(I>

[
o
o
'E
et
e'
=
~

~
~

Diagram 20-6. EVENTS Processing (lEA VEVTO) (part 2 of 8)

Extended Description

The EVENTS facility allows a user to WAIT on the
completion of one of n events and be directly informed
by ttie system which event or events have completed.
This is a functional specialization of the current WAIT
multiple facility.

The EVENTS macro will provide for the creation and
deletion of the event table. After the user routine has issued
the EVENT macro and the address of the created event table
ha$ been returned, the user routine must initialize the ECBs
that are to be posted to that table, so that the user routine
can be informed of the completion of those events. Each
ECB must be initialized by EVENTS in the following manner,
so that POST will be able to determine that the ECB is an
EVENTS ECB. The high-order byte position will be marked
with a X'SO' (previously used to indicate a waited-on ECB). and
the post code field of the ECB will be initialized with the event
table address (previously initialized by WAIT to the waiting
RB address). The address will be used to locate an event
table which will contain a list of pointers to posted ECBs.
Bit 31 of the ECB will be turned on to indicate an
EVENTS ECB.

Completion of events represented by initialized ECBs is
accomplished by the existing system POST facility.
Completed events are processed in POST -occurrence order
through issuance of the EVENTS macro to the appropriate
event table. When the user routine regains control after
issuing the EVENTS macro with the WAIT operand, register
one points to a list of pointers to posted ECBs. The posted
ECBs retain the current format (i.e., the high-order byte
contains a hex '40' and the low-order 30 bits contain the
completion code).

Module Label Extended Description

1 The caller's registers are saved in the EVENTS local
save area (WSALEVNT).

2 The registers are initialized to provide the standard SVC
interface, and the type-one SVC mainline (lGC125) is

called to do the processing requested by the caller of EVENTS.
(See processing that begins at step 5J Control returns to
step 3 from IGC125.

3 On return from the type-one mainline, a check is made
for a WAIT=YES request. If YES, the caller's resume

environment is in the caller's RBITCB. EVENTS will then
store register one in the TCB register one save area, purge the
FRR stack, disable, free the local lock, and branch enter the
dispatcher. Another task can then be dispatched, since the
caller's RB is in a wait condition.

4 If the caller did not specify WAIT=YES,
EVENTS will restore registers 2-14 and return to the

caller. (Caller's parameters have been processedJ

Module Label

IEAVEVTO IEAVEVTO

i"
~

~.

~
~
~

~
SCi-a
E
~.

E:
~
~

f
(D

.a:o.

'<
~
~

i
~
~

~ -

Diagram 20-6. EVENTS Processing (lEA VEVTO) (part 3 of 8)

Input

Register 0 Register 1

I xOxxxxxx It EVNTA

TCB

TCBEVNT

(EVNTA

EVNTLNK

EVNTTCB

+ ECB 1

t ECB2

+ ECB M-1

SO 1 t ECB M

ECB

00000000

~

~

~,

SVC entry or
internal branch
from within
EVENTS

r-

~

'. f--.

T-· -
I
I
~ ,
I
I
I
J

L-.
I
I
I
I
I

1 __

IGC125

1- 5 Update events table.

i- 6 Do ECB initialization if requested
by ECB parameter in EVENTS
macro.

!- 7 Do wait processing if requested
by WAIT parameter in EVENTS
macro.

6

Output

~

'\
v

To EXIT
Prolog
(lEAVEEXP)

•
TCB

EVNTLNK

EVNTTCBP

" EVNTRBP

+ ECB 1

+ ECB2

+ ECB M-1

Iso It ECB M

ECB

r-;XXXXX1

ASCB

RB

ASCBTCBS RBXWAIT

ASCBSWCT RBWCF

if SVC entry or to caller if
internal branch from within
EVENTS Processing

[
~
1:1

~

a::

i
Sa

1 a
~.

1:1

·t
!oj

Diagram 20-6. EVENTS Processing (ffiAVEVTO) (part 4 of 8)

Extended Description Module Label

5 If WAIT=YES or WAIT=NO (bits 0 and 1 of register 0) IEAVEVTO IGC125
are specified, bits 8-31 of register 0 (if bit 2 is off)

point to the last event entry that the caller has specified.
(If LAST parameter was not specified, the caller has
processed only one entry.) In either case, EVENTS moves
all unprocessed event entries to the top of the event table.
The assumption is that the top entry, or all entries up to the
last specified by the caller, have been processed by the caller.

Entries are placed in the event table, as; ECBs complete,
by Post if the ECB has been initialized to the EVENTS
format (X'80' in the high order byte and the event table
address plus one in the low order three bytes) . Entries are
also placed in the event table by EVENTS to initialize a
posted ECB if the ECB parameter was specified in the
EVENTS macro. The event entries are added to the event
table in FIFO order and the end of list indicator is moved
as events are added.

6 If ECB= is specified (bit 2, register 0 is on), the ECB
pointed to by bits 8-31 of register 0 is initialized to

the EVENTS format, unless the ECB has already been
posted, in which case the address of the ECB will be added
to the list of completed events.

Extended Description

7 If WAIT=YES or WAIT=NO have been specified,
EVENTS will check if there are any completed events

in the event table. If there are, the address of the first
completed event entry will be placed in register 1 as return
information for the caller. If WAIT=NO was specified and
there are no completed events in the table, register 1 will
contain binary zeros. Control will be returned to the caller.

If WAIT=YES was specified and there are no completed
events in the table, EVENTS will set the RB wait count
(RBWCF) to one to cause the caller to wait, store the RB
address in the event table (EVNTRBP) to indicate that this
table is waiting for an event to complete, and decrement the
count of ready TCBs (ASCBTCBS). If the count of ready
TCBs goes to zero, EVENTS will increment the short wait
count (ASCBSWCT). This latter processing is for use by the
System Resource Manager (SRM).

Module Label

~ Diagram 20-6. EVENTS Processing (lEA VEVTO) (part 5 of 8)
~
w
00

o
C"I)

~
~
C"I)

'<
~ a
r-
~
rr
r-
~
~.

<:

f
(D

~

'< C"I)
~

:::0

i
~
w
~

*
;Ii

Register 0

I 80007FFF

Register 1

I OOOOOOOO

Register 0

I OOOOOOOO

Register 1

It EVNTB

"

I

TCB

I J TCBEVENT

(EVNTA

I EVNTLNK

EVNTTCB

~f-'

TCB

I t TCBEVNT

EVNTB

I(EVNTLNK

EVNTTCB

'''''' EVNTA

EVNTLNK

EVNTTCB

'(

From Extended
SVC Router
(Part of SVC IH)

[~
;~
.~

..!)
·f

~ ..
?,i

If-'

4(-

'f'

'ILl

IEAVEVT1:

- 8 Create a new event table
if requested.

9 Delete old event table
if requested.

GETMAIN

Get event
table (SP253)

Output

Register 0

00000000

Register 0

[xxxxxxxx

Register 1

xxxxxxxx 1

TCB

TCBEVENT

EVNTLNK

EVNTTCB

TCBEVENT

EVNTLNK

EVNTTCB

til
~ a
5·
::I

~

a::
~

[
o
o

'"C
~
a.
5·
::I

~

N
w
1.0

Diagram 20-6. EVENTS Processing (lEA VEVTO) (part 6 of 8)

Extended Description

8 If register 0 bit 1 is on, a table create has been
requested. (EVENTS ENTRI ES=n was specified.)

Events will compute the table size based on the number of
entries requested. (There can be a maximum of 32,767
entries in an event table.) Get the table from SP 253 (task
related storage), initialize the event table header to contain
a pointer to the requesting TCS, set pointer to the first
valid event table entry, to the last valid event table entry,
and to the last active event table entry. EVENTS will queue
the new event table to the top of the event table queue
for the requesting TCS, and-return to the caller with
the table address in register one.

9 If register 0 is zero and register one contains a table
address, the EVENTS macro specified

ENTRIES=DELETE. (The caller wants to delete the event
table.) EVENTS will locate the table on the requesting TeS's
event table queue, dequeue the event table, and free the
event table.

Module Label

IEAVEVTO IEAVEVT1

of"
~
Q

&J
"< til
N
til
'<
~

~

i (is.
t::
~

~
~
[
(D

~

~
N

~
(D r
w
:... -

Diagram 20..6. EVENTS Processing (lEA VEVTO) (part 7 of 8)

Input

Register 0

From R/TM to
EVENTS FRR

Output

- 10 EVENTFRR

Register 1

SDWAPARM

FRRWKAR

FRRABEND

Test if error was expected.

If so, change the completion
code and go to step 12.

11 If error was not eXpected:

IGC044R2

CHAP
Recovery

Dequeue all event tables from ~&: ::JIif
this TCB, record EVENTS
error information.

12 Percolate error back to RTM.

Return to R/TM

Register 1

f
SDWA

SDWACMPC

SDWARECP

SDWARCDE

PSATOLD

F
TCB

TCBEVENT

c:Il
(Ij

a
~.

=
~

a:
(Ij

[
o
~

o
1 a
(5.

=
of"'
~ ... -

Diagram 20-6. EVENTS Processing (lEA VEVTO) (part 8 of 8)

Extended Description Module Label

10, The FRR work area (FRRABEND) is tested. If it was IEAVEVTO EVENTFRR
not zero, the completion code is changed to the contents

of this routine's work area (FRRABEND) and the error is
percolated back to R/TM. This error can occur when
EVENTS tries to store in the ECB in the user's key.

11 If the error was not expected (FRRABEND=O),
CHAP Error Recovery is called to verify the

dispatchability of the TCBs in this address space and to
verify the ASCBTCBS count in the ASCB. This action
ensures that the rest of the address space is dispatchable
in case the error fJccurred while EVENTS was manipulating
TCB dispatchability or updating the count of ready TCBs.

When control is received back from CHAP Recovery,
EVENTS will dequeue all events tables from this TCB.

12 Return to R/TM, indicating "continue with
percolation" .

t Diagram 20-7. ENQ/RESERVE Processing (IEAVENQl) (part 1 of 4)
~
t..»

i
"< rn
t..»
rn

1
a
~
f)'

~

~
~

f
fD

~

~
t..»
~

f
w
~

Input

Parameter List

From the SVC IH
to process an
ENO request

r--- - -- -- -- -- .,
; 0 :>r TCB@, or ECB~ ;

Flags Minor I Flags
Length

Ret
Code

+ Major Name
• Minor Name

L-~~~E!~_r __ ,.J

Register r- + UCB

I + Parameter List I UCB
"-'=-=----. Register 3

+CVT UCB SOC

Register 4

H Current TCB
Register 5

1+ Current RB

Register 6
r

Major
OCBs

I Entry Point Addr]
Register 7

Minor
OCBs

I + Current ASCB ~
R egister 14 ,

I Return Addr OE Ls
CVT

CVTSPSA

Global Workarea
Vector Table

I
WSAGNOD

J

ENO/DEO
GlobalVVork/Save
Area

....p~ ... i----,

IGC056

1 Checks for valid input.

2 Check status of ENQ
resource queue .

Invalid Requests

Not Referenceable

3 Determine whether specified resource is
already in use.

4 Resource not in use:
a) Return to caller when RET =TEST or

CHNG was specified.

b) Obtain, initialize, and queue resource
control blocks. • II 1 ___

5 Resource in use:

a) ABEND when ENOs are not being
processed for that resource.

b) Obtain, initialize, and queue OEL
when necessary.

c) Notify System Resource Manager
when necessary.

d) Wait for resource to become
available, when necessary.

6 Invoke STATUS to set "Step must
complete", when necessary.

7 Set appropriate return code and ,return
to caller.

Output

Register 1 When Invoking ABEND:

(f ABEND Code

Code Meaning

138 Task already has or is waiting
forresouTce

238 Invalid minor name length
338 Caller not authorjzed fOT

function
438 Invalid parameter list
638 Out -of storage
738 Unexpected error
838 ENO denied due to resource

control block damage

When returning to calter:

Register 0 Unpredictable 1

Register 1 Unpredictable . J

Register '14 Unpredictable J

o Parameter List

Return

3
Code

12 15

24 27

36 39

-

til
(II

a e·
=
~

a::
(II

[
o
o

"0
~
a
e'
=
~
N
~
CN

Diagram 20-7. ENQ/RESERVE Processing (lEA VENQ 1) (part 2 of 4)

The ENO routine, working with the DEO routine, permits programs issuing the ENO
macro instruction or the RESERVE macro instruction to gain contiOl of a resource
or set of resources. The requested resource may be one or more data sets, records
within a data set, programs, or work areas within main storage. ENQ uses the symbolic
name of the resource to control access to the resource.

The ENO routine places in a resource queue all resource requests specified in the
caller's macro instruction. If no other ENO-issuing program is using any of the requested
resources, the ENO routine, via the Exit Prolog routine and the dispatcher, returns
control to the caller, and the caller is the owner of the resource(s). But ifany requested
resource is already in use by another ENO-issuing program, the ENO routine may place
the caller in a wait condition until the resource becomes available.

Extended Description

1 ENO passes control to ABEND when the caller
issues invalid input .. Required authorization is

verified, when necessary, by invoking the TESTAUTH
macro.

2 When the ENO resource queue is not referenceable
(indicated by a flag in the ENO/DEO Global

Work/Save area), control is passed to ABEND. This
indicator is set during ENQ/DEO recovery when either
the major or minor OCB queue could not be repaired.

3 ENO'searches the resource queues to determine
whether the requested resource is already in use.

ENO searches the major OCB queue for a major OCB
that contains the specified qname. If it finds the qname,
at least one resource in the set of resources is in use, and
the routine then searches the associated minor OC.B queue
for the rname and scope.

4 The'absence of OCBs with the specified qname-
rname-scope attributes indicates that the requested

resource is not in use. If RESERVE was requested, and the
device obtained via the UCB keyword is a shareable direct
access device, and the requester has control of the resource,
ENO will increase the UCBSOC count. This causes the I/O
Supervisor to "reserve" the device when a user iss ... es I/O
to that device.

a) When RET=CHNG or TEST was specified and the
resource was not in use, control is returned to the caller
with the appropriate return code (8 or 0 respectively).

b) A OEL, minor OCB, and major OCB or a OEL and a
minor OCB are obtained, initialized, and queued to the
appropriate queues. When a major aCB al ready exists
for this resource, one does not need to be obtained.

Module

IEAVEN01

Label

ENOID

·XFINDMAJ
XFINDMIN

XGETaEL
X~ETMIN

XGETMAJ

Extended Description

These control b!ocks are obtained either from storage previ
ously used (and saved) by ENOor by invoking GETMAIN,

5 Another requester has access to the resource, as indi
cated by a major and minor OCB containing the

resource names and scope:

a) When ENOs are being stopped for the specified resource
(MINNOENO on in minor OCB), control is passed to
ABEND. This indicator is set during ENO/DEO recovery
when the OEL queue for this resource could not be
repaired.

b) This processing depends on the particular RET option
that the caller has specified, on the type of request
shared (S) or exclusive (E) - and on the types of OELs
already on the queue.

When the caller desires to be placed in the queue for the
specified resource, a OEL is obtained, initialized, and
placed on the OEL queue for that resource. The OEL is
obtained either from storage previously used (and saved)
by ENO or by invoking GETMAIN. When all previous
OELs on the queue and the present OEL request are
both for "shared" control of the resource, the new
requester and the previous requesters may simultaneously
share the resource. Thus, a requester need not have its
OEL at the top of the "shared" group of OELs and still
be permitted to access the resource.

c) When this occurs and the scope of the resource is
SYSTEM or SYSTEMS and the current requester
is the first to wait for the resource, the Systems
Resource Manager is notified, by issuing a SYSEVENT.

d) The requester's willingness to wait for the resource
is indicated by a RET option of HAVE, NON E, or the
omission of the RET operand. The RET option of
TEST never causes creation of a OEL. If RET is USE,
a OEL is created only if the requester can have immediate
access to the resource.

6 When the caller has specified 'SMC=STEP', ENO will
invoke STATUS to perform the "step must complete"

function.

7 The appropriate return code is set and control is
returned to the caller.

.~

Module Label

ENOYMIN

XGETOEL

XHOLD

ENOYEOL

XENDUP

f"

t
o

~
k)

~
~

~
~
ci
(;'

r-t
~
~
~
~
(1)

,J:..

~
~

~

t
r6
~

~

Diagram 20-7. ENQ/RESERVE Processing (lEAVENQl) (part 3 of 4)

EN'Q Return Codes

Hexadecimal
COM

o

4

8

20

Meaning

For RET=TEST, the resource was immediately available. For
RET=USE, RET=HAVe, or ECB=, control of the resource has been
assigned to the active task. For RET=CHNG, the status of the
resource has been changed to exclusive.

For RET=TEST or RET=USE. the resource is not immediately
available. For RET=CHNG, the status cannot be changed to shared.
For ECB=, the ECB will be posted when available.

For RET=TEST, RET=USE, RET=HAVE, or ECB=, a previous request
for contrOl of the same resource has been made for the same task. Task
has control of resource. For RET=CHNG, the resource has' not been
queued. If bit 3 is on - shared control of resource; if bit 3 is off
exclusive control.

A previous request for control of the same resource has been made for
the same task. Task does not have control of resource.

RESERVE Return Codes
Hexadecimal

Code

o

4

8

20

Meaning

For RET=TEST, the resource was immediately available. For
RET=USE, RET=HAVE, or ECB, control of the resource has been
assigned to the active task.

For RET=TEST or RET=USE, the resource is not immediately
available. For eCB=, the ECB will be posted when available.

A previous request for control of the same resource has been made for
the same task. Task has control of resource. If bit 3 is on - shared
control of resource; if bit 3 is off - exclusive control.

A previous request for control of the same resource has been made for
the same task. Task does not have control of resource.

CI}
(D

g.
5·
=
~
i(
(D

[
o
o
"0
~ a
5·
=
~
t
VI

Diagram 20-7. ENQ/RESERVE Processing (lEA VENQl) (part 4 of 4)

DEQ Return Codes
Hexadecimal

Code

o

4

8

Meaning

The resource has been released.

The resource has been requested for the task, but the task has not
been assigned control. The task is not removed from the wait condition.
(This return code could result if DEQ is issued within an exit routine
which was given control because of an interruption.)

Control of the resource has not been requested by the active task, or
the resource has already been released.

t Diagram 20-8. DEQ Processing (IEAVENQl) (part 1 of 2)

~

o
~
~
N
fJ'l

I
i
t)'

t"'"
~
~
<:
o

~
(I)

~

'<
fJ'l
N

~

t
~
w
~

Input

Parameter List

From the SVC IH
to process
D EQ requests

£-- - O;;rTCBAdd;----1
?i- •

Flags Minor
Length Flags

Ret
Code

• Major Name

~ Minor Name

i Addr of UCB Addr I ~ _____________ J

........... , .
Register 1 ~UCB
. + Para meter List I UCB
Register 3 __

FfEVT 1 UCBSQC

Register 4

1+ Current TCS

Register 5

[+ Current RS I I
Register 6 I /

Entry Point Addr I

Major
QCBs

Minor

Register 7 ~ aCB. [+ Current ASCB

Register 14

1 Return Addr '
\ CVT QELs

CVTFQCB

CVTSPSA

"{ L- '
I,',. Global VVorkarea
,1 Vector Table , I

ENQ/DEQ
GlobalVVork/Save
Area

NSAGNQDQ-L

~

~,

IGC048

1 DEQ passes control to ABEND when the
caller issues invalid input.

2 Determine whether specified resource is
in ENQ resource queue.

3 Resource not found:

• If unconditional DEQ, ABEND

• If conditional DEQ, set return code
and return to caller.

4 Resource found:
• Caller does not own resource

- Unconditional DEQ'with ECB =
not specified on ENQ, ABEND.

- Conditional DEQ or ECB =specified
on ENQ, set return code and
return to caller.

• Caller owns resource.
- Dequeue and free resource control ~ti1Y"."·'I, .'L _____ J

blocks no longer needed. .,

-Issue STARTIO when necessary to
release device.

- Notify System Resources
Manager when necessary.

- Post next requester of this resource
when necessary.

- Invoke STATUS, when necessary,

to reset "Step must be Complete" ~1"·.!.".' -----1
for caller.

- DEQ passes control to the caller
or to the readied requester.

Output

VVhen VVorking ABEND:

Register 1

ABEND Code

Code Meaning

130 Resource not found
230 Invalid minor name length
330 Not authorized for function
430 Invalid parameter list
530 Resource is being waited upon
630 0 ut of storage
730 Unexpected error

VVhen returning to CALLER:

Register 0

Register 1

Register 14

Register 15

o ~

---15

27

39

Unpredictable ~

Unpredictable

Unpredictable

o or parameter
list address

Return
Code

Return
Code

Return
Code

Return
Code

Return
Code

c;n
(II

a o·
::I
~

~
(II

[
o
~

o
"0
~
a
~.

::I

~
t
-...l

Diagram 20-8. DEQ Processing (IEAVENQl) (part 2 of 2)

When the program finishes using the resource(s), it issues a DEQ macro instruction,
which causes the DEQ routine to remove one or more elements from the request queue.
This may cause other waiting requests to gain control via the POST routine.

Extended Description

1 DEQ passes control to ABEND when the caller issues
invalid input.

2 DEQ searches for the QEl that represents a request
that should now be dequeued. It firsffinds both a

major QCB and a minor QCB containing the specified
resource names and scope. DEQ then examines the QEl
queue associated with the specified resource. If the caller's
"ICB address matches that stored in one of the QEls, the
caller has issued an ENQ for that resource.

3 When the specified resource request (QEl) is not found,
the caller is attempting to DEQ a resource that he is not

ENQed on.

a) When the caller has requested an unconditional 0 EQ
(RET=NONE), control is passed to ABEND.

b) When a conditional DEQ was requested, the appropriate
return code is set and control returns to the caller.

4 When the specified resource request (QEl) is found,
this indicates that the caller does indeed have an ENQ

outstanding for this resource. DEQ scans the QEl queue to
determine whether the caller currently owns or shares the
resource.

a) When the caller does not own or share the resource,
tht;! input parameters are checked to determine the action
to be taken.

When an unconditional DEQ is requested (RET=NONE)
and the original ENQ did not specify the ECB param
eter, control is passed to ABEND.

When a conditional DEQ was specified or the original
ENQ specified the ECB parameter, the appropriate return
code is set and control returns to the caller.

Module Label

IEAVENQ1 XFINDMAJ
XFINDMIN

DEQNQEl

DEQNGENR

DEQNDEQ1

DEQPART2

DEQPART2

Extended Description Module

b) When the caUer owns or shares the resource, the QEl is
dequeued and that storage is saved for future use Of freed
by invoking FREEMAfN.

DEQ examines the QCB queues to determine if any QCB
may be released. If there are no more QEls queued to the
minor QCB, the minor QCB can be released .. In this case,
DEQ removes the minor QCB from its queue and frees or
saves the space it occupies. It then examines the minor
QCB queue to decide whether the major QCB is needed
and can be similarly eliminated. If there are no minor
QCBs queued to the major QCB, DEQ removes the major
QCB from its queue and frees or saves its space. DEQ tlten
processes in a similar manner any other input parameters
that represent QEls to be dequeued.

"Reserved" QELs being dequ~ued from an owning group
will cause the UCBSQC count to be decreased. When the
count reaches zero, the DEQ routine issues a "STARTtO"
instruction. This causes the I/O Supervisor to "release"
the shared direct access device.

When the scope of the resource being DEQed is SYSTEM
or SYSTEMS, System Resources Manager (SRM) is noti
fied that the resource is being released. If subsequently
that resource has other requesters, the SRM is notified
that once again the resource is being held. Communica
tion to the SRM is via a SYSEVENT.

When additional r(!quests are outstanding for the resource
being DEQed and the resource is available for use, POST
is invoked to notify the appropriate requester(s) that they
own the resource.

DEQ increases the UCBSQC count for all reserved QEls
going from a non-owning group to an owning group. This
causes the I/O Supervisor to "reserve" the shared direct
access device when a user issues I/O to that device.

STATUS is invoked to reset "step-must complete",
when the "RMC=STEP" parameter is specified. DEQ
passes control to the caller or to the readied requester.

Label

XUNCHAIN
XFREEQEl

XFREEMIN
XFREEMAJ

XDEQQEl

XRlSE
XHOlD

XPOST

XENDUP

~
N

&

~
N

!f
~

9
'~

,OQ

~r
r""

f
~
~ c:
i

. ~
N

" l-
I
eN

~

,.

,

Diagram20-9. ENQ/DEQ/RESERVE Recovery (IEAVENQl) (part 1 of 2)

Input
FromRITM p

Register 1 'IEAVSRRl

CA @SDWA I
Parameter List

1 Update the SDWA.

V
~ 2 Determine whether the error can

be handled by the FRR.

• Cannot be handled.

CVT MajorOCBs

I~Minor aCB •
[;r CVTSPSA

/ CVTFOCB ...;

• Error can beprooessed:

continue.

3 Attemptto fix majorOCB queue,
minorOCB queue"or OELqueue.

OEls

I 4 Restor'e registers, set any ABEND
codes, and attempt retry.

'Global ENO/DEO
Workarea Global Save Area

. I)""
WSAGNODO .- GSCOUNT

, GSOUEUE

o

SDWA

..
II"

'" ..
... RrrM

Global Workarea

..
'11"

MinorQCB

.. R1TM

fI}
(D

a
~.

=
~
;c
~

8:
o
o

"C
~ a
~.

=
~
~
I,Q

Diagram 20-9. ENQ/DEQ/RESERVE Recovery (lEA VENQl) (part 2 of 2)

Extended Description

1 TheENO/DEO FRR updates the SDWA with
diagnostic-type information (I EA VEN01,

IGC048,IEASRR1).

2 The ENO/DEO FRR does not attempt to verify the
resource queues when:

• The LSOA cannot be addressed.

• The CMS lock was not held at the time of the error.

• The user passed an invalid parameter list.

3 The ENO/DEO FRR attempts to fix the major OCB
queue, minor OCB queue, or OEL queue, if necessary.

If the major OCB or minor OCB queue cannot be fixed, the
FRRindicates a serious error condition in the GSNOENO
area of the global save area. If the OEL queue cannot be
fixed, the FRR indicates a serious error condition in the
MINNOENO field of that minor OCB.

The variable area of the SDWA (SDWA VRA) is updated to
reflect the changes made to the resource queues as follows:

Hex Displ
+0
+4
+8

+C

+10
+14
+18

Contents
Count of number of corrections made to queues
Address of ENO/DEO module
Address resulting from last BAL instruction of
the ENO/DEO FRR
Type of control block damaged

X'10' - OEL
X'14' - mirior OCB
X'18' - major QCB

Beginning address of invalid address range
Ending address of invalid address range
Image of data contained within invalid address
range

4 The ENO/DEO FRR restores the values and gives
control to R/TM to attempt retry in ENQ or DEO.

The retry will cause the user to ABEND with either a X'738'
or X'730'.system ABEND code, indicating that an unexpected
error was encountered by ENO or DEQ, respectively.

Module Label

IEAVEN01

t Diagram 20-10. SPIE Processing (IEAVTBOO) (part 1 of 4)
(.It
o

o
~

~
N
~
'<
~ a
~
(IS"
t'"" oz
~
~
~
(D

~

~
N

~
(D

f
w
~

Input

Register 1

+ TCB,or 0

TCB

TCBPIE

TCBPKF

TCBPMASK

F
\~

j..- PIEPICA

I~ ~, . ------...I.

I\...PICA

J

I PICAEXT I PICAPRMK

From SVC IH

~~
I
I
I

I
I
I
I
I
I L __

~-II--®

IGCOO01D

1 Check for invalid calls:

2 Check Register 1 for a 0 value, or
PICAPRMK for a 0 value.

• Reset TCBPIE17.

• Zero TCBP I E ..
I I
I]

• Restore RBOPSWwith TCBPMASK., __ --....

• ~ree the SCA and PIE if
necessary.

...

Output

Register 15

Completion Code

X'10E' - Invalid PICA Address
X'20E' - Invalid PIE Address
X'3QE' - Unauthorized user for

a program check
code 17.

Register 1

Code

o - No previous PICA.
PICA Address - PICA exists.

~
n g.
=
~

a::
(D

[
o
o

"C:I
~
~
e'
=
~
~
U\ -

Diagram 20-10. SPIE Processing (IEAVTBOO) (part 2 of 4)

Extended Description

SPI E processing completes the processing needed for a
user to specify a program interruption exit routine. The
initial processing - creating and initializing the fields of a
PICA (program interruption control area) - is performed
by executable coding produced by the expansion of the
SPI E macro. This processing places a program mask, the
address of the user's program-interruption exit routine,
and an interruption mask in the fields of the PICA.

If, after the execution of the SPIE routine, a program
check interruption occurs in a program being executed for
the issuer's task, the user's exit routine processes the pro
gram interruption according to the information in the
PICA.

If an interruption occurs, the interruption supervisor stores
in the PIE the information needed by the user's exit routine
to handle the interruption. This information includes the
program check old PSW and registers 14-2.

For the interruption supervisor to pass control to the
correct error handling routine, it must be able to test for
the existence of a user routine. The main function of the
SPI E routine is to place in the TCB of the macro-issuing
program an indirect pointer to the user routine. If, after
a program-check interruption has occurred, the supervisor
finds an address in the pointer field, it passes control to
the user routine to handle the interruption. Otherwise, the
supervisor's Program Check IH schedules abnormal termi
nation of the task whose error caused the program
interruption.

Module Label Extended Description

The SCA (SPIE control area) contains the SRB the program
check I H needs to schedule the user routine.

SPI E always refers to the PI E and PICA in the key of the
caller. Violations will result in a program check error. The
SPI E FRR (functional recovery routine) will convert the
program check to either a X'10E' or X'20E' ABEND code.

1 If the caller is in supervisor state, or is in a key other
than that indicated in the TCBPKF field, he cannot

use SPIE.

2 Whenever a caller issues a SPI E macro with no
operands, a zero PICA (in register 1) results from the

macro expansion. The saved program mask (TCBPMASK)
is used to set the program mask in the caller's PSW
(RBOPSW). Thus, a SPI E macro with no operands cancels
the effect of a previous SPI E macro.

Module Label

IEAVTBOO TEST1

SPCANCEL

t Diagram 20-10. spm Processing (lEA VTBOO) (part 3 of 4)
u
N

o
~
fa

1
i n

t:

f
~
!"
i
~

~
N

f
C.o.I

~

Input

If

Register 5 0-,-.+
I ,
I
I
I
I
I

RB I
--- _J

I "'. "' ..

From End
of Task
Termination

Checkpoint/
Restart

Process ~ Output

- PICA
J::: 3 Check for authorized caller. ~ ~ I]

....
If'

ABEND Code
X'017' Requests

4 Check TCBPIE field.

TCBPIE = 0

,
---..
r'

GETMAIN ..
A) Obtain storage for SCA and PIE. ~::::=-____________ ~'~ 71 ~~~:
In All Cases:

B) Chain the PICA, PIE,SCA, TCB.

C) Save caller's program mask.

r

Ie:
! PIE

.A

-y

11

SCA

r-i SCAPIE

TCB ~
TCBPIE

t...------ - ------ --
TCRPMJ\~v

....
TCBPIE17

If'

~
\..~

D) Set caller's program mask with __ L....IL _____ Ll ___ ...mL __ .z..J~;::::::~=::___1
PICA program mask. RBOPSW

E) Set the extended PICA indicator -..,---.:::.__-------1
for page faults. eailer Via Exit

Prologue. Code
in Register 1 .

IEAVSPIE ~J ~/TM
5 Free the SCA if one exists. ,.
IEAVSPI
6 Perform CHECKPOINT or RESTART ••

if required. To Caller of
,>,xw>:i\ ____ :r""Iu@;tF;ii&MW\ Checkpoi nt/Restart

~
~
~'
::I

~

a:
[
o
~

o
i a
5'
=
f"
~
w

Diagram 20-10. SPIE Processing (IEAVTBOO) (part 4 of 4)

Extended Description

3 If PICAEXT does not equal zero, the TCBPIE17 bit is
set equal to 1 if the user is authorized~

The TCBPIE17 bit makes it possible to avoid inspection of
the PIE and PICA every time a missing page interruption
occurs. The TCBPIE17 bit equals 1 if the user has provided
an exit routine for this type of interruption.

4 If the TCBPI E field equals 0, this is the first time that
the caller has issued a SPIE macro. A new SCA and

P1E must be built.

If the TCBPI E field does not equal 0, a PI E exists from an
earlier execution of the SPI E macro. The SPI E routine sets
various fields, and control returns to the caller. Register 1
contains the address of the PICA.

5 SPI E's resource management gets called at end-of-task.
If an SCA exists for the terminating task, it is freed at

this time. Control goes to R/TM.

6 SPIE is called by CHECKPOINT/RESTART to save or
restore the status of the user's SP I E exit routines.

Module Label

TESTIE

SPN017

IEAVSPIE

IEAVSPI

t Diagram 20-11. EXTRACT Processing (lEA VTBOO) (part 1 of 2)
(II
~

o
CIl -<:
CIl
l-.,)

CIl

'! a
i c;.
rc:
~
~
2' a
(D

~

<:
CIl
l-.,)

:=0
(D

i
~
w
~

Parameter List

Register 4

Address of
Caller's TCB

Para meter List

Answer Area Address

TCB Address, or 0

Extract
Field

ASCB

D

From SVC IH to process
an EXTRACT request

IGC00040+8 Entry

1 Checks for valid input.

Determine whether the
TCB address supplied is
for a subtask or for its
own TCB.

IGCOO01C

Invalid TCB

Extract required information and vi)
place it in the answer area.

Register 1

Completion Code

X'128': Invalid answer area
X'228': Invalid parameter list

X'328': Invalid subtask
specified

Answer area (supplied by user)

Requested fields

f(l
a
~.

= N

f
[
o
o-t)

o
"CS
~ a
~.

=
~
N
VI
VI

Diagram 20-11. EXTRACT Processing (lEA VTBOO) (Part 2 of 2)

Extended Description

EXTRACT processing permits a problem program or system
program to request information from its own TCB or the
TCB of a subtask. Through the ASCB and TCB, the JSCB
(job step control block) and CSCB (command scheduling
control block) can be referred to and certain information
can be extracted from these control blocks. The information
taken from the TCB, ASCB, or subsidiary control blOCk is
stored in a caller-specified list in the caller's region.

Note: On the system generation listing, the entry point
name for EXTRACT is I GCOOO4X, where X means a "12-0"
punch.

1 EXTRACT gives control to ABEND to terminate the
caller if any input parameters are not valid. The

EXTRACT FRR handles program checks and converts them
to appropriate ABEND codes.

2 EXTRACT considers either the input TCB or the
input TCB's subtask valid.

3 EXTRACT tests each bit of the extract field in the
parameter list. This field represents the FIELDS

parameter of the EXTRACT macro instruction. (See
OS/VS System Programming Library: Supervisor for
a list of the TCB fields that can be extracted.) For
each bit set, EXTRACT copies appropriate informa
tion into the answer area.

Module Label

IEAVTBOO EXFRR
EXABEND

EXLOOP1

EXTCB

;t Diagram 20-12. EXIT Processing (IEAVEOR) (part 1 of 2)
VI
Q'I

o
til

~
t-J
til

~
9
&
()'

I:""

~
~
~
2'
a
~

~

'< til
t-J o
~

00
o
~

Input

Current TCB

~
~ RB

I
RBLINK

,Next RB

From a user or system
program, except Type 1 SVCs,
to handle exiting from
these programs

IGC003

1 Perform the processing for user
program check routine.
(See extended description)

2 Complete any STATUS stop
requests.

Stop SYNCH
Processing

Output

f RBWCF ~ - - - - - - -- 3 Adjust task dispatchability and ./II

Extended Description

EXIT, a type-1 SVC routin~, handles the exiting pro
cedures for programs other than type-1 SVC routines.
Problem programs or system programs gain supervisor
assisted linkage to the EXIT routine by issuing a RETURN
macro instruction; type 2,3, and 4 SVC routines obtain a
similar result by using an SVC 3 instruction. (See Exit
Prolog.)

The EX IT routine determines the type of the exiting
program. The program can be a user program-check exit
routine, an asynchronous exit routine, an SVC routine, a

user program, or a supervisor routine operating under a
SIRB (system interruption request block). For each type of
exiting program, EXIT performs some special processing.

count of ready TCBs.

4 Perform special processing based
on the type of R B that
represents the completed program.

5 Free the completed program's RB
and do one of the following:

• Return the SVRB to the
supervisor SVRB pool.

• Free the SVRB.

• Terminate the task because the
SVRB is invalid.

Processing for
Last RB

Dispatcher (lEAVEDSO) entry
point IEAPDS6

~
t-J
o
~

00
S

ASCB

o

CI}
CD a e·
=
~

a::
CD

[
o
o

'"C:I
~ a
5·
=
~
N
CI\

Diagram 20-12. EXIT Processing (IEAVEOR) (part 2 of 2)

Extended Description

EXIT considers the first-executed program of a task - the
program at the "highest control level" - as an end-of-task
condition. Accordingly, E):<IT issues SVC 13 routine to
perform normal termination of the task.

The EXIT routine dequeues the RB under which the com
pleted program was operating for all types of completed
programs (except user program-check routines, which
have no RBs). If the RB had been dynamically acquired,
the Exit routine frees the space occupied by the RB.

The EXIT routine branches to the dispatcher.

1 User program - check routine (no R B)

• Restore interrupted routine's registers to the TCB
general register save area. Registers 14-2 are restored
from the PI E to the TCB general register save area.

• Clear first-time logic switch in the PI E to mark the PI E
inactive for the program check IH. An active PIE leads
the IH to interpret the program-check interruption as
occurring in the program check routine~ causing abnormal
termination of the current task.

• Set up the RB old PSW in the interrupted program's
RB. The EXIT routine takes the left half from the left
half of the SVC old PSW, and the right half from infor
mation in the PIE. The PSW information in the PI E is
in BC mode.

The RBOPSW is constructed from two different sources
because (1) the user program-check routine has the
option of specifying a return point in the interrupted
program that is different from the point of interruption,
and therefore may store this return address in the right
half of the program old PSW in the PIE; and (2) the
user program-check routine may have accidentally
altered the left half of the program old PSW stored in
the PIE.

2 If no RBs prevent STATUS Stop processing (if the
RBATTN field of all the RBs equals 0), reset the

TCBATT field of the TCB. Complete STATUS Stop proc
essing, and set the TCBSTPP field. Enter STATUS
(lEAVSETS) at IEAVESSS to complete STOP SYNCH
processing.

Module Label

iEAVEOR DOSPIE

TESTBAR

3 Anything other than a 0 in the RBWCF field of the
next RB, or if the STATUS Stop opE!ration finished,

indicates that the task going through EXIT has become
non-dispatchable. EXIT decreases the ASCBTCBS field in
the ASCB to indicate this condition.

4 Exit determines the type of the exiting program by
examining the RBSTAB field of its associated request

block. This RB is always first on the R B queue when Exit
is entered. Depending on the type of R B, the Exit routine
performs special processing.

All RBs

• Dequeue the RB if it is not the last one on the queue,
and mark it inactive.

• Call the SCBPURGE routine if the RB is the last one
on the queue, or if the task has had STAE issued.

SVRBs

• Move registers 2-14 from the SVRB to the TCB.

PRBs

• Call the Program Management subroutine CDEXIT
(at entry point I EAPPGMX) to free the programs.

IRBs

• Free RB.

• Move registers 0-15 from the RB to the TCB.

• Call Attention Exit Epilog for Attention IRBs.

• For queue element RQEs, return if return has been
indicated.

• Requeue or free the IQEs.

SIRBs

• Move registers 0-15 from the RB to the TCB.

For end-of-task processing, EXIT calls these EOT resource
managers; SCBPURGE (lEAVTSBP), Program Management
(IEAPPGMX), STATUS (lEAVESSS), Virtual Storage
Management (lEAQSPET), and DETACH (lGC062R1).

5 The EXIT routine returns the SVRB to the supervisor
SVRB pool if it was obtained from that pool. If the

RB was originally obtained by a GETMAIN, it will be freed
by a FREEMAIN. If neither of these conditions can be
verified, the task is abended.

CSPROC

TESTRB

DOSVRB

IEAVLK03 DOPRB

ATTN 1

DOSIRB

TESTREG1
MAINSA2

-< CI}
N
(::,
IN
00
o

of"
N
UI
00

~
~
N
fIl
'<
~

a
oi
t)'

t"'"

J
<: o

[
•
~
N

<=>
~

00
Q

~

Diagram 20-13. EXIT Prolog Processing (IEAVEEXP) (part 1 of 2)

Input

Register 15,0, or 1

I I

L \ PSAAOLD 1
-C ASCB

ASCBS3S

PSATOLD 1
TCB

TCBATT

TCBFLGS4

TCBFLGS5

TCBSTPPR

TCBRBP .
~RB

RBATTN

RBWCF

RBSCB

~,

~'"

From SVC Routines
For tasks that cannot
receive control
after processing ..

From Type 1
For tasks that
aln receive
control after

~

-------.

Proce

IEAVEXPl

1 Indialte that task cannot ...
be redispatched. r Go to Step 4

IEAVEXSV

2 Indialte that task alnnot 0J ..

be redispatched. ,.. Go to Step 4

IEAVEXPR

ci 3 I ndicate that task can be
redispatched.

4 Determine SVC type.
-" ..

• Type 1 SVC .. Go to Step 6

.'
• Types 2, 3 & 4, continue:

EXIT Routine
- 5 Determine whether to do (SVC 3)

End -of -task processing.
Performs

Last R B on chai n 11. ..
necessary EOT
processing

w ..
Otherwise, perform special processing.
(See extended description)

-6 Return control Dispatcher

• If task cannot be redispatched .• ~ (lEAVEDSO)

-' If task can be redispatched. ~ Return to Caller •
< who issued the SVC

Output

TCB

J-. TCBRBP
, r--V

TCBATT

TCBPNDSP
TCBSTPP

.' ASCB

~ ASCBTCBS
"

CI:l
~ n g.
::s
N

:::
~ ;.
o
Q.

o -.
o

"0
~
~
c)"
::s

T-
N
V\
I.Q

Diagram 20-13. EXIT Prolog Processing (IEAVEEXP) (Part 2 of 2)

Extended Description

EXIT Prologue performs the exiting procedure for SVCs.
The exiting SVC routine can provide information in
registers 0, 1, and 15. Exit Prologue returns these registers
to the SVC caller.

1 EX IT Prolog indicates the caller cannot be
redispatched by setting the "Force Dispatch" switch

in a register. Some routines cannot be redispatched after
EX IT Prolog processing; these routines pass control to
the Dispatcher.

2 Some supervisor routines that need entry into the dis
patcher use the CALLDISP SVC (Type 1 ESR Code 8),

which enters here.

3 EXIT Prolog indicates that the caller can be redis
patched after processing.

4 Type 1 SVCs, indicated by the ASCBTYP1 field, com
plete EXIT Prolog processing by going to Step 6.

Module Label

IEAVEEXP IEAVEXPl

IEAVEXSV

IEAVEXPR

GOTYP1

Extended Description

5 The EXIT Prologue routine gives control to EXIT if
the last RB on the RB chain represents the caller.

EXIT Prologue performs special processing for R Bs other
than the last:

Operation

A) Sets the type 1 switch.

Fields
Read

B) Complete STATUS Stop TCBATT
processing for the RB TCBSTPPR
unless other R Bs i n-
dicate that stops cannot
be done. Give control
to I EAVESSS to per-
form Stop SYNCH
processing.

C) Decrease the count of
ready tasks if the task
becomes nondis
patchable.

D) Dequeue the RB and
mark it inactive.

E) Purge any SCBs by
giving control to
IEAVTSBP.

F) Move Registers 2-14
into the TCB from
the RB.

G) Return dynamic RBs
to the SVRB pool
(RBNOCELL=l) or
FREEMAIN
(RBNOCELL=Ol.

RBLINK
RBWCF
TCBFLGS4
TCBFLGS5
RBLINK

RBSCB

RBFDYN

RBNOCELL

Fields
Modified
ASCBFLGl
(ASCBTYPl bit)
TCBATT
TCBSTPPR
TCBSTPP
TCBPNDSP

ASCBTCBS

TCBRBP

TCBGRS

6 Release all locks and disable; then if the "force dis-
patcher" switch is set or the task cannot be dispatched

(either the RBWCF in the top RBis non-zero or the
TCBFLGS4, 5 fields are non-zero, or the Stage 3 Exit
Effector Switch (ASCBS3S) is set) the dispatcher is entered,
unlocked, and disabled at I EAODS. Otherwise, the current
task is redispatched.

Module Label

GOTOSVC3

-<
CI:l
N
o
t..l

00
o
-..,J

~

N
0-
o

o
CI)

"< CI)
t-J
CI)

'<
~
~

3
t"'"
~
(=S'

t"'"
a:
~
-< o
C
3
~

~

'< CI)
t-J
(:)
(H

00
S -

Diagram 20-14. STATUS Processing (IEAVSETS) (Part 1 of 6)

Input
-

Register 0

I Mask or I I Action ~ ASID Code

Register 1

f ~it It Address of TCB

J (Optional) I Reg;ster 13 Of 15 I Mask or ASID ~-
" TCB ASCB

TCBATT ASCBCPUS

\ TCBJSCB i,- ASCBASXB

TCBJSTCB

JSCB ASXB

~%1
JSCBTCBB ASXBFTCB

~'

.-,.~-~:

From SVC IH
to process a
STATUS request

---0
From SRB

Register 0 Wk¥,

I __ ...1

• SRB I
SRB

SRBPARMS ~ ~
it·

Register 0

Register 1 "

Register 13
or 15

Output

IGC079 Register 1

1 Check for valid input parameters, M,i vr2iil Completion Code]

IGC07902

Invalid

Invalid TCB
Address

2 If valid cross memory STATUS
request, create SRB and schedule
it to execute in the specified
address space.

XMENTRY

- 3 Signal other CPUs for SET or
STOP request.

To Caller via EXIT
Prolog (I EA V E EXP)

Get SRB Space

To Caller via BR 14

X'014F' - Invalid parameters
to STATUS

Register 15

Return Code -~

4 = Invalid TCB address TCB
specified not a subtask
of caller.

en
(!>

~ o·
=
!':J
s::
(!>

g
Q.

o -.
o

't:I
~
a.
0'
=
~
~

Diagram 20-14. STATUS Processing (IEAVSETS) (Part 2 of6)

Extended Description

The STATUS routine, used by authorized callers, changes
the dispatchability indicators of TCBs, SR Bs, ASCBs, a
step, or system. This changes the dispatchability of the
indicated program. Problem program callers can use
STATUS to stop, STOP-SYNCH, or start a particular sub
task TCB, or all its subtasks.

The STATUS routine can perform certain services in an
address space other than the one containing the caller. This
is called a "cross-memory" function. The requester indicates
the cross memory option by including the ASI 0 {address
space identified parameter in the input parameters. In these
cases, STATUS schedules an SR B to the specified address
space to complete the service.

Module Label Extended Description

1 STATUS checks for valid input, and passes control to
ABEND to terminate callers of invalid parameters.

This occurs when a non-supervisor key routine attempts to
use a function other than STOP/START TCB or STOP
SYNCH. The ABEND can also occur if an invalid mask is
given to STATUS or if the step-must-complete count or
stop count is 255 when STATUS is issued.

2 The STATUS routine gives control to GETMAIN,
which gets storage for an SRB. STATUS initializes

and schedules the SR B in the address space specified in the
ASI 0, and gives control to the caller. When the SRB gets
dispatched, control goes to Step 3.

3 Since STATUS changes the dispatchability bits for
TCBs, SRBs, ASCBs, a step, or system, no other CPU

can run in the same address space at that time. Therefore,
STATUS issues an RPSGNL macro with the "SWITCH"
parameter to ensure no other CPUs are running in the
same address space for STOP or SET functions. Before
issuing the RPSGNL macro instruction, however,
STATUS checks the entire COAL (common dispatcher
active list; that is, the number of currently active
dispatchers doing work) to,see if any unlocked dispatcher
type functions are active (for example, TCTL). \f"any
dispatcher is active (COAL entry does not equal zero),
STATUS spins on this entry until it becomes zero,

Module Label

IEAVSETS IGC079

SIGPCPUS

<:
tI.l
N
(:,
~

00
S

~
N
0'\
N

~
'<
t:Il
N
t:Il
'<
~
(1)

:3
r-
~
(5.

ra:
~
<: o
C
:3
(1)

~

'<
t:Il
N

S
00
c -

Diagram 20-14. STATUS Processing (lEAVSETS) (Part 30(6)

Input Process 7
\ 4 Processing depends on action code: ,

Code Action

a) 4,9 Set or reset system
dispatchability bits
caIIIEAVEMSO.

b) 1 Set or reset must complete
status.

c) 6, 7·, 14 Stop/Start, Stop/Synch
request.

d) 5,10, Set or reset primary or
11, 12, secondary dispatchability
3,8, flags in TCB.
15,16

e) 13 Stop or start SRBs.

ASCB

ASCBTCBS ~ -- I- 5 Adjust count of tasks in address space.
Free SRB for cross-memory requests.

6

Output

CSD

I CSDSYSND I
• --y

I I
ASCB

ASCBPXMT

I I
ASCBXMPT

ASCBSRBS

I I

ASCBSMCT

ASCBSSRB
"

ASCBTCBS

ASCBSNQS

ASCBSTND

®=:> TCB

TCBSTPCT
TCBSTPRR

.. TCBSTMCT
') TCBSTP v

TCBFX ..
FREEMAIN

TCBFJMC ,..
TCBFLGS4

..... TCBFLGS5 ,
TCBNDSP

.'calleror TCBPNDSP

Dispatcher TCBSSSYN

(JEAVEDSO) RB

RBWCF

RBSSSYN

c;n
(!)
(") g.
=
N

~
(t

[
o
o

"0
~
a c)"
=
~

N
0-
~

Diagram 20-14. STATUS Processing (IEAVSETS) (Part 4 of 6)

Extended Description

4 ST ATUS processes 15 different action codes.
Figure 2-40 lists the action codes and the fields

they change.

5 When the ASCBTCBS count in the ASCB reaches
zero, the Dispatcher will not dispatch any TCBs in

that address space. STATUS adjusts the count in the
ASCBTCBS field - increases if task becomes dispatchable,
or decreases if task is set non-dispatchable.

Module Label

~ Diagram 20-14. STATUS Processing (IEAYSETS) (part 5 of6)
N >

0\
,j;;o.

o
C"'-l

"< C"'-l
N
C"'-l
'<
~

~

i
(5.

£:
~

~
<:
o
C
3
('I)

,j;;o.

'<
C".f}
N

::tI
('I)

i
~
w
~

Input

6---
Register 4 t ~ Current TCB

, TCB TCB

i"
TCBOTC TCBSSSYN

(TeBRBP

RB

RBSSSYN

Register 8

Address of Highest
Level Task

Register 10

Address of Task from
which Search Starts

,
)

1/
I

Process

IEAVSSNO

- 6 Stop non -quieseable SRBs active
in an address space being swapped.

IEAVESSS

7 Adjusts wait count for RBs in

Returns when no
I 'I SRBs Active in

Address Space

initiating TCB of exiting task. W7J "'-

Adjusts count of ready tasks if a/\
any become ready.

~caller

IEATRSCN

Output

Register 10

- 8 Return the address of a single subtask. i/h'j Address of
selected task (For STATUS, select the next subtask

and return to one of the steps above.
If there are no more subtasks,
exit.)

Caller via Register
14 for subtask'

~.>'. via Register 11' for
......... nosubtask

9 Verify ASCBs and TCBs. :cw.. Page address of
,0 SDUMP header

.' in register 2

Give control to R/TM to continue
with termination.

t'-l
(1)

~ o·
= N

a:
~ =-&.
o
o
"0
Q
a
5·
=
i'"
~
Ul

Diagram 20-14. STATUS Processing (IEAVSETS) (Part 6 of6)

Extended Description

6 The SWAP routine (see the swap-out Processor
(I EA VSOUT) diagram in Real Storage Management

section) branches to the STATUS routine to stop non
quiescable SRBs. STATUS sets the ASCBSNQS field
in the ASCB. STATUS next checks for SRBs running
in the address space ready to be swapped. STATUS
resets the ASCBSNQS and sets ASCBSTND fields if
there are SRBs running; it gives control to the caller
if there are no SRBs running. Control goes to the
Dispatcher if there are SRBs running. The Dispatcher
decreases the ASCBSRBS count when the running
SR B exits, and gives control to STATUS when the
count goes to O. This loop continues until there are
no more SRBs running in the address space.

7 Exit checks for a STOP SYNCH request by looking
at the TCB stop pending flag. If a STOP SYNCH

request exists; EXIT enters the STATUS routine. STATUS
decreases the RBWCF field of the requester's RB (requester
of STOP SYNCH) by 1. When the RBWCF field reaches 0,
STATUS resets the RBSSSYN and TCBSSSYN fields, and
increases the count of ready tasks in the ASCBTCBS field
of the ASCB.

Module Label Extended Description

8 When entered via the macro instruction STATUS SET,
MC, STEP, the STATUS routine sets the .caller's task

in "step" must-complete status. (If the request specifies
the RESET operand, STATUS clears the must-complete
status set previously.l The routine sets the must-complete
flag in the current TCB, the prohibit-asynchronous-exits
flag in the current TCB, and the step "must-complete"
dispatchability flag in other TCBs of the job step.

If the request indicates STEP, then all tasks in the job step
and the initiator are affected.

For STEP, the caller's task is always exempt from being
set nondispatchable.

9 The STATUS Recovery routine uses the CHAP recovery
routine (I GC044R2) to recover the TCB queues and

to verify the current ASCB.

STATUS passes IGC044R2 the address of the dump header
'IEAVSETSIGC079ththIGC079ththERRORthINthSTATUS'to
be used for SVC Dump of SQA, LSQA, and the Trace
Table.

STATUS sets recording parameters (SDWARECP) to
module name, I EAVSETS, CSECT name, IGC079, and
FRR name IGC079.

Module Label

STEPMC

4-266 OS/VS2 System Logic Library (VS2 Release 3.7)

Code Label
Locks Other
than Local Fields Referenced Fields Set

1 STEPMC TCBJSTCB TCBFJMC
JSCe3TCBP TCBFX
TCBJSCB TCBSTMCT

ASCBSMC
TCBSTP

3,8 NDSTEP ASXBFTCB TCBFLGS 4, 5 (Pl
SDSTEP PSATOLD TCBNDSP (S)

TCBJSTCB
-

4,9 NDSYSTEM CMS ASCBPXMT ASCBXMPT
SDSYSTEM DISP CVTCSD CSDSYSND

5,10 NDTCB SAME AS 3,8
SDTCB

11, 12 EXPLICIT TCB SAME AS 3,8

6, 7 STOP/START TCBATT TCBSTPCT
TCBSTPP
TCBPNDSP
TCBSTPPR

14 STOP,SYNCH 6&7+ 6&7+
TCBRBP RBSSSYN

TCBFC TCBSSSYN
RBWCF

15,16 CALLER SAME AS 3,8
ND,SD

13 SRBS DISP ASXBFTCB
SALLOC ASCBSRBS

ASVT
TCBSRBND
TCBPNDSP
ASCBSSRB
ASCBSTND
PSAANEW

Figure 240. ST A TUS Action Codes and Fields They Change

Section 2: Method of Operation 4-267

t Diagram 20-15. MODESET Processing (lEA VMODE) (part 1 of 2) -
Q\
00

o
!ie
~
N
~
'<
~

9
£
(S.

t"'"

i
~
~
C
:I
(D

~

'<
~
N

~
(D

i
~
eN
:.., -

Input

Register 1

I Parameter List

Register 4

Address of TCB

Register 5

+ RB

Register 6

I Entry Point @

RB

RBOPSW

Register 14

I Return @

From SVC IH
to process a
MODESET request

~-- --1-
I
I
I
I
I
~
I
I
I
I
I
L_

Output

IGC107
1 Determine whether the input... &1111

is valid.
not valid I 'I ABEND

Register 1

Code X'16B;~

RBOPSW

2 Adjust mode if specified. - ~}IJ I 1111·· -] II-J

- 3 Set key value to TCB key (TCBPKF) _ _IiiI..-_____
(KEY=NZERO specified) or set key
equal to 0 (KEY=ZERO specified).

Caller via
Exit Prolog
(lEAVEEXP)

5 67 8 11

Bits 8-11: Protection key
Bit 15: Mode indicator

15

(1 = problem mode)
Register 1

Inverse of specified
operation, or unpredictable

Register 15

Completion Code - -]

X'OO': Successful execution.
X'04': Null parameter list, reserved

bits used, or invali~ bit pair.
X'08': Undefined operation.

CI}
(D

~ o·
=
~

a::
(D

[
o
o
~
a
o'
=
~

N
0\
\C

Diagram 20-15. MODESET Processing (IEAVMODE) (Part 2 of 2)

Extended Description

By entering the MODESET routine through a macro
call, an authorized problem program or system program
can change its mode and change its protection key. In
this case, MODESET alters the RBOPSW, which controls
the calling task.

1 MODESET determines whether the input is valid,
and abnormally terminates callers that provide

invalid input, with a code of X'16B'.

2 MODESET changes the mode, as indicated by the
requester.

3 MODESET sets a nonzero key (value obtained
from TCBPKF field).

Module

IEAVMODE

Label

~

~
-..l o

o
CI}

"< CI}
N
CI}

'<
~

~
r"'
~
(;.

r"'
c:
~
<:
g.
= :3
~

~

'<
CI)
N

:;Q
~

i
~
t..l

~

Diagram 20-16. TESTAUTH Processing (IEAVTEST) (part 1 of 2)

Input

F unction Code

RB

~-----0
~JSCB

IJOCBAUTH ~
IEAVAUTH

[--I r-
Register 0

[Authorization Code r-

From SVC IH to
process a
TESTAUTH

Supervisor
Routines

IGC119 Entry

IEAVTEST Entry

1 Determine whether a request ./I,
is valid.

not valid

2 Determine the type of the request, a/h:
and process it:

If STATE CHECK
requested and the
spe.cified RB is in
supervisor state.

- - -- - b) If KEY CHECK

o requested and specified
RB has a key less
than 8.

c) If APF CH ECK
requested and the
jobstep is APF
authorized.

3 Otherwise

Return to Caller
Code = 4

Return to
Caller
Code = 0

Return to
Caller
Code = 0

Return to
Caller
Code = 0

Register 1

Completion Code

X'l77'

Register 15

Return Code 1
o - Authorized
4 - Not authorized

sr
~
5' =
~

ac:
~

[
o -.
o
~
Qi
a
(5'

=
~
N
-.J

Diagram 20-16. TEST AUTH Processing (lEA VTEST) (part 2 of 2)

Extended Description

TESTAUTH processing is called by SVC routines or the
SVC IH to test whether a task has the authorization to
request a specific function.

As input parameters, TESTAUTH accepts flags indicating
the request (or requests) desired. If the caller requests
APF, TEST AUTH accepts a function code and, optionally,

an authorization code. If no authorization co~e is specie
fied, TEST AUTH uses the job-step authorization, found
in the JSCB ·(job-step control block). The input paramo
eters are indexes to a matrix called IEAVAUTH, which is
built in the nucleus during system generation.

Module Label Extended Description

1 TEST AUTH determines whether the requester passes
valid input. Control goes to ABEND to terminate the

requester if the input is invalid.

2 TEST AUTH compares the authorization code against
the first byte of IEAVAUTH, and compares the func

tion code against the second byte. If either authorization
code or function code is greater than X'02', it is invalid.
The only valid codes for either parameter are 0, meaning
nonrestricted, and 1, indicating restricted.

For example, a supervisor routine with an authorization
code of 1 can perform both restricted (code 1) and non
restricted (code 0) operations.

The authorization and function codes are the indexes to
the matrix in the third byte of IEAVAUTH. Using the
authorization code as the row identifier, and the function
code as the column identifier, TESTAUTH finds the
matrix element. Only if the authorization code is 0 and the
function code is 1 is the user unauthorized.

3 Control returns to the caller with a return code of 4,
indicating that the caller does not have authorization.

Module Label

I EAVTEST lEA VTEST

RETRY

4-272 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

Program management services divide into three
categories: searching for and scheduling requested
modules; synchronizing exit routines to execute
during supervisor programs; and fetching modules
into storage.

Searching for and scheduling modules consists
of:

• Linking to a module. The requester issues a
LINK macro instruction to perform this
service.

• Loading a module. The requester issues a
LOAD macro instruction to perform this
service.

• Transfering control to a module. The
requester issues an XCTL macro instruction to
perform this service.

• Deleting a module. The requester issues a
DELETE macro instruction to perform this
service.

• Identifying alias names with modules. The
requester issues an IDENTIFY macro
instruction to perform this service.

The requester issues a SYNCH macro to
synchronize exit routines.

Program Fetch brings modules into storage. The
requester indirectly calls Program Fetch when he
requests a module not in virtual or auxiliary
storage. Program management services invoke
Program Fetch to bring the requested module into
storage.

Searching for and Scheduling M~dules
Program management services find a module by
scanning control blocks from different queues.
These control blocks - the CDE (contents
directory element) or LLE (load list element) -
form different queues and directories; each queue
or directory describes a different part of storage.
Then, program management services schedule the
requested modules to be executed.

The queues and directories searched by program
management are:

• The JPA (job pack area) storage areas.
• The LPA (link pack area) storage areas.
• The auxiliary storage libraries.

Program Management

JPA Storage Areas
The JPA (job pack area) in virtual storage contains
modules needed for the execution of jobs. The JPA
resides in subpools 251 and 252 of a region.
Problem programs, including TSO tasks, execute in
the JPA. Modules in the JPA may be executed only
by the user in whose region they are stored.

These are three JP A storage areas:
• The JPA.
• The job pack area queue.
• The load list.

The JP A: CDEs represent modules in the JPA.
Each CDE contains:

• The name of the module it represents.
• A pointer to the module's entry point.
• A use count that represents the total number

of successful requests for a module by
A TT ACH, LINK, LOAD, and XCTL macro
instructions. (The maximum use count is
32,757.)

If a caller has specified an alias entry point
within a called module, there are two CDEs for the
module. The major CDE contains the entry-point
name; a minor CDE contains the alias entry-point
name.

The Job Pack Area Queue: The CDES representing
a user's modules in the JPA are chained together
and are called the JPAQ (job pack area queue). The
JPA9 is in the LSQA assigned to a region. Each job
step in the system has its own JPAQ. The begiIHling
of the JP AQ is pointed to by the TCBJPQ field in
the job-step TCB.

The Load List: Each time the LOAD service
allocates a module to a requester, the use count in
the CDE is increased. Also, an LLE (load list
element) is created if one does not exist, and its
responsibility count (LLECOUNT) is increased. The
LLEs for each task in the job step are chained
toge~'er to form the load list, which is the first
queue the LOAD routine searches. Figure 2-41
shows the control blocks for modules in the JPA,
including LLES.

Section 2: Method of Operation 4-273

•

Legend:

TCB for
Caller's Task

I TCBLLS I

,
" Caller's RB Queue ,

SVRB for
Contents Supervision

""" """,
'""" ',

Caller's PRB

I RBCOE I

Job Pack Area Queue r-COE--'
I
I COE for

1
L Caller's Program

Load List for Caller's Task 1.-----, i I

I I Load List 1
J

Ii I COE
Element I

I I I
I I I I

I I ~~~e~~st Iii

I I I
~ I Load

l
List I I ! COE I Element '~+-i-------i"'.J-""':'*---""1

L _____ --.J L ____ J

* I
COE

I
COE

* 1
COE

1

- - - - Oelineates queue

----I~~ Pointer

* COE for module loaded for caller's task

Figure 2- 41. Control Blocks For Modules in the JPA

4-274 OS/VS2 System Logic Library Volume 4 (VS2 Release. 3.7)

The need for a responsibility count in the LLE
separate from the use count in the CDE is not
readily apparent. Each time the LOAD service
successfully allocates a module, the requesting
routine may issue a DELETE macro when it no
longer needs the module. The DELETE routine
decreases the use and responsibility counts, and
frees the module and its storage ares if they are
both 0, meaning that there are no more outstanding
requests.

LPA Storage Areas
The LP A is an area in virtual storage containing
selected reenterable and serially reusable routines
that are loaded at IPL time and can be used
concurrently by all tasks in the system. Five LPA
storage areas are defined:

• Pageable LPA
• LP A Directory
• Modified LP A
• LPA Queue
• Fixed LPA

Page able LP A: An area residing in virtual storage
below the SQA (system queue area) and above the
CSA (common service area). The PLPA contains:

• Type 3 and,4 SVCS
• . Access methods and other read-only system

programs
• Any reenterable read-only user programs

(selected by the installation) that can be
shared by system users

LP A Directory: The LP A directory is a record of
every program in the PLP A. The directory is
created during nucleus initialization and consists of
LPA directory entries (LPDES) for each entry point
in the PLPA modules. LPDEs for major entry points
contain a CDE and a compressed extent list; LPDEs
for alias entry points contain the name of a related
major entry instead of a compressed extent list.

Modified LP A: The modified LP A is optionally
specified via the "MLPA=" parameter and contains
modules (from SYS1.SVCLlB, SYS1.LPALlB, and/or
SYS 1. LlNKLlB) that are to be temporarily included
in the PLPA as additions to or replacements for
existing modules. The modified LP A must be
specified at each IPL if it is to be used.

LPA Queue: The LPA queue is a record of all
fixed, MLPA, and currently active PLPA modules.
Entries in the LP A queue are chained contents
directory entries (CDES), one per entry point.
When an LPA module is no longer needed (use
count in CDE = 0), the control blocks that
represent it in the LPA are removed. Currently
active PLPA modules are still represented by LPDEs
on the LP A directory.

Fixed LPA: The fixed ~P A is an optional extension
of the link pack area and can be defined to
enhance system performance or to satisfy time
dependencies of modules. If a fixed LPA is present,
it is searched before the page able LPA. Fixed LPA
modules are represented by CDEs on the LPA
queue and are used in preference to identical paged
copies of modules in the PLPA. The fixed LPA is set
up during nucleus initialization and resides in
nondynamic, nonpageable low storage where the
fixed control program is mapped 1: 1 with virtual
storage.

Auxiliary Storage Libraries
When program management services cannot find a,
requested module in virtual storage, BLDL searches
the libraries on auxiliary storage. PDS DEs
(partitioned data set directory elements) represent
those modules on auxiliary storage.

Synchronizing Exit Routines
The SYNCH routine, after receiving control from
the svc IH (interruption handler), creates,
initializes, and schedules for execution a PRB
(program request block). This allows a supervisory
program to take a synchronous exit to a problem
program.

Fetching Modules into Storage
Program management services use Program Fetch
to load requested modules into storage. If LINK.

LOAD, or XCTL services do not ~ocate the
requested modules in virtual storage, these services
will give control to Program Fetch to bring the
module into virtual storage from auxiliary storage.

Section 2: Method of Operation 4-275

4-276 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

CI'J
~

ll.
5-
= I-.J

s::
~ g
Q.

o -..
o
~

~ a
5-
=
~
N
-...J
-...J

LINK
f2!-q

(IEAVLKOO)

121 -2

Routing to
Searching
Routines
(lEAVLK01)

SYNCH liiil
(IEAVLKOO)

12 1-3

Searching
the LPA
Directories
(IEAVLKOO)

LOAD ~
(lEAVLKOO)

1
21 41

BLDLI
Program
Fetch
Interface
(lEAVLK01)

Figure 2-42. Program Management Visual Contents

I

DELETE

Program
Management
Overview
(no diagram)

~
(lEAVLKOO) I (IEAVIDOO)

21-9

XCTL

(lEAVLKOO)

r- -~ Overlay Program
Supervisor Fetch
(I EWSUOVR (IEWFETCH)
and
IEWSWOVR)

01:00
~
...J
00

o
~

"<
~
N
~
'<
~

3
t""
~
(;.

t""
0.: ...
~

~
< o

=:3
ctl

01:00

'<
~
N ,.,
ctl

i
~
~

~

Diagram 21-1. LINK Routine (lEA VLKOO) (Part 1 of 6)

From SVC IH (JEAVESVC)
after a LI N K macro
instruction has been
issued to pass control
to a requested module Processing

EBIII!lI8~!IiiiII~~
Reg 15

Address of parameter list

Reg 9

I Address of entry-point name I
Reg 10

Address of DCB

Same as for CDADVANS,
except Reg 8

Address of contents
directory to be searched

From ATTACH
and XCTL to

From the dispatcher
(lEAVEDSO),
CDSETUP, and
LOAD to pass control
to or load a req uested
module

IGC006 Entry

1 Check the validity of the input
parameters.

2 Set register 8 to
caller's JP AO address.

3 Search for the
requested module in
the contents directory
indicated in register 8.

4 If the module could not be found,
pass control to CDSETUP to direct
the search.

Step 5

For DE
request only

Routing to
Searching
Routines
(lEAVLK01)
Step 1 (label
CDSETUP1)

Output

Reg 8

Address of JPAO

Address of CDE

Address of contents
directory last searched

Reg 9

I Address of entry -poi nt name l
Reg 10

Address of DCB ~

til
(t
n g.
= N

a::
(t g
c:lo
o
o

"0
~
a
~.

=
~
N
'-l
IoC

Diagram 21-1. LINK Routine (IEAVLKOO) (Part 20f6)

Extended Description

LINK creates the linkage to a specified load module for a
user. LINK uses Program Fetch to bring into virtual
storage those specified modules not already in virtual
storage.

1 LINK checks the input parameters for all users.

2 LINK places the address of the requester's JPAO
(job pack area queue) in register 8 to indicate to

CDSEARCH which queue to search.

3 The CDSEARCH subroutine searches for the
requested module in the contents directory

indicated in register 8.

4 If the module could not be found, CDCONTR L
passes control to CDSETUP1 to direct the search.

Module Label

IEAVLKOO LXPREFIX

IEAOCS02

CDSETUP1

~
~

~

o
t"I'.l

~
~

t"I'.l
'<

~
£'
n'
r-' a:
~
~
C
:3
(D

~

'< t"I'.l
~

:;.:l

i
~
CN

~.

Diagram 21-1. LINK Routine (lEA VLKOO) (part 3 of 6)

From ALlASRCH

Input

(from ALlAS1)

Reg 0 and 1

Name of requested
module

to determine whether
a module is available

Processing

PLUSCONT Entry
5 Determine whether the

module can be used
immediately.

Output

RegS

IAddress of contents 1 I directory last searched ..

• Cannot be used. Go to
Routing to Searching
Routines, Step 1.

ERRO"'RTAB I ~ ~ ! ~ Completion code

Reg9

Address of entry-point 1
name

Reg 10

Address of DCB

Reg 11

~
Address of
requested CDE

SVRB

1

§-
CDE

~-

1----
I F rom Search i ng
• the LPA

Directory, Step 3
and BLDL/
Program Fetch
I nteriace, Step 3
to allocate the
requested module

r-----
I
I
I
I
I
I From
IIEAVTRTS

..J

- --. Can be used later (being
fetched or is a reusable
module that is in use
and this is not a
LOAD).

• Can be used now.
Continue.

CDMERGE Entry

W/O ECB

6 Increase the use count in the CDE. ______ :_.L. ______ ---'-__ ~

- 7 If a job step is being attached, set the JSCB
authorization on if the CDE is authorized.

All other
requests:

__ •• ~I Build a PRB for the

F R R PGMMG Entry
requested module
and chain it behind
the Program Manager
~VRB.

8 Test whether the error occurred
in the same address space. Dispatcher.

When the task is next
dispatched, the
dispatcher loads the PSW
from the new PRB.

Return to R/TM (I EAVTRTS)
to terminate the task

X'406' - Not a LOAD
request, but load-only
module

CDE

Address of requested
module

C".I.I
(1)

Sl. o·
= N

== a
8:
o
""" o

"0
~
g.
::I

f"
N
00 -

Diagram 21-1. LINK Routine (lEA V LKOO) (Part 4 of 6)

Extended Description

5 The COALLOC subroutine of LINK considers three
conditions to determine if a module can be used

immediately:

• Cannot be used.

• Can be used later.

• Can be used immediately.

When modules cannot be used, control goes to "Routing
to Search Routines (lEAVLK01)" to begin searching
for the requested module.

When the module can be used later, COaUECTL queues
the requests to be processed later, and passes control to
the dispatcher (IEAVEOSO).

Processing continues when the module can be used
immediately.

6 LINK increases the use count in the COE (contents
directory element) to reflect that the requested

module can be processed.

7 LINK sets the JSCBAUTH field of the JSCB to
indicate authorization if the COE is authorized.

Error Processing

Error processing is the same for LINK, LOAD,
ATTACH, and XCTL.

8 FRRPGMMG determines whether the error occurred
in the same address space as that of the routine

currently executing.

If not, R/TM (Recovery/Termination Management) will
continue with termination.

Module Label

COALLOC

coaUECTL

COEMERGE

COEMERGE

IEAVLK03 FRRPGMMG

t Diagram 21-1. LINK Routine (IEAVLKOO) (part 5 of 6)
00
N

o
CI.l

~
N
CI.l
'<
~ a
r-
~
r;'
r
eT

~
<:
o
6"
3
(I)

~

'<
CI.l
N

~
(I)

;"

~
IN

~

Input

Reg 1

C Address of SDWA J
SDWA

I
Address J
Parm List

First} 1 ABEND
Word Code

Parameter List

J Address I
SVRB J

0 1 5 Words

SVRB
f;f

C>

RBEXSAV ~---...,

r-
I
I
I

__ I

I
I
I
I
I
I
I
I
I

__ J

Processing Output

9 Determine whether error occurred Via SETRP Macro SDWA

206 ABEND dur;ng parameter check;ng and whether I :
ABEND code equals X'OC4: X'O~5: ~ I = Retry Ind;c
X'OC10,' or X'OC1l.' "I

10 Ensure the validity of the LPAO or
JPAO.

WTO Macro

Via SETRP

11 Indicate an error condition so RITM 2!!i! "'-.,

can record th e error.

Return to R/TM to
continue with termination,
as indicated in the SDWA

Regs

FPR Name

Module Name

CSECT Name

LPA Only

LPAO
truncated -
may need to
re-IPL system

en
(I)
(") g.
= N

a::
a
[
o -..
o

"0
~
eo·
=
~
N
00
c...I

Diagram 21-1. LINK Routine (IEAVLKOO) (Part 6 of 6)

Extended Description

9 Invalid input data should have a 206 ABEND code.
FRRPGMMG checks the ABEND code in the

SDWA (system diagnostic work areal, and changes
X'OC4: X'OC5: X'OC10: or X'OC11.'

10 The CDEOVER subroutine ensures the validity of
the LPAO or JPAO. CDEOVER issues an error

message to the operator if necessary.

11 FRRPGMMG indicates an error condition so R/TM
can record the error. Control returns to R/TM to

continue with the termination.

Module Label

IEAVLK03

IEAVLK03 NXTTST

IEAVLK03 PERC

t Diagram 21-2. Routing to Searching Routines (IEAVLK01) (part 1 of 2)
~

~
"< til
N
til

~
9
~
~.

r-
~
~
~
~
~

~

'<
til
N ,.,
~
i
~
w
~

Input

Reg8
Address of queue last
searched

Reg9

Address of entry-point
name or DE save area

Reg 10

Address of DCB

Reg 11

I Address of requested CDE

Reg 12

Address of major CDE

Reg 3

Address of CVT

Reg4

Address of TCB

Reg 5

Address of RB

From the LINK Routine
(lEAVLKOO), Steps 4
and 5, to continue the
search for the
requested module

I ,
I

'-- - - - --
I
I

From
IEAVVMSR
to search

I LPAQ

I ,
l\
I ,
I
I
I
I
I
L _____ _

CDSETUP Entry

1 Determine the search order for
Program Management and call
the correct searching routine.

2 Search for module requested by EP or
EP LOC form of macro:

JPAQ (already searched in LINK)

Output

Output to LINK Step 3, is:

Reg8

Address of next contents
directory to search

Specified library, or JOBLIB if
name is specified.

• •••••• ~I\I' ••• t~ BLDL/Program Fetch Interface
"'~ II Step 1

CDFI LIN Entry

LPAQ

LPA directory

SVCLlB

LlNKLIB

•............. LINK Routine (lEAVLKOO)
Step 3

................ ~ Searching the LPA Directory (lEAVVMSR)
r Step 1

................. BLDL/Program Fetch Interface (lEAVLK01)
~ Step 1

............... ~ BLDL/Program Fetch Interface (lEAVLK01)
Step 1

3 Search for module requested by DE
form of macro:

JPAQ (already searched in LINK)

LPAQ

Library specified, or defaul t I
"'" : LINK Routine (lEAVLKOO)
:;t Step 3

..... ,.'" ••• BLDL/Program Fetch Interface (lEAVLK01)
Step 1

~
g.
~S-
= '!'!
~
sa.
[
o
o

"CI
~ a.
e' =
...
~
til

Diagram 21-2. Routing to Searching Routines (IEAVLK01) (Part 2 of 2)

Extended Description

The CDSETliP subroutine determines the search order
and routes control to the appropriate subroutines, based
on the input parameters written in tl)e macro request,
for a requested module. CDSETUP follows the search
order described in steps 2 and 3 in the order indicated.

1 CDSETUP determines the search order for Program
Management and calls the correct search routine,

either CDSEARCH (for queue search) or I EAVVMSR
(for directory search).

2 The CDSETUP subroutine searches for the module
requested by the EP or EP LOC form of the macro

in the following manner:

a. The CDSEARCH subroutine searches the contents
directory entries in the JPA (job pack area) for the

requested module.

b. If the requester issued the DCB operand with the macro
request, CDSETUP searches the specified library. If the
requester did not issue the DCB operand, the CDSEfUP
routine searches the jobstep TCB's job library.

c. CDF III N searches the contents directory entries for load
modules contained in the active link pack area to find an
entry containing the specified entry point name.

d. CHKLPDES searches the pageable link pack area.

e. CHKLPDES gives control to the BLDL/Program Fetch
interface to search SVCLlB (if DCB specified for SVCLlB).

f. CHKLPDES searches the link library.

Module Label

IEAVLK01 CDSETUP

IEAVLKOO

IEAVLK01

IEAVLK01
IEAVLKOO

Extended Description

3 The CDSEARCH subroutine searches for the module
requested by the DE form of the macro in the follow

ing manner:

Module

a. It searches the contents directory entries for load modules I EAVLKOO
contained in the job pack area.

b. CDSEARCH searches the contents directory entries if the
specified directory entry is for a load module contained
in the link library.

c. If the requester issued the DCB operand with the request,

PGMFETCH fetches the specified load module. If the
register did not issue the DCB operand, BUILDEL
searches either the job library, link library, or task library,
according a byte (the 'z-byte') in the PDS directory
entry.

IEAVLK01

Label

~
~
00
0\

o
r;I.l

< r;I.l
~

r;I.l
'<
~

9
r-
~ ;:;.
r-
~
~
< o
2'
:3
(D

~

'<
r;I.l
~

:=0
(D

i
~
~

~

Diagram 21-3. Searching the LP A Directory (lEA VLKOO) (part 1 of 2)

I
RegO

First four characters
of entry-point name

Reg 1

f
Last four characters
of entry-point name

Reg 14

Return Address

From CDSETUP,
after calling
IEAVVMSR to
find the LPDE that
represents the

requested module Processing
., ii r! 2ili ••• 111 I.E" 22

ji---r-
"

}I-- -~
B' I

I

}I---~

1 Search the LP A
directory.

2 If the LPDE for the I BLDL/Program Fetch
module cannot be found, ,i" ' Interface (lEAVLKOO)
go to SATMAR. " Step 1

3 Build and queue the
CDE on the LPAO.

ERRORTAB

LINK Routine
(lEAVLKOO)
Step 6

IGCOOO1C

Output

Reg 0

Address of LPDE

Active LPAO

I CDE

LPDE

XTLST

Reg 1

Completion code

X'806' - Alias represented by
a minor LPDE is
not represented by
a major LPDE

en
("D
(") g.
::I
IV

a::
("D

[
o
o

'"t:I
~ a o·
::I

~

t.J
00
-..I

Diagram 21-3. Searching the LPA Directory (IEAVLKOO) (Part 2 of 2)

Extended Description

The lEA VVMSR subroutine searches the LPA directory
to attempt to locate the specified module.

1 lEA VVMSR computes an index factor to search the
LPA directory. After the computation, IEAVVMSR

has the address of an LPDE (link pack directory entry)
in the LPA directory, and determines whether the name
in the LPDE, or the name in another LPDE in the chain
matches t~e requested name.

2 Control next passes to the SATMAR subroutine if
CDSETUr cannot find the module in the LPD.

3 CDSETUP passes control to DETOLPAQ to build
and initialize a CDE (contents directory element).

MCKiule Label

I EA V LKOO lEA VVMSR

IEAVLK01 CDSETUP

CDSETUP

t Diagram 214. BLDL/Program Fetch Interface (IEAVLK01) (part 1 of 2)

~

o
rn
"< rn
N
rn
'<
rt
9
r-
ei (S.

r
c:
~
~
~
(D

~

<:
rn
N

::c
i
~
w
~

From CDSETUP routine
to find and load

Input requested p

• SATMAR

Address of SVRB 1 If a CDE for the module,
,J and a work area for

BLDL and Program Fetch ""
Address of contents
directory

do not exist, get storage ALlAS1
and initialize them.

Reg9

Address of entry-point
name or DE save area

2 If this is a minor CDE, ~ Build or find major

go to ALlAS1. CDE; load the
module.

-:'Minor Found

Reg 10

ri Address of DCB

DE FOUND

3 If DE form of macro, go - Examine the
to DEFOUND. PDS DE.

..011

.. SVRB r DCB
~

ERRORTAB
4 Verify the output from

..
r-'-- DCBDEB FETCH. JI'

- RBXSA

5 Go to BLDL, no
.... LINK Routine,

Step 6
DE coded. ...

.. Work Area • DEB -
,.. BLDL Routine

6 If the PDS DE is found by ~ IECPBLDL

BLDL, go to DEFOUND, Search for PDS DE.

DEBFLGS1 opposite Step 3.
-

7 If the PDS DE is not found, ERRORTAB,.
and all libraries have been

CDE searched, go to ERRORT AB.

----- 8 When BLDL has searched the JOBLIB
unsuccessfullY, or a library other than JOBLIB
or SVCLlB unsuccessfully, go to CDSETUP.

9 Return to Step 5 to search LlNKLIB
after searching SVCLlB, or to

~Step5 complete the JOBUB search.

o
• III Program Fetch Wo~k Area

.. GETMAIN Routine

Program Manager Work Area
.. LINK Routine
-,. (lEAVLKOO) BLDL Work Area

Step 5

Program Fetch
...

!III ""
Load the
requested module

•
A

[~ •

ABEND

Reg 1

I
Completion code I ~

~ .. ABEND X'806' - BLDL unsuccessful ...
IGCOO01C or 1/0 error during BLDL

X'306' - FETCH output does

.. Routing to Searching not match LINK input.

JI' Routines X'106' - FETCH
(lEAVLK01) encountered an error.

Step 1

~
(1)
(')

g.
= ~
~
(1)

~
~

o -.
o

"t:I
~ a
5·
=
~
~
00
\0

Diagram 21-4. BLDL/Program Fetch Interface (lEA VLKO 1) (Part 2 of 2)

Extended Description

The BLDL/Program Fetch Interface constructs any
necessary control blocks needed by Program Fetch to
perform the fetch operation.

1 The SATMAR subroutine creates a CDE (contents
directory element) and queues it to the job-step

(TCBJPQ) prior to BLDL and Program Fetch processing.
This ensures that subsequent requests for the same
module will be deferred during BLDL or Program Fetch

processing.

2 SATMAR passes control to ALiASl to build or find
the major CDE if the work area points to a minor CDE.

3 Control goes to DEFOUND to examine the PDS DE
(partitioned data set directory element) when the

caller codes the DE form of the macro, or on return from

a successful BLDL.

4 The output from Fetch must match the input
to Fetch.

Module label

IEAVLK01 SATMAR

SATMAR

SATMAR

PGMFETCH

Extended Description

5 BUILDEL, a Program Management routine, calls the
BLDL routine to find the PDS DE for the requested

module.

6 BUI LDEL passes control to DEFOUND if BLDL
finds the PDS DE.

7 ERRORT AB indicates the error condition if no PDS DE
can be found on any library.

8 SATMAR gives control to CDSETUP to search for the
requested module.

9 Control goes to Step 5 to search the LlNKLIB after
searching the SVCLlB (jf necessary), or to complete

the JOB LI B search.

Module Label

BUILDEL

BUILDEL

ERRORTAB

SATMAR

t Diagram 21-5. SYNCH Routine (IEAVLKOO) (part 1 of 2)
\0 o

o
f:'-)

~
N
f:'-)

'<
~

9
t"'"
~ n·
t"'"
c;:

~
-< o
=!3
(II

~

'< f:'-)
N

:;0

;.
~

~
~

~

Input

Reg 4

Address of caller's TCB I
Reg 5

I Address of contents
supervision SVRB

r SVRB

TCB

TCBPKF

(TCBSTAB1
'"

TCBPIE

TCBSCBKY ~---.
I

TCBPPSUP I+--L- __ .-

SCA . PIE . PICA

J-
PIEPICA ~ Program

SCAPIE mask

,'"

I Reg 15

I I I
Entry point

From SVC IH (lEAVESVC)
after a SYNCH SVC
has been issued, to pass
control to a
user program Processing .. IGC012

1 Get PRB storage from the
LSQA.

.... 2 Move the first 96 bytes of the
Program Manager SVRB to the

v new PRB.

3 Chain the PRB to the SVRB.

4 Initialize the PRB resume-PSW
in the standard format.

5 Set state and protection key in r----- --
the resume-PSW.

..... 6 If a PICA exists, move the
program mask from the PICA -v
to the resume-PSW.

7 See LI N K routine, Step 8, for
FRR processing.

....

"'"

"

~

Output

TCB
...

GETMAIN
" Get storage from

subpool 255.
";

"SVRB

~).

r PRB
""

~ I
~

'" ,.. Exit Prologue

Remove Program
Management
SVRB.

l
Dispatcher
(lEAVEDSO).
When the task is next
dispatched, the
dispatcher loads the
PSW from the new PRB.

RBOPSW

r RB

I (caller's).
@

VJ
(1)

~ c·
::I
N

~
(1)

g
c
o
o

"0
~ e c·
::I

~

N
\,Q

Diagram 21-5. SYNCH Routine (IEAVLKOO) (part 2 of 2)

Extended Description

The SYNCH routine allows a supervisor routine to take
a synchronous exit to a user program. SYNCH creates,
initializes, and schedules for execution a PRB (program
request block) that represents the synchronous exit
request. Control returns from the user program to the
supervisor routine that issued the SYNCH request.

1 SYNCH issues GETMAIN for the storage for
the PRB.

2 SYNCH moves the first 96 bytes of the Program
Management SVRB (supervisor request block)

into the newly created PRB.

3 SYNCH chains the PRB behind the SVRB.

4 The standard format for the PSW (program status
word), X'OOODOOOOOO', will be modified by SYNCH

to set the first byte to the proper program mask. The
resume PSW in this step refers to the RBOPSW field
in the PRB.

Module label

IEAVLKOO IGC012

THRUX

THRUX

THRUX

Extended Description

5 SYNCH checks the TCBSYNCH field of the TCB for
a 0 to determine whether the SYNCH request will

enter a STAE exit routine. If TCBSYNCH contains a 0,
the SYNCH request will not enter a ST AE exit. Addi
tionally, the requested program will execute with the
protection key indicated in the caller's TCBPKF field,
and in problem state.

If TCBSYNCH equals 1, the SYNCH request will enter a
ST AE exit. SYNCH sets the R BOPSW to indicate problem
state when the value in the TCBPPSUP field of the TCB
equals 1, or to supervisor state if the value equals O.
SYNCH then sets the RBOPSW protection key to equal
the value in the TCBSCBKY field of the TCB.

6 SYNCH moves the program mask from any existing
PICA to the resume PSW (in RBOPSW).

Module label

SYNCTEST

PICAMASK

t Diagram 21-6. LOAD Routine (IEAVLKOO) (part 1 o(2)
IC
N

o
CI.l

From SVC IH (lEAVESVC)
after a LOAD macro

"<
CI.l
N

instruction has been issued, to load
the requested module

Processing CI.l
'<
~

Input

~

E
(:)'

c
~

~
<:
o
2"
3
~

~

RegO

Address of entry-point
name or PDS DE

Reg 1 I Flags Address of a DCB

Reg4

~ I':,,',J Address of caller's TCB

~ J
~ ,,:
~P TCB
~ '8 'r-----....,
~

~
'-'

TCBLLS

LLE

CDNAME

•

-

IGCOO8

1 Ensure that referenced
addresses can be addressed.

2 Set register 8 to caller's
JPAQ address.

3 Search the requester's load
list. If module is found,
continue at Step 4.

• Otherwise, control
goes to LINK routine.

4 Determine whether the
module can be used
immediately.

• Cannot be used.

• Can be used later
(being fetched).

• Can be used now.
Go to Step 5.

5 Increase the use count
in the CDE.

6 Build and initialize the
LLE, when necessary.

7 See LINK Routine, Step 8,
fQr FRR processing.

Output

I ... Reg8
,I

~ I
~ Address of caller's JPAQ

DALPRFIX

SVRB

..
RBCDfLGS

v

~
CDLLSRCH

I CDE

LINK Routine ..
r (lEAVLKOO) COUSE

Step 3 v'

~
CDALLOC

I
"i

Reg 1 I LINK Routine

I I I (lEAVLKOO) ,-- > Completion code
r Step 3

X'906' - Use count exceeds .. CDQUECTL WAIT or responsibility

Queue the
.... count exceeds

LOAD request. '" WIO ECB

LLE

• ERRORTAB LLECHAIN
~

L.....
...

-,. Abnormally terminate ABEND LLECDPTR
...

the requester. ..,.
LLEUSE • IGCOOO1C
LLSYSUSE

---.
CDLDRET I --,.. '* Caller via the

RegO Reg 1

Exit Prolog Relocated Size of

(lEAVEEXP) entry-point module in
address doubleword *

* Authorization indicator
in high order byte.

en
(I)

a
5'
= N

a::
(I)

[
o
o

"Q
~
~
S·
=
~

N
\.Q
w

Diagram 21-6. LOAD Routine (IEAVLKOO) (part 2 of 2)

Extended Description

The LOAD Routine brings a module containing a specified
entry point into virtual storage if no useable copies exist
in storage.

1 LOAD calls DALPRFIX to ensure that the input
parameters are val id.

2 LOAD places the address of the requesting JPAO (job
pack area queue) in register 8 in case LINK must

continue to search for the module. Then, LOAD sets the
lower order bit in RBCDFLGS equal to 1 to indicate a
load request.

3 LOAD gives control to CDLLSRCH to search for
the requester's load list. If CDLLSRCH cannot find

the load list, LOAD passes control to the LINK routine.

Module Label

IEAVLKOO IGC008

IGC008

CDLLSRCH

Extended Description

4 The LOAD routine considers three conditions to
determine module useability:

• Cannot be used.

• Can be used later.

• Can be used immediately.

When a modu Ie cannot be used, control goes to the LI N K
routine, which begins searching for the requested module.

When the module can be used later, CDOUECTL queues
the requests to be processed later, and issues a WAIT
macro instruction.

Processing continues when the module can be used
immediately.

5 \.-OAD increases the use count in the CDUSE field of
the CDE.

LOAD passes control to the ABEND routine to terminate
the requester if the use count exceeds 32,767.

6 CDLDRET gets storage for an LLE (load list element),
if none already exists, and chains it to the caller's

load list.

CDLDRET increases the responsibility count in the LLE,
and if the count exceeds 32,767, gives control to the
ABEND routine to terminate the requester.

CD LOR ET also increases the system responsibil ity count in
field LLSYSUSE for system requests.

Module Label

CDALLOC

CDOUECTL

CDMOPUP

CDLDRET

,J:.

~
'f
o
til

~
IV
til
'<
~
~

3
r-
<i n·
r-
0: ...
~

-<
<:
o

=-3
~

,J:.

'< til
IV

::0
~ ;-
~

~
w
~

Diagram 21-7. DELETE Routine (IEAVLKOO) (Part I of 2)

From SVC IH (I EA VESVC)

Input

Reg 0

after a DELETE
macro instruction
has been issued

I Address of entry-point 1-J
name I~!

Reg4

Address of TCB t

Processing

~ . IGCOO9

1 Ensure that the input
address can be
addressed.

,

2 Search for the module
to be deleted.

~
DALPRFIX

~
CDLLSRCH

~ TCBLLS
Not found

3 Decrease the
Load List CDE

"7'
responsibility count in the LLE.

LLE
4 If the responsibility

~ ICDNAME

LLE

count equals 0, free
the LLE.

...

LLE

5 Decrease the use count in the
CDE, and go to Step 7 if it
does not equal O.

6 The use count equals 0;
go to CDHKEEP. ..

7 Place a zero value
register 15, and exit.

8 See LINK Routine, Step 8, for
FRR processing.

Output

'.,
p

I

I Reg 15
Joo.

J ~ X'04'
"L

.. Caller via
Exit Prolog LLE

0

r'

(lEAVEEXP)
Joo.

v

LLEUSE ..
FREEMAIN

LLSYSUSE "

CDE
'.

J...
COUSE

" ...
,.. CDHKEEP

Free CDE and
module I. Reg 15

J 1I X'OO'

DELETE successful

"
~callerv;a

Exit Prolog
(lEAVEEXP)

Cf}
I';

~

;"
N

:::
;
o
Co.

o -.
c

--= ~
~

g"
=
...
~
\C
til

Diagram 21-7. DELETE Routine (IEAVLKOO) (part 2 of 2)

Extended Description

The DELETE routine enables the requester who issued
a LOAD request to remove those modules he brought
into virtual storage. DELETE decreases the use count

of the CDE (contents directory element) and the
responsibility count of the LLE (load list element).
DELETE then frees the LLE when the responsibilitY
count reaches O.

1 DELETE calls DALPRFIX to ensure that the
requested module's entry-point name can be

addressed.

2 DELETE passes control to CDLLSRCH to
search for the requested module.

3 The LLEUSE count increases by one for every
LOAD request. DE LETE decreases the respon

sibilitY count of the LLE by 1. DE LETE also decreases
the system responsibility count (LLSYSUSE) for
requests from system routines.

Note: The LLE responsibility count indicates the
number of oustanding LOAD requests for the module.

Module Label

IEAVLKOO IGC009

CDLLSRCH

Extended Description

4 DELETE gives cohtrol to the FREEMAIN routine
to free the storage occupied by the LLE if the

LLEUSE count equals O.

5 The CDE use count represents the total number of
requests made by either ATTACH, LINK, XCTL,

or LOAD macro instructions. The count increases each
time one of these macros is successfully issued, and
decreases each time a DELETE is successfully issued or
the routine goes through exit.

6 The COUSE field contains the use count. The
CDHKEEP routine frees the virtual storage occupied

by the program, its extent list, and its major and minor
CDEs when the use count reaches 0 (for JPQ modules).

7 DELETE passes the caller a return code of 0 to
indicate completion of DELETE.

Module Label

DELNORM

MAJOR

MAJOR

IEAVLK02 COHKEEP

DELETXIT

t Diagram 21-8. IDENTIFY Routine (IEAVIDOO) (Part 1 of 4)
\0
Q'\

o
en
'< en
N
en
'<
~

3
~ ;.
t"'"
0:

~
<:
o
2"
3
(1)

~

'< en
N

~
(1)

i
~
w
~

From SVC IH (lEAVEES)
after the IDENTIFY macro
instruction has been issued

Input

RegO

Address of module name, or 0
(major request)

Reg 1

Address of entry-point address,
or parameter list

Reg4

Address of TCB

Reg5

~ddress of current RB ~ - - - j

Ir TCB SVRB RB

t---~1t'I I/""I~-----t
TCBRBP RBLI~K ---

Reg 1

Address of SDWA

SDWA

Address I
Parm List

Parameter List

I

RBSTAB

I

I
o 5 Words

SVRB

U
Reg 14

Return Address

From
R/TM
(lEAVTRTS)

..... ----

IGC041

1
Error

Req~esting ~
program must be ~
under control of a PRB.

Error
2 If this is a request ~

for a major CDE, ~
check for errors in request.

3 Search for duplicate module name.

~
~

request.

~~ 4 Check validity of ~

5 Determine where the minor CDE
should be built and get storage in
subpool 255 for a major CDE.

6 Initialize and
chain the CDE ~
(and extent list if major CDE)
in CDE queue.

FRRSVC41

7 Indicate an error condition _ 0/

via SETRP macro so RITM
can record the error.

8 Test whether the error occurred
in the same address space.

Output

6.1

Exit Routine
(SVC 3)
(lEAVEOR)

Return to R/TM
(lEAVTRTS) to
terminate the task

Each time one of the steps plac~s
one of the return codes below in
register 15, IDENTIFY returns to
the caller via the EX IT routine.

~
@==;l

~
@==>

X'10' ~ Caller is not
operating with
a PRB.

X'18' - Invalid parameter
list.

X'lC' - Invalid extent list
or modu Ie address.

X'04' - Entry-point name
and address
already exist.

@:=;> X'08' - Entry-point name
duplicates the
name of a load
module currently
available.

~ X'14' - An ID~NTIFY.
macro instruction
was previously
issued using the
same entry-point
name but a

@=;>

~
~

different address.

X'OC' - Entry-point
address is not
within an eligible
load module.

X'OO' - Successful
completion.

X'24' - Unexpected
system error.

Vl
~ a o·
= N

~
~

[
o
~

o
'1:S
Sl
a o·
=
~
N
\0,

Diagram 21-8. IDENTIFY Routine (IEAVIDOO) (part 2 of 4)

Extended Description

The ID~NTIFY routine searches for and identifies a
module's embedded entry-point name (a name not
established by the linkage editod. IDENTIFY
creates a CDE (contents directory entry to represent
the embedded entry-point name.

1 IDENTIFY passes an error code in register 15 if
the caller is not operating with a PR B.

2 A subroutine of IDENTIFY, MAJORCDE, builds
a major CDE. MAJORCDE performs the same

operations as IDENTIFY, which builds minor CDEs.
Steps 4-7 show the operations for both IDENTIFY

and MAJORCDE.

3 IDENTIFY (or MAJORCDE) passes control to the

I EAOCDSR subroutine to search for a duplicate
module name.

Module Label

IEAVIDOO YESPRB

MAJORCDE

NOMIN

Extended Description

4 IDENTIFY passes an error code in register 15 if
the caller issues an invalid request.

5 IDENTIFY builds the major/minor CDEs in the JPAO
(job pack area queue) or LPAO (link pack area queue),

depending on the location of the major CDE, and the
authorization of the caller.

MAJORCDE builds major CDEs in the LSQA.

6 IDENTIFY chains the CDE in the CDE queue.

MAJORCDE chains the CDE in the CDE queue.

7 FRRSVC41 indiChtes an error condition so R/TM
can record the error.

8 FRRSVC41 determines whether the error ()ccurred
in the same address space with the routine currently

executing. FRRSVC41 will retry the routine if the error
occurred in the same address space.

If the error occurred in a different address space, R/TM
Will continue with termination.

Module Label

XLINST

GETCDE

NAMETEST

CDESETUP

NAMETEST

FRRSVC41

FRRSVC41

SVC41PRC

t Diagram 21-8. IDENTIFY Routine (IEAVIDOO) (part 3 of 4)
I.C
oc

o
C/}

"< C/}
tv
C/}

'<
~
~

3
r-
~
n"
r
eT ...
Ql

~
<:
o
2"
3
~

~

'< C/}
tv ,.,
CD
~
Ql

~
W

~

Processing

9 Ensure the validity
of the LPAO
or JPAO

1 0 Set retu rn code.

CDEOVER
WTO Macro

Return to issuer of
SVC Interrupt Handler
(lEAVESVC) via
Exit Prolog (I EAVEEXP)

..

Output

SDWA

Retry Indic

Regs

CSECT Name

LPAO truncated
may need to re-IPL
system

r;n
~
r: g.
=
t-J

:::
~

&
c
000)

o
"0
~
~ o·
=
~

N
~
~

Diagram 21-8. IDENTIFY Routine (IEAVIDOO) (part 4 of 4)

Extended Description

9 The CDEOVER subroutine ensures the validity
of the LPAO or JPAQ. CDEOVER issues an

error message to the operator, if necessary.

FRRSVC41 saves registers 6 and 13 in the SDWA.

10 FRRSVC41 sets a return code of X'24' and
returns to the caller.

Module Label

FRRSVC41

SVC41PRC

SVC41RTY

of'" g
~
~
~

rI.l
~
~

~

£ (S.

~ ...
~
~
[
(1)

.a:.

< rI.l
t.,)

'" (1)

i
~
(,N

~ -

Diagram 21-9. XCTL Routine (IEAVLKOO) (Part 1 of 6)

From SVC IH OEAVESVC)
after an XCTL macro
instruction has been
issued, to pass
control to a

Input requested module Processing .. IGCOO7
Reg 15

I Address of r ---I
parameter list

I
I
I
I ---- 1 Test for SVRB .

2 Check validity of
request.

PRB
,... 3 Get storage for new
v PRB and initialize it.

RBSTAB1 ~-- --(3)

CVT ,--- Update any SCB.

I

---~

Yes
~GotoStep8

~ LXPREFIX

.-
.III

...

..L

-.-I ~-- &---- 4 Test for PRB or IRB request.

Output

.......
GETMAIN

P'

Obtain storage
for PRB

...r.... PRB
v

....... TRRM Resource

" Manager

Update
any SCBs

tf}
~

!l o·
::
N

;:::

i
c..
c -.
c
-= ~
cw
S·
::

~

r.:..
::

Diagram 21-9. XCTL Routine (lEA VLKOO) (part 2 of 6)

Extended Description

The XCTL routine creates the linkage to a specified load
module and ensures that the requester does not regain
control after the specified load module has been executed.
The specified load module executes with the same
protection key and in the same state as the requester.

The XCTL routine only performs the XCTL service for
requesters represented by an SVRB (supervisor request
block); it calls LINK to honor requests made by
requesters operating with a PRB (program request
block) or IRB (interruption request block).

1 Control goes to step 8 to process SVRBs.

2 The LXPREFIX subroutine checks the validity
of the request.

3 XCTL passes control to the GETMAIN routine to
obtain storage for a new PRB, (program request

block). XCTL initializes the new PRB with the
information in the old PRB.

The TRRM (task recovery reSOurce manager) updates
any SCB (STAE control block) associated with the

requester's PR B.

4 XCTL checks the RBSTAB1 field of the PRB to
determine the type of request.

Module

IEAVLKOO

Label

LXPREFIX

NOTSVRB

~ w
o
N

@
"< CI)
N
CI)

'<
~

~

~ ;:;.
r-'
0:

~
<:
o
C
:3
~

~

~
CI)
N

:::0
~

Q
~

~
t..I

~

Diagram 21-9. XCTL Routine (IEAVLKOO) (part 30f6)

Input Processmg

IRB Processing

5 If the requester is operating with an
I? IRB, set the caller's resume

PSW to SVC 3, and call LINK.

l"

PR B Processing

LINK Routine
(lEAV. vnnl

Step ~

Output

RB

j: 1 RBOPSW

L

I' 6 If the requester is operating with a
PRB, chain the old PRB to the TCB.
Remove old PRB via SVC 3.

11 j~ ~B
---~- -------- ,.

,c,< v

I,"

I{

Old PRB I":

I·', (,

New RB , ~

SVRB Processing

7 The requester is operating with
an SVRB.

...
"'f

~ CDSEARCH

;:)t:arcn for the
requested module
in the LPA.

..
8 If the requested module is found,

initialize the new SVRB and exit.
Mark SVRB resident.

i ~:>

fl t LINK Routine ,aid PRS
~," (lEAVLKOO)

~

..

Step 2

TRRM Resource
Manager

Remove or
Update SCBs

Exit Prologue

Removes Program
Management's SVRB .

•

• SVRB

• New RB

]
.Next RB

Entry-point address of
requested module

Dispatcher (lEAVEDSO) ,"

~: [: ~B
jl<

I

CIl
~
~ g.
::I
N

:::
~

[
o
o

"0
~
~
~.

::I

~
w
o w

Diagram 21-9. XCTL Routine (IEAVLKOO) (Part4of6)

Extended Description

5 For IRB requests, XCTL sets the resume PSW
(RBOPSW field) to the address of an SVC 3

instruction to cause the requester to exit. Control
passes to LINK at entry point CDADVANS.

6 XCTL chains the old PRB to the TCB. The old
PRB now points to the SVRB. XCTL removes

the old PRB by using the SVC 3 instruction.

7 For SVRB requests, XCTL passes control to
CDSEARCH to search for the requested module

in the LPA (Link Pack Area) after regaining control
fromTRRM.

8 If found in LPA, XCTL sets the value in the resume
PSW (RBOPSW) to the entry·point address of the

requested load module, and marks the SVRB as resident
in the RBSTAB field, then exits. (Resident means that
the SVRB resides in the CDE queue.)

Module Label

IRBPROC

t Diagram 21-9. XCTL Routine (lEA VLKOO) (part 5 of 6)
o
~

o
f'-)

"< f'-)
N
f'-)

l
8

i
ra:
~
~
~
(p

~

'< f'-)
N

'" St
~
~
~

~

Processing

=e=J 9 Search the LP A
directory.

ERRORTAB

10 If the module is not ~
Routine

found, abnormally ERRBLDL
terminate the issuer
of the SVC.

11 Initialize the new
SVRB, and exit. Mark
the SVRB transient.

12 See LINK Routine, Step 8, for
FRR processing.

Output

I Reg 1

I I X'806' I
Requested module could not
be found

Reg 15

I Completion Code I i

--...

"
ABEND

IGCOOO1C

J\. RB
....

RBSTAB

81 "-
.... --.

Caller via RBOPSW
.. Exit Prolog

(lEAVEEXP)
RBCDE

~
g.
5°
= ~

~
~

go
8-
o
'"0)

o
"t:S
~
~
5°
=
~ w o
til

Diagram 21-9. XCTL Routine (IEAVLKOO) (part 6 of6)

Extended Description

9 If not found in LPA, XCTL passes control to
IEAVVMSR to search the LPA directory.

10 If not found on LPDE, XCTL gives control to the
ERRORTAB subroutine to create the X'806' error

code prior to finally giving ABEND control to abnormally
terminate the requester.

11 If found on LPDE, XCTL sets the value in the
resume PSW (R BOPSW) to the entry·point address

of the requested load module, and marks the SVR B as
transient in the RBSTAB field, then exitso (Transient
means that the SVRB resides in the pageable LPA.)

Module Label

PLPASRCH

FOUNDEM

.~

~
~

o
CI.l

"<
CI.l
~

CI.l
'<
la a
~
(:)"
.....
§=

~
~
[
(D

~

'<
CI.l
~

~ a
I
~
w
~

Diagram 21-10. Overlay Supervisor (IEWSUOVR and IEWSWOVR) (Part 1 of 2)

Input

From requester via branch or
Second Level Interruption
Handler (lEAVESVC) to load
requested overlay segment.

INPUT
Register 0

o indicates SEG LD
Nonzero indicates SEGWT

Register 1

ENT ABentry address of
requested . overlay segment

--- ---- --- --- ----- II
INPUT

* Registers 1 and 2 same as above

Register 9

Overlay segment number

Register 12

Address of SEGTAB

,------
ECB ,

I I
+
Completion flag

Process

IGC037

1 If the requested overlay segment is
in virtual storage, and ENT AB is
prepared to branch to it,
go to ENTAB.

2 Issue a LINK to IEWSZOVR in the
overlay supervisor.

IEWSZOVR

3 If the overlay segment is in virtual
storage, go to:

• Step 7 for BR or CA LL.

• Step 8 for SEGLD or SEGWT entry.

4 If the overlay segment is being loaded
for a previous SEG LD request, wait
for the loading to complete.

ENTAB,which
branches to the
requested overlay
segment

5 Update status indicators
in SEGTAB and ENTAB.

SEGLD I .1 OVAL02

6 Request loading of overlay segments
marked in SEGTAB; go to:

• Step 7 for BR or CA LL.

• Step 8 for SEG LD or SEGWT
entry .

., Alter ENT AB entries to permit
unassisted branch to overlay
segments. Error

8 Check for error conditions.

SEGTAB or ENTAB for branch to
requested overlay segment

C"I'.l
(I>

~
5'
= N

:::
(I>

[
o -.
o

'"0
~
~
5'
=
01:0-
W
o
.......

Diagram 21-10. Overlay Supervisor (IEWSUOVR and IEWSWOVR) (part 2 of 2)

Extended Description

Overray is a programming technique that minimizes the
virtual storage requirements of a program. When the over
lay technique is used, a program is divided into overlay
segments, each of which can contain up to 524,288 bytes
of text. The overlay supervisor directs the loading of these
overlay segments as they are requested.

When an overlay program is link-edited, the linkage editor
builds an SEGTAB (overlay segment table), and one or
more ENTABs (entry tables). It makes these tables part
of the overlay module.

There is only one SEGT AB in an overlay program. The
SEGTAE describes (1) the relationships of overlay seg
ments in the program, and (2) which overlay segments are
in virtual storage or being loaded. The SEGT AB is the first
portion in the root overlay segment, which contains con
trol information for the overlayprogram and remains in
virtual storage while the overlay program is being executed.

There can be an ENT AB in each overlay segment of the
program. The overlay supervisor uses the ENTAB to deter
mine which overlay segment must be loaded when a branch
instruction or macro instruction refers to an overlay seg
ment not in virtual storage.

The overlay supervisor gains control when an overlay seg
ment issues a SEGLO or SEGWT macro request (SVC 37)
for another overlay segment, or when an overlay segment
issues a CA LL macro (SVC 45) or branch instruction to an
address in another overlay segment not in virtual storage.
The caller enters the resident overlay module, IEWSUOVR.

Module Label

IEWSUOVR IGC037
I EWSWOVR

This module checks the validity of the input parameters
and then issues a LIN K to module I EWSWOVR using its
alias name, IEWZOVR. If a usable copy of I EWSWOVR is
found, it is executed; otherwise, a copy is fetched into
virtual storage. I EWSWOVR marks the overlay segments
to be overlaid, determines which new overlay segments
should be loaded, and branches to Program Fetch to read
the overlay segments into virtual storage. A separate branch
to Program Fetch is made to read each overlay segment.

In both cases, the overlay supervisor examines the SEGTAB
to determine whether the requested overlay segment is
already in virtual storage, and whether all overlay seg
ments between the requested overlay segment and the root
overlay segment are in virtual storage. All must be in virtual
storage, and if they are not, the overlay supervisor calls
Program Fetch to load them.

After the required overlay segments are in virtual storage,
if the caller has issued a CALL or branch instruction, the
overlay supervisor alters the ENTABs of the loaded over
lay segments. The modified ENT ABs permit future
branches to loaded overlay segments without help from

the overlay supervisor.

Finally, depending on how it was called, the overlay super
visor passes control to the:

• Caller before loading is complete (SEGLO)

• Caller after loading is comJ:?lete (SEGWT)

• Branch address in the requested overlay segment after
it is loaded (CALL or branch instruction).

~

c:w
~

~
"<
CI:l
'-J
tI:)

'<
~

3
i
fir
~

~
~
<:
o
C
3
Q

~

'<
tI:)
N

~
st
~
~
tN

~

Diagram 21-11. Program Fetch (IEWFETCH) (Part 1 of 10)

Input

INPUT (from LINK routine)

Reg 5

[Address of PDS DE

Reg 7

C Address of DCB

Reg 9

[Address of CD E

Reg 10

[S~bpoOI no. for module

REG 13

Address of Program
Fetch work area

From the Program Fetch
interface in the LINK
routine (lEAVLKOO)
to load a module
from auxiliary
storage.

IEWMSEPT

1 Obtain virtual storage for
the module.

2 Build an extent list.

3 Read and initialize the note
list (overlay program on'ly).

Out

Note list begins

CDE
Indicates extent
list has been
created

Extent/Note List

til
(II

a cr
= N

~
(II

g-
o..
o
o

"0
~
~ o·
=
.a:;.
~
o
\C

Diagram 21-11. Program Fetch (IEWFETCH) (part 2 of 10)

Extended Description

The Program Fetch routine, which is a single module in
the nucleus, loads modules for supervisor routines. It
transfers modules into virtual storage from libraries
(organized as partitioned data sets) on direct access
storage devices. Program Fetch reads a module into a
continuous block of virtual storage, and relocates
address constants in the module. It can process
several load requests concurrently.

The subroutines of program management that search
for requested modules and the overlay supervisor
use Program Fetch to load modules.

The searching subroutines of program management
enter Program Fetch after a LINK, LOAD, XCTL,
or ATTACH macro instruction has been issued, and a
usable copy of the requested module is not available
in virtual storage. For this type of entry, Program
Fetch transfers the entire module from auxiliary
storage to virtual storage.

The overlay supervisor enters Program Fetch after a
SEGWT, SEGID, Or CALL macro instruction, or
after a branch instruction has been issued for an
overlay segment that is not in virtual storage. For
this type of entry, Program Fetch loads only the
requested overlay segment.

In loading a nonresident module or an overlay segment,
the major phases of Program Fetch processing are:

• Initialization. Program Fetch initializes a fetch work
area, builds an extent list, and (if the module is in an
overlay structure) fetches the module's note list.
Program Fetch gets virtual storage for the load module.

• Loading. Program Fetch calls channel programs that
transfer text records, R LD records, and control
records into virtual storage.

• Relocation. Using the RLD records, Program Fetch
changes the values of the address constants in the
loaded program from relative load module addresses
to absolute virtual storage addresses.

• Termination. Program Fetch checks the completion of
I/O operations, calculates the relocated module entry
point address in virtual storage, initializes the overlay
segment table (if the module is in overlay structure),
sets up a return code, and returns control to the caller.

Module

I EWMSEPT

Label Extended Description

1 Steps 1-5 are the initialization process performed
by Program Fetch. During initialization, Program

Fetch calls GETMAIN to get the virtual storage it needs
for module loaoing.

2 The extent I ist contains the virtual storage address
of and the length of each section of a module

eligible for loading. Program Fetch issues a GETMAIN
macro instruction to obtain storage for an extent list
(and a note list if the module is in overlay). GETMAIN
returns the extent I ist address and Program Fetch places
it in the CDE.

3 If the module being loaded is in overlay, Program
Fetch initiates channel programs that read the

note list into storage (storage obtained during extent list
processing). The linkage editor placed the note list in
the overlay module. The note list contains the relative
disk address (TTR) for reading each overlay segment of
the module. The TTR of the note list is obtained from
the PDSDE, converted to an absolute disk address, and
used in the channel program request to read the note list
into virtual storage. Before the note list is read, Program
Fetch builds a note list prefix that it uses when called
to load an overlay segment.

Module Label

~
CoN -o

o
f'-)

~
N
f'-)

l
~
r-
~ r;.
r-
~
~
~ c
= (D

~

<:
f'-)
N

'" f
CoN

~

Diagram 21-11. Program Fetch (IEWFETCH) (part 3 of 10)

Input

INPUT (from overlay supervisor)

Reg 3

Address of Progra m
Fetch work area

Reg 7

[Address of DeB

Reg 8

[Address of note list

Reg9

~Iay~~ment number

From the Overlay
Supervisor to load
requested overlay

segments Process . ,
I EWBOSV

4 Initialize the Program Fetch
work area for module loading
and the SRB and 10SB to
support 105 (non-VIO only).

5 Prepare channel program for reading
module records.

Output

Program Fetch Work Area

en
(t
~

S·
= IV

:::
~

[
c -.
o
"0
~
~

S·
=
~

~ -

Diagram 21-11. Program Fetch (IEWFETCH) (part 4 of 10)

Extended Description

4 Program Fetch initializes a work area whose address
is furnished by the caller. It places in the work area

information that it will use to load the requested module.
This information consists of:

• An input/output block (108). The lOB provides
information that the EXCP Processor needs for its
interface with the VIO processor when the program
module is being loaded from a VIO data set.

• An input/output supervisor block (lOS8) and a service
request block (SRB). The 10SB provides information
the I/O Supervisor needs when the program module is
being loaded from a standard (nonVIO) data set. The
SRB provides the structure under which the I/O
requests issued by Program Fetch are scheduled by the
I/O Supervisor.

• Two event control blocks (ECBs). One ECB is posted
by the SRB termination routine when the I/O request
is complete. The other is posted by the system pagefix
routine when requests issued by Program Fetch to fix
real storage are complete.

• Three channel programs. The channel programs are
similar. They are used to overlap the reading of one or
more module records with the relocation of address
constants pointed to by a previously loaded R LD
record.

• Three RLDbuffers. Each buffer is 260 bytes long and
is capable of holding an RLD record, a control record,
or a composite control and R LD record.

• A buffer table. This table contains a 12-byte entry for
each R LD buffer. Each entry contains:

• A pointer to the next entry.

• The address of an RLD buffer.

• The address of a channel program.

• A text table. This table is used in CCW translation, and
contains:

• The address of the text CCW currently active in the
channel program.

• The virtual location at which the above CCW is
reading text data.

Module Label Extended Description

In addition, Program Fetch requests storage for
another work area if the DCB (data control block)
does not refer to SYS1.LlNKLlB, SYS1.SVCLlB,
or JOBUB or if the DCB is not associated with a
system request. Program Fetch also sets a switch
in the Program Management work area to indicate
whether the program module is being loaded from
a library authorized by the Authorized Program
Facility (APF).

Program Fetch builds a DCB in the work area; the
only valid field in this DCB is a pointer to the DEB.
Before copying the DEB into the work area,
Program Fetch calls the DEBCHK routine to check
the validity of the DEB. The DCB and DEB are
used for all I/O requests.

5 Preparing for Execution of a Channel Program:
Program Fetch passes to the I/O supervisor an

absolute disk address at which the first I/O operation
is to begin. It does this by:

• Obtaining the relative track and record address (TTR)
of the first text record from the data set directory
entry, or obtaining the TTR of the needed segment
from the note list.

• Converting the relative address to an absolute address,
via a branch to a "convert" routine that is resident
in the nucleus.

• Placing the absolute disk-seek address in the Program
Fetch input/output block (lOB) or lOSB, for later
use by the I/O supervisor.

The absolute disk-seek address used for subsequent I/O
requests is obtained from count data which is read while
loading the text records.

The extent of the module's virtual storage area (text
buffed to be fixed is calculated for each I/O request.
This provides real storage for the text CCWs that are
introduced in the channel program switching process.
The buffer begins at the point when Program Fetch is
currently loading text records, and continues for a
length of 18K bytes, unless the end of the module is
encountered first.

Module

Program
Fetch

Label

~

8
N

o
til

~
N
til
'<
~

9
E n·
r-'

~
~
<:
o
=-8
(D

~

'< til
N

~
(D

if
~
~

~

Diagram 21-11. Program Fetch (IEWFETCH) (part 5 of 10)

...,~

Input Process Output

Virtual Storage for Module

Address of DeB

'- ~ Address of note list
Load module f' or overlay "- -"
segment) 6 Initiate I/O operation. Read module Address constant

" records into virtual storage.
I"

'-...:: .-/
'-Note list .-/

~,.~>

j 7 Switch to next channel program.

;

< ,~ ,~

,f
- '--

til
(D

~ o·
= N

~
~
S
Q.

o
o

"C

~ o·
-.s

.j::.

~ -~

Diagram 21-11. Program Fetch (IEWFETCH) (part 6 of 10)

Extended Description

6 Program Fetch starts a channel program by issuing a
STARTIO macro instruction to obtain branch

linkage to the I/O supervisor. The SRB address is
provided as an operand of the macro instruction.

Prior to issuing ST ARTIO, Program Fetch uses the
PGFIX macro instruction to fix its work and the te~t
buffer in real storage. In this manner, page faults are
avoided when the I/O supervisor or appendages
address the fixed storage.

Other areas referenced during the I/O request are in the
fetch work area (fixed for the duration of the loading
operation) or are resident in the system nucleus. After
these areas are fixed, all Fetch CCWs are translated and
an IDAL is built for the text CCW if necessary. The
19<:al lock is held while this is done to prevent an
address space swap from occurring. An address space
swap would cause the real storage addresses referred to
by Program Fetch to change.

The text CCWs are retranslated each time a new block of
text is to be read. They are translated from information
in the text table. For text CCWs that cause page
boundaries to be crossed, an IDAL is created. All real
addresses are obtained using the LRA instruction.

The I/O supervisor issues a Start I/O instruction, followed
by a Stand-Alone Seek command. The Stand-Alone Seek
command moves the access arm of the direct access device
to the seek address contained in the 10SB. The I/O
supervisor, via a Transfer in Channel command, then
passes control to a fetch channel program, whose address
the Program Fetch routine placed in its 10SB. The fetch
channel program causes the first text record to be read
into virtual storage. The I/O supervisor returns control
to Program Fetch to wait for posting of an event control
block by the SRB termination routine. Such posting
indicates that the I/O is complete either because the
module or segment has been completely read or because
a permanent error has occurred.

Module Label

t Diagram 21-11. Program Fetch (IEWFETCH) (part 7 of 10) -~
o
Ie
<:
CIl
N
CIl
'<
~

~
r-
~
(=5.

r-
~ =
~
<: o
C
3
(D

~

'<
CIl
N

" (D

i
~
~

~

Process •
8 Scan buffer table for R LD records.

9 Check validity of address constant (adcon)
locations.

Replace relative adcon address with virtual
storage address.

II

Output

Virtual Storage for Module

i Add ress of 0 CB

Address of note list

J li,1 ~ ---~
---'-----------"""'--t\. Address constant ,..

~
(II

~ o·
= ~
a::
a
[
o
o
'e

~ o·
=
~
~ -VI

Diagram 21-11. Program Fetch (IEWI'ETCH) (part 8 of 10)

Extended Description

8 Switching of Channel Programs: Each channel
program reads a text record followed by an RLD or

control record, or it reads only the R LD or control
record. When a text record is not followed by a control
record, the next channel program switches to single
record mode. The single-record mode continues until a
control record is encountered causing a switch to two
record mode.

A CCW in each channel program causes a program
controlled interruption (PCI). The PCI causes the I/O
supervisor to pass control to the Disabled Interrupt Exit
(DI E) routine. The appendage examines the current RLD
buffer to determine the channel program switching
required, and operates as follows:

• Ifthe current RLD buffer"contains an RLD record, the
NOP CCW in the current channel program is altered
to TIC the CCW, which reads a control record or RLD
record into the Program Fetch work area. The TIC
address is translated using the LRA instruction.

• If the current R LD buffer contains control information,
the text CCW in the next channel program is
initialized. Before chaining is attempted, however, the
extent of the read is examined to determine whether it
exceeds the text buffer fixed for the current I/O
request. If the fixed limits are exceeded, the current
channel program is not altered and a "buffer full"
condition is set. If the text buffer is not exceeded, the
current channel program NOP is altered to TIC to the
next channel program to read a text record, and a
control or RLD record after the text CCW and TIC
address have been translated.

• If the current RLD buffer contains an RLD record
with the end-of-module indicator, the "end" flag is
set. If the buffer contains a control record with the
end-of-module indicator, the next channel program is
prepared to read a text record only and the "end" flag
is set.

Module Label Extended Description

In all the above cases, {he buffer table is examined to
determine whether an RLD record was read by the
previous channel program, and, if so, the RLD record is
passed to the relocate subroutine. Control is then
returned to the I/O supervisor.

The Post Status routine (for normal exits) is entered by the
I/O supervisor when the channel program has terminated.
The appendage returns control to the I/O supervisor to
schedule the SRB termination routine when channel end
is due to the fact that:

• The entire module or segment has been loaded.

• An invalid record type or an invalid address has
been found.

• A permanent I/O error has occurred.-

When channel end occurs because the note list has been
read, the Post Status routine (for normal exits) resets the
channel program to begin reading the program module text
and returns control to the I/O supervisor to restart the
channel program.

When channel end occurs because the next block of text to
be read will lie partially or entirely outside the limits of the
currently fixed real-storage buffer area, the Post Status
routine (for normal exits) frees the currently fixed area and
fixes the new area beginning at the location where the next
block of text is to be read. The exit routine then completes
translation of the text CCW and returns control to the I/O
supervisor to restart the channel program.

When none of the above conditions is present, channel end
occurred because the TIC instruction was stored by the DIE
routine after the channel had fetched the NOP CCW. In
this case, the Post Status routine (for normal exit) returns
control to the I/O supervisor to restart the channel
program.

Module Label

f' Diagram 21-11. Program Fetch (IEWFETCH) (part 9 of 10)
w -0'\

~
~
N
fIJ

~ a
r-
ei (S.

Co
~
.$
~
= :3
(D

,a:.

'<
fIJ
N

::c
(D

i
~
w

~

Process

11 Test for completion of loading.

12 Allow channel program to finish .

13 Initialize SEGTAB for overlay program.

14 Calculate module's relocated entry point
address.

Output

Step

15 Set return code in register 15. ,. - '" Return

Return to Program Fetch
Interface in the LINK
routine (IEAVLKOO)

code

X'OO'
X'OB'

X'OC'

X'OD'
X'OE'
X'OF'

Meaning

Successful load
Program error
occurred in
Program Fetch
Insufficient
storage space
available for
Program Fetch
Invalid record type
Invalid address
Permanent I/O
error

til

~ g.
=
~

:::
$a.

[
o
o
"0
~
~ o·
=
.,...
w --...I

Diagram 21-11. Program Fetch (IEWFETCH) (part to of 10)

Extended Description

11 Program Fetch is restarted after the SRB termination
routine has posted an ECB. If the 1/0 was

terminated because of an error, control is passed to the
Program Fetch termination routine for cleanup operations;
otherwise, the relocation subroutine of Program Fetch
then examines the buffer table to determine whether an
RLD record (containing relocatable address constants) is
in an RLD buffer. If an RLD record was read by the last
channel program executed, the relocation subroutine
relocates each address constant specified in the record.

The relocation subroutine adjusts the value of an address
constant by combining (adding or subtracting) a relocation
factor with the value of the constant. Each RLD record
contains the linkage-editor-assigned address of the constant
and a flag that indicates addition or subtraction of the
relocation factor.

If the linkage-editor-assigned address of the constant
yields a location outside the storage area aSSigned to the
load module, no storing takes place. Control is then
passed to the Termination routine.

13 If the control record before the next text record
contains an "end" indicator, the DIE routine sets

an "end" flag to inform the termination subroutine.
After relocation has been performed, a test of the "end"
flag causes the subroutine to be entered.

The Termination routine performs cleanup operations
and places a completion code in the return register.

The relocated entry-point address is calculated and
placed in a register for use by the caller. If the module
loaded was the root segment of an overlay program, the
address of the DCB and the note list are placed in the
segment table for the overlay supervisor.

Module Label

4-318 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

Recovery termination management (R/TM) cleans
up system resources when a task or address space
terminates. Specifically, R/TM performs normal and
abnormal task termination, normal and abnormal
address space termination, writes dumps, records
errors, provides for recovery of supervisory
routines via routing control to functional recovery
routines, and recovers the system when a CPU in a
tightly coupled multiprocessing environment fails.
R/TM provides these functions for both system and
problem program routines:

Logically, R/TM consists of four interrelated
groups of functions that perform R/TM services:

• RTMl: Attempts recovery after a request for
an R/TM service from supervisory routines.
The CALLRTM macro instruction gives control
to RTMl. RTMI resides in .the nucleus.

• RTM2: Performs normal and abnormal task
termination for both system and problem
program routines. The ABEND macro
instruction (svc 13) requests these RTM2
services. RTM2 resides in the link pack area
(LPA).

• Address space termination: Provides normal
and abnormal address space termination for
supervisory routines. The CALLRTM macro
instruction is used to request this service.
Address space termination resides in the LP A.

• R/TM support functions: Provide error
recording, formatting of dumps, creating
recovery control blocks for STAE, EST AE,
ST AI, EST AI, and EST AR, and recovering from
the failure of a CPU in a tightly coupled
multiprocessing system.

RTMI Functions
RTMI attempts recovery from hardware and
software errors for routines protected by FRRs
(functional recovery routines, defined by the
routine that requests the recovery protection).
RTMI schedules RTM2 processing to terminate those
tasks or address spaces, via SVC 13, that cannot
recover. To achieve recovery, RTM 1 routes control
to the FRRS when program checks, machine checks,
paging errors, invalid SVCs, or restarts occur.

RTMI functions are divideu into three logical
categories:

• Second level interruption handler (SLIH)
mode. RTMI acts as second level interruption
handler for the interruption handlers when

Recovery Termination Management

they detect errors. (See the Supervisor
Control section for a description of the five
interruption handlers.)

• Service mode. RTMI provides the interface for
address space or task termination when
entered in service mode.

• Hardware error mode. RTMI functions as an
extension of MCH (machine check handler)
after a hardware-type error occurs.

SLIH Mode Processing
RTMl, when in SLIH mode, schedules recovery for
errors in system-mode functions, and initiates
recovery for errors in task-mode processing. (See
the "RTM2 Services" section for a description of
recovering from errors in task-mode processing.)
System mode recovery involves routing control to
functional recovery routines (FRRS) and requesting
error recording.

To implement recovery for system-mode
functions, RTMI routes control to the FRRs defined
on FRR stacks for specific paths through the
supervisor. (The MO Diagram "Routing to FRRS"
fully defines the FRR stacks and the paths through
the supervisor that they protect.) The system-mode
functions use the SETFRR macro instruction (an •
inline-expanding macro instruction that places the •
address of the FRR on the stack) to make the FRR
known to the system; supervisor control FRRs are
placed in the system at initialization time. When an
error occurs, RTMI routes control to the FRRS, thus
allowing a recovery path through system-mode
functions.

Service Mode Processing
R TM 1, when in service mode processing, directs
recovery 'and/or termination processing of R/TM to
a specific event, program, task, or address space
other than the currently executing path. (Service
requests often consist of scheduling entries into
other services of R/TM to complete the request.)
Address space termination, requested via a
CALLRTM TYPE=MEMTERM macro instruction,
activates the resident address space termination
controller and queues the address space
-represented by an ASCB (address space control
block)- to be terminated on a termination queue.

For task termination, requested by a CALLRTM
TYPE=ABTERM macro instruction, RTMI establishes
an interface to RTM2. This interface differs for

Section 2: Method of Operation 4-319

tasks in the current, or executing, address space, or
for tasks in another address space. For ABTERM of
a task in the current address space, RTMt sets the
RB (request block) resume PSW to point to the
address of an SVC 13 instruction which will be
executed first when it is redispatched. For ABTERM
of a task in another address space, RTMt must first
reschedule itself as an SRB (service request block)
in the address space executing the task to be
terminated. Thus it appears that the CALLRTM
TYPE=ABTERM request was issued by a task in the
same address space. RTMt uses this interface to
give control to RTM2 as an RB issuing an SVC 13
instruction. RTM2 performs the actual
recovery / termination processing.

The PGIOERR (page I/O error) service request
differs for non-locked tasks or for locked tasks and
SRBs. For non-locked tasks, RTM2 sets an RB to
point to an SVC 13 instruction, thereby giving
control to RTM2 to execute a task termination. For
locked tasks or SRBs, RTMt establishes an interface
to allow FRRs to gain control. RTMt does this by
causing the task or SRB to invalidly issue an SVC.
This effects an re-entry into RTMI in SLIH mode;
RTMt can then route control to FRRs defined for
the path that failed. Figure 2-46 illustrates
PGIOERR processing, and refers to MO diagrams in
the Method of Operation section that describes the
processing.

Hardware Error Mode
RTMt, when operating in hardware error mod~,
logically operates as a subroutine of the machine
check handler (MCH). (See the publication
OS/VS2 Recovery Management Support Logic,
SY27 -7250, for a complete description of the
MCH.) RTMt performs software repair, gathers data
about the error, and records the error. When MCH
cannot recover from the error, RTMt sets up an
MCH re-entry to attempt software repair. Figure
2-47 illustrates how RTM t handles a hardware
error.

RTM2 Functions
RTM2 terminates tasks and controls the clean up of
their associated resources and control blocks. RTM2
handles normal tasks termination tasks that cannot
complete their processing due to an error. Resource
managers, routines called by RTM2, clean up the
resources and control blocks associated with a task
or address space to complete termination. No
longer does R/TM, when performing termination,

4-320 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

clean these resources; the component owning the
resource performs the clean up.

RTM2 performs abnormal termination and it may
be requested directly or indirectly. The request is
direct when a system or user program issues an
ABEND macro instruction to terminate the current
task. The request is indirect when scheduled by
RTMI. The SVC 13 instruction, which is executed
the next time the task to be terminated is
dispatched, causes supervisor-assisted linkage to
ABEND.

Normal Termination
When the last program to be executed for a task
ends, it returns control to the EXIT routine. EXIT
gives control to RTM2 to perform normal
end-of-task processing. Figure 2-48 depicts the
steps that occur for normal task termination. (The
Task Management section describes EXIT and exit
prolog processing in detail.)

Abnormal Termination
Abnormal termination occurs because of an
unrecoverable error, such as an I/O error or
program check. It may also be initiated by a system
or user program that detects an abnormal condition
that could cause program damage or incorrect
results. The task whose program or I/O operation
has malfunctioned is abnormally terminated
because continued executing would waste system
resources. Abnormal termination frees the
resources for use by other tasks.

Abnormal termination allows two options: task
and step termination. These are normally user
options, specified by an operand of the ABEND
macro instruction.

In task termination, only the resources of the
current (failing) task and its subtasks are released.
The current task (the task being terminated) is
treated as the top terminating task (the
highest-level task in the chain of terminating
tasks); the current task and all its subtasks are
abnormally terminated.

In step termination, all tasks in the job step are
. terminated. The job-step task is treated as the top
terminating task; the chain of terminating tasks
originates with. step task, the highest-level task in
the job step, produces the same result as a step
termination.
For abnormal termination, RTM2 provides the
following services:

• Retry of a terminating task, if possible.

• Allowing tasks that cannot retry to process
special exits.

• Display a snapshot of storage.
• Wait for subtask termination to complete.
• Purge subtask resources.
• Convert ABEND requests to the jobstep level.

Figure 2-49 shows how RTM2 handles an
abnormal termination, and points to MO diagrams
in the Method of Operation section that describes
the processing.

Retry Terminating Tasks
RTM2 permits task scheduled for termination to
bypass termination and resume processing if they
have created exits for this function. These exits
are:

• STAE (specify task asynchronous exit).
• EST AE (extended ST AE).
• STAI (specify task asynchronous interruption).
• ESTAI (extended STAI).

• EST AR (extended specify task asynchronous
retry).

These exits receive control from RTM2 prior to
termination completing. (This facility complements
the FRR facility in RTMI.) The exits may attempt to
recover the task being terminated; if successful,
R TM2 does not terminate the task. If the exit does
not recover the task, task termination continues.
Figure 2-50 shows retry.

Term Exits
Whereas R TM2 allows retry during most task

terminations, certain conditions, for example
CANCEL requests, ancestor task abnormally
terminating, timer expiration, cannot be retried.
However, a special feature of ESTAE/ESTAI exits,
called the "Tttrm" option, can be used to enable an
EST AE or ES$I exit to gain control during these

, situations. (T e user ind,cates this by specifying
TERM= YES w en the ESt AE or EST AI is issued.)
During "normfll" error recovery processing for a
task, these exits function in exactly the same way
as exits created without the Term option. But for a
situation that cannot be retried, these specially
marked exits are given control so that a user may
clean-up resources, write records, print messages,
or perform any other important function before
RTM2 completes the termination. Retry, even
though requested, is not permitted by RTM2. Figure
2-51 shows how RTM2 processes a CANCEL request
and routes control to term exits.

Display Storage
RTM2 will display storage, via SNAP, for all tasks in
the failing task tree, when requested by the DUMP

option.

Wait for Subtask Termination
RTM2 waits for subtasks within RTM2 processing to
complete before terminating all the other subtasks
in the task tree. RTM2 can "stack," or wait, for up
to four subtasks to be processed at one time. (This
does not apply for CANCEL requests.)

Purge Subtasks
To terminate the tasks in a failing task tree, RTM2

removes, via DETACH, each subtask. DETACH will
then abnormally terminate, via CALLRTM

TYPE=ABTERM, any that has not yet completed
processing.

Convert to Step
When a caller requests ABEND o(SVC 13), with the
STEP option, RTM2 will completely terminate the
failing task and any of its subtasks. Then, before
giving control to exit prolog, RTM2 issues a
CALLRTM TYPE=ABTERM request for the job step
task.

Address Space Termination
Address space termination may be requested by
certain system functions. For example, real storage
management may decide to terminate an address
space because of a swap-in failure for the LSQA.

Normally, however, RTM2 requests termination
after task termination of the region control task.

Address space termination begins after RtMl

invokes the address space termination controller, by
scheduling the address space termination SRB to
post it. The address space termination controller
determines the address space being terminated, and
de queues the ASCB. The address space termination
controller then attaches the address space
termination task to complete the termination. The
termination will be complete after all the resources
associated with the address space have been purged
by the address space termination controller and
RTM2. The figure 2-52 shows the control flow of
an address space termination.

Section 2: Method of Operation 4-321

Recovery Termination Management
Support Functions

R/TM provides functions that enable users to
establish their own recovery protection, and system
functions which enhance system serviceability and
reliability. R/TM gives control to these services as
part of its main processing, but none of these are
integral to R/TM.

R/TM services consist of the following:
• . STA (specify task asynchronous conditions)

and EST A (extended ST A) services. ST A and
EST A services create SCBs (ST A control
blocks) to represent user-written abnormal
condition exits. R/TM will give control to
these exits during termination processing.

• ACR (alternate CPU recovery). ACR provides
a method for the system to continue
functioning after one CPU in a tightly coupled
multiprocessing system fails.

• SETFRR. This is an inline-expanding macro
instruction that places an FRR (functional
recovery routine) on the correct FRR stack.
R/TM routines route control to FRRS after an
error occurs.

• Initializing FRR stacks. This creates FRR
stacks during system initialization, and
changes FRR stacks in response to VARY CPU
commands.

• SVC 51. SVC 51 provides· formatted or
unformatted displays. SVC 51 include SNAP
dump, SVC DUMP, and schedule dump.

• CHNGDUMP (change dump). The CHNGDUMP
operator command overrides the dump
options in the system for SDUMP and ABEND
dumps.

• Recording. R/TM uses recording to record
errors and records created during recovery or
terniination processing.

STA Services
The STA services create SCB (STA control blocks)
that represent caller-requested asynchronous exits.
ST A services, requested via an SVC 60 instruction,
create five types of SCBS:

• EST AE SCBs.
• EST AI SCBs.
• STAE SCBS.
• STAI SCBs.
• EST AR SCBs.

4-322 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

Alternate CPU Recovery (ACR)
ACR provides a multiprocessing system the ability
to recover system operation, executing on the
operational cPu, after one CPU fails. ACR saves as
much work from the failing CPU as possible, and
terminates work it cannot save. ACR performs this
by treating the work in progress as an abnormal
termination condition. This allows ACR to attempt
software recovery through the use of recovery and
retry routines defined in the system at the time of
the malfunction in the failing CPU. ACR will also
remove I/O devices, channel paths, or other CPU
dependencies affiliated with the failing CPU by
placing them offline.

SETFRR
The SETFRR macro instruction expands and places
an FRR on the appropriate FRR stack. This is the
mechanism used by routines requiring recovery
protection.

Initializing FRR Stacks
During initialization, this function initializes the
FRR stacks used by the system, and places pointers
to these· stacks in the RSVT (recovery stack vector
table) of the PSA. The VARY CPU command can
use this function. The FRR stacks initialized by this
function are:

• sVC-I/O-dispatcher stack, used by these
supervisor control routines.

• Machine check stack, used by the machine
check handler after a machine check occurs.

• Program check stack, used by the program
check handler after a program check occurSi.

• -The three external interrupt handler stacks
, used by the external interrupt handler to '

process three levels of recursion. (See the
Supervisor Control section for a description
of the external interrupt handler and its use
of the FRR stacks.)

• Restart interrupt handler stack, used by the
restart interrupt handler.

• Normal stack, used by supervisor control
routines processing on behalf of problem
programs which utilize supervisor services.

Dumping
svc 51 produces two types of dumps - formatted
and unformatted. The following text explains
formatted and unformatted dumps.

Formatted Dump - SNAP Dump
The SNAP routine is invoked by a SNAP macro
instruction. The SNAP macro instruction, whose
expansion contains an svc 51, causes ·the svc (SVC

SLIH) to call the SVC DUMP routine. The SVC

DUMP routine checks the SNAP parameter list to
determine whether a SNAP macro instruction has
been issued. If so, the SVC DUMP routine passes
control to the SNAP routine.

The SNAP macro instruction can be issued by
ABEND Dump during abnormal termination, or by
a user program at any time. Thus, SNAP processing
can provide either a formatted abnormal dump or a
formatted dynamic dump. The ABEND Dump
routine can specify either a SYSABEND or a
SYSUDUMP dump.

The default dump options for a SYSABEND

dump consist of the major control blocks belonging
to the task, enqueue control blocks, LSQA (local
system queue area), programs and dynamically
acquired storage, and the GTF or trace table
entries. The default dump options for a SYSUDUMP

dump differ only in the omission of LSQA.

These default options reside in the
SYS1.PARMLIB members IEAABDOO for SYSABEND,

and in IEADMPOO for SYSUDUMP. SNAP dump
processing merges these options with those
specified on the request. Figure 2-53 shows how
SNAP determines the type of dump and dump
options requested.

If a dynamic dump is requested (the SNAP

macro is issued by a user program), the storage
areas to be dumped are specified by the operands
of the SNAP macro. (See OS/VS2 Supervisor
Services and Macro Instructions for information
on how to obtain a dump.)

The use of the SNAP routine is restricted to
tasks that do not have job-step tasks within their
subtask structure at entry to SNAP processing. If a
task has a subtask that is a job-step task, control is
returned immediately to the caller.

Unformatted Dump - SYC DUMP
The SVC DUMP service provides a quick,
unformatted dump of virtual storage directly to a
data set. To use SVC DUMP, callers must have APF

(authorized program facility) authorization, or be

in control program key. The SDUMP macro
instruction calls SVC DUMP processing either by
SVC 51 or branch entry.

The SVC DUMP service consists of three
routines;

• NIP initialization, which sets up the
SYS1.DUMP data sets as specified by the
operator with the DUMP option in the
'SPECIFY SYSTEM PARAMETERS' command.

• SVC 51, which performs the dump of virtual
storage.

• Dump task, a permanent task in each address
space, which dumps the contents of each
address space.

• Nucleus routine, which handles branch entries
and schedules the dump task in the specified
address space.

The SVC 51 routine dumps the contents of
virtual storage from the address space in which the
request occurred - operating under the caller's task
- or it initiates the dump of another address space
by posting the permanent dump task in the
destination address space being dumped by
scheduling an SRB and operating under the dump
task. Figure 2-54 illustrates the dump function.

CHNGDUMP Operator Command
The CHNGDUMP operator command overrides any
dump options that already exist in the system, and
allows the operator to create new options that
differ from the existing options. (See the
publication OS/VS2 System Programming
Library: Supervisor, GC28-0628, for a complete
description of the CHNGDUMP operator command
and its uses.)

Recording Services
The recording facility schedules asynchronous I/O
either to SYS1.LOGREC or to the operator. The
facility consists of two principal routines - the
nucleus-resident recording request routine
(lEA VTRER) and the recording task (lEA VTRET) in
the master address space. Requests for recording
by disabled routines are accepted and buffered by
the nucleus routine, which in turn posts the
recording task via an SRB to write the queued
records to SYS1.LOGREC by issuing SVC 76 or to
the operator by issuing svc 35.

Section 2: Method of Operation 4-323

~
~

~

~
~
N
fIl
'<

~
r-
ei
f)'

t:'!
Ef
~
< o = :3
(II

•
'< fIl
N

::c
(II

i
~
~

~

SRB
Dispatcher
(lEAVEDSO)

Reference an address
not in Real Storage.

- Page Reset
Program

Program Interruption Roctines

i f2\ Suspend the SRB
~ (Program "A") -

save current status,
and schedule
paging I/O.

Interrupt Code 17 Exit to Dispatcher
(lEAVEDSo)

RTM1

SSRB

FRR
Stack

I/O Error Occurs

lOS

@Schedule Page
Reset Process.

Exit to Dispatcher
(lEAVEDSO)

@Detect I/O Error,
Issue CALLRTM
TYPE=PGIOERR. II II(§)

Dispatcher
IEAVTRT1

Put SRB Program "A"
Back on Dispatching
Queue.

Exit to Dispatcher
(lEAVEDSO)

This diagram shows the scope of
supervisor control, lOS, RSM and R/TM
involvement in the processing of a page
I/O error. The double error (SVCERR)
aiused by RTM1 shows how an RTM1
service request (PGIOERR) establishes
the proper RTM 1 re-entry interface so
that recovery routines ain be processed.

Figure 2-46. Page I/O Error Processing (Part 1 of 2)

EED Set up register
interface for
mainline.

IEAVTRTM

Regs
and PSW (To

Part 2)

® Dequeue SRB for
Program "A" .
Reinstate FRR stack.
Load regs and PSW.

Save regs and PSW
from SSRB into
EED. Set up SRB
to issue ABEND.

FRR
Stack

(To Part 2)

This illustrates how an I/O error during a page-in request is processed by R/TM. For this
example an SRB routine has been used. However, similar action is-given for locally
locked tasks and normal tasks.

Data flow is as follows. The operating environment of program A - i.e. registers,
PSW and Recovery stack (step 1) is stored into an SSRB on page interrupts (step 2).
When the error is detected by the paging supervisor (step 4) the SSRB is passed to
R/TM. R/TM copies the regs and PSW fromthe SSRB into its own data area - the'
EED (step 5) and alters the SSRB fields so that it will issue an ABEND when redispatched.
The page reset routine puts the SSRB on the dispatching queue (step 4). The dispatcher
dequeues the SSRB (step 6), copies the stack contents (saved in step 1) into the normal
stack (re-establishing program "A's" recovery) and loads the registers and PSW from the
SSRB (modified by R/TM in step 5 to cause and ABEND). As a result of the ABEND,
R/TM is reentered (step 8) and passes the original regs and PSW from the EED into an
SDWA (step 10) so that the FRR for program "A" is presented with the environmental
information at the time it was first interrupted for a page fault.

SVC Interruption
IEAVESVC)

IH

(j) Detect SVC was
issued by an SR B
routine.
Issue CALLRTM
TYPE=SVCERR.

(To Part 2)

I:"Il a
6·
= tv

~
~
5'
c:;l.

o
~

o
'0

~
(5"

=
f"
~

~

(From
Part 1)

®
IEAVTRT1

Set up register
interface for mainline.
BALR to RITM.

Take exit to retry
routine or
dispatcher.

'----- ---- -- -

...
...

Figure 2- 46. Page I/O Error Processing (part 2 of 2)

(From Part 1) (From Part 1)

RTM1

®
IEAVTRTM IEAVTRTS

...
Determine system

... ..
Route control to

r
mode as non-TCB

, ..
program "A"s FRR.

mode. (Established in
Regs and CaIiIEAVTRTS. step 1)

I > PSW from
EED

Retry or
PERCOLATE as
determined by FRR"

'-- ------ ---

~

~
~
0\

o
{I} -<:
{I}
N
{I}

'<
~

~
t"'"
ci r;.
t"'"
0: ...
e:
'<
<:
o
C
3
CD
~

'< {I}
N

~
CD ;-
Q)

~
t.J

~

CD LOGREC Buffer

Information

• Processing a storage about
hardware

check in a global routine ..
that has established

error

an FRR. ~ RTM1
• Invokes RTM1 for

®IEAVTRT1 ®IEAVTRTM 01EAVTRTH

EED
software repair:

EED CALLRTM ...
• Sets up environment ~ ~ .• Preserve hardware

Registers
TVPE=MACHCK ,.. • Ca lis lEA VTRTH " and PSW

for MACHCK entry. (Hardware error data in EED's at time of Repair

processor). (RTM's internal MACHCK Status

control blocks). Informa-

l tion

• Ca II appropriate
repair routine.

• Record hardware WSACRTMK
error to LOGR EC.

• Establish
Registers

• Returns to caller • Passes back poi nter environment for and PSW for
(MCH) with pointer ... to re-entry data ... re-entry to RTM in "- re-entry to

to WSACRTMK. (stored in WSACRTMK. .. RTM1

WSABRTMK).

~ ~ - -
(To Part 2)

This depicts the processing for a "hard" type madline check in a global routine which has
FRR recovery. It shows the interfaces and control flow between the machine check
handler and RTM1 for both hardware error processing and the resulting software recovery
attempt by the FRR. It alludes to the fact that software recovery will continue in task
mode, because in this example the FRR does not recover the error.

The RITM CPU-related work save area (WSACRTMK). is used by RTM1 to alter the
registers and the PSW that MCH will r.eload - thereby determining whether MCH will
resume the interrupted process ('soft' error), or reenter RTM 1 for software recovery
('hard' error).

The use of EEDs allows the LOGR EC buffer to.be available for further possible machine
checks and is the mechanism of passing information to RTM1 and RTM2. The information
in the global SDWA used by RTM1 recovery was obtained from the EEDs. RTM2 will
obtain an SDWA but will also use EED's as its source of error data to be passed to
recovery routines.

Figure 2-47. Hardware Error Processing (Part 1 of 2)

~
(")

g.
= N

:::
a
S
Co

o -.
o
-=
~
~ g.
=
~
~
N

(From
Part 1)

A WSACRTMK
i MCH i

Regs and
PSW
Altered
by RTM1

EEDs

I--
SDWA

~MACHCK
I r-VI Information

........

r

~® MCH

• Load registers and
PSW from
WSACRTMK (causing
re-entry to RTM 1 -
type MACHCK -
RE-ENTRY) for
Software Recovery

I ~ CZ) IEAVTRTM ® IEAVTRTS F~R _li

r

DISPATCHER

The task will be
dispatched eventually and
execute the SVC 13 wh ich
will cause RTM2 Task
Recovery!Termination
Services to be invoked.

Figure 2-47. Hardware Error Processing (Part 2 of 2)

"
• Sets up environment

for MACHCK
re-entry.

~. Attempt system
recovery since error
(MACHCK) occurred
in a global routine.

• R ou tes to F R R to l:Jiiiijiiiii.~
attempt recovery for ..
routine that suffered • "Pe colates"
MACHCK. r

• Records the error.

• Exits to the
Dispatcher.

~. Sets up task for
entry to RTM2 by
altering RBOPSW.

~. Returns with a
'Continue-with
termination'
indicator

~ ..
'---'"

TCB
I' II
"

EEDs -l'\ Continue-• with-term. RB

• SVC 13

~

~
N
00

~
"< Vl
N
Vl
'<
~

9

i
r"'

~
~
~
2"
3
(D

~

'< Vl
N

~
(D

i
r6
~

:.....
'-'

TCB

\

Task Issues SVC 3

VoISP IIEAVEDSOJ

Determine tasks eligibility
for normal task termination.

• Exit was issued by last
RB or RB queue.

• TCB EOT = Zero.

PRB SVRB

DISP (lEAVEDSO) 2 Issue SVC 13 to pass
control to RTM2. 'v\

RTM2

IEAVTRT2

Get and initialize RTM2
work area (SP2SS)

BRANCH

IEAVTRTE

1 Pass control to task termination processor.

2 If ASXBTCBS indicates '1' task is left in
the memory - then address space
termination is necessary. Set the task non
dispatchable and issue CALLRTM
TVPE=MEMTERM to SCHEDULE an
SRB which will initiate address space
termination processing.

3 If only normal task termination, then branch
to Exit prolog to get rid of SVR B.

4 Free the RTM2 Work Area.

BRANCH

(To Part 2)

BALR
IEAVTRTC

No abnormal conditions to
handle.

IEAVTSKT

1 Free Resources via Link to RTM2 and
user defined resources managers, passing
Resource Managers Parameter List (RMPLL

2 Set PRB resume psw to point to an SVC 3
instruction.

3 Set end-of-task indicator for exit in
TCB (TCB EOT).

4 Indicate proper control flow in RTM2
Work Area.

• If last task in memory, indicates address
space termination processing.

• Not last task.

EXIT and parts of RTM2 comprise this function.
This indicates how EXIT is entered and reentered to complete
task termination. It also provides a perspective of RTM2
functions related to normal termination of a task.

Figure 2-48. The Process of Normal Task Termination (part 1 of 2)

Legend:

~ Pointer

-+ Control Flow

~DataFlow

Communications area
for processing within
the RTM2 Load
Module.

RMPL
--~

_ LINK a To all Resource Managers
defined in IEAVTRML

_ BALR t
TCB

To system resource
managers

PRB

Resume PSW
4 SVC 3

{I}
(D

a o·
=
~

a::
~
6'
~

---------.,
If address space termination I
is necessary - go to L __ _
Figure 7. I _________ J

IEAQSPET-IEAVGCAS
.... BALR ...

Free Storage ,..

L BALR ...
IGC062R1 IEAVEEDO , ...

• Free TCB & RB core.

• DequeTCB.

EITHER

• Schedule end- of- task Exit
Routine for task

OR

• Post mother task if attached
w/ECB operand.

(From Part 1)

1

BRANCH ...
IGC003 - EXIT Prolog

Prolog deletes·SVRB

TCB

r--------
I If Task Termination,
I redispatch of task ~

DISP - - - - - -- - - - - --, causes EXIT to receive
L§a''iJf#

L ________

IGCOO3 - EXIT

1 Si nce the end - of - task indicator has
been set (TCBEOT) BALR to
Resource Manager for cleanup of Task. IEAVTSBP

(0 BALR
TRRM ...

Dequeue/Free SCB's owned by RB or Task.

CD
.. ...,.

VSM

0) PGM ~ BALR ... IEAPPGMX

0
,- r

DET Free Programs

2 Exit to dispatcher (JEAVEDSO)

BR 14

~
,.

Normal Task Termination
is Complete

S. Figure 2- 48. The Process of Normal Task Termination (Part 2 of 2)
o

"0
~
~ c)"
":I

~

~
N
\0

~
~
~
Q

~
"< tI'.l
t-J
tI'.l
'< g
r-
~
(5'
r
a:
rJ
-<
~
=-3
(D

~

'<
tI'.l
t-J

~
(D

~
~

~
~

~

ABEND

Abnormal Termination

Entered By
SVC 13

This diagrams the logic flow during
abnormal termination of a non-critical
nature. If the error is not recoverable
at a particular task level, that task and
its subtasks are removed. If the scope
of the AB END is "Step", then the
entire job step is removed. Optionally,
serviceability information (via dumps
and software error records) is supplied
to the user.

Figure 2-49. Abnormal End-of-Task

• Validity check and process
dump options.

• Indicate ABEND in
progress.

SCBTERMI

• ABTERM SMC subtasks
with 100.

• Wait for subtasks in RTM2 to
complete.

• Set subtasks non-dispatchable.
• Purge resources.

• Free RTM2 work areas.
• Clear TCB flags.

RTM2WA

EXIT
Prolog
OEAVEEXP)

(R ecovery processi ng
for failing task)

• Find and detach deepest
subtask.

• Purge resources via Resource
Managers.

• Massage R B queue for exit.

EXIT

• Diagnose
error.

• Select
options.

EXIT

• Diagnose
error.

• Select
options.

Recorder

tI'J
~ n g.
= N

r=:
til

i
c
~

o
"0
(':>

;
g.
=

This shows the flow
through RTM2 when processing
a potentially recoverable error.
The recovery exit is supplied
environmental data that
describes the error, for example,
completion code, register
contents, PSW, system state at
time of error, etc., to aid in
diagnosing the error. To effect
retry, the resu me PSW in ea ch
RB up to and including the
retry RB is modified.
The retry address supplied
by the exit is placed in resume
PSW field of the retrying RB,
and all RB's between the retry
RB and the RTM2 RB have
their resume PSW set to either
Exit prologue or SVC 3. When
RTM2 eventually returns to the
system, supervisor assisted
linkage will cause the retry address
in the retry RB to be given
control.

t Figure 2·50. Retry
(N

Entered Via
SVC13

TCB
,---

RTM2WA

RTM2DREQ

• Process and validity check dump options.

Select an exit (SCB).
Obtain and initialize SDWA.

• Perform I/O requests and block
asynchronous exits if requested.

• SYNCH to EXIT.
-- --- - --.....,/~

IEAVTAS2

• Track SDWA.
• Record, if requested.
• Save dump options.

IEAVTAS3

• Select retry RB.
• Modify RB's for retry.
• Free SDWA, if requested.
• Reset SCB flag.

• Free RTM2 work area.
• Clear TCB flags.
• Branch to exit prologue.

Prolog
(IEAVEEXP)

• Diagllose
Error

• Select
Options

Recorder

RB

TCB

(Retry RB)
..... ~, ,

RBOPSW=
CVTEXIT

~
~
~
N

i -~
N
CIJ

'i
(D

:I
~

'!S.
(")

Co
cr ...
~
<: a
= :I
(D

~

'< CIJ
N

::tI
(D

~
~

~
~

~ -

RTM1

• Process dump data set
for current & SNAP.

• Find daughters & SNAP.
• ResetTCB flags in current

and daughters.

SNAP

EXIT
• Initialize term exit processing (Term. exit processing) • Free

until all term exits have been IEAVTAS1 Resources entered.

• Initiate task termination until
each subtask has
'EXITED'.

• Free RTM2 work area.
• Clear TCB flags. Exit Prolog (JEAVEEXP)

This illustrates the flow of control throughRrrM when a job is cancelled.
The CANCEL request is indicated by specific completion codes set in- the TCB by
RTM1 (code='x22'). The CANCEL process is distincitive in that it is considered a
strictly unrecoverable situation. Normal termination procedures are abandoned in
favor of creating an 'express' path through termination. However, term exits are
give n contro I.

Figure 2-51. Cancel

• Find deepest subtask.
• Detach subtask.
• Purge resources.
• Massage RB queue for exit.

Resource Mana

• Installation Resource
Managers.

• IBM Resource
Managers.

tI.l

a
(5'

=
~

a::
a
6'
~

~
o
'g
!
(5'
=
~
CN

CD
Since the MEMTERM process circumvents
all TASK recovery andTASK Resource
Manager processing, its use is restricted to
a select group of routines which can deter
mine that task recovery and resource man
ager clean up is either not warranted or
will not successfully operate in the address
space being terminated. It therefore is
restricted to the following users:
1) Paging supervisor when it determines

that it cannot swap in the LSQA for an
address space,

2) Address space create when it determines
that an Address Space cannot be
initialized,

3) The RTM or the supervisor control
FRR when they determine that un
correctable translation errors are
occuring in the address space,

4) The RTM2 when it determines that
task recovery and termination cannot
take place in the current address space;

5) The RCT when it determines that the
address space is permanently dead
locked,

6) The RTM2 when all tasks in the address
space have terminated (lEAVTRTE),
This is the only requestor of normal
address space termination
(j.e. COMPCOD=O).

7) Auxiliary Storage Management recovery
routine, when it suffers an indeterminate
error from which it cannot recover,
while handling a swap-in or a swap-out
request.

S) Auxiliary Storage Management
recovery routine, when it determines
that uncorrectable translation errors
are occurring while ASM is using the
control register of another address
space to update that address space's
LSQA.

Note: Since callers 4, 5, and 6 above are
task-related and running in the address
space to be terminated, they will set them
selves non-dispatchable after issuance of
CALLRTM,

o
-

BALR ,
IEAVTRT1

RTM1

CD
CALLRTM Via Branch Table go to

TYPE=MEMTERM 'TYPE' processor.

ASID= TYPE=MEMTERM

COMPCOD= 0 (Normal)

RTCT

IRTCTFASB

:f 0 (Abnormal) IEAVTRTM

ASCB
1 Put ASCB of address space to

be terminated on address
Queue

/I..
space queue.

ASID v 2 Store completion code in
ASCB with/matching ASID

I L Ptr to ASCB Queue
(or current).

3 Schedule SRB to post address
of address space(s) space termination task in
to be terminated. master address space (Use of

SRB routine is serialized by
compare and swap).

IEAVTRT1

Return to caller.

The process of terminating an address space (memory)
is one which cannot be isolated to one task, module
or logrcal unit of rode. This presents the many parts
of the function into a coherent picture of the process,
by showing control flow and data flow.

The multiple dispatches, tasks, and address spaces
involved would otherwise be hidden elements.

~ Figure °2-52• The Process of Terminating an Address Space (part'1 of 2)

a(
TI

V\
G loba I SR B Dispatcher

dress \
ace Termination SRB

st RTCTM ECB - Th is
tivates the Address Space
rmination Task in the -~

ASCB on Queue M
aster Address Space.

ASCB

~

~

ASID

Completion
Code

SRB on
Dispatch
Queue

Step 1

Dispatcher
(IEAVEDSO)

Identifies the
Requesters

Step 2 The Request Format
Steps 3, 4 Initiate the Request
Steps 5, 6, 7 Process the Request

~
~ o
CN
00
S

to
CH
CH
~

£
"< r.f)
t-j

r.f)

'<
~

9
t"'"
~
($'

t"'"

~
~
'<
<:
o

=!3
(D

~

'<
r.f)
t-j

Q
CH

00
o
-..J -

RTCT

RTCTFASB
ASCB Q Ptr

ASCB

~ o

t::::::;l

~ ';'ASCB
POST

l Next ASCB /
ASID

~

RTCTMECB ,.oN
Re~ident Address Space Termination 0
Controller Task in Master Address Space

B1

ltto Dequeued ASCB

Address Space 0
Terminator Processor Task

--y

ASID
IEAVTMTC

IEAVTMTR I ~I------------------------------~
= ~

I

r- - - - - - - - - -..,
I Resident task attached :
I by IEAVTMSI. I

1 Dequeue last ASCB on address space termination
queue (QUEUE MODIFICATION SERIALIZED
via compare and swap,)

2 Get Local Lock-.CMS lock-.Dispatcher lock.

3 Set address space indicater by ASCB
non-dispatchable.

4 MP-Wait for task and SRB activity for this
address space to stop in other CPU.

1 Set RO to point to this
terminating address
space's ASCB.

2 Indicate MEMTERM options
in R1.

3 SVC 13 - to invoke the
services of RTM2.

...

RO

R1 l ME~TER~
Options

~RT~
SVC13

Return
to Caller

.1
Perform
Address
Space
Purges

I (Master scheduler I
I initialization at IPL). I I
I It remains inactive until ,...J

5 Free locks.
IGC0001 F

4 EXIT to dispatcher. 1'-

~ 6 Call SVC 1/0 Purge.
Purge 1/0 for that address L,:~~:.:ork~ __ ~

-
.,

space.
IEAVTERM I. BR 14

7 Call RSM (real storage resource ~
management) to free all real ~
and auxiliary storage.

S Attach subtask to handle remainder of purges ! ATTACH
for the address space (Pass ASCB in R 1).

9 If the address space termination ASCB queue
pointer is not zero, then process steps

G) to G) -
Otherwise, task waits for work
(wait on RTCTMECB). ,

WAIT

Figure 2-52. The Process of Terminating an Address Space (part 2 of 2)

00
~

~ g
!'!
3:
~ r
0.

2-

i
i
g
~

~
w
VI

ABEND Macro
SVRB

IEAVTRTC
RTM2WA

-"-
Provide Dump

")I SNPPARMS I RBEXSAVE ~ Options for
... ABDUMP v

CALLRTM Macro
RTM2WA

I SNPPARMS t=

SETRP Macro
SDWA

I SDWASNPA t=

IEAABDOO
IEAVTABI

I LSQA, CB, ENO, ~ Read Parmlib TRT, ALLPA, SPLS
Members and ~RTCT IEADMDOO Set 0 ptions in n.s RTCTSAP I CB, ENO, ~ ..JI... RTCT

TRT. ALLPA, SPLS r "'V
RTCTSUP

CHNGDUMP Command IEEMB815 RTCTSAO
XSA

Process Options bJf RTCTSUO , '

I XAL
..... on CHNGDUMP [ii •

I Command'and Set v

Options in RTCT

This provides an overview of all data
areas related to- ABEND/SNAP dumps,
the sources from which the dump options
are obtained. the key modules involved
and the complete scheme of data flow.
It ties together the function of system
initialization requestors dump options
and operator intervention as all parts
of the process.

Figure 2- 53. ABEND/SNAP Dump Processing

J..--

f--
~

SNAP Macro

~IEAVTABD SNPIOET ISNPFLAG SNAP
SNPSDAT A I SNPPDAT A

~

" ...

..J-.

~
Dump

Set Up for SNPDCB Requested
SNAP Processing -y

Areas SNPSTCBA

SNPSTOR

I Control Flow

> Data Flow

selection is as follows:
1. CHNGDUMP options completely override any other request.
2. Lacking CHNGDUMP options. the options specified on the ABEND, CALLRTM

or SETRP macros are merged with the options in IEAABDOO or IE_ADMPOO.
3. If no options were specified on the ABEND, CALLRTM or SETRP macros,

the options specified in IEAABDOO or I EADMPOO will be used. If no options are
specified via CH NG DUMP, AB END, CA LLRTM, SETRP, I EAABDOO or
IEADMPOO no dump will be taken.

For ABEND dumps the requestor (via ABEND, CALLRTM, and SETRP) and
installation (via SYS1.PARMLIB members IEAABDOO and IEADMPOO) have been
given the ability to tailor dumps to the needs of the installation and the individual
maintenance requirements of each type error_ In addition, the CHNGDUMP
command provides the facility to temporarily override options specified by the
requestor and/or installation.

~

~
IN
0\

o
tn

"< tn
to..)

tn
'<
~
(D

3

£"
(:5'

t""" a:
~
<:
o
C
3
(D

~

'<
tn
N

" (D

[
r!l
IN

~

® Address Space's
SVC Dump Task (lEAVTSDT)

(To P;
• Assume role of original caller and

("SDUMP ... MF=") .. I

RTCT
P' re-issue SDUMP as MF=G, using P'l
to... original parameter list.
y • Receive control back from SVC SDUMP PARMLIST (To Pi

PARMLIST f\ SDUMP
dump, as current invoker, and if an -". to... I

)I

"SDUMP ... BRANCH=YES,
ASID=Target address space
[,ECB=ADDR ESS]"

PARMLIST ECB specified, post it appropriately. -y

~ 11
Target ASID

~~ ';~ Original ASID

Target ASID
s Routine (I EAVTSDX) Original ASID

I sert originating

Nucleu

In
ASID In (From Part 2)
PARMLlST, save 1_ (Only Target ASID in PARMLlST)
PARMLIST address ,
and post SDUMP in
address space. SDUMP PARMLIST

This ties together system
initialization, option modification
by operator, multiple address
space processing, and multiple
tasks as parts of the SVC DUMP
process. The process of how a
dump is initiated for a task in
a different address space from
the requester, is explained by
control flow and data flow.

o
®

I EAVTSDI initializes the SVC dump data set table, and
locates the SVC dump resource manager, IEAVTSDR,
for use during address space termination.

The presence of an "ASI D=" parameter signifies a request
to display a specific address sp~ce, and as such requires
scheduling the dump request to the SVC dump task in that
address space. If the parameter list contains only the
address space's ASID, it indicates that scheduling has not
yet taken place and so entry is made to the nucleus
routine. This routine places the originating address space's
ASID in the parameter list and schedules the appropriate
SVC dump task, passing the parameter list (which now
contains two ASID's). When the SVC dump task gains
control it re-issues the SDUMP macro, using the original
parameter list it received as input. When SVC dump is
re-entered it realizes that scheduling has already taken
place (two ASID's are present) and that the dump can
now be performed. Note that the "caller" of SVC dump
in this instance is the SVC dump task, not the original
requestor. When SVC dump completes, it will inform the
original requester of the dump's completion if an ECB was

Figure 2- 54. SVC Dump Overview (part I of 2)

®

®

®

®

(From

(continued)

supplied: Otherwise the SVC dump task in that
address space bypasses ECB posting and simply
returns to a wait- for- work condition.

If the "ASID=" parameter was not specified (and therefore
not present in the parameter list), the "Caller" is the
original invoker and SVC dump will run under the TCB
of the caller. No scheduling of the dump is performed.
Likewise, no scheduling is done if both ASlD's are
present in the parameter list.

The SVC dump task I EAVTSDT in each address space
is attached by the RCT, except in the master address
space, where it is attached by IEAVTMSI (master
scheduler R/TM initialization routine).

If CHNGDUMP dump option overrides exist, they will
be used exclusively.

lJl
~

~
§'
~

3:
~ ;.
= ~
Sa
~
te

~
= =
..... w
W
-.J

R/TM NIP
RIM
IEAVNPA6 0

(Operator
Console 1 IEAVTSDI

• Process SVC

t::::
Dump information

I > ~ specified by

I > operator at IPL

~S1.DUMP~
time.

CHNGDUMP Command

®~IEEMB815
XSA RTCT

Process SVC

I > Dump options
~ XAL specified on RTCTSDO r-----v

CHNGDUMP
;

command.

Figure 2- 54. SVC Dump Overview (Part 2 of 2)

~uu MP

"SDU
[,ASI

CVT "I ~ :;:;:;- (From Part 1)
.0 ",. '0,

~ ,+ 4K Buffer , SVC SLIH
"

, '.' , 0 Targ.tASID (or 0)

I. IEAVTSDR
(From B > 0
Part 1)

RTCT f-

.' l SVC DUMP (JEAVADOO)
/

,oil

C Dump Data ~

Set Table Determine if SVC DUMP should be scheduled to ®
D J(A

the SVC dump task or performed immediately, B
"f based on number of ASID's in the PARMLIST. -----(To Part 1) Either no ASID's in PARMLlST, or both

ASlD's in PARMLIST. (6th word)

"" ~

01 Perform SVC dump and return control to the
current caller (either SVC dump tasks or user) .

• •

4-338 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

til
(I>

a
5·
= N

~
(I>

~
~

o
o

"0
~

I
lE.L

RTMl
Initialization
(IEAVTRT1)

~

RTMl
Overview
(IEAVTRTM)

~

Process
Hardware Errors
(IEAVTRT2)

~

Routing
to FRRs
(IEAVTRTS)

I
~

RTM2
Overview
(IEAVTRT2)

\b
~

Processing
SLiH Requests
(IEAVTRTM)

~

RTMl
Recursion
Processing
(IEAVTRTR)

I..- --

;. Figure 2-55. Recovery/Termination Management Visual Contents (part 1 of 3)
o
=
f"
~
~
\0

R/TM
Overview
(no diagram)

1
I I
~

Address Space R/TM
Termination Services
(IEAVTMTC) (no diagram)

~
I I

~ ~ l1ll!.
RTM1 RTMl Reschedule Cleanup Exit RTM1 Processing Processing (lEAVTRTM) (IEAVTRTM) (IEAVTRT1)

I
~ ~

System-
Reschedule Directed
Locally Locked Task
Task or SRB Termination
(IEAVTRTM) (IEAVTRTM)

~

c:w
~
o

o
{I)

"< {I)
N
{I)

~
~
r""
ci
5·
r"" a:
~
~
2'
9
(1)

~

'< {I)
N

~
i
rtl
~

~ f
122-13

RTM2
Initialization
(IEAVTRT2)

I
T22-1

RTM1
Overview
(lEAVTRTM)

c:b
1

122-14-

Recursion
Processor 1
(lEAVTRT2)

1
122-15

Recursion
Processor 2
(lEAVTRTE)

R/TM
Overview
(no diagram)

~
122-12 122-24

1

RTM2
Overview
(IEAVTRT2)

122-16 122-17

Recover Task
Processing
(tEAVTAS1)

ABDUMP
Processing
(tEAVTABD)

Address
Space
Termination
(lEAVTMTC)

122-=18

Synchronizing
Failing Tasks
(lEAVTRTC)

I
T!2-19

Task Purge
Processing
(lEAVTSKT)

I
122-20

Task Purge
Resource
Managers
(IEAVTSKT)

Figure 2-55. Recovery/Termination Management Visual Contents (part 2 of 3)

I

R/TM
Services
(no diagram)

\b
I

122-21

Address
Space Purge
Processing
(lEAVTMMT)

-r
122-22

Address
Space Purge
Resource
Managers
(tEAVTMMT)

1
122-23

RTM2 Exit
Processing
(lEAVTRTE)·

til

a o·
= ~

a::
a
8:
o
o

"0
~
I»

g.
=
~

c:w
~
1-0

I
~

RTM1 RTM2
Overview Overview
(lEAVTRTM) (IEAVTRT2)

122-25 1

Alternate CPU
STAE/ESTAE Recovery FRR Stack
Processing (ACR) Initialization
(lEAVSTAO) Overview (I EAVTSI N)

(lEAVTACR)

Figure 2-55. Recovery/Termination Management VisualContents (part 3 of 3)

R/TM
Overview
(no diagram)

Address
Space'
Termination
(lEAVTMTC)

~~ 122-29

SETFRR SVC 51

(SETFRR) Overview
(IEAVADOO)

I I
@iliJ 122-30 I

SNAP Dump

I
SVC DUMP I

Processing Processing
(lEAVAD01) (IEAVADOO)

R/TM
Services
(no diagram)

I
122-33

CHNGDUMP
(lEEMB815)

~122~
Schedule
Dump
Processing
(lEAVTSDX)

j
122-34

Recording
Processing
(lEAVTRER)

~
CM e
&1
~
~

til
'<
~ a
~ n
t:':
2"
~
~
=:3
(II

~

'<
til
~

:;0
(II

i
~
CM

~

Diagram 22-1. RTMI Overview (IEAVTRTM) (part 1 of 2)

RTM1
Work Regs

From a branch entry
after a supervisor
state routine issues a CALLRTM
macro instruction

i

1 Set up the common interface from
the RTM1 entry points.

D ">2 Process hardware errors.
I"

Current ' 0-

FRR Stack I (I -/ 3 Perfor~ second I~vel interruption

D
.' '\ operatIon processing.

II
--v

'! 0-

-y'> 4 Process any rescheduled RITM
requests.

5 Perform clean-up processing.

RTM1
Work Regs

D
0-

Exit to the appropriate routine. 6
!

-y

• Retry routine.

• Machine check handler.

• Interrupted program.

• Dispatcher.

• SRB exit.

• Exit prologue.

• caller.

RTM1
Work Regs

"

i
...

lID

IEAVTRTH .. .
Hardware Error .. -,. .-

....
...

..
SLiH Mode ,.

....
...

..
Reschedule ,..

~

...

... ,. Clean -up

~

...

CI)
~
(") g.
= N

a::
~ g
Q.

C
o
'g
Qt

5·
=
of-
~
~
~

Diagram 22-1. RTMI Overview (IEAVTRTM) (part 2 of 2)

Extended Description

The RTM1 service of recovery termination management
(R/TM) provides a recovery interface with other supervisory
routines. When a supervisor routine - principally the inter
ruption handlers - detects an error situation, it passes con
trol to RTM1, via the CALLRTM macro instruction, to
initiate recovery from the error. RTM 1 records the error -
both hardware and software - to SYS1.LOGREC via the
recording service.

RTM1 does not perform the recovery function itself; it
routes control to functional recovery routines (FRRs)

established by locked, disabled or SRB routines. These FRRs
are placed on an LIFO FRR "stack" by a SETFRR macro
instruction issued by the routine requesting protection. The
macro expansion places the FRRs on predefined stacks, that
is, the FRR is placed on an appropriate stack based on its
functional path through the supervisor (however, the "Super"
FRR is placed on each stack by NIP processing). The follow
ing list shows the stacks:

• SVC-I/O-dispatcher stack
• Machine check stack
• Program check stack
• External interruption handler 1 stack
• External interruption handler 2 stack
• External interruption handler 3 stack
• Restart interruption handler stack

Additionally, a normal FRR stack contains the recovery
status for other paths through the system.

RTM 1 receives control for 12 reasons. These are for:

• Program checks.

• Restart operations.

• SVC errors.

• Page I/O errors.

• Machine checks.

• DAT (dynamic address translation) errors .

• Abnormal termination (ABTERM) requests for a task
with an AS I D (address space identifier) specified.

*Module IEAVTRT1 contains labels; the column under
"Segment" refers to label names.

Module Segment Extended Description

• Abnormal termination requests for a task in the current
address space.

• Address space termination requests.

• Reentry for abnormal termination requests.

• Reentry for machine checks.

• Branch entries for abnormal termination requests.

1 RTM1 creates a common interface for its sub-functions
from the various entry point data and establishes recur

sion control for service routine requests.

2 When either MCH (machine check handled or ACR
(alternate CPU recovery) indicates a hardware error,

control goes unconditionally to the hardware repair func
tion, module IEAVTRTH (see M.O. diagram, Processing
Hardware Errors (I EA VTRT2)). Hardware repair performs
software repair, if necessary, and attempts to record all
hardware errors on SYS 1. LOG R EC (modu Ie lEA VTRTM).

3 The program check IH (interruption handled, SVC
IH, the restart IH, and the machine check handler

(MCH) all can request RTM1 to perform second level

interruption handler processing (SLIH mode). When RTM1
processes an SLI H mode entry type (that is, TYPE=PCF LI H,
MACHCK reentry, SVCERR, RESTART, DATERR) it con
tinues the processing of the interruption. SLI H mode
functioning determines the state of the system at the time
of the interruption, so that recovery from the interruption
may be attempted in either system mode or task mode.

4 RTM 1 performs reschedule processing for a service
routine entry (that is, the CALLRTM request was for

ABTERM, MEMTERM, or PGIOERR). The reschedule
function may also be performed as part of SLIH mode proc
essing. This would occur if the action indicated by routing
to FRRs required a reschedule service of if the CPU had
been in task mode when the error interruption occurred.

5 The clean up function frees any resources no longer
necessary before determining the appropriate type of
exit.

6 RTM1 creates the final exit linkage based on an
indicator established in IEAVTRTM.

Module Segment

IEAVTRT1

IEAVTRTM

IEAVTRT1

t Diagram 22-2. RTMI Initialization (IEAVTRTl) (part I of 4)
~
~

From RTM 1 Overview (I EA VTRT1)
o
{Il

Input to initialize RTM 1. Process -<:
{Il
N
{Il

'<
~

3
r-
<i c;.
ra:
~
<:
Eo
= ~
~

'<
{Il
N

:;0
(D

f
IN

~

,>,

t

~

"

Register 1

I Flags I '") y

,

,
> ,

1 Perform initialization based on the
type of entry:

• For second level interruption
handler (SLlH) mode:

1. PROGCK
2. RESTART
3. SVCERR
4. DATERR
5. MACHCK Rentry

• For service mode:

1. PGIOERR
2. ABTERM
3. MEMTERM
4. ABTERM Rentry

• For machine-check mode;

1. MACHCK

2 Process second level interruption mode
entries:

• Indicate completion codes for the
interruption.

• Set an indicator for the particular
type of interruption.

• Registers not saved.

• Subsequent errors detected by
recursive entries to RTM 1.

6

Output

)

f

';..,<,

R1

I Flags and Comp Code I
RO

-'" I Entry pt - Function ID I "
R2

[@ 1st half PSW I
R3

I @2nd half PSW I
R4 I @ FRR Stack I
R13
~ @ . Registers at
Y I interruption

,
i

R5

" I)t @ Dump options
v

til
g
g.
::s
~

at

[
S
O

!
~.

::s

to
w
~
VI

Diagram 22-2. RTMI Initialization (IEAVTRTl) (part 2 of 4)

Extended Description

RTM1 processing receives control via the CALLRTM
macro instruction. The expansion of this macro instruc
tion locates the correct entry point address into RTM1
from the RTM1 branch table (pointed to by the
CVTBTERM field of the CVT). RTM1 initialization
combines the various entry point data to create a common
interface for RTM1 processing.

1 RTM1 initialization consists of saving registers, indi-
cating completion codes, and establishing a recovery

environment based upon the type of entry. RTM1 per
forms three types of initialization; one based on requests
made by the interruption handlers; another based on a
service request for an RTM 1 service; and the last for
machine check interruptions.

2 RTM1 initialization prepares the following entry
points for SLiH mode:

1. Program check entry point - used by the program check
I H when an invalid page fault or program check occurs.
When the program check IH passes RTM1 a completion
code, the registers and PSW have been saved by the pro
gram check I H in the primary save areas of the PSA and
LCCA (logical configuration communications area).
When RTM1 does not receive a completion code, initial
ization processing builds one from the interruption code
and the error information in the secondary save area in
the LCCA. (The "Supervisor Control" section describes
the program check I H, and the different save areas used.)

2. Restart entry point - used by the restart I H after the
operator has requested R/TM processing. The subsequent
handling of a restart request in R/TM is tailored to "Ioop
breaking" logic, that is, a looping program c.annot be
allowed to retry, and a validly spinning program is allowed
to request R/TM to interrupt the program that owns the
resource being waited upon. The restart IH has saved the
registers in the LCCA and the resume PSW in the PSA.

Module

IEAVTRT1

Segment

PROGCK

RESTART

Extended Description

3. SVC IH entry point - used whenever an SVC is issued by
a routine that is locked, in SRB mode, or is under super
visor control (non-dispatchable supervisory functions).
If the SVC was an SVC 13, RTM1 interprets the entry
point as an explicit request for ABEND processing. RTM1
Interprets entry from any other SVC to be an error. The
SVC IH has saved the registers and the PSW. (See the
"Supervisor Control" section for a complete description
of the SVC I HJ

4. DATERR entry point - used by the program check IH
when a recursive translation exception occurs during
either the program check IH's processing, or RTM1's
FRR processing. Before calling RTM1, the program
check I H has attempted to circumvent any further trans
lation fa"ilures by altering the STOR (segment table
origin register) which points to the master address space's
segment tables. If errors occur again, the program check
IH places the system in a disabled wait state. RTM1 does
not allow normal recovery processing to occur during
DATERR processing since the non-common areas of
the failing address space are no longer addressable. If
a supervisor control routine was in control when the
original error occurred, then its FRR will be 'given con
trol,with a special indication to warn it that private
areas are no longer addressable. The super FRR may
recover the address space or terminate it (via
MEMTERM). If a super FRR is not available, RTM1
bypasses all recovery, records the incident "and ter
minates the address space.

5. MACHCK reentry - used when RTM 1 set up MCH
(machine check handled or ACR (alternate CPU
retry) for re-entry into RTM1 after RTM1 was ini
tially enter~d for a machine check. RTM1 uses this
entry to attempt software recovery processing if a
machine check caused software damage.

Module Segment

SVCERR

DATERR

MACHCK

~ Diagram 22-2. RTMI Initialization (lEA VTRTl) (part 3 of 4)
~
0\

o
til

"< til
N
til
'<
~

~

~
~.

t"'"
§=
~
~
~
~

,~

'< til
N

~

i
~
(,,0.1

~

,
.R'

Register 1 ,..R_1 ________ ...

I F lags I j j I F lags and Comp Code I
. I I\.

Register 1,3 .) 3 Process service mode entries. RO ~
I @ Save Area 1 v I Entry pt - F unction I {

• Save caller's registers. l ID ,
Register 14 ii

I Return @ I • I nd icate completion code. R 13 ~
J I @ Caller's Regs I

• Set an indicator for the type of
Re ister 4 service requested. ,..R_4 ________ '""'I

~ 1 @ FRR Stack I I @ SR B or TCB I g&

~if I Register 5 ia \
I @ RB or 0 I ~

.
iJ •.. ~ I • Subsequent errors handled' • R2 ~

Register 2 a ~ by an FRR. ~ ASID or 0 I· $)

I ASID t ~.. it I I ~ R3
Register 15 I I ~ L..-...... .,..--J.V\.~rL-@:--T-C-B-, o-r-S-R-B-----,'

I Entry pt @ I . I R5
Register 3 I~ I o.J"'--D-u-m-p-o-p-t-i-on-s-,--"')

I
~ RB or 0

Dump Options I I Y lL..... __ ' ______ ...J

;

i
I\. I

Register 1 -----"'-------11"') 4 Process machine check mode entries. --------IL-.Jl\.l'\.r--s----------,
v v ,..R ________ -...

I I • Save registers. I @ LOGREC buffer I
Register 13 . . RO

I I
• Establish recovery via FRR. ,..---------...

i' . I Entry pt ID I
. Register 14 R13

I I 1,..;..@~Sa-ve-A-re-a---1

Register 15 "R4 '
I I ~ ,. r--I @-FR-R-S-ta-ck----.I

To RTM1 Overview
. , (lEAVTRTM)"

.... -~ ... &~ - -~

ron
(p
n g.
= ~
:::
~

8:
c -.
o -g ...
III g.
=
.a::.
~ .a::.

Diagram 22-2. RTMI Initialization (IEAVTRTl) (part 4 of 4)

Extended Description

3 RTM1 initialization prepares the following entry
points for service mode:

1. PG IOE R R entry point - used by the reset subroutine
of real storage management when an error occurs while
processing a page fault. The routine that suffered the
paging error is forced to issue an ABEND instruction
(SVC 13) to cause linkage to R/TM for recovery and
termination services. Initialization processing for this
entry point passes the address of the TCB or SRB that
suffered the error. If a task suffered the error, the
address of the RB is also passed.

2. ABTERM entry points - used by key 0, supervisor
state routine~ to set a task up for entry to RTM2 for
ABEND. There are two types of ABTERM entry:
ABTERM with ASID option; and ABTERM without
ASID.

ABTERM with ASID is a requ.est to terminate a task
in an address space other than the current one. RTM1
schedules itself as an SRB into the specified address
space to perform the ABTERM request. RTM1 saves
the caller's registers in a caller-supplied save area.

ABTERM without ASI D is a request to terminate a
task in the current address space. RTM 1 saves the
caller's registers and PSW. and performs the ABTERM
request.

Module Segment

PGIOERR

XABTERM

CABTERM

Extended Description

3. MEMTERM entry point - used to request scheduling
an address space termination. Since there are no
specific lock requirements, the caller must provide
a register save area. R/TM will perform the address
space termination. RTM1 performs a MEMTERM
asynchronously with dependencies on locks and the
dispatcher. Therefore, control mayor may not return
to the caller, depending on the lock status when the
caller issued the request.

4. ABTERM reentry -:- used when RTM1 scheduled itself
as an SRB during a previous entry when the caller
requested ABTERM with the ASID option. When
entered at this entry point, RTM1 is operating as an
SRB in the specified address space.

4 MCH (machine check handled and ACR (alternate
CPU recovery) use this entry point when requesting

hardware recording and hardware damage repair. The
caller passes the address of a LOGREC buffer which con
tains all the information about the error. If RTM1 subse
quently determines that software recovery is warranted,
it will establish the appropriate software interface.

Module Segment

MEMTERM

IEAVTRTX

..
IEAVTRTN

~
eN
0l:Io.
00

o
~
~
~

C'Il

'i
~

i c:;.
r-

J
~ c
a c
0l:Io.

~
~

S'
i
~
eN

~

Diagram 22-3. Process Hardware Errors (lEA VTRTM) (part 1 of 4)

Entry State: Supervisor State,
Key 0, E.C. Mode,.

From RTM1 Overview
(lEAVTRTM) to process

Input Disabled hardware errors. Process
1< '"iC' ..

RTM Work Regs

MCH MCH "') 1 Process machine errors.
LOGREC Stack ..
Buffer Acquire EEDs. • Recovery
Error Word Information >c,~

• Call clock repair. Area

• Ca II rea I storage
reconfiguration.

RTM Work Regs

Environ-
WAS-ACRTMK

D "') 2 Record hardware error. ment
v

EED I-i

EED
Repair
Status

MCH Stack

Recovery MCH
Information LOGREC
Area Buffer

IEAVTRTH

'.

.. Clock
r .. Repair

" Routine

..
r

Real Storage

.. Reconfigura-
tion

'" Routine

...
Recording.

~ .. Facility
'"

.. 3 Complete software information
v

for return to MCH.

@ ~~

~~ ToR/TM. module
t \ _ IEAVTRTM

~

Output

I
~

"I -1\. See

I
t' input

to
step 2.

;
MCH
LOGREC

'" Buffer
v

Repair
Status

4

..
) Environ-- ..

ment Repair

EED Status

I
EED

WSACRTMK

D

~
~

i·
~

~
(p

[
o
~

o
'C
(p a
e'
= .,.
~ .,.
\,Q

Diagram 22-3. Process Hardware Errors (IEAVTRTM) (part 2 of 4)

Extended Description

MCH uses RTM1 as a subroutine to attempt the-repair of
clock and storage errors, and to record all hardware errors.
The main body of RTM1's hardware error processing is
contained in the module IEAVTRTH. During the time
RTM1 is working with the LOGREC buffer, MCH protects
RTM1 from any further entry for new machine errors. When
RTM1 processes ACR (alternate CPU recovery) errors, ACR
provides protection from new machine check entries by
disabling machine checks during the RTM1 process.

1 For ACR and "hard" errors (that is, machine checks
where hardware recovery has not been able to recover

the operation) RTM1 obtains two EEDs (extended error
descriptors) to pass on information concerning the error.

For ACR and timer errors, the clock repair routine (module
lEA VRCLS) receives control to recover software ti ming
functions.

For storage data checks or storage key failures, the RSR (real
storage reconfiguration) routine (module lEA VRCF) receives
control.

To attempt repair upon return from RSR, repair status is
placed in the LOGREC buffer and in the EEDs.

Module Segment

IEAVTRTH EEDREQST

CLOCKREP

RSRECON

BLDPLIST

Extended Description

2 RTM1 places a record of the hardware failure on
SYS1.LOGREC via the recording facility for both

"hard" and "soft" errors (that is, errors which were success
fully recovered by the hardware).

3 The WSACRTMK contains the registers and PSW thai
MCH needs to restore when RTM 1 subsequen1ly returns

control to MCH. For "soft" errors, the routine the machine
check handler interrupted has sustained no software damage
and may resume its processing at the point of interrup-

tion. In this case, the information in the WSACRTMK con
sists of the registers and PSW at the time of the machine
check. For a "hard" error, the routine in control at the time
of the mach ine check did suffer software damage; RTM1 must
be reentered to perform software recovery. Therefore, the
PSW RTM1 placed in the WSACRTMK points to the machine
check reentry point (I EAVTRTN) in IEAVTRT1. The regis
ters in the WSACRTMK contain the values RTM1 expects

on reentry.

Module Segment

RECORDNG

SOFTINFO

~ Diagram 22-3. Process Hardware Errors (IEAVTRTM) (part 3 of 4)
~
til
o

o
{I)

"<
{I)
N
c;n
'<
~
(I)

3

~
()'

t"'"

~
~
B
=-3
(I)

~

'< c;n
N

~
(I)

;-
Il)

~
(,oj

5;!

Input

Register 0

[@ FAR Wo;k Area

SDWA

From RfTM
to handle

Process

IEAVTRTR

4 Determine whether the operation
am be retried,

• Retry.

• Continue with termination.

To RfTM, to
retry the
operation

To RfTM, to
~ continue with

termination

Output

SDWA

SDWAERRA

t:Il
~

~
5"
= N

a;::
~

[
o
o
'C
~ a
(5'

=
~

W
til

Diagram 22-3. Process Hardware Errors (lEA VTRTM) (part 4 of 4)

Extended Description

4 Processing hardware error establishes an FRR (func-
tional recovery routine) to protect itself. When the

FRR receives control, it examines the error information in
the SDWA - pointed to by register 1 - to determine the
cause for the entry and to determine whether the function
can be retried. For OAT (dynamic address translation) and
restart errors, the FRR continues with termination, while
all others can be retried. When the function cannot be
retried, the FRR frees any EEOs acquired during process
hardware error operation, and gives control back to R/TM
to continue with termination. If the function can be
retried, the process hardware error operation will be given
control again.

Module Segment

IEAVTRTR RTHFRR

~ Diagram 224. Processing SLIH Requests (lEA VTRTM) (part 1 of 2)
~
N

o
til

"< til
N
til
'<
~ s
£'
(S.

r-
0:

~
~
=-9
('I>

~

<:
til
N

~
if
~
w
~

1{

'~

"

~

i"--

RTM1A

D
Regs

D
PSA LCCA

From RTM1
(

"'>,'; ,

- r-

D D
SDWA

D

) P

",,'
1 Refresh critical data and the restart

PSW.

2 Process possible recursion:

~

) • Non-recursive entry.

I t~ :
Expected recursion, or one covered •

I
v

by an FRR.

") • Unexpected recursion.
v

~ 3 Determine whether system recovery is
t -I/" -

needed.

!\. ~ 4 Route control to the appropriate '---- ...
control program recovery routine.

" 5 P . .) rocess retry, resume or continue with
v termination.

• Retry.

lli • Resume.

• Continue with termination.

...
IEAVELCR ,.

~

'"
'.

... Addressing
i

r

... Verification
, Processing

...
RECVRRTM ,.

~

'"
SDWA

--".

v

RTM1
Work Regs

...
v

..
To RTM1 Overview

I~
(lEAVTRTM)

til a o·
= N

== ~
R
o
~

o
"t:I

I o·
=
~
~
w

Diagram 22-4. Processing SLIH Requests (lEA VTRTM) (part 2 of 2)

Extended Description

This chart illustrates the flow of control during RTM1's
SLI H processing.

1 Whenever RTM1 performs SLIH processing, RTM1
first attempts to t:efresh critical common fixed con

stants. RTM1 refreshes low storage (via IEAVELCR) and
attempts, on its own, to refresh the restart new PSW.

2 RTM1 continues SLIH processing for non-recursive
entry into RTM1; for anticipated recursive entry;

or for recursion covered by one of RTM1's FRRs. Other
wise, RTM1 processes an unanticipated recursive entry by
routing control to a recovery routine (RECVRRTM in
module I EAVTRTR) that determines whether any recovery
of this recursive error can be performed.

3 RTM1 determines the system state at the time of the
interruption by examining indicators in the PSA and

LCCA. The succeeding flow of control during SLI H mode
processing depends on the system state (system mode or
task mode).

Module Segment

IEAVTRTM REFRESH

RECURSE

SYSTATE

Extended Descri ption

4 For errors in global, local, SRB, or supervisor control
code (that is, the state determined in step 3 is system

mode), control program recovery must be performed. To
effect this recovery, routing FRR processing (module
lEA VTRTS) receives control and routes control to any
appropriate recovery routine (FRR) associated with the
failing routine.

For errors in task mode when the interrupt occurred,
RTM1 skips this step and the following step and sets the
work registers to reschedule the interrupted task for entry
to RTM2.

5 RTM1 analyzes the output from routing to FRRs.
For retry requests, control goes to R/TM's clean-up

and exit J')rocessing. For valid resume requests, RTM1
establishes an· interface to the reschedule CPU function.
Otherwise RTM1 continues with termination, setting its
work registers to establish the correct interface to the
reschedule function.

For DATERR entries to RTM1, RTM1 establishes the
address space termination interface.

When the system is in SRB mode, RTM1 establishes the
ABTERM interface to terminate the task associated with
the failing SRB.

Module Segment

SYSRCVR

SETUPABT

SYSRCVR

DATPERC

SRBPERC

t Diagram 22-5. Routing to FRRs (lEA VTRTS) (part 1 of 8)
~ .
~

~
~
~

CI.l
'<
~

3

nput

From RTM1 Overview
(lEAVTRTM) to route
control to an F R R .. Process

i-
t::
~

rM1

Regs t- ~~~~taCk
I . I : ::! >, Obtain and initialize the

.SDWA.

~
~
2"
9
(D

~

'<
CI.l
~

~
(D

i
~
w
~

PSA

PSACSTK

Interrupted
FRR Stack

RTM1 I PSAAO LD I Work Area
Global
SDWA

Active SDWA

ASCB ASXB

......----,;VJ----I ----I
ASCBASXB

Local SDWA

For unlocked SRBs:

.A
)I

v 6

...
~

~

....

GETMAIN

Obtain
storage for the
SDWA

Output

t...

--v

RTM1 Regs

.......-
Interrupted
FRR Stack

}. RTM1
L-__ ----J_ \ Work

\ Area

CI'.l
~ p.
c·
::I
~

:::
~
S
Co

o ...
o

"0
~

i3
5'
::I

~

~
VI
VI

Diagram 22-5. Routing to FRRs (lEA VTRTS) (part 2 of 8)

Extended Description

RTM 1 routes control to FRRs (functional recovery routines
(lEAVTRTS» defined by supervisor routines to protect
themselves from errors. The function provides the interface
and control between failing supervisor routines and their
FRRs. The FRRs reside on "stacks." Allocated as predefined
areas in SQA (system queue area), consists of a header (used
to control the contents of the stack), a workarea (used by

RTM1 when performing FRR routing), and a fixed number of
FRR entries. (See Initializing FRR Stacks (lEAVTSIN».
Each FRR stack defines a path through the supervisor as
follows:

• SVC/I/O-dispatcher stack. Defines the path through the
supervisor used when servicing SVC interruptions or I/O
interruptions, or during dispatcher processing. (One stack
can be used for all of these three functions, since the proc
essing for anyone function is not dependent on the proc
essing of the other two functions.) Those supervfsor
functions servicing I/O or SVC interrupts as well as those
functions comprising the dispatcher place their FRRs on
this stack.

• Machine check stack. Defines the path through the
supervisor taken when a machine check interruption
occurs. Supervisor functions processing machine
checks place their FRRs on this stack.

• Program check stack. Defines the path through the super
visor taken when a program check occurs. Supervisor
functions processing program checks place their FRRs on
this stack.

• External interruption handler 1 stack. Defines the path
through the supervisor when an external interruption
occurs, and there are no recursio!1S. Supervisor functions
processing external interruptions place their FRRs on this
stack. (See the M.O. diagram, External Interruption
Handler (I EAVE EXT) in the Supervisor Control section
for a complete description of the external interruption
handler and its method of handling recursions.>

• External interruption handler stack 2. Defines the path
through the supervisor when an external interruption
occurs for a second time, while the external interruption
handler is processing a previous interruption. Supervisor
functions processing external interruptions place their
FRRs on this stack.

Module Segment Extended Description

• External interruption handler 3 stack. Defines the path
through the supervisor for an external interruption when
one recursion has occurred already and is being processed
and this is the second one. Supervisor functions processing
external interruptions place their FRRs on this stack.

• Restart interruption handler stack. Defines the path
through the supervisor when a restart interruption occurs.
Supervisor functions processing restarts place their FRRs
on this stack.

• Normal stack. Defines the path through the supervisor
used when processing normal requests for supervisor
services made directly (or indirectly) by problem programs.

When an error occurs in a supervisor funct:on covered by an
FRR, routing to FRRs gives control to the appropriate FRR
defined on the stack protecting that function. Routing to
FRRs supplies the FRR receiving control with a complete
description of the error in the SDWA (system diagnostic
work area). Routing to FRRs acquires an SDWA based on
the system state at the time the error occurred:

• Global SDWA - associated with the FRR stack defining
the supervisor path that failed when the system operates
physically disabled (globally locked or supervisor control
mode).

• Local SDWA - associated with the supervisor path that
failed when the system operates logically disabled (locally
locked).

• GETMAIN SDWA - an SDWA obtained via a GETMAIN
request and associated with the supervisor path that failed
when the system operates only in SRB mode.

1 Routing to FRRs acquires all SDWA, and initializes it
with error informations obtained from the input regis

ters. These registers contain values set in the RTM1 mainline

module (lEAVTRTM), as shown in M.O. diagram, RTM11
Initialization (IEAVTRTM).

Module Segment

IEAVTRTS

"

~
CN
(It
0\

~
~
N
fI)

i a
i
~.

f
~

i
~

'< fI)
N

i
r6
CN

~

Diagram 22-5. Routing to FRRs (lEA VTRTS) (part 3 of 8)

Input

RTM1
Regs

(~ive
\ ~~WA

PSA

RTM1
Work Area

CVT

IMRTMS I

J
RTM1
FRR
Stack

Interrupted
~FRRStack

PSA /~ I r__-----" .

LCCA Prog Check
IH's FRR

LCCAPDAT Stack

CVT

RTM1
V Work

Area

Active
SDWA

LCCAPSG1 I CVTR~D I

Process 9
'8 jS.' :> 2 Perfor~ SLIP

.:~ processing.

~}\~

~S ~

~: ~

IT," :.,'.', .. ,' ... ,: •.... ,3 ",
'c'-:-

Route control to
the appropriate
FRRs.

~

'"

~

,-

:" t I Appropriate

FRR

Lltl GTF

Trace the
event

Output

....

v

It:
k*

"
v

RTM1
Regs

Active
.. SDWA

RTM1
Regs

PSA

J
RTM1
FRR
Stack

RTM1
Work Area

CVT

I CVTRTMS I

~
~

Work Area

:PSA) Interrupted
FRR Stack

I

«:IJ a
~.

::I

~

at:

i
s.
o

I
~.

::I

~ w
VI

Diagram 22-5. Routing to FRRs (IEAVTRTS) (part 4 of 8)

Extended Description

2 SLIP (serviceability level indicator processing) uses the
CVTRTMS field of the CVT as input to determine

whether additional serviceability processing should occ.ur.
This field contains indicators set manually when additional
serviceability is desired for system errors. R/TM determines

Module Segment

SLIPPER

the serviceability level requested (modules IEAVTRTR and IEAVTRTR SLIP
IEAVTRT2). SLIP processing takes an SVC dump, or IEAVTRT2
places the system in a wait state. I EAVTRTR I EAVTRTL

3 Control goes to the appropriate FRR via an LPSW
(load PSW) instruction, passing the SDWA as input.

Routing to FRRs gives control to GTF (generalized trace
facility) to trace the FRR recovery event.

I EAVTRTS ROUTE

TRACEFRR

t Diagram 22-5. Routing to FRRs (IEAVTRTS) (part 5 of 8)
U\
oc

~
~
N
t;I.)

'<
~ a
~
()'

t::
Er
~
~
as
(1)

~

'<
t;I.)
N

~
(1)

i'
r6
~

~

,
~

"

Interrupted
RTM1 Regs FRR Stack

V?"""
I ,

" I RTM1

\\ WorkArea , I
1\ I

: Active SDWA

PSA
,
I

~ SDWARCRD
AI

RTM1
FRR Stack

I

Interrupted
RTM1 Regs FRR Stack

l--P"

Function RTM1
Code Work Area

..

Active SDWA

~

'"
v 4 Record the request.

'" 5 Perform valid resume or
ri-V retry requests, or continue

with FRR recovery.

• Retry/resume/FRR
recovery exhausted.

• Continue with FRR
recovery.

-> 6 Return control to the
v appropriate routine.

• Recursion.

• RTM1.

6

""~''',"'

Active SDWA

~
!,~ v

...... Recording
~ Routine

...
...

,'/',':;"

?;
s';
tj RTM1 SameSDWA

"" Regs as input

I
, iV

~

..... Step6 ...
; Interrupted

FRR New ---. GETMAIN Stack OR SDWA ...
/~ ~

RTM1 Work Area

---.
SETLOCK

T

..oil p,,,~#=,

....-
RTM1 Interrupted
Regs FRR Stack

JI..

//) ..

I RTM1
Work Area

Step 1 ~ ...

Active
--.a.. To RTM1 SDWA

Overview

,~IJ ,. (lEAVTRTM)

CJ'.l
(1)
(")

g.
= N

a::
(1)

[
o
o

"C

a
5·
=
~

~
VI
I,Q

Diagram 22-5. Routing to FRRs (lEA VTR TS) (part 6 of 8)

Extended Description

4 Routing to FRR processing conditionally records the
SDWA describing the error and the actions taken if:

• The FRR that received control requests recording.

• No FRRs exist on the stack defining the supervisor path
that failed.

• The FRR that received control had an error while attempt
i ng recovery.

5 Routing to FRR processing honors valid requests from
the FRR to:

• Resume processing of the interrupted supervisor path at
the point immediately following the interruption.

• Retry the interrupted supervisor path at a point specified
by the FRR.

• Continue with FRR recovery when the FRR in control fails
to completely recover from the error.

Module Segment

RECORD

CHKRCDE

Extended Description

When FRR recovery continues, routing FRR processing pre
pares to route to additional FRRs on the stack. This is called
'percolation,' and it means continue with termination. Since
the FRR stack defines a supervisor path that failed, however,
and since each FRR corresponds one-to-one with a function
in the path, the FRR executes in the same system state as the
function it protects. When an FRR must continue with termi
nation, the FRR receiving control (to continue the termina
tion) must clean up or request the clean up of any resources
associated with the function it protects. Because of a poten
tial change in system state resulting from clean up, routing
FRR processing involves:

• Insuring that the SDWA contains valid error information.

• Locating the next FRR to receive control, in a LIFO
manner, and adjusting the stack header to indicate the next
FRR to receive control.

• Releasing any locks as specified by the FRR requesting to
continue with termination.

6 Routing FRR processing returns to M.O. diagram,

RTM1 Overview (lEAVTRTM), to honor resume
or retry requests, or afterall FRRs on the stack have
been exhausted.

For recursive entries where an FRR has had an error, FRR
recovery continues.

Module Segment

EXIT

t Diagram 22-5. Routing to FRRs (lEA VTRTS) (part 7 of 8)
0\
o

o
~
~
N
tI.l

'!
5;

~ n·
t"""

~
~

~
:3
(I)

~

'< tI.l
N

~

i
~
c.w
~

Input

Register 0

(@ FRR Work Area

Register 1

@SDWA

SDWA

From module
IEAVTRTSto
handle errors
occurring during
schedule FRR
function

Process

7 Perform error retry or continue
with termination for:

• GETMAIN failure.

• SLIP failure.

• GTF tracing failure.

• Software error recordi ng
failure.

Output

SDWA

To module IEAVTRTS to retry
the function that failed, or to
RrrM to continue with
termination.

~
~

~ o·
= N

== a g
~

o
~

o
"'c:::I ;
g.
=
~

~
0'1
'"""

Diagram 22-5. Routing to FRRs (lEA VTRTS) (part 8 of 8)

Extended Description Module

7 The routing to FRR function protects itself from errors IEAVTRTR
with several FRRs. These FRRs protect against:

• Failures occurring in GETMAIN processing.

• Failures occurring during SLIP processing.

• Failures occurring while GTF traces an event.

• Failu,res occurring while software errors are being
recorded.

RCOVSLP1, RCOVRGTF, and RCOVRCRO may set up
ABORT processing for double errors occurring in
IEAVTRTS processing. (See the M.O. diagram RTM1
Recursion Processing (I EAVTRTR), for a description of
ABORT processing.)

When an error occurs during GETMAIN processing while
attempting to acquire an SOWA for an unlocked SRB
mode failure, this FRR gets control if GETMAIN recovery
is unsuccessful. The FRR retries all errors except OAT
(dynamic address translation) and restart errors. Retry will
occur at the point in routing to FRRs where the local SOWA
is acquired for this SRB failure. OAT and restart errors cause
continue with termination to be requested by this FRR.

The SOWA contains indicators explaining what happened
during this FRR's processing, as follows:

RCOVGETM places the following messages in the variable
recording area of the SOWA:

• Retry IEAVTRTS after failure in GETMAIN attempting to
acquire an SRB SOWA for use by IEAVTRTS.

• Percolate on OATERR or restart error occurring while
attempting to acquire SRB SOWA via GETMAIN.

Segment

RCOVGETM

Extended Description

An FRR protects SLIP processing. The FRR retries all
errors except OAT and restart errors. Retry will occur at
the point past SLIP processing. For OAT and restart, the
FRR indicates continue with termination.

The SOWA contains indicators explaining what happened
during the FRR processing.

This FRR receives control if the SLlP2ACT entry for
SLIP fails. This FRR frees resources obtained by SLIP,
and indicates continue with termination.

An FRR protects routing to FRRs from an error occurring
while GTF traces another FRR's actions. The FRR retries
all errors except OAT and restart errors. Retry will occur
at the point past GTF processing. For OAT and restart, the
FRR indicates continue with termination.

The SOWA contains indicators explaining what happened
during the FRR processing.

RCOVRGTF places the following messages in the variable
recording area of the SOWA:

• Retry lEA VTRTS after GTF failure attempting to trace
SOWA returned by FRR.

• Percolate on OATERR or restart error occurring while
attempting to trace SOWA via GTF.

An FRR protects software error recording of errors being
already handled by another FRR. The FRR retries all errors
except OAT and restart errors. Retry will occur at the point
past software error recording. For OAT and restart, the
FRR indicates continue with termination.

The SOWA contains indicators explaining what happened
during the FRR processing.

RCOVRCRO places the following messages in the variable
recording area of the SOWA:

• Retry I EAVTRTS after failure in software recording
facility attempting to record the SOWA.

• Percolate on OATERR or restart error occurring while
attempting to record the SOWA.

Module Segment

RCOVSLP1

SLlP2FRR

RCOVRGTF

RCOVRCRO

~
CH
0'1
N

o
til

'<
til
N
til
'<
~

3
~ ;:;.

C
~

~
-< o

=:3
(D

,J:.

<:
til
N

~
(D

;-
11:1
~
CH

~

Diagram 22-6. RTMI Recursion Processing (lEA VTRTR) (Part 1 of 4)

From RTM1 Overview
(lEAVTRTM) to process
recursive entries into RTM1

Input not handled by FRRs Process
• - F't ~,~,!",~.,:~~.~."." ,,""',,"'0:', ~~~"'o:'::-:-~'0""';""';:c<i""'<:'-2~""'; ~"'o:".>;b""'\-u"'o:'"2""'v>,",""·.:b,""'~;;J""':;:;"";~ ""'~""1h"'~"c~"":;Ji""'0t~-%(%""lj,l:o"'j:;"'»""kl"'~i-«:-~0'''''.f,.''''~,: . .." 'I

RTM1WA

RT1TLPID

@ error information

Register 0

Entry type

Register 7

@ current stack

1 Determine whether logical phase ,recovery
can occur.

• No, perform Abort processing.

• Yes, perform logical phase
recovery processing.

Abort Processing

2 Terminate RTM1 processing.

• Clean up the FRR stack.

• Free locks.

• Exit to dispatcher or SRB
dispatcher.

Output

Step 2

Step 3

To dispatcher or SRB
dispatcher (lEAVEDSO)

til
~

~ c·
= ~
:::

i
Q

'""' o
"0

S
5-
=
t-
w
0\
W

Diagram 22-6. RTMI Recursion Processing (IEAVTRTR) (pad 2 of 4)

Extended Description

In certain paths through RTM1 processing, recursions cannot
be processed by FRRs (functional recovery routines). For
example, the phase of the module that actually routes con
trol to FRRs (module IEAVTRTS) cannot be protected by
an FRR - if this phase does not work, it cannot route to an
FRR to protect itself. To handle these situations where
certain phases cannot be protected with an FRR, RTM1 uses
LPRRs (logical phase recovery routines). To use LPRRs,
RTM1 tracks its processing. The tracking information con
sists of two items:

• An LPID - a logical phase 10 that identifies the LPRR
that can process the recursion.

• An LPN - a logical phase number that identifies the phase
of RTM1's processing in control at the time of the error.

Recursion processing routes control to the LPRR identified
by the LPID.

Module Segment Extended Description

1 After an RTM1 process, IEAVTRTM has discovered
a recursive condition, control goes to the recursion

processing routine. Recursion processing first determines
whether a logical phase identifier exists, by checking the
RT1TLPID field of the RTM1WA. Any time an RTM1
logical phase uses an LPRR for recovery, it sets the
RT1TLPID to a non-zero number. The recursion processing
routine gives control to the correct LPRR if it finds a non
zero number in the field. If it finds a zero, this means that
no specific LPRR exists, and the Abort LPRR must receive
control .

2 The Abort processing routine handles recursions by
performing clean up processing. Abort processing

releases any locks and resets any FRR stack pointer values.
In general, Abort processing removes any traces of the
original error. Control goes to either the dispatcher or the
SRB dispatcher, depending on the mode at the time of error.

Module Segment

IEAVTRTR RECVRRTM

ABORT

t Diagram 22-6. RTMI Recursion Processing (lEA VTRTR) (part 3 of 4)
~

~
< en
N
en

I
~
f)'
r-r
~ a
(D

~

'< en
N

f
w :... -

i

RTM1WA

RT1TLPN

Register 12

I @ error information

Register 0

I Entry type

Register 7

I @ current stack

Low Level Processing

"
"

3 Route control to the correct LPRR.

• Recover error in 'Routing to FRRs'.

• Recover error in restart processing.

• Recover error in lEA VTRTM for
management processing.

I • Recover error in post-SLIH processing.

• Recover error when no SLiH
processing can be performed.

I /

• Recover error for restart when no
SIGP has been issued.

I • Recover error during free cell processing.

• Recover error during FR EEMAIN
processing.

. Ii
Control goes to RTM 1 to retry
the operation that failed. See
Reschedule RTM1 (lEAVTRTM)

C'Il
~

~
5·
::I

~

a:
$l
8'
c:Io
o
~

o
."

I
5'
::I

of"
w
~
(A

Diagram 22-6. RTMI Recursion Processing (rnA VTRTR) (put 4 of 4)

Extended Description Module Segment

3 When the RT1TLPID indicates a non-zero number, LPRECOV1
an LPRR exists. The recursion processing routine

routes control to the various LPRRs according to the type
of recovery desired. (The RT1TLPN field of the RTM1WA
indicates the logical phase in control.) RTM1 LPRRs recover
from the following:

• Errors in routing to FRRs. I EAVTRTS SRMDRCOV

• Errors in mainline SLiH post-processing after routing RVPOSTSR
to FRRs.

• Errors occurring in mainline SLIH when no routing to RVNORTS
FRR processing has been performed.

• Errors in restart processing. RVRSTRT

• Errors in restart processing when no SIGP (signal proc-
essor) macro instruction was issued. RVNORST

• Errors occurring during FREECELL processing. RVEEDFRE

• Errors occurring during FREEMAIN processing. RVFREEMN

If the LPRR can recover from the recursive error, control
returns to either I EAVTRTS or lEA VTRTM to resume
processing of the original error. Otherwise, the LPRR will
return to RTM1 main processing, to continue processing
the new error.

• Errors in the management and control routing of
RTM1 (lEAVTRT1).

~
~
0'1
0'1

o
r/}

~
N
r/}

'<

§
i n
t:
a'

~
~
2'
~
~

'< r/}
N

:::t'
(to

i
~
~

~

Diagram 22-7. Reschedule R~l (lEA VTRTM) (part 1 of 4)

Input

:~

i

From RTM1 Overview
(IEAVTRTM) to complete
SLiH mode processing Process

RTM's Work Registers ~ .. : RD

I I ;j ;,
F unction Code) 1 Reschedule R/TM in CPU

1 ~ v- of error.

R1 ~; 'z I I I:~: • Validity check CPU address.

Comp Code :!:

[I
~.' • Issue SIGP on failing CPU.
,;i

R2 [\ Process error conditions.

I I • ASID

~.~ R3 fi
I @TCB I ~~

:f; 2 Initialize the recovery
,. environment.

R4 and R12
. ,,;

~
@Recovery ; • Establish SLiH mode recovery
Tracking Area if S LI H mode entry.
(2 regs) ': ;':

~.; • Establish reschedule recovery.

RS

I I
!:

@Dump I~ Options'
.

I~i 3 Reschedule R/TM in address
R6 t

H

space of error.

I I @EEDs ';j I:·
~.~ • Acquire and initialize an SRB.

R7
}j I;·

I I • Process EEDs.
@RB ~j ';.,

;: • Schedule the SRB.

Ii £~ 4 Reschedule R/TM in mode of {; I~ error. :: Ii
. {;:j0" .;:,,'ui 11f Schedule RTM2 X'431' •

(ABTERM). ,;.
:

i~i
• Reschedule RTM1 X'433'.

'::'$&'"."," $'"':'''''.''' '.<' . 'c'.: c'

6

Output

rl
...

PENDING ..
..:.. «

SIGP
... 1

i

:;;

if

~.
~;

SRB on Global i:
Dispatcher Queue

-~ EED
; "/ ,: -
"

'i I
i ~ I

3~ ~tk v
i":

i ·;·i
~ iil TCB RB Saved

Local '7 I:
t; I--""" t SVC 13

Task
.;: I;
:

~,~, ~ t SVC 13
;: [;: v

4 f:; Saved SRB
EED's

I.:· OR I .j !~ SVC13 I" I· .L--/ Dump i .. I; Options
f

I~· Hardware
[::' Info
t:

t~i; ;~

CI.l
fl)
~ g.
=
~

=c:
!P.

&:
o
o

"0
fl)

;
g.
=
~

W
0-
-..,J

Diagram 22-7. Reschedule RTMI (lEA VTRTM) (part 2 of 4)

Extended Description

RTM1 performs a reschedule service when entered in service
routine mode, or RTM1 performs a reschedule function to
complete SLI H mode processing. The basic input to the
reschedule function consists of RTM1's work registers,
which contain the necessary values to perform the requested
service.

1 RTM1 attempts to process on another CPU if a restart
interruption caused the entry to RTM1 and the FRR

on the current CPU validly requested resume. This indi
cates that the interrupted program on the current CPU was
waiting for a resource held by another CPU.

• For valid CPU addresses returned by the FRR, RTM1
issues a SIGP instruction to the other CPU. As a result
of the SIGP restart interruption RTM1 then processes
on that CPU.

• For invalid CPU addresses or if the restart could hot be
performed, RTM issues an ABEND causing the FRR of
the interrupted program to receive control once again -
this time, however, only to clean up its resources.

2 If RTM1 received control to perform a service routine,
then some recovery has already been provided by an

FRR established in IEAVTRT1 (RT1 F=RR). If, however,
RTM1 had been entered in SLiH mode, no FRR has been
established.

• For SLiH mode entries, RTM1 places an FRR
(RTMSMFRR) on the FRR stack.

• RTM1 also places the reschedule FRR (RTMRSFRR) on
the stack. This protects the reschedule function by two
FRRs whether RTM1 received control in SLiH mode
or in service routine mode. The parameter areas of both
FRRs are used to save registers and other information
necessary for RTM1's recovery.

Module Segment

IEAVTRTM RESCPU

RESCHED

Extended Description

3 RTM1 attempts to reschedule itself in another address
space under two conditions: when an ABTERM func

tion has been requested and a non-zero ASID has been pro
vided (cross memory ABTERM), or if the system is in SRB
mode, and the associated task being terminated cannot be
suspended (it cannot obtain the local lock).

• RTM1 acquires and initializes an SRB.

• RTM1 obtains EEDs (extended error descriptors) to con
tain the error registers, PSW, and dump options, if
applicable; a pointer to these EEDs is placed in the SRB.

• RTM1 schedules the SRB to the specified address space
to cause reentry to RTM1 in SRB mode (reentry point
IEAVTRTX in IEAVTRT1). Operating as an SRB, RTM1
causes RTM2 to be invoked in the specified address space.

4 RTM1 performs the reschedule mode function in
three cases: for an ABTERM of a task in the current

address space (ASID = 0); for a PGIOERR service; or for
post-SLIH mode processing requesting the termination of
a task in the current address space.

• RTM1 reschedules page fault errors in either a locally
locked or an SRB routine for re-entry into RTM1.

• I n all other cases (except as noted above), RTM 1 schedules
RTM2 to be dispatched from the failing routine. RTM1
places a pointer to an SVC 13 instruction in the resume
PSW; this instruction will be the first one executed when
the routine in error regains control.

Module Segment

XMABTERM

GETANSRB

RESMODE

SCHDRTM1

SCHDRTM2

to
~
00

o
til

"< til
~

til
'<
~.

~
r-'
Ii n·
r-'

J
~
i
~

~
~

f
w
~
'-'

Diagram 22-7. Reschedule RTMI (IEAVTRTM) (part lof 4)

Input Process .C?

I @ FRR Work Area

Register 1

(-@SDWA

SDWA

D

From R/TM,
to handle a rocu_

" v

5 Reschedule R/TM in master
schedu ler address space.

• Vafidity check ASID.

• Place ASCB on MEMTERM
queue.

• Wake address space
termination controller.

6 Delete reschedule recovery
environment.

7 Determine whether the
function can be retried:

• Retry - retry the function
beyond the point of
EED processing.

To RTM1
Overview
(lEAVTRTM) ..
,.

To R/TM,
to retry
(IEAVTRT1) ..
.".

Output

Lt...
y

CVT RTCT

~rJ11---------f

-
,(:SCB

TermQ
Chain

ASTC's SRB to

o

..

Queue
of ASCBs ---r---,

I I
I I
L __ --1

SDWA

" -y

I ,. To RITM,. to continue
With terminatIon
(tEAVTRT1)

• Continue with
terminations - free EEDs.

CI.l

it
e' ::s
!':l
~

[
2.
o

I
e::s

....
~
'"

Diagram 22-7. Reschedule RTMI (IEAVTRTM) (part 4 of 4)

Extended Description

5 RTM1 attempts to schedule the address space termi-
nation controller part of R/TM, which resides in the

master scheduler address space - if the address space
termination function has been requested.

• For a valid, specified ASID, RTM1 places the corresponding
ASCB on the address space termination queue.

• RTM1 schedules the address space termination con
troller's SRB to process the ASCB termination queue.

6 RTM1 deletes the SLiH mode FRR, if applicable,
and the reschedule FRR. If RTM1 had been entered

in S LI H mod~, recovery now reverts to the scheme of

logical phase recovery routines. (See M.O. Diagram
RTM1 Recursion Processing (IEAVTRTR) for a
description of logical phases.)

Module Segment

MEMTERM

WAKEMTC

RESCHED

Extended Description

7 The reschedule RTM1 function protects itself with
an FRR (functional recovery routine). The FRR

determines whether the reschedule function can retry
past the portion of code where the error occurred, or
whether to continue with termination. The FRR requests
retry only for errors that occur during processing non
essential to RTM1's handling of the original error; one
such example of non-essential processing is EED processing.
If the FRR must continue with termination, the FRR
cleans the resources used during the reschedule function.

This provides an additional parameter area used by the
reschedule RTM1 FRR (RTMRSFRR). This FRR passes
a continue with termination request, when entered.

Module Segment

IEAVTRTR RTMRSFRR

RTMSMFRR

~
(,N

~

~ r.n
N
r.n
'<

f
i-
t:
a"
~

f
~

'< r.n
N

i
I
(,N

~

Diagram 22-8. System-Directed Task Termination (lEA VTRTM) (part 1 of 2)

't

TCB

From Reschedule RTM 1
(IEAVTRTM)
to tl k

.

p

1 Validity check input DCB.

"" 2 Stop execution of task.)
v

.....
) 3 Establish interface to RTM2.

y

..
') 4 Ensure task can resume

¥
execution.

~r,'"'

TCB

'"
V'

IEAVSETS· Flags ..
-,.- STATUS

....
~

TCB

RB + ~f--:6.RB

Comp
Code Resume SVC13

""
@

Flags Instruction
v

"
~EEDS

Hardware
Data Dump

Opts Regs
I

IEAVSY50 I ..
POST -,.-

..L

~

'" TCB

V' +TORTMI Flags
Overview
(IEAVTRTM)

CI'.l
~
g.
o·
= N

s::
sa. g
Q.

g,
o
"0
~ ...
~ o·
=
~

W
-...I -

Diagram 22-8. System-Directed Task Termination (IEAVTRTM) (part 2 of 2)

Extended Description

This illustrates the processing which parallels the ft:BT.ERM
function of earlier OS systems. Since the task recovery and

termination process (RTM2) must operate under the TCB
being serviced, RTM1 must modify the task control block
structure (TCB/RB) so that the RTM2 (via SVC 13) receives
control as an RB on the effected TCB. RTM1 performs
validity checking to prevent erroneous modification of
key 0 storage and unnecessary ABEND processing. The task
must be stopped because in an MP (multiprocessing) environ
ment, the task may be operating on another CPU. The re
setting of the tasks non-dispatchability indicators and wait
indicators prevents deadlock situations.

Module Segment

1 First, RTM1 ensures that the task passed as input by the I EAVTRTM VALlDCK

invoker exists on the TCB priority queue of the
address space. (RTM 1 does not check the priority queue
if the "current" task is being terminated.) RTM1 also checks

whether or not the task had previously been passed to
ABTERM but has not yet executed the SVC 13 instruction.
RTM1 bypasses scheduling the ABTERM function if the
TCB is invalid or the ABTERM is already in progress.

2 RTM 1 calls the STATUS routine to stop the execution
of the task on another CPU in a multiprocessing environ-

ment. The task will not be redispatched while RTM1 holds
the local lock. For current tasks, no call is necessary since
the task has already stopped execution.

CKNONCUR

Extended Oescription

3 RTM1 alters the resume address of the task so that
when the task subsequently receives control it will

execute an SVC 13 instruction to enter RTM2. The infor
mation c.oncerning the error resides in the TCB/RB and
EED{s) for use by RTM2.

4 These considerations affect the dispatchability of the
TCB/RB being terminated:

1) The wait count in the RB.
2) The non-dispatchability flags in the TCB.

POST is entered via a branch to reduce the wait count.
POST is reissued until it takes the RB out of a wait condi
tion (when the wait count becomes 0). STATUS sets the
task forced-dispatchable by resetting all non-dispatchability
flags. This function allows for the breaking of deadlock
situations caused by routines which set tasks non
dispatchable and neglect to reset them.

Module Segment

TCBRB

SCHDRTM2

~ w
N

~
~
N
til

~
~
r-
ei c:;.
r-
~
~
~
aa
(II

~

~
N

f
eN

~

Diagram 22-9. Reschedule Locally Locked Task or SRB (lEA VTRTM) (part 1 of 2)

Input

ASXB

I r- -
rescheduling -

From Reschedule RTM1
(lEAVTRTM) to reschedule a
locally locked task or SRB.

--EED

D I I

I

~din I
ASXBIHSA,,, a locally
r IHSA locked task -r

1-I _J - --
r Interrupt

Registers

Interrupt
psw - .' OR I J

SSRB
r-- I

Used in } _
rescheduling r- pt

Interru
an S~ B Registers
routine r- _

Interrupt

!!
L PSW
~J

I

I

Process

~ 1 Initialize EED header.
"

-) 2 Move registers/PSW into EED.
"

':>

I

3 Put EED address in ASXB
(SSRB).

4 Put completion code/flags in
ASXB (SSR B).

5 Alter resume psw.

To RTM1 Overview
(IEAVTRTM)

Output -
EED -~ ...J]]' I

..
~

d Regs/PSW

J -
- ---..

-
IHSA (SSRB) -~ !L

, Icompr lJl I ~
r

~ EED Code
r ,

.....
t SVC 13 -. j -

-
""'-"'"

Resume PSW -~ I -

I
Y I - I -

h

r.Il
~

~ o·
::I
~

~
~ g
Q.

o
~

o
"0

i o·
::I

~

W
-..I
~

Diagram 22-9. Reschedule Locally Locked Task or SRB (lEA VTRTM) (part 2 of 2)

Extended Description

When an error occurs during page fault processing for a
locally locked task (or SRB routine) RTM1 sets the task
to be redispatched from the IHSA (or the SSRB) with
an SVC 13 instruction as the first instruction to be
executed. When the SVC IH subsequently becomes dis
patched, it will issue a "CALLRTM TYPE=SVCERR"
macro instruction since it would appear that an ineligible
routine (Le. locked task or SRB routine) has issued an
SVC.

1 RTM1 zeroes the EED and sets the 1.0. field to
indicate a register type.

2 The registers and PSW in the IHSA for a task
(I HSAGPRS and I HSACPSW and in the SSRB

for an SRB - SSRBGPRS and SSRBCPSW) stored at the
time the task (or the SRB) was pre-empted by the page
fault are preserved in the EED.

Module Segment

IEAVTRTM SCHDRTM1

SCHDRTM1

Extended Description

3 RTM1 alters register 0 in the IHSAGPRS (or
SSRBGPRS for SRBs) field to point to the EED

(this becomes input to the RTM1 upon re-entry).

4 RTM1 places the completion code and options flags
in the register 1 slot in the I HSAGPRS (or

SSRBGPRS for SRBs) field.

5 RTM1 alters the I HSACPSW (or SSRBCPSW for
SRBs) field to point an SVC 13 instruction within

the RTM's module (this technique allows the RTM1 to
uniquely identify the re-entry as a reschedule function as
opposed to another routine issuing the ABEND macro
instruction),

Module Segment

SCHDRTM1

SCHDRTM1

SCHDRTM1

~
W
'-I
~

o
fJ'J

~
N
fJ'J
'<
~
('D a.
E
t)'

t-
~
~

i
('D

~

~
N

::tl
('D

i
~
w
~ -

Diagram 22-10. RTMI Clean-up Processing (lEA VTRTM) (part 1 of 2)

From RTM 1 Overview
(lEAVTRTM) to
clean up resources used

Input by RTM1 processing. Process
II .. JijEH"'~~~~iIJ5iiiiiD

RTM1

o
RTM1WA

D
Free RTM 1 resources:

• EEDs.

• LocksacquiredbyRTM1.

• SDWA.

• Program check recursion
indicators.

• RTM1 recursion indicators.

2 Free the failing system
routine's locks.

3 Determine the type of exit .

IEAVEEXP

Exit Prolog

...
... TO.RTM1

. EXIt

Processing
(lEAVTRT1)

o ut

RTM1WA ,

RTM1 Regs ,

til
(D

a
5·
=
~

a=
~
~

o
o

1 o·
=
~
~

v:

Diagram 22-10. RTMI Clean-up Processing (IEAVTRTM) (part 2 of 2)

Extended Description

This illustrates the functions performed by RTM1 during
clean-up processing.

1 The clean-up processing frees any locks, EEO"s or an
SOWA acquired during the RTM1 processing, which

are no longer needed.

2 ,Clean-up frees all locks currently held by the failing
routine. Exit Prologue (EP Name=IEAVFRLK) per

forms this fl,lnction.

3 Recursion indicators in the RTM1WA or the current
FRR are deleted. Control is returned to the entry

point/exit point processor with an indication of the type
of exit to effect.

Module Segment

IEAVTRTM SYSCLEAN

EXIT

t ...,
Q\

o
t:Il

"< t:Il
N
t:Il

1 ;
~
(i;'

~

~
~
< o c a
(D

.a:o.

'< t:Il
N

~
if
~
w
~

Diagram 22-11. RTMI Exit Processing (IEAVTRT1) (part 1 of 2)

From RTM1 Overview
(lEAVTRTM)

Input to exit. P.rocess

RTM 1 Work Reg

Exit Type
Indicator

RTM1WA

Retry

Registers

0-14

Retry @

CVT

+ Dispatcher

+ SRB Exit

+ Exit Prolog

LCAA

LocS Restart

Restart Regs

OPSW

MCH Parms MCH RegS/A

I I I I

Caller's Reg Save Area

I I

,...
.,.>1 Determine type of exit.

,...
> a) On exit type=retry, exit to

Y retry routine that contains
the address to come back to
for retry.

,...
.,. b) On exit type=dispatcher,

go to dispatcher
(lEAVEDSO).

" .) cl On eXIt type=SRB, go to
.,. SRB Exit (tEAVEDSO).

'") d) On exit type=EXIT
v PROLOGUE, go to Exit

Prolog (tEAVEEXP)..

"') e) On exittype=RESTART
v RESUME to the RESTART

OLD PSW, resume

"-
Interrupted Process.

) f) On exit type=MCHEXIT,
v exit to MCH (tEAVTRTM).

"> g) On exit type=RETEXIT,
v return to caller (issuer of

the CALLRTM macro). -
To items
indicated
in 1 a-g

~ a
(5'
::I

~

a: a
8:
o -o
'e

I o·
::I

-t-
toN
-...I
-...I

Diagram 22-11. RTMI Exit Processing (IEAVTRT1) (part 2 of 2)

Extended Description

RTM1 routines exit from a common exit routine within
module lEA VTRT1.

1 RTM1 exit processing uses the exit type determined
by the module lEA VTRTM to perform the appro

priate exit procedure, as follows:

a. Exit processing loads registers 0 through 15 from the
RTM1 work area. Register 15 will now contain the
retry address. Finally a branch on register 15 is executed.

b. The dispatcher's exit point is placed in register 15 from
the CVTODS field of the CVT. A branch on register 15
is executed.

c. The SRB exit point is placed in register 15 from the
CVTSRBRT field of the CVT. A BR 15 instruction is
executed.

d. Register 15 is loaded with the contents of the CVTEXPRO
field in the CVT. This points to the exit prolog routine,
via a SR 15 instruction.

e. Registers 0-15 are loaded from the restart save area
(LCCARSGR). A LPSW instruction is issued to cause the
restart old PSW to be loaded.

f. A pointer to the interrupt PSW and registers is placed in
the MCH parameter list. Register 2-0 (all but Register 1)
are reloaded from the MCH save area. A branch on
register 14 is executed.

g. Registers 0-14 are reloaded from the register save area
and a branch on register 14 is executed.

Module Segment

IEAVTRT1 IEAVTRTZ

RT1EXIT2

RT1EXIT4

RT1EXIT6

RT1EXIT8

RT1EXITC

RT1EXITE

f'
~
00

o
en

"< en
t-J
en
'<
~

3

{
r-
~
.$
t-
2'
3
~

~

<:
en
t-J

::a=
~

i
~
~

~

Diagram 22-12. RTM2 Overview (IEAVTRT2) (Part 1 of 4)

I

~

From the SVC IH (lEAVESVC)
to perform SVC 13
(ABEND) processing.

p

r
Register 0

@ ASCB or Dump

" - Options / - v
/'

I Dump , ASCB
Options

(Note: Reg 0 : contains
ASCB @for
Address Space
Termi nation)

j

Register 1

I Flags I
TCB SVRB ~!

TCBRBP ~
SVC13

TCBSTABB

f\SCB
.... TCBRTM12 1\ Failing

RB

EED

]

j

;

,j~

Output
~

f :; RTM2WA

" [{~
1 Initialize the RTM2WA

y;

r~:
--y

~5 according to the parameters

~
11

requested on the SVC 13 Input for A)(" instruction. Steps 3-7 ~ ...

t~ ;

",,, '2 RTM2

~ :;
--, Initialization

" j
,,~,*,,;,£"~

-'0.

2 Process recursions throughout Recursion
RTM2 operation. ~

--,.
Processor 1

"'" ;,

1
!""

,:;';

It

r:r.
"" ~ g.
=
I-.j

:::
~

[
o -.
C

"C
~ ...
~ c·
=
~

~
\C

Diagram 22-12. RTM2 Overview (lEA VTRT2) (part 2 of 4)

Extended Description

The RTM2 function responds to SVC 13 (ABEND) requests
after receiving control from the SVC I H (interruption
handler). Basically, RTM2:

• Initializes a common work area called the RTM2WA.
This work area contains the information needed by the
various RTM2 routines to service the SVC 13 request;
the work area serves as the input for the rest of RTM2
processing.

• Provides for error handling in RTM2 by tracking any
possible recursions that occur. Unlike other supervisor

routines, RTM2 does not rely on FRRs (functional
recovery routines) to handle errors. Instead, RTM2
uses recursion tracking to perform recovery by tracking
the various RTM2 routines as they execute.

• Performs any of the basic RTM2 services: task recovery,
storage displays, synchronizing failing tasks, purging task
resources, and purging address space resources.

• Exits to the correct RTM2 exit routine depending on
the following conditions indicated in the RTM2WA:
permanent or last task exit, retry, normal EOT (end
of-task) abnormal termination of a task, address space
termination, subtask waiting to terminate, convert-to

step request, or recursion exit condition. Control
then goes to the dispatcher (I EA V EOSO) or Exit

Prolog (IEAVEEXP).

Module Segment Extended Description

1 RTM2 initializes an RTM2WA with the information
needed to perform the requested service. RTM2

routines use the information placed in the RTM2WA as
input. The "RTM2 Initialization" MO diagram shows how
RTM2 obtains and initializes the RTM2WA.

2 Recursion processing occurs throughout RTM2 proc-
essing. Basically, RTM2 indicates each logical section of

code as it executes in the RTM2SCTC field of the RTM2WA.
This field shows the sequential processing of segments, and
marks how far RTM2 processed any request. The Recursion
Processor 1 (I EA VTRT2) MO diagram shows this function.
After a recursion occurs, RTM2 either retries the segment if
the segment can recover from the error, or skips the segment
for any further processing requiring that segment. The
Recursion Processor 2 (I EAVTRTE) MO diagram shows this

function.

Module Segment

IEAVTRT2 RT21NWA

~ Diagram 22·12. RTM2 Overview (IEAVTRTl) (part 3 of 4)
~ c

o

~
N
rn
1
~

i
j
~
c a
c ...
'< rn
N

~ r
w
~

Input

SCB I TCB ~

I IT~mBB Vl 0
TCB

D A

",.
Process .'
I") 3 Process ST AE/EST AE exits to
I : recover a task. ~

) ...
r

") 4 Display storage for tasks requesting II: an ABEND dump. ~
'" ,II"

'" 5 Synchronize failing tasks.
: v

~

'"
,<

to.. 6 Purge resources for tasks.

" ~

,

") 7 Purge resources for an address
II" space.

~

I ..
:

. 8 Return control to the dispatcher
I (lEAVEDSO) or exit prolog

(lEAVEEXP). ,

(lEAVTAS1)
....

Recover Task
~

Processing

OEAVTABD)
....

ABDUMP
r

Processing

) (lEAVTRTC)
" ... Synchronizing

r

Failing Tasks

(lEAVTSKT) ..
"

Task Purge

Processing

(IEAVTMMT) ...
r

Address Space

Purge
Processing

(lEAVTRTE) ..
RTM2 Exit

"

C"Il
(D

g.
::I

~

a::
a
[
Q

"'" o
"g
i
~r
::I

~
~ -

Diagram 22-12. RTM2 Overview (rnA VTRT2) (part 4 of 4)

Extended Description

3 RTM2 will process ST AE/EST AE exits. The Recover
Task (lEAVTAS1) M.O. diagram shows the STAEI

ESTAE recovery function, the M.O. diagramSTAE/ESTAE
Processing (I EA VST AO) shows the creation of the ST AEI
ESTAE exit and the SCB (ST AE control block).

Module

IEAVTRTC
IEAVTAS1
IEAVTAS2
IEAVTAS3

4 RTM2 displays storage when the caller specifies dump. IEAVTABD
The ABDUMP Processing (lEAVTABD) M.O. diagram

shows the processing involved to dump selected areas of
main Storage.

5 Failing tasks will complete their termination even if
they are subtasks of a task that fails during their

termination processing. RTM2 synchronizes failing tasks
to independently terminate all the tasks in a TCB family
that fail. The Synchronizing Failing Task (I EAVTRTC)
M.O. diagram shows this processing.

IEAVTRTC
IEAVTRTE

Segment Extended Description

6 RTM2 routes control to resource manager routines to
perform necessary clean up for task termination. The

Task Purge Processing (lEAVTSKT) M.O. diagram shows
this processing.

Module

IEAVTRTE
IEAVTSKT

7 RTM2 purges address space resources for address space I EAVTRTE
termination requests. The M.O. diagram Address Space IEAVTMMT

Termination Processing (IEAVTMMT) shows this processing.

8 Exit processing for RTM2 consists of returning con- IEAVTRTE
trol to the dispatcher (IEAVEDSO) or Exit prolog IEAVTRT2

(I EAVEEXP). The settings in the RTM2FLX field of the
RTM2WA indicate the exit conditions that RTM2 processes.
The RTM2 Exit Processing (lEAVTRTE) M.O. diagram
shows this processing.

Segment

~
w
00
~

o
CIl

"< CIl
~

CIl
'<
~

53

E
t)"

Co
~

~
~
~
(\)

~

'<
CIl
~

~
(\)

i
~
w
~ -

Diagram 22-13. RTM2 Initialization (lEA VTRT2) (Part 1 of 2)

Input

From RTM2
Overview (I EA VTRT2)
to initialize
the RTM2WA

Register 0

It ASCB ~ l} Regs DUMPOPTS or NULL Valid if

Register 1 Not I I . ABTERM ~ Flags: Completion Code I
Register 3

1+ CVT .1
R'egister 4

It + Current TCB 1
Register 5

+ Current SVRB

Register 7

I + Current ASCB I
Register 14

,+ Return I
\"~CB~

TCBRBP... RB

TCBCC I'

~ Compl~tion

Code SVRB for
SVC13

TCBJSTCR ~

}) /~ TCBRTM12

~ EED

J
ESA

Process

....

" 1 Save the input data.

h.
} 2 Obtain the RTM2WA.

fY ...
~

~

...

..
Recursive Entry, or no
storage. 7'

3 Initialize the RTM2WA.

To RTM2 Overview
(IEAVTRT2)

Output

Register 4 Register 5

l 1 t @RB h. @TCB 1
-:v

\ TCB RB

ESA

RTM2WA
h.

-y
GETMAIN
(IEAVGMOO)

MEMTERM Initialized for:

CALLRTM • "Converted to Step"

TYPE= • Purge Only

MEMTERM • Recursions
h. • Entry via RTM1

" • Address Space Termination

• Normal end-of-Task

• Abnormal Termination

t"'-I

i
= N

a::
t
Q.

o
o
"0

I o·
=
~

~
00
~

Diagram 22-13. RTM2 Initialization (lEAVTRT2) (part 2 of 2)

Extended Description

RTM2 communicates between its various routines via the
RTM2WA. RTM2 initializcftion processing creates and
initializes the RTM2WA for subsequent use by the RTM2
routines. The RTM2WA contains the following types of
information:

• Address of TCB, RB, CVT, ASCB, SDWA.

• Registers and PSW at the time of error, and flags indi-
cating system state for ABTERM and ABEND requests.

• Machine check information.

• DUMP options if any were passed.

• Add.ress of any previous workarea, and indicators, for
recursive entries.

Control goes from initialization to the RTM2 controller
(represented by the M.O. diagram RTM2 Overview
(I EAVTRT2)) to continue processing.

Register 0 contains (1) the address'of ASCB representing
the address space to be terminated if address space
termination is requested or (2) the address of dump
options if dump options were supplied and entry is not
via the RTM 1 ABTERM function.

Register 1 contains the completion code and flags
indicating the type of request and options if the entry
is not via the RTM1 ABTERM function. If entry is via
the RTM 1 ABTERM function, the dump options,
completion code, and type of request, are passed via
TCB fields.

Module Segment

1 Initialization processing saves the input registers and IEAVTRT2 RT21NESA
TCB flags in the ESA. Those TCB fields set by

RTM1 are cleared to prevent confusion in case of recursion.
The TCB fields necessary for recursion tracking are set.
Asynchronous exits are blocked. If this is a recursive entry,
the recursion flags are copied from previous ESA.

Extended Description

2 If the ESACTS flag is on, this ABEND is on a jobstep
task: RTM2 converted an ABEND to the step level.

If so, the work area required for the initial ABEND has
been queued to this TCB and no new work area should be
acquired. If the flag is off, storage is acquired for an

RTM2WA.

If it is not possible to obtain storage (RC=4, no virtual,
RC=8, no real fromGETMAIN), initialization processing
passes control to the critical error routine which attempts
to take an SVC dump and terminate this address space.
This is done since no storage remains in LSOA or SOA,
and the termination of the address space (which takes
place in the master scheduler's address space) should at
least cause SOA to be released, thereby enabling the
rest of the system to process.

3 I nitialization processing places the critical error
routine address in the RTM2WA (RTM2CTRA) and

sets an initialization phase recursion indicator (ESAINREC)
in the ESA. If this is not a purge - only entry or an entry
on a jobstep TCB, the step conversion recursion handler
address is also placed in the RTM2WA (RTM2STRA). The
initialization processing routine initializes the RTM2WA,
using data found originally in the input registers, the TCB,
the RB queue, and, if the entry is from RTM1, the
extended error descriptors (EEDS). If this is a recursive
entry and if the ESAINREC flag is on, initialization proc
essing terminates the address space. If control returns
normally from initialization, the ESAINREC flag is reset.

Module Segment

RT2GETWA

RT2CRERR
RT2TMRY

RT21NWA
RT21NCNV
RT21NCM
RT21NEOT
RT21NABD
RT21NRT1
RT21NMT
RT2CYEED
RT2MODE
RT21NPG
RT21NRCR

~
~
00
00I:0o

~
~
N
fIl

~
~

~ (;.

r-'
;:

~
~
[
(I)

00I:0o

'< fIl
N

::0
(I)

i
r6
~

~

Diagram 22-14. Recursion Processor 1 (IEAVTRT2) (part 1 of 2)

Input

RTM2WA
Previous
RTM2WA

From RTM2
Overview
(IEAVTRT2)
entered during
initialization p rocess

~1i1Tlllllllllli"'II' II' •.•• 111������ ___ ' ..

i 1 Copy all previous

I RTM2PR EV V I RTM2SCTR
--.,
~

RTM2SCTC

Extended Description

Entered for
each section
of RTM2

Inptf~l u rom 10
Step1's~i~
output ---,..'" ~

The RTM2 recursion scheme contains four levels of recur
sion routines.

• While each RTM2 subfunction operates (task recovery,
ABDUMP, etc.) it will set both a recursion routine
address and registers in the RTM2WA for each of its
definable functions. If each of these functions completes
successfully, the subfunctions will update the recursion
address accordingly.

"""V
information.

• Yes

• No, continue

3 Save registers and the address
of the end of the section.

4 Perform the section . i
• The RTM2 controller will, prior to routing control to a

subfunction, establish a recursion routine address which
will cause the subfunction to be skipped if a recursion
occurs and the subfunction has no recursion address. (This
can occur when a subfunction has not set a recursion
address because it wished to be skipped if the section of
the code currently executing should fail or if it is in

4 :: ~~ Input for Step 2 < !
(RTM2SCTR)

its recursion routine and has not set a new address.) The
controller will additionally set a section flag i"ndicating
which subfunction has been entered. On recursive entry,
the normal flow through RTM2 will be followed until it
is necessary to route control to the subfunction which
has recursed. That subfunction will then either be skipped
or its recursion routine will gain control. There are certain
parts of the controller code that are not defined specifi
cally as sections (connection codeL During this time, the
section flags are all zero. This condition is tested on entry
to the controller and if it is met, control passes immediately
to the recursion handler, which causes a default action to
be taken.

t~ «';~t

:R~

5

~ 6

7

Clear the recursion indicators
and the address of the section.

?j1
-----1'-

~

Indicate this section to be
recovered.

Give control to Recursion
Processor 2.

57! >(c

To Recursion Processor 2
(lEAVTRTE)

1 RTM2RCR

'I

~
(D

a
c$"
= ~

~
a
8'
Q.
o ...,
o

"tS

~ ci" =
~
~

~

Diagram 22-14. Recursion Processor 1 (IEAVTRT2) (part 2 of 2)

Extended Description

• An intermediate level of recursion handling is established which causes a recursion on a
. non-jobstep TCB to abnormally terminate the jobstep and reinitiate RTM2 processing
at that level. This is preferable to the critical recursion handling because it may permit
a larger number of TERM exits and resource managers to get control. If the error
persists, the critical recursion handler will get control. However, if the error was due
to an asynchronous event that does not recur, RTM2 processing should complete
normally at the jobstep level.

• For critical RTM2 processing and for situations for which no recovery is possible, a
fourth recursion routine exists which will request an address space termination. This
routine is also used when all other recursion routines have been exhausted. During the
time that no RTM2WA exists in initialization and exit processing, the recursion control
is managed using the ESA, and the critical recursion routine is always invoked on an
error.

On recursive entries no attempt is made to determine the cause of the error by these
recursion handling routines.

Except for recursion during task recovery pre-exit processing, on recursive entries a
purge back of SVRBs and RTM2WAs is not done. This permits full information to
appear in a dump and also provides some loop control as a routine must specifically
establish a recursion routine on this error for it to be applicable on the next. An R B
purge is done for task recovery to avoid passing error data for errors suffered by routines
used by task recovery to the recovery exits.

RTM2 uses three sets of flags to maintain control during recursion. RTM2 sets the
RTM2SCTC flags as it enters each section and sets them to zero when the section is
complete. When one of these flags is set, there is generally a "skip address" which will
cause the section to be bypassed if it does suffer an error.

The RTM2SCTR flags contain the history of all the sections that have suffered a
recursion which has not yet been recover~d. This flag is tested by the controller prior
to setting the RTM2SCTC flag fora given section and if it is on, the recursion exit is
taken to give the recursion address control. These flags are necessary as RTM2 proc
essing follows a different order of paths based on the type of error encountered.

The RTM2SCTX flags indicate to the recursion exit handler the section whose recursion
address mustbe given control. When the controller finds the RTM2SCTR flag on for
the section it is about to execute, it sets the corresponding RTM2SCTX flag and passes
control to the exit handler. The exit handler will then use the RTM2SCTX flag to
locate the appropriate RTM2WA and recursion address for this section.

Extended Description

1 The recursion processor 1 first copies any previous
status information that applies for all failures, and

combines the recursion information from the most recent
failing section of code with all previous failed sections of
code. (See M.O. diagram RTM2 Initialization (lEAVTRT2),
step 3, for a description of the recursion indicators set for
critical error routine address and step conversion recursion
handler address.) This provides a complete set of recovery
information .

2 Each section of code performs the operation described
in steps 2-7. The section checks the RTM2SCTR field

of the RTM2WA for a recursion indication. If this indicator
shows that this section of code failed and has not been
recovered, it cannot be reentered. Control goes to step 6.
Otherwise, control continues to step 3.

3 The section of code sets an indicator, in the RTM2SCTC
field in the RTM2WA, that shows which section has

control. If a recursion should occur, the position of this
indicator (a bit) in the field (1 word) will locate the section
of code that failed.

The section of code saves the registers, in the RTM2SFSA,
that will be needed if the section fails, and saves the address
of the code following the section in the RTM2SKRA. Using
this information, the section code can be skipped if necessary.

4 Each section of code can be further divided into sub-
sections, by using flags unique to the section. If a sec

tion can handle certain recursions on its own, another
recursion address is set in the RTM2TRRA field and the
registers are saved in the RTM2RREG field. This permits,
for example, a failing caller ESTAE exit to be skipped, with
out causing all of task recovery to be skipped.

5 The section clears the section indicator in the
RTM2SCTC field, and the address in the RTM2SKRA
field.

6 After determining that this section has failed (in step 2),
the recursion processor 1 sets an indicator in the

RTM2SCTX field that indicates the section of code that
failed.

7 The recursion processor 1 sets the RTM2RCRX field.
When this field is set, the recursion processor 2 will

receive control to process the recursion.

Module Segment

IEAVTRT2 RT21NRCR

IEAVTRTC

IEAVTRTC
IEAVTRTE

~

~
00
Q'I

o
tI.l

~
N
tI.l
'<
~
(!)

a

i
r-'

~
~
~
=-~
~

'<
tI.l
N

:;II:l
~
~
~
1M
~ -

Diagram 22-15. Recursion Processor 2 (IEAVTRTE) (part 1 of 2)

SVRB SVRB

~ V

~ Current
It RTM2WA

RTM2SCTX

RTM2WA -
RTM2SCTC l

1

RTM2TRRA

RTM2SKRA

RTM2STRA

RTM2CTRA

From Recursion
Processor 1 (I EA VTRT2)
to retry a
section of
code that failed.

1 Locate the RTM2WA that
represents the section of code
that failed.

2 Determine the least severe
recursion handler available and
update theHTM2WA.

3 Restore the regis~ers from the
RTM2WA.

4 Give control to the selected
recursion address.

To the section of code that failed,
or to termi nate the address space
(as in RTM2 Initialization
(I EAVTRT2), Step 2.)

Ou

Current
RTM2WA

rIl

a
~.

::I

~

iC
a
[
o
~

o
"0

I
~.

::I

~
1M
oc

Diagram 22-1 S. Recursion Processor 2 (lEA VTRTE) (part 2 of 2)

Extended Description

The recursion processor 2 function routes control to a
recursion handler for the section of code that failed.

Module Segment

1 The recursion processor 2 locates the RTM2WA for IEAVTRTE RTERCREX
the failed section. (Recursion processor 2 uses this

RTM2WA for the processing descr~bed in this M.O. diagram.)
It does this by matching the RTM2SCTX field passed as
input with the RTM2SCTC fields in the various RTM2WA's
that represent the failed sections of the code.

2 The recursion processor 2 checks for a non-zero value,
in order of increasing severity, in four fields in the

RTM2WA:

• RTM2TRRA - skip a small RTM2 function, such as a
resource manager routine.

• RTM2SKRA - skip a major RTM2 function, such as
synchronizing failing tasks or task recovery.

• RTM2STRA - terminate the job step

• RTM2CTRA - terminate the address space.

to find the least severe recursion handler.

Extended Description

For RTM2TRRA: The recursion processor 2 clears the
section indicator in RTM2SCTR and allows the section
to retry; it copies the address and registers that will
skip the failing section from that RTM2WA to the current
RTM2WA passed as input. This enables the recursion proc
essor 2 to skip this section if it fails again. The fields set in
the current RTM2WA are RTM2SKRA and RTM2SFSA.

For RTM2SKRA: The recursion processor 2 does not
clear the section indicator in RTM2SCTR; this section
mus~ be skipped every time it is reached and not be
allowed to execute.

For RTM2STRA and RTM2CTRA: The recursion proc
essor 2 clears no fields. These fields contain the addresses
of special recursion routines that handle serious errors.

3 Prior to giving control to the section of code, the
recursion processor 2 restores the registers from the

RTM2SFSA field for RTM2SKRA processing, or from
RTM2RREG for RTM2TRRA processing.

4 Control goes to the appropriate section of code,
using the address selected in step 2.

Module Segment

RTESFRE

~
CoN
00
00

~
~
N
(;Il

1 a
i (:S.

r-

J
<:
~
a
(D

0l:Io

~
N

~

i
~
CoN

~

Diagra~ 22-16. Recover Task Processing (IEAVTAS1) (part 1 of 4)

Input

From RTM2 Overview
(I EA VTRT2) to process
user EST AE exits

RTM2WA sce 1 Select an EST AE exit routine.

If none available

2 Prepare data for the user's
ESTAE exit.

3 Give control to the user's
ESTAE exit.

4 Perform services for the user's
ESTAE exit routine.

• Track SDWA.

• Record error.

• Process 0 UMP options.

~, t

I

I

To RTM2
Overview
(lEAVTRT2)

II~ft.'.,. I:_i+

IEAVTRER

Record
Routine

Y'

o ut

11 RTM2WA
sce

Ii t SDWA ~~e

Register 1

Diagram 22-16. Recover Task Processing (IEAVTAS1) (part 2 of 4)

tI.l

a o·
=
~

a::

Extended Description

RTM2 routes control to user-written exit routines before
it terminates a task. These exit routines - either STAE
(specify task asynchronous exit) or ESTAE (extended
ST AE) - receive control to attempt to recover an abnor

mally termination task. (See the M.O. diagram STAE/
EST AE Processing (I EAVST AO) for a description of
how the user creates a ST AE control block (SCB)).
See the publication "Supervisor Services and Macro
Instructions", order number GC28-0683, for a
description of how a user creates an ESTAE routine')

RTM2 selects an ESTAE/STAE routine from the SCB
queue, and branches to it to allow it to process. If the
terminating task can recover after the EST AE/ST AE
routine processes, RTM2 will perform any processing
necessary for a retry condition, and the terminating
task will resume processing. Otherwise, the terminating
task will be terminated.

RTM2 places diagnostic information in the SDWA during
ESTAE/STAE processing.

1 RTM2 searches the SCB queue to select the exit to
be given control. The searching sequence follows:

• On initial entry, the most recently established exit will
be selected.

• During "percolation", (a previously selected exit has
not elected to retry) - the next exit on the queue will
be selected.

• During "percolation" only one ST AE (as opposed to
ESTAE) will be selected, all others will be bypassed.

• During TERM processing, only those exits with the
TERM option (TERM=YES on ESTAE macro instruc
tion) will be selected.

sa. • If the queue is exhausted with no exit requesting retry,
8: control returns to RTM2 and the task will be terminated.

o
~

o
't:S a o·
=
~ w
00
\0

Module Segment

IEAVTAS1 FINDSCB

Extended Description

2 RTM2 initializes some fields in the internal
RTM2WA (RTM2 work area) to ensure the accuracy

of the SDWA during percolation.

RTM2 obtains and initializes an SDWA with information
that will aid the user in diagnosing the error.

User options indicated on the EST AE macro instruction
will be performed. Asynchronous exit processing may be
blocked and active I/O may be halted or quiesced. I/O
options will be performed only for the first exit selected;
all subsequent exits will receive an indication of I/O
status.

3 RTM2 initializes parameter registers for the exit
routine. Additionally, RTM2 sets the interface with

the SYNCH macro (used to give control to the exitl.

4 On return from the exit routine, RTM2 traces the
SDWA, or return information if no SWDA was ob

tained, via the HOOK macro. RTM2 writes the SDWA to
SYS1.LOGREC via the RECORD macro if so requested
by the user exit, constrained only by SDWA's existence
and availability. RTM2 initializes the RTM2 work area
with user dump options if any exist. RTM2 combines any
dump parameters with existing options; it adds storage
ranges to the end of the existing storage range list,
wrapping around-to the top again if necessary. (A maxi
mum of four storage ranges can be accumulated.) If
the user requested no dump, RTM2 zeroes existing
options.

Module Segment

WKUPDAT

SDWAINIT

USEROPTS

EXITINTR

IEAVTAS2 GTFHOOK

RCRDSDWA

DUMPOPTS

~ Diagram 22-16. Recover Task Processing (IEAVTAS1) (part 3 of 4)

o
~
<
I:Il
t.J
I:Il
'<
s=.
~

i
(5'

Co
g-

~
~
= a
~

~

'<
I:Il
t.J

" ~ ~
~
w
~

Input

-TCB RTM2
RB SVRB

,
I~r-

L I'

(
I

~~ RTM2WA

SCB

I @SCB J

SCB ~ SCB

,V J~4('

SDWA

D
RTM2WA

C>@~B ~
~~B SDWA

I I

..... ,
Process ~

5 Retry or continue with termin~tion,
according to the requested action.

J\. A. Retry)
y

• Locate the correct RB.

• Modify the RB queue.

• Update the SDWA.

J,.
B. Continue with termination >

"

• Permit a change of the
completion code.

• Free the SDWA.
'*

• Indicate continue with
termination.

• Return to step 1 to
process remaining exits.

Output

SDWA

D I
'~

to'

RTM2WA

To RTM2 RTM2RETR
Overview '1 '
(lEAVTRT2)

~'"

RTM2WA

J.

II"

;

f
..... Step 1 ,.

tf.)
~
~ g.
= t-J

:::
~ g
Q.

o -.
o
"0
~ ;
g.
=
~
t..I
IC -

Diagram 22-16. Recover Task Processing (ffiAVTAS1) (part 4 of 4)

Extended Description

5A If retry can be performed (this is not term exit
processing), RTM2 selects a retry RB. For

STAE/ESTAE retry, the SCB contains the RB address.
For ESTAR retry, RTM2 uses the oldest RB. For
STAI/ESTAI, RTM2 performs retry under the PRB for
the last STAE/ESTAE or STAI/ESTAI exit routine if one
exists. Otherwise, RTM2 purges the RB queue until only
PRBs remain and the STAI/ESTAI retry routine will run
under the newest PRB left on the queue.

RTM2 prepares the RB queue for retry. Resources are
purged and open, embedded data sets are closed. RBs
to be purged (those between the retry RB and the
ABEND SVRB) have their resume PSW pointed to EXIT
and their wait count zeroed. If register update was
requested on the retry, the retry register values are
inserted to ensure that the correct registers are passed to
the retrying RB. If register update was not requested,
RTM2 initializes error registers to be passed to the
retry RB. In either case, if a dump is also requested on
the retry, the register and PSW fields in the dump will
contain the retry information rather than the values at
entry to ABEND. The registers and PSW at entry to
ABEND can still be found in the RTM2 work area.
This work area resides in LSQA and is pointed to by
the TCBRTWA field of the TCB.

According to the user's request, RTM2 either updates the
SDWA to be passed to the retry routine, or frees it. Task
Recovery returns control to RTM for further preparation
for retry.

58 RTM2 saves information to be passed to the next
exit during percolation (changed completion code

or a serviceability indicator) in the RTM2 work area and
frees the SDWA. In addition, RTM2 initializes percolation
information in the RTM2 work area.

Module Segment

IEAVTAS3 FINDRB

RBPRGE

RTRYSDWA

IEAVTAS3 SCBPERC

~ Diagram 22-17. ABDUMP Processing (IEAVTABD) (part 1 of 4)
CN
\0
t-.)

S5
~
t-.)

til

1 a
t"'-
~ C;.

t"'-

~
~
~
~
(\)

~

'< til
t-.)

~
(\)

5
CN

~

Input

RTM2WA

RTM2DPWA RTM2DPPL

TeB

From RTM2
Overview (IEAVTRT2)
to display storage

Input (From RTM2)

Reserved

PDATA
Options

Storage List

I End Addr f

Process

1 Determine whether this is
a recursive entry.

2 Set the scope of the dump.

3 Determine whether dump
should be taken.

o

CJ'.l
~ n g.
= ~

ac
st
5
Q.

o
o
1
~ o·
=
~
~
CN

Diagram 22-17. ABDUMP Processing (lEA VT ABD) (Part 2 of 4)

Extended Description

Terminating tasks can request a storage display. RTM2
provides the dump via ABDUMP processing. The RTM2WA
contains the dump options for the terminating task;
ABDUMP processing checks these options and prepares
the dump data set and constructs a SNAP parameter list
(for the actual dump), and gives control to SNAP processing
(see the M.O. diagram SNAP Dump Processing
(I EAVAD01) for the description of SNAP's operation).

1 ABDUMP protects itself from recursions by setting
indicators to denote external functions in control,

and to denote the completion of external fUnctions. These
indicators follow:

External Function
Enqueue for dump resource
GETMAIN for DCB
OPEN dump data set
SNAP dump
CLOSE dump data set
Free DeB storage

Dequeue for dump resource
QMNGR 10 to determine

dump format
First TCB dumped

In Control Completed
RTM2EENQ RTM2DENQ
RTM2EGET RTM2DGET
RTM2EOPN RTM2DOPN
RTM2ESNP RTM2DSNP
RTM2ECLS RTM2DCLS
RTM2EFRM RTM2DFRM
RTM2EDEQ RTM2DDEQ
RTM2EQMN

RTM2DFTK

ABDUMP turns the in control' indicators off when con
trol returns from the external functions.

When a recursion occurs, ABDUMP checks the first set of
indicators (the 'in control' set) to determine if an external
function had control. If an external function had control,
control goes to a clean up subroutine, ADRCLN, to per
form the necessary clean up.

If an external function did not have control, ABDUMP
determines the last completed function, initializes the
new RTM2WA with information from the previous work
area, and passes control to the appropriate routine in
ABDUMP to continue processing.

This subroutine performs the necessary clean up, requests
an sve dump, and gives control back to the caller.

. Module Segment

IEAVTABD ADRECOV

ADRCLN

Extended Description

2 The scope of a dump can either be a single task if
R ETR Y with dump has been requested from a

EST A exit, or if the task has a subtask which is a job-
step task; a failing task tree, if no recovery from the
ABEND was accomplished, or a jobstep tree if no recovery
was accomplished and the ABEND is a "step" ABEND. If
it is a RETRY with dump (RTM2DREQ=1 and
RTM2RETR=1) situation or if the task has a subtask
which is a jobstep, the RTM2DMP1 flag is set to 1 and
the current TCB address is placed in the TCB field of the
dump parameter list in the RTM2WA (SNPTCBA). If it
is not a "step" ABEND from a subtask of a step
(RTM2STPT=0), the current TCB address is again placed
in the SNPTCBA, otherwise the address of the jobstep
TCB is placed in the field.

3 The RTCT (recovery termination control table), bits
RTCTISAB and RTCTISYU, is checked to determine

whether a SYSABEND or SYSUDUMP dump should be
taken. If so, the TIOT is scanned for a SYSABEND or
SYSUDUMP ddname. If neither is found, control returns
to RTM2 with X'OO' in R-rM2SNCC. If no dump is to be
taken, control also returns to RTM2 with '00' in
RTM2SNCC.

Module Segment

IEAVTRTC RTCADINT

IEAVTABD ADDSCAN

-<
til
~

(:,
CN

00
~

'iI:

t Diagram 22-17. ABDUMP Processing (lEA VT ABO) (Part 3 of 4)

'f
o
til

"< til
N
til
'<
~

~

i t;.
f"'"
§=
~
<! o = :3
('II

~

'< til
N
b w
00
&; -

B

Environment

"
TCB ~ TCB LSOA

".

I ~ TIOT+

TCB TCB

~ JFCB JFCBE

V II DDNAME
JFCBEXAD JFCBTRS1

DDNAME

TIOEJFCB

A
RTM

..lIo. Control "fable

Defaults

Overrides

Register 14 Register 15 Register 13

I Return Addr II Entry Addr II Save Area I

Input for .A

Step 5 "

) 4 ENO on dump data set.

5 Determine format and
initialize DCB.

6 Open dump data set.

7 Construct SNAP parameter
list:

• Determine dump options .

.. SNAP
8 Dump the data via SNAP. (lEAVAD01) r

,. Performs
... the dump 9 Clean-up and return.

To RTM2 Overview
(IEAVTRT2)

, DCB

I
RTM2WA

RTM2DPPL

ID I Flags 1 Reserved

SDATA PDATA

! Options Options

t DCB /

• TCB

• Storage List =========>
, Storage List

Beg Addr End Addr

Beg Addr End Addr

~~ r) T Beg Addr I End Addr

I RTM2DCTL I
TCB

I I

<!
til
N
o
W

00
~

C"'-l
<»
() g.
=
N

~
<» g
Q.

o
o

"1:1
<»
;
g.
=
~

w
\.()
VI

Diagram 22-17. ABDUMP Processing (lEA VTABD) (part 4 of 4)

Extended Oescri ption

4 The dump data set is enqueued upon with the option
RET=HAVE, a major name of SYSIEAOl and a minor

name of I EA. On a non-zero return code from ENO, SVC
dump is issued and control returns to RTM2.

5 Storage for the DCB and parameter list is obtained
from subpool 230. The DCB is initialized with

DSORG=PS, MACRF=W, RECFM=VBA, and DDNAME

I
as defined in the TIOT. The format of the dump is
determined from information in the JFCB and JFCBE.
If condensed dump is requested. the DCB is initialized
with LRECL=209; if a standard dump is requested,
LRECL=125.

6 The DCB is opened in TCB key (via MODESET). If
open is unsuccessful (DCBOFOPN=O)' message

IEA0301 'OPEN FAILED FOR DUMP DATA SET FOR
JS)' is routed to the programmer. Control returns to
RTM2 with a return code of 4.

7 The dump options for SNAP are determined from
the options passed by RTM2, the installation default

options (specified in PARMLIB members IEAABDOO
SYSABEND and IEADMPOO-SYSUDUMP) or the installa
tion override options (specified via the CHNGDUMP
operator command). When more than one of these groups
is available, the order of selection is as follows:

1. The options specified via the CHNGDUMP operator
command completely override the options specified
via the PARMLIB members or passed by RTM2.

2. Lacking CHNGDUMP options, those options passed
from RTM2 and merged with the options specified
in the PARMLIB members (if available) will control
the content of the dump.

3. If no options were passed by RTM2, the PARMLIB
options will define the dump contents. However, if
PARMLIB options are not present, CHNGDUMP
options are not present and no options were passed by
RTM2, no dump will be provided.

If an ABEND is in progress, different options are
selected for TCB's other than the input TCB to prevent
the display of redundant data.

Module Segment

ADENO

ADITCB

ADOPEN
ADOPFAIL

ADETOPT

Extended Description

8 After the input TCB has been dumped, a check is made
to oetermine whether an ABEND is in progress

(RTM2DMP1=0). If so, STATUS is issued to prevent the sub
tasks from terminating during dump processing. The subtasks
of the abending task are dumped followed by the mother
task. TCBFS is set to 1 to indicate the task has been dumped
on an ABEND. On a non-zero return code from SNAP, mes
sage IEA9121 'RECOVERyrrERMINATION DUMP FAILED'
is issued and control returns to RTM2 with return code from
SNAP stored in RTM2SNCC. Return codes from SNAP are:

o - successful completion.

4 - DCB not opened, undefined page reference on DCB.

8 - TCa not valid, undefined page reference on TCB,
insufficient storage, invalid parameter list, a subtask is
a jobstep TCB. read for JFCB or JFCBE failed and
the dump was canceled.

12 - DCB type incorrect, DCB incompatabilities with
options specified on dump related DO statement.

9 Close dump data set, free DCB storage, turn off the
dumped flag indicator (TCBFS=O) if an ABEND was

in progress, dequeue from dump data set, and set subtasks
dispatchable if an ABEND was in progress.

Module Segment

ADSNAP
ADSPFAIL
ADTSLO

ADCLEAN

~
!'>
o
w
00
~

+
~
I,Q
0'1

o
CI)

~
~
CI)

'<
~

3
t"'"
~ o·
t"'"
&

~
<
~
= :3
(lI

~

~
~ o
~

00 o
~

Diagram 22-18. Synchronize Failing Tasks (IEAVTRTC) (Part 1 of 2)

~

TCB

RTM2WA

From RTM2 Overview
(I EA VTRT2) to
synchronize failing tasks.

0--- ---- -1 Determine whether this is a cancel
request or an unrecovered task.

Cancel request. •
• Unrecoverable task.

...
r- ;> 2 Wait for all subtasks of the failing

task in RTM2 processing to
~TCB complete.

~~ TCB

• Go to step 3.
TCBFA

TCBABWF
- 3 Stop subtasks of the task from r-

any further processing.

TCB Family Queue

~ - ~ 4 I nd icate that a II the subtasks are
non -recoverable.

...

.. 5 Purge resources for the tasks.

• I/O.

• Partially loaded programs.

• Paging I/O.

...
, Step 3

... TCB
" Step 2

11..
1CBFMW

IEAVWAIT
y

II..

WAIT -"
~

...
... TCB Step 3 ,

I

'" TCBABWF
IEAVSETS v

I .. STATUS I ,
~

....
'" TCB

v
TCBFA I

II.. SVC 16 ,
~ ,

.. , IEAPPGMA
~

....

... , IEAPTERM
~

....

C"'-l
~
('l g.
= N

::
~ g
Q.
o
o

"0
~

i
c)"
=
~ w
'" -...I

Diagram 22-18. Synchronize Failing Tasks (IEAVTRTC) (part 2 of 2)

Extended Description

RTM2 synchronizes the termination of tasks in a TCB
family queue to allow all the tasks to receive termination
processing. RTM2 allows these subtasks to terminate and
to have storage displays. This aids in debugging.

RTM2 waits for all the tasks in RTM2 to complete proc
essing before terminating them (except for CANCEL
requests). RTM2 stops all the tasks in the failing task's
TCB family queue from any processing, including
asynchronous exit processing. This prevents any additional
termination requests for this TCB family queue. Then,
RTM2 gives control to special purging routines (not the
resource managers described in M.O. diagram Address
Space Purge Processing (lEAVTMMT)) to clean up task

resources.

1 RTM2 synchronizes failing tasks for one of two
reasons: there has been a CANCEL request from

the system or operator; or the task cannot be recovered
(M.O. diagram Recover Task Processing (lEAVTAS1)
shows recovery processing). RTM2 checks the completion
code of the task, in RTM2CC, for a X'n22' value, with
the n being any alphanumeric value, and with the last
2 characters being "22." This completion code indicates
a CANCEL. For CANCEL requests, RTM2 performs
steps 3,4, and 5, in that order. For unrecovered tasks,
RTM2 performs steps 2, 3,4 and 5, in that order.

A cancel request must come through RTM1 using the
CALLRTM macro.

Module Segment

IEAVTRTC RTCTLRCR

Extended Description

2 RTM2 allows subtasks undergoing RTM2 processing
indicated by the TCBRTM2 field to complete. Note

that for unrecoverable tasks, control will go to step 3,
and the tasks will be set non-dispatchable.

3 RTM2 stops any further processing of the subtasks by
giving control to the STATUS routine, with the

request to make the subtasks non-dispatchable. The sub
tasks will be made dispatchable to finish RTM2 processing.
Note that except for cancel requests, the subtasks will be
allowed to finish RTM2 processing first.

4 RTM2 sets the TCBFA field in each TCB of the TCB
family queue to indicate that these tasks cannot be

recovered.

5 RTM2 now performs initial purging of some of the
tasks' resources to prevent any contention for system

resources. For example, a task set non-dispatchable while
performing a FETCH request would not complete loading
the requested program. No new FETCH requests would be
honored. Also, no other tasks could use that requested
program either. Therefore, the RTM2 calls the partially
loaded program purge routine to purge such resources. The
same example would hold for I/O operations and paging
I/O operations also. For non-CANCEL requests, control

goes to M.O. diagram RTM2 Overview (lEAVTRT2).

Module Segment

RTCSTACK

RTCCSUB

RTCINPRG

...
\N
\0
00

o
C"Il

~
N
C"Il
'<

~
~ (i.

t:':
~
.$
<:
o
2"
:3
(D

~

'<
C"Il
N

::0
(D

i
~
\N

~

Diagram 22-19. Task Purge Processing (lEA VTSKT) (part 1 of 4)

Input

From RTM2 Overview
(lEAVTRT2) to process
task resource purges

Register 1

(@RTM2WA

It RTM2WA

r Flags .t
@TCB I'

t @ASCB
1 TCB

~ -
ASCB

Flags J r
ASCBASXB

TCBLTC

~. ASXB
-Flags

J TCBFJMC - Must
ASXBTCBS J Complete

First

J CSECT, lEA VTR MC

{

Sample Task Structure}
Showing First Two
Tasks To Be Selected

Determine whether this
is a recursive entry.

• Yes

Check conditions for
normal termination.

• Step must complete.

• Subtasks exist.

Set the correct sequence
for abnormal processing.

Resume
processing
after
recursion

Output

Selected TCB

TCBFBYT1 ~
TCBPGNL~

TCBFLGS5 r-oI
TCBABWF~

TCBNDSP1 ~

TCBDART~
TCBECB r-I -0--

Register 0

1 1
Register 14

1 Return @ I
Register 15

I Entrypt @I

Register 7

1+ ASCB

RTM2WA

Resource
Manager
Save Area

rIl a
15'
::s
~

a::
~
0-
o
~

o
."

i
15·
::s

~
~
IQ

Diagram 22·19. Task Purge Processing (IEAVTSKT) (part 20f4)

Extended Description

Task purge processing removes the resources used by a task.
RTM2 uses the task purge processing function to route
control sequentially to installation-defined and I BM-defined
resource manager routines to remove their task related
resources.

Task purge processing will remove the resources of the
lowest task in the TCB family queue first, and then ascend
the queue to the current task, removing their resources.

Task purge processing receives control from the mainline
RTM2 routine, IEAVTRTE, shown as M.a. diagram
RTM2 Overview (I EA VTRT2). I nput for task purge
processing comes from M.a.-diagram RTM2 Initialization
(lEAVTRT2) which shows the creation and initialization
of the RTM2WA.

1 Task purge processing performs recursion processing.
as described in M.a. diagram Recursion Processor 1

(IEAVTRT2) .

The RTM2TRRA field contains the addresses of routines
that handle recursions for processes in steps 3, 4, and 5.

• If a CANCEL recursion occurs for step 3, restart step 3
by selecting the lowest task in the family and detaching
it. For any other type of recursion, terminate the
address space.

• If a subsystem resource managerfails, skip the failing
subsystem resource manager on a recursive entry. If
more than 2 failures occur, skip all the subsystem
resource managers, and go to step 5.

• If an IBM-defined resource manager fails, skip it on any
recursive entries and continue processing the others.

Module

IEAVTSKT

Segment Extended Description

2 For a normally terminating task, task purge proc-
essing checks the terminating task for "step must

complete" status, for open data sets, and for existing
subtasks.

• For tasks having "step must complete" status, terminate
with an E03 ABEND code.

• If subtasks exist, task purge processing terminates the
task being terminated with an X'A03' ABEND code.
RTM2 will then regain control as a result of the SVC 13
instruction issued,to terminate the task.

3 The terminating task may have active subtasks. In
this case, task purge processing follows down the

TCBlTC chain until it finds the lowest TCB (as indicated
by a 0 in TCBl TCL Task purge processing then issues a
DETACH (see the Task Management section for a descrip
tion of DETACH processing) for that TCB, with an indi
cator to perform termination purging. DETACH will
terminate the task if it is still active. Task purge proc
essing detaches all the subtasks, and then purges the
resources for the current task.

Module Segment

~ Diagram 22-19. Task Purge Processing (IEAVTSKT) (part 3 of 4)

o

o
rIl

~
~

rIl

I
.~

ci (S.

~

ij=
~
~
J
(D

~

'< rIl
~

f
w
~

Input

Register 1

@RTM2WA 1
'-"'<

tRTM2WA
r~ ,

I t ","'" RTM2PURG Flags
Purge Only

RTM2TYPE @TCB
~ Normal/Abnormal

@ASCB

~. ~
TCB

ASCB
1 Flags

ASCBASXB
TCBLTC

I(ASXB Flags
TCBFJMC..,... Must

ASXBTCBS Complete

CSECT, I EAVTR MC

I Names of subsystem
resource manager

... ,
Process

~ I ... 'J
.") 4 Purge subsystem resources. r-- .,

.... Subsystem
~

~ Resource
Manager

~ ...
') 5 Purge task resources. ,..

.. Appropriate

~

-,.
Resource

, Manager

...
) 6 Prepare RBs for exit ,..

processing.

...
") 7 Indicate last TCB ,..

terminating.

1
To RTM2 Exit Processing
(lEAVTRTE)

Output

.. Register 13
v

@SaveArea 1
Register 1

~ @Parm List 1
0-

--v RTM2WA

Parm List

Save Area

...
-v TeB

! l? I RTM2WA j
'~RB t. ~

[V

~

RB

-

VJ
g
g.
= N

3:
~

~ c-
o
o

"0 ;
g.
=
~

Ja.
S

Diagram 22-19. Task Purge Processing (IEAVTSKT) (part 4 of 4)

Extended Description

4 Task purge processing gives control sequentially to
installation-defined resource manager routines so

they can free task related resources. The module
IEAVTRML contains the names of installation routines.

5 For open data sets that cannot be closed. go to the
data management resource manager to close all

data sets. (See M.O. diagram Task Purge Resource
Managers (lEAVTSKT) for a description of the task
purge resource managers.) If the data sets cannot be
closed for a task terminating normally terminate the
task with a X'C03' ABEND code.

Task purge processing gives control sequentially to
IBM-defined resource manager routines to free task
related resources. These routines are called in the
following sequence:

1) Data Management IFGOTCOA
2) Timer IEAVRTI1
3) Type 1 Message IEAVTPMT
4) SPIE IEAVSPIE
5) ENQ/DEQ IEAVENQ2
6) WTOR IEECVPRG
7) Region Control Task IEAVAR07
8) VTAM ISTRAMA1
9) TCAM IEDQOT01

10) Subsystem Interface IEFJRECM
11) TIOC IEDAY8
12) POST IEARPOST
13) Real Storage Management IEAVTERM
14) IQE IEAVEEEP
15) 3850 Mass Storage System SSCRMCR
16) ENQ RM IEAVENQ2
17) Type 1 Message IEAVTPMT
18) SRB Purge IEAVPDO

These routines free any control blocks related to the
task. Control returns from these routines to the task
purge processing function.

Module Segment Extended Description

6 Task purge processing prepares the RBs (request
blocks) of the failing tasks to exit by placing the

address of the EXIT routine in their RBOPSW field. When
these RBs receive control, they will go to EXIT.

7 Task purge processing indicates, in the RTM2WA, if
it is purging the last TCB in the address space. Control

then goes to the exit processing, as shown by M.O. diagram
RTM2 Exit P.rocessing (lEAVTRTE).

Module Segment

t Diagram 22-20. Task Purge Resource Managers (IEAVTSKT) (part 1 of 6)

S

~
~
~

rn
'<
Iil

nput

From Task Purge Processing (lEAVTSKT)
to clean up task-related resources when
a task terminates

Process

" ... Output

a
ci
n'
s:
i

RMPL

D
_ _) 1 Clean task-related resources for IBM! ! TCB

resources when a task termInates: U
A) Clean data management resources.

~

f
~

'< rn
~

~
i s
eM
:..., -

(RMPL serves as input
for all processes in step 1)

• Clean TCBDEBAD field.

B) Clean timer resources.

• Free TOE and timer SAB.

C) Clean type 1 messages.

• Clear Message Table entries.

D) Clean SPIE resources.

• Free SCA and PIE.

E) Clean ENO resources.

• Free aCBs and OELs.

• Print messages.

1

to. TOEs TimerSRBs

-YI ~
r---

CVT Message Table

~
........ , i

-y

SCA PIE
to.
)

II'

OCBs OELs

D
)I

II'

Message

~
"name, name FAILED IN 'STEP MUST

COMPLETE' STATUS"

"R ESOURCE NAMED, name, name
MAY BE DAMAG ED"

"FAILED IN 'STEP MUST COMPLETE'
DUE To abend code"

tI)
(D

~ o·
::s
~
;s:
~
[
~
o

I e·
::s

~
~

S

Diagram 22-20. Task Purge Resource Managers (IEAVTSKT) (part 2 of6)

Extended Description

The IBM-defined task clean up resource managers free
resources held during task processing. The task purge
processing routine, module I EAVTSKT, routes control
to these resource managers after establishing an interface
via the RMPL (recovery management parameter list) in
the RTM2WA. Control goes to each resource manager
sequentially until all resource managers have performed
their clean up processing.

1 The task purge routine routes control to each of
the IBM-defined resource managers. After one

resource manager completes its processing, control
comes back to the task purge routine, which routes
control to the next resource manager. This continues
until all the resource managers have performed clean up.

A. The data management resource manager cleans the
TCBDEBAD field of the TCB. (See the "Open/Close/
EOV Logic" manual, SY26-3827, for more infor
mation about the data management resource manager.)

Module Segment

IEAVTSKT TPURG1

IFGOTCOA

Extended Description

B. The timer resource manager frees the TQEs and

timer SRBs associated with the task terminated. (See
section 19, Timer Supervision, for a description of
the timer purge routine.)

C. The type 1 message resource manager cleans the
message table pointed to from the CVTQMSG
field of the CVT.

D. The SPIE resource manager frees SPIE resources used
by the terminating task by freeing the assodated
SCA (SPIE control area) and the PIE (program inter
ruption element). (Section 21, Task Management
(I EAVTBOO), dej;r.ribes SPI E processing.)

E. The ENQ resource manager frees associated ENQ
resources used by the terminating task by freeing
QCBs (queue control block) and QELs (queue
element). The ENQ resource manager also prints
messages explaining which task failed while it con
trolled the resource. (See section 21, Task
Management (lEAVENQ1), for a description of
ENQ processing.)

Module Segment

IEAVRTI1

IEAVTPMT

IEAVSPIE

IEAVENQ2

~
~

2
o
r:Il

"< r:Il
~

r:Il
'<
~

~
~

~
ti·
t
o:
~
~
2'
= (D

~

'< r:Il
~

~
(D

i
~
~

:... -

Diagram 22-20. Task Purge Resource Managers (IEAVTSKT) (Part 30f6)

Process 2
F) Clean WTOR resources.

• Free WWBs, OREs, and WOEs.

• Create DOMCB.

G) Clean region control task resources.

• Free TAXEs and TSBs.

H) Clean VT AM resources.

• Free VT AM control blocks.

I) Clean TCAM resources.
• Free PEBs, PEVVAs, AI Bs, and

TCX.

• Reset UCB fields.

• Terminate any processing programs.

J) Clean subsystem interface resources.

• Inform active via IEFSSREO
subsystems that
a task has terminated.

I

..
..oil ..

....

Output

WWB

)I
r

ORE WOE

00
lDDMCBI

li ~ a o

Master
Subsystem

Common
Request
Router

IEFJRASP

t..

v
PEB PEVVA o o
AlB TCX

D D
UCB

D

(Il
(D

~
5·
=
~

a::
a
8'
Q.

Q
o

I
5·
=
~
~
U\

Diagram 22-20. Task Purge Resource Managers (lEA VTSKT) (part 4 of 6)

Extended Description

F. The communications task resource manager cleans
wrOR (write to operator with reply) resources
associated with the task being terminated, by freeing
the WWBs (write wait block), OREs (operator reply
element), WOEs (write queue element), and DOMCs
(delete operator message control blocks).

G. The region control task resource manager cleans the
resources associated with the task being terminated by
freeing the TAXEs (terminal attention exit element)

and TSBs herminal status block). (See section 3,
Region Control Task, for a complete description
of the region control task resource manager.)

H. The VTAM resource manager cleans up resources
associated with the VT AM user task. These resources
include storage, VTAM locks, and the following control
blocks associated with the VTAM devices and
applications active for the terminating task:

• Active CRAs (component recovery area)
• DEBs (data extent block)
• FMCBs (function management control block)
• NCBs (node control block)
• ICEs (inactive connection element)
• ACEs (active connection element)
• DCEs (DEB chain element)
• PST (process scheduling table)
• Application RDTEs (resource definition table)
• Destination RDTEs
• DVTs (destination vector table)
• EPTs (entry point table)

(See the publication OS/VS2 VTAM Logic,
SY28-0621, for a description of VTAM processing.)

Module Segment

IEAVMED2

IEAVAR07

ISTRAMA1

Extended Description

I. The TCAM (telecommunications access method)
resource manager frees the resources associated with
the terminating task. This resource manager frees
the PEBs, PEWAs (process entry work area), AIBs,
and TCXs associated with the failing task, and it
resets UCB (unit control block) fields. (See the
publication OS/VS2 TeAM Logic, SY30-2059,
for a description of the TCAM resource manager.)

J. The subsystem interface resource manager cleans the
resources associated with the failing task by notifying
the active subsystems, via the IEFSSREQ macro, of
the task that just terminated.

Module Segment

IEDOOT01

IEFJRECM

i
~
~
N
fIl
'<
r4.
9
oi n·
t:
2"
~
~
[
(D

~

~
N

~

i
~
w
~

Diagram 22-20. Task Purge Resource Managers (lEA VTSKT) (part 5 of 6)

.... ~

Input Process r

K) Clean TIOC resources.

• Free TSB.

• Wait for message.

L) Clean POST resources.

• Free SRBs associated with any
"cross-memory" requests.

M) Clean real storage management resources.

• Free PCBs, PFTEs, FOEs and
TLBs.

CVT
N) Clean IQEs for asynchronous exit. L CVTICB I -'"

\..
y 0) Clean 3850 Mass Storage System resources.

IICBQHEAD I
P) Clean SRBs related to this task.

~ Queue of MSS 2 Return to RTM2.
control blocks

Output

TSB
J...

)
r

SRBs

...
il

PCB PFTE FOE

... D D D ..

TLB

D
f l IQE

....
)I

r

tI.l
(I)

~
S·
= t-..)

s::
a
[
o
o
"0

! s·
=
~
~
o
-.oJ

Diagram 22-20. Task Purge Resource Managers (IEAVTSKT) (part 6 of 6)

Extended Description

K. The TIOC (terminal input/output coordinatod
resource manager cleans the TSB for the task being
terminated.

L. The POST resource manager cleans the resources
associated with the task being terminated by freeing
the SRB associated with any cross-memory POST
requests. (Section 21, Task Management, describes
POST processing (I EA VSY50).)

M. The real storage management resource manager cleans
the resources associated with the task being termi
nated by freeing the PCBs (page control block), PFTE
(page frame table entry)' FOE (fix ownership entry),
and TLB (translation lookaside buffer).

N. The asynchronous exit resource manager cleans the
resources for the task being terminated by freeing
the IOE (interruption queue element).

O. The 3850 Mass Storage System resource manager
marks invalid all delayed response queue elements
relating to the terminating task.

P. The task purge routine uses the PURGEDO function
to clean any SRBs related to the terminating task.

2 The task purge routine returns control to RTM2
after all the task resources have been freed.

Module Segment

IEDAY8

IEAVSY50

IEAVTERM

IEAVEEEP

ICB2AIR

IEAVEPDO

IEAVTSKT

t
~

~
~
~

CIl

1
~

oi n
r
;:

~
-<
~ a
(D

~

'<
CIl
~

~

i
~
1M

~

Diagram 22-21. Address Space Purge Processing (lEA VTMMT) (part 1 of 2)

From RTM2 Overview
(I EA VTRT2) or to purge
address space resources Process Input ..

RTM2WA

1 Prepare for a possible recursion
by establishing an EST AE exit.

RTM2ASG

'\ Clean up installation -specified
ASCB --y 2

resources and address space-related
IBM resources.

I Module IEAVTRML I

,...
3 Clean up SRBs related to the v

address space.

...
) 4 Free the ASCB.

: ...

,

5 Clear the ESTAE exit.
[

Output

..
, IEAVSTAO

Register 1 ... STAE/ESTAE
} @ Parm List I ... Processing

Register 13
... J @SaveArea 1 1

r-v
CRTM2A

..
IEFJRECM ,

... Subsystem

\. '"
Resource
Manager

.. Appropriate' ,
:..L . Resource

'"
Manager ..

..
IEAVEPDO

Input to ~ ,
... Resource

PURGEDQ Manager R tns.
'"

..
IEAVEMDL ,

... Memory

'" Delete

+ To RTM2 Overview
(IEAVTRT2)

Cf)
(I)
(')

S·
::I
N

3:
(I)

[
o -..
o

'1:j
(I)

i3
S·
::I

~

J:..
o
I.Q

Diagram 22-21. Address Space Purge Processing (IEAVTMMT) (Part 2 of 2)

Extended Description

The address space purge function cleans up the address
space resources when it terminates. Control initially goes

to the RTM1 mainline code (see M.O. diagram, RTM1

Overview (lEAVTRT2)) to service a CALLRTM=
M EMTERM request. RTM 1 then schedules the address
space termination routines (see M.O. diagram, Address
Space Termination Processing (lEAVTMMT)) to
terminate the address space. The final process in
address space termination occurs when RTM2
receives a request, from the address space termination
routines, to purge the resources from the address
space.

Address space purge processing uses the RTM2WA

initialized by initialization processing (see M.O.
diagram RTM2 Initialization (IEAVTRT2)) for the
basic input, along with the address of the ASCB being

purged.

The address space purge processing routine only honors

requests from the master address space. Requesters from
any other address space will be terminated.

1 Address space purge processing establishes an EST AE
exit in case of failure.

2 Address space purge processing cleans up address
space resources by first giving control to installation·

defined subsystem clean-up routines (defined in module

IEAVTRML) to clean any subsystem resources. These
subsystem clean-up routines will receive control sequen

tially until they have all executed. Control next passes to
the IBM-defined resource managers, which clean up system
control program routines. The resource managers receive
control sequentially:

Module Segment

IEAVTMMT

Extended Description

1) SVC Dump
2) Timer
3) ENO/DEO
4) Data Management
5) VTAM (virtual telecommunications access method)
6) TCAM (telecommunications access method)
7) TIOC (terminal input/output coordinator)
8) WTOR (write-to-operator with reply)
9) Schedule subsystem

10) Initiator
11) Scheduler allocation
12) POST
13) Virtual storage management
14) SETLOCK
15) OL TEP (on-line test executive program)
16) MSS
17) RTM2
18) Type 1 message
19) ASCB Delete

SPI E and RCT M.O. diagram "Resource Managers" shows

the modules that perform the clean-up, and the control

blocks cleared.

3 Control goes to the PURGEDO routines (see M.O.
diagram PURGEDQ Processing (lEAVEPDO) in

the Supervisor Control section) to remove any SRSs
left in the address space.

4 Address space purge processing gives control to
"memory delete" to free any non-permanent address

spaces (ASID> 1 in the ASCB). Address space purge proc

essing does not free the address space if:

• ASID = 0 - system wait task
• ASID = 1 - master scheduler

Address space purge processing clears the EST AE routine,
and gives control to the caller (module IEAVTRTE).

Module

IEAVTSDR

IEAVTRTl1

IEAVEN02

IFGOTCOA
ISTRAMA2

IEDOOT01
IEDAY8
IEAVMED2

IEFJRECM
IEFIRECM

IEFAS4E5
IEARPOST

IEAVGFAS
IEAVELKO

OLTOA
ICB2AIR

IEAVTMRM
IEAVTPMT
IEAVEMDL

Segment

-< til
N
o
t..)

00
S

t Diagram 22-22. Address Space Purge Resource Managers (lEAVTMMT) (Part 1 of 10)

o
o
CJ':)

"< CJ':)
~

CJ':)

'<
~

3
r-
~
(5'

t::
~
.$
< o
C
3
(1)

~

~
~ c
~

00
Q
,::J

Input

RMPL

D

From Address Space Purge
Processing (I EA VTMMT) to
clean up address space-related
resources when
an address space terminates Process ..

.....

v 1 Clean address space-related
resources for IBM resources when
an address space terminates.

A) Clean SVC dump resources.

• Zero SVC dump request
fields in the RTCT.

B) Clean timer resources.

• Free TOEs and trmer
SRBs.

C) Clean ENO resources.

• Free OCBs and OELs.

• Print messages.

6

Output

RTCT

D /'\.

y

TOE TimerSRB

D D Jo-

y

OCB OEL

D D Jo..

y

I\~essage

:[::J
"name, name FAILED IN 'STEP MUST

COMPLETE'STATUS"

"RESOURCE NAMED, name, name
MAY BE DAMAGED"

"FAILED IN 'STEP MUST COMPLETE
DUE TO abend code"

rn
<D a
5' ::s
~

ac
sa.
[
o
""' o

I e·
::s

~
.a:o. --

Diagram 22-22. Address Space Purge Resource Managers (IEAVTMMT) (part 2 of 10)

Extended Description

The IBM-defined address space clean up resource managers
free any resources held by an address space during proc
essing. The address space purge processing routine, module
IEAVTMMT, routes control to these resource managers
after establishing an interface. Control goes to each address
space resource manager sequentially until all of them have
performed their clean up processing.

1 The address space purge routine routes control to
each of the I BM-defined resource managers. After one

resource manager completes its processing, control returns
to the address space purge routine, which routes control
to the next resource manager. This continues until all the
resource managers have performed clean up.

A. The SVC dump resource ma'nager issues·ST ATUS to
set the system di~patchable if a dump Was in progress
in the failing address space.

The address space purge routine sets supervisor
trace active.

B. The timer resource manager frees the TOEs (timer
queue elements) and timer SRBs associated with the

address space- being terminated. (See section 19,
Timer Supervision (J EAVRTI1), for a description of
the timer purge routine.)

C. The ENO resource manager frees associated ENO
resources used by the terminating address space by
freeing OCBs (queue control blocks) and OELs (queue
elements). The ENO resource manager also writes mes
sages explaining which address space failed while it
controlled the resource. (See section 21, Task
Management (JEAVENQ1) section for a detailed
description of ENO processing.)

Module Segment

IEAVTMMT

IEAVTsDR

IEAVTRTI1

IEAVEN01

to Diagram 22-22. Address Space Purge Resource Managers (lEA VTMMT) (part 3 of 10)
.a:o.
N

~
~
N
r:Il

1
~

i
(::;-
r
a:
8
<:
~
~
.a:o.

~
N

~
i'
I
CN

~

D)

I E)

F)

,

G)

Clean data management resources.

• Clean DEB address in TCB.

Clean VT AM resources.

• Free VT AM control blocks.

• Set restart indicators.

Clean TCAM resources.

• Free process extension
blocks (PEBs),
process entry work areas
(PEWAs), application
interface blocks (AIBs),
and TCAM CVT
extension (TCX).

• Reset UCB fields.

• Terminate any processing
programs.

Clean TIOC resources.

• Free terminal status
block (TSB).

• Wait for messages to
be issued by TCAM.
(POST is issued by
TCAM when messages
are complete.

TCB

" D /!'

PEB PEWA

D 0 " .;
AlB TCX

D D
UCB

D
TSB

..

D "

tfJ
~ g.
=
~

3: a
&
o -.
o
"0
(ll ...
,~ g.
=
~

~ -~

Diagram 22-22. Address Space Purge Resource Managers (lEA VTMMT) (put 4 of 10)

Extended Description

D. The data management resource manager cleans the
TCBDEBAD field of the TCB. This field contains
the DEB address from the DCB. (See the publication
OS/VS2 Open/Close/EO V Logic, SY26-3827, for
more detailed information about the data
management resource manager.)

E. The VTAM resource manager cleans up resources
associated with the VTAM user address space. These
resources include storage, VT AM locks, and control
blocks associated with the VT AM devices and
applications which were active for this address space.
The user's address space control blocks consist of:

• Active CRAs (component recovery area)
• DEBs (data extent block)
• FMCBs (function management control block)
• NCBs (node control block)
• ICEs (inactive connection element)
• ACEs (active connection element)
• DCEs (DEB chain element)
• PST (process scheduling table)
• Application RDTEs (resource definition table)
• Destination RDTEs
• DVTs (destination vector table)
• EPTs (entry point table)
• MPSTs (memory process scheduling table)

VTAM's address space control blocks consist of:

• AVT (VTAM address vector table)
• ATCVT (VTAM communications vector table)
• ISTCONFT (configuration table)
.CVT

If the terminated address space is VT AM's, appropriate

indicators in the CVT are reset to zero to allow VT AM
to be restarted. (These indicators are the CVT ATCVT,
the CVTRMPTT, and the CVTRMPMT.)

(See the publication OS/VS2 VTAM Logic,
SY2S-0621 for a description of VTAM proces~;ng.)

Module Segment

IFGOTCOA

ISTRAMA2

Extended Description Module

F. The TCAM (telecommunications access method) resource IEDQOT01
manager frees the resources associated with the
terminating address space by freeing the PEBs, PEWAs,
AIBs, and TCXs, and it resets UCB (unit control block)
fields. (See the publication OS/VS2 TCAM Logic,
SY30-2059, for a description of the TCAM resource
manager.)

G. The TIOC (terminal input/output coordinator) resource IEDAYS
manager cleans the TSB (terminal status block) for the
address space being terminated. (See the publication

, OS/VS TCAM Logic, SY30-2059, for more detailed
information about the TCAM termination messages.)

Segment

t Diagram 22-22. Address Space Purge Resource Managers (lEA VTMMT) (part 5 of 10) -~
o
C"n

"< C"n
~

C"n
'<
~

9
i. n
('"'I

§'
~
~
E"
= (D

~

'< t"Il
~

~

i
~
w
:...t -

H)

I)

J)

K)

r

Clean WTOR resources.

• Free WWBs, OREs, and
WOEs.

• Create DOMCB.

Clean subsystem
interface resources. Via

IEFSSREQ

• Inform active
subsystems that a
task has terminated. ~

"
Clean initiBtor resources.

• Free the CSCBs.

• Print message.

Clean scheduler allocation
resources.

• Free UCBs.

• Release device groups.

• Post allocations waiting
for devices.

'"'

WWB ORE WOE

D D D '"
"

DOMCB

.... D ,

"

",

IEFJRASP ...
Master

r
Subsystem-
Common CSCB
Request

D Router

....

"

!
, ~

'"
UCB

D
y

§

til
CD
$l o·
::;

~

a::

i
o
o
'0 ;
g.
::;

;
til

Diagram 22-22. Address Space Purge Resource Managers (lEA VTMMT) (part 6 of 10)

Extended Description

H. The communications task resource manager cleans
WTOR (write to operator with reply) resources asso
ciated with the address space being terminated, by
freeing the WWBs (write wait block), OR Es (operator
reply element), WOEs (write queue element), and
DOMCs (delete operator message control block).

I. The subsystem interface resource manager cleans the
resources associated with the failing address space by
notifying the active subsystems, via the IEFSSREO
macro, of the address space that terminated.

J. The initiator resource manager cleans the resources
associated with the address space being terminated
by freeing CSCB (command scheduling control blocks).
The resource manager also prints a message to the
operator indicating which tasks in the address space
are being terminated.

K. The allocation resource manager cleans the resources
associated with the address space being terminated by
freeing the UCBs (unit control blocks). Additionally,
the resource manager releases the device groups for the
allocation, and then posts allocations waiting for those
devices. (See the" Allocation/Unallocation" section for
a description of allocation and unallocation processing.)

Module Segment

IEAVMED2

IEFJRECM

IEFIRECM

IEFAB4E5

:t Diagram 22-22. Address Space Purge Resource Managers (lEA VTMMT) (part 7 of 10) -0\

~
CIl
N
CIl

~
(D

=
~

C§.
n
~
a:
~
<!

f
(D

~

~
N

~ r
~
w
~ I

I
,;

,

1

CVT

l--L CVTICB J .

"-
llCBQHEAO J -"

I/"

'" Queue of MSS
control blocks

; i

L) Clean POST resourCEts.

• Free SRBs associated
with any "cross-memory"
requests.

M) Clean virtual storage
management resources.

• Free VRWPQEL.

N) Clean SETLOCK resources.

• Reschedule suspended
SRBs.

• Free SRBs.

0) Clean OLTEP resources.

• Free all OLTEP control
blocks.

P) Clean 3850 Mass Storage
System resources.

Q) Clean R/TM resources.

• Free RTM2WAs.

R) Clean type 1 message resources.

• Free Message Table
entries.

6

SRBs

D J>..

y

VRWPQEL

D .l\
"

y,

,~ *=,

I,

"....
PURGEOQ

r • OLTEP Common Area
~ • CHASCT

'" • OEVTAB

• MCT
J.. • OLTTAB ,,, • SECLST

• RESTAB

! RTM2WA

D [

1\.'

v

Message
CVT Table

.J\

I n I
I "

C"I.)
(II

sa. e·
= ~
a::
a go
Q.
o
"'"' o

"0

i
6"
=
t -.....

Diagram 22-22. Address Space Purge Resource Managers (IEAVTMMT) (part 8 of 10)

Extended Description Module

L. The POST resource manager cleans the resources asso- IEAVSY50
ciated with the address space being terminated by
freeing the SR B associated with any cross-memory
POST requests. (The "Task Management'~ section
describes POST processing.)

M. The virtual storage management resource manager I EAVGCAS
cleans resources associated with the address space by
freeing the VRWPOEL (virtual equals real wait or post
queue element). (See the "Virtual Storage Management"
section for a complete description of the resource
manager.)

N. The SETLOCK resource manager cleans up resources IEAVELK
associated with the address space being terminated by
scheduling suspended SRBs. These SRBs will be freed
after they complete their processing. (The "Supervisor
Control" section describes SETLOCK processing.)

O. The OL TEP resource manager cleans the resources
associated with the address space being terminated
by freeing the OL TEP control blocks:

• OLTEP common area (module IFOOLT23)
• CHASCT (OLT program control table)
• OEVT AB (device tables)
• MCT (module control table)·
• OLTTAB(OLT program link table)
• SECLST (test section list)
• REST AB (COS equate re~ident table)

(See the publication "OS/VS2 OL TEP Logic," SY28-0675,
for a complete description of the OLTEP resource manager.)

I FOOLTOA

Segment Extended Description

P. The 3850 Mass Storage System resource manager
marks invalid all delayed response queue elements
relating to the terminating address space.

O. The R/TM resource manager frees all RTM2WAs
(recovery termination management.2 work area)
obtained from SOA (system queue area) for tasks
in the terminating address space.

R. The type 1 message resource manager cleans the
resources by freeing any entries in the type 1 message
table associated with the address space being
terminated.

Module Segment

ICB2AIR

IEAVTMRM

IEAVTPMT

t Diagram 22-22. Address Space Purge Resource Manage~ (lEA VTMMT) (part 9 of 10)

co
o
fIl

~
W
fIl

'i
~

i
n'
t:

!
~ r
~

~
w

~ r
I
w
~

5) Clean SRBs related to the address
space.

T) Clean the address space control
block associated with the
terminating address space.

• Free the ASCB .

• Indicate ASIO nQIV free in
the ASVT.

2 Return to RTM2.

ASVT ASCB

J.. D D v

--..
To Address Space Purge Processing JY (lEAVTMMT)

til

~ g.
= N

:::
~

[
e ...
o
~

~
~ g.
=
.a:. .;:. -IC

Diagram 22-22. Address Space Purge Resource Managers (lEA VTMMT) (part 10 of 10)

Extended Description

5. The address space purge routine uses the PURG EOO
function to free SRBs associated with the terminating
address space. (The "Supervisor Control" section
fully describes PURGEOO processing.)

T. The virtual address space terminating routine acts as
a resource manager to cI~an up the resource held by
the terminating address space by freeing the ASCB and
indicating in the ASVT the ASI 0 of the address space
associated with the terminating address space.

2 The address space purge routine returns control to
RTM2 after all the resources have been freed.

Module Segment

IEAVTMMT

IEAVGCAS

IEAVTMMT

t Diagram 22-23. RTM2 Exit Processing (lEA VTRTE) (part 1 of 6)
N
Q

o

~
N
f'-l
'<
~ a
r-'
~ C:;.

r-' c;:

~
<
~
9
CD
~

'< f'-l
N

:;0
CD

i
~
(oN

~ -

From RTM2 Overview
(lEAVTRTM)

Input

to process exit
handling

M> ,

RTM2WA

I RTM2FLX r ---I- - - -

RTM2RTRX - Retry
y

:; RTM2EOTX - Normal EOT
RTM2ABX - Abnormal EOT

~,; RTM2MTR - Address space
~: termination
p RTM2LTX - Termination of

i

last task
RTM2PRX - Termination of

a permanent
task

j' RTM2DWX - Subtask waiting t
RTM2CVX - Convert-to-

step

TCB RB RB

V'" -V
IJ t... A !....,

RTM2WA

D ;)

i~ i~

~~ i

! ~~i"">0~ '"

p

;""-1 Exit accordi ng to the indicator set
in the RTM2F LX field:

• Retry.

• Normal EOT.

• Abnormal EOT.

• Address space termination.

• Last task.

• Permanent task.

• Subtask waiting.

• Convert-to-step.

t...) 2 Process retry operation by freei ng
y the RTM2WA, setting appropriate , fields, and releasing locks. ..

...

...
...

To Dispatcher ..
(lEAVEDSO) ...

If
- '--

o

..
r

Step 2

...
Step 3

r
...
r

Step 3
...

"
Step 4

...
r

Step 5

...

.. Step 6

...
r

Step 7
...
r

Step 8

TCB
.;,.

... :~ y

IEAVELK
i~ r

SETLOCK

...
,. IEAVSETS ~

STATUS

..
IEAVEEXP

P

Exit Prolog

til

it o·
:=
~

a:: a
5
Q.

o
~

o
"0

S g.
:=

of?"
~
~ -

Diagram 22-23. RTM2 Exit Processing (lEA VTRTE) (part 2 of 6)

Extended Description

RTM2 exits to either exit prolog or STATUS (see the
M.O. diagrams for Exit Prolog and STATUS for a descrip
tion of their processing), depending on the settings of the
RTM2FLX field of the RTM2WA, after task termination
or address space termination.

1 Exit processing determines the type of exit.

2 The current RTM2WA is freed; the TCB flags are
cleared if no RTM2 SVRBs will remain on the RB

queue after retry; and the registers that will not be altered
by Exit (15,0,1) are reloaded from the SVRB. Then
control is passed to the Exit prolog.

Module

IEAVTRTE

Segment

RTECMEX
RTEFREWA

t Diagram 22-23. RTM2 Exit Processing (lEA VTRTE) (part 3 of 6)
N
N

o
CI'.!

"<
CI'.!
N
CI'.!
'<
~
§

i
l""'

~
~
~
e
El
(1)

~

'<
CI'.!
N

~
(1)

i
rIl
CN

~

,

\
L ,

\
,

I~ ~
3 Process normal and abnormal

~: .. EOT operations by freeing the
. ~. RTM2WA, setting appropriate
;,

fields, and releasing' locks.
"" ...

~
"" .~ TQ Dispatcher

(JEAVEDSO)
...

. -") 4 Process address space termination .. requests by freeing the
~

RTM2WA, setting appropriate
fields, and releasing locks. ...

...

To Dispatcher ..L

(lEAVEDSO) ...
Via

.,~

,,~ "') 5 Process the last task in an
CALLRTM

.. address space. ...
...

...
To Dispatcher
(lEAVEDSO)

...

ml)(
y , ..

IEAVELK ..
SET LOCK

.. IEAVEEXP ..
Exit Prolog

\;1 "-
)(... .. IEAVELK

"
SETLOCK

to.. IEAVEEXP

"
Exit Prolog

.. IEAVTMTC

...
Address Space
Termination

.. IEAVSETS

" STATUS

I:Il

a
5·
= !'!
a:
sa-
g:
~
o

'tS
~ a
5·
=
~
~
N
1M

Diagram 22-23. RTM2 Exit Processing (IEAVTRTE) (part 40(6)

Extended Description

3 The TCBEOT flag is set to indicate all RTM2 proc
essing is complete for this task. All RTM2 work areas

are freed, and control is passed to the Exit prolog.

4 The RTM2WA is freed and control is passed to the
Exit prolog.

5 The memory is terminated using CALLRTM
TVPE=MEMTERM. The current task is set non

dispatchable to await completion of memory termination.

Module Segment

RTELTEX

~

J:.
~
~

~
~
~

til

l
~
r""
Ii n·
r""
a=
!
<
~
a
(D

~

'<
til
~

:=
i
~
w

~

Diagram 22-23. RTM2 Exit Processing (lEA VTRTE) (part 5 of 6)

~,

Input Process

Ar 1'...) 6 Process a fai ling resident task.
'"

L

...-

..L
To Dispatcher ...-
(lEAVEDSO)

TCB

I TCBAECB r- --- -- 7 Pos~ the waiting subtask, - ---
free RTM2WA, and set
the task as non-dispatchable.

..L

...-

Tca ~

Jobstep To Dispatcher
.... TCB (lEAVEDSO)

...-

....) 8 Process oonvert-to-step
'" operations.

~

RTM2WA
....

I I

To Exit Prolog
(lEAVEEXP)

Output

'" TCB

..
TCBDARNP

... 1 IEAVSY50
TI

POST t::s TCBECB

..
IEAVSETS ECB for EOT -,.

... I I STATUS)I
,. ",.,

"
TCB

)

'" ...
IEAVSY50 /' TCBAECB -,.

POST

~ ECB .. I 1 .,.. IEAVSETS

STATUS

TCB Jobstep
.... TCB)

'" ...
IEAVTRTM ,..

I-
RTM1

iMTNA

I I

~
(D

a
5·
= !':J
ac:
sa.
[
~
o
." a
5'
=
• ~
~
(,A

Diagram 22-23, RTM2 Exit Processing (IEAVTRTE) (Part 6 of 6)

Extended Description

6 When a resident. (assembled in) task ends, normal
processing (which includes freeing the TCB) is impos

sible. The end-of-task ECB is posted to indicate completion,
and the task is set permanently non-dispatchable using
TCBDARPN.

7 The ECB that the subtask is waiting for (located by
TCBAECB) is posted. The jobstep task sets itself

non-dispatchable to await ABTERM. RTM2 will be
entered from the top for the STEP ABEND. This is not
rGgarded as a recursive entry.

8 The current RTM2WA is queued to the jobstep TCB.
Then the jobstep task is abnormally terminated with

a 200 completion code. The subtask terminates by branch
ing to the exit prolog. If the jobstep TCB is already in
RTM2 processing it may be nec~ssary to wait for it to
complete critical processing before terminating it.

Module Segment

RTESWEX

RTECONV
RTECNVEX

~
4:loo
N
0\

o
C"I'l

~
N
C"I'l
'<
=-
~

E ;;.
t"""

~
.5
~
[
(1:1

4:loo

~
N o
c.u
00
~

Diagram 22-24. Address Space Termination Processing (lEA VTMTC) (Part 1 of 4)

t

CVT

CVTRTMCT

CVTABEND

From RTM1, via a posted ECB,
to terminate an address space

..".

~ RTCT

@Address
SCVT (Sp • ."Term. Queue

ASCB

r--... ASCB

Process

1 Reset the address space termination
ECB.

") 2 Dequeue the ASCBs representing the
v address space to be terminated.

3 Stop all processing inside the address
space being terminated.

• Set address space
non-<iispatchable.

• Stop activity for MP systems .

4 Purge any 1/0 operations.

5 Free any real and auxiliary
storage.

-

- '--

...
IEAVEMSO

r
~ Memory
... Switch

...
IGCOOO1F

r
~

I/OS

...
IEAVTERM

r
... Real Storage
.... Management

..
ILRTERMR ..

.. Auxiliary

... Storage
Management

Outout

ECB

"
10 v

ASCB

...
v

ASCBFAIL

0 I

~
N
o c.u
00
Q
-....I

tf.l

~
S·
= ~

:::
~
5
Q.

S
O

'1:1

~ o·
=
~
~
~
.......

Diagram 22-24. Address Space Termination Processing (lEA VTMTC) (Part 2 of 4)

Extended Description

Address space termination routines receive control from
RTM1 when a system routine issues a CALLRTM TYPE =

MEMTERM request. Address space termination consists
of two routines, (I EA VTMTC and I EAVTMTR) both
resident in the master address space, that:

• Find and dequeue the ASCB (address space control
block) representing the address space to be terminated.

• Stop the processing in the address space.

• Perform the actual termination.

• Repeat the operation for all the ASCBs on the termina·
tion queue.

After this processing has completed for all the address
spaces on the termination Queue, module IEAVTMTC'
goes into a wait state, to wait for another address space
term ination request.

1 Since this routine receives control after an SRB
scheduled by RTM1 posts its ECB, the ECB must

be zeroed to allow for later entries.

2 Address space termination proceeds to dequeue the
last ASCB on the termination queue by tollowing

down the chain pointed to out of the RTCT (recovery
termination control tablel. The CS (compare and swap)
instruction is used to remove the ASCB.

Module Segment

IEAVTMTC

Extended Description

3 Address space termination sets the address space non-
dispatchable. If the system is an MP (multiprocessor)

system with more than one CPU online, address space
termination must stop all activity in the address space
being terminated. It does this by giving control to the
memory switch function (see the "Supervisor Control" sec
tion for a description of the memory switch function) and
by waiting until any SRB or task activity stops.

4 All I/O activity for the address space is stopped. Con
trol goes to the I/O supervisor, via SVC 16, to perform

this function.

5 All real page frames and all auxiliary storage pages
belonging to the address space are released. Control

goes to the RSM (real storage management) and ASM
(auxiliary storage management) routines to perform this
function. The SCVTPTRM field of the SCVT contains
the entry point address of the real storage management
routine. The CVTASMRM field of the CVT contains the
entry point of the auxiliary storage management routine.

Module Segment

-<
tf.l
~ o
~

00
o
.......

~
,J:.
~
00

~
"<
CIl
~
CIl
'<
~

9
t"'"

~.
(')

t""'.
0:

~
<:
o c a
~

~

~
~ o
~

00
S -

Diagram 22-24. Address Space Termination Processing (lEA VTMTC). (part 3 of 4)

Input

From Module
IEAVTMTC,

Process 9 Output

after an 6 Give control to the address space
ATTACH request routine (via ATTACH).
requests, to

~:r~~:t~~ .. I
Register 1'" . ;

I @ ASCB I .~ 7 Perform the termination.! Register 0 .

-----'--------------J"""\I'@ASCBl
• Indic:ate address space to be I. ,)I

terminated. . Register 1
... r-=---------""I

1 • Indicate "MEMTERM" options. --------------------rv)l" MEMTERM Options

,

Via
SVC 13 ... RTM2 Overview

• Give control to Step 7.
RTM2 to purge the address .~

~ space resources. lEA VTRT2

ell
(1)

~ o·
=
~

:::
~

[
i.
o
"g
a o·
=
~ ...
N
\C

Diagram 22-24. Address Space Termination Processing (lEA VTMTC) (Part 4 of 4)

Extended Description

6 Address space termination continues after module
I EAVTMTC, the controller routine, attaches the

address space term ination task, lEA VTMTR, to perform
the actual termination. (I EAVTMTR runs in the master
address space.)

7 The address space termination task indicates the
address space being terminated in register 0, and the

"MEMTERM" options in register 1, and gives control to

RTM2, via SVC 13, to purge the address space resources.
(See M.O. diagram RTM2 Overview (lEAVTRT2) and
M.O. diagram Address Space Purge Processing (lEAVTMMT)
for the description of how R/TM purges address space
resources.) After control comes back from RTM2, the
address space termination task gives control to the dispatcher.

Module Segment

IEAVTMTR

t Diagram 22-25. STAE/ESTAE Processing (IEAVSTAO) (Part lof6)

~

S5
.~

Branch Entry From
Type 2, 3, or 4 SVCs, or
From SVC IH to process a

~

til
'<
~

~

Input E/STAE macro instruction Process

I e .. nch Entry Only I ~ , I
i-
t:
~
~
~
~
o
~

~
~
Q
~

00
~

Register 13

r-U@Reg Save Area

Register 15

Entry Point @

Branch and SVC

Register 1

I @ Parm List

Register 0

Code

00,10
02
04,84,94
oa, 18

- Create SCB
- Propagate SCB
- Cancel SCB
- Overlay SCB

Register 14

I Return @

SVC Entry Only

Register 3

r-@-C\IT
Register 4

[!TCB
Register 5

[!SVc 60SVRB
Register 6 r Entry Point @

Register 7

[U@ASCB

1 Validate the request.

• Invalid.

" -... .. __ ----_.-) 2 Obtain work area

• For SVC entry, use area in
SVRB.

• For branch entry, use cell
from free SCB queue.

3 Perform requested service

• Create SCB
(use cell from FREESCBQ)

• Cancel SCB
(add cell to FREESCBQ)

• Overlay SCB

• Propogate SCB
(use cells from FREESCBQ)

,

I _I ABEND

l\. ..,

....

--y

Output

Completion Code

I X'13C'1

Register 15

Reason Code

For ESTAR/ESTAI when task
terminated:

04 - Invalid ESTAR Request

00 - Invalid ESTAI Request

OC - Invalid branch entry to SVC 60
service routine

RB "0" RB "C"

(rY1
~

SCB SCB
TCB "A" for "0" for "C" ,

r1 YI

n e::; ..
STAI
SCBs
at end
of the
queue

~
~
Q
~

00
<:>
-..J

CI:l
(I)
("l

g.
=
~

s::
(I)

g
(:l.

o
o

't:S
~
~ g.
=
~

~
w

Diagram 22-25. STAE/ESTAE Processing (IEAVSTAO) (part 2of6)

Extended Description

The ST AE/EST AE routine creates and, initializes an SCB
(STAE control block) to represent an abnormal inter
ruption exit routine. The STAE/ESTAE routine can
create, cancel, propagate, or overlay an SCB, according
to the action codes passed as input. The ST AE routine
receives control from the SVC I H or via branch entry.
Control returns to the caller.

1 The STAE/ESTAE routine validates both branch
entered and SVC entered requests. EST AE abnor

mally terminates invalid callers, passing a X'13C' ABEND
code to the ABEND routine. The value in register 15
explicitly states the reason for the termination. STAE
processing does not terminate callers requesting STAE,
STAI, or SVC-entered ESTAE.

2 The STAE/ESTAE routine obtains a work area
from the FREESCB queue for branch entries or

uses an area in the STAE/ESTAE SVRB for SVC
entries. If the FREESCB queue is full, a GETMAIN
is issued for four cells from subpool 255 and added to
the FREESCB queue.

Module Segment

IEAVTSIN

IEAVSTAO

Extended Description

3 The STAE/ESTAE routine performs requested
service, as indicated in register O.

• For create requests, the ST AE/EST AE routine
obtains a cell for an SCB. The newly created SCB is
chained in the SCB queue, pointed to by the
appropriate TCB. STAE/ESTAE indicates the caller
owns the SCB by setting an indicator in the RBSCB
field of the caller's RB.
For STAI or ESTAI requests, STAE/ESTAE also
propagates the STAI or ESTAI SCBs via propagate
processing.

.For cancel requests, the STAE/EST AE routine .
dequeues the SCB from the specified TCB, returns
the cell to the FREESCB queue, and zeroes the
RBSCB indicator in the caller's RB if the caller
does not own any more SCBs.

• For overlay requests, the STAE/ESTAE routine ini
tializes the existing SCB with the new values.

• For propagate requests, the STAE/ESTAE routine
obtains cells, copies the SCB information from the
appropriate SCB (addressed by the TCB pointed to
in register 4), and chains the SCB to the TCB being
attached.

Module Segment

~
N

<=>
~

00
S

t Diagram 22-25. STAE/ESTAE Processing (IEAVSTAO) (Part 30f6)
!oN
~

i
~
~

ell
'<
f4.
(11

:3

£
c=r
t""

f
~
~
~
(11

~

~
~

S
00
§

Process

4 Return control the caller.

To Caller
(Branch
entry or
Exit
Prolog
(lEAVEEXP)

o ut

Register 15

Return Code

ESTAE/ESTAI/ESTAR
'00' - Successful STA or ESTA request.

'04' - ESTAE OV has been requested and the
last SCB is:
1. Non-existant,
2. Not-owned by user's RB or
3. Is not an ESTAE exit
In this instance an ESTAE Create will
be performed.

'oc' - Invalid cancel request.

'10' - Unexpected error.

'14' - Insufficient storage.

STAE/STAI
'00'- Successful ST A or EST A request.

'04' - Insufficient storage.

'00' - STAE issued in a STAE exit or
- cancel or overlay request with no SCB

onO.

'oc' - ST A ~ not issued by attach or
- STAI request with missing TCB operand.

'10' - Cancel or overlay and SCB is not a STAE
SCB or is not owned by requestor's RB or

- Unexpected error encountered while
processing the request.

~
~

b
!oN
00
S

Cf.l
~

II
0"
= N

a=
~ g
Q.

o
o

"0
~

~ o·
=
~

J:. w
w

Diagram 22-25. STAE/ESTAE Processing (IEAYSTAO) (Part 4 of6)

Extended Description

4 STAE/ESTAE returns control to the oaller, with
return codes indicating the results of the request in

register 15.

Module Segment

~
N
(:)
W
00
S

~

~
w
~

~
"< V}
~

V}

~
~

3
~

~
n·
~

~
~

-<
<:
o = 3
~

~

'< V}
N o
W
00 o
~

Diagram 22-25. STAE/ESTAE Processing (lEAVSTAO) (Part 5 of6)

From R/TM end-of-task
processing (I EAVTSKT)
orXCTL

Input

Register 0

o or @ RB issuing
EXIT or XCTL

RB

Reg!ster 4

@TCB

TCB

.SDWA

D

to clean
SCB

From R/TM
(lEAVTRTS)

Process

IEAVTSBP

5 Purge SCB s from the SCB
queue for:

• End -of-task.

• XCT L req uests.

Transfer SCB for an XCTL
request, if eligible.

6 Recover from any error.

• Continue with termination.

• Retry.

7

To R/TM
(lEAVTRTS)

Output

Register 15

Return Code

I
<

0- Successful V}

Return Cells N
0 to 4 - Error occurred. w

~

FREESCBQ 00
~
-.....I

SCB queue mod ified to
delete SCBs.
Output for step 2 shows

To R/TM SCB queue.

(lEAVTSKT)
orXCTL

Register 15

Return Code

4 - Error occurred.

til
(tI

s:.
5'
= N

a:
(tI g
c:;l.

o -.
o

"0
~
I\) g.
=
~
~
~
VI

Diagram 22-25. STAE/ESTAE Processing (lEA VST AO) (Part 6 of 6)

Extended Description

5 The SCB task recovery resource manager (TRRM)
removes or transfers an SCB to another RB as follows:

• RBs issuing EXIT have their SCBs purged.

• RBs issuing XCTL have their SCBs transferred or
purged. The SCBs will be transferred if the caller issued
the XCTL with the YES option.

• For end-of-task requests, or if an ATTACH request fails,
the TRRM purges the entire SCB QUEUE. The TRRM
purges SCBs by returning the SCBs created by ESTAE/
STAE processing to the FREESCBQ. The TRRM purges
SCBs created by BRANCH entries by zeroing the SCB
field in the SVRB. TRRM dequeues the SCBs from the

SCB queue. (See the output from step 2, which shows
the SCB queue.) Finally, the TRRM sets the RB indi
cator to indicate that no SCB is'owned.

Module Segment

IEAVTSBP TRMPROCS

TRMFREE

Extended Description

6 The FRR attempts to recover from any errors that
occur in the TR RM. It performs recovery as follows:

• Continue with termination for memory switch condi
tions.

• Zero the SCB queue pointer in the TC~ if the caller
requested a purge of all SeBs of the task.

• For storage key failures and storage data checks, the
FRR scans the queue for an SCB within the range indi
cated in the SDWA .. If an FRR. is found within the range,
the FRR zeroes the queue pointer in the TCB.

• Dequeues all seBs owned by RBs for RB EXIT and XCTL
requests when no SeBs fall within the range indicated

in the SDWA.

For retry requests, the F RR returns to the caller, with
a return code of 4 in register 15.

Module Segment

IEAVTSBP TRRMFRR

-< til
N
o
~

00
S

t Diagram 22-26. Alternate CPU Recovery (ACR) Overview (lEA VT ACR) (Part I of 4)
w
0'\

o
(I.)

~
~

(I.)

'<
~

3
t"""
i t=;.

t"""
§=
~
<:
o

=-3
(D

~

~
~ e
00
§

Input

CVT

2 Register 1

MCH
LOGREC
Buffer

PCCAVT

LCCAVT T""""'"
LCCA

DEAD

PCCA

DEAD

t----II\ I GOOD

or: ,~
LCCA

~

@ LCCA I @ LCCA/

F rom the externa I
interruption handler
after a failing CPU issues
EMS or MFA to signal
its immanent failure.

,-process

Dispatcher
(lEAVEDSO)
or
SETLOCK
(lEAVELK) ...

y

'"
Of 1 Perform ACR pre·

processing to save CPU
status, set ACR state,
and resume interrupted
work of good CPU.

"

2 Perform i ntermed iate
processing to resolve lock
conflicts and dispatch
appropriate CPU's work.

!II .)3 Route failing CPU's work
through RTM 1 for
recovery.

@PFCA 11
PSA

@ P~CA 'l!-
PSA

@PSA 1-1 @PSA

PHYSCCA PHYSCCA If

...L

"'

External SLiH
(lEAVEES)
or
(lEAVEEXT)

IEAVTRT1 I -11--------1
R/TM

....

"

~

"

Output

Failing CPU's Control Blocks

PSA LCCA

PSA
Logical
Data

t:;CRIN
PROGRESS"

CSD ~ ACR CPU
Related D Save Area

MCH
Input for R/TM ~ LOGREC

Buffer

Recovery
CPU PSA

IPsAl
~

Dead CPU
Saved
Logical
PSA Data

Recovery
CPU
Saved
Logical
PSA Data

CI}

a
e'
=
~

a:
$l
5'
Q.

o
o

'"0

Q
5'
=
~
~
~
-...I

Diagram 22-26. Alternate CPU Recovery (ACR) Overview (IEAVTACR) (part 2 of 4)

Extended Description

Alternate CPU recovery (ACR) recovers the system on the
remaining CPU when one CPU in a multiprocessing envi
ronment fails. ACR quiesces the operation of the failing
CPU and attempts to recover as much processing as possi
ble - ACR keeps the system operational.

ACR processing begin"s when a CPU receives a signal, via an
EMS (emerge'ncy signal) or an MFA (malfunction alert), of
another CPU's imminent failure just before it stops operation.
(See the M.O, diagram Signal Service Routines (lEAVERJ)
in the Supervisor Control section for a description of how
CPUs signal one another') ACR initially receives control
from the external interruption handler and proceeds to
recover the failing CPU's work by giving control to R/TM
as if a machine check occurred. R/TM routes control to any
FRRs defined by the abnormally terminated process. These
FRRs free resources associated with the terminating func
tions. This provides as much recovery function as possible.
As ACR processing continues, it cleans up resources asso
ciated with the failing CPU and frees them, where possible,
for use by the system. The failing CPU is logically discon
nected along with any devices affiliated with that CPU.
ACR gives control to the dispatcher to again begin normal
system operation.

Module Segment Extended Description

1 ACR uses the LCCA and saves the PSA data of the
failing CPU in the ACR save area. ACR extracts all

logical fields from the failing CPU's PSA and saves them in
the failing CPU's ACR save area. ACR then sets the" ACR
in progress" indicator in the LCCAs of both the failing
and recovery CPUs. The CSD also contains an "ACR in
progress" indicator. Then, ACR marks the failing CPU
offline by setting indicators in the CSD (common system
data). The CPU remaining in the system continues proc
essing its own work by returning control to the external
interruption handler so the system continues processing.
Work for the remaining CPU will be dispatched. When the
recovery CPU enters the dispatcher, or when a lock con
flict arises, ACR will resume processing.

2 An entry from SETLOCK or the dispatcher causes a
suspension of the currently executing work and a

dispatch of the previously suspended work. Dispatching
of the appropriate CPU's work will be accomplished by
saving the logical data of the current PSA in the corre
sponding ACR save area and restoring the logical data of
the suspended CPU's PSA back to the current PSA. Proc
essing of work can then resume.

3 The first entry from SETLOCK or the dispatcher
causes the failing CPU's work to become the work

to be dispatched. ACR treats this work as a machine
check condition, by routing control to RTM1 with the
machine check indication. FRRs defined for the termi
nated process will receive control to provide some level of
recovery (including the releasing of locks held or the retry
of a process, if appropriate).

Module Segment

IEAVTACR ACRPREP

ACRLKSPI

t Diagram 22-26. Alternate CPU Recovery (ACR) Overview (IEAVTACR) (part 3 of 4)
w
00

o
fIl

"<
fIl
~

fIl

1
~
r""
ci
ts·
r"" a:
~
~ c a
~

~

'<
fIl
~

'" t
~
w
~

4 Perform ACR post
processing.

..
IEEVCPU

~

....
... VARY CPU

---..
IECVRSTI

P'

....
I/O Restart ...

.. System
r

.L Resource
... Manager

..
IGFPTERM

r
.... System

... Request Task

~ To External SLI
(lEAVEES) or (

I

I

H
EAVEEXT)

CIl

a o·
=
~

a::
~

~
c:lo
o
o
'g
a o·
=
~
~
W
\Q

Diagram 22-26. Alternate CPU Recovery (ACR) Overview (lEA VT ACR) (part 4 of 4)

Extended Description

4 When ACR finds that both CPU's processes are phys-
ically enabled, it cleans up I/O device requests,

switches.consoles if necessary, notifies the system operator,
and notifies the System Resource Manager that one CPU
in the system has failed. The system can now process
normally, even though one CPU now performs the work
done by two.

The dispatcher will continue to dispatch tasks as usual,
with .no consideration that ACR processing has occurred.

Module Segment

ACRPOSTP

~
olio-

~

~
~
N
en
'<
=-
~

i
t::
!r
.$
~
J
CD
olio-

~
N

'" i-
ts
w
:.., -

Diagram 22-27. FRR Stack Initialization (lEA VTSIN) (part 1 of 2)

From NIP (lEAVNIPO)
I nput or Vary CPU (I EEVCPU) "IBI----. 1 Locate the Recovery

Register 1 Recovery II Environment Area.

PSA Area ~
Environment

!SA _ _ !} ~~er : : >2 :;:,:~ the FRR

Miscelft RTM 1
@Recovery laneous Work
Envlron- Stack Area
ment Area

{ I I} ~~t~ies
Global
RTCA

I I ~~k I ~ ~':er ~~Rma(1 Area }Stack ~ Stack H ... der

} FRR. '
----,1 Entries, ~

RTM1
Work Area

CVT
MCH I}FRR
Stack (I Entries

RTM1
Work
Area

3 Initialize the RSVT.

4 Initialize the FRR]
Stack.

5 Zero the remaining
portion of the stack
and the SDWA.

...
)

y

j..

rv'

Global
SOWA
2nd
Work
Areas

• GotoStep2
until all the FRR
stacks have been
initialized.

Step
2

@Super
FRR
(lEAVESPR)

UEAVESPR)

for the normal

Restart
Stack

* * (~}Stack ~ Header
RTM1
Work
Area

tFRR
'I If Entries

Global
SOWA
2nd
Work
Area

FRR Stack -----

Global
SOWA
2nd
Work
Areas

6 Exit to caller when
complete.

--.110.

,..

NIP
(lEAVNIPO)
or
Vary CPU
UEEVCPU)

Output

PSA

{I,@ Current
Stack

.@ Normal
Stack

Recovery
Environment
Area

@SVC/I/O \ Stack
Oisp Stack. {Header

o
@ First
Entry @MCH

Stack
o 0 tRTM1

fWork Area

Stack FRR FRR
@ PC I H @ Super I

o 0 Entries

RSVT
@Ext 0 !GI~I

Normal
FRR
Stack

'I..

F LI H~ Stack SOWA

Work
@ Ext "., Areas
FLlH2 Stack

o
@ Ext @ First
F LI H3 Stack Entry

o @ Last ! Entry Stack
@ Restart Header
IH Stack 32

o @Fkst
Entry

~ @First
Entry - 32

tRTM1
o If Work Area

@Super I'
Global FRR I}FRR

32 SDWA 0 J Entries

@ First Global I. 0 Work
Entry - 32 SOWA fo~ Areas

@ Last Entry ----.--

H
Normal ~ lit 0 Stack ~

RTM1 0 ~.~ 0 Work
Work ~ Areas
Area FRR ~ for

Entries Normal
Stack

(Il
tD
~ g.
=
N

3:
~
go
c.
C -.
o
1
; g.
=
~

.i..
~ -

Diagram 22-27. FRR Stack Initialization (lEA VTSIN) (part 2 of 2)

Extended Description

The I EA VTSI N macro instruction expands inline to ini
tialize all FRR recovery stacks in the system and identify
each such stack by initializing the recovery stack vector

table (RSVT) in the PSA (prefix storage areal. VARY
CPU and system initialization use IEAVTSIN.

1 The first word of the RSVT points to the recovery
environment area.

2 The initialization routine locates a recovery stack
in the recovery environment area for initialization.

3 The initialization routine places the address of the
recovery stack into its appropriate slot in the RSVT.

4 The recovery stack is initialized as follows:

• The four words in the stack header contain

1) The address of the first entry - 32 (if the normal stack)
The address of the first entry (if not the normal
stack)

2) The address of the last FRR entry

3) The FRR entry length

4) The address of the current entry .

• Initialization zeroes the FRR address field in the first
entry of the stack for the normal stack; otherwise, it
initializes this FRR address field with the address of the
super FRR (obtained from the CVTI. The remaining
fields in this entry are zeroed.

Module

IEAVTSIN

Segment Extended Description

5 The initialization routine zeroes the remaining por
tions of the stack as follows:

a) The RTM1 work area portion of the stack is zeroed.

b) All FRR entries from the second entry to the last entry
are zeroed.

The global SDWA associated with this stack is zeroed. The
work areas associated with the global SDWA consist of
two types:

a) A 72-byte save area is zeroed.

b) A 200-byte FRR work area is not zeroed.

6 Return to caller occurs if all recovery stacks have
been initialized; otherwise, control returns to

step 2 to initialize the next recovery stack .

Module Segment

t Diagram 22-28_ SETFRR (SETFRR) (part 1 of 2)
~

""
o en

~
l-..J
en
'<
~
(tI

3
t""
~ ;:;-
t""
0:
;
-<
< o
C
3
(tI

~

'< en
l-..J

~
~
(tI
~

~
IN

~

Work Register 1

Work Register 2

PSA

RSVT

V
@ Current Stack

FRR Stack

@ First Entry - 32

@ Last Entry ,~-

Entry Length

1\ (
@ Current Entry

@FRR 0

Parameter Area

@FRR 1

Para meter Area

~

Register or Storage Location

I FRR Address I (@FRR 2)

Para meter Area
Register or Location

I I
-

l ~
...

1 Establish addressability v
to the FRR stack.

....

v> 2 Check the stack status

I- I-- if requested.

I 3 Perform requested

I options.

I
I
I

-~

4 Return the requested
informatio~.

To Caller

Mutually Exclusive Options
A - Output for the' ADD' option

o - Output for the 'DELETE' option

F - Output for the 'F LUSH' option

P - Output for the 'PURGE' option

R - Output for the 'REPLACE' option

X - Optional output for only the' ADD' or
'REPLACE' options

~~.

~>-OR ~OR ~~OR
A D F

@ First Entry-32 @ First Entry-32 Normal FRR

@ Last Entry @ Last Entry \
Stack

Length Entry 1\ Entry Length
@ First

@ Current FRR @ Current FRR Entry-32

(
Entry Entry

(@ Last Entry
f\ Entry Length

@FRR 0 ~ @ FRR 0
@ First

Parameter Area Parameter Area

~
Entry~32

@FRR 1

RTM 1 Work Area { ~ \ Parameter Area

@FRR 2 ~
Parameter Area IJ

~}OR D.OR

p R
" X @ First @ First
v Entry-32 Entry-32

@Parameter
Area @ Last Entry ~ @ Last Entry

~ Entry Length) Entry Length

@ First

~(
@ Current

Entry-32 FRR Entry

@FRRO

Parameter Area

@FRR 1

Parameter Area

~
f

~

t"I}

a o·
::I
~

~
sa. g
Q.

o
1"0)

o

I o·
::I

f"
..a;:..
..a;:..
w

Diagram 22-28. SETFRR (SETFRR) (part 2 of 2)

Extended Description

The SETFRR macro instruction expands inline and alters
the contents of an appropriate FRR stack based on given
options.

Module*

1 One of the two input work registers «ontains the infor- SETFRR
mation needed to establish addressability to the FRR

stack.

2 The other work register contains the information
necessary to examine the "stack header" - the first

four words of the FRR stack. SETFRR determines the
stack status as follows (and only for the ADD, REPLACE,
or DELETE options):

A - If the first and fourth words of the stack header are
equal the FRR stack is empty.

B - If the second and fourth words of the stack header are
equal the FRR stack is full.

3 Five mutually exclusive options can be performed by
SETFRR, as follows:

• ADD - The FRR address supplied as input is added to
the stack and the current FRR entry pointer is updated
to point to this new FRR address. If the stack is full,
a X'07D' ABEND will occur if the caller requests another
FRR to be added .

• REPLACE - Performs a replacement of the FRR address
pointed to by the fourth word of the stack' header by the
input FRR address. If the FRR stack is empty, an addi
tion equivalent to A is performed.

Segment

• ,DELETE - Removes an FRR address from the stack by
adjusting the fourth word of the stack header to point
to the preceding FRR entry. If the stack is empty this
delete function is a NOP.

• PURGE - Adjusts the stack header to reflect an empty
stack (i.e., setting the fourth word equal to the first
word of the stack headed.

• FLUSH - A special option to be used only by the
Dispatcher, purges the normal FRR stack (making
it empty) and zeroes RITM recursion indicators in the
RTM1 work area portion of the normal FRR stack.

4 An option~1 parameter register or storage location,
when specified as input, becomes the receiver of the

address of the parameter area associated with the FRR
address for which the "ADD" or "REPLACE" option is
to be executed.

Notes:

1) Stacks depicted represent normal FRR stacks. Super
visor control FRR stacks have the first word of the

header pointing to the first FRR entry rather than
the address of the first entry - 32.

2) SETFRR operates on a supervisor control FRR stack
identical to that described for a normal FRR stack.

* SETFRR expands inline; it has no service routine module.

Module· Segment

~ Diagram 22-29. SVC 51 Overview (IEAVADOO) (part 1 of 2)
~
~

~ FromSVC IH (lEAVESVC)

o
tI)

~
N
tI)

'<
l'4.

3
E ;;.

t: go
~
~
~
CD

~

'<
tI)
N

~
CD ;-
~

~
!.N

~

Input
to process an SVCDUMP
(SVC 51) request

CVT TCB SVRB

DDD
ASCB Parm List

DD
SRB

D

Process

1 Process formatted dump requests.

Process unformatted dump requests
synchronously_

Schedule the SRB to post the
Dump task.

IEAVTSDX

I I Schedu~e Dump
Processing

ToSVCIH
(lEAVESVC)

Formatted
Dump

Unformatted
Dump

tI.l
(11

ll.
g'
~

~ a
[
o
"'" o

1
e' =
t
~

Diagram 22~29. SVC 51 Overview (lEA V ADOO) (part 2 of 2)

Extended Description

An SVC 51 instruction provides linkage to both the SNAP
function and to the SVC DUMP function. Both functions
require Register 1 to point to a parameter list.

The difference between a SNAP and SVC DUMP param

eter list is in byte 1 of the first word (B) and byte 0 of
the third word (C)'

B=X'OO' ,C=X'OO' OSIVS2 Release 1 SNAP Parameter
List

B=B'01 ' OS/VS2 Release 2 SNAP Parameter
List

B=X'SO' OS/VS2 Release 2 SVC DUMP
Parameter List

B=X'OO' ,C=X'SO' INVALID - OSIVS2 Release 1
SVC DUMP Parameter List

Module Segment Extended Description

1 The "SNAP DUMP Processing" M.O. diagram
describes the processing of a formatted dump.

2 Ca lIers of SVC DUMP must be authorized by APF
or have control program key. If the caller is not

authorized he will be abnormally terminated with
completion code 133.

SVC DUMP provides two services, a Synchronous Dump
and a Schedule Dump. The distinction between the two
dumps is in the 6th word of the parameter list. D is the
first halfword, and E is the second halfword of the 6th
word.

D=X'OOOO' ,E=X'OOOO' - SYNCHRONOUS DUMP
D=X'OOOO' ,E=ASID - SCHEDULE DUMP
D=CURRENT ASID,E=ASID - Target of SCHEDULE

DUMP, process as if a
SYNCHRONOUS DUMP
request.

A Synchronous Dump will be taken now off the current
TCB.

A Schedule Dump results in a branch to the Schedule
Dump routine.

If an invalid parameter list is passed, the caller is abended
with a 233 completion code.

3 SVC DUMP processing (I EA VADOO) describes
the processing for a dump scheduled to the dump

task in each address space.

Module Segment

I EAV ADOO SDTOP

SDTOP

~

~
o
~
~
N
CI.l
'<
rI>

i
t""
~
r;'
t""
0:

~
~
~
(1)

~

<:
CI.l
N

~
(1)

i
~
~

~
'-'

Diagram 22-30. SNAP Dump Processing (lEA V ADO!) (put 1 of 6)

From SVC 51 Overview (lEAVADOO)

&..Process Input
, ,,OJ

Register 3

I " @CVT 1 Obtain storage for the SNAP
v

work areas and initialize them;
CVT

I\.~ A check DCB.
-y

~

'"

Register 4 Register 5

~@ Current TCB I @SNAPSVRB I • Error during GETMAIN.

TeB SVRB

'/

(RB
,.

I\.

2 Validity check the parameter -v
list.

• Change into caller's key,
if necessary.

~

Register 1 '"

I @ Parm List ,I • Obtain (via ENQ) the dump
data set. ;"

Storage List Parm List ~

D '" ;

• Set tasks non -di spatchable.
~

'"
, .:,' '; "

", ",,:LL: \ \\ \tf; "''C, ':n.·:J\z,·i~

,." • 'j:.?.; : -L

Output
; ,x

:)~. .' ;:~. .,;,'

SVRB

" '.]I 0

,:;
II. v

IEAVGMOO :, y

GETMAIN
ABDAREA ;;~' ,.

,>C

.,::

I
}i

... :,:

To SVC 51
r Overview

" Register 15 ;;

(IEAVADOO) I Return Codes I ':1
:t

Code Meaning ;~;

X'04' - No DCB
:'1
,:'

'. X'OS' - GETMAIN failure .~:
X'OC' - Invalid DCB

;::i<:;+:l;'~:'; .:, ,
,31;

;~

i!
:;,,\

) I I Return Code ~i y

.. '

IEAVMODE X'08' - Invalid TCB ;'
y i

MODESET
':;-r,';:'Lf:J:; . i.C: :.,oJ·"" '>' ";:: '.

...
IEAVENQ1

r

ENQ

II.
IEAVSETS ,

STATUS

tf)
(\)
(")

6'
::I
N

a::
(\)

g
Q.

o
o

"t:I
(\) ...
~
c)"
::I

~
~
~
-...I

Diagram 22-30. SNAP Dump Processing (IEAV ADOl) (part 2 of 6)

Extended Description

The SNAP dump routines produce a formatted dump of
various areas of storage, depending on the parameters. As
shown in M.O. diagram SVC 51 Overview OEAVADOO),
SNAP receives control via an SVC 51 macro instruction.

The main SNAP module, I EAV AD01, does initialization
for and then routes to various formatting routines. These
routines format the dump.

1 The SNAP routine obtains storage, via GETMAIN,
for an ABDAREA. The ABDAREA contains the

information used by the format~ing routines. Control goes
to the caller if an error occurs during GETMAIN processing.

2 SNAP processing does not validity check the param-
eter list for calls from ABEND, nor does SNAP

enqueue upon the dump data set for calls from ABEND.
The enqueue process has already been performed by
ABDUMP.

STATUS is issued if the task being dumped is not the
current task.

Module

IEAVAD01

Segment

t Diagram 22-30. SNAP Dump Processing (lEA V ADO}) (part 3 of 6)

~

&5

~
'N

ff
~

3
r-
t§.
(")

t:
g"

~
~
=:I
~
.j:".

'<
til
N

~
~

i
~
~

d

to. ABDAREA A
Ii :

)
v

z<, ~

I

3 Process the dump according to
the dump options.

• Display jobname, stepname.

• Display ASCB, TCB, RB
queue.

• Display IOE, SPOE, DOE.

• Display OCB, OEL.

• Display save areas;

• Displ~y subsystem
i nformati on.

• Display PSA, nucleus.

> % ,%

I~ Formatted Dump
J\.

D v

..
IEAVAD02

i ~

~

...

to.,

IEAVAD03
~

~

"II[

ffi

to.,

IEAVAD05
~

~

...
..

IEAVAD06 --,
~

... "

to.,

~
IEAVAD07

~

...

..
~

IEAVAD08

~

...
to.,

IEAVADOA
r

~

...

c;n

~ g.
=
~
;s::
a
[
~
o

"I:S

i
5'
=
f"
~
~
\C

Diagram 22-30. SNAP Dump Processing (lEA V ADO!) (patt 4 of 6)

Extended Description

3 SNAP routes control to the formatting routines,
based on the information in the ABDAR EA. This list

shows the formatting module I EAVA001 combination:

• IEAVAD02. This formatting module displays the job
name, stepname, time, date, 10, completion code, PSW,
ILC (instruction length count), and interruption code.

• IEAVAD03. This formatting module displays the ASCB,
TCB, RB queue, LLE queue, CDE, XTLlST, DEB, and
TIOT.

• IEAVAD05. This formatting module displays the IOE,
SPOE, DOE, FOE, POE, and FBOE.

• I EAV AD06. This formatting module displays the OCB
and OEL.

• IEAVAD07. This formatting module displays the save
areas.

• I EAV AD08. This module acts as the interface between

I SNAP and the formatting routines for TeAM, GTF,
VT ~M, VSAM, and an installation defined formatting
routine.

• IEAVADOA. This formatting module displays the PSA,
nucleus, SOA, and LSOA.

Module

IEAVAD02

IEAVAD03

IEAVAD05

IEAVAD06

IEAVAD07

IEAVAD08

IEAVADOA

Segment

<::
~
N
0
I.H

00
~

t Diagram 22-30. SNAP Dump Processing (IEAVADOl) (partS of6)
~
Q

o
til

"< til
N
til
'<
~

3
t"'"'
~
(;.

t"'"' a: ..
Q)

~
< o
2'
3
(II

"'"
'< til
N
(:,
Y.I

00
Q

~

'\ "-
I

v

3 (continued)

• Display registers, storage list.

• Display supervisor trace table.

• Display subpools SWA.

• Print dumps.

4 Clean up resources and return
to caller.

...

."
IEAVAD08

~

.,
...
."

IEAVADOC
~

.,
...

IEAVADOD
."

"'-
1 .,

...

."
IEAVADll

"'-
....

...
IEAVAD31

."

~

.... I
...
r IEAVAD51

~

.,
...

IEAVAD71
."

~ 1

... ,

." FREEMAIN
I

"'- 1
.... I

.. To SVC 51 Ove view . ."
(lEAVADOO)

en
r:;
(') go
:::
t-j

:::
~
g-
Co.

a.
c

"= r:;

tJ
S·
:::

~

J:.
VI

Diagram 22-30. SNAP Dump Processing (IEAVADOl) (part 6 of 6)

Extended Description

• I EAVADOB. This formatting module displays registers,
storage lists, JPA modules, active SVCs, and LPA
modules.

• I EAV ADOC. Th is formatting module displays the super
visor trace table.

• IEAVADOD. This formatting module displays the sub
pools 0-127 and SWA. It also displays subpools 229 and
230 when LSQA is requested.

• I EAV AD 11. Th is formatting module prints the lines of
the dump on an output device.

• lEA V AD31 . Th is formatting module unpacks and trans
lates data in the print line, providing indentation.

• I EAVAD51. This module translates data in the print
line.

• IEAVAD71. This module prints blocks of storage

4 Prior to returning control to the caller, SNAP cleans
the resources it used.

Module

IEAVADOB

IEAVADOC

IEAVADOD

IEAVAD11

IEAVAD31

IEAVAD51

IEAVAD71

Segment

t Diagram 22-31. SVC Dump Processing (IEAVADOO) (part 1 of 6)
VI
N

~
-<
CIl
N
CIl

I
r-
~
t)'

r-
~
~
~
C
!3
~

~

'<
CIl
N

~

i
~
tN

~

Input

Register 1

From SVC 51 Overview
(I EA V ADOO) to process an
SVC Dump request
(unformatted du

@ SDUMP Parm List

SDUMP Parm List

Register 3

@CVT

RTCT

CVTRTMCT

CVTSDBF

1 Check the input and initialize
resources for dump processing
in step 2.

• Check for CHNGDUMP
command (Ignore SVC Dumps).

CHNGDUMP
(lEEMB815)

Inva~id

Output

• Validate user-supplied DCB
and the parameter list. --....,.----------...,;:--, --V L..' _______

• Process quiesce requests.

• Set system
non -dispatchable.

• Process TRT requests.

C"Il

~ ::s
!'!
a::
~
~

S
O

1 a e·
::s

~
t
w

Diagram 22-31. SVC Dump Proce~ing (lEA V ADOO) (part 2 of 6)

Extended Description

The SVC Dump routine will create a synchronous, unfor
matted dump, and write it on a data set. As in "SNAP
Dump Processing," SVC dump receives control via an
SVC 51 macro instruction. However, SVC dump receives
control when the parameter list addressed in register 1
indicates an unformatted dump.

1 SVC dump determines whether any CH NGDUMP
(see the M.O. diagram CHNGDUMP Routine

(I E EMB815)) operands override the parameters passed.
If the CHNGDUMP command has been issued to
override the SVC dump options, the SVC dump routine
passes the caller a return code of 8 in register 15. Then,
SVC dump checks for invalid user-supplied DCBs (data
control blocks, that define the data set that will receive
the dump), and terminates those callers. The system
resource manager, STATUS, and GTF perform services
for SVC dump, according to the original request.

Module Segment

IEAVADOO POSSIBLE
SDVALID
SDENVIR

t Diagram 22-31. SVC Dump Processing (lEA V ADOO) (Part 3 of 6)
(1\
~

o
tI'.l

"< tI'.l
IV
tI'.l
'<
~

3
t"'"
~
(;.

t"'"
e;:

~
-<
~
:3
('II

~

~
IV
:;a

i"
~
~

~

'" ~«,

SDUMP
Parm Li!it Storage List

V
....

2 v

@STOR List ...
'1

"

,,--

~

Perform the dump request

• Obtain the dump data set.

• Build the address range
table.

• Set system non-dispatchable.

• Write the global data.

• Set system dispatchable.

• Notify system resource
manager.

Via
EXCP

• Write the rest of the
data to the dump data sets.

• Write GTF trace data.

""' ~

"

Address
Range Table

"-
Global Data

v

Local Data LSQA
Private Area

• SWA
Nucleus Data • LPA

..
y IEAVSETS

"'
~ STATUS ...

Dump Data ..
System

EJ
y

~ Resource
... Manager

..
IGCOOO1 F

y

~
I/OS ... Unformatted Dump

... CJ I
Ii'

•

r

til
CD
S?o·
=
~

a::
~ g
Q.

o
o
"d
~
~ o·
=
.;:..

~
VI

Diagram 22-31. SVC Dump Processing (lEA V ADOO) (part 4 of 6)

Extended Description

2 SVC dump writes the dump, using EXCP (execute.
channel program) to the data set. An address range

table, based on information in the SOUMP parameter list,
delimits the address range of the dump.

Module Segment

SOlO

~ Diagram 22-31. SVC Dump Processing (lEA V ADOO) (part 5 of 6)
~
0\

o
fIl

~
N
fIl
'<
~

~

i
t::
Sf
~
~
[
~

'<
fIl
N

" i
I
~

:...a -

Input

FRR
Parms

From
R/TM
(lEAVTRTS)

Process

3 Notify the operator about the
dump data set used.

4 Attempt to recover from the
error by:

• Retrying to the next area to
be dumped,

OR

• Retrying to ENDUP processing,

OR

• Continue with termination.

IEAVVWTO

WTO
Routine

To SVC 51
Overview
(IEAVADOO)

To RITM
(JEAVTRTS)

To R/TM (lEAVTRTS)

Output

Code

X'OB'

X'04'

Return Code 1
Meaning

Error during critical
processing; no dump
Partial dump

fJ'J
(D

~
CSo
::I
N

~
S1
[
o -.
o

"0
(D

~
CSo
::I

of" .,.
VI
...a

Diagram 22-310 SVC Dump Processing (lEA V ADOO) (part 6 of 6)

Extended Description

3 The operator receives notification of the data set
used for the dump.

4 An FRR (functional recovery routine) protects SVC
dump processing.

Module Segment

WRITEMSG

SDFRR

t Diagram 22-32. Schedule Dump Processing (lEA VTSDX) (part 1 of 4)
VI
00

o
1:'-l

"< 1:'-l
N
1:'-l
'<
~

3
t'"'

t§.
(')

t'"'
5'
S
~
<: o
=-3
(D

~

'<
1:'-l
N

::c
(D

;-
~

~
tN

~

Input

CVT

Register 13

@ Caller - supplied
Save Area

Register 1

From SVC 51 Overview
(I EAV ADOO) for scheduled
SVC Dump requests.

@ SDUMP Parm List

@SDUMP Parm List
i

ASVT ASCB

SQA Buffer

Process Output

1 Save the caller's registers.

Invalid Input
2 . Check the validity of the input. iA:~

3 Build the SRB used to request
the dump task and schedule it.

IEAVTRT2

ABEND

Invalid conditions to
perform dump

To SVC 51 Overview
(IEAVADOO)

Caller - supplied
Save Area

D
Completion Code

Code Meaning

X'133' - Caller not authorized

X'233' - Invalid parameters.

Register 15

Return Code=8

• No dump data set.
• CHNGDUMP command

override parameters.
• Dump task cannot be posted.
• ASCB terminated.

SRB

D

til
(D

~
5'
= N

~ a
[
o
o

"0
(D

~
5'
=
~
~
Vo
1.0

Diagram 22-32. Schedule Dump Processing (lEA VTSDX) (part 2 of 4)

Extended Description

The dump task receives control from SVC 51 to dump
contents of an address space,

Module

1 The first routine of schedule dump processing, module IEAVTSDX
IEAVTSDX, saves the caller's registers,

Segment

2 Callers with invalid input are terminated with either SCHV ALI D
a X'133' or X'233' completion code.

3 The SCHEDULE macro is issued to schedule SCHSRB
an SR B to give control to the address space-resident

dump task, module IEAVTSDT, After SCHEDULE has
scheduled the SRB, control returns to the caller.

i
~
< C'I.)
N

ff ..
B

i
t'"'

f
~
<
Q cr
i
'<
rIl
N

i
lC
~

:.... -

Diagram 22-32. Schedule Dump Processing (lEA VTSDX) (part 3 of 4)

(It:AVt:U~UJ

PSA ASCB ..
V ..J\.> 4 The SRB posts the dump task

v located in the address space
being dumped.

~ ~

'" C ECB

I J From
Dispatcher
(lEAVEDSO)

---.
r Via

RTCT
..J\. SDUMP

SDUMP) 5 Perform the dump.
...300 Parm List v

~

...

Gcs
J 6 Clean up resources.

ASCB CVT RTCT

[J[J
(ECB To Dispatcher

(lEAVEDSO)

....... IEAVOPT01
r

POST

......
r IEAVADOO

SVC Dump
Overview,
Step 2

CVT RTCT

... /' .-
v

tI.)

a
5°
=
~

s::
~ go
Q.

e.
o

't:I

~
5°
=
~

~ -

Diagram 22-320 Schedule Dump Processing (lEA VTSDX) (part 4 of 4)

Extended Description

4 The SRB, created in step 3, posts the ECB for the
dump task located in the address space being dumped.

5 The resident dump task receives control.

6 After cleanup, control returns to the caller.

Module Segment

SCHSRB

IEAVTSDT

:t Diagram 22-33. CHNGDUMP Routine (IEEMB815) (part 1 of 4)
01
N

o
til ,

"< til
N
til
'<
~
5;
r-
~
(:).

t"'"

~
.$
<:
o = a
~

01:0

'< til
N

::c
~

i
~
w
:....
'-'

Register 2

I @XSA

(XSA

I

From Module I EE0403D to
change dump options

I

I XAL

D r-
1 Command Buffer I

CVT

@RTCT

....
~1 Get storage for work area and

initialize it.

2 Validity check keywords and options:

• Check delimiters.

• Check keywords.

• Check options.

..
v 3 Initialize the RTCT with options

from CHNGDUMP work area.

It
-'--

Work Area ..
v

R14SVC34 ..
IEAVGMOO

y
... R14SAVE
... GETMAIN

Work Bits

XSASAVE

=

CHNGDUMP Work Area

R14 SVC 34 I R14 SAVE

Work Bits
..... I XSASAVE

CHNGAREA
y

RTCHWORK

RTCT

RTCTSAO

") RTCTSDO
"

RTCTSUO

RTCTABD

~
~

~
c:r
= t-.J

3':
~

[
o -o
"g
~
S·
=
~

~
0-
~

Diagram 22-33. CHNGDUMP Routine (IEEMB81S) (part 2 of 4)
~

Extended Description

The CHNGDUMP routine processes the CHNGDUMP
operator command which overrides any dump options
that exist in the system. These options vary according to
the type of dump originally requested. For SYSABEND
and SYSUDUMP requests, the dump options which exist
in the system are a result of merging all of the following:

• IEAABDOO or I EADMPOO SYS1.PARMLIB members.

• Options indicated on the ABEND macro instruction
requests.

• Options indicated on the CALLRTM macro instruction
requests.

• Options indicated on the SETRP macro instructions
requested by recovery exits.

For SVCDUMP requests, the dump options which exist in
the system are those indicated on the SDUMP parameter
list passed to the SVCDUMP routines.

The XSA (extended save area) of the SVC 34 SVRB acts
as the communications area between the SVC 34 router
module (I E E0403 D), and the various command processors,
such as CHNGDUMP.

Module Segment Extended Description

1 The CHNGDUMP routine obtains storage from sub
pool 229 for the work area.

2 CHNGDUMP performs a loop to" check each option
as set off by delimiters, as follows:

• Scan the parameters for any delimiter, and then call the
appropriate delimiter subroutine.

• The delimiter subroutine determines whether the param
eter is an option or a keyword. For keywords, the sub
routine checks their validity; for options, control goes the
option handler subroutine.

• The option handler subroutine verifies the option and
places it in the work area.

3 If no errors occurred in the processing described in
step 2, the CHNGDUMP routine sets the RTCT values

as requested by the CHNGDUMP command.

Module Segment

IEEMB815 CHDINIT

CHDCNTRL

CHDCDSS

~ Diagram 22-33. CHNGDUMP Routine (IEEMB81S) (part 3 of 4)
~
~

o

~
N
c-n
'<
~

~
r-
<i
(is'

r-
~
~
<:
o

~
~

~

'< c-n
N

::c
i
16
~
:..., -

Process

4 Put MSGINDEX in XAE and issue
message,

5 Free work area storage,

6 Exit via branch register 14,

To IEE0403D

Output

XSA

XAEI

fIl a e'
=
~

~
51
[
o
'"" o

"1:1 a
(5'

=
i"'
~
0\
VI

i(~

Diagram 22-33. CHNGDUMP Routine (IEEMB815) (part 4 of 4)

Extended Description

4 The message index goes into the XAE field of the
XSA (extended save area). Then, the CHNGDUMP

routine uses the SVC 34 message module, module
IEE0503D, to print the message. The message states that
either the CHNGDUMP request was accepted or rejected.

5 The CHNGDUMP routine then frees the CHNGDUMP
work area via the FREEMAIN service.

6 Control returns to the caller, module IEE040D, via a
BR 14.

Errors which occur during CHNGDUMP processing are
handled by the SVC 34 EST AE routine (module
IEE5103D).

Module Segment

IEE0503D IEE0503D

IEEMB815 IEEMB815

IEEMB815

:t Diagram 22-34. Recording Processing (lEA VTRER) (part 1 of 4)
Q\
Q\

~
~
I:I.l
N
I:I.l
'<
~ a
i
~ e: e
'<

~
i
~

'<
I:I.l
N
:;c

i
~
CN

~

From the RECORD maao to

Input

Register 0

I Flags I Length

I @ Data or Parm List
->

< ,---

0
CVT

record information
on SYS1.LOGREC ...
)

I

....) A
v

(mRTMa
RTCT RTMRCB

V - --RTCTRCB RCBFLGS

Process

..
1 Perform emergency recording

v when the system fails.

....
) 2 Reserve space for and build the v

record.

I-- 3 Give control to the recording task.

• Recording task active.

• Recording task not active;
schedule the SRB.

t

Output

Register 0
.... I I Length of Record

-y

Register 1

I @ Last Record I

RTMRCB
....

D v

..
" Step 4 RTMRCB

" RCBFLGS
v

RCBSRB

til
(I>
n g.
= t-J

~
(I>

[
o -.
o
-= ;
g.
=
~
J;.
0'1

"

Diagram 22-34. Recording Processing (lEA VTRER) (part 2 of 4)

Extended Description

Recording processing writes the records that R/TM creates
in the course of its processing. Recording processing builds
the record in the RTMRCB (RTM record control block) to
contain recording information. Then, the recording task
writes the record, via SVC 76.

Recording processing consists of two separate modules; the

recording request routine which builds the record in the
RTM RCB; and the recording task, which actually writes
the record. Th~ recording request routine receives control
after a system routine issues the RECORD macro instruc
tion. This routine uses the input information to build the
record. After this routine finishes its processing, it gives
control to the recording task. The recording task receives
control when the recording request routine schedules an
SRB (service request block), which posts the ECB the
recording task is waiting on.

R/TM creates records for hardware and IBM-software
errors when requested by ESTAE routines or FRRs.

Module Segment Extended Description

1 The recording request routine first determines
whether the caller is the system termination routine.

I n this case, it returns the address of any records directed
to SYS1.LOGREC to the caller. This means that WTO
(write-to-operator) records are lost.

The recording request routine places a return code of 4 in
register 15 if no records remain to be written to
SYS1.LOGREC.

2 The recording request routine reserves the storage
necessary to build the record in the RTMRCB. It

then constructs a record header with the recording infor
mation from the parameter list.

3 The recording request routine can now give control to
the recording task. The recording task receives control,

to asynchronously write the records. The recording request
routine schedules an SRB to post the waiting recording
task.

The recording request routine returns control to the caller
who issued the RECORD macro instruction.

Module Segment

IEAVTRER

FINDSPCE

SCHEDSRB

f"
~
00

G5
~
N
~
'<
=-a
E n·
Co
g'

~
< o = i
~

~
N
:;c
~

i
~
~

~

Diagram 22-34. Recording Processing (lEA VTRER) (part 3 of 4)

From Dispatcher after the schedu
receives control and post the reco
task. (ECB =RTCTRECB)

\. JI..

v

Recording Task

4 Wr ite the record.

• Obtain a buffer and move the .
record into it.

• Write the record via SVC 76 .

5 Indicate that the record has been
written and free the buffer.

6 Return to wait state
(ECB =RTCTRECB).

Buffer

"
y

Copy of .. GETMAIN
Record

~

~

....

..
r SYS1.LOGREC

~ Recorder
....

ECa

" I I y

..
POST

~

.... Post's Record
.... Written

--" FREEMAIN
r

~
Frees Buffer

--"
r MCHWTO

~
Routine -
For Hardware Errors

~Waits .. te

fIl a
0'
= !'!
a:: a
8:
o
o
~

a g.
=
~
~
\0

Diagram 22-34. Recording Processing (lEA VTRER) (part 4 of 4)

Extended Description

4 The recording task first obtains a record buffer by
issuing GETMAIN for storage equal to the length of

the RTMRCB, and moves all records into this buffer. The
recording task gives control to SVC 76 to actually write
the records from the buffer to SYS1.LOGREC.

5 The POST routine posts that the record has been
written, if requested.

The recording task then frees the buffer obtained in
step 4.

For all records written, the recording task gives control to
the MCH (machine check handled WTO routine.

The MCH WTO routine then determines whether to write
a message to the operator, In all cases, however, the MCH
WTO routine notifies the operator for hardware errors.

6 The recording task returns to the wait state to
wait to be posted again.

Module Segment

IEAVTRET REBUF

WRITERCD

POSTER

4-470 OS/VS2 System Logic Library Volume 4 (VS2 Release 3.7)

ABDUMP 4-392,4-381
ABDUMP initialization (See OS!VS2 System Initialization

Logic)
abnormal end of task 4-330
ABTERM request 4-370
access control block (see ACB)
access method, pseudo (see pseudo access method)
account tables (see ACT)
ACR introduction 4-322
ACR overview processing 4-436
address, return, for TIME requests 4-6
address space (see also memory)

dispatching 4-85
lock verification 4-176
master scheduler, reschedulingJR/TM in 4-368
priorities in 4-84
switching 4-84
termination

conditions in super FRR 4-172
in purging timer queue elements 4-17
processing 4-333, 4-426
requester routine 4-428

verifying 4-176
address validity checking 4-162
~ffinity (see CPU affinity)
allocate from groups picked by algorithm (see IEFAB478

object module)
allocate function control (see IEFDB410 object module)
allocation queue manager (see IEFAB4FA object,module)
allocation queue manager request block (see AQMRB)
allocation work area (see ALCW A)
alternate CPU recovery (ACR)

in synchronous timer recovery 4-36
introduction 4-322
overview processing 4-436

APF (see authorized program facility)
ASCB (address space control block)

in ASCBCHAP process sing 4-164
in dispatcher 4-56
in dispatchin& the wait task 4-82
in establishing timer intervals using STIMER 4-8
in exit processing (lEA YEOR) 4-256
in exit prolog 4-258
in EXTRACT processing 4-254
in global SRB dispatcher 4-72
in I/O interrupt handler 4-94
in memory switching 4-84
in POST processing 4-222
in program check interrupt handler 4-112
in PURGEDQ 4-144
in purging timer queue elements 4-16
in routing to FRRs 4-354
in resume routine 4-191.6 (VS2.03.807)
in RTMI rescheduling 4-366
in SCHEDULE processing 4-140
in SETLOCK processing 4-154
in stage 3 exit effector 4-134
in STATUS processing 4-260
in supervisor routine dispatching 4-76
in suspend routine 4-191.0 (VS2.03.807)
in SVC interrupt handler 4-88
in task dispatching 4-78
in TQE processing 4-22
in TQ E purge routine 4-16
in validity check processing 4-162
in WAIT processing 4-220

ASCB priority
adding 4-164
deleting 4-164
in ASCBCHAP processing 4-164

ASCBCHAP processing 4-164
ASM (see auxiliary storage manager)
ASVT (address space vector table)

in address space lock verification 4-176
in TQE processing 4-22

repairing 4-178
verifying 4-178

ASXB (address space extension block)
in CHAP processing 4-214
in DETACH routine 4-210
in I/O interrupt handler 4-94

Index

in rescheduling locally locked task or SRBs 4-372
in routing to FRRs 4-354
in stage 3 exit effector 4-134
in supervisor routine dispatching 4-76
in validity check processing 4-162

asynchronous exits (see exit asynchronous)
asynchronous timer recovery 4-38
ATTACH processing 4-198
attributes, user (see V APS)
authorization checking (TESTAUTH) 4-270
authorization for CHAP 4-214
authorized program facility (APF)

TESTAUTH routine 4-270
automatic priority group (see APG)
auxiliary storage manager I/O request area (see AlA)
available queue element. (see AQE)

BASEA (see MSRDA)
BLDL/program fetch interface 4-288
broadcast data set (see SYS l.BRODCAST)

calculating a time interval
in checking a time interval using TTIMER 4-10

CALLRTM macro instruction
in initialization of RTM 4-344
overview 4-342

CANCEL command
R/TM processing for 4-332

cancellation
time limit checking 4-16

cancelling a time interval
in checking a time interval using TTIMER 4-10

CDE (contents directory entry)
in BLDL/program fetch interface 4-288
in DELETE routine 4-294
in IDENTIFY routine 4-296
in LINK routine 4-278
in LOAD routine 4-292
in program fetch 4-308
in routing to searching routines 4-284 .
in searching the LP A directory 4-286

changing dispatchability indicators 4-260
changing system mask with MODESET 4-268
channel availability table (see CAT)
CHAP processing 4-214
check, machine

in synchronous timer recovery 4-36
checking timer components 4-36
checking timer interval using TTIMER 4-10
clock, TOO (see TOD clock)
clock comparator

in asynchronous timer recovery 4-38
in timer functional recovery routine 4-24
interruption type 4-18
setting ·4-20

coefficients, resource (see resource factor coefficient)
command, reconfiguration (see reconfiguration commands)
communications task

FRR
use of 4-415

comparator, clock (see clock comparator)
components, timer

checking machine-check validity
in synchronous timer recovery 4-36-4-37

error count of component in error in CSD 4-37
in establishing TQE using STIMER 4-9
initialization verification

Index 1-1

•

in synchronous timer recovery 4-36-4-37
verifying usability of 4-9

condensed dump (VS2.03.80S)
function 4-393-4-395 (VS2.03.80S)

control, common allocation (see common allocation
control)

control blocks (see data areas)
conversion, time interval unit 4-10
conversion, timer unit

in establishing timer intervals using STIMER 4-8
in processing TIME requests 4-6

corequisite publications iv (preface)
CPU affinity

in dispatchin~ local supervisor routines 4-76
CPU dependencIes, in memory switching 4-84
CPU hold routine error recovery

in timer FRR 4-24
CPU recovery, alternate

in synchronous timer recovery 4-36
introduction 4-322
overview processing 4-436

CPU signaling (signal service routines-IPC) 4-120
CPU timer error recovery 4-38
CPU timer interruption type, determining 4-18
cross-memory post requests 4-222
CSCB (command scheduling control block)

in EXTRACT routine 4-255
CSD (common system data area)

in set clock comparator routine 4-20
in setting a specific TOD clock 4-26
in signal service routines (IPC) 4-120
in status processing 4-262

CVT (communication vector table)
in address space lock verification 4-176, 4-178
in ASCBCHAP processing 4-164, 4-166
in emergency signal second level interrupt handler

4-128
in ENQ/DEQ/RESERVE routine 4-242
in memory switch processing 4-84
in processing TIME requests 4-6
in PURGEDQ processing 4-144
in restart interrupt handler 4-116
in RTMI exit processing 4-376
in SCHEDULE processing 4-138
in set clock comparator routine 4-20
in SVC interruption handler 4-90
in timer SLIH (second level interrupt handler) 4-18
in TOD clock operator communication routine 4-30
in TOD clock status test routine 4-34
in TOD clock synchronization routine 4-32
in TQE dequeue routine 4-14
in TQE enqueue routine 4-12
in TQE processing routine 4-22
in XCTL routine 4-300

CVTDATE field, use of in TQE processing routine 4-22

data definition (see DD function control) 4-12
DCB (data control block)

in BLDL/program fetch interface 4-288
in program fetch (building a DCB) 4-311
in routing to searching routines (use of DCB operand)

4-285
DEB (data extent block)

BLDL/program fetch interface, in 4-288
DEQ macro instruction (see ENQ/DEQ/RESERVE

routine)
dequeueing TQEs (timer queue element)

in checking a time interval using TTIMER 4-10
in TQE Dequeue routine 4-14
in TQE Purge routine 4-16-4-17

DETACH processing 4-206 .
device allocation/unallocation (see allocation/unallocation)
devices, generic (see generic allocation control)
DF code on restart interrupt 4-116
DIE TQE 4-3, 4-22 (VS2.03.807)
direct access data set (see DADSM)
direct signal routine 4-125
directory, LP A searching 4-286
dispatchability, changing (STATUS processing) 4-261

1-2 OS!VS2 System Logic Library Volume 4 (VS2.03.807)

dispatcher
local supervisor dispatcher 4-76
processing 4-54
SRB

queues 4-54
task dispatcher 4-78
wait task dispatcher 4-82

dispatching
local SRBs 4-74
local supervisor routines 4-76 '
priority, changing

in CHAP 4-214
the wait task 4-82
with address space switch 4-85

DOM (delete operator message) ID entries
double-threaded queues, verifying for a supervisor recovery

routine 4-170
DSS

action on restart interrupt 4-116
dump, ABEND, processing overview 4-335
dump, SNAP, processing overview 4-335
dump, SVC, overview 4-336-4-337
DWWIN
dynamic support system (see DSS)

ECB (event control block)
in DETACH routine 4-208
in overlay supervisor 4-306
in POST processing 4-222
in WAIT processing 4-220

ECB parameter on DETACH 4-208
ECCDB
EED

in processing hardware errors 4-348
in rescheduling locally locked task or SRB 4-372
in R/TM clean up processing 4-375
in RTMI rescheduling 4-366
in system directed task termination 4-370

embedded entry point, in IDENTIFY 4-297
emergency signal SLIH 4-128
emergency signal interruption det~rmination 4-98
end of task (see EOT)
ENQ/DEQ/RESERVE routine 4-242
ENQ macro instruction (see ENQ/DEQ/RESERVE

routine)
enqueueing a TQE 4-12
EOT (end of task)

abnormal (ABEND) 4-330
determination in exit prolog 4-258
invocation by EXIT processing 4-257
normal 4-328

EPAL (external parameter area locate mode, see EPA)
EPAM (external parameter area move mode, see EPA)
enqueue, of TQE 4-12
error processing (see also error recovery EST AE processing)

abnormal end-of-task (ABEND) 4-330
for hardware errors 4-326
for page I/O errors 4-324
hardware 4-348

error recording
in timer functional recovery routine 4-24

error recovery. (see also error processing, EST AE
processing)

clock comparator
in asynchronous timer recovery 4-39
in timer error recovery 4-24

CPU timer
in asynchronous timer recovery 4-39

Timer FRR 4-24
TOD clock

in asynchronous timer recovery 4-39
error recursion (see recursion processing of errors)
error, user exit

in checking a time interval using TTIMER 4-11
in establishing timer intervals using STIMER 4-9
in processing TIME requests 4-7

errors, hardware, processing of 4-348
ESR (extended SVC routing) 4-86-4-87, 4-44
establishing timer intervals using STIMER 4-8

ESTAE
in TIME service routine 4-7
service routine 4-430

ETXR parameter
on ATTACH 4-201
on DETACH 4-207

event table, description of in EVENTS routine
4-237-4-239

EVENTS processing 4-234
error processing 4-240-4-241
synopsis of 4-196

EVENTS ECB
processing in POST routine 4-225

exclusive control (see XCTL routine)
exit, asynchronous scheduling in stage-3 exit effector

4-134
exit, attention (see attention exit)
exit effectors

stage 1 4-130
stage 2 4-132
stage 3 4-134
stage 3 switch, checking 4-132
use in task dispatching 4-78

exit handling"(see EXIT routine)
EXIT prolog

EOT determination 4-258
force dispatch switch 4-259
passing control to EXIT routine 4-259
processing 4-258

EXIT routine 4-256
exit processing, RTMI 4-376
exit, asynchronous, processing in task dispatcher 4-79
exit, user error

in checking· a time interval using TTIMER 4-11
in establishing timer intervals using STIMER 4-9
in processing TIME requests 4-7

extended SVC routing (ESR) 4-86-4-87, 4-44
external call second level interrupt handler 4-126
external first level interrupt processor (see also external

interrupt processing)
codes 4-98
processing 4-98

external old PSW 4-99
external parameter area (see EPA)
external parameter area locate mode (see EPA)
external parameter area move mode (see EPA)
EXTRACT macro instruction processing 4-254

faults (see page faults)
fetch (see program fetch)
first level interrupt handler

external 4-98
FLIH (first level interrupt handler)

external 4-98
force dispatching switch, setting in exit prolog 4-259
frame (see page frame)
freeing TQE space in TTIMER routine 4-10
FRR (see functional recovery routine)
FRR stack

in dispatching local SRBs 4-74
initialization 4-440
in I/O interrupt handler 4-95
in restart interrupt handler 4-118
in routing to FRRs 4-354

full analysis (see system resources manager)
functional recovery routine (see also termination conditions)

routing to 4-354
SLIP processing 4-356-4-357
"SUPER" (supervisor control) 4-172
use by LINK routine 4-282-4-283
use by SPIE 4-251
use by XCTL 4-304

generation data group (see GDG)
global SRB

dispatcher 4-74
GMT (Greenwich Mean Time)

in processing TIME requests 4-6

timer interval requests in STIMER routine 4-9
GSMQ (global service manager queue)

in dispatcher 4-54
in PURGEDQ 4-144
in SCHEDULE processing 4-138

GSPL (global service priority list)
dispatching global SRBs 4-72
in PURGEDQ 4-144
in dispatcher 4-54
in SCHEDULE processing 4-142

hardware error processing 4-348, 4-326
hardware status bytes, timer, checking 4-39
high order synchronization in TOD clock status test routine

4-35
HIPO (see Method-of-Operation section)
housekeeping (see JFCB housekeeping)

ICB2AIR object module
function 4-406-4-407, 4-416-4-417

IDENTIFY routine 4-296
IEATLEXT object module

function 4-23
lEA VEACO object module

function 4-164, 5-52
lEA VEA TO object module

function 4-198
lEA VECHO object module

function 4-214
lEA VEDR object module

function 4-124
lEA VEDSR object module

function 4-172
lEA VEDSO object module

function 4-54
lEA VEEDO object module

function 4-206
lEA VEEEO object module

function 4-134
lEA VEEE2 object module

function 4-132
lEA VEES object module

function 4-128
lEA VEEXP object module

function 4-258
lEA VEEXT object module

function 4-99
IEAVEEIR object module

function 4-103
lEA VEE3Robject module

function 4-103
lEA VEFOO object module

function 4-130
lEA VEIO object module

function 4-94
lEA VEIOR object module

function 4-98
lEA VEIPR object module

function 4-125
lEA VELCR object module

function 4-177
lEA VELK object module

function 4-148
lEA VELKR object module

function 4-161
lEA VEMSI object module

function 4-126
lEA VEMSO object module

function 4-84
IEAVENQl object module

function 4-242
lEA VEOR object module

function 4-256
lEA VEPC object module

function 4-104
lEA VEPCR object module

function 4-115
lEA VEPDR object module

Index 1-3

function 4-145
lEA VEPDO object module

function 4-144
lEA VEQVO object module

function 4-170
lEA VERER object module

function 4-119
lEA VERES object module

function 4-116
lEA VERI object module

function 4-120
lEA VERP object module

function 4-122
lEA VESCR object module

function 4-142
lEA VESCO object module

function 4-138
lEA VESPR object module

function 4-172 .
lEA VESVC object module

function 4-86
lEA VESVR object module

function 4-93
lEA VETCL object module (VS2.03.807)

function 4-191, 4-191.6 (VS2.03.807)
special entry 4-81 (VS2.03.807)

lEA VEV AL object module
function 4-162

lEA VEVRR object module
function 4-178-4-179

IEAVEVTO
function 4-234

lEA VEXS object module
function 4-126

lEA VIDoo object module
function 4-296

lEA VLKOO object module
function 4-278, 4-290, 4-292, 4-294, 4-300

IEAVLKOI object module
function 4-286-4-289

lEA VLK03 object module
function 4-280-4-281

lEA VMFRR object module
use of 4-415

lEA VMODE object module
function 4-268

lEA VPFTE object module
IEAVRTIO object module

function 4-18
IEAVRTIl object module

function 4-36, 4-17, 4-24
IEAVRTOD object module

function 4-38, 4-34, 4-32, 4-30
lEA VRToo object module

function 4-10, 4-8
IEAVRTOI object module

function 4-6, 4-9
lEA VR T02 object module (VS2.03.807)

function 4-11 (VS2.03.807)
lEA VSETS object module

function 4-260
IEAVSSNQ (entry name)

function 4-266
lEA VST AO object module

function 4-430
lEA VSY50 object module

function 4-222
lEA VT ABD object module

function 4-392, 4-381
lEA VT ACR object module

function 4-436
lEA VT AS 1 object module

function 4-388
lEA VT AS2 object module

function 4-388
lEA VT AS3 object module

function 4-390
lEA VTBoo object module

function 4-250, 4-254
lEA VTCTL object module (VS2.03.807)

1-4 OS/YS2 System Logic Library Yolume 4 (VS2.03.807)

function 4-191.0 (VS2.03.807)
lEA VTEST object module

function 4-270
lEA VTMMT object module

function 4-410
lEA VTMRM object module

function 4-416
lEA VTMTC object module

function 4-426
lEA VTMTR object module

function 4-428
lEA VTRCE object module

function 4-168
lEA VTRER object module

function 4-466
lEA VTRET object module

function 4-468
IEAVTRTC object module

function 4-380-4-381
lEA VTRTE object module

function 4-380-4-381
lEA VTRTH object module

function 4-348, 4-342
IEAVTRTM object module .

function 4-366, 4-370, 4-352, 4-371, 4-343
IEAVTRTR object module

function 4-360-4-361, 4-356-4-357, 4-362-4-363
lEA VTRTS object module

function 4-354
IEAVTRTI object module

function 4-344, 4-376, 4-342
lEA VTRT2 object module

function 4-382, 4-385
lEA VTSDT object module

function 4-460
lEA VTSDX object module

function 4-458
lEA VTSIN object module

function 4-440
lEA VTSKT object module

function 4-398
IEAVOPTOI object module (YS2.03.80S)

function 4-222,4-223 (YS2.03.80S)
lEA VOPT03 object module (YS2.03.80S)

function 4-222,4-223 (VS2.03.80S)
IEEMSER (see MSRDA)
IEFIRECM object module

function 4-415
IEFJRECM object module

function 4-415
IGCOO3 4-328-4-329
IGC125 object module

function 4-234, 4-236
IHSA (interrupt local supervisor save area)

in dispatcher processing 4-56
in dispatching local supervisor routines 4-76
in external call FLIH 4-100
in I/O interrupt handler 4-94
in program check interruption handler 4-112
in rescheduling locally locked tasks or SRBs 4-372
in SETLOCK 4-152

incorrect address for MIC or STCK request in a TIME
request 4-6-4-7

initialization
timer component

in synchronous timer recovery 4-36-4-37
initiator resource manager

function 4-415
input stream (see converter)
input options for MF/l (see options,MF/l)
installation performance specifications (see IPS values)
in-stream procedures (see JCL statements)
'instructions (see also macro instructions)
integrity (see data set integrity processing)
interprocessor communications 4-120
interrupt handlers (see supervisor interrupt handler, SLIH,

FLIH)
SVC . 4-86

interval, timing
calculating

in checking a time interval using TTIMER 4-10
cancelling

in checking a time interval using TTIMER 4-10
converting unit 4-10
in establishing timer intervals using STIMER 4-8

I/O interrupt handler 4-94
I/O interruption processing 4-94
I/O old PSW 4-94
I/O supervisor, going to from I/O interrupt handler 4-94
IPC (interprocessor communications) 4-120-4-125
IPS scanner message module

flowchart 4-466
IQE (interrupt queue element)

in ATTACH routine (obtaining storage for IQE) 4-200
in DETACH routine (freeing IQE) 4-206
in stage 2 exit effector 4-132
in stage 3 exit effector 4-134

IRB (interruption control block)
in DETACH routine 4-206
in stage 1 exit effector 4-130
in stage 3 exit effector 4-134
in XCTL routine 4-302

ISTRAMA 1 object module
function 4-404-4-405

job control language (see JCL)
job step allocation (see step allocation)
job step time limit, checking in TQE processing routine

4-23
journal (see job journal)
JSCB (job step control block)

in LINK routine 4-278
in TEST AUTH routine 4-270

JSXL (job scheduling exit list)
in LOGON

scheduling 4-378

LCCA (logical communications configuration area)
in dispatcher 4-54
in dispatching local SRBs 4-74
in external call FLIH 4-98
in global SRB dispatcher 4-72
in I/O interrupt handler 4-94
in memory switching 4-84
in program check interruption handler 4-104
in restart interrupt handler 4-116
in resume routine 4-191.6 (VS2.03.807)
in routing to FRRs 4-354
in RTM2 initialization 4-344
in SCHEDULE processing 4-138
in SETLOCK 4-148
in SLIH processing 4-352
in supervisor interruption handler 4-86
in synchronous timer recovery 4-36

limit priority, use of by CHAP 4-215
LINK macro instruction (see also link routine)

functional recovery routine 4-282-4-283
macro instruction parameters, processing according to

4-284, 4-288
processing 4-278
use of BLDL/program fetch 4-288
use of the searching routines 4-284, 4-286

link pack area (see LP A)
link routine

branch to in XCTL routine 4-302
LLE (link list entry)

in delete routine 4-294
in load routine 4-292

LOAD processing 4-292
loading modules

in LOAD routine 4-292
in program fetch 4-308

local time
processing TIME requests 4-6
TOD clock operator communications 4-31

locally locked task, rescheduling 4-372
lock manager (see SETLOCK)
locking services/considerations

for address space 4-176
refreshing lock 4-176
verifying 4-176

log data set (see system log)
log hardcopy (see hardcopy of system log)
log, system (see system log)
logical reconfiguration (see reconfiguration commands)
LOGON (see also LOGOFF)

ESTAI exit
loading 4-380

scheduling
error processing in RTM2 4-380

low storage verification and refresh 4-176
LP A (link pack area)

directory, searching 4-286-4-287
LPDE (link pack directory entry)

in searching the LP A directory 4-286
LRB (LOGREC record block)

in synchronous timer recovery 4-36
LSMQ (local service manager queue)

in dispatcher 4-54
in PURGEDQ 4-144
in SCHEDULE processing 4-138

LSPL (local service priority list)
in PURGEDQ 4-144
in SCHEDULE processing 4-138

machine check
in synchronous timer recovery 4-36-4-37

major name
in ENQ/DEQ/RESERVE 4-243

major QCB 4-242
manipulation of channel command control blocks by

program fetch 4-311
master address space, rescheduling R/TM in 4-368-4-369
master JCL
master TOD clock value calculation 4-32-4-33
MCH (machine check handler) use of RTMI 4-348
MCH logrec buffer 4-349
memory (see also address space, cross memory, virtual

memory)
priority, changing 4-164
switching 4-84
termination purges 4-410

MF/l
interval notification 4-22

MFA (malfunc.tion alert) interrupt processing 4-98
midnight value in TQE 4-22
minor QCB 4-242
minor name (rname)

in ENQ/RESERVE 4-243
MODESET routine, processing 4-268
mounting a volume (see volume mount & verify)
MP (see multi-processor system)
MSRDA or BASEA (master scheduler resident data area)

in TOD clock operator communication 4-30
MSS
MSS cleanup

in address space purge resource managers 4-416-4-417
in task purge resource manager 4-406-4-407

multi-unit generic (see MUG)

new address space (see address space)
normal EOT processing 4-328-4-329
notification

of address space termination or task termination
4-400, 4-424

obtaining space for TQE (timer queue elements)
in establishing timer intervals using STIMER 4-8

Operation (see Method of Operation Section)
operator TOD clock communication routine 4-30
operator console (see console)
operator restart interrupt handler, functions 4-116
Organization (see Program Organization Section)
override processing in interpreter

overlay supervisor 4-306

Index 1-5

page free request (see PGFREE)
page I/O error processing 4-324
page load (see PGLOAD)
parse (see IKJPARSE)
path, device (see device path)
PCCA (physical communications configuration area)

in asynchronous timer recovery 4-38
in emergency signal second level interrupt handler

4-128
in external call second level interrupt handler 4-126
in memory switching 4-84
in setting a specific TOD clock 4-26
in setting clock comparator 4-20
in signal service routines 4-120
in synchronous timer recovery 4-36
in TOD clock synchronization 4-32
in TOD clock status test 4-34
in TQE dequeue 4-14
in TQE enqueue 4-12
in TQE processing 4-22

PCCA T (physical communications configuration area vector
table)

in TOD clock status test 4-34
in TQE dequeue 4-14

PCCA VT (see also PCCA T)
in memory switching 4-84

percolation
in recovering a task 4-3904-391

PFK (see program function key)
PICA (program interruption communication ar~a)

in program check interrupt handler 4-110
in SPIE routine 4-250
in SYNCH routine 4-290

PIE. (program interruption element)
in program check interruption handler 4-104
in SPIE routine 4-250
in SYNCH routine 4-290

pool (see quick cell)
POST

error handling 4-229-4-233
processing 4-222
SRB processing for cross-memory post 4-226-4-229

post exit processing (VS2.03.80S)
function 4-222, 4-233 (VS2.03.80S)

PRB (program request block)
in LINK routine 4-280
in XCTL routine 4-300

priority (see CHAP) 4-214
processing TIME requests 4-6
processors, command (see command processing)
program check interruption handler 4-104
program fetch processing

interaction with LINK macro 4-288
interface to BLDL 4-288
processing 4-308
use 4-306

programmed timer
in establishing timer intervals using STIMER 4-8

programmer, writing to (see WTP)
prolog

exit 4-258
prompting exit (see pre-prompt exit, LOGON)
PSA (prefixed save area)

in dispatcher 4-54
in dispatching local SRBs 4-74
in dispatching local supervisor routines 4-76
in emergency signal second level interrupt handler

4-128
in external call first level interrupt handler 4-98
in external call second level interrupt handler 4-126
in I/O interrupt handler 4-94
in memory switching 4-84
in program check interruption handler 4-104
in restart interrupt handler 4-116
in routing to FRRs 4-354
in RTMI initialization 4-344
in SETLOCK 4-148
in SLIH processing 4-352
in stage 3 exit effector 4-134
in supervisor ,interruption handler 4-86

1-6 OS/VS2 System Logic Library Volume 4 (VS2.03.807)

in task dispatching 4-80
in validity check processing 4-162
in wait task dispatching 4-82

PSAANEW 4-84
PSAAOLD 4-84
PSW (program status word)

external call old 4-98, 4-126
in dispatching the wait task 4-82
in global SRB dispatcher 4-72
in I/O interrupt handler 4-94
in MODESET routine 4-268
in rescheduling locally locked tasks or SRBs 4-372
in SLIH processing 4-352
in SPIE routine 4-250
in SYNCH routine 4-290
in validity check processing 4-162
vait 4-82

PURGEDQ processing 4-144
purging SRB

in purging timer queue elements 4-16
purging timer queue elements 4-16

QCB (queue control block)
in ENQ/DEQ/RESERVE routine 4-242

QEL (queue element)
in ENQ/DEQ/RESERVE routine 4-242

queue verification 4-170

RB (request block) (see also VM & V request block)
in ATTACH routine 4-198
in exit prolog 4-258
in exit routine (lEA VOR) 4-256
in external call first level interrupt processing 4-98
in identify routine 4-296
in I/O interrupt handler 4-94
in MODESET routine 4-268
in POST processing 4-222
in program check interruption handler 4-104
in recovering a task. 4-388
in routing to searching routines 4-284
in RTM rescheduling 4-366
in SETLOCK 4-148
in SPIE routine 4-250
in status routine 4-260
in supervisor interruption handler 4-86
in SYNCH routine 4-290
in system directed task termination 4-370
in TESTAUTH routine 4-270
in WAIT processing 4-220
in XCTL routine 4-300

real frame (see page frame)
real TQE (timer queue element)

in timer error recovery 4-24
in TQE dequeue processing 4-14
in TQE enqueue processing 4-12

recording, error (see error recording)
recording task, asynchronous 4-468
recovery, error (see error recovery ESTAI)
recovery, FRR (see functional recovery routine)
recovery/termination (R/TM) 4-319

abnormal EOT (ABEND) 4-330
CANCEL command processing 4-332
cleanup processing 4-372
dump processing 4-335-4-336
hardware error processing 4-326
normal termination processing 4-328-4-329
overview 4-319
page I/O error processing 4-324-4-325
restart interrupt handling 4-116
retry 4-331
task recovery processing 4-388
terminating of an address space 4-333-4-334

recursion processing of errors
in SUPER FRR 4-172

remote pendable signal routine 4-123
requests, allocation
requests, region (see region requests)
requests, timer interval

in establishing timer intervals using STIMER 4-8
rescheduling

locall)" locked task or SRB 4-372 .
of R/TM in master scheduler address space 4-368

resources available
in ENQ/RESERVE routine 4-242-4-243

resource manager
for address space purge 4-411
for task purge 4-:403

resources manager (see system resources manager)
resources unavailable

in ENQ/RESERVE routine 4-242
restart (see also checkpoint/restart, DSS)

interrupt handler processing 4-116
restart interrupt handler 4-116
restarting (see restart)
resume processing (VS2.03.807)

function 4-191.6 (VS2~03.807)
retry

processing in recovering a task 4-388, 4-390
R/TM processing for 4-331

RF code in lockword in restart interrupt handler
4-116-4-117

RMPL (system resources manager parameter list)
in purging timer queue elements 4-16

RMS service routine, branching to from emergency signal
SLIH 4-128-4-129

routing
to searching routines (see also LINK routine) 4-284
to FRRs 4-354

RPSGNL macro instruction, processing in external call
SLIH 4-126

RQE (request queue element)
in stage 2 exit effector 4-132
in stage 3 exit effector 4-134

RSM (see real storage manager)
RTCT (recovery termination table)

in RTM rescheduling 4-366
R/TM (see recovery termination)
R/TM rescheduling in master scheduler's address space

4-368
RTMI cleanup 4-374
RTMI entry point processor 4-376, 4-344, 4-342
RTMI exit processing 4-376
RTMI initialization 4-344
RTMI overview 4-342
RTMI SLIH mode

services Eerformed 4-366, 4-370, 4-352, 4-371, 4-343
RTMIWA (RTM work area)

in clean up 4-374
in processing SLIH requests 4-352
in RTMI exit processing 4-352

RTM2 initialization 4-382, 4-385
RTM2 mainline controller 4-380-4-381
RTM2 overview 4-378
RTM2W A (RTM work area)

in recovering a task 4-388

SCA (SPIE control area)
in program check interruption handler 4-104
in SPIE routine 4-250
in SYNCH routine 4-290

SCB (ST AE control block)
in ATTACH routine 4-198
in recovering a task 4-388

SCHEDULE macro instruction (see also PURGEDQ)
processing (scheduling SRBs) 4-138

scheduler (see job scheduler)
screen image buffer (see SIB)
SDW A (system diagnostic work area)

in ASCBCHAP processing 4-164
in asynchronous timer recovery 4-38
in checking a time interval using TTIMER 4-10
in ENQ/DEQ/RESERVE routine 4-242
in establishing timer intervals using STIMER 4-8
in identify routine 4-296
in LINK routine 4-278
in processing TIME requests 4-6
in PURGEDQ processing 4-144

in recovering a task 4-388
in routing to FRRs 4-354
in RTMI cleanup 4-374
in SCHEDULE processing 4-138
in SETLOCK 4-148
in SLIH processing 4-352
in setting a specific TOO clock use 4-26
in super FRR processing 4-172
in timer error recovey 4-24

searching TCB queue (in task dispatcher) 4-78
searching the LPA directory (lEA VLKOO) 4-286
second level interrupt handler (see SLIH)
security TEST AUTH processing 4-270
security switch on TOO clock, effect of releasing 4-33
service mode entries, processing in RTM 1 initialization

4-346
set clock comparator routine 4-20
SETDIE routine (VSl.03.807)

function 4-11.0 (VSl.03.807)
SIB (screen image buffer)
signal processor (see SIGP instruction)
signal routines (part of interprocessor communication)

direct signal routine 4-125
remote pendable signal routine 4-123

signalling other CPUs (signal service routines) 4-120
SIGP instruction

use in signal services routines 4-120
single line message (see WTO)
single thread queues, verifying

with header 4-170
SIRB (system interrupt control block)

in stage-3 exit effector 4-134
SLIH (second level interrupt handler)

emergency signal 4-128
external call 4-126
processing for RTMI 4-352
RTMI initialization, done to satisfy a request from a

SLIH 4-344
timer 4-18

SLIP (servicability level indication processing) 4-356-4-357
SLIP processing

function 4-360-4-361, 4-356-4-357, 4-362-4-363
SNAP dump processing 4-335
space, address (see address space)
SPIE routine 4-250, 4-254

FRR 4-251
SRB (service request block) (see also dispatcher)

cancelling in PURGEDQ routine 4-144
exit entry in dispatcher from POST 4-226-
global

dispatching 4-74
in dispatcher 4-54
in global SRB dispatcher 4-72
local

dispatching 4-74
in memory switch 4-84
in PURGEDQ processing 4-144
in rescheduling locally locked task or SRBs 4-372
in rescheduling RTM 4-366
in SCHEDULE processing 4-138
in stage 2 exit effector 4-132
in stage 3 exit effector 4-134
in status routine 4-260
in timer SLIH (second level interrupt handler) 4-18
in TQE processing 4-22
purging 4-16
removing 4-144
rescheduling 4-372

SSRB
in dispatching local SRBs 4-74
in program check interruption- handler 4-104
in rescheduling locally locked task or SRBs 4-372
in SETLOCK processing 4-148

stack, FRR (see FRR stack)
ST AE (set task asynchronous exit)

for SYNCH and LINK routine 4-280-4-281
service routine 4-430
for TTIMER 4-11

STAE/STAI relationship to recovery/termination 4-331
stage-l exit effector ~ 130

Index 1-7

stage-2 exit effector 4-132
stage-3 exit effector 4-134
STATE CHECK processing in TESTAUTH 4-270
statement (see JCL statement)
STATUS action codes 4-266
status, console (see console status)
status routine

processing 4-260
status, TOD clock

messages and return codes 4-31
testing for synchronization 4-34-4-35

STATUS STOP 4-266
STEPL (ST AE exit parameter list)
STIMER processing 4-8, 4-10
STOP MONITOR command
storage, low, verifying 4-176
storage management (see real storage manager, virtual

storage management, system resources manager)
stream, input (see converter)
subsystem interface

resource manager
function 4-415

subsytem name, determination of 638
supervisor control

authorization checking in TEST AUTH 4-270
FRR 4-172
overview discussion of 4-41

supervisor interruption handler
determining SVC types 4-86
processing 4-86

suspend processing (VS2.03.807)
function 4-191.0 (VS2.03.807)

SVAREA parameter on ATTACH 4-203
SVC dump, scheduling 4-458
SVC dump

overview 4-336
processing 4-452

SVC dump resources manager 4-411
SVC dump task, posting of 4-460
SVC interruptions (see supervisor interruptions handler)
SVC routing 4-87
SVC 3 4-328
SVC 13

in system directed task termination 4-371
rescheduling 4-373

SVC 109 (see extended SVC routing)
SVC 116 (see extended SVC routing)
SVC 122 (see extended SVC routing)
SVCIH (see supervisor interruption handler).
SVRB (supervisor request block)

in ATTACH routine 4-198
in BLDL/program fetch interface 4-288
in checking a time interval using TTIMER 4-10
in identify routine 4-296
in LINK routine 4-278
in load routine 4-292
in SVC interruption handler 4-86
in SYNCH routine 4-290
in XCTL routine 4-300

switch address spaces, indicating need for in memory switch
routine 4-84

SYNCH macro instruction processing 4-290
synchronization check in timer SLIH 4-18
synchronization of TOO clock

allowing checks for 4-34
setting to match master clock 4-32

synchronous exit processing (SYNCH routine) 4-290
synchronous timer recovery routine 4-36
System Activities Measurement Facility (see MF/l)
system directed task termination 4-370
system log data set (see system log)
system mask, changing with MODESET 4-268
System Measurement Facility (see SMF)
system parameter library (see SYS1.PARMLIB)
system reconfiguration (see reconfiguration commands)
system recovery manager (resource managers)

for address space purge 4-411
for task purge 4-403

system resources manager (SRM) (see also workload
manager)

1-8 OS/VS2 System Logic Library Volume 4 (VS2.03.807)

interface
with SCHEDULE processing 4-140
with timer 4-22

interval notification 4-22
timer interface 4-22

system, stopping (see stopping)
system termination conditions 4-319
system trace (see trace, system)
system trace termination (see trace termination)
SYS1.LOGREC

recording 4-466

task
creation (ATTACH) 4-198
dispatcher

asynchronous exit processing 4-79
function 4-78

locally locked, rescheduling 4-372
purge processing 4-398
recovery 4-388
termination

abnormal (ABEND) 4-330
conditions for 4-320
in purging timer queue elements and timer SRBs

4-16
normal 4-328
system directed 4-370

TQE queue
placing element on 4-12
removing elements from 4-14

wait task dispatcher 4-82
task management

overview 4-193-4-197
task recovery processing 4-388

TCAM cleanup
in address space purge resource managers 4-412-4-413
in task purge resource mangers 4-404-4-405

TCB (task control block)
in ATTACH routine 4-198
in CHAP processing 4-214
in checking a time interval using TTIMER 4-10
in delete routine 4-294
in DETACH routine 4-206
in dispatcher 4-54
in exit prolog 4-258
in exit routine (lEA VOR) 4-256
in external call first level interrupt handler 4-98
in EXTRACT routine 4-254
in identify routine 4-296
in I/O interrupt handler 4-94
in LINK routine 4-278
in load routine 4-292
in MODESET routine 4-268
in POST processing 4-222
in program check interruption handler 4-104
in purging timer queue elements 4-16
in routing to searching routines 4-284
in RTM rescheduling 4-366
in SETLOCK 4-148
in SPIE routine 4-250
in stage 3 exit effector 4-134
in status routine 4-260
in supervisor interruption handler 4-86
in SYNCH routine 4-290
in system directed task termination 4-370
in task dispatching 4-78
in timer SLIH (second level interrupt handler) 4-18
in TQE dequeue 4-14
in TQE enqueue 4-12
in validity check processing 4-162
in XCTL routine 4-300

TCW A (TOO clock work area) ,
in setting a specific TOO clock use 4-26
in TOO clock operator communication 4-30
in TOO clock status test 4-34
in TOD clock synclironization 4-32

termination, address space 4-426
purging timer queue elements 4-16

termination, task

abnormal (ABEND) 4-330
ip. purging timer queue elements and timer SRBs. 4-16
normal 4-328
system directed 4-370

terminator (see initiator/terminator)
TEST AUTH routine 4-270
text, internal (see converter, internal text)
TIME macro instruction processing 4-6, 4-9

error checking 4-7
time limit checking, canceling

in TQE purge routine 4-16-4-17
time

GMT specified for TIME requests 4-6
interval unit conversion in TTIMER 4-10-4-11
local

obtaining from a valid TOD clock for TIME requests
4-6-4-7

time wait limit, checking for a job step 4-23
timer, checking hardware status 4-39
timer components

checking in synchronous timer recovery 4-36-4-37
error count of component in error in CSD 4-37
in establishing TQE using STIMER 4-9
interruption types

clock-comparator 4-19
CPU timer 4-19
synchronous check 4-19

SLIH, processing of 4-18-4-19
timer, CPU

error recovery, asynchronous timer 4-38-4-39
interrupt type 4-19

timer error recovery
asynchronous timer recovery 4-38-4-39
synchronous timer recovery routine 4-36
timer FRR 4-24-4-25

timer EST AE processing
TIME service routine 4-7

timer interval
checking 4-22, 2-198
establishing TQEs using STIMER 4-8

timer second level interrupt handler (see timer SLIH)
timer service routines 4-3-4-38
timer SLIH 4-18-4-19
timer supervision overview 4-3
timer unit conversion

in establishing TQEs using STIMER 4-9
in processing TIME requests 4-7

timing intervals
calculating remaining interval in TTIMER 4-10
cancelling in TTl MER 4-10
setting (STIMER) 4-18-4-19

TIOT manager control routine
TaD (time-of-day) clock

high-order synchronization, test for 4-35
in processing TIME requests 4-6
in set specific clock (SSC) routine 4-26-4-27, 4-29
in asynchronous timer error recovery routine 4-38-4-39
manager 4-38, 4-34, 4-32, 4-30
master value calculation 4-33
operator communications 4-30-4-31
security switch 4-32-4-33
setting local time and date 4-31
status

messages 4-31
return codes 4-31
test 4-34-4-35

synchronization routine 4-30, 4-32, 4-34, 4-38
task-type request to STIMER 4-9

TPC (timer work area)
in asynchronous timer recovery routine 4-38
in processing TIME requests 4-6
in set clock comparator routine 4-20
in set specific clock (SSC) routine 4-26, 4-28
in STIMER service routine 4-8
in synchronous timer recovery routine 4-36
in timer FRR 4-24
in timer SLIH (second level interrupt handler) 4-18
in TaD clock operator communication routine 4-30
in TaD clock status test routine 4-34
in TaD clock synchronization routine 4-32

in TQE enqueue routine 4-12
in TQE processing routine 4-22
in TQE purge routine 4-16

TPCA (see TPC)
TQE (timer queue element)

dequeuing because of TTIMER CANCEL 4-10-4-11
in timer FRR 4-24-4-25
in TQE dequeue routine 4-14-4-15

enqueuing
in timer FRR 4-24-4-25
in TQE enqueue routine 4-12-4-13

freeing space for in TTIMER service routine 4-10-4-11
in TTIMER service routine 4-10-4-11
in establishing TQEs using STIMER 4-9
in TQE purge routine 4-16-4-17
in set specific clock (SSC) routine 4-26-4-29
in set clock comparator routine 4-20-4-21
in synchronous timer recovery 4-36-4-37
in timer SLIH (second level interrupt handler)

4-18-4-19
midnight field, updating 4-22.;.4-23
processing routine 4-22-4-23
real, queue

dequeueing in TQE dequeue routine 4-14-4-15
enqueueing in TQE enqueue routine 4-12-4-13
verification in timer FRR 4-24-4-25

task queue
de queueing TQEs from 4-14-4-15
enqueueing TQEs on 4-12-4-13

TQETYPE indicator
in TQE dequeue 4-15
in TQE enqueue 4-13

trace, system (see also trace termination)
processing 4-168

TSO LOGON (see LOGON)
TTl MER processing 4-10

unit affinity (see allocating affinity requests)
unit, allocating request to (see allocating requests to units)
unit, timer conversion

in establishing timer intervals using STIMER 4-9
in processing TIME requests 4-7

unset TaD clock, testing for 4-34
user error exit

in checking a timer interval using TTIMER 4-11
in establishing timer intervals using STIMER 4-9
in processing TIMER requests 4-7

user, swapping (see swap-in, swap-out)

validity checking an address or address range' 4-162
values, IPS (see IPS values)
volume serial number (see VOLSER)
volume, specific allocation (see specific volume allocation

control)
volume unload control (see IEFAB494 object module)
volunit table
VSM (see virtual storage management)
VSPC (VS2.03.805)

post exit processing 4-225,4-233 (VS2.03.805)
SVC screening 4-46,4-47 (VS2.03.805)

VT AM cleanup
in address space purge resource managers 4-412-4-413
in task purge resource managers 4-404-4-405

WAIT macro instruction processing (see also POST)
4-220

wait PSW 4-82
wait task, dispatching 4-82
wait TQE interval requests in STIMER 4-8
write-to-programmer (see WTP)

XCTL service routine 4-300
FRR 4-304

XMPOST
processing 4-222-4-223

XSA (extended save area)
in manipulation of command control blocks 4-308

\ Index 1-9

I-tO OS/VS2 System Logic Library Volume 4 (VS2.03.807)

(')

s.
g
."
o
0::
»
0'
:::I

OQ ,
5'
CD

OS/VS2
System Logic Library
Volume 4
SY28-0764-0

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation?

Number of latest Technical Newsletter (if any) concerning this publication:

Please indicate your name and address in the space below if you wish a reply ..

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

READ.ER'S
COMMENT
FORM

SY28-0764~O .

Your comments, please ..•

This manual is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

o s..
~'
." o
a:
l>
o
::l

(JQ ,...
. ~.
'<11

I
Fold Fold

- ------ - - - ---- - -----~

Business Reply Mail
~o postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department D58, Building 706-2
PO Box 390
Poughkeepsie, New York 12602

:"""
First Class
Permit 81
Poughkeepsie
New York

•

, I
I
I
I

-----------------------~
Fold

llrn~
(!)

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

U
...c

" a
C
to
~

C

