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3 Introduction 
System safety analysis techniques are well-established and are a required activity in the 

development of safety-critical systems. Model-based systems engineering (MBSE) methods and 
tools based on formal methods now permit system-level requirements to be specified and 
analyzed early in the development process. While model-based development methods are 
widely used in the aerospace industry, they are only recently being applied to system safety 
analysis.  

The Safety Annex for the Architecture Analysis and Design Language (AADL) provides the 
ability to reason about faults and faulty component behaviors in AADL models. In the Safety 
Annex approach, we use formal assume-guarantee contracts to define the nominal behavior of 
system components. The nominal model is then verified using the Assume Guarantee Reasoning 
Environment (AGREE). The Safety Annex provides a way to weave faults into the nominal system 
model and analyze the behavior of the system in the presence of faults. The Safety Annex also 
provides a library of common fault node definitions that is customizable to the needs of system 
and safety engineers.  

The Safety Annex supports model checking and quantitative reasoning by attaching 
behavioral faults to components and then using the normal behavioral propagation and proof 
mechanisms built into the AGREE AADL annex. This allows users to reason about the evolution of 
faults over time, and produce counterexamples demonstrating how component faults lead to 
system failures. It can serve as the shared model to capture system design and safety-relevant 
information, and produce both qualitative and quantitative description of the causal relationship 
between faults/failures and system safety requirements.  

This Users Guide is organized as follows. Section 2 provides a brief overview of AADL, 
AGREE, and the Safety Annex. Section 3 gives examples and explanations of the grammar and 
language of the safety annex. Section 4 provides a detailed approach for the tool suite and 
downloads.  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

4 Brief Overview of AADL, AGREE, and the Safety Annex 
The safety annex is meant to be used in the context of an AADL model that has been annotated 
with AGREE.  AGREE models the components and their connections as they are described in 
AADL and the safety annex provides fault definitions to these components and connections.  This 
section provides a very brief introduction to AADL, AGREE, and the safety annex through the use 
of a very simple model.    
 
Suppose we have a simple architecture with three subcomponents A, B, and C, as shown in 
Figure 1.  
 

 
Figure 1: Toy Example for Safety Annex and AGREE 

 
 
We want to show using AGREE that the system level property (Output < 50) holds, given the 
guarantees provided by the components and the system assumption (Input < 10). We also want 
to be able to model faults on each of these components. Some possible faults are shown in the 
diagram of Figure 1. 
 
In order to represent this model in AADL, we construct an AADL package.  Packages are the 
structuring mechanism in AADL; they define a namespace where we can place definitions.  We 



define the subcomponents first, then the system component.  The complete AADL is shown in 
Figure 2 below. 
 
 
 
 
 
 
package Integer_Toy 
public  
   with Base_Types; 
   with faults; 
    
system A 
 features 
  Input: in data port Base_Types::Integer; 
  Output: out data port Base_Types::Integer; 
    
 annex agree {**  
  assume "A input range" : Input < 20; 
  guarantee "A output range" : Output < 2*Input; 
 **};  
  
 annex safety {** 
  fault stuck_at_fault_A "Component A output stuck" : faults.fail_to { 
   inputs: val_in <- Output, alt_val <- prev(Output, 0);  
   outputs: Output <- val_out;     
                probability: 5.0E-5 ; 
   duration: permanent; 
  } 
 **}; 
end A ;  
 
system B 
 features 
  Input: in data port Base_Types::Integer; 
  Output: out data port Base_Types::Integer; 
    
 annex agree {**  
  assume "B input range" : Input < 20; 
  guarantee "B output range" : Output < Input + 15; 
 **}; 
  
 annex safety {** 
  fault stuck_at_fault_B "Component B output stuck nondeterministic" : 
faults.fail_to { 
   eq nondet_val : int; 
   inputs: val_in <- Output, alt_val <- nondet_val;  
   outputs: Output <- val_out;     
         probability: 5.0E-9 ; 
   duration: permanent; 
  } 
 **};  
end B ;  
 
system C 
 features 
  Input1: in data port Base_Types::Integer; 
  Input2: in data port Base_Types::Integer; 



  Output: out data port Base_Types::Integer; 
    
 annex agree {**  
   eq mode : int; 
    
   guarantee "mode always is increasing" : mode >= 0 -> mode > pre(mode); 
  guarantee "C output range" : Output = if mode = 3 then (Input1 + Input2) else 0; 
 **};  
end C ;  
    
system top_level 
 features 
  Input: in data port Base_Types::Integer; 
  Output: out data port Base_Types::Integer; 
 annex agree {**  
      
   eq mode : int; 
  assume "System input range " : Input < 10; 
  guarantee "mode is always positive" : mode >= 0; 
  guarantee "System output range" : Output < 50; 
 **};  
end top_level; 
 
system implementation top_level.Impl 
   subcomponents 
 A_sub : system A ;  
 B_sub : system B ;  
 C_sub : system C ;  
   connections 
 IN_TO_A : port Input -> A_sub.Input  

{Communication_Properties::Timing => immediate;}; 
 A_TO_B : port A_sub.Output -> B_sub.Input  

{Communication_Properties::Timing => immediate;}; 
 A_TO_C : port A_sub.Output -> C_sub.Input1  

{Communication_Properties::Timing => immediate;}; 
 B_TO_C : port B_sub.Output -> C_sub.Input2  

{Communication_Properties::Timing => immediate;}; 
 C_TO_Output : port C_sub.Output -> Output  

{Communication_Properties::Timing => immediate;};  
   
 annex agree{** 
   assign mode = C_sub.mode; 
 **}; 
  
    annex safety{** 
    analyze : probability 1.0E-7 
   --analyze : max 1 fault 
   **}; 
 end top_level.Impl; 

 
Figure 2: AADL Code for Toy Example with AGREE and Safety Annexes 

 
In Figure 2, systems define hierarchical "units" of the model.  They communicate over ports, 
which are typed.  Systems do not contain any internal structure, only the interfaces for the 
system.   
A system implementation describes an implementation of the system including its internal 
structure.  For this example, the only system whose internal structure is known is the "top level" 



system, which contains subcomponents A, B, and C.  We instantiate these subcomponents (using 
A_sub, B_sub, and C_sub) and then describe how they are connected together.  In the 
connections section, we must describe whether each connection is immediate or delayed. 
Intuitively, if a connection is immediate, then an output from the source component is 
immediately available to the input of the destination component (i.e., in the same frame).  If they 
are delayed, then there is a one-cycle delay before the output is available to the destination 
component (delayed frame).   
 
Note: Top level analysis can be performed only within a system implementation.  
 
After the AGREE annexes are added to each of the components in the model and verification is 
complete, the safety annexes can be added to each of the components.  
 
Important Note: At this time, fault hypotheses (see Figure 3) must be added to each layer of a 
system in order for analysis to proceed correctly. Also, at most one of the analysis statements 
must be present. In the example shown in Figure 3, the maximum n faults analysis statement is 
commented out. In this case, the probabilistic analysis will be run.  
 

 
Figure 3: Fault Hypothesis Example 

 

4.1  Using the Safety Annex AADL Plugin 
The example project used in the rest of this section can be retrieved from the following link:  
https://github.com/loonwerks/AMASE/tree/develop/examples. Assuming the necessary tools are 
installed (see section 6), the model can be imported by choosing File > Import:  
 



 
Figure 4: Import Menu Option 

 

 
Then choosing "Existing Project into Workspace." 
 
 



 
Figure 5: Importing Toy Example Project 

 
 
and navigate to the unzipped directory after pressing the Next button.  Figure 6 shows what the 
model looks like when loaded in the AGREE/OSATE tool. The project that we are working with is 
called Toy_Example_Safety. 
 



 
Figure 6: Workspace After Importing Toy Example 

 
Open the Integer_Toy.aadl model by double-clicking on the file in the AADL Navigator pane.  To 
invoke the safety analysis, we select the Top_Level.Impl system implementation in the outline 
pane on the right.  We then select “Safety Analysis” in the menu and then run AGREE. We can 
choose “AGREE > Verify Single Layer” from the AGREE menu as shown in Figure 7.  
 



 
Figure 7: AGREE and Safety Analysis Dropdown Menu 

As AGREE runs, you should see checks for “Contract Guarantees”, ”Contract Assumptions”, and 
“Contract Consistency” as shown in Figure 8.  
 

 
Figure 8:AGREE Verification Results 

 



If “Safety Analysis” was checked by the user, this will run the analysis and will change the AGREE 
contracts accordingly.  
 
When a property fails in AGREE, there is an associated counterexample that demonstrates the 
failure.  To see the counterexample, right-click the failing property (in this case: "System output 
range") and choose "View Counterexample in Console" to see the values assigned to each of the 
variables referenced in the model. Figure 9 shows the counterexample that is generated by this 
failure in the console window given one permanent fault in the system. 
 
It is worth noting in the counterexample of Figure 9 that the faults assigned to components A 
and B are listed as “Component A output stuck” and “Component B output stuck 
nondeterministic.” These are the strings assigned to the fault definitions from Figure 2. 
 
It is also possible that each fault has a probability of occurrence. In the Toy Example safety 
annexes, an arbitrary probability is assigned to each fault for the illustrative purposes. A top level 
probabilistic threshold is assigned. Assuming independence of faults, safety analysis proceeds by 
determining if there are sets of faults that will cause the system to fail given this threshold. 
Figure 7 shows the analysis of the Toy Example given a top level probability threshold of 1.0E-7. 
The reason this passes the threshold is due to the fact that the most problematic of the faults is 
with component B (nondeterministic failure) and the probability of component B fault is 1.0E-9. 
This is beyond the threshold assigned at the lower level.  
 
 



 
Figure 9: Counterexample from Safety Analysis 

 
For working with complex counterexamples, it is often necessary to have a richer interface.  It is 
also possible to export the counterexample to Excel by right-clicking the failing property and 
choosing "View Counterexample in Excel".  Note: In order to use this capability, you must have 
Excel installed on your computer.  Also, you must associate .xls files in Eclipse with Excel.  To 
do so, the following steps can be taken: 

1. Choose the "Preferences" menu item from the Window menu, then 
2. On the left side of the dialog box, choose General > Editors > File Associations, then  
3. Click the "Add…" button next to "File Types" and then  
4. Type "*.xls" into the text box. 

The .xls file type should now be selected.   
5. Now choose the "Add…" button next to "Associated Editors" 
6. Choose the "External Programs" radio button 
7. Select "Microsoft Excel Worksheet" and click OK. 

 

The generated Excel file for the example is shown in Figure 10. 
 



 
Figure 10: Generated Excel File for Counterexample 

 
 
  



5 Safety Annex Language 
In this chapter we present the syntax and semantics of the input language of the Safety Annex. 
We refer readers to the AGREE Users Guide for a thorough description of lexical elements, types, 
and other syntactical details.  
 

5.1 Syntax Overview 
Before describing the details of the language, we provide some general notes about the syntax. 
productions enclosed in parentheses (‘()’) indicate a set of choices in which a vertical bar (‘|’) is 
used to separate alternatives in the syntax rules. Any characters in single quotes describe 
concrete syntax (e.g. ‘←’, ‘;’, ‘:’). Examples of grammar fragments are also wri en in the Courier 
font. Sometimes one of the following characters is used at the beginning of a rule as a shorthand 
for choosing among several alternatives: 
 
1) The * character indicates repetition: zero or more occurrences and the + character indicates 
required repetition: one or more occurrences. 
2) A ? character indicates that the preceding token is optional. 
 
The Safety Annex is built on top of the AADL 2.0 architecture description language as well as the 
AGREE language. The Safety Annex formulas are found in an AADL annex which extends the 
grammar of both AADL and AGREE. Generally, the annex follows the conventions of AADL in 
terms of lexical elements and types with some small deviations (which are noted in the AGREE 
Users Guide). The Safety Annex operates over a relatively small fragment of both AADL syntax 
and AGREE syntax. We will not build up the language starting from the smallest fragments, but 
instead refer the user to the AGREE Users Manual.  
 
AADL describes the interface of a component in a component type. A component type contains a 
list of features that are inputs and outputs of a component and possibly a list of AADL properties. 
A component implementation is used to describe a specific instance of a component type. A 
component implementation contains a list of subcomponents and a list of connections that occur 
between its subcomponents and features.  
 
The syntax for a component’s contract exists in an AGREE annex placed inside of the component 
type. AGREE syntax can also be placed inside of annexes in a component implementation or an 
AADL package. Syntax placed in an annex in an AADL package can be used to create libraries that 
can be referenced by other components.  
 
The syntax for a component’s faults exists in a Safety annex placed inside of the component type 
as well. Safety syntax can also be placed inside of annexes in a component implementation. This 
annex links directly to the AGREE annex also associated with the component in question.   
 
 



5.2 Lexical Elements and Types 
For a more thorough description of lexical elements and types, we refer to the AGREE User 
Guide. Here is a brief description of commonly used lexical elements.  
 
Comments always start with two adjacent hyphens and span to the end of the line. Here is an 
example:  
 
    -- Here is a comment. 
     
    -- a long comment may be split onto 
    -- two or more consecutive lines 
 
An identifier is defined as a letter followed by zero or more letters, digits, or single 
underscores:  
 
ID ::= identifier_letter ( ('_')? letter_or_digit)*  
letter_or_digit ::= identifier_letter | digit 
identifier_letter ::= ('A'..'Z' | 'a'..'z') 
digit ::= (0..9) 

 
Some example identifiers are: count, X, Get_Name, Page_Count. Note: Identifiers are 
case insensitive. Thus Hello, HeLlo, and HELLO all refer to the same entity in AADL. 
 
Boolean and numeric literal values are defined as follows: 
 
Literal :: = Boolean_literal | Integer_literal | Real_literal 
Integer_literal ::= decimal_integer_literal  
Real_literal ::= decimal_real_literal 
decimal_integer_literal ::= ('–')? numeral 
decimal_real_literal ::= ('–')? numeral '.' numeral 
numeral ::= digit* 
 
Boolean_literal are: true, false. 
Examples of Integer_literals are: 1, 31, -1053 
Examples of Real_literals are: 3.1415, 0.005, 7.01 
 
String elements are defined with the following syntax: 
 
STRING ::= "(string_element)*" 
string_element ::= "" | non_quotation_mark_graphic_character 
 
Primitive data types (bool, int, real) have been built into the AGREE language and are hence part 
of the Safety annex language. For more information on types, see the AGREE Users Guide.  
 



Safety annex requires reasoning about AADL Data Implementations. Consider the following 
example from a model of a medical device:  
 
data Alarm_Outputs 
end Alarm_Outputs; 
   
data implementation Alarm_Outputs.Impl 
   subcomponents 
    Is_Audio_Disabled : data Base_Types::Boolean;  
    Notification_Message : data Base_Types::Integer ;  
    Log_Message_ID : data Base_Types::Integer ;         
end Alarm_Outputs.Impl; 

 
Figure 11: Medical Device Example 

One can reference the fields of a variable type Alarm_Outputs.Impl by placing a dot after the 
variable:  
 
Alarm.Is_Audio_Disabled, Alarm.Notification_Message, or Alarm.Log_Message_ID.  
 

5.3  Subclauses 
Safety annex subclauses can be embedded in system, process, and thread components. Safety 
subclauses are of the form:  
 

annex safety {**  
  -- safety spec statements here... 
**};   

 
From within the subclause, it is possible to refer to the features and properties of the enclosing 
component as well as the inputs and outputs of subcomponents (if the subclause is a component 
implementation). A simplified description of the top-level grammar for Safety annex is shown in  
 
 
SpecStatement: 'fault' ID (STRING)? ':'  faultDefName '{' (FaultSubcomponent)* '}'  
       | 'analyze' ':'  AnalysisBehavior 
       | ‘hw_fault ':'  ID (STRING)? ':'  '{' (HWFaultSubcomponent)* '}' 
       | 'propagate_from' ':'  '{' (SourceFaultList) '@' (SourceCompPath)  '}' 

 ‘to’   '{' (DestFaultList) '@' (DestCompPath)  '}' 
 

AnalysisBehavior: 'max' Int_Literal 'fault'  
  |   'probability' Real_Literal 
 
 
FaultSubcomponent:  'inputs' ':' NamedID '<-' Expr (','NamedID '<-' Expr)* ';' 
      | 'outputs' ':' NestedDotID '<-' NamedID   (','NestedDotID '<-' NamedID)* ';' 
      | 'duration' ':' TemporalConstraint (Interval)? ';'   
      | 'probability' ':' Real_Literal ';' 



      | 'enabled' ':' TriggerCondition ';' 
      | 'propagate_type' ':' PropagationTypeConstraint ';' 
      | SafetyEqStatement  
 
HWFaultSubcomponent:  'duration' ':' TemporalConstraint (Interval)? ';'   
                 |    'probability' ':' Real_Literal ';' 
                 |    'propagate_type' ':' PropagationTypeConstraint ';'  
 
 
PropagationTypeConstraint: 'asymmetric'  
                      |    'symmetric' 
 
TemporalConstraint: 'permanent'  
                 |  'transient' 
 
TriggerCondition: 'must' '{' Expr ("," Expr)* '}'   
                | 'enabler' '{' Expr ("," Expr)*  '}'   
  
SafetyEqStatement: 'eq' (Arg (',' Arg)*) ('=' Expr)? ';' 
             |   'interval' ID '=' Interval ';' 
             |   'set' ID '=' '{'INTEGER_LIT (',' INTEGER_LIT)* '}' ';' 
 
Interval: '[' Expr ',' Expr ']') 
          |    '(' Expr ',' Expr']') 
          |    '[' Expr ',' Expr ')') 
          |    '(' Expr ',' Expr ')')   
 

 
Figure 12: Safety Annex Grammar 

 
A Safety subclause consists of a spec statement which consists of a sequence of statements. 
These different kinds of statements and their uses are described in section 3.4.  
 
Safety subclauses can occur either within an AADL component or component implementation.  
 

5.4  Spec Statement 
The Safety annex subclause can contain one or more spec statements. The following shows the 
syntax of a spec statement:  
 
SpecStatement: 'fault' ID (STRING)? ':'  faultDefName '{' (FaultSubcomponent)* '}'  
       | 'analyze' ':'  AnalysisBehavior 
       | ‘hw_fault ':'  ID (STRING)? ':'  '{' (HWFaultSubcomponent)* '}' 
       | 'propagate_from' ':'  '{' (SourceFaultList) '@' (SourceCompPath)  '}' 

 ‘to’   '{' (DestFaultList) '@' (DestCompPath)  '}' 
 
 

Each spec statement corresponds with one fault definition that will wrap a single component. In 
the case of multiple fault types on a component with multiple outputs, the subclause will contain 
more than one spec statement; one for each of the fault definitions.  
 



The ID is used as an internal identification to the fault described in the spec statement. The 
STRING is a description of the fault and will be shown to the user during verification. The fault 
definition name (a NestedDotID) corresponds with a fault contained in a library of faults.  Each of 
the faults is an AGREE node definition that is placed within an AADL package and included in the 
component implementation file. These faults can then be referenced by the Safety annex. In the 
case when the user wishes to design custom faults, refer to the AGREE User Guide description of 
nodes (3.6.6 Node Definitions).  
 
An example of a fault node is provided:  
 

 
Figure 13: Fault Node Definition 

 
The input and output statements (section 3.5.1, 3.5.2) will refer directly to the inputs and return 
values of the fault node. Every fault node definition contains an input parameter called trigger*. 
All other input parameters are linked in the Inputs statement (section 3.5.1) and the return 
values are linked with AADL component in the Outputs statement (section 3.5.2).  
 
The fault spec statement will contain zero or more Fault Subcomponent statements. In the case 
of zero, no faults wrap the AADL component and hence no fault analysis is performed.  
 
*In future work, this trigger will be linked to the trigger statement shown in the grammar above.  
 
5.4.1 Fault Statement 
The Safety annex spec statement can contain multiple Fault Subcomponent statements. The 
following is a simplified version of the syntax of a Fault Subcomponent statement: 
 
 
 
FaultSubcomponent:  'inputs' ':' NamedID '<-' Expr (','NamedID '<-' Expr)* ';' 
      | 'outputs' ':' NestedDotID '<-' NamedID   (','NestedDotID '<-' NamedID)* ';' 
      | 'duration' ':' TemporalConstraint (Interval)? ';'   
      | 'probability' ':' Real_Literal ';' 
      | 'enabled' ':' TriggerCondition ';' 
      | 'propagate_type' ':' PropagationTypeConstraint ';' 
      | SafetyEqStatement  
 
5.4.1.1 Input Statement 
Input statements are where the parameters of the fault node definition are linked to expressions 
which assign the node parameters a value. Each fault node has a trigger parameter. This is the 
only input parameter that is not accounted for in the input statement.  
 



As an example, we look at the fail_to fault node definition from Figure 13 and provide an 
example of the input statement associated with this node.  
 
The inputs that must be explicitly stated are: val_in and alt_val. The left side of the input 
statement must use these identifiers. The right side of the input statement consists of AGREE or 
AADL expressions (see AGREE Users Guide, section 3.7). Examples of this include boolean or 
arithmetic expressions as well as AADL Data Implementation variables. The following is an 
example of an input statement using the fail_to node and the Toy Example from  Figure 2:  
 
inputs: val_in <- Output, alt_val <- prev(Output, 0); 
 

This input statement will ensure that the value associated with Output is passed in as the val_in 
parameter and likewise the value associated with  prev(Output, 0) is the failure value if the fault 
is triggered (alt_val).  
 
Record types in AADL are supported and their fields can be used in input and output statements.  
 
Note: The trigger value is not specified within the input statement. See section 3.5.4 on Trigger 
Statements.  
 
5.4.1.2 Output Statement 
Output statements will specify which component output will be affected by the fault node 
output. Since nodes may have more than one output, each must be linked to a component. 
Using the same example in 3.5.1 ( fail_to node and the Toy Example from  Figure 2 we describe 
the associated output statement:  
 
outputs: Output <- val_out;     
 
In the case of a fault node definition having more than one return value, the output statement 
would be organized into a list much like the example for input statements in section 3.5.1.  
 
Record types in AADL are supported and their fields can be used in input and output statements.  
 
5.4.1.3 Duration Statement 
A duration statement specifies whether the fault will be transient* or permanent. A permanent 
fault will remain indefinitely and has no such interval in the statement.  
 
An example of a permanent fault is as follows: 
 
duration: permanent; 
 
*Transient faults are currently not supported in the safety annex. This will be implemented in 
future work. The only possible faults at this time are permanent. 
 



5.4.1.4 Trigger Statement 
The safety annex currently does not support trigger statements. This will be implemented in 
future work. The following is a description of what trigger statements will look like once 
implemented.  
 
There are two types of triggers that can occur within a model. We call these must triggers and 
enabler triggers. The must triggers are of the form: if the trigger has occurred, then the fault 
must have been activated. The enabler triggers are of the form: if the trigger has occurred, then 
the fault may have been activated. In either of these cases, the triggers are specified using a list 
or a series of disjunctions. The trigger may have a probability associated with it. This probabilistic 
value is an optional piece of the statement. The following is a simplified grammar of the trigger 
statement syntax: 
 
TriggerCondition: 'must' '{' Expr ("," Expr)* '}'   
                | 'enabler' '{' Expr ("," Expr)*  '}'   
 
5.4.1.5 Probability Statement 
Currently the annex supports top level probabilistic analysis through the use of analysis 
statements. An analysis statement is given at the top level of the system implementation under 
analysis. It will specify the type of analysis to perform. Only one type is permitted to be specified 
for a single analysis run. There are two kinds of analysis that can be requested by the user. 
Maximum number of faults present in the system or a probabilistic analysis. These are described 
in Section 5.4.2.  
 
5.4.1.6 Propagation Statement 
Users can specify fault dependencies outside of fault statements, typically in the system 
implementation where the system configuration that causes the dependencies becomes clear 
(e.g., binding between SW and HW components, co-location of HW components). This is because 
fault propagations are typically tied to the way components are connected or bound together; 
this information may not be available when faults are being specified for individual components. 
Having fault propagations specified outside of a component’s fault statements also makes it 
easier to reuse the component in different systems. An example of a fault dependency 
specification is shown in Figure 14, showing that the valve_failed fault at the shutoff 
subcomponent triggers the pressure_fail_blue fault at the selector subcomponent. 
 

 
Figure 14: Propagation Statement Example 

 



5.4.1.7 Safety Equation Statements 
To allow flexibility in assigning failure values, various kinds of equation statements are defined 
for the Safety Annex. This extends the AGREE equation statement by adding three new kinds of 
equations.  
 
5.4.1.7.1 Eq Statements 
A Safety Equation Statement is identical to an AGREE Equation Statement. Equation statements 
can be used to create local variable declarations within the body of an AGREE subclause or 
within a Safety annex fault statement.  An example of an equation statement is:  
 

eq mode : int = 9; 
 

In this example, we create an integer variable with the value of 9.  Variables defined with 
equation statements can be thought of as ''intermediate'' variables or variables that are not 
meant to be visible in the architectural model (unlike component outputs or inputs).  Equation 
statements can define variables explicitly by setting the equation equal to an expression 
immediately after it is defined.  Equation statements can also define variables implicitly by not 
setting them equal to anything. This would capture complete nondeterminism for fault values. 
An example of this is:  
 

eq mode : int; 
 
To use a nondeterministic value within a fault statement, the equation statement would be 
defined as above and then used in the input statement to link with the fault node.  
 
Equation statements can define more than one variable at once by writing them in a comma 
delimited list.  One might do this to constrain a list of variables to the results of a node statement 
that has multiple return values or to more cleanly list a set of implicitly defined variables. 
 
5.4.1.7.2 Set Statements 
Set equation statements are currently not supported in the safety annex. They will be 
implemented in future work. 
 
 
Set equation statements can be used to specify a set of discrete values of nondeterminism.  
 
 set set_values = {0,3,5} ; 
 
The variable  set_values will hold the value 0, 3, or 5.  
 
5.4.1.7.3 Range Statements 
Range equation statements are currently not supported in the safety annex. They will be 
implemented in future work. 
 



A range equation statement is used to specify a discrete range of integer values. This is the same 
idea as a set, but is used when the size of the set gets to be unwieldy.  
 
 range range_values = {0,50} ; 
 
The variable  range_values will hold some integer value from 0 to 50 inclusive.  
 
5.4.1.7.4 Interval Statements 
Interval equation statements are currently not supported in the safety annex. They will be 
implemented in future work. 
 
Interval equation statements can be used to specify a real interval of nondeterminism for some 
variable. These intervals can be any combination of open, closed, or neither. The following is an 
example of a range including -1.2 up to (but not including) 30.0.  
 

interval input_values = [-1.2, 30.0); 
  



5.4.2 Analysis Statement 
An analysis statement is given at the top level of the system implementation under analysis. It 
will specify the type of analysis to perform. Only one type is permitted to be specified for a single 
analysis run. There are two kinds of analysis that can be requested by the user. Maximum 
number of faults present in the system or a probabilistic analysis. These are described below.  
 
Important Note: At this time, fault hypotheses (see Figure 3) must be added to each layer of a 
system in order for analysis to proceed correctly. Also, at most one of the analysis statements 
must be present. In the example shown in Figure 3, the maximum n faults analysis statement is 
commented out. In this case, the probabilistic analysis will be run.  
 
5.4.2.1 Max N Faults Analysis 
As shown in Figure 15, the user can specify the maximum number of active faults in a system. In 
this way, it can be determined if the system is resilient to a certain number of faults.  
 

 
Figure 15: Max One Fault Example 

 
5.4.2.2 Probabilistic Analysis 
In order for the probabilistic analysis to run, probabilities must be assigned to each fault 
definition as shown in the Toy Example of Figure 2. The syntax of probabilistic analysis is shown 
in  Figure 16 with a top level threshold of 1.0E-7. For probabilistic fault hypotheses, we are 
currently developing a sound approach for composition with respect to the top-level fault 
probability, but our current tool requires monolithic analysis. Due to this fact, when probabilistic 
analysis is run, the user should select “Monolithic Analysis” from the AGREE dropdown menu. 
Any compositional (“Verify Single Layer” or “Verify All Layers”) results with probabilistic analysis 
is not to be trusted.  
 

 
Figure 16: Probability Threshold Example 

 
5.4.3 Hardware Fault Statement 
Failures in hardware (HW) components can trigger behavioral faults in the software (SW) or 
system (SYS) components that depend on them. For example, a CPU failure may trigger faulty 
behavior in threads bound to that CPU. In addition, a failure in one HW component may trigger 



failures in other HW components located nearby, such as cascading failure caused by a fire or 
water damage. 
  
Faults propagate in AGREE as part of a system’s nominal behavior. This means that any 
propagation in the HW portion of an AADL model would have to be artificially modeled using 
data ports and AGREE behaviors in SW. This is less than ideal as there may not be concrete 
behaviors associated with HW components. In other words, faulty behaviors mainly manifest 
themselves on the SW/SYS components that depend on the hardware components. 
  
To better model faults at the system level dependent on HW failures, we have introduced a new 
fault model element for HW components. In comparison to the basic fault statement, users are 
not specifying behavioral effects for the HW failures, nor data ports to apply the failure. An 
example of a model component fault declaration is shown in Figure 17. This example is taken 
from the Wheel Brake System model found in 
https://github.com/loonwerks/AMASE/tree/develop/examples.  
 
The example shows the failure of a hardware valve component.  
 

 
Figure 17: Hardware Fault Statement 

In addition, users can specify fault dependencies outside of fault statements using propagation 
statements. For more information on propagation type statements, see section 5.4.1.6.  
 
5.4.3.1 Duration 
The duration of a hardware fault is specified within the hardware fault statement. Currently, the 
safety annex only supports permanent fault durations. Part of the future work includes transient 
fault durations.  
 
5.4.3.2 Probability 
A probability of the fault occurrence is specified using a probability statement. This is shown in 
Figure 17. For more information on probabilistic analysis, see section 5.4.2.2.  
 
5.4.3.3 Propagation Type 
Propagation types are not yet implemented in the Safety Annex. In future work, this capability 
will be available. 
 
Faults can be propagated either symmetrically or asymmetrically. In the case of asymmetric fault 
propagation, we have what are also called Byzantine faults. For example, a hardware component 
supplies signals to n different software components in a fan out manner. If a fault occurs in the 
hardware component, it can propagate to all software components symmetrically or it can 



propagate asymmetrically to only a subset of those components. This propagation can be 
specified within a hardware fault statement using the following syntax.  
 

propagate_type : symmetric; 
propagate_type : asymmetric; 

 
 

6 The Tool Suite (Safety Annex, AGREE, AADL) 
In this chapter we present an overview of the Safety Annex/AGREE/OSATE tool suite, followed by 
installation instructions for the tool suite, and a description of the main features of the tool suite. 
 

6.1 Tool Suite Overview 
Figure 7 shows an overview of the AGREE/OSATE tool suite. As presented in the figure, OSATE is 
an Eclipse plugin that serves as the IDE for creating AADL models.  Both AGREE and the Safety 
Annex run as plugins in OSATE.  OSATE provides both a language (AADL annex to annotate the 
models with assume-guarantee behavioral contracts in the case of AGREE and an AADL annex to 
annotate the model with faults in the case of the safety annex) and a tool (for compositional 
verification of the contracts reside in AADL models). AGREE translates an AADL model and its 
contract annotations into Lustre and then queries the JKind model checker to perform the 
verification.  JKind invokes a backend Satisfiability Modulo Theories (SMT) solver (e.g., Yices or  
Z3) to validate if the guarantees are valid in the compositional setting. The safety annex uses an 
extension point in AGREE to access the AGREE program and insert the faults into the AGREE 
contracts. Then that program is translated into Lustre and the JKind model checker is queried to 
perform the verification/safety analysis.  
 
 



 
Figure 18: Overview of Safety Annex/AGREE/OSATE Tool Suite 

 
 
 
 

6.2 Installation 
Installing the Safety Annex/AGREE/OSATE Tool Suite consists of 4 main steps, described in each 
of the following sections.  
 
6.2.1 Install OSATE 
Binary releases of the OSATE tool suite for different platforms are available at: 
http://www.aadl.info/aadl/osate/stable/. Choose the most recent version of OSATE that is 
appropriate for your platform.  For example, at the time of writing this document, the most 
current release of OSATE is 2.3.6, available for download from https://osate-
build.sei.cmu.edu/download/osate/stable/2.3.6/products/. 
 



After following the OSATE download instructions found on the OSATE download site (above).  
The splash screen shown in Figure 19 should appear, and OSATE should begin loading.  

 
Figure 19: OSATE Loading Screen 

 
If OSATE loads successfully, continue to the next step in the installation process.  If not, and you 
are running Windows, the most likely culprit involves mismatches between the 32-bit and 64-bit 
version of OSATE and the bit-level of the Windows OS.  Please check to see whether the version 
of OSATE matches the bit-level of your version of Windows OS.  If running Windows 10, this 
information can be found in the System Control Panel as shown below in Figure 21. Note that 
this information is also required for downloading the correct version of the SMT Solver in the 
next installation step. 
 
Note: Currently in OSATE release 2.3.6, AGREE is not up to date. Please perform this next step 
in order to reinstall AGREE in this release.  
 
6.2.2 Install Safety Annex 
To install Safety Annex with OSATE 2.3.6, first uninstall the AGREE that comes with OSATE 2.3.6 
installation, by clicking “Help” -> “About OSATE2” -> “Installation Details”, and select “Agree” 
from the list of installed software, and click “Uninstall…”. In the Uninstall Details window, 
confirm to uninstall “Agree” by clicking “Finish”, and click “No” when it prompts to restart 
OSATE. Then in OSATE, click “Help” menu and select “Install New Software…” 

 
In the Install window, place the following update site link for Safety Annex to the “Work with” 
field, and hit the enter key: 
https://raw.githubusercontent.com/loonwerks/AMASE/master/safety-update-site/site.xml 
 



Select both “Agree” and “Safety Annex” in the list of available tools to install, and click “Next”. 
Accept the terms of license agreement for the tools, and click “Finish”, and click “OK” on the 
Security Warning window about unsigned content, then click “Yes” to restart OSATE. 
 
To test whether the safety annex has been correctly installed, a Safety Annex menu should 
appear in OSATE as shown in Figure 20. 

 
Figure 20: Safety Analysis Menu Item 

 



 

 
Figure 21: Windows 10 System Control Panel 

 
6.2.3 Install SMT Solver 
Either one of the following SMT solvers can be used as the underlying symbolic solver invoked by 
the JKind model checker: Yices from SRI, or Z3 from Microsoft, Inc.   
To download Yices, navigate to the Yices install page at: http://yices.csl.sri.com/ and download 
the version of Yices appropriate for your platform.   
To download Z3, navigate to the z3 install page at: https://github.com/Z3Prover/z3/releases and 
download the version of Z3 appropriate for your platform. 
 
Either tool must be unzipped and placed in a directory somewhere in the file system.  Then this 
directory must be added to the system path.  For directions on how to add directories to your 
path, please see http://stackoverflow.com/questions/14637979/how-to-permanently-set-path-
on-linux for Linux, and see http://architectryan.com/2012/10/02/add-to-the-path-on-mac-os-x-
mountain-lion/#.VszAv_krJph for Mac OS. In Linux, you must add the path to your config file, 
usually .bashrc.   
 
To add directories to your system path in Windows, first navigate to the System Control Panel 
and choose the "Advanced system settings" button on the left side of the panel.  The system 
properties dialog will appear.  Choose the "Advanced" tab in the dialog as shown in Figure 22 
then click "Environment variables". 
 



 
Figure 22: System Properties Dialog Box 

 

 
The environment variables dialog box is shown in Figure 23. 
 

 
Figure 23: Environment Variables Dialog Box 



 
In order to make the application available to all user accounts choose the PATH environment 
variable in the "System variables" section and click "Edit…".  This will bring up a text edit box, as 
seen in Figure 12. If the existing path string in the text edit box does not end with a semicolon 
(‘;’), add a semicolon first, then append the path to the SMT solver’s "bin" directory, and click 
"OK" on the dialogs. The bin directory for the Yices tool is underneath the main Yices directory, 
e.g., C:\Apps\ yices-2.4.2-x86_64-pc-mingw32-static-gmp\yices-2.4.2\bin. The bin directory for 
the Z3 tool is underneath the main z3 directory, e.g., C:\Apps\z3-4.4.1-x64-win\z3-4.4.1-x64-
win\bin. 
 

 
Figure 24: System Variable Text Edit Box 

 

 
 
To test whether Yices has been correctly installed on either Windows or Linux, open up a 
command prompt window and type: yices --version.  A version number for Yices matching the 
installed version should be displayed. 
 
To test whether z3 has been correctly installed on either Windows or Linux, open up a command 
prompt window and type: z3 -version.  A version number for Z3 matching the installed version 
should be displayed. 
 
 
6.2.4 Set AGREE Analysis Preferences 
Use the SMT solver of your choice (Yices or Z3) and set the AGREE Analysis preferences as shown 
in Figure 25.  

Window -> Preferences -> AGREE -> Analysis 
 



 
Figure 25: AGREE Analysis Preferences 

 
 

 
 
 
At this point, you are ready to import the Toy Example project (see Section 4.1) and begin your 
own safety analysis.  
 

6.3 Development Environment Installation 
An alternate installation guide is provided here. In these installation directions, the OSATE 
Development Environment is installed and the Safety Annex is compiled from source code and 
not through the update site.  
 
6.3.1 Install OSATE Development Environment 
Follow the directions for installing the OSATE Development Environment provided on the 
following website:  
 
http://osate.org/setup-development.html 
 



In Step 3: Select the Eclipse Platform of the directions provided in the OSATE website, select the 
the 2018-09 release of Photon  
 
In Step 5: Set Required Variables of the directions provided in the OSATE website, make sure that 
in all Github repositories the HTTPS (read-only, anonymous) option is selected. 
 
Notes and Possible Issues:  
 

- Step 5 looks slightly different since the last OSATE update. There are fewer Github 
repositories in this list. 

- In many installations, OSATE will display a message stating that it cannot perform the 
required operation. It will then attempt to make the correct installation. This takes time, 
but it does perform the desired operation.  

- It’s recommended to start the installation from empty, new folders (e.g., for git checkout, 
workspace, and OSATE installation) to avoid problems with installation. 

 
 
6.3.2 Download Safety Annex Source Code 
The Safety Annex source code should be cloned in a local directory using the Github repository: 
https://github.com/loonwerks/AMASE.git 
 
If this repository is on the target machine, the Safety Annex can be imported into the OSATE 
development environment folder titled: Other Projects. This repository includes a number of 
directories and the one containing the Safety Annex source code is titled: safety_annex/plugins.  
 
6.3.3 Github Branches 
After the development environment is set up and all repositories are imported, make sure that 
the smaccm branch is develop, and the amase branch is master. Those should be the default 
branches when checking out the git repository. If not, right click on the project folder and select 
Team.  

Team -> Switch To -> New Branch 
Then type into the textbox the branch as required.  
 
6.3.4 Run OSATE 
At this point, everything should be in place to run the OSATE environment. Select the drop down 
menu next to the green “play” button on the menu. In the drop down menu that appears, select 
OSATE. This compiles the source code and the OSATE environment should appear after loading.  
 
To test whether the safety annex has been correctly installed, a Safety Annex menu should 
appear in OSATE as shown in Figure 20. At this point, you are ready to import the Toy Example 
project (see Section 4.1) and begin your own safety analysis.  
 


