
 

Page 1 of 49 

 

 

 

 

Secure Java API Integration Guide



 

Page 2 of 49 

© SecurePay Pty Ltd                                                                                  SecurePay Java API integration Guide Version 1.3 

 

Table of Contents 

1  Introduction..................................................................... 4 

1.1  About this Guide .................................................... 4 
1.2  Intended Audience ................................................ 4 

2  System Overview ............................................................. 5 

3  Secure Java Payments ................................................... 7 

3.1  Payment ................................................................. 7 
3.2  Authentication, Communication & Encryption ..... 7 

4  Java Installation .............................................................. 8 

4.1  Prerequisites ......................................................... 8 
4.2  Java Inventory ........................................................ 8 
4.3  Installation ............................................................. 8 

5  Java Integration .............................................................. 9 

5.1  Classpath Setup .................................................... 9 
5.2  Interface ................................................................. 9 

5.2.1  Payments 9 
5.2.2  Echo 36 

Appendix A: Transaction Types .......................................... 41 

Appendix B: Transaction Sources ...................................... 42 

Appendix C: Card Types ..................................................... 43 

Appendix D: Location of CVV .............................................. 44 

Appendix E: Timestamp String Format .............................. 45 

Appendix F: SecurePay Status Codes ................................ 46 

Appendix G: Thinlink Codes ............................................... 47 

G.1 Payment Result Codes ............................................. 47 
G.2 Event Status Codes .................................................. 47 

Appendix H: Currency Codes List ....................................... 48 

Appendix I: Direct Entry Character set ............................... 49 



 

Page 3 of 49 

© SecurePay Pty Ltd                                                                                  SecurePay Java API integration Guide Version 1.4 

 

Document Control  
This is a control document 

DESCRIPTION Secure Java API Integration Guide 

CREATION DATE 02/05/2007 CREATED BY SecurePay 

VERSION  1.4 DATE UPDATED  22/09/2010 

 



 

Page 4 of 49 

© SecurePay Pty Ltd                                                                                  SecurePay Java API integration Guide Version 1.4 

 

1 Introduction 

1.1 About this Guide 

This guide provides technical information about 
installing and configuring Secure Java within your 
environment. 

Secure Java is written in the Sun Java programming 
language, and can run on any computer with the 
Java Runtime Environment installed. Messages are 
transported via a HTTP protocol using SSL. 

Secure Java integrates into a web site via the Java 
programming language. The merchant’s web site 
captures the credit card information and then posts 
the details in a Java message format over a secure 
connection to the SecurePay Payment Gateway for 
authorisation. The authorisation response is then 
returned as a Java message over the same secure 
connection. 

 
1.2 Intended Audience 

This document is intended for developers, 
integrating SecurePay’s Secure Java interface into 
their own Java applications, Java-based websites 
(such as servlets or JSP), or applications that are 
able to instantiate a Java object and invoke its 
methods. 

Knowledge of the Java programming language and 
the Java Virtual Machine is required for some 
sections of this document. 

 

 

 



 

Page 5 of 49 

© SecurePay Pty Ltd                                                                                  SecurePay Java API integration Guide Version 1.4 

 

2 System Overview 

SecurePay’s Payment Gateway provides merchants 
with the ability to process credit card and direct entry 
payments in a secure environment. 

SecurePay partners with the following major banks 
and financial institutions in the provision of the 
SecurePay Payment Gateway:  

• ANZ 

• American Express 

• BankWest 

• Commonwealth Bank 

• Diners Club 

• National Australia Bank 

• St George (including Bank of SA) 

• Westpac (including Challenge Bank and Bank of 
Melbourne) 

Direct entry payments are not processed in real time; 
they are stored in SecurePay’s database and 
processed daily at 4.30pm EST. 

Secure Java supports four payment transaction types:  

• Payments 
• Refunds 
• Preauthorise 
• Preauthorise Complete 

Secure Java is written in the Sun Java programming 
language, and can run on any computer with the Java 
Runtime Environment installed. Messages are 
transported via a HTTP protocol using SSL. 

 

 

 



 

Page 6 of 49 

© SecurePay Pty Ltd                                                                                  SecurePay Java API integration Guide Version 1.4 

 

 
 

 



 

Page 7 of 49 

© SecurePay Pty Ltd                                                                                  SecurePay Java API integration Guide Version 1.4 

 

3 Secure Java Payments 

3.1 Payment 

The Payment command is used to pass financial 
credit card transaction messages to SecurePay’s 
payment server, which will authorise the transaction 
with the merchant’s bank and customer’s card issuer, 
and produce a response based on the banks’ 
authorisation of the transaction. 

The Payment command can be used to send following 
credit card transaction types: 

• Credit Card Payment 
• Credit Card Refund 
• Credit Card Reversal (Void) 
• Credit Card Preauthorise 
• Credit Card Preauthorise Complete 

(Advice) 
 

SecurePay’s payment server is also capable of 
processing direct entry transactions. Direct entry 
transactions are not processed real time. The 
SecurePay payment server stores direct entry 
transaction in a database and processes them daily 
at 4.30pm Melbourne time. 

The Payment command can be used to send following 
direct entry transaction types: 

• Direct Debit 
• Direct Credit

 
3.2 Authentication, Communication & 

Encryption 

To ensure security, each merchant is issued with 
transaction password. This password is authenticated 
with each request before it is processed. This makes 
sure that unauthorised users will be unable to use the 
interface. 

The password can be changed by the merchant via 
SecurePay’s Merchant Management facility. 

The Secure Java interface uses HTTP protocol and 
SSL for communication with SecurePay’s servers. 

Merchants using Secure Java will automatically use 
SecurePay’s security certificate to encrypt requests 
and decrypt responses from SecurePay.



 

Page 8 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

4 Java Installation 

Secure Java has been built using Sun’s Java programming language.  Java boasts full software portability, 
allowing the same compiled software package to be run independently of the platform on which it is 
installed.  The Secure Java software package provided can therefore be run on Microsoft Windows, Unix, 
or Macintosh platforms without recompiling. 

 

4.1 Prerequisites 

1. The installation machine must have the Java Runtime Environment (JRE) installed.  Secure Java 
currently runs on JRE versions 1.4 and later. The JRE can be downloaded free of charge from the 
Sun website: http://java.sun.com 

2. The installation machine, and any firewall, etc, in front of it, must be able to create an outbound 
socket connection on the communications port, to the SecurePay Payment Server host.  Standard 
web communication ports will be used initially, however are subject to change in future releases.  
Port 80 will be used on SecurePay’s Test Server, and port 443 on SecurePay’s Live Server. 

 

4.2 Java Inventory 

The Secure Java Software package contains the following files: 

• securepayxmlapi_obf.jar 

• xmlParserAPIs-2.4.0.jar 

• xercesImpl-2.4.0.jar 

• Base64.jar 

 

4.3 Installation 

Secure Java 

1. Create a directory on the installation machine called “SecurePayAPI” in a location of your choice. 

2. Copy all files listed in the Software Inventory (see 4.2) into this new directory. 

 

      Secure Java Software - Periodic and Triggered add in 

1. Create a directory on the installation machine called “SecurePayPeriodicAPI” in a location of your 
choice. 

2. Copy all files listed in the Software Inventory (see 3.2) into this new directory 

 



 

Page 9 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5 Java Integration 

5.1 Classpath Setup 

Before running Secure Java, your Java classpath must be set to each of the JAR archives included in this 
package.  This can be done when executing the Java from the command line, e.g.: 

 %JAVA_HOME%\bin\java –cp abc.jar;def.jar YourMainClass arg1 
arg2 

or, by setting the system environment variable “CLASSPATH” before running, e.g.: 

Windows: 
> set CLASSPATH=abc.jar;def.jar 

Unix: 
> setenv CLASSPATH abc.jar:def.jar 

These commands may also be written in a batch file or shell script for your application. 

 

5.2 Interface 

5.2.1 Payments 

5.2.1.1 securepay.jxa.api.Payment 

The Payment object should be created first, and a Txn object added to it, containing details of the 
financial transaction to be processed. The Payment object is then “submitted” to SecurePay to 
process the transactions it contains. 

5.2.1.1.1 Constructor 

public Payment() 

 Create an empty Payment object to which Txns may be added. 

Parameters: 

  No parameters required by this constructor. 

 

5.2.1.1.2 Public Methods 

5.2.1.1.3 getMessageId 

public String getMessageId() 

 Returns the unique message identifier created by the API. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Unique identifier of this Payment object. 

 

 

 



 

Page 10 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.1.3.1 getMessageTimestamp 

public Date getMessageTimestamp() 

 Returns the timestamp created by the API for the Payment in a Date object. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
Date Timestamp of this Payment object. 

 

5.2.1.1.3.2 getMessageTimestampAsString 

public String getMessageTimestampAsString() 

Returns the timestamp created by the API for the Payment as a string.  Refer to Appendix E for the 
format returned. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Timestamp of this Payment object. 

 

5.2.1.1.3.3 getApiVersion 

public String getApiVersion() 

 Returns the version of the API being used to create this object. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String API version used to create this Payment object. 

 

5.2.1.1.3.4 setMerchantId 

public void setMerchantId(String id) 

Sets the merchant id to be used when processing the payments.  The merchant id must be set in 
order for SecurePay to determine the bank account to which the funds should be settled. 

Input Parameters: 

Name Type Description Allowed Values 
id String Merchant ID allocated to the 

merchant by SecurePay. 
7-character string in format XXXDDDD, 
where X is a letter (A-Z) and D is a digit (0-9).  
SecurePay will supply this value to you upon 
application. For Direct Entry: 
5-7 character string in format XXXDDDD, 
where X is a letter (A-Z) and D is a digit (0-9).  
Last two digits can be ignored. 

 

 



 

Page 11 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.1.3.5 setServerURL 

public void setServerURL(String url) 

Sets the URL of the SecurePay Payment Server to which this object will be sent when process() 
is called. 

Input Parameters: 

Name Type Description Allowed Values 
url String URL of SecurePay’s Payment 

Server or Direct Entry Server in 
case of Direct Entry payments. 

Test: 
https://test.securepay.com.au/xmlapi/payment 
http://test.securepay/com.au/xmlapi/payment 
Live: 
https://api.securepay.com.au/xmlapi/payment 
For Direct Entry: 
Test: 
https://test.securepay.com.au/xmlapi/directentry  
http://test.securepay.com.au/xmlapi/directentry 
Live: 
https://api.securepay.com.au/xmlapi/directentry 
For Antifraud: 
Test: 
https://test.securepay.com.au/antifraud/payment 
http://test.securepay.com.au/antifraud/payment 
Live: 
https://www.securepay.com.au/antifraud/payment 
(Values are subject to change in future releases.) 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.1.3.6 setProcessTimeout 

public void setProcessTimeout(int timeout) 

Sets the timeout in seconds to wait for a response message from SecurePay’s server.  If no 
response is received in this time, a timeout response is returned, and transaction results may be 
queried at a later time. 

If value is not set, or is set to an integer < 0, default timeout of 80 seconds is used. 

Input Parameters: 

Name Type Description Allowed Values 
timeout int Seconds to wait for SecurePay 

response. 
Int < 0: default value is used 
Int >= 0: supplied value is used. 

Return Parameter: 

 No object returned by this method. 

 

 

 

 

 



 

Page 12 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.1.3.7 addTxn 

public Txn addTxn(int txnType, String ponum) 

Adds a Txn object to the Payment and returns the object for configuration.  If a Txn already exists 
with the same txnType and ponum combination, NULL is returned. 

The current version of SecurePay’s Payment Server allows only Payments containing a single Txn 
object.  Payments submitted with more than one Txn will be rejected with Status Code “577”.  
Multiple transaction batching will be included in a future release, and will be advertised by 
SecurePay when available.  It is expected that no change will be required to the API to support 
multi-Txn batches. 

As of Secure Java V4.0.3a, it is possible to create a Payment object, add a Txn to it, call 
process(), then add another Txn and process() again, as many times as required on a single 
Payment object. 

Since Direct Entry payments are sent to a different URL than credit card payments a separate 
instance of Payment Class should be used for processing those payments. 

For refunds and reversals, the ponum field must be the same as the ponum used for the original 
payment. 

For completes the ponum field must be the same as the ponum used for the original 
preauthorisation. 

Input Parameters: 

Name Type Description Allowed Values 
TxnType int Integer representing the transaction 

type to be processed. 
Refer to Appendix A 

Ponum String Unique merchant transaction 
identifier, typically an invoice 
number. 

Any alphanumeric string, up to 60 
characters in length. 
For Direct Entry: 
Any string using characters from, 
Appendix I up to 18 characters in 
length. 

Return Parameter: 

Type Description 
Txn Instance of the Txn object added to the Payment. 

If a Txn with the same identification already exists, then this object is returned, otherwise 
a new instance is returned. 

 

5.2.1.1.3.8 getTxn 

public Txn getTxn(int txnType, String ponum) 

Returns the Txn object from the Payment’s request queue (before calling process()) with a matching 
txnType and ponum value.  If no such Txn exists, NULL is returned.  This method will always return 
NULL after a call to process(), as the request queue will be empty. 

Input Parameters: 

Name Type Description Allowed Values 
txnType int Integer representing the transaction 

type to be processed. 
 

ponum String Unique merchant transaction 
identifier, typically an invoice 
number. 

Any alphanumeric string, up to 60 
characters in length. 

Return Parameter: 



 

Page 13 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Type Description 
Txn Txn request object matching the txnType and ponum supplied, or NULL if no such Txn 

exists. 

 

5.2.1.1.3.9 Process 

public boolean process(String password) 

Sends this Payment object and all contained Txns to SecurePay’s Payment Server for processing by 
the bank.  Method blocks until all transactions contained are processed and a response message is 
received, or the process timeout expires (refer to 5.2.1.1.3.6). 

As of Secure Java V4.0.3a, the password parameter must be passed to this method.  Previous 
releases of Secure Java V4.0.x which did not pass a password will no longer be compatible with the 
SecurePay Payment Server, as it is now required that a password is used for all financial 
transactions and echoes.  The password can be changed via SecurePay’s Merchant Login website 
by logging in as the “admin” user. 

If the merchant Id and password sent do not match those stored in SecurePay’s database, the 
response message will have a status code of “550”. 

Input Parameters: 

Name Type Description Allowed Values 
password String The password is configured in 

SecurePay’s database per Merchant ID, 
and must match the value passed by 
this method for the message to be 
accepted and processed. 

The password is allocated to you by 
SecurePay when you receive this 
software, and can be changed via 
the Merchant Login website. 

Return Parameter: 

Type Description 
boolean true if message was sent to server correctly and processed (regardless of the transactions’ 

outcome), and false if client-side errors occurred preventing the object from being sent. 

 

5.2.1.1.3.10 getStatusCode 
public long getStatusCode() 

Returns the status code of the Payment. Refer Appendix F for more information. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
long Code representing the status of the Payment object after processing. 

 

 

 

 

 

 

 

 



 

Page 14 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.1.3.11 getStatusDesc 
public String getStatusDesc() 

Returns the status description of the Payment.  Refer to Appendix F for more information. 

Input Parameters: 

 No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Textual description of the status of the Payment object after processing. 

 

5.2.1.1.3.12 toString 
public String toString() 

 Returns the object with its parameters formatted in a readable string. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Textual representation of the Payment object. 

 

5.2.1.1.3.13 getCount 
public int getCount() 

Returns the number of Txn objects contained in this Payment object.  Before process() is 
called, the number of Txn requests is returned.  The number of Txn responses is given after a call 
to process(). 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
Int Number of Txn objects 

 

5.2.1.1.3.14 getTxn 
public Txn getTxn(int index) 

Returns the Txn object from the Payment at the indexth position.  This method returns a Txn 
request before calling process() or a Txn response after calling process(). 

Input Parameters: 

Name Type Description Allowed Values 
index int Index to the Txn object required. int between 0 and getCount() – 1 

Return Parameter: 

Type Description 
Txn Txn object from requested position. 

 



 

Page 15 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.1.3.15 getAdditionalInfo (Available in software v4.1.2, but not currently in use.) 
public String getAdditionalInfo(int index, String fieldName) 

This field is not currently in use, and will return a null value if called.  SecurePay will release a list 
of available fields when they become available. 

Returns the value of the specified field from the Txn object at the indexth position.  If index is –
1, the field returned is from the Payment object itself. 

Input Parameters: 

Name Type Description Allowed Values 
index int Index to the Txn object required, 

or –1 to reference the Payment 
object itself. 

int between –1 and getCount() – 1 

fieldName String Name of field to return from the 
object specified by index. 

Valid field name. 

Return Parameter: 

Type Description 
String Value of field requested, or null if the field does not exist in the message. 

 

5.2.1.2 securepay.jxa.api.Txn 

The Txn object is returned when addTxn(…) is called from a Payment object.  The required fields 
of this object must be set using “set” functions provided, as described below.  When the Payment 
is submitted and processed, the result parameters of the Txn can be retrieved using the “get” 
methods described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 16 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

 

5.2.1.2.1 Transaction Type Required Field Map 

The following table specifies which transaction parameters must be set for each available Txn type.  
Parameters are mandatory, optional, or not required. 

 

TXN 

TYPE 

 

         METHOD 

St
an

da
rd

 
Pa

ym
en

t 

R
ef

un
d 

R
ev

er
sa

l 

Pr
ea

ut
ho

ris
e 

Co
m

pl
et

e 
(A

dv
ic

e)
 

R
ec

ur
rin

g 
Pa

ym
en

t 

Ca
rd

-P
re

se
nt

 
Pa

ym
en

t 

D
ire

ct
 

En
tr

y 
D

eb
it 

Pa
ym

en
t 

D
ire

ct
 

En
tr

y 
Cr

ed
it 

Pa
ym

en
t 

An
tif

ra
ud

 
Pa

ym
en

t 

An
tif

ra
ud

 
O

nl
y 

R
eq

ue
st

 

0 4 6 10 11 14 19 15 17 21 22 
setTxnSource O O O O O O O O O O O 
setAmount M M M M M M M M M M M 
setCurrencyCode O X X O X O O X X O O 
setCardNumber M X X M X M M X X M M 
SetCVV O O O O O O O X X O O 
setExpiryDate M O O M O O M X X M M 
setTrack2Data X X X X X X M X X X X 
SetXID O O O O O O O X X X X 
SetCAVV O O O O O O O X X X X 
SetSLI O O O O O O O X X X X 
SetTxnId X M M X X X X X X X X 
setPreauthCode X X X X M X X X X X X 
setBsbNumber X X X X X X X M M X X 
setAccountNumber X X X X X X X M M X X 
setAccountName X X X X X X X M M X X 
setFirstName X X X X X X X X X O O 
setLastName X X X X X X X X X O O 
setZipCode X X X X X X X X X O O 
setTown X X X X X X X X X O O 
setBillingCountry X X X X X X X X X O O 
setDeliveryCountry X X X X X X X X X O O 
setEmailAddress X X X X X X X X X O O 
setIp X X X X X X X X X M M 

 M = mandatory O = optional X = not required 
(ignored if set) 

 

For refunds and reversals the ponum field must be the same as the ponum used for the original 
payment. 

For completes the ponum field must be the same as the ponum used for the original 
preauthorisation. 

The ponum field is set using addTxn method on the Payment object. 

 

5.2.1.2.2 Constructor 

The Txn object cannot be constructed directly.  It must be created by calling addTxn(…) in the 
Payment object. 

 



 

Page 17 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

 

5.2.1.2.3 Public Methods 

5.2.1.2.3.1 setTxnSource 

public void setTxnSource(int value) 

Sets the transaction source for this transaction.  Source is used for transaction origin tracking.  This 
field is optional, and is set to 0, “Unknown”, by default. 

Input Parameters: 

Name Type Description Allowed Values 
value int Transaction source Refer to Appendix B 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.2 setAmount 

public void setAmount(String value) 

Sets the amount associated with this financial transaction.  Amount is supplied with no currency 
formatting, in the currency’s smallest denomination.  If using the default currency of Australian 
Dollars (AUD), the amount is set in Australian cents.  E.g. an amount of AU$125.40 would be set 
calling: 

txn.setAmount(“12540”); 

Note for Multi-Currency Users: For examples of how other currency codes affect the value set in this 
field, and how many minor units to pass for each currency type, see Appendix HError! Reference 
source not found.. (You must fulfil certain requirements with your bank and SecurePay before using 
the multi-currency features.  Contact SecurePay Support for further details.) 

Input Parameters: 

Name Type Description Allowed Values 
Value String Transaction amount in Australian 

cents. 
String representing a 
number > 0, with no 
whitespace or currency 
formatting. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.3 setCurrencyCode (Approved Multi‐Currency merchants only) 

public void setCurrencyCode(String value) 

Before setting this value, check with SecurePay to find out if we support multi-currency transactions 
through your bank, and what currency codes they allow.  You may need to open a special multi-
currency account with your bank to allow payments in other currencies.  (Contact SecurePay 
Support for further details.) 

 



 

Page 18 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

When doing Refunds, Reversals, and Advice (Preauth Complete), the currency code is not required.  
The currency will be determined from the original currency used for the Payment or 
Preauthorisation transaction. 

Sets the 3-character currency code associated with this financial transaction.  If this field is not set, 
the default currency will be “AUD” (Australian Dollars).  To modify the transaction to use Euro, for 
example, use the following code: 

txn.setCurrencyCode(“EUR”); 

Currency codes are in all uppercase.  The complete list of supported currencies, and the 
appropriate amount field formatting for each currency, is supplied in the Appendix H. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Transaction currency code. One of the valid 3-letter codes 

provided in the Appendix H to 
this document. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.4 setCardNumber 

public void setCardNumber(String value) 

 Only for Credit Card transactions. 

Sets the credit card number for this financial transaction. The card number is not required for 
refunds, reversals and complete transactions. As these transaction types can only be performed on 
an existing transaction (payment or preauthorisation) SecurePay already has a record of the card 
number used. 

Input Parameters: 

Name Type Description Allowed Values 
value String Customer’s credit card number. String of digits, no whitespace. 

13-16 characters. 
String must pass Luhn algorithm. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.5 setCVV 

public void setCVV(String value) 

Only for Credit Card transactions. 

Sets the Card Verification Value for this financial transaction.  This field is optional.  The CVV value 
assists the bank with detecting fraudulent transactions based on automatically generated card 
numbers, as the CVV number is printed on the physical card and cannot be generated in 
conjunction with a card number.  If passed, the bank may check the supplied value against the 
value recorded against the card.   

Input Parameters: 

Name Type Description Allowed Values 
value String Customer’s credit card CVV 

number. 
3 or 4 digit string, no whitespace. 
NULL or empty string is also 
valid. 



 

Page 19 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.6 setExpiryDate 

public void setExpiryDate(String value) 

Only for Credit Card transactions. 

Sets the credit card expiry date for this financial transaction.  The expiry date is optional for refunds, 
reversals, recurring payments and complete transactions. As refunds, reversals and completes are 
transaction types that can only be performed on an existing transaction (payment or 
preauthorisation) SecurePay already has a record of the expiry date used. Expiry date can be set if 
the credit card has been re-issued with a new expiry date. 

Input Parameters: 

Name Type Description Allowed Values 
value String Customer’s credit card expiry 

date. 
5-character string in format 
MM/YY, where MM is a 2 digit 
month value (January = 01), YY is 
a 2 digit year value (2003 = 03). 
NULL or empty string is also valid 
for Recurring transactions. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.7 setTrack2Data  (Card‐Present transactions only) 

public void setTrack2Data(String value) 

Only for Credit Card transactions. 

Set the data read from Track 2 of the magnetic strip on the customer’s physical credit card by a 
card-reading device.  Track 2 data is required only for merchants using a card-reading device to 
perform card-present transactions.  For card-present transactions, the Transaction Type must also 
be set to Card Present. 

Input Parameters: 

Name Type Description Allowed Values 
value String Data retrieved from “track 2” on 

the credit card’s magnetic strip. 
 

Return Parameter: 

 No object returned by this method. 

5.2.1.2.3.8 setXID  (3D‐Secure merchants only) 

public void setXID(String value) 

Only for Credit Card transactions. 

Set the 3D-Secure XID (transacion ID) for this financial transaction.  The XID is required only for 
merchants enrolled in the 3D-Secure program.  The XID field must be a 20-byte String, matching the 
unique XID passed to the card issuer before sending this transaction, using any 3D-Secure-enabled 
software. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Transaction’s XID, as supplied Any 20-byte String 



 

Page 20 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

to card issuer prior to sending 
the financial transaction. 

Return Parameter: 

 No object returned by this method. 

5.2.1.2.3.9 setCAVV  (3D‐Secure merchants only) 

public void setCAVV(String value) 

Only for Credit Card transactions. 

Set the 3D-Secure Cardholder Authorisation Verification Value for this financial transaction.  The 
CAVV is required only for merchants enrolled in the 3D-Secure program.  The CAVV field must be a 
28-character Base-64-encoded string, matching the CAVV generated by 3D-Secure-enabled 
software before sending this financial transaction. 

 

Input Parameters: 

Name Type Description Allowed Values 
Value String Transaction’s CAVV, as 

supplied by card issuer prior to 
sending the financial 
transaction. 

28-character Base-64-encoded 
string. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.10 setSLI  (3D‐Secure merchants only) 

public void setSLI(String value) 

Only for Credit Card transactions. 

Set the 3D-Secure Service Level Indicator for this financial transaction.  The SLI is required only for 
merchants enrolled in the 3D-Secure program.  The SLI field must be a 2-digit string, matching the 
SLI (or ECI) returned by the 3D-Secure-enabled software, prior to sending this financial transaction. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Transaction’s SLI, as supplied 

by card issuer prior to sending 
the financial transaction. 

2-digit String. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.11 setTxnId 
public void setTxnId() 

 Only for Credit Card transactions. 

For Refunds and Reversals only. 

Set the original bank transaction ID of a payment in order to refund or reverse the payment.  Field 
must be set for refunds or reversals to work, and must match the original payment transaction ID. 

Input Parameters: 

Name Type Description Allowed Values 
value String Bank transaction ID of the 6-30 character string 



 

Page 21 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

original payment transaction. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.12 setPreauthCode 
public void setPreauthCode() 

 Only for Credit Card transactions. 

For Preauth Completes (Advice) only. 

Set the original authorisation code of a preauth in order to complete the payment.  Field must be 
set for preauth complete to work, and must match the original preauth authorisation ID. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Preauth ID of the original 

preauth transaction. 
6 character string 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.13 setBsbNumber 

public void setBsbNumber() 

Only for Direct Entry transactions. 

Sets BSB number for financial institution. 

Input Parameters: 

Name Type Description Allowed Values 
value String BSB number Numerical. 

6 character string 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.14 setAccountNumber 

public void setAccountNumber() 

Only for Direct Entry transactions. 

Sets account number for financial institution. 

Input Parameters: 

Name Type Description Allowed Values 
value String Account number Numerical. 

4-9 character string 

Return Parameter: 

 No object returned by this method. 

 

 

 



 

Page 22 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

 

 

 

 

5.2.1.2.3.15 setAccountName 

public void setAccountName() 

Only for Direct Entry transactions. 

Sets account name for financial institution. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Account name String using characters from 

Appendix I up to 32 characters 
in length. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.16 setFirstName 

public void setFirstName() 

Only for antifraud transactions. 

Sets customer’s first name. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Customer’s first name String, max length 40. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.17 setLastName 

public void setFirstName() 

Only for antifraud transactions. 

Sets customer’s last name. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Customer’s last name String, max length 40. 

Return Parameter: 

 No object returned by this method. 

5.2.1.2.3.18 setZipCode 
public void setZipCode() 

Only for antifraud transactions. 

Sets customer’s address zip code or postal code. 



 

Page 23 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Input Parameters: 

Name Type Description Allowed Values 
Value String Customer’s address zip code or 

postal code 
String, max length 30. 

Return Parameter: 

 No object returned by this method. 

5.2.1.2.3.19 setTown 
public void setTown() 

Only for antifraud transactions. 

Sets billing or delivery town of the buyer. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Billing or delivery town of the 

buyer 
String, max length 60. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.20 setBillingCountry 
public void setBillingCountry() 

Only for antifraud transactions. 

Sets ISO country code of the billing address. 

Input Parameters: 

Name Type Description Allowed Values 
Value String ISO country code of the billing 

address. 
3 digit numeric ISO code or 2 or 
3 alpha character ISO code. 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.21 setDeliveryCountry 
public void setDeliveryCountry() 

Only for antifraud transactions. 

Sets ISO country code of the delivery address. 

Input Parameters: 

Name Type Description Allowed Values 
Value String ISO country code of the delivery 

address. 
3 digit numeric ISO code or 2 or 
3 alpha character ISO code. 

Return Parameter: 

 No object returned by this method. 

5.2.1.2.3.22 setEmailAddress 

public void setEmailAddress() 

Only for antifraud transactions. 



 

Page 24 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Sets email address of the customer. 

Input Parameters: 

Name Type Description Allowed Values 
Value String Customer’s email address. String, max length 100. 

Return Parameter: 

 No object returned by this method. 

5.2.1.2.3.23 setIp 
public void setTown() 

Only for antifraud transactions. 

IP address from which the transaction originated. 

Input Parameters: 

Name Type Description Allowed Values 
Value String IP address from which the 

transaction originated. 
String, max length 15, must 
contain 3 p 

Return Parameter: 

 No object returned by this method. 

 

5.2.1.2.3.24 getTxnType 
public int getTxnType() 

Returns the transaction type for the transaction.  Refer to Appendix A for values of this field. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
int Integer representing the transaction type of this Txn. 

 

5.2.1.2.3.25 getTxnSource 
public int getTxnSource() 

Returns the transaction source for this transaction.  Refer to Appendix B for values of this field. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
int Integer representing the source of the transaction. 

 

5.2.1.2.3.26 getAmount 

public String getAmount() 

Returns the amount associated with this financial transaction.  Amount is returned with no currency 
formatting, in the smallest denomination of the transaction’s specified currency.  The currency of 
the transaction is determined using getCurrencyCode(), described below.  If no currency was 



 

Page 25 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

specified when making the payment, the default is Australian Dollars (AUD).  E.g. an amount of 
AUD$125.40 would be returned in Australian cents, as “12540”. 

Input Parameters: 

  No input parameters are required by this method. 

 

 

 

Return Parameter: 

Type Description 
String The amount of the financial transaction with no currency formatting, in the 

smallest denomination of its specified currency. 
NULL if the amount has not been set. 

 

5.2.1.2.3.27 getCurrencyCode 
public String getCurrencyCode() 

Returns the 3-character currency identifier associated with this financial transaction. 

If process() has not yet been called on this Payment, this method will only return a value if 
setCurrencyCode() has been called; otherwise it will return NULL, implying the default value of 
“AUD” (Australian Dollars). 

If process() has been called, this method will return the currency code that was used for the 
payment.  If the currency code was not set, the default of “AUD” (Australian Dollars) will be returned. 

See valid currency code table in Appendix H. 

If process() has been called and the payment was approved AND this method still returns NULL, 
then the payment was sent to a SecurePay URL which does not yet support multi-currency, and the 
payment has been processed in Australian Dollars.  You will need to refund the payment in 
Australian Dollars if this was done in error. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The 3-letter currency code of the financial transaction. 

NULL if the currency has not been set and process() has not yet been called, 
indicating Australian Dollars will be used by default; or if the payment HAS 
been processed but the SecurePay URL does not support multi-currency yet. 

 

5.2.1.2.3.28 getPonum 

public String getPonum() 

Returns the purchase order number for this transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The purchase order number referring to the transaction. 



 

Page 26 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

NULL if the purchase order number has not been set. 

 

 

 

 

 

 

5.2.1.2.3.29 getCardNumber 

public String getCardNumber() 

 For Credit Card transactions: 

Returns the truncated credit card number, as stored in SecurePay’s database.  This is the first 6 
and last 3 digits of the original card number, separated by “…”.  E.g. Setting a card number as: 

txn.setCardNumber(“4444333322221111”); 

then a call to: 

txn.getCardNumber(); 

returns “444433...111”. 

For Direct Entry transactions in Payment requests: 

Returns NULL. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The truncated credit card number or BSB and account numbers of this 

financial transaction. 
NULL if the card number has not been set. 

 

5.2.1.2.3.30 getCardType 
public int getCardType() 

Only for Credit Card transactions. 

Returns an integer representing the type of card used.  Refer to Appendix C. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
int The credit card type code of the card number used. 

 

5.2.1.2.3.31 getCardDescription 
public int getCardDescription() 

Only for Credit Card transactions. 

Returns a textual description of card used, or NULL if transaction has not been processed yet. 



 

Page 27 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Description of the type of credit card used. 

 

 

5.2.1.2.3.32 getCVV 
public String getCVV() 

Only for Credit Card transactions. 

Returns the Card Verification Value of the financial transaction.  After the transaction has been 
processed, this method will return NULL, as this value should not be logged, and is not stored by 
SecurePay. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The Card Verification Value of this financial transaction. 

NULL if the value has not been set, or if the transaction has been processed. 

 

5.2.1.2.3.33 getExpiryDate 
public String getExpiryDate() 

 Only for Credit Card transactions. 

Returns the credit card expiry date of the financial transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The credit card expiry date of this financial transaction. 

NULL if the value has not been set, or if the expiry date was not sent with a 
recurring payment. 

 

5.2.1.2.3.34 getTrack2Data  (Card‐Present transactions only) 
public void getTrack2Data() 

Only for Credit Card transactions. 

Track 2 of the magnetic strip on the customer’s physical credit card, as passed in by 
setTrack2Data().  After the transaction has been processed, this method will return NULL, as 
SecurePay does not store this data. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 



 

Page 28 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

String The Track 2 data from the magnetic strip on the customer’s credit card. 
NULL if the value has not been set, or if the transaction has already been 
processed. 

 

 

 

 

 

5.2.1.2.3.35 getXID  (3D‐Secure merchants only) 

public String getXID() 

Only for Credit Card transactions. 

Returns the 3D-Secure XID (transaction id) of the financial transaction.  After the transaction has 
been processed, this method will return NULL, as this value should not be logged, and is not stored 
by SecurePay. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The 3D-Secure XID of this financial transaction. 

NULL if the value has not been set, or if the transaction has already been 
processed. 

 

5.2.1.2.3.36 getCAVV  (3D‐Secure merchants only) 

public String getCAVV() 

Only for Credit Card transactions. 

Returns the 3D-Secure Cardholder Authorisation Verification Value of the financial transaction.  
After the transaction has been processed, this method will return NULL, as this value should not be 
logged, and is not stored by SecurePay. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The 3D-Secure CAVV of this financial transaction. 

NULL if the value has not been set, or if the transaction has already been 
processed. 

 

5.2.1.2.3.37 getSLI  (3D‐Secure merchants only) 

public String getSLI() 

Only for Credit Card transactions. 

Returns the 3D-Secure Service Level Indicator (or ECI, E-Commerce Indicator) of the financial 
transaction.  After the transaction has been processed, this method will return NULL, as this value 
should not be logged, and is not stored by SecurePay. 

Input Parameters: 



 

Page 29 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The 3D-Secure SLI (or ECI) of this financial transaction. 

NULL if the value has not been set, or if the transaction has already been 
processed. 

 

 

 

5.2.1.2.3.38 getBsbNumber 

public String getBsbNumber() 

Only for Direct Entry transactions in Payment request. 

Returns the BSB number for this transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The BSB number referring to the transaction. 

NULL if the BSB number has not been set. 

 

5.2.1.2.3.39 getAccountNumber 

public String getAccountNumber() 

Only for Direct Entry transactions in Payment request. 

Returns the account number for this transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The account number referring to the transaction. 

NULL if the account number has not been set. 

 

5.2.1.2.3.40 getAccountName 

public String getAccountName() 

Only for Direct Entry transactions in Payment request. 

Returns the account name for this transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String The account name referring to the transaction. 

NULL if the account name has not been set. 

 



 

Page 30 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.2.3.41 getAntiFraudResponseCode 
public String getAntiFraudResponseCode() 

 Only for antifraud  transactions in Payment request. 

Returns the response code of the antifraud verification.  This will be a 3-digit response from 
SecurePay’s server or API. The method getAntiFraudResponseText() provides more details 
in a textual format. 

Refer to the SecurePay Payment Response Codes document for details of codes returned.  This 
document may be downloaded from SecurePay’s Merchant Login website, or provided via email by 
SecurePay Merchant Support. 

If the antifraud verification failed, the transaction will not be sent to the bank and therefore there 
will be no values returned by methods such as getResponseCode(), getResponseText(), 
getSettlementDate(), isApproved(), getTxnId(). 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String 3-digit SecurePay / gateway response. 

 

5.2.1.2.3.42 getAntiFraudResponseText 
public String getAntiFraudResponseText() 

 Returns a textual description of the antifraud response code received. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Description of antifraud response received. 

 

5.2.1.2.3.43 getApproved 
public boolean getApproved() 

 Returns a boolean representing the financial result of the transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
boolean true if the payment was authorised by the merchant bank and customer card 

issuer, or false in any other case. 

 

5.2.1.2.3.44 getResponseCode 
public String getResponseCode() 

Returns the response code of the transaction.  This is either a 2-digit response (00-99) from the 
bank, a 3-digit response (100-299) from SecurePay’s server or API, or a 3-digit response (900-999) 



 

Page 31 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

mapped from SecurePay’s bank link responses.  The method getResponseText() provides 
more details in a textual format. 

Refer to the SecurePay Payment Response Codes document for details of codes returned.  This 
document may be downloaded from SecurePay’s Merchant Login website, or provided via email by 
SecurePay Merchant Support. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String 2-digit bank response or 3-digit SecurePay / gateway response. 

5.2.1.2.3.45 getResponseText 
public String getResponseText() 

 Returns a textual description of the response code received for the transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Description of response received from API, SecurePay, or bank. 

NULL if the transaction has not yet been processed. 

 

5.2.1.2.3.46 getThinlinkResponseCode 
public String getThinlinkResponseCode() 

Only for Credit Card transactions. 

Maps SecurePay’s response code field to a Westpac Thinlink Payment Result Code for ex-Thinlink 
users.  Refer to Appendix G.1 Payment Result Codes for details of codes returned. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String 3-digit Thinlink Payment Result Code 

 

5.2.1.2.3.47 getThinlinkResponseText 
public String getThinlinkResponseText() 

Only for Credit Card transactions. 

In accordance with Thinlink, this method always returns “000”, meaning “No further information 
available”.  Additional codes may be added in future. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String 3-digit Thinlink Payment Result Description (“000”). 

 



 

Page 32 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.2.3.48 getThinlinkEventStatusCode 
public String getThinlinkEventStatusCode() 

Only for Credit Card transactions. 

Maps SecurePay’s response code field to a Westpac Thinlink Event Status Code for ex-Thinlink 
users.  Refer to Appendix  

G.2 Event Status Codes for details of codes returned. 

Input Parameters: 

  No input parameters are required by this method. 

 

 

Return Parameter: 

Type Description 
String 3-digit Thinlink Event Status Code 

 

5.2.1.2.3.49 getThinlinkEventStatusText 
public String getThinlinkEventStatusText() 

Only for Credit Card transactions. 

Textual description of the Thinlink Event Status Code for ex-Thinlink users. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Textual description of the Event Status Code. 

 

5.2.1.2.3.50 getSettlementDate 

public String getSettlementDate() 

Returns the bank settlement date when the funds will be settled into the merchant’s account.  This 
will be the current date mostly, however after the bank’s daily cut-off time, or on non-banking days, 
the settlement date will be the next business day.  The format of the settlement date is 
“YYYYMMDD”. 

In case of Direct Entry transactions this will be the current date. 

 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Bank settlement date in “YYYYMMDD” format. 

NULL if the bank did not receive the transaction.  (A settlement date may be 
returned for declined transactions.) 
NULL for direct entry transactions if the transaction could not be stored in 
SecurePay system. 

 



 

Page 33 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.2.3.51 getTxnId 
public String getTxnId() 

Returns the Bank Transaction ID of the transaction.  The format of this string depends on the 
merchant’s bank, and ranges between 6 and 30 characters. 

Note: The transaction ID of a payment transaction must be sent back with a request for a refund or 
reversal of that transaction. 

Input Parameters: 

  No input parameters are required by this method. 

 

 

 

Return Parameter: 

Type Description 
String Bank transaction ID of the transaction. 

NULL if the transaction has not been processed, or in some cases if it was not 
received by the bank. 

5.2.1.2.3.52 getPreauthId 
public String getPreauthId() 

Only for Credit Card transactions. 

Only for Preauth transactions. 

Returns the preauthorisation ID of the transaction (for Preauth transaction types only).  NULL is 
returned for any other transaction type, or if the preauthorisation was not received by the bank. 

Note: The preauth ID of a preauth transaction must be sent back with a request for a preauth 
complete (advice) of that transaction. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Preauth ID of the transaction. 

NULL if the transaction is not a Preauth type, or has not been processed, or in 
some cases if the preauth was not received by the bank. 

 

5.2.1.3 Payment Sample Code 

// Import required classes 
import securepay.jxa.api.Payment; 
import securepay.jxa.api.Txn; 

 
class SecurePayPaymentTest 
{ 
public SecurePayPaymentTest() 
{ 

// Create Payment container object 
Payment payment = new Payment(); 

 
// Print generated values 
System.out.println(“Message ID:  “ + payment.getMessageId()); 
System.out.println(“Timestamp:   “ + 

payment.getMessageTimestampAsString()); 
System.out.println(“API Version: “ + payment.getApiVersion()); 



 

Page 34 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

 
// Set Payment values 
payment.setServerURL( 

“http://fakeurl.com/payment”); // Dummy payment URL, 
please use the URL supplied by SecurePay Support 

payment.setProcessTimeout(80);   // 80 seconds 
payment.setMerchantId(“XYZ9999”);   // ID allocated by 

SecurePay 
 

// Add a Txn to the container 
//  type = 0 (payment) 
//  ponum = “SecurePayTest” 
Txn txn = payment.addTxn(0, “SecurePayTest”); 

 
// Set the Txn values 
txn.setTxnSource(8);    // API source 
txn.setAmount(“1000”);    // A$10.00 
txn.setCurrencyCode(“AUD”);   // Australian Dollars 
txn.setCardNumber(“4444333322221111”); // dummy card number 
txn.setCVV(“456”);    // dummy CVV (optional) 
txn.setExpiryDate(“03/06”);   // March, 2006 

 
// Send payment to SecurePay for processing 
boolean processed = payment.process(“password”); 

 
// If payment was not sent to SecurePay, print status and exit 
if (!processed) 
{ 
 System.out.println(“Payment was not sent to server.”); 

  System.out.println(“Status: “ + payment.getStatusCode()); 
 System.out.println(“Desc:   “ + payment.getStatusDesc()); 
} 
else // Payment was processed correctly 
{ 
 System.out.println(“Response Received.”); 
 
 if (payment.getCount() == 1) 
 { 
  // Get the Txn response object 

Txn resp = payment.getTxn(0); // First Txn in response 
queue 

 
 // Print response variables 

  System.out.println(“Transaction response parameters:”); 
  System.out.println(“Status:   “ + payment.getStatusCode()); 

 System.out.println(“Desc:     “ + payment.getStatusDesc()); 
   System.out.println(“Approved: ” + resp.getApproved()); 

 System.out.println(“RespCode: ” + resp.getResponseCode()); 
   System.out.println(“RespText: ” + resp.getResponseText()); 

 System.out.println(“SettDate: ” + resp.getSettlementDate()); 
   System.out.println(“TxnID:    ” + resp.getTxnId()); 
  } 
  else 
  { 

  System.out.println(“No Txn object returned.”); 
  System.out.println(“Check status code for error details.”); 
 } 
} 

} 
 
public static void main(String[] args) 
{ 
 SecurePayPaymentTest test = new SecurePayPaymentTest(); 
} 

} 
 
 



 

Page 35 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

5.2.1.4 Refund Sample Code 

// Import required classes 
import securepay.jxa.api.Payment; 
import securepay.jxa.api.Txn; 

 
class SecurePayRefundTest 
{ 
public SecurePayRefundTest() 

{ 
// Create Payment container object 
Payment payment = new Payment(); 

 
// Print generated values 
System.out.println(“Message ID:  “ + payment.getMessageId()); 
System.out.println(“Timestamp:   “ + 

payment.getMessageTimestampAsString()); 
System.out.println(“API Version: “ + payment.getApiVersion()); 

 
// Set Payment values 
payment.setServerURL( 

“http://fakeurl.com/payment”); // Dummy payment URL, 
please use the URL supplied by SecurePay Support 

payment.setProcessTimeout(80);   // 80 seconds 
payment.setMerchantId(“XYZ9999”);   // ID allocated by 

SecurePay 
 

// Add a Txn to the container 
//  type = 4 (refund) 
//  ponum of the original payment = “SecurePayTest” 
Txn txn = payment.addTxn(4, “SecurePayTest”); 

 
// Set the Txn values 
txn.setTxnSource(8);    // API source 
txn.setAmount(“1000”);    // A$10.00 
txn.setCurrencyCode(“AUD”);   // Australian Dollars 

  txn.setTxnId(“123123”);   // Transaction Id returned for 
the 

// original payment 
 

// Send refund to SecurePay for processing 
boolean processed = payment.process(“password”); 

 
// If refund was not sent to SecurePay, print status and exit 
if (!processed) 
{ 
 System.out.println(“Refund was not sent to server.”); 

  System.out.println(“Status: “ + payment.getStatusCode()); 
 System.out.println(“Desc:   “ + payment.getStatusDesc()); 
} 
else // Refund was processed correctly 
{ 
 System.out.println(“Response Received.”); 
 
 if (payment.getCount() == 1) 
 { 
  // Get the Txn response object 

Txn resp = payment.getTxn(0); // First Txn in response 
queue 

 
 // Print response variables 

  System.out.println(“Transaction response parameters:”); 
  System.out.println(“Status:   “ + payment.getStatusCode()); 

 System.out.println(“Desc:     “ + payment.getStatusDesc()); 
   System.out.println(“Approved: ” + resp.getApproved()); 

 System.out.println(“RespCode: ” + resp.getResponseCode()); 
   System.out.println(“RespText: ” + resp.getResponseText()); 

 System.out.println(“SettDate: ” + resp.getSettlementDate()); 



 

Page 36 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

   System.out.println(“TxnID:    ” + resp.getTxnId()); 
  } 
  else 
  { 

  System.out.println(“No Txn object returned.”); 
  System.out.println(“Check status code for error details.”); 
 } 
} 

} 
 
public static void main(String[] args) 
{ 
 SecurePayRefundTest test = new SecurePayRefundTest(); 
} 

} 

5.2.2 Echo 

5.2.2.1 securepay.jxa.api.Echo 

The Echo object can be created and sent to any of the SecurePay service URLs (Payment or 
DirectEntry) to ensure the SecurePay service is available, and to confirm the status of the service. 

Echo messages must be used appropriately.  If you use this method to poll SecurePay services, 
polls should be no less than 5 minutes apart.  An Echo should not be sent if a transaction with a 
bank response code (00-99) has been processed by your system within the last 5 minutes. 

 

5.2.2.2 Constructor 

public Echo() 

 Create an empty Echo object. 

Parameters: 

  No parameters required by this constructor. 

 

5.2.2.2.1 Public Methods 

5.2.2.2.1.1 getMessageId 

public String getMessageId() 

 Returns the unique message identifier created by the API. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Unique identifier of this Echo object. 

 

5.2.2.2.1.2 getMessageTimestamp 

public Date getMessageTimestamp() 

 Returns the timestamp created by the API for the Echo in a Date object. 

Input Parameters: 



 

Page 37 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
Date Timestamp of this Echo object. 

 

 

 

 

 

 

5.2.2.2.1.3 getMessageTimestampAsString 

public String getMessageTimestampAsString() 

Returns the timestamp created by the API for the Echo as a string.  Refer to Appendix E for the 
format of the string returned. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Timestamp of this Echo object. 

5.2.2.2.1.4 getApiVersion 

public String getApiVersion() 

 Returns the version of the API being used to create this object. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String API version used to create this Echo object. 

 

5.2.2.2.1.5 setMerchantId 

public void setMerchantId(String id) 

 Sets the merchant id to be used when processing the echo request.   

Input Parameters: 

Name Type Description Allowed Values 
id String Merchant ID allocated to the 

merchant by SecurePay. 
7-character string in 
format XXXDDDD, 
where X is a letter (A-Z) 
and D is a digit (0-9).  
SecurePay will supply 
this value to you upon 
application. For Direct 
Entry Echo Request: 
5-7 character string in 
format XXXDDDD, 
where X is a letter (A-Z) 
and D is a digit (0-9).  



 

Page 38 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Last two digits can be 
ignored. 

Return Parameter: 

 No object returned by this method. 

 

 

 

 

 

 

5.2.2.2.1.6 setServerURL 

public void setServerURL(String url) 

Sets the URL of the SecurePay service to which this Echo will be sent when process() is called. 

Input Parameters: 

Name Type Description Allowed Values 
url String URL of SecurePay’s server. Test: 

https://www.securepay.com.au/test
/payment 
Live: 
https://www.securepay.com.au/xml
api/payment 
For Direct Entry: 
Test: 
https://www.securepay.com.au/test
/directentry 
Live: 
https://www.securepay.com.au/xml
api/directentry 

Return Parameter: 

 No object returned by this method. 

5.2.2.2.1.7 setProcessTimeout 

public void setProcessTimeout(int timeout) 

Sets the timeout in seconds to wait for a response message from SecurePay’s server.  If no 
response is received in this time, a timeout response is returned, and transaction results may be 
queried at a later time. 

If value is not set, or is set to an integer < 0, default timeout of 80 seconds is used. 

Input Parameters: 

Name Type Description Allowed Values 
timeout int Seconds to wait for SecurePay 

response. 
Int < 0: default value is 
used 
Int >= 0: supplied 
value is used. 

Return Parameter: 

 No object returned by this method. 

5.2.2.2.1.8 Process 

public boolean process(String password) 



 

Page 39 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Sends this Echo object to SecurePay’s Server.  This method may be called multiple times on the 
same instance of the Echo object. 

As of Secure Java V4.0.3a, the password parameter must be passed to this method.  Previous 
releases of Secure Java V4.0.x which did not pass a password will no longer be compatible with the 
SecurePay Payment Servers, as it is now required that a password is used for all financial 
transactions and echoes.  The password can be changed via SecurePay’s Merchant Login website 
by logging in as the “admin” user. 

If the merchant Id and password sent do not match those stored in SecurePay’s database, the 
response message will have a status code of “550”. 

Input Parameters: 

Name Type Description Allowed Values 
password String The password is configured in 

SecurePay’s database per 
Merchant ID, and must match 
the value passed by this method 
for the message to be accepted 
and processed. 

The password is allocated 
to you by SecurePay when 
you receive this software, 
and can be changed via the 
Merchant Login website. 

Return Parameter: 

Type Description 
Boolean true if message was sent to server correctly and a response received, and 

false if client-side errors occurred preventing the object from being be sent. 

 

 

5.2.2.2.1.9 getStatusCode 

public long getStatusCode() 

 Returns the status code of the Echo.  Refer to Appendix F for more details. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
long Code representing the status of the Echo object after processing. 

 

5.2.2.2.1.10 getStatusDesc 
public String getStatusDesc() 

 Returns the status description of the Echo response. 

Input Parameters: 

  No input parameters are required by this method. 

Return Parameter: 

Type Description 
String Textual description of the status of the Echo object after processing. 

 

 

 

 



 

Page 40 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

 

 

 

 

 

 

 

 

 

 

 

5.2.2.3 Echo Sample Code 

// Import required classes 
import securepay.jxa.api.Echo; 
 
class SecurePayEchoTest 
{ 

public SecurePayEchoTest() 
{ 

// Create Payment container object 
Echo echo = new Echo(); 

 
// Print generated values 
System.out.println(“Message ID:  “ + echo.getMessageId()); 
System.out.println(“Timestamp:   “ + 

echo.getMessageTimestampAsString()); 
System.out.println(“API Version: “ + echo.getApiVersion()); 

 
// Set Payment values 
echo.setServerURL( 

“http://fakeurl.com/payment”); // Dummy payment 
URL, please use URL supplied by SecurePay Support 

echo.setProcessTimeout(80);    // 80 seconds 
echo.setMerchantId(“XYZ9999”);   // ID allocated by 

SecurePay 
 

// Send echo to SecurePay 
boolean processed = echo.process(“password”); 
 
if (!processed) 
{ 
 System.out.println(“Payment was not sent to server.”); 
} 
else // Payment was processed correctly 
{ 
 System.out.println(“Response Received.”); 
} 
 
// Print status of Echo 

 System.out.println(“Status:   “ + echo.getStatusCode()); 
System.out.println(“Desc:     “ + echo.getStatusDesc()); 

} 
 
public static void main(String[] args) 
{ 
 SecurePayEchoTest test = new SecurePayEchoTest(); 
} 

} 



 

Page 41 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix A: Transaction Types 

Transaction type codes define the type of financial transaction processed by SecurePay. 

Codes with shaded background are permitted in Payment transactions from this API.  All other codes are 
provided for completeness. 

Code Description 
0 Standard Payment 
1 Mobile Payment 
2 Batch Payment 
3 Periodic Payment 
4 Refund 
5 Error Reversal (Void) 
6 Client Reversal (Void) 

10 Preauthorise 
11 Preauth Complete (Advice) 
14 Recurring Payment 
15 Direct Entry Debit 
17 Direct Entry Credit 
19 Card-Present Payment 
20 IVR Payment 
21 Antifraud payment 
22 Antifraud (only) request  

 



 

Page 42 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix B: Transaction Sources 

Transaction source codes track the origin of financial transaction processed by SecurePay. 

Codes with shaded background are permitted in Payment transactions from this API.  All other codes are 
provided for completeness. 

Other source codes may be used, with the permission of SecurePay.  Contact SecurePay Support for more 
information. 

Code Description 
0 Unknown (default) 
1 SecureLink 
2 Merchant Login 
3 SATM 
4 SecureBill Portal 
5 SecureBill Link 
7 SecurePOS 
8 API (Secure Java) 
9 Call Centre Payment Switch 

10 Batch Server 
11 IVR1 
12 IVR2 
13 SecureMobile 
14 Reconciliation Engine 
16 Helpdesk Login 
18 eSec Interface 
19 Periodic Server 
23 SecureXML 
24 DirectOne Interface 
25 Antifraud Server 
90 Reserved 

 

 



 

Page 43 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix C: Card Types 

SecurePay uses numeric codes to refer to credit card types in our system. 

Code Description 
0 Unknown 
1 JCB 
2 American Express (Amex) 
3 Diners Club 
4 Bankcard 
5 MasterCard 
6 Visa 

 



 

Page 44 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix D: Location of CVV 

The Card Verification Value is an anti-fraud measure used by some banks to prevent payments from 
generated card numbers.  The CVV number is printed on the physical card, and is randomly assigned, 
therefore cannot be auto-generated. 

 

The CVV number can be found in the following places: 

Card Type Location 
Visa Signature strip on back of card.  Last digits of card number are re-

printed in reverse italics, followed by 3-digit CVV. 
MasterCard Signature strip on back of card.  Last digits of card number are re-

printed in reverse italics, followed by 3-digit CVV. 
Bankcard Signature strip on back of card.  Last digits of card number are re-

printed in reverse italics, followed by 3-digit CVV. 
Amex 4 digit CVV above card number on front of card. 
Diners Club Signature strip on back of card.  Last digits of card number are re-

printed in reverse italics, followed by 3-digit CVV. 
JCB Not used 

 



 

Page 45 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix E: Timestamp String Format 

The format of the Timestamp or Log Time strings returned by Secure Java is: 

YYYYDDMMHHNNSSKKK000sOOO 

where: 

• YYYY is a 4-digit year 

• DD is a 2-digit zero-padded day of month 

• MM is a 2-digit zero-padded month of year (January = 01) 

• HH is a 2-digit zero-padded hour of day in 24-hour clock format (midnight =0) 

• NN is a 2-digit zero-padded minute of hour 

• SS is a 2-digit zero-padded second of minute 

• KKK is a 3-digit zero-padded millisecond of second 

• 000 is a Static 0 characters, as SecurePay does not store nanoseconds 

• sOOO is a Time zone offset, where s is “+” or “-“, and OOO = minutes, from GMT. 

 

E.g. June 24, 2002 5:12:16.789 PM, Australian EST is: 

20022406171216789000+600 

 

 



 

Page 46 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix F: SecurePay Status Codes 

Status 
Code Response Text Description 

0 Normal Message processed correctly (check transaction response for details). 
504 Invalid Merchant ID If Merchant ID does not follow the format XXXDDDD, where X is a letter and D 

is a digit, or Merchant ID is not found in SecurePay’s database. 
505 Invalid URL The URL passed to either Echo, or Payment object is invalid. 
510 Unable To Connect To Server  Produced by SecurePay Client API when unable to establish connection to 

SecurePay Payment Gateway 
511 Server Connection Aborted 

During Transaction  
Produced by SecurePay Client API when connection to SecurePay Payment 
Gateway is lost after the payment transaction has been sent 

512 Transaction timed out By 
Client  

Produced by SecurePay Client API when no response to payment transaction 
has been received from SecurePay Payment Gateway within predefined time 
period (default 80 seconds) 

513 General Database Error Unable to read information from the database. 
514 Error loading properties file Payment Gateway encountered an error while loading configuration 

information for this transaction 
515 Fatal Unknown Error Transaction could not be processed by the Payment Gateway due to unknown 

reasons 
516 Request type unavailable SecurePay system doesn’t support the requested transaction type 
517 Message Format Error SecurePay Payment Gateway couldn’t correctly interpret the transaction 

message sent 
524 Response not received The client could not receive a response from the server. 
545 System maintenance in 

progress 
The system maintenance is in progress and the system is currently unable to 
process transactions  

550 Invalid password The merchant has attempted to process a request with an invalid password. 
575 Not implemented This functionality has not yet been implemented 
577 Too Many Records for 

Processing 
The maximum number of allowed events in a single message has been 
exceeded. 

580 Process method has not been 
called 

The process() method on either Echo, or Payment object has not been called 

595 Merchant Disabled SecurePay has disabled the merchant and the requests from this merchant 
will not be processed. 

 



 

Page 47 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix G: Thinlink Codes 

G.1 Payment Result Codes 

Code Description 
100 Payment approved 
200 Payment declined 
300 Payment incomplete – Unable to process, try again later 
400 Scheduled – Execution pending 
999 Unknown status 

 

G.2 Event Status Codes 

Code Description  Code Description 
000 Normal Completion  986 Error – Invalid Email Address 
002 No event to process  988 Error – Unknown Currency 
980 Error – Bad Card Number  990 Error – Invalid Amount 
981 Error – Expired Card  991 Error – Invalid MTID 
982 Error – Invalid Transaction Type  992 Error – Duplicate Invoice Number 
984 Error – Formatting Error  999 Error – Unspecified 



 

Page 48 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix H: Currency Codes List 

IMPORTNANT NOTICE: 

You must meet certain requirements with your bank and SecurePay before using SecurePay’s multi-
currency features.  Please ask SecurePay if we support multi-currency payments through your bank, and if 
so, what currency types are available.  You may also need to open multi-currency accounts with your bank 
for each currency you propose to transact in.  Contact SecurePay Support or your SecurePay Account 
Manager for full details. 

 

Code Description Minor Units 
Example* 

Amount Pass As 
AUD Australian Dollar 2 $20 2000 
CAD Canadian Dollar 2 $20 2000 
CHF Swiss Franc 2 20 2000 
DEM German Deutschmark 2 20 2000 
EUR Euro 2 €20 2000 
FRF French Franc 2 20 2000 
GBP English Pound 2 £20 2000 
GRD Greek Drachma 0 20 20 
HKD Hong Kong Dollar 2 $20 2000 
ITL Italian Lira 0 L20 20 
JPY Japanese Yen 0 ¥20 20 
NZD New Zealand Dollar 2 $20 2000 
SGD Singapore Dollar 2 $20 2000 
USD US Dollar 2 $20 2000 

 

* To pass a multicurrency payment to SecurePay, call setCurrencyCode(…) with the value from the Code 
column, and call setAmount(…) with the amount to be charged, ensuring you set the correct number of 
Minor Units for the selected currency, as shown in the examples. 

E.g. For US Dollars, $4,125.90 is set using: 

txn.setAmount(“412590”); 
txn.setCurrencyCode(“USD”); 

or for Japanese Yen, ¥67,925 is set using: 

txn.setAmount(“67925”); 
txn.setCurrencyCode(“JPY”); 

 



 

Page 49 of 49 

© SecurePay Pty Ltd                                                                     SecurePay Java API integration Guide Version 1.3 

Appendix I: Direct Entry Character set 

 

Description Characters allowed 
Numeric 0 - 9 
Alphabetic a – z, A - Z 
Oblique slash / 
Hyphen - 
Ampersand & 
Period . 
Asterisk * 
Apostrophe ‘ 
Blank space   

 

 

 


