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PREFACE

This book is a ‘primer’ in global sensitivity analysis (SA). Its am-
bition is to enable the reader to apply global SA to a mathematical
or computational model. It offers a description of a few selected
techniques for sensitivity analysis, used for assessing the relative
importance of model input factors. These techniques will answer
questions of the type ‘which of the uncertain input factors is more
important in determining the uncertainty in the output of interest?’
or ‘if we could eliminate the uncertainty in one of the input factors,
which factor should we choose to reduce the most the variance of
the output?’ Throughout this primer, the input factors of interest
will be those that are uncertain, i.e. whose value lie within a finite
interval of non-zero width. As a result, the reader will not find
sensitivity analysis methods here that look at the local property of
the input–output relationships, such as derivative-based analysis1.
Special attention is paid to the selection of the method, to the fram-
ing of the analysis and to the interpretation and presentation of the
results. The examples will help the reader to apply the methods in a
way that is unambiguous and justifiable, so as to make the sensitiv-
ity analysis an added value to model-based studies or assessments.
Both diagnostic and prognostic uses of models will be considered
(a description of these is in Chapter 2), and Bayesian tools of anal-
ysis will be applied in conjunction with sensitivity analysis. When
discussing sensitivity with respect to factors, we shall interpret the
term ‘factor’ in a very broad sense: a factor is anything that can be
changed in a model prior to its execution. This also includes struc-
tural or epistemic sources of uncertainty. To make an example,
factors will be presented in applications that are in fact ‘triggers’,
used to select one model structure versus another, one mesh size ver-
sus another, or altogether different conceptualisations of a system.

1 A cursory exception is in Chapter 1.
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Often, models use multi-dimensional uncertain parameters and/or
input data to define the geographically distributed properties of a
natural system. In such cases, a reduced set of scalar factors has
to be identified in order to characterise the multi-dimensional un-
certainty in a condensed, but exhaustive fashion. Factors will be
sampled either from their prior distribution, or from their posterior
distribution, if this is available. The main methods that we present
in this primer are all related to one another and are the method of
Morris for factors’ screening and variance-based measures2. Also
touched upon are Monte Carlo filtering in conjunction with either
a variance based method or a simple two-sample test such as the
Smirnov test. All methods used in this book are model-free, in the
sense that their application does not rely on special assumptions
on the behaviour of the model (such as linearity, monotonicity
and additivity of the relationship between input factors and model
output).

The reader is encouraged to replicate the test cases offered
in this book before trying the methods on the model of inter-
est. To this effect, the SIMLAB software for sensitivity analy-
sis is offered. It is available free on the Web-page of this book
http://www.jrc.cec.eu.int/uasa/primer-SA.asp. Also available at the
same URL are a set of scripts in MATLAB r© and the GLUEWIN
software that implements a combination of global sensitivity anal-
ysis, Monte Carlo filtering and Bayesian uncertainty estimation.

This book is organised as follows. The first chapter presents the
reader with most of the main concepts of the book, through their
application to a simple example, and offers boxes with recipes
to replicate the example using SIMLAB. All the concepts will
then be revisited in the subsequent chapters. In Chapter 2 we
offer another preview of the contents of the book, introducing
succinctly the examples and their role in the primer. Chapter 2
also gives some definitions of the subject matter and ideas about
the framing of the sensitivity analysis in relation to the defensi-
bility of model-based assessment. Chapter 3 gives a full descrip-
tion of the test cases. Chapter 4 tackles screening methods for

2 Variance based measures are generally estimated numerically using either the method of Sobol’
or FAST (Fourier Analysis Sensitivity Test), or extensions of these methods available in the
SIMLAB software that comes with this primer.
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sensitivity analysis, and in particular the method of Morris, with
applications. Chapter 5 discusses variance based measures, with
applications. More ideas about ‘setting for the analysis’ are pre-
sented here. Chapter 6 covers Bayesian uncertainty estimation and
Monte Carlo filtering, with emphasis on the links with global sen-
sitivity analysis. Chapter 7 gives some instructions on how to use
SIMLAB and, finally, Chapter 8 gives a few concepts and some
opinions of various practitioners about SA and its implication for
an epistemology of model use in the scientific discourse.





1 A WORKED EXAMPLE

This chapter presents an exhaustive analysis of a simple example,
in order to give the reader a first overall view of the problems met
in quantitative sensitivity analysis and the methods used to solve
them. In the following chapters the same problems, questions, and
techniques will be presented in full detail.

We start with a sensitivity analysis for a mathematical model in
its simplest form, and work it out adding complications to it one
at a time. By this process the reader will meet sensitivity analysis
methods of increasing complexity, starting from the elementary
approaches to the more quantitative ones.

1.1 A simple model

A simple portfolio model is:

Y = Cs Ps + Ct Pt + Cj Pj (1.1)

where Y is the estimated risk1 in €, Cs, Ct, Cj are the quantities
per item, and Ps, Pt, Pj are hedged portfolios in €.2 This means
that each Px, x = {s, t, j} is composed of more than one item –
so that the average return Px is zero €. For instance, each hedged
portfolio could be composed of an option plus a certain amount
of underlying stock offsetting the option risk exposure due to

1 This is the common use of the term. Y is in fact a return. A negative uncertain value of Y is
what constitutes the risk.

2 This simple model could well be seen as a composite (or synthetic) indicator camp by aggre-
gating a set of standardised base indicators Pi with weights Ci (Tarantola et al., 2002; Saisana
and Tarantola, 2002).

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1



2 A worked example Chap. 1

movements in the market stock price. Initially we assume
Cs, Ct, Cj = constants. We also assume that an estimation pro-
cedure has generated the following distributions for Ps, Pt, Pj :

Ps ∼ N ( p̄s, σs) , p̄s = 0, σs = 4
Pt ∼ N ( p̄t, σt) , p̄t = 0, σt = 2
Pj ∼ N

(
p̄j , σ j

)
, p̄j = 0, σ j = 1.

(1.2)

The Pxs are assumed independent for the moment. As a result
of these assumptions, Y will also be normally distributed with
parameters

ȳ = Cs p̄s + Ct p̄t + Cj p̄j (1.3)

σy =
√

C2
s σ 2

s + C2
t σ 2

t + C2
j σ

2
j . (1.4)

Box 1.1 SIMLAB

The reader may want at this stage, or later in the study, to get
started with SIMLAB by reproducing the results (1.3)–(1.4).
This is in fact an uncertainty analysis, e.g. a characterisation
of the output distribution of Y given the uncertainties in its
input. The first thing to do is to input the factors Ps, Pt, Pj

with the distributions given in (1.2). This is done using the
left-most panel of SIMLAB (Figure 7.1), as follows:

1. Select ‘New Sample Generation’, then ‘Configure’, then
‘Create New’ when the new window ‘STATISTICAL PRE
PROCESSOR’ is displayed.

2. Select ‘Add’ from the input factor selection panel and add
factors one at a time as instructed by SIMLAB. Select ‘Ac-
cept factors’ when finished. This takes the reader back to
the ‘STATISTICAL PRE PROCESSOR’ window.

3. Select a sampling method. Enter ‘Random’ to start with,
and ‘Specify switches’ in the right. Enter something as a
seed for random number generation and the number of
executions (e.g. 1000). Create an output file by giving it a
name and selecting a directory.
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4. Go back to the left-most part of the SIMLAB main menu
and click on ‘Generate’. A sample is now available for the
simulation.

5. We now move to the middle of the panel (Model execution)
and select ‘Configure (Monte Carlo)’ and ‘Select Model’.
A new panel appears.

6. Select ‘Internal Model’ and ‘Create new’. A formula parser
appears. Enter the name of the output variable, e.g. ‘Y’ and
follow the SIMLAB formula editor to enter Equation (1.1)
with values of Cs, Ct, Cj of choice.

7. Select ‘Start Monte Carlo’ from the main model panel. The
model is now executed the required number of times.

8. Move to the right-most panel of SIMLAB. Select ‘Anal-
yse UA/SA’, select ‘Y’ as the output variable as prompted;
choose the single time point option. This is to tell SIMLAB
that in this case the output is not a time series.

9. Click on UA. The figure on this page is produced. Click on
the square dot labelled ‘Y’ on the right of the figure and
read the mean and standard deviation of Y. You can now
compare these sample estimates with Equations (1.3–1.4).
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Let us initially assume that Cs < Ct < Cj , i.e. we hold more
of the less volatile items (but we shall change this in the follow-
ing). A sensitivity analysis of this model should tell us something
about the relative importance of the uncertain factors in Equation
(1.1) in determining the output of interest Y, the risk from the
portfolio.

According to first intuition, as well as to most of the existing
literature on SA, the way to do this is by computing derivatives,
i.e.

Sd
x

= ∂Y
∂ Px

, with x = s, t, j (1.5)

where the superscript ‘d’ has been added to remind us that this
measure is in principle dimensioned (∂Y/∂ Px is in fact dimension-
less, but ∂Y/∂Cx would be in €). Computing Sd

x
for our model we

obtain

Sd
x

= Cx, with x = s, t, j. (1.6)

If we use the Sd
x
s as our sensitivity measure, then the order of

importance of our factors is Pj > Pt > Ps , based on the assumption
Cs < Ct < Cj . Sd

x gives us the increase in the output of interest Y
per unit increase in the factor Px. There seems to be something
wrong with this result: we have more items of portfolio j but this
is the one with the least volatility (it has the smallest standard
deviation, see Equation (1.2)). Even if σs � σt, σ j , Equation (1.6)
would still indicate Pj to be the most important factor, as Y would
be locally more sensitive to it than to either Pt or Ps .

Sometime local sensitivity measures are normalised by some ref-
erence or central value. If

y0 = Cs p0
s + Ct p0

t + Cj p0
j . (1.7)

then one can compute

Sl
x = p0

x

y0

∂Y
∂ Px

, with x = s, t, j. (1.8)
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Applying this to our model, Equation (1.1), one obtains:

Sl
x = Cx

p0
x

y0
, with x = s, t, j. (1.9)

In this case the order of importance of the factors depends on
the relative value of the Cxs weighted by the reference values p0

xs.
The superscript ‘l ’ indicates that this index can be written as a
logarithmic ratio if the derivative is computed in p0

x.

Sl
x
= p0

x

y0

∂Y
∂ Px

∣∣∣∣
y0,p0

x

= ∂ ln (Y)
∂ ln (Px)

∣∣∣∣
y0,p0

x

. (1.10)

Sl
x

gives the fractional increase in Y corresponding to a unit frac-
tional increase in Px. Note that the reference point p0

s , p0
t , p0

j
might be made to coincide with the vector of the mean val-
ues p̄s, p̄t, p̄j , though this would not in general guarantee that
ȳ = Y( p̄s, p̄t, p̄j ), even though this is now the case (Equation
(1.3)). Since p̄s, p̄t, p̄j = 0 and ȳ = 0, Sl

x
collapses to be identical

to Sd
x .

Also Sl
x is insensitive to the factors’ standard deviations. It seems

a better measure of importance than Sd
x , as it takes away the di-

mensions and is normalised, but it still offers little guidance as
to how the uncertainty in Y depends upon the uncertainty in the
Pxs.

A first step in the direction of characterising uncertainty is a nor-
malisation of the derivatives by the factors’ standard deviations:

Sσ
s = σs

σy

∂Y
∂ Ps

= Cs
σs

σy

Sσ

t
= σt

σy

∂Y
∂ Pt

= Ct
σt

σy
(1.11)

Sσ

j
= σ j

σy

∂Y
∂ Pj

= Cj
σ j

σy

where again the right-hand sides in (1.11) are obtained by applying
Equation (1.1). Note that Sd

x and Sl
x are truly local in nature, as they
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Table 1.1 Sσ
x measures for model (1.1) and different values

of Cs, Ct, Cj (analytical values).

Cs, Ct, Cj = Cs, Ct, Cj = Cs, Ct, Cj =
Factor 100, 500, 1000 300, 300, 300 500, 400, 100

Ps 0.272 0.873 0.928
Pt 0.680 0.436 0.371
Pj 0.680 0.218 0.046

need no assumption on the range of variation of a factor. They can
be computed numerically by perturbing the factor around the base
value. Sometimes they are computed directly from the solution of
a differential equation, or by embedding sets of instructions into
an existing computer program that computes Y. Conversely, Sσ

x
needs assumptions to be made about the range of variation of the
factor, so that although the derivative remains local in nature, Sσ

x
is a hybrid local–global measure.

Also when using Sσ
x , the relative importance of Ps, Pt, Pj de-

pends on the weights Cs, Ct, Cj (Table 1.1). An interesting result
concerning the Sσ

x s when applied to our portfolio model comes

from the property of the model that σy =
√

C2
s σ 2

s + C2
t σ 2

t + C2
j σ

2
j ;

squaring both sides and dividing by σ 2
y we obtain

1 = C2
s σ 2

s

σ 2
y

+ C2
t σ 2

t

σ 2
y

+ C2
j σ

2
j

σ 2
y

. (1.12)

Comparing (1.12) with (1.11) we see that for model (1.1) the
squared Sσ

x give how much each individual factor contributes to
the variance of the output of interest. If one is trying to assess how
much the uncertainty in each of the input factors will affect the
uncertainty in the model output Y, and if one accepts the variance
of Y to be a good measure of this uncertainty, then the squared
Sσ

x seem to be a good measure. However beware: the relation
1 = ∑

x=s,t, j (Sσ
x )2 is not general; it only holds for our nice, well

hedged financial portfolio model. This means that you can still
use Sσ

x if the input have a dependency structure (e.g. they are cor-
related) or the model is non-linear, but it is no longer true that the
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squared Sσ
x gives the exact fraction of variance attributable to each

factor.
Using Sσ

x we see from Table 1.1 that for the case of equal weights
(= 300), the factor that most influences the risk is the one with the
highest volatility, Ps . This reconciles the sensitivity measure with
our expectation.

Furthermore we can now put sensitivity analysis to use. For
example, we can use the Sσ

x -based SA to build the portfolio (1.1)
so that the risk Y is equally apportioned among the three items
that compose it.

Let us now imagine that, in spite of the simplicity of the port-
folio model, we chose to make a Monte Carlo experiment on it,
generating a sample matrix

M =

p(1)
s p(1)

t p(1)
j

p(2)
s p(2)

t p(2)
j

... ... ...

p(N)
s p(N)

t p(N)
j

= [ps, pt , pj ]. (1.13)

M is composed of N rows, each row being a trial set for the eval-
uation of Y. The factors being independent, each column can be
generated independently from the marginal distributions specified
in (1.2) above. Computing Y for each row in M results in the
output vector y:

y =
y(1)

y(2)

. . .

y(N)

(1.14)

An example of scatter plot (Y vs Ps) obtained with a Monte Carlo
experiment of 1000 points is shown in Figure 1.1. Feeding both
M and y into a statistical software (SIMLAB included), the analyst
might then try a regression analysis for Y. This will return a model
of the form

y(i) = b0 + bs p(i)
s + bt p(i)

t + bj p(i)
j (1.15)
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Figure 1.1 Scatter plot of Y vs. Ps for the model (1.1) Cs = Ct = Cj = 300.
The scatter plot is made of N = 1000 points.

where the estimates of the bxs are computed by the software based
on ordinary least squares. Comparing (1.15) with (1.1) it is easy
to see that if N is at least greater than 3, the number of factors,
then b0 = 0, bx = Cx, x = s, t, j .

Normally one does not use the bx coefficients for sensitivity anal-
ysis, as these are dimensioned. The practice is to computes the
standardised regression coefficients (SRCs), defined as

βx = bxσx/σy. (1.16)

These provide a regression model in terms of standardised vari-
ables

ỹ = y − ȳ
σy

; p̃x = px − p̄x

σx
(1.17)

i.e.

ỹ = ŷ − ȳ
σy

=
∑

x=s,t, j

βx
px − p̄x

σx
=

∑

x=s,t, j

βxp̃x (1.18)

where ŷ is the vector of regression model predictions. Equation
(1.16) tells us that the βxs (standardised regression coefficients)
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for our portfolio model are equal to Cxσx/σy and hence for linear
models βx = Sσ

x because of (1.11). As a result, the values of the βxs
can also be read in Table 1.1.

Box 1.2 SIMLAB

You can now try out the relationship βx = Sσ
x . If you have

already performed all the steps in Box 1.1, you have to retrieve
the saved input and output samples, so that you again reach
step 9. Then:

10. On the right most part of the main SIMLAB panel, you
activate the SA selection, and select SRC as the sensitivity
analysis method.

11. You can now compare the SRC (i.e. the βx) with the values
in Table 1.1.

We can now try to generalise the results above as follows: for
linear models composed of independent factors, the squared SRCs
and Sσ

x s provide the fraction of the variance of the model due to
each factor.

For the standardised regression coefficients, these results can be
further extended to the case of non-linear models as follows. The
quality of regression can be judged by the model coefficient of
determination R2

y. This can be written as

R2
y =

N∑
i=1

(ŷ(i) − ȳ)2

N∑
i=1

(y(i) − ȳ)2

(1.19)

where ŷ(i) is the regression model prediction. R2
y ∈ [0, 1] represents

the fraction of the model output variance accounted for by the
regression model. The βxs tell us how this fraction of the output
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variance can be decomposed according to the input factors, leaving
us ignorant about the rest, where this rest is related to the non-
linear part of the model. In the case of the linear model (1.1) we
have, obviously, R2

y = 1.
The βxs are a progress with respect to the Sσ

x ; they can always
be computed, also for non-linear models, or for models with no
analytic representation (e.g. a computer program that computes
Y). Furthermore the βxs, unlike the Sσ

x , offer a measure of sensi-
tivity that is multi-dimensionally averaged. While Sσ

x corresponds
to a variation of factor x, all other factors being held constant,
the βx offers a measure of the effect of factor x that is aver-
aged over a set of possible values of the other factors, e.g. our
sample matrix (1.13). This does not make any difference for a
linear model, but it does make quite a difference for non-linear
models.

Given that it is fairly simple to compute standardised regression
coefficients, and that decomposing the variance of the output of
interest seems a sensible way of doing the analysis, why don’t we
always use the βxs for our assessment of importance?

The answer is that we cannot, as often R2
y is too small, as e.g. in

the case of non-monotonic models.3

1.2 Modulus version of the simple model

Imagine that the output of interest is no longer Y but its absolute
value. This would mean, in the context of the example, that we
want to study the deviation of our portfolio from risk neutrality.
This is an example of a non-monotonic model, where the func-
tional relationship between one (or more) input factor and the
output is non-monotonic. For this model the SRC-based sensitiv-
ity analysis fails (see Box 1.3).

3 Loosely speaking, the relationship between Y and an input factor X is monotonic if the curve
Y = f (X) is non-decreasing or non-increasing over all the interval of definition of X. A model
with k factors is monotonic if the same rule applies for all factors. This is customarily verified,
for numerical models, by Monte Carlo simulation followed by scatter-plots of Y versus each
factor, one at a time.
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Box 1.3 SIMLAB

Let us now estimate the coefficient of determination R2
y for

the modulus version of the model.

1. Select ‘Random sampling’ with 1000 executions.

2. Select ‘Internal Model’ and click on the button ‘Open exist-
ing configuration’. Select the internal model that you have
previously created and click on ‘Modify’.

3. The ‘Internal Model’ editor will appear. Select the formula
and click on ‘Modify’. Include the function ‘fabs()’ in the
Expression editor. Accept the changes and go back to the
main menu.

4. Select ‘Start Monte Carlo’ from the main model panel to
generate the sample and execute the model.

5. Repeat the steps in Box 1.2 to see the results. The estimates
of SRC appear with a red background as the test of signif-
icance is rejected. This means that the estimates are not
reliable. The model coefficient of determination is almost
null.

Is there a way to salvage our concept of decomposing the vari-
ance of Y into bits corresponding to the input factors, even for
non-monotonic models? In general one has little a priori idea of
how well behaved a model is, so that it would be handy to have
a more robust variance decomposition strategy that works, what-
ever the degree of model non-monotonicity. These strategies are
sometimes referred to as ‘model free’.

One such strategy is in fact available, and fairly intuitive to get
at. It starts with a simple question. If we could eliminate the un-
certainty in one of the Px, making it into a constant, how much
would this reduce the variance of Y? Beware, for unpleasant mod-
els fixing a factor might actually increase the variance instead of
reducing it! It depends upon where Px is fixed.
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The problem could be: how does Vy = σ 2
y change if one can fix

a generic factor Px at its mid-point? This would be measured by
V(Y|Px = p̄x). Note that the variance operator means in this case
that while keeping, say, Pj fixed to the value p̄j we integrate over
Ps, Pt.

V(Y|P̄j = p̄j ) =
+∞∫

−∞

∫ +∞

−∞
N ( p̄s, σs) N ( p̄t, σs) [(Cs Ps + Ct Pt + Cj p̄j )

− (Cs p̄s + Ct p̄t + Cj p̄j )]2dPsdPt. (1.20)

In practice, beside the problem already mentioned that
V(Y|Px = p̄x) can be bigger than Vy, there is the practical problem
that in most instances one does not know where a factor is best
fixed. This value could be the true value, which is unknown at the
simulation stage.

It sounds sensible then to average the above measure
V(Y|Px = p̄x) over all possible values of Px, obtaining E(V(Y|Px)).
Note that for the case, e.g. x = j , we could have written
Ej (Vs,t(Y|Pj )) to make it clear that the average operator is over
Pj and the variance operator is over Ps, Pt. Normally, for a model
with k input factors, one writes E(V(Y|Xj )) with the understand-
ing that V is over X− j (a (k − 1) dimensional vector of all factors
but Xj ) and E is over Xj .

E(V(Y|Px)) seems a good measure to use to decide how influ-
ential Px is. The smaller the E(V(Y|Px)), the more influential the
factor Px is. Textbook algebra tells us that

Vy = E(V(Y|Px)) + V(E(Y|Px)) (1.21)

i.e. the two operations complement the total unconditional vari-
ance. Usually V(E(Y|Px)) is called the main effect of Px on Y,
and E(V(Y|Px)) the residual. Given that V(E(Y|Px)) is large if Px

is influential, its ratio to Vy is used as a measure of sensitivity,
i.e.

Sx = V(E(Y|Px))
Vy

(1.22)

Sx is nicely scaled in [0, 1] and is variously called in the literature
the importance measure, sensitivity index, correlation ratio or first
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Table 1.2 Sx measures for model Y and different values of
Cs, Ct, Cj (analytical values).

Cs, Ct, Cj = Cs, Ct, Cj = Cs, Ct, Cj =
Factor 100, 500, 1000 300, 300, 300 500, 400, 100

Ps 0.074 0.762 0.860
Pt 0.463 0.190 0.138
Pj 0.463 0.048 0.002

order effect. It can be always computed, also for models that are not
well-behaved, provided that the associate integrals exist. Indeed, if
one has the patience to calculate the relative integrals in Equation
(1.20) for our portfolio model, one will find that Sx = (Sσ

x )2 = β2
x ,

i.e. there is a one-to-one correspondence between the squared Sσ
x ,

the squared standardised regression coefficients and Sx for linear
models with independent inputs. Hence all what we need to do
to obtain the Sxs for the portfolio model (1.1) is to square the
values in Table 1.1 (see Table 1.2). A nice property of the Sxs when
applied to the portfolio model is that, for whatever combination
of Cs, Ct, Cj , the sum of the three indices Ss, St, Sj is one, as one
can easily verify (Table 1.2). This is not surprising, as the same was
true for the β2

x when applied to our simple model. Yet the class of
models for which this nice property of the Sxs holds is much wider
(in practice that of the additive models4).

Sx is a good model-free sensitivity measure, and it always gives
the expected reduction in the variance of the output that one would
obtain if one could fix an individual factor.

As mentioned, for a system of k input uncertain factors, in gen-
eral

∑k
i=1 Si ≤ 1.

Applying Sx to model |Y|, modulus of Y, one gets the estimations
in Table 1.3. with SIMLAB.

We can see that the estimates of the expected reductions in the
variance of |Y| are much smaller than for Y. For example, in the
case of Cs, Ct, Cj = 300, fixing Ps gives an expected variance re-
duction of 53% for |Y|, whilst the reduction of the variance for Y
is 76%.

4 A model Y = f (X1, X2, . . . , Xk) is additive if f can be decomposed as a sum of k functions
fi , each of which is a function only of the relative factor Xi .
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Table 1.3 Estimation of Sxs for model |Y| and different values
of Cs, Ct, Cj .

Cs, Ct, Cj = Cs, Ct, Cj = Cs, Ct, Cj =
Factor 100, 500, 1000 300, 300, 300 500, 400, 100

Ps 0 0.53 0.69
Pt 0.17 0.03 0.02
Pj 0.17 0 0

Given that the modulus version of the model is non-additive,
the sum of the three indices Ss, St, Sj is less than one. For ex-
ample, in the case Cs, Ct, Cj = 300, the sum is 0.56. What can
we say about the remaining variance that is not captured by
the Sxs? Let us answer this question not on the modulus ver-
sion of model (1.1) but – for didactic purposes – on the slightly
more complicated a six-factor version of our financial portfolio
model.

Box 1.4 SIMLAB

Let us test the functioning of a variance-based technique with
SIMLAB, by reproducing the results in Table 1.3

1. Select the ‘FAST’ sampling method and then ‘Specify
switches’ on the right. Select ‘Classic FAST’ in the combo
box ‘Switch for FAST’. Enter something as seed and a num-
ber of executions (e.g. 1000). Create a sample file by giving
it a name and selecting a directory.

2. Go back to the left-most part of the SIMLAB main menu
and click on ‘Generate’. A FAST-based sample is now avail-
able for the simulation.

3. Load the model with the absolute value as in Box 1.3 and
click on ‘Start (Monte Carlo)’.

4. Run the SA: a pie chart will appear reporting the estimated
of Sx obtained with FAST. You can also see the tabulated
values, which might be not as close to those reported in
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Table 1.3 due to sampling error (the sample size is 1000).
Try again with larger sample sizes and using the Sobol
method, an alternative to the FAST method.

1.3 Six-factor version of the simple model

We now revert to model (1.1) and assume that the quantities Cxs
are also uncertain. The model (1.1) now has six uncertain inputs.
Let us assume

Cs ∼ N (250, 200)

Ct ∼ N (400, 300)

Cj ∼ N (500, 400) .

(1.23)

The three distributions have been truncated at percentiles [11,
99.9], [10.0, 99.9] and [10.5, 99.9] respectively to ensure that
Cx > 0.

There is no alternative now to a Monte Carlo simulation: the
output distribution is in Figure 1.2, and the Sxs, as from Equation
(1.22), are in Table 1.4. The Sxs have been estimated using a large

Figure 1.2 Output distribution for model (1.1) with six input factors, ob-
tained from a Monte Carlo sample of 1000 elements.
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Table 1.4 Estimates of first
order effects Sx for model (1.1)
with six input factors.

Factor Sx

Ps 0.36
Pt 0.22
Pj 0.08
Cs 0.00
Ct 0.00
Cj 0.00
Sum 0.66

number of model evaluations (we will come back to this in future
chapters; see also Box 1.5).

How is it that all effects for Cx are zero? All the Px are centred
on zero, and hence the conditional expectation value of Y is zero
regardless of the value of Cx, i.e. for model (1.1) we have:

E(Y|Cx = c*
x ) = E(Y) = 0, for all c*

x (1.24)

and as a result, V(E(Y|Cx)) = 0. This can also be visualised in
Figure 1.3; inner conditional expectations of Y can be taken
averaging along vertical ‘slices’ of the scatter plot. In the case of
Y vs. Cs (lower panel) it is clear that such averages will form a
perfectly horizontal line on the abscissas, implying a zero variance
for the averaged Ys and a null sensitivity index. Conversely, for Y
vs. Ps (upper panel) the averages along the vertical slices will form
an increasing line, implying non-zero variance for the averaged Ys
and a non-null sensitivity index.

As anticipated the Sxs do not add up to one. Let us now try a
little experiment. Take two factors, say Ps, Pt, and estimate our
sensitivity measure on the pair i.e. compute V(E(Y|Ps, Pt))/Vy. By
definition this implies taking the average over all factors except
Ps, Pt, and the variance over Ps, Pt. We do this (we will show how
later) and call the results Sc

Ps Pt
, where the reason for the superscript

c will be clear in a moment. We see that Sc
Ps Pt

= 0.58, i.e.

Sc
Ps Pt

= V(E(Y|Ps, Pt))
Vy

= SPs + SPt = 0.36 + 0.22. (1.25)
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Figure 1.3 Scatter plots for model (1.1): (a) of Y vs. Ps , (b) of Y vs. Cs . The
scatter plots are made up of N = 1000 points.

This seems a nice result. Let us try the same game with Cs, Ps . The
results show that now:

Sc
Cs Ps

= V(E(Y|Cs, Ps))
Vy

= 0.54 > SCs + SPs = 0.36. (1.26)
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Table 1.5 Incomplete list of pair-wise effects Sxz for
model (1.1) with six input factors.

Factors Sxz

Ps, Cs 0.18
Pt, Ct 0.11
Pj , Cj 0.05
Ps, Ct 0.00
Ps, Cj 0.00
Pt, Cs 0.00
Pt, Cj 0.00
Pj , Cs 0.00
Pj , Ct 0.00
Sum of first order terms (Table 1.4) 0.66
Grand sum 1

Let us call SCs Ps the difference

SCs Ps = V(E(Y|Cs, Ps))
Vy

− V(E(Y|Cs))
Vy

− V(E(Y|Ps))
Vy

= Sc
Cs Ps

− SCs − SPs . (1.27)

Values of this measure for pairs of factors are given in
Table 1.5.

Note that we have not listed all effects of the type Px, Py, and
Cx, Cy in this table as they are all null.

Trying to make sense of this result, one might ponder that
if the combined effect of two factors, i.e. V(E(Y|Cs, Ps))/Vy, is
greater than the sum of the individual effects V(E(Y|Cs))/Vy and
V(E(Y|Ps))/Vy, perhaps this extra variance describes a synergistic
or co-operative effect between these two factors. This is in fact
the case and SCs Ps is called the interaction (or two-way) effect of
Cs, Ps on Y and measures that part of the effect of Cs, Ps on Y
that exceeds the sum of the first-order effects. The reason for the
superscript c in Sc

Cs Ps
can now be explained: this means that the

effect measured by Sc
Cs Ps

is closed over the factors Cs, Ps, i.e. by
it we capture all the effects that include only these two factors.
Clearly if there were a non-zero interaction between Cs and a third
factor, say Ct, this would not be captured by Sc

Cs Ps
. We see from
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Tables 1.4–5 that if we sum all first-order with all second-order
effects we indeed obtain 1, i.e. all the variance of Y is accounted
for.

This is clearly only valid for our financial portfolio model be-
cause it only has interaction effects up to the second order; if we
were to compute higher order effects, e.g.

SCs Ps Pt = Sc
Cs Ps Pt

− SCs Ps − SPs Pt − SCs Pt − SCs − SPs − SPt (1.28)

they would all be zero, as one may easily realise by inspect-
ing Equation (1.1). Sc

Cs Ps Pt
on the other hand is non-zero, and is

equal to the sum of the three second-order terms (of which only
one differs from zero) plus the sum of three first-order effects.
Specifically

Sc
Cs Ps Pt

= 0.17 + 0.02 + 0.35 + 0.22 = 0.76.

The full story for these partial variances is that for a system with
k factors there may be interaction terms up to the order k, i.e.

∑

i

Si +
∑

i

∑

j>i

Si j +
∑

i

∑

j>i

∑

l> j

Si jl + . . . S12···k = 1 (1.29)

For the portfolio model with k = 6 all terms above the sec-
ond order are zero and only three second-order terms are
nonzero.

This is lucky, one might remark, because these terms would be
a bit too numerous to look at. How many would there be? Six
first order,

(6
2

) = 15 second order,
(6

3

) = 20 third order,
(6

4

) = 15
fourth order,

(6
5

) = 6 fifth order, and one, the last, of order k = 6.
This makes 63, just equal to 2k − 1 = 26 − 1, which is the formula
to use. This result seems to suggest that the Si , and their higher
order relatives Si j , Si jl are nice, informative and model free, but
they may become cumbersomely too many for practical use unless
the development (1.29) quickly converges to one. Is there a recipe
for treating models that do not behave so nicely?

For this we use the so-called total effect terms, whose description
is given next.
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Let us go back to our portfolio model and call X the set of all
factors, i.e.

X ≡ (Cs, Ct, Cj , Ps, Pt, Pj ) (1.30)

and imagine that we compute:

V(E(Y|X−Cs ))
Vy

= V(E(Y|Ct, Cj , Ps, Pt, Pj ))
Vy

(1.31)

(the all-but-Cs notation has been used). It should now be apparent
that Equation (1.31) includes all terms in the development (1.29),
of any order, that do not contain the factor Cs . Now what happens
if we take the difference

1 − V(E(Y|X−Cs ))
Vy

? (1.32)

The result is nice; for our model, where only a few higher-order
terms are non-zero, it is

1 − V(E(Y|X−Cs ))
Vy

= SCs + SCs Ps (1.33)

i.e. the sum of all non-zero terms that include Cs . The generalisa-
tion to a system with k factors is straightforward:

1 − V(E(Y|X−i ))
Vy

= sum of all terms of any order
that include the factor Xi .

Note that because of Equation (1.21), 1 − V(E(Y|X−i ))/Vy =
E(V(Y|X−i ))/Vy. We indicate this as STi and call it the total
effect term for factor Xi . If we had computed the STi indices for
a three-factor model with orthogonal inputs, e.g. our modulus
model of Section 1.2, we would have obtained, for example, for
factor Ps :

STPs = SPs + SPs Pt + SPs Pj + SPs Pt Pj (1.34)

and similar formulae for Pt, Pj . For the modulus model, all
terms in (1.34) could be non-zero. Another way of looking at
the measures V(E(Y|Xi )), E(V(Y|X−i )) and the corresponding
indices Si , STi is in terms of top- and bottom-marginal variances.
We have already said that E(V(Y|Xi )) is the average output
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Table 1.6 Estimates of the main effects and
total effect indices for model (1.1) with six input
factors.

Factor Sx STx

Ps 0.36 0.57
Pt 0.22 0.35
Pj 0.08 0.14
Cs 0.00 0.19
Ct 0.00 0.12
Cj 0.00 0.06
Sum 0.66 1.43

variance that would be left if Xi could be known or could be
fixed. Consequently V(E(Y|Xi )) is the expected reduction in the
output variance that one would get if Xi could be known or
fixed. Michiel J. W. Jansen, a Dutch statistician, calls this latter
a top marginal variance. By definition the total effect measure
E(V(Y|X−i )) is the expected residual output variance that one
would end up with if all factors but Xi could be known or fixed.
Hence the term, still due to Jansen, of bottom marginal variance.
For the case of independent input variables, it is always true that
Si ≤ STi , where the equality holds for a purely additive model.

In a series of works published since 1993, we have argued that
if one can compute all the k Si terms plus all the k STi ones, then
one can obtain a fairly complete and parsimonious description
of the model in terms of its global sensitivity analysis proper-
ties. The estimates for our six-factor portfolio model are given in
Table 1.6.

As one might expect, the sum of the first-order terms is less than
one, the sum of the total order effects is greater than one.

Box 1.5 SIMLAB

Let us try to obtain the numbers in Table 1.6 using SIMLAB.
Remember to configure the set of factors so as to include the
three factors Cx with their respective distributions and trun-
cations (see Equations (1.23)).
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1. Select the ‘FAST’ sampling method and then ‘Specify
switches’ on the right. Now select ‘All first and total or-
der effect calculation (Extended FAST)’ in the combo box
‘Switch for FAST’. Enter an integer number as seed and the
cost of the analysis in terms of number of model executions
(e.g. 10 000).

2. Go back to the SIMLAB main menu and click on ‘Gen-
erate’. After a few moments a sample is available for the
simulation.

3. Load the model as in Box 1.3 and click on ‘Start (Monte
Carlo)’.

4. Run the SA: two pie charts will appear reporting both the
Sx and STx estimated with the Extended FAST. You can also
look at the tabulated values. Try again using the method
of Sobol’.

Here we anticipate that the cost of the analysis leading to Table
1.6 is N(k + 2), where the cost is expressed in number of model
evaluations and N is the column dimension of the Monte Carlo
matrix used in the computations, say N = 500 to give an order
of magnitude (in Box 1.5 N = 1000/8 = 1250). Computing all
terms in the development (1.29) is more expensive, and often pro-
hibitively so.5 We would also anticipate, this time from Chapter 4,
that a gross estimate of the STx terms can be obtained at a lower
cost using an extended version of the method of Morris. Also for
this method the size is proportional to the number of factors.

1.4 The simple model ‘by groups’

Is there a way to compact the results of the analysis further? One
might wonder if one can get some information about the overall
sensitivity pattern of our portfolio model at a lower price. In fact
a nice property of the variance-based methods is that the variance

5 The cost would be exponential in k, see Chapter 5.
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Table 1.7 Estimates of main effects and total effect
indices of two groups of factors of model (1.1).

Factor Sx STx

P ≡ (Ps, Pt, Pj ) 0.66 1.00
C ≡ (Cs, Ct, Cj ) 0.00 0.34
Sum 0.66 1.34

decomposition (1.29) can be written for sets of factors as well.
In our model, for instance, it would be fairly natural to write a
variance decomposition as:

SC + SP + SC,P = 1 (1.35)

where C = Cs, Ct, Cj and P = Ps, Pt, Pj . The information we ob-
tain in this way is clearly less than that provided by the table with
all Si and STi .6

Looking at Table 1.7 we again see that the effect of the C set at
the first order is zero, while the second-order term SC,P is 0.34, so
it is not surprising that the sum of the total effects is 1.34 (the 0.34
is counted twice):

STC = SC + SC,P

STP = SP + SC,P
(1.36)

Now all that we know is the combined effect of all the amounts of
hedges purchased, Cx, the combined effect of all the hedged port-
folios, Px, plus the interaction term between the two. Computing
all terms in Equation 1.35 (Table 1.7) only costs N × 3, one set of
size N to compute the unconditional mean and variance, one for C
and one for P, SC,P being computed by difference using (1.35). This
is less than the N × (6 + 2) that one would have needed to com-
pute all terms in Table 1.6. So there is less information at less cost,
although cost might not be the only factor leading one to decide to
present the results of a sensitivity analysis by groups. For instance,
we could have shown the results from the portfolio model as

Ss + St + Sj + Ss,t + St,j + Ss,j + Ss,t,j = 1 (1.37)

6 The first-order sensitivity index of a group of factors is equivalent to the closed effect of all
the factors in the group, e.g.: SC = Sc

Cs ,Ct ,Cj
.



24 A worked example Chap. 1

Table 1.8 Main effects and total effect indices of three
groups of factors of model (1.1).

Factor Sx STx

s ≡ (Cs, Ps) 0.54 0.54
t ≡ (Ct, Pt) 0.33 0.33
j ≡ (Cj , Pj ) 0.13 0.13
Sum 1 1

where s ≡ (Cs, Ps) and so on for each sub-portfolio item, where a
sub-portfolio is represented by a certain amount of a given type of
hedge. This time the problem has become additive, i.e. all terms of
second and third order in (1.37) are zero. Given that the interac-
tions are ‘within’ the groups of factors, the sum of the first-order
effects for the groups is one, i.e. Ss + St + Sj = 1, and the total
indices are the same as the main effect indices (Table 1.8).

Different ways of grouping the factors might give different in-
sights into the owner of the problem.

Box 1.6 SIMLAB

Let us estimate the indices in Table 1.7 with SIMLAB.

1. Select the ‘FAST’ sampling method and then ‘Specify
switches’ on the right. Now select ‘All first and total or-
der effect calculation on groups’ in the combo box ‘Switch
for FAST’. Enter something as seed and a number of exe-
cutions (e.g. 10 000).

2. Instead of generating the sample now, load the model first
by clicking on ‘Configure (Monte Carlo)’ and then ‘Select
Model’.

3. Now click on ‘Start (Monte Carlo)’. SIMLAB will generate
the sample and run the model all together.

4. Run the SA: two pie charts will appear showing both the
Sx and STx estimated for the groups in Table 1.7. You can
also look at the tabulated values. Try again using larger
sample sizes.
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1.5 The (less) simple correlated-input model

We have now reached a crucial point in our presentation. We have
to abandon the last nicety of the portfolio model: the orthogonality
(independence) of its input factors.7

We do this with little enthusiasm because the case of dependent
factors introduces the following considerable complications.

1. Development (1.29) no longer holds, nor can any higher-order
term be decomposed into terms of lower dimensionality, i.e. it
is no longer true that

V(E(Y|Cs, Ps))
Vy

= Sc
Cs Ps

= SCs + SPs + SCs Ps (1.38)

although the left-hand side of this equation can be computed,
as we shall show. This also impacts on our capacity to treat
factors into sets, unless the non-zero correlations stay confined
within sets, and not across them.

2. The computational cost increases considerably, as the Monte
Carlo tricks used for non-orthogonal input are not as efficient
as those for the orthogonal one.

Assume a non-diagonal covariance structure C for our problem:

C =

Ps Pt Pj Cs Ct Cj

Ps 1
Pt 0.3 1
Pj 0.3 0.3 1
Cs . . . 1
Ct . . . −0.3 1
Cj . . . −0.3 −0.3 1

(1.39)

We assume the hedges to be positively correlated among one an-
other, as each hedge depends upon the behaviour of a given stock

7 The most intuitive type of dependency among input factors is given by correlation. However,
dependency is a more general concept than correlation, i.e. independency means orthogonality
and also implies that the correlation is null, while the converse is not true, i.e. null correlation
does not necessarily imply orthogonality (see, for example, Figure 6.6 and the comments to
it). The equivalence between null correlation and independency holds for multivariate normal
distributions.
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Table 1.9 Estimated main effects and total effect
indices for model (1.1) with correlated inputs (six
factors).

Factor Sx STx

Ps 0.58 0.35
Pt 0.48 0.21
Pj 0.36 0.085
Cs 0.01 0.075
Ct 0.00 0.045
Cj 0.00 0.02
Sum 1.44 0.785

price and we expect the market price dynamics of different stocks
to be positively correlated. Furthermore, we made the assumption
that the Cxs are negatively correlated, i.e. when purchasing more
of a given hedge investors tends to reduce their expenditure on
another item.

The marginal distributions are still given by (1.2), (1.23) above.
The main effect coefficients are given in Table 1.9. We have also
estimated the STx indices as, for example, for Ps :

STPs = E(V(Y|X−Ps ))
V(Y)

= 1 − V(E(Y|X−Ps ))
V(Y)

(1.40)

with a brute force method at large sample size. The calculation of
total indices for correlated input is not implemented in SIMLAB.

We see that now the total effect terms can be smaller than
the first-order terms. This should be intuitive in terms of bottom
marginal variances. Remember that E(V(Y|X−i )) is the expected
residual variance that one would end up with if all factors but Xi

could be known or fixed. Even if factor Xi is still non-determined,
all other factors have been fixed, and on average one would be
left with a smaller variance, than one would get for the orthog-
onal case, due to the relation between the fixed factors and the
unfixed one. The overall result for a non-additive model with non-
orthogonal inputs will depend on the relative predominance of
the interaction, pushing for STi > Si as for the Cxs in Table 1.9,
and dependency between input factors, pushing for STi < Si as for
the Pxs in Table 1.9. For all additive models with non-orthogonal
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Table 1.10 Decomposition of V(Y) and relative value of V(E(Y|Xi )),
E(V(Y|X−i )) for two cases: (1) orthogonal input, all models and (2)
non-orthogonal input, additive models. When the input is non-orthogonal
and the model non-additive, V(E(Y|Xi )) can be higher or lower than
E(V(Y|X−i )).

Case (1) Orthogonal input
factors, all models. For
additive models the two rows
are equal.

V(E(Y|Xi )) top
marginal. (or
main effect) of
Xi

E(V(Y|Xi )) bottom
marginal. (or total
effect) of X−i

E(V(Y|X−i )) bottom
marginal (or total
effect) of Xi

V(E(Y|X−i )) top
marginal (or main
effect) of X−i

Case (2) Non-orthogonal input
factors, additive models only. If
the dependency between inputs
vanishes, the two rows become
equal. For the case where Xi

and X−i are perfectly correlated
both the E(V(Y|.)) disappear
and both the V(E(Y|.)) become
equal to V(Y).

V(E(Y|Xi )) top
marginal of Xi

E(V(Y|X−i ))
bottom marginal
of Xi

E(V(Y|Xi )) bottom
marginal
of X−i

V(E(Y|X−i )) top
marginal of X−i

V(Y) (Unconditional)

input factors it will be STi ≤ Si . In the absence of interactions
(additive model) it will be STi = Si for the orthogonal case. If,
still with an additive model, we now start imposing a depen-
dency among the input factors (e.g. adding a correlation struc-
ture), then STi will start decreasing as E(V(Y|X−i )) will be lower
because having conditioned on X−i also limits the variation of Xi

(Table 1.10).
We take factor Ps as an example for the discussion that follows.

Given that for the correlated input case STPs can no longer be
thought of as the sum of all terms including factor Ps , what is the
point of computing it? The answer lies in one of the possible uses
that is made of sensitivity analysis: that of ascertaining if a given
factor is so non-influential on the output (in terms of contribution
to the output’s variance as usual!) that we can fix it. We submit
that if we want to fix a factor or group of factors, it is their STx

or STx respectively that we have to look at. Imagine that we want
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to determine if the influence of Ps is zero. If Ps is totally non-
influential, then surely

E(V(Y|X−Ps )) = 0 (1.41)

because fixing ‘all but Ps ’ results in the inner variance over Ps

being zero (under that hypothesis the variance of Y is driven only
by non-Ps), and this remains zero if we take the average over all
possible values of non-Ps . As a result, STPs is zero if Ps is totally non-
influential. It is easy to see that the condition E(V(Y|X−Ps )) = 0 is
necessary and sufficient for factor Ps to be non-influent, under any
model or correlation/dependency structure among input factors.

1.6 Conclusions

This ends our analysis of the model in Equation (1.1). Although
we haven’t given the reader any of the computational strategies to
compute the Sx, STx measures, it is easy to understand how these
can be computed in principle. After all, a variance is an integral.
It should be clear that under the assumptions that:

1. the model is not so terribly expensive that one cannot afford
Monte Carlo simulations, and

2. one has a scalar objective function Y and is happy with its
variance being the descriptor of interest.

Then

1. variance based measures offer a coherent strategy for the de-
composition of the variance of Y;

2. the strategy is agile in that the owner of the problem can decide
if and how to group the factors for the analysis;

3. this strategy is model free, i.e. it also works for nasty, non-
monotonic, non-additive models Y, and converge to easy-to-
grasp statistics, such as the squared standardised regression
coefficients β2

x for the linear model;
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4. it remains meaningful for the case where the input factors are
non-orthogonal;

5. it lends itself to intuitive interpretations of the analysis, such as
that in terms of top and bottom marginal variances, in terms
of prioritising resources to reduce the uncertainty of the most
influential factors or in terms of fixing non-influential factors.





2
GLOBAL SENSITIVITY
ANALYSIS FOR IMPORTANCE
ASSESSMENT

In this chapter we introduce some examples, most of which will
later serve as test cases. The examples are described in detail in
Chapter 3. Here a flash description is offered, for the purpose
to illustrate different problem settings for SA. The hurried reader
can use these descriptions to match the example with their own
application. Next, a definition of sensitivity analysis is offered,
complemented by a discussion of the desirable properties that a
sensitivity analysis method should have. The chapter ends with a
categorisation (a taxonomy) of application settings, that will help
us to tackle the applications effectively and unambiguously.

2.1 Examples at a glance

Bungee jumping
We are physicist and decide to join a bungee-jumping club, but
want to model the system first. The asphalt is at a distance H (not
well quantified) from the launch platform. Our mass M is also
uncertain and the challenge is to choose the best bungee cord (σ =
number of strands) that will allow us to almost touch the ground
below, thus giving us real excitement. We do not want to use cords
that give you a short (and not exciting) ride. So, we choose the
minimum distance to the asphalt during the oscillation (hmin) as a
convenient indicator of excitement. This indicator is a function of
three variables: H, M and σ .

Our final target is to identify the best combination of the three
variables that gives as the minimum value of hmin (though this must

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1
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Figure 2.1 Uncertainty analysis of the bungee-jumping excitement indica-
tor hmin.

remain positive!). This search is a simple minimisation problem
with constraints, which can be managed with standard optimisa-
tion techniques. However, the uncertanity in the three variables
implies an uncertinity on hmin. If such uncertainty is too wide, the
risk of a failure in the jump is high and must be reduced. Under
these circumstances, it is wise to investigate, through sensitivity
analysis, which variable drives most of the uncertainty on hmin.
This indicates where one should improve our knowledge in order
to reduce the risk of failure.

The uncertainty analysis (Figure 2.1), shows the uncertainty on
hmin due to the uncertainties in H, M and σ (more details will
be given in Chapter 3). The probability of a successful jump is
97.4%. The sensitivity analysis (Chapter 5) shows that the num-
ber of strands in the cord is the risk-governing variable, worth
examining in more detail. Meanwhile, we should not waste time
improving the knowledge of our mass M, as its effect on the un-
certainty of hmin is very small.
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Figure 2.2 Monte Carlo based uncertainty analysis of Y = Log (PI
(Incineration)/PI(Landfill)) obtained by propagating the uncertainty of waste
inventories, emission factors, weights for the indicators etc. The uncertainty
distribution is bimodal, with one maximum for each for the two waste man-
agement alternatives, making the issue non-decidable.

Decision analysis
A model is used to decide whether solid waste should be burned
or disposed of in landfill, in an analysis based on Austrian data
for 1994. This is a methodological exercise, described in detail in
Saltelli et al. (2000a, p. 385). An hypothetical Austrian decision
maker must take a decision on the issue, based on an analysis of
the environmental impact of the available options, i.e. landfill or
incineration. The model reads a set of input data (e.g. waste inven-
tories, emission factors for various compounds) and generates for
each option a pressure-to-decision index PI. PI(I) quantifies how
much the option (I) would impact on the environment. The model
output is a function, Y, of the PIs for incineration and landfill,
built in such a way as to suggest incineration for negative values
of Y and landfill otherwise. Because most of the input factors to
the analysis are uncertain, a Monte Carlo analysis is performed,
propagating uncertainties to produce a distribution of values for
Y (Figure 2.2). What makes this example instructive is that one of
the ‘factors’ influencing the analysis is the way the model Y is built.
This is not an uncommon occurrence in model based assessments.
In this case, ‘Finnish’ and ‘Eurostat’ in Figure 2.2 refer to two possi-
ble choices of systems of indicators. The model also includes other



34 Global sensitivity analysis for importance assessment Chap. 2

3

16

58

9

5 5 4

0

10

20

30

40

50

60

70

Tu Data E/F GWP W_E EEC STH

%
 o

f 
V

(Y
) 

ac
co

u
n

te
d

 f
o

r 
b

y 
ea

ch
 in

p
u

t 
fa

ct
o

r

Figure 2.3 Variance-based decomposition of the output variable Y. The in-
put factors (and their cardinality) are: E/F(1): trigger factor used to select
randomly, with a uniform discrete distribution, between the Finnish and the
Eurostat sets of indicators; TU (1), Territorial Unit: trigger that selects be-
tween two spatial levels of aggregation for input data; DATA (176), made
up of activity rates (120), plus emission factors (37) plus National emissions
(19); GWP (1), weight for greenhouse indicator (in the Finnish set): three
time-horizons are possible: W E (11), Weights for Eurostat indicators; EEC
(1), approach for Evaluating Environmental Concerns: Target values (Adri-
aanse 1993) or expert judgement (Puolamaa et al., 1996) and STH (1) is
a single factor that selects one class of Finnish stakeholders from a set of
eight possible classes. The factor E/F triggering the choice of the system of
indicators accounts for 58% of the variance of Y.

methodological alternatives on choice of time horizons for im-
pact assessment of waste disposals, weights for the sub-indicators
and so on. As Figure 2.2 suggests, the main choice as to what
system of composite indicator to use (‘Finnish’ or ‘Eurostat’) al-
most completely drives the answer. This is shown in the histogram
of Figure 2.3, where a variance decomposition analysis has been
used, but can be seen even better in Figure 2.4, where a Smirnov
test is performed. The analysis indicates that, at the present state
of knowledge, the issue is non-decidable. Furthermore, resources
should not be allocated to obtaining a better definition of the input
data (e.g. emission factors or inventories) but to reach a consensus
among the different groups of experts on an acceptable composite
indicator of environmental impact for solid waste.
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Figure 2.4 Smirnov test statistics (see Box 2.1 Smirnov) for the two cumu-
lative sub-sample distributions obtained splitting the sample of each input
factor according to the sign of the output Y. An unequivocal split between
the solid and the dotted curves can be observed when the E/F input factor
is plotted on the x-axis. When the GWP factor is plotted on the x-axis, the
split between the two curves is less significant.

A model of fish population dynamics
A stage-based model was developed by Zaldı́var et al. (1998) to
improve understanding of the dynamics of fish ecosystems, and
in particular the relative importance of environmental fluctua-
tions and biological mechanisms in determining such dynamics.
The model mimics data on scale deposition rates of small pelagic
fish, i.e. sardine and anchovy, in different locations: the California
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current off western North America and the Benguela current off
south-western Africa. Comparing geological data and simulation
results, Zaldivar et al. showed that although environmental fluctu-
ations can explain the magnitude of observed variations in geolog-
ical recordings and catch data of pelagic fishes, they cannot explain
the low observed frequencies. This implies that relevant non-linear
biological mechanisms must be included when modelling fish pop-
ulation dynamics.

Despite the fact that the ecological structure of the model has
been kept as simple as possible, in its final version the model con-
tains over 100 biologically and physically uncertain input factors.
With such a large number of factors, a sensitivity screening exer-
cise may be useful to assess the relative importance of the various
factors and the physical processes involved. The sensitivity method
proposed by Morris (1991) and extended by Campolongo et al.
(2003b) has been applied to the model. The model output of in-
terest is the annual population growth. The experiment led to a
number of conclusions as follows.

� The model parameters describing the population of sardines
are not identified as substantially influential on the population
growth. This leads to the question: ‘Is this result reflecting a truly
smaller role of this species with respect to the others or is it the
model that should be revised because it does not properly reflect
what occurs in nature?’

� A second conclusion is that the model parameters describing the
inter-specific competition are not very relevant. This calls for a
possible model simplification; there is no need to deal with a 100-
factors model that includes inter-specific competitions when, to
satisfy our objective, a lower level of complexity and a more
viable model can be sufficient.

� Finally, a subset of factors that have the greatest effect on popu-
lation growth (e.g. early life-stages parameters) is identified. This
allows one to prioritise future research to invest time and effort in
improving the estimates of these uncertain parameter values that
control most of the output uncertainty (Factors Prioritisation
Setting, see below).
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The risk of a financial portfolio
Imagine that a bank owns a simple financial portfolio and wants
to assess the risk incurred in holding it. The risk associated with
the portfolio is defined as the difference between the value of the
portfolio at maturity, when the portfolio is liquidated, and what
it would have gained by investing the initial value of the portfolio
at the market free rate, rather than putting it in the portfolio.
The model used to evaluate the portfolio at each time is based on
the assumption that the spot interest rate evolves on the market
according to the Hull and White one-factor stochastic model (see
details in Chapter 3).

Sensitivity analysis is performed on the financial portfolio model
following a Monte Carlo (MC) filtering approach. The aim of MC
filtering is to perform multiple model evaluations and then split the
output values into two subsets of risk levels: those regarded as ‘ac-
ceptable’ (i.e. risk below a given threshold), and those considered
‘unacceptable’. Consequently the input factors may be classified
as ‘behavioural’ or ‘not behavioural’, depending on whether they
lead to acceptable or unacceptable outputs. The test (see Box 2.1
Smirnov) is applied to each input factor to test whether the dis-
tributions of the ‘behavioural’ and ‘not behavioural’ values can
be regarded as significantly different. The higher the Smirnov test
value for an input factor, the higher is its influence on the model
response. Although the MC filtering/Smirnov approach has some
limitations, the main one being that it only captures first-order
effects and cannot detect interactions among factors, its use in
this setting provides some advantages. The idea of defining an
‘acceptable’ behaviour for the model is particularly apt for prob-
lems where the output is required to stay between certain bounds
or below a given threshold. Furthermore, the method provides not
only a measure of the importance of the input factors, but it also
offers some indications of the type of relationship that link the in-
put and output values. Our general advice is to use this approach
in conjunction with quantitative global sensitivity analysis, as was
done in the case of the financial portfolio, in order to obtain a com-
plete picture of the problem. The Smirnov test and the variance-
based techniques have been applied to the financial portfolio model
to identify the input factors mostly responsible for possible losses.
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The analysis outcome was also an assessment of how much risk
results from uncertain input factors that are uncontrollable, such
changes in interest rate, and how much is, in contrast, reducible
because of factors that can be adjusted. The MC filtering analysis
has provided an added value to the analysis by investigating the
link between the portfolio performance and the number of times
its composition is revised.

Box 2.1 SMIRNOV.

The Smirnov test is applicable when a qualitative definition
for the ‘good’ or ‘acceptable’ behaviour of a model can be
defined, for example, through a set of constraints: thresholds,
ceilings or time bounds based on available information on the
system. The steps for the analysis are as follows.

� Define a range for k input factors Xi , i = 1, 2, . . . k, reflecting
uncertainties in the model and make a number of Monte Carlo
simulations. Each Monte Carlo simulation is associated with
a vector of values of the input factors.

� Classify model outputs according to the specification of the
‘acceptable’ model behaviour [qualify a simulation as be-
haviour (B) if the model output lies within the constraints,
non-behaviour (B̄) otherwise].

� Classifying simulations as either B or B̄, a set of binary el-
ements is defined to allow one to distinguish between two
sub-sets for each Xi : (Xi |B) of m elements and (Xi |B̄) of n
elements [where n + m = N, the total number of Monte Carlo
runs performed].

The Smirnov two-sample test (two-sided version) is performed
independently for each factor.

Under the null hypothesis that the two probability density
functions fm(Xi |B) and fn(Xi |B̄) are identical:

H0 : fm(Xi |B) = fn(Xi |B̄)

H1 : fm(Xi |B) 	= fn(Xi |B̄)
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the Smirnov test statistic is defined by
dm,n(Xi ) = supy||Fm(Xi |B) − Fn(Xi |B̄)||.

where F are marginal cumulative probability functions.

The question answered is: ‘At what significance level α does
the computed value of dm,n determine the rejection of H0?’

A low level of α implies high values for dm,n, suggesting that
Xi is a key factor in producing the defined behaviour for the
model.

A high level of α supports H0, implying an unimportant factor:
any value in the predefined range is equally likely to fall in B
or B̄.
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The Smirnov test will be more extensively discussed and ap-
plied in Chapter 6.

Two spheres
Imagine a model with six factors. Imagine that we want to estimate
the model factors, using observations from the real system that
the model attempts to describe. This would be formalised into
the optimisation of a loss or a likelihood function, which, in the
simplest case, will be a function of the mean square error between
model simulations and observations. This setting is similar to the
financial portfolio case, in which we identify and analyse the set
of acceptable input factor configurations but, instead of filtering
model runs according to the acceptability criteria, we ‘rank’ such
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runs according to a likelihood function, without discarding any of
them. Let us also assume that the six factors interact in the model
in such a way that the maximum likelihood (our optimum) lies
on the surfaces of two three-dimensional spheres. The likelihood
function to be analysed would therefore have the following form
(in a log-scale):

f (X1, . . . , X6) = −
(√

X2
1 + X2

2 + X2
3 − R1

)2/
A1

−
(√

X2
4 + X2

5 + X2
6 − R2

)2/
A2 (2.1)

We pretend not to know the easy geometrical properties of the
optimum, e.g. as if we only had a computational version of the
model and the likelihood function came from a numerical routine
comparing model runs and observations, such that we consider
the optimisation in six dimensions instead of the more direct two
radial dimensions. This is an example of an over-parameterised
model, characterised by ill-defined parameters. This usually occur
when trying to estimate mechanistic models with a very general
functional form, usually in terms of sets of partial differential equa-
tions, defined according to first principles. Such models are usually
more complex than the observed reality would allow one to define.
This is reflected in a lack of identifiability of model parameters (fac-
tors); i.e. the optimum is usually not given by a ‘maximum’ in the
model parameter space, but by a complex interaction structure in
which many different combinations of the parameters are equally
able to provide best fitting model simulations.

In spite of the apparent simplicity of the function (2.11), there is
no simple technique that can identify the optimal factor’s structure
that maximises the likelihood function, consisting of two groups
of three factors in a spherical symmetry. In fact, tools such as cor-
relation analysis, principal component analysis and Monte Carlo
filtering are ineffective to highlight the three-dimensional struc-
tures. Global sensitivity analysis insted allows the identification of
the interaction structure caused by over-parameteterisation, i.e. the
two disjoint groups of three factors each, even though SA cannot
identify the spherical configuration. In fact, global SA allows the
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identification of the elements and groups characterising the in-
teraction structure, but not the topological configuration of that
structure. This result is very useful as it leads the analyst to a more
efficient search in the two relevant subsets, which might allow them
ultimately to elucidate the spherical geometry. This example shows
the use of global SA in optimisation problems, in which global SA
results are a useful ingredient in the search for complex optimum
structures.

A chemical experiment
In this example we apply sensitivity analysis tools to model esti-
mation/calibration problems, in conjunction with Bayesian tech-
niques. A very simple chemical system is considered, consisting of
the observation of the time evolution of an isothermal first-order ir-
reversible reaction in a batch system A→B (Ratto et al., 2001). We
want to fit a kinetic model using a set of observations. We would
like to know not only the optimum, but also the structure of the
model parameters that allows a good fit. In this case we start from
our prior beliefs on the model parameters and the acceptability is
classified according to a loss or likelihood function, which, as in
the two-spheres case, will be based on the residuals between model
predictions and observations. As in the two-spheres example, we
use global SA tools to identify the main properties of the acceptable
set of model parameters (i.e. the optimal parameter structure). This
also allows the identifiability of the parameters to be assessed, i.e.
which parameter can be determined given the data. This permits
a reduction of the dimension of the estimation problems, by ig-
noring/fixing the subset of factors classified as irrelevant by the
sensitivity analysis. The two-spheres case study was designed to
represent an over-parameterised model with a complex structure,
in which the underlying interaction between factors is not elemen-
tarily detectable. In this case we show that even a very simple esti-
mation problem can present aspects of over-parameterisation and
interaction. So, again in this example we show how global SA can
be useful as a first ingeredient in complex estimation/ calibration
problems.
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2.2 What is sensitivity analysis?

The term sensitivity analysis is variously interpreted in different
technical communities, and problem settings. Thus a more precise
definition of the terms demands that the output of the analysis be
specified.

Until quite recently, sensitivity analysis was conceived and often
defined as a local measure of the effect of a given input on a given
output. This is customarily obtained by computing via a direct or
indirect approach, system derivatives such as Sj = ∂Y/∂ Xj , where
Y is the output of interest and Xj an input factor (Rabitz, 1989;
Turanyi, 1990).

The local approach is certainly valuable for a class of problems
that can be loosely defined as ‘inverse’, i.e. the determination of
some physical parameters embedded into a complex model from
experimental determination of observables that are further down-
stream in the model. A typical example is the determination of
kinetic constants or quantum mechanic potentials from the yield
rate of a chemical process (Rabitz, 1989). This approach is still
quite widespread. As discussed in Saltelli (1999) most of the sen-
sitivity analyses that can be found in physical science journals are
local, sometimes inappropriately so.

The problem setting is different for practitioners involved in the
analysis of risk (industrial, financial, etc.), decision support, en-
vironmental appraisal, regulatory compliance analysis, extended
impact assessment, etc. For these the degree of variation of the
input factors is material, as one of the outputs being sought
from the analysis is a quantitative assessment of the uncertainty
around some best estimate value for Y (uncertainty analysis). This
can be achieved in simple cases by analytic expression or Tay-
lor expansion, but is achieved most often and generally by Monte
Carlo methods in conjunction with a variety of sampling strategies
(see Helton, 1993). In this context, sensitivity analysis is aimed,
amongst others, at priority setting, to determine what factor most
needs better determination, and to identify the weak links of the as-
sessment chain (those that propagate most variance in the output).
Sensitivity analysis in this context is often performed using regres-
sion techniques, such as standardised regression coefficients. The
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analysis is performed by feeding the regression algorithm (such as
ordinary least squares) with model input and output values. The
regression algorithm returns a regression meta-model, whereby the
output Y is described in terms of a linear combination of the in-
put factors. The regression coefficient for a given factor plays the
role of a sensitivity measure for that factor (Box 2.2 Regression in
use).

Box 2.2 REGRESSION IN USE.

We start from our usual model of k factors Y =
f (X1, X2, . . . , Xk), and imagine drawing a Monte Carlo sam-
ple from the input:

x(1)
1 x(1)

2 . . . x(1)
k

x(2)
2 x(2)

2 . . . x(2)
k

M = . . .

x(N)
1 x(N)

k · · · x(N)
k

Each row in M is a realisation from the multivariate joint
probability distribution of the set X, while a generic column
j in M is a sample from the marginal distribution of the
corresponding input factor Xj . We can compute the model
Y = f (X1, X2, . . . , Xk) for each row in M, obtaining a vector
of model estimate.

y(1)

y(2)

y = . . .

y(N)

Let x̄j and s j be the mean and standard deviation of the sam-
ple of Xj in M, and ȳ and sy the corresponding quantities
in y. We can now reckon in terms of standardised variables
x̃(i)

j = (x(i)
j − x̄j )/s j , ỹ(k) = (y(i) − ȳ)/sy and seek a regression

model (ŷ(i) − ȳ)/sy = ∑k
j=1 β j x̃

(i)
j , where the β js are deter-

mined by ordinary least square to minimise the sum of the
squared ε(i), ε(i) = ŷ(i) − y(i).
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The β js are called standardised regression coefficients
(SRC). These can be computed on most standard statistical
packages and can be used as a simple and intuitive measure of
the sensitivity of Y with respect to its input factors Xj . The ef-
fectiveness of the regression coefficients is conditional on the
R2

y of the fit, defined as R2
y = ∑N

i=1(ŷ(i) − ȳ)2/
∑N

i=1(y(i) − ȳ)2.
If the fit of the regression is good, e.g. R2

y is larger than, say,
0.7, this means that the regression model is able to represent
a large part of the variation of Y. This also means that the
model is relatively linear. In such cases, the regression model
is effective and we can base our sensitivity analysis on it. This
is done taking the β js, with their sign, as a measure of the
effect of Xj on Y. We can order the factors by importance
depending on the absolute value of the β js.

One advantage of these methods is that in principle they explore
the entire interval of definition of each factor. Another is that each
‘effect’ for a factor is in fact an average over the possible values of
the other factors. Moreover, SRCs also give the sign of the effect of
an input factor on the ouput, providing a simplified model of the
input–output mapping. We call methods of this type ‘global’, to
distinguish them from ‘local’ methods, where only one point of the
factors’ space is explored, and factors are changed one at a time. A
disadvantage of regression based methods is that their performance
is poor for non-linear models, and can be totally misleading for
non-monotonic models. These methods are not discussed in this
primer other than in Chapter 1.

In recent years global quantitative sensitivity analysis techniques
have received considerable attention in the literature (special is-
sues on the subject are RESS (1997, 2002), JSCS (1997) and CPC
(1999). Many techniques have been developed that can be consid-
ered as a ‘model free’ extension of the regression methods above,
as they can be applied even to non-linear, non-monotonic models.

Other global approaches are the First Order Reliability Meth-
ods, FORM, (Saltelli et al., 2000a, p. 155) which are not described
in this primer or the use of techniques derived from experimental
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design (see Saltelli et al., 2000a, p. 51). This primer will describe
just one selected screening technique, the method of Morris (Mor-
ris, 1991; Saltelli et al., 2000a, p. 65), which is the most widely
used, and it will then focus on model-free, variance based quanti-
tative techniques as well as on Monte Carlo filtering approaches.
As discussed later in this volume, the Morris method and the vari-
ance based measures are related to one another, while MC filtering
can be used in conjunction with variance based methods.

The definition of sensitivity analysis that matches the content
of this primer better is ‘The study of how the uncertainty in the
output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input’. The rationale
for our choice of a restricted subset of the universe of available
sensitivity analysis methods is our belief that the selected tech-
niques are best suited to meet a wide spectrum of applications and
settings. Our motivation is in terms of ‘desired properties’, and
‘possible settings’, which are described next. A general schematic
description of the steps to be followed to perform sensitivity anal-
ysis on a model, independently of the method being used, is given
in Box 2.3, Steps for SA.

Box 2.3 STEPS FOR SA.

1. Establish what is the goal of your analysis and consequently
define the form of the output function that answers your
question(s) (remember that this should be a top level state-
ment rather than the model output as it is).

2. Decide which input factors you want to include in your
analysis. At this level, trigger parameters can be defined,
allowing one to sample across model structures, hypothe-
ses, etc. Moreover, in the case of multi-dimensional maps
of factors, define the characterising parameters to represent
them in the SA.

3. Choose a distribution function for each of the input factors.
This can be:
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(i) taken from the literature; or

(ii) derived from data by fitting an empirical distribution
function; or

(iii) based on an expert’s opinions;

(iv) chosen to be a truncated normal distribution, where
truncation serves to avoid sampling outliers.

(v) In the case of triggers among, for example, differ-
ent models, a ‘Russian roulette’ system with equal
weights can be the first choice, but different weights
can be given to different values of the trigger, when
one has some prior information about a model struc-
ture/hypothesis being more likely than another.

(vi) Define a correlation structure between input factors,
if appropriate.

4. Choose a sensitivity analysis method on the basis of the
following.

(i) The questions that you are trying to address. For in-
stance, you may face a screening problem or, in con-
trast, need a method, that is quantitative in order to
be able to answer your final question.

(ii) The number of model evaluations that you can afford,
on the basis of the model execution time. If, for in-
stance, the number of input factors included in the
analysis is high and the model is time-consuming, you
are forced to choose a method that requires a low num-
ber of model evaluations, such as that proposed by
Morris, or to group factors.

(iii) The presence of a correlation structure between input
factors. When a screening problem is at hand, correla-
tion should be dropped, to avoid useless complexity in
the analysis, and introduced only for the subsequent
quantitative analysis for the few important factors re-
maining.
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5. Generate the input sample. This has the form of N strings of
input factor values on which you evaluate the model. The
sample is generated according to the method chosen for the
sensitivity analysis. When using SIMLAB the sample gen-
eration follows the choice of method, the specification of
the method’s internal parameters, and the selected sample
size.

6. Evaluate your model on the generated sample and produce
the output, which contains N output values in the form
specified in (1).

7. Analyse the model outputs and draw your conclusions,
possibly starting a new iteration of the analysis.

2.3 Properties of an ideal sensitivity analysis method

We plan to use methods that are global and model-free, in the sense
of being independent from assumptions about the model, such as
linearity, additivity and so on. These methods must be capable of
testing the robustness and relevance of a model-based analysis in
the presence of uncertainties. Whenever possible, we would also
like our methods to be quantitative. Our main choice is to work
on variance-based methods, also known as importance measures,
sensitivity indices or correlation ratios. We have used these in our
worked example in Section 2.1. The Morris method, in its stan-
dard use, i.e. at low sample size, can be considered as qualitative.
However, the variance based measures are quantitative, in princi-
ple, as long as the sample size is large enough and one can tell by
how much factor a is more important than factor b. The choice
of a qualitative versus quantitative method is driven by cost. The
Morris method is much cheaper, in terms of model evaluations,
than the variance based measures, though there are similarities in
their interpretation (Chapter 4).

The desirable properties of sensitivity analysis, are as follows.

1. The ability to cope with the influence of scale and shape. The
influence of the input should incorporate the effect of the range
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Table 2.1 Properties of sensitivity measures.

Property 1 Property 2 Property 2 Property 2
Scale Multi-dimensional Model Grouping of

and shape averaging independence factors

Sj = ∂Y
∂ Xj

(Local

method, not applied
in this primer)

N N N Y

Sj = SRC(Y, Xi )
(Regression
method, Box 2.2
Regression in use,
not applied in this
primer)

Y Y N N

Morris (Chapter 4) N/Ya Y Y Yb

Variance based
methods (Chapter
5)

Y Y Y Y

Monte Carlo filtering Y Y Y N
(Chapter 6)

aA coarse stratified sampling considering few levels in the quantile scale is possible with
Morris’ method, thus implying some coarse analysis of the influence of the scale and shape.
Normally very few quantiles are used in Morris, see Chapter 4.
bSee Campolongo et al. (2003).

of input variation and the form of its probability density func-
tion (pdf). It matters whether the pdf of an input factor is uni-
form or normal, and what the distribution parameters are.

2. To include multidimensional averaging. In a local approach to
SA (e.g. Sj = ∂Y/∂ Xj ), one computes the partial derivatives, as
discussed above. This is the effect of the variation of a factor
when all others are kept constant at the central (nominal) value.
A global method should instead evaluate the effect of a factor
while all others are also varying.

3. Being model independent. The method should work regardless
of the additivity or linearity of the model. A global sensitivity
measure must be able to appreciate the so-called interaction
effect, which is especially important for non-linear, non-additive
models. These arise when the effect of changing two factors is
different from the sum of their individual effects as discussed in
Chapter 1.
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4. Being able to treat grouped factors as if they were single factors.
This property of synthesis is essential for the agility of the inter-
pretation of the results. One would not want to be confronted
with an SA made of dense tables of sensitivity measures (see,
for example, the decision analysis example at the beginning of
this chapter).

Table 2.1 summarises the behaviour of various sensitivity measures
with respect to properties (1–4).

Beside the properties above, we would like the setting for the SA
itself to be as stringent as possible. It may well happen that using
different measures of sensitivity, different experts obtain different
relative ranking of the influence of the various input factors (see
OECD, 1993 for an example). This happens if the objective of the
analysis is left unspecified. Just as there are several definitions of
risk (Risk Newsletter, 1987), there may be several definitions of im-
portance. Below, we shall offer some alternative rigorous settings
for SA that will help us in our analysis (Saltelli and Tarantola,
2002).

2.4 Defensible settings for sensitivity analysis

Uncertainty and sensitivity analyses are more often mentioned than
practised. Anecdotal evidence puts the blame on model develop-
ers (i.e. ourselves occasionally). The modellers’ overconfident atti-
tudes might result in an under-estimation of predictive uncertainty
and an incomplete understanding of the input–output relation-
ship. A similar conceptual error in experimental sciences has been
documented by Henrion and Fischhoff (1986). In computational
sciences the issue might be at least as acute.

Another factor that may limit the application of sensitivity anal-
ysis is that it can be performed in many different ways. If one may
obtain different orderings of the factors importance using different
methods, why bother doing it? Importance is not per se a mathe-
matical concept. Our answer to this question is that ‘importance’
must be defined at the stage of framing the analysis, as we discuss
next.
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Usually factors in a model follow a very asymmetric distribu-
tion of importance, few factors accounting for most of the output
uncertainty with most factors playing little or no role. When this
is the case, different methods may converge to the same result. On
the other hand, a rigorous definition of importance is necessary,
as the ordering of factors by importance may be an issue of great
significance when the model is used, for example, in risk analysis
or decision making.

In order to discuss this, we again assume a mathematical or
computational model Y = f (X1, X2, . . . , Xk), where some of the
input factors Xi are uncertain. Throughout this book k will be
the number of factors whose variation is of interest. We know
something about the range of uncertainty of these factors. This
knowledge might come from a variety of sources: measurements,
expert opinion, physical bounds or an analogy with factors for
similar species/compounds. We may additionally have information
(e.g., via observation) on the joint probability distribution of the
factors.

The model may be used in a prognostic (forecasting) or diagnos-
tic (estimating, calibrating) mode. In the former, all our knowledge
about model input is already coded in the joint probability distri-
bution of the input factors. In the latter, the input information
constitutes a ‘prior’, and the analysis might be aimed at updating
either the distribution of the input factors or the model formulation
based on the evidence (see Chapter 6).

A ‘forecast’ mode of use for the model is assumed in the fol-
lowing unless otherwise specified. We select one among the many
outputs produced by the given model and call this our output of
interest. This might also be in the form of an averaged mean over
more model outputs. The output of interest should be in the form
of a single quantity, possibly a scalar Y, whose value is taken as
the top-most information that the model is supposed to provide.
This could be, for instance, the ratio of the value of an environ-
mental pressure variable over the selected target value. It could be
the maximum or averaged number of health effects in a given area
and time span. It could be the estimated failure probability for a
system in a given time span and so on. We express this by saying
that a sensitivity analysis should not focus on the model output



Defensible settings for sensitivity analysis 51

as such, but rather on the answer that the model is supposed to
provide or on the thesis that it is supposed to prove or disprove.
In Y = f (X1, X2, . . . , Xk), one does not need to assume f to be
constant, as it is customary to propagate uncertainty through dif-
ferent model structures or formulations. In this case some of the
input factors are triggers that drive the selection of one structure
versus another, and f stands for the computational code where all
this takes place.

Some of the factors can be the constituent parameters of an error
model that has been built to characterise the uncertainty in (multi-
dimensional) input data maps. The alternative of defining one input
factor for each pixel in an input map would be impracticable (and
useless) as we would have, say, one million input factors per input
map. An example is given in Crosetto and Tarantola (2001). It is
not impossible for a factor to be a trigger that drives the choice
of one input data set versus another, where each set represents
internally consistent but mutually exclusive parametrisations of
the system. An example is given in Saltelli (2002), in which a trigger
factor is set to select between alternative geological scenarios, each
characterised and represented by a specific input file.

Let us assume that we are able to compute the model output as
much as we like, possibly sampling from the best joint probability
distribution of input that we can come up with. This procedure
is called by some a parametric bootstrap, in the sense that we
sample with replacement the factors that enter into a model and
re-evaluate the model each time. Let us further assume, for sim-
plicity, that each factor indeed has a true, albeit unknown, value.
We know that often factors are themselves lumped entities called
in as surrogates for some more complex underlying process, but
we now assume that they are simply scalar variables imprecisely
known because of lack of sufficient observations.

This clearly does not apply to stochastic uncertainties, such as
the time of occurrence of an earthquake in a given area, although
one might have frequency information for the area based on geo-
logical or historical records. Even in this case it is useful to think
of the stochastic factor as possessing a true value, for the sake of
assessing its importance relative to all other factors. We can at this
point introduce our first setting for SA.
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Factors Prioritisation (FP) Setting
The objective of SA is to identify the most important factor. This
is defined as the one that, if determined (i.e., fixed to its true,
albeit unknown, value), would lead to the greatest reduction in
the variance of the output Y. Likewise, one can define the second
most important factor and so on till all the factors are ranked in
order of importance.

One might notice that we have made the concept of importance
more precise, linking it to a reduction of the variance of the target
function. It should also be noted that, in general, one would not
be able to meet the objective of Setting FP, as this would imply that
we know what the true value of a factor is. The purpose of Setting
FP is to allow a rational choice under uncertainty.

Another thing worth noting about Setting FP, which will be elab-
orated below, is that it assumes that factors are fixed one at a time.
This will prevent the detection of interactions, i.e., in adopting Set-
ting FP, we accept the risk of remaining ignorant about an impor-
tant feature of the model that is the object of the SA: the presence
of interactions in the model. This point will be discussed further
in Chapter 5.

The ideal use for the Setting FP is for the prioritisation of re-
search; this is one of the most common uses of SA. Under the hy-
pothesis that all uncertain factors are susceptible to determination,
at the same cost per factor, Setting FP allows the identification of
the factor that is most deserving of better experimental measure-
ment in order to reduce the target output uncertainty the most. In
order not to leave this setting just hanging here, we would like to
say that Setting FP can be tackled using conditional variances such
as V(Y|Xi = x∗

i ). As discussed in Chapter 1, this formula reads as:
‘the variance of Y that is obtained when one factor, Xi , is fixed to
a particular value, x∗

i ’. The variance is taken over all factors that
are not Xi , i.e. one might rewrite the formula as VX−i (Y|Xi = x∗

i ),
where X−i indicates the vector of all factors but Xi . Because we
do not normally know where to fix Xi , we go on to take the av-
erage of VX−i (Y|Xi = x∗

i ) over all possible values of Xi , to obtain
EXi (VX−i (Y|Xi )), or E(V(Y|Xi )) in a more compact notation. Al-
though V(Y|Xi = x∗

i ) might be either smaller or larger than V(Y),
depending on the values selected for x∗

i , E(V(Y|Xi )) is always
smaller than V(Y) (see Box 2.4 Conditional and unconditional
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variances). These measures and their estimation are described in
Chapter 5.

Box 2.4 CONDITIONAL AND UNCONDITIONAL
VARIANCES.

Let us consider the following model Y = X1 X2
2, where X1 ∼

U(−0.5, 0.5) and X2 ∼ U(0.5, 1.5). Scatter plots from a
Monte Carlo simulation are shown below.
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The analytic unconditional variance of Y is V(Y) =
121/960 = 0.126, whereas the conditional variances, shown
in the figure below, are:

V(Y|X1) = (61/180)X2
1

V(Y|X2) = (1/12)X4
2.

0. 5 1 1. 5

0. 1

0. 2

0. 3

0. 4

X2

V(Y|X2)

V(Y)

−0.5 0 0. 5
0

0. 1

0. 2

X1

V( Y| X1)

V(Y)



54 Global sensitivity analysis for importance assessment Chap. 2

It can be seen that the variance of Y conditional on X2 is larger
than V(Y) for a large part of the support of X2. Nonetheless,
averaging over the conditioning argument, one obtains:

E[V(Y|X1)] = 61/2160 = 0.0282 < V(Y) ⇒ X1 influent

E[V(Y|X2)] = 121/960 = 0.126 = V(Y) ⇒ X2 non-influent

confirming that the inequality E[V(Y|Xi )] ≤ V(Y) always
holds true. This is an example of the criticisms of Krykacz-
Hausmann (2001) mentioned in Section 2.5. According to the
first-order partial variance, the parameter X2 is totally unim-
portant (S2 = 0), because E[V(Y|X2)] = V(Y), whereas it is
clear that by varying X2 the variance of Y changes signifi-
cantly. In such a case, the measure based on entropy would
give a non-zero sensitivity index. This does not mean that
variance based measures should be ruled out, because in this
example it is clear that a practitioner would recover the ef-
fect of X2 at the second order. Specifically, the pure interac-
tion term would be: V12 = V[E(Y|X1, X2)] − V[E(Y|X1)] −
V[E(Y|X2)] = 0.0282, i.e. 22.4% of V(Y).

Factors Fixing (FF) Setting

This is concerned with the fixing of non-influential factors (see
Sobol’, 1990). The objective of this setting, which could also be
labelled ‘screening’, is to identify the factor or the subset of input
factors that we can fix at any given value over their range of uncer-
tainty without significantly reducing the output variance. If such a
factor or subset of factors are identified, the remaining ones, being
varied within their own range, explain most of the unconditional
variance.

This has implications in the process of simplifying complex mod-
els. The factors that do not influence the output can be fixed at their
nominal values without any significant loss of information in the
model. If one has prior beliefs about the importance of input fac-
tors, this setting can be used to prove or disprove a given model rep-
resentation. The Setting FF can be treated using both the extended
Morris and the variance-based techniques. We have mentioned
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already in Chapter 1 that a necessary and sufficient condition for
factor Xi to be totally non-influential is E(V(Y|X−i )) = 0. Appli-
cation examples are given in Chapters 4, 5 and 6.

Variance Cutting (VC) Setting

This is a setting that we have found useful when SA is part of a risk
assessment study. The objective of the analysis is the reduction of
the variance of the output Y from its unconditional value V(Y) to a
lower pre-established threshold value. One must obtain a variance
of Y that is equal to or smaller than a given target variance Vr <

V(Y) by simultaneously fixing the smallest number of factors. Even
in this case we have to make an informed choice without knowing
where the true values of the factors lie.

Also for Setting VC we are allowed only to make an informed
choice, rather than finding the optimum for which the true factors’
value would need to be known. Setting VC allows the factors to
be fixed by groups, and the solution in this case can be influenced
by the interactions between factors, if these are present. Even this
setting can be treated using conditional variances, including con-
ditional variances of higher order (conditioned on more than one
factor, Chapter 5).

Factors Mapping (FM) Setting

In this setting, the realisations of the MC simulation of our out-
put variable Y are cathegorised into two groups: for example, all
those above a given percentile of p(Y) and all those below, where
p(Y) is the empirical (MC-generated) distribution of the realisa-
tions. Alternatively the realisations of Y can be classified as either
acceptable or non-acceptable by comparing them with either evi-
dence or opinion. As discussed in Chapter 6, this is the setting of
MC filtering, and the question addressed in sensitivity analysis for
the FM setting is ‘which factor is most responsible for producing
realisations of Y in the region of interest?’. The FM setting takes
its name from the backward mapping from output to input that is
realised after Y is classified. Another possible question for Setting
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FM is ‘which factor is most responsible for splitting the realisa-
tions of Y into “acceptable” and “unacceptable”?’ Setting FM is
tackled among other methods by using the Smirnov test on the
filtered versus unfiltered distributions of the factors (see Box 2.1
Smirnov and Chapter 6).

We shall mainly use Settings FP, FF, VC and FM in the present
primer, although it is clear that many others are possible. Ulti-
mately, the setting should be decided by the problem owner(s),
and it may well be that the setting itself is debatable (i.e. do I care
about the variance of Y or about Y upper 5th percentile? Is there a
threshold for Y? How do I rank the importance of factors with re-
spect to this?). Settings may well be audited, especially in a context
where the analysis must meet participatory requirements.

On the other hand, we try to make the point that a setting must
be defined for the analysis to be unambiguously implemented.

2.5 Caveats

In the previous section, we have assumed that one is interested in
describing the output uncertainty in terms of its variance. In some
decision contexts, there may be other measures that are more im-
portant, depending on the preferences of the owner of the problem.
We may be concerned about shifts in central tendency (mean) of
a model output attributable to an input factor, regardless of its
contribution to the variance in the model. In OECD (1993) an
analysis was performed by shifting the entire distribution of each
input factor by a given (5%) fraction, and the resulting shift in the
model output mean was used to rank the factors. This approach
has some drawbacks, as discussed in Saltelli and Tarantola (2002).
It is insensitive to model non-monotonicity and dependent on the
fraction shift in the input distributions.

Krykacz-Hausmann (2001) has criticised the use of variance
as a measure of output uncertainty, and suggested using en-
tropy, H, instead, defined as either H(Y) = − ∫

f (y) ln( f (y)) dy or
H(Y) = −∑

pi ln(pi ) depending on whether the distribution of Y
is continuous (f) or discrete (p). Krykacz-Hausmann’s argument is
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that the largest uncertainty for Y should be that associated with
a uniform distribution for Y in its range. With some intuitive ex-
amples (see for example Box 2.4 Conditional and unconditional
variance), he argues that H is better than V in capturing this as-
pect of the problem. While the conditional variance V(Y|Xi = x∗

i )
can be larger than V(Y), this does not occur with entropy, i.e.:
H(Y|Xi = x∗

i ) < H(Y), ∀Xi .
As practitioners, we have struggled with possible alternatives to

the variance. These have seemed to us to be associated with specific
problems and are less convincing as a general method for framing
a sensitivity analysis. As an example, some feel that it should be
the output itself, for example Y, that is partitioned according to
the influence of the different input factors. This is feasible (Sobol’,
1990), and has been attempted (Sacks et al., 1989). The function
Y = f (X) is partitioned, to a first approximation, into functions of
just one factor, i.e. Y ≈ f0 + ∑

i fi (Xi ). The analysis of sensitivity
is then done by inspecting plots of each fi versus its own variable
Xi . The most important factor is the one whose fi fluctuates the
most, i.e. deviates the most from the mean value of Y (see Box
2.5 HDMR (High Dimensional Model Representations)). Even if
we are not saying it, we are still judging upon contribution to the
variance of Y.

Box 2.5 HDMR (HIGH DIMENSIONAL MODEL
REPRESENTATION).

If one is interested in the output itself, for example Y, to
be partitioned according to the influence of the different in-
put factors, the function Y = f (X) is partitioned, to a first
approximation, into functions of just one factor, i.e. Y ≈
f0 + ∑

i fi (Xi ). Terms of higher order may also be of inter-
est.

For example, let us consider the Ishigami function (Ishigami
and Homma, 1990):

Y = sin X1 + Asin2 X2 + BX4
3 sin X1, where Xi ∼ U(−π, π)

(1)
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In this case, a possible closed decomposition is given by the
following terms:

Y = f0 + f1(X1) + f2(X2) + f3(X3) + f13(X1, X3) (2)

where

f0 = A/2 = E(Y)
f1(X1) = sin X1 · (1 + Bπ4/5) = E(Y|X1) − f0

f2(X2) = Asin2 X2 − A/2 = E(Y|X2) − f0

f3(X3) = 0 = E(Y|X3) − f0

f13(X1, X3) = B sin X1 · (X4
3 − π4/5)

= E(Y|X1, X3) − f1(X1) − f3(X3) − f0.

(3)

The first term of the decomposition is just the unconditional
mean, whereas the remaining terms describe the deviation
around the mean due to the various factors alone or through
interaction. The last term of (3) represents a pure interaction
term of the factors X1 and X3. This is the only non-zero inter-
action term of the Ishigami function, therefore the remaining
ones do not appear in the decomposition (2).
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Plotting the various terms of the decomposition, one can vi-
sualise the contribution of each term to the model output Y.
This is an example of what is called High Dimensional Model
Representation (HDMR) (Rabitz et al., 1999; Saltelli et al.,
2000a, pp. 199–223).

An alternative often suggested by practitioners is that of seeking
to partition the mean, rather than the variance of Y, according to
the input factors. However, a mean decomposition is suggested by
users addressing questions such as (i) ‘which factors determine the
model output to be what it is, or (ii) ‘at what values should I fix the
input factors to obtain a target output value’, rather than ‘which
factors cause the model output to vary the most’. While the latter
is a typical SA question, the first two are more optimisation ques-
tions. Furthermore how could we practically construct a sensitivity
measure based on a mean decomposition? Imagine that Xi is fixed
to the value x∗

i . If one averages this, i.e. takes the mean value over
Xi of E(Y|Xi = x∗

i ), then the unconditional mean E(Y) is obtained
. . . which is not very inspiring. If one takes the variance over Xi

of E(Y|Xi = x∗
i ), then one falls back on the sensitivity measure

described in Chapter 5. In an optimisation framework we suggest
using SA first to determine the subset of input factors driving most
of the variation in model output, in order to reduce the problem
dimensionality, and then to carry out a search on those factors to
establish their optimal values.

In this framework, Monte Carlo filtering (Chapter 6) can be
also effectively applied, specifically for question (ii) above. This
is particularly relevant in such cases when, in dealing with com-
plex models that are defined starting from first principles, a large
set of ill-defined parameters is encountered when trying to estimate
(optimise) parameters. For such ill-defined inverse problems, filter-
ing techniques can be very useful to explore the parameter space
pertaining to the complex (often multiple) optimum.

In conclusion, the choice of the method of sensitivity analysis is
driven by the question that the owner of the problem is trying to
answer. If one is capable of formulating a meaningful ‘sensitivity’
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question, then one can perhaps find the appropriate tool to answer
it, taking inspiration from the examples given in this primer.

We would like to end this section with a warning about the falla-
cies most often encountered in the literature, or from the authors’
experience, on the subject of sensitivity analysis.

One is the improper use of local sensitivity analysis methods. A
local sensitivity measure is one that looks at the relation between
input and output at a specified point in the space of the inputs,
such as a simple (∂Y/∂ Xi ) or normalised (∂Y/∂ Xi x̄i/ȳ) derivative.
As mentioned in Chapter 1, these have a wide spectrum of ap-
plications, such as solving inverse problems or to accelerate, by
Taylor expansion and approximation, the computation of com-
plex models in the neighbourhood of a set of initial or boundary
conditions (see Grievank, 2000). Although one frequently sees in
the literature differential analysis used to assess the relative im-
portance of factors in the presence of finite ranges of variations
for the factors, this is a bad practice. On the contrary, the Morris
method suggested in Chapter 4 looks at incremental ratios such as
(�Y/�Xi )(x j ), but these are taken at different points, X js, in the
space of the input factors. The mean and the standard deviation
of the (�Y/�Xi )(x j ) over the points X j that are explored are used
to detect the influential factors.

Similarly there might be an improper use of regression methods.
Regressing model output on model input using a linear regres-
sion algorithm, such as, for example, ordinary least squares, pro-
duce regression coefficients for the factors (such as standardised
regression coefficients) that can be used as coefficients of sensitiv-
ity. Yet this is only useful if the regression is successful, i.e. if the
model coefficient of determination R2

y is high (e.g. 0.7 or more).
When instead R2

y is low (e.g 0.3 or less), we say that the regres-
sion analysis is used inappropriately. One may still have a use for
the regression analysis but one should not use it for sensitivity
analysis.

We also noticed at times the tendency of some modellers to
devise ad hoc methods for the sensitivity analysis of their model.
While this may sometime be justified by the application and by the
setting as discussed above, one should be careful that the analysis
answers the question that is relevant to the problem, and that it is
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not designed to confirm the modeller’s judgement upon the relative
importance of factors.

The analysis should be as much as possible parsimonious and
synthetic in order to be meaningful. If helps if the analysis answers
a question relative to the use made of the model, rather than to the
model itself.

The preparation of the input sample for a case where the in-
put factors are not independent of each other can be laborious
(Chapter 5). When the factors are independent, important simpli-
fications in the computational procedures can be realised. Ignoring
these would result in an analysis that is unnecessarily expensive.

In our experience, sensitivity analysis is fairly complex and it-
erative in practice. It most often uncovers errors in the model and
it is rarely the case that the outcome does not contain at least one
unexpected result. Its contribution to the quality of the model is
evident and should justify the effort needed to implement it. In the
European Union, key policy directives must undergo a so-called
Extended Impact Assessment (EIA), a cross-sectorial analysis of
the costs and benefits of the various options (including the do-
nothing option) that specifically includes sensitivity analysis (EC,
2002). Similar concerns are evident in the US regulations, for ex-
ample in the Environmental Protection Agency White Paper on
model acceptability (EPA, 1999).





3 TEST CASES

In this chapter we illustrate a number of practical problems where
the application of a sensitivity analysis exercise has provided con-
siderable added value to the study. The following sections describe
the test cases and highlight the conclusions that could be drawn
thanks to the analysis. The aim is also to stress which sensitivity ap-
proach is the most appropriate for a given problem. The methods
used are merely mentioned but not described.

3.1 The jumping man. Applying variance-based methods

We like extreme and exciting sports. This is the exercise for us:
bungee jumping. We are standing on a platform; far below is the
asphalt, at a distance H that we cannot quantify well (probably
40 m, most likely 50 m, perhaps 60 m).

The challenge is to choose the best bungee cord for our mass, i.e.
the one that allows us to almost touch the ground below, thus giv-
ing us a real thrill. Other less suitable cords will either be fatal for
us or will give us a very short ride (not exciting at all!). Therefore,
which cord should we use? There are many types of cords compris-
ing different numbers of strands (say, from 10 to 50). More strands
mean a stronger, but less exciting, cord. We consult with our friends
and decide that a good range for this variable is (20, 40). The other
variable driving the oscillation is our mass. Unfortunately, we do
not remember our mass exactly; it has been two months since
we last weighted ourselves and then we were about 70 kg. At first
glance we might well be between 67 kg and 74 kg now. Perhaps we

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1
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don’t have a strong desire to risk our life testing the system life. We
need a ‘virtual’ bungee jump, i.e. a simple simulator of our system.

Nonetheless, we still have a poor knowledge of the variables of
the system, and we may want to test what effects such uncertainty
can have on the outcome of our jump.

What are the variables of interest to quantify the risk of failure?
Qualitatively, we would like to know what is the probability of
success for our jumps (SJ). SJ might be 100% (i.e. no risk at all)
but the jump will not be at all exciting. Therefore, we want to
identify an indicator for both risk and excitement: this can be the
minimum distance to the asphalt during the oscillation (hmin). This
is a typical optimisation problem, where SJ has to be maximised
and hmin minimised (with the constraint that hmin > 0).

We are interested in:

1. estimating the empirical distribution of hmin and SJ for all the
combinations of the input factors’ values;

2. selecting for which input factor we would gain a better level of
accuracy in order to have the highest reduction of the uncer-
tainty of the risk. The information attained here will become
a priori information for us to use in the real world.

We can employ global uncertainty and sensitivity analysis to an-
swer both these questions. The model is represented by the simple
function

hmin = H − 2Mg
kelσ

, (3.1)

which is the solution of the linear oscillator equation. H is the
distance of the platform to the asphalt [m], M is our mass [kg], σ

is the number of strands in the cord, g is the acceleration of gravity
[m/s2], kel is the elastic constant of one strand [N/m], which is
considered fixed here at 1.5.

On the basis of the thinking above we assume the following.

� The uncertainty on H can be suitably represented by a uniform
distribution with a minimum value of 40 m and maximum value
of 60 m.
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� The uncertainty on M can be represented by a uniform distribu-
tion with a lower bound of 67 kg and an upper bound of 74 kg.

� The uncertainty on σ can be represented by a uniform distribu-
tion with a lower bound of 20 strands and an upper bound of
40 strands.

We run an uncertainty analysis based on a random sample of 1000
points. Figure 2.1 displays the empirical histogram of hmin, and also
enables us to estimate SJ. In fact, in 974 cases out of 1000 the jump
is successful.

Our knowledge of the analytical formulation of the model (i.e.
Equation (3.1)) indicates that:

� the model is linear on factor H,
� the model is linear on the ratio M/σ ,
� but not on M and σ separately.

For this reason, we adopt a model-free method of sensitivity analy-
sis. We want to identify the variables that most influence the model
output in terms of setting FP (Chapter 2). Hence, we estimate the
first-order sensitivity indices using a method based on the decom-
position of the model output variance. The analysis shows that the
first-order sensitivity indices for our variables are:

SH = 0.44
SM = 0.01
Sσ = 0.55

The reader can reproduce these results with SIMLAB. The analysis
shows that the number of strands in the cord (σ ) is the variable
where we should direct effort in order to reduce the uncertainty
on hmin. We also understand that the distance platform–asphalt
(H) is important. Hence, we should try to get a better knowledge
for this variable, for example, by doing an indirect estimation of
the distance (e.g., by measuring the time taken by a small stone to
touch the ground below). At the same time, we should not waste
time in improving the accuracy of our weight, as its effect on the
uncertainty of hmin is negligible.
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While the knowledge of H can be improved as remarked above,
the uncertainty on σ can be completely removed by selecting a
given cord. Let us select σ = 30 strands and repeat the uncertainty
analysis by generating 1000 random points over the space (H, M)
and evaluating the model. We get a safe jump (S J = 100%) with
hmin ranging between 1.3 m and 24.7 m above the asphalt.

A final remark: if we add up the three sensitivity indices of the
first test, we can appreciate the degree of additivity of the model.
The sum of the three indices is exactly equal to 1. This means
that, in spite of its analytic formulation, the model is almost fully
additive, i.e. no interaction emerges between the variables M and
σ . Readers are invited to try tuning the input distributions, for
example, changing the width of the uniform densities, to identify
when interactions emerge more clearly.

3.2 Handling the risk of a financial portfolio: the problem
of hedging. Applying Monte Carlo filtering and
variance-based methods

Imagine that a bank has issued a financial contract, namely a caplet,
a particular type of European option whose value depends on the
curve of the interest rate. The way interest rates evolve through
time is unknown, and therefore by selling a caplet the bank is
facing the risk associated with interest rate movements.

Assume that the bank wants to offset such a risk. The goal is
not to make a profit but to avoiding the risk exposure of having
issued the option. In finance this is called the problem of hedging.

The bank buys a certain amount of FRAs (Forward Rate Agree-
ments) that are contracts that, by behaving in an opposite way to
that of the caplet with respect to changes in interest rates, are ca-
pable of offsetting the caplet risk exposure. The amount of FRAs
purchased is such that the overall bank’s portfolio, made by the
caplet and the FRAs, is insensitive (or almost insensitive) to inter-
est rates movements. The portfolio is said to be delta neutral, delta
indicating the type of risk being hedged (offset).

As time passes the portfolio tends to lose risk neutrality and
again to become sensitive to interest rates changes. Maintaining
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risk neutrality would require the portfolio to be continuously
revised, as the amount of FRAs needed to maintain neutrality
changes with time as the interest rate curve moves. As in prac-
tice only a limited number of portfolio revisions are feasible and
also because each revision implies a cost, a hedging error is gener-
ated and, at maturity, when the caplet expires and the portfolio is
liquidated, the bank may incur a loss. The goal of the bank is to
quantify the potential loss.

The hedging error is defined as the difference between the value
of the portfolio at maturity and what would have been gained
by investing the initial value of the portfolio at the interest rate
prevailing on the market (the market free rate). Note that when
the error is positive it means that, although failing to maintain risk
neutrality, the bank is making a profit. In contrast, when the error
is negative, the bank is losing money.

In order to compute the hedging error at maturity, we need to
be able to evaluate the portfolio at any time, or, in other words,
we need to be able to price the financial contracts included in the
portfolio, the caplet and the forward rate agreements. To this end
we make use of the Hull and White one-factor model (Rebonato,
1998, p. 281), which assumes the interest rates evolution through
time to be driven by only one factor, the spot interest rate rt, evolv-
ing as:

drt = µ(t, rt) dt + σ (t, rt) dWt (3.2)

with

µ(t, rt) = �(t) − art and σ (t, rt) = σ. (3.3)

The terms µ(t, rt) and σ (t, rt) are respectively the drift and the
standard deviation (volatility) of the spot rate, {Wt : t ≥ 0} is a
(standard) Wiener process, a is the constant mean-reverting pa-
rameter, and the choice of the time dependent function �(t), e.g. a
polynomial, can be directly determined from the initial yield curve,
i.e. from all the information available at t = 0.

The hedging error depends upon a number of factors such as,
for instance, the number of portfolio revisions performed, or other
parameters related to the assumptions made on the way that in-
terest rates evolve with time. The number of revisions is a factor
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that is unknown and controllable, in the sense that the bank has
the faculty to decide how many revisions to perform but a pri-
ori does not know what the optimal number is. The cost incurred
to revise the portfolio partially offsets the benefit deriving from
increasing the number of portfolio adjustments. The parameters
related to the interest rate evolution are not only unknown, but
are also uncontrollable.

Uncertainty analysis estimates the uncertainty in the hedging er-
ror taking into account the uncertainty affecting the input factors,
both those controllable and uncontrollable. The estimated error
assumes the form of a distribution of values, rather than being a
unique value, and elementary statistics, such as the mean, standard
deviations, and percentiles, are used to describe its features. Un-
certainty analysis shows the average error, its range of variation,
and, for instance, the 99th percentile of the distribution that can be
interpreted as the maximum loss that the portfolio’s owner faces
with a probability of 99%. In financial literature this percentile is
referred to as value at risk.

Once the bank has quantified the potential loss, the focus is on
what determines this loss to be what it is. The goal of sensitiv-
ity analysis is to identify what is causing the loss and to obtain
indications on how to reduce it.

Sensitivity analysis is performed on the financial portfolio model
following a Monte Carlo filtering approach, and using the Smirnov
test to assess the relative importance of the input factors. In a
Monte Carlo filtering approach the range of a model output re-
sponses is categorized into two groups: one designated ‘acceptable’
behaviour, and the other ‘unacceptable’, where ‘acceptable’ is de-
fined to suit the nature of the problem at hand. The Smirnov test
is used to compare statistically the sets of input values that lead
to acceptable behaviour and those that do not. Those factors for
which the sample distribution functions are found to be signifi-
cantly different in the two sub sets are identified as being the most
important in determining the specified behaviour (in this case the
error to be over or under a certain threshold). For the important
factors, graphical analysis is also advisable: a histogram of the in-
put sample distribution leading to acceptable output values may
provide information on the type of relationship existing between
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Table 3.1 Input factors distributions for the Monte Carlo filtering
analysis.

Factor Description Distribution

a Constant mean-reverting Normal (0.1; 0.01)
parameter in Equations (3.2–3.3)

σ Volatility of the spot rate Uniform (0.005;0.055)
in Equations (3.2–3.3)

N. rev. Number of portfolio revisions Discrete uniform
(0,5,8,17,35,71)

ε Trigger selecting among ten Discrete uniform (1, . . . , 10)

possible paths of the spot rate,
from which the yield curve
is determined

input and output values. Details on Monte Carlo filtering and on
the Smirnov test can be found in Box 2.1 Smirnov (Chapter 2) and
in Chapter 6.

To complete the analysis, several possible scenarios have been
considered, each scenario corresponding to a different value of the
transaction costs incurred when revising the portfolio composition.

Our analysis considers four factors: a factor representing the
variability of the dynamics of the evolution of the interest rate
through time (ε); the number of portfolio revisions to be performed
(N. rev.); and the parameters a and σ of the Hull and White model
of the spot rate. Their assumed statistical distributions are given
in Table 3.1.

The type of analysis carried out on the financial test case allowed
some conclusions to be drawn, both in terms of relative importance
of the input factors in determining the potential loss incurred by
the bank, and in terms of the strategy to adopt to reduce this loss.
The conclusions drawn are as follows.

� If there are no transaction costs, the highest percentage of accept-
able values is obtained when the maximum number of portfolio
revisions are performed. As expected, when transaction costs
are introduced, it is more appropriate to reduce the number of
revisions. In each scenario, analysis of the distribution of the



70 Test cases Chap. 3

acceptable values as a function of the number of portfolio revi-
sions performed provides an indication of the optimal number
of revisions that the bank should carry out in order to reduce the
potential loss.

� In each transaction costs scenario, the sensitivity analysis exe-
cuted via the Smirnov test has indicated that the parameter a
in the model describing the interest rate evolution is irrelevant
when compared with the others. This may lead to the conclu-
sion that, when calibrating the model on the market prices to
recover the ‘best values’ for a and σ , the effort to recover a may
be unnecessary. However, as underlined in Chapter 6, the MC
filtering/Smirnov approach’s main limitation is that it only cap-
tures first-order effects and cannot detect interactions between
factors. A variance-based analysis (see Chapter 5) has under-
lined that, although less important than the aleatory uncertainty
due to the unknown interest rates dynamics, ε, or less important
than the number of portfolio revisions performed (N. rev.), the
model parameter a has a non-negligible total effect, mostly due
to its interaction with other factors. Therefore its value cannot be
fixed.

Although the test case shown here is very simple and takes into
account only a limited number of uncertain input factors, it is suffi-
cient to prove that uncertainty and sensitivity analyses are valuable
tools in financial risk assessment. Uncertainty analysis quantifies
the potential loss incurred by the bank and, in particular, the max-
imum potential loss, a variable that is often of interest in this con-
text. Sensitivity analysis identifies the relative importance of the
sources of the incurred risk. In particular, it splits the risk into the
amount, which is not reducible, that is due to the intrinsic uncer-
tainty that the financial analyst cannot control (e.g. that associated
with the interest rate changes), and the amount that in principle
may be reduced by making proper choices for ‘controllable’ input
factor values (such as the number of portfolio revisions to carry
out).

The example has also shown that, in the case of financial risk
analysis, the Monte Carlo filtering/Smirnov approach represents



A model of fish population dynamics. Applying the method of Morris 71

an attractive methodology. The definition of ‘acceptable’ model be-
haviour is in fact particularly indicated when addressing risk prob-
lems where the output is required to stay below a given threshold.
Furthermore, this analysis addresses not only the relative impor-
tance of the sources of uncertainty in the analysis outcome but also
the type of relationship that links the input and the output values,
which is the main question addressed by financial analysts.

Nevertheless, we recommend the use of this approach in con-
junction with variance-based techniques, as these may overtake
the limits of the MC/Smirnov analysis.

3.3 A model of fish population dynamics. Applying
the method of Morris

This section describes a test case taken from Saltelli et al. (2000a,
p. 367). A sensitivity analysis experiment is applied to a model
of fish population developed to improve the understanding of the
dynamics of fish ecosystems, and in particular the relative impor-
tance of environmental fluctuations and biological mechanisms in
determining such dynamics.

Zaldivar et al. (1998) addressed the problems of modelling the
dynamics of fish ecosystems by using Lotka–Volterra non-linear
differential equations and stage-based discrete models. A number
of models were developed to mimic data on scale deposition rates
of small pelagic fish, i.e. sardines and anchovies, in different loca-
tions: the California current off western North America and the
Benguela current off south-western Africa. Comparing geological
data and simulation results, Zaldivar et al. (1998) showed that
although environmental fluctuations can explain the magnitude
of observed variations in geological recordings and catch data of
pelagic fishes, they cannot explain the low observed frequencies.
This implies that relevant non-linear biological mechanisms must
be included when modelling fish population dynamics.

The class of model chosen as the most apt to describe fish pop-
ulation dynamics, is that of stage-based models (Caswell, 1989).
Stage-based models, in contrast to continuous ordinary differential
equations that ignore population structure and treat all individuals
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as identical, integrate population dynamics and population struc-
ture very clearly. These models are really useful when the life cycle
is described in terms of size classes or development stages rather
than age classes. In a stage-based model, it is assumed that vital
rates depend on body size and that growth is sufficiently plas-
tic that individuals of the same age may differ appreciably in
size.

The basis of a stage-based model is the matrix A describing the
transformation of a population from time t to time t + 1:

nt+1 = A nt (3.4)

where A has the following structure:

A =




P1 m2 m3 . . . mq

G1 P2 0 . . . 0

0 G2 P3 0 . . . 0
. . . . . .

0 0 0 . . . Gq−1 Pq




(3.5)

where nt is a vector describing the population at each stage at time
t, Pi is the probability of surviving and staying in stage i, Gi is the
probability of surviving and growing into the next stage, and mi

is the maternity per fish per unit time (days), i = 1, 2, . . . , q.
Both Pi and Gi are functions of the survival probability, pi , and

the growth probability, γi (Caswell, 1989):

Pi = pi (1 − γi )
(3.6)

Gi = piγi

where pi = e−zi , γi = (1 − pi )pdi−1
i /1 − pdi

i , z i is the daily instan-
taneous mortality rate (IMR) and di is the duration (days) within
the ith stage.

The model developed by Zaldivar et al. (1998) involves three
species: sardines (I), anchovies (J), and mackerel (K), and 13 dif-
ferent life stages, larvae (1–4), juvenile (5–9), and adult (10–13). In-
terspecies competition at the larval and juvenile stage is also taken
into account. The model therefore has the form of a block matrix
whose three central blocks contain the three population matrices
A1, A2, A3 respectively for the three species (sardines, anchovies
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A1

A3

A2

Interspecies
competition

Interspecies
competition

Figure 3.1 Schematic layout of the stage-based matrix model.

and mackerels), and the rest contains the parameters relating to
larvae and juvenile interspecies competition (see Figure 3.1).

The model also includes diffusion to a refuge, which is modelled
by doubling the dimensions of the matrix to include the free sys-
tems plus a common term for allowing the movement from one
patch to the other. The diffusion is only allowed to the adult pop-
ulation.

Despite the fact that the ecological structure of the model has
been kept as simple as possible, in its final version the model
contains over 100 biological and physical factors. Values for
these parameters can be found in the literature (see Saltelli et al.,
2000a, p. 373). The values used in this book are specified in
Tables 3.2–3.4. The best parameters were chosen to produce a
dominant eigenvalue λ in the matrix A, which represents the pop-
ulation growth rate, equal to 1, i.e. the population is stationary.

In order to assess the relative importance of the various factors
and physical processes involved, a sensitivity analysis is performed
on the model. The output variable of interest is λ365, the annual
population growth rate. The large number of factors imposes a
choice of method that is not too computationally expensive, such
as the screening design proposed by Morris.

Results of the sensitivity experiment contributed to an improve-
ment in our understanding of the fish population dynamics and the
merits and limits of the model employed. Conclusions that could
be drawn from the analysis include the following.
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1. Parameters involved in interspecies competition are not very
relevant. This may lead to a model simplification as, at least for
our objective function, it seems that there is no need to include
this part of the model.

2. Parameters of early life-stages have the greatest effect on popu-
lation growth. This confirms our expectations, as it is natural to
think that early life stages strongly affect the population growth,
and can therefore be seen as a guarantee of the model quality.

3. Fecundity factors are not very significant for any species at any
life stage. This is a good indication of how to prioritise future
research. Money and effort should be devoted to the measure-
ments and estimate of other parameters rather than fecundity
factors.

4. Parameters related to sardines are not amongst the most impor-
tant. This is also very valuable information, as it may call for
a revision of the model structure. Is the population of sardine
really less important than the other two species in determining
the overall equilibrium of the three-species population or have
we somehow failed in our modelling process and should make
some revisions?

3.4 The Level E model. Radionuclide migration in the
geosphere. Applying variance-based methods and Monte
Carlo filtering

Level E was used both as a benchmark of Monte Carlo com-
putation (Robinson and Hodgkinson, 1987; OECD, 1989) and
as a benchmark for sensitivity analysis methods (OECD, 1993).
This test case has been extensively used by several authors, see
Saltelli and Tarantola (2002) for a review. The model predicts
the radiological dose to humans over geological time scales due
to the underground migration of radionuclides from a nuclear
waste disposal site. The scenario considered in the model tracks
the one-dimensional migration of four radionuclides (129I and
the chain 237Np →233U →229Th) through two geosphere layers
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characterised by different hydro-geological properties. The pro-
cesses being considered in the model are radioactive decay, disper-
sion, advection and the chemical reaction between the migrating
nuclide and the porous medium. The repository is represented as
a point source. Some time after the steel canister containing the
waste has lost its integrity (the time of containment failure is indi-
cated by T), the release of radionuclides to the geosphere depends
only on the leach rates (k(.)) and the initial inventory (C(.)). The
source term for 129I is given by:

∂CI

∂t
= −λICI, t ≤ T

∂CI

∂t
= −λICI − kICI, t > T

(3.7)

where CI (mol) is the amount of 129I, and λI (yr−1) and kI(yr−1) are
the decay rate and the leaching rate for 129I. The initial condition
is CI(t = 0) = C0

I , that is, the amount of 129I at the time of vault
closure (see Table 3.5). The source term for 237Np, the first element
of the chain, is described by

∂CNp

∂t
= −λNpCNp, t ≤ T

∂CNp

∂t
= −λNpCNp − kCCNp, t > T

(3.8)

in which the parameter kC represents the leaching rate for the ra-
dionuclides of the chain. The source term for 233U is given by

∂CU

∂t
= −λUCU + λNpCNp, t ≤ T

∂CU

∂t
= −λUCU + λNpCNp − kCCU . t > T

(3.9)

The source term for 229Th is similarly described by

∂CTh

∂t
= −λThCTh + λUCU, t ≤ T

∂CTh

∂t
= −λThCTh + λUCU − kCCTh. t > T

(3.10)
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Table 3.5 List of input factors for the Level E model.

Notation Definition Distribution Range Units

T Containment time Uniform [100, 1000] yr
kI Leach rate for iodine Log-Uniform [10−3, 10−2] mol/yr
kC Leach rate for Np chain

nuclides
Log-Uniform [10−6, 10−5] mol/yr

V (1) Water velocity in the first
geosphere layer

Log-Uniform [10−3, 10−1] m/yr

l (1) Length of the first geosphere
layer

Uniform [100, 500] m

R(1)
I Retention factor for iodine in

the first layer
Uniform [1, 5] —

R(1)
C Retention factor for the chain

elements in the first layer
Uniform [3, 30] —

v(2) Water velocity in the second
geosphere layer

Log-Uniform [10−2, 10−1] m/yr

l (2) Length of the second
geosphere layer

Uniform [50, 200] m

R(2)
I Retention factor for iodine in

the second layer
Uniform [1, 5] —

R(2)
C Retention factor for the chain

elements in the second layer
Uniform [3, 30] —

W Stream flow rate Log-Uniform [105, 107] m3/yr
C0

I Initial inventory for 129I Constant 100 mol
C0

Np Initial inventory for 237Np Constant 1000 mol
C0

U Initial inventory for 233U Constant 100 mol
C0

Th Initial inventory for 229Th Constant 1000 mol
w Water ingestion rate Constant 0.73 m3/yr
βI Ingestion-dose factor for 129I Constant 56 Sv/mol
βNp Ingestion-dose factor for 237Np Constant 6.8 × 103 Sv/mol
βU Ingestion-dose factor for 233U Constant 5.9 × 103 Sv/mol
βTh Ingestion-dose factor for 229Th Constant 1.8 × 106 Sv/mol

The migration through the geosphere is the core of the model. The
migration of 233U is governed by:

R(k)
U

∂F (k)
U

∂t
= v(k)d(k) ∂

2F (k)
U

∂x2
− v(k) ∂F (k)

U

∂x
− λU R(k)

U F (k)
U + λNpR(k)

NpF (k)
Np

(3.11)

where U stands for the isotope 233U, Np stands for 237Np, (k)
refers to geosphere layer number k (1 or 2), Ri is the retardation
coefficient for nuclide i (dimensionless), Fi (x, t) is the flux (amount
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transported per unit time) of nuclide i in the geosphere at position
x and time t (mol/yr), v(k) is the water travel velocity in the kth
geosphere layer (m/yr), d(k) is the dispersion length in the kth geo-
sphere layer (m), and λi is the decay constant of nuclide i (yr−1).

A similar equation holds for 229Th:

R(k)
Th

∂F (k)
Th

∂t
= v(k)d(k) ∂

2F (k)
Th

∂x2
− v(k) ∂F (k)

Th

∂x
− λTh R(k)

ThF (k)
Th + λU R(k)

U F (k)
U .

(3.12)

To simplify the model structure, the retardation coefficients
RU, RNp, RTh were replaced, in the Level E exercise, by a single
parameter RC. The equation for 129I is:

R(k)
I

∂F (k)
I

∂t
= v(k)d(k) ∂

2F (k)
I

∂x2
− v(k) ∂F (k)

I

∂x
− λI R(k)

I F (k)
I . (3.13)

A similar equation holds for 237Np provided that the index I is
replaced by Np. The modelling of the biosphere is extremely sim-
plified: the dose to the most exposed individual of a hypothetical
critical group is computed via an ingestion factor and the water
consumption rate. The radiological dose (measured in Sv/yr) from
nuclide i is given by

Dosei (t) = βi
w

W
F (2)

i (l (2), t), i = 129I, 237Np, 233U, 229Th

(3.14)

where βi is an ingestion-dose conversion factor and is assumed
fixed, F (2)

i (l (2), t) is the flux at the end of the second layer (the
output to the biosphere), w denotes the drinking water requirement
for an individual in the most exposed critical group, and W is the
stream flow rate. The quantity of interest in this study is the annual
radiological dose due to the four radionuclides

Y(t) =
∑

i

Dosei (t) (3.15)

The simulated time frame for applications presented in this book
ranges from 2 × 104 to 9 × 106 years. The predictive uncertainty
about Y(t) is due to uncertainties in model parameters, both intrin-
sic (i.e., stochastic), such as the time to canister failure, or due to
our poor knowledge of the system (i.e., epistemic), such as a poorly
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known kinetic parameter. The twelve uncertain input factors are
listed in Table 3.5 together with a set of constant parameters.

The probability distributions for the factors have been selected
on the basis of expert judgement. Such data refer to the original
formulation of Level E (OECD, 1989), to which we refer in our
analyses in Chapter 5.

Although experts were aware of the existence of correlations, for
example, between RI and RC for each layer of the geosphere, these
were omitted in the original system specifications for the difficulty
in handling the estimation of sensitivity measures for correlated
input (at that time, the very same concept of sensitivity analysis was
unclear). In other analyses of Chapter 5 we have acknowledged
the correlation between inputs to explain the behaviour of the
physical system better. A significant vault failure can induce high
leaching for both iodine and the chain elements, and vice versa.
Also, high release coefficients for iodine should be accompanied
by high release coefficients for the chain elements, within a given
geosphere layer. The geochemical properties in the two layers of the
geosphere are likely to be correlated, as well as the water flows in
the two layers. In addition, the time to containment failure is likely
to be correlated to the flow in the first layer, since corrosion will be
faster if the flow is faster. The correlation pattern used in Chapter 5
is given in Table 3.6. The set of correlation values was defined by
consulting with the authors of the benchmark (Robinson, 2000).

Table 3.6 Configuration for
correlated input of the Level E model.

Rank
Pairs of correlated factors Correlation

kI , kC 0.5

R(1)
I , R(1)

C 0.3

R(2)
I , R(2)

C 0.3

T, v(1) −0.7

v(1), v(2) 0.5

R(1)
I , R(2)

I 0.5

R(1)
C , R(2)

C 0.5
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The executable of a Fortran 77 code of the Level E model is
available for use within SIMLAB. The code solves the system of
equations above numerically (Crank Nicholson was used by the
authors, see Prado et al. (1991) and Crank (1975)) with the con-
stant parameters given at the bottom of Table 3.5. The system
could also be tackled using an algorithm for accurate numerical
inversion of the solution in the Laplace space to obtain the solution
in real space (Robinson and Hodgkinson, 1987).

The results of the analysis are described in detail in Chapters
5 and 6. The dynamics of the system is strongly non-linear and
the relationship between the input factors and the model output
is also non-monotonic. The most critical time point is at t = 2 ×
105yr, where non-linearities, non-monotonicities and interactions
between model parameters dominate the model behaviour.

In terms of the FF setting, the sensitivity analysis shows that the
parameters of the steel canister, i.e. the containment time (T) and
the leach rates for both iodine and for the nuclides of the neptu-
nium chain (KI and KC) are non-influential over all the time range.
So, they can be fixed in a subsequent analysis and the dimension-
ality of the space of the input factors can be reduced from 12
to 9.

The largest values of first-order effects are obtained for the water
speed in the first geosphere layer (v(1)), the stream flow rate (W) and
the length of the first geosphere layer (l (1)). However, the sum of
all the first-order indices is less than 0.25 across all the time range.
The output variance is driven mostly by interactions between the
factors.

When a correlation structure is considered for the input factors,
the sensitivity pattern is rather different, although W and v(1) still
explain the largest part of the variance in the output. In terms of
setting FP, W and v(1) are the factors that deserve more considera-
tion in terms of uncertainty reduction.

In Chapter 6 we present an application of the Monte Carlo fil-
tering approach at the crucial time point t = 2 × 105 yr, in order
to identify which parameters mainly drive the occurrence of ex-
tremely high values of the radiological doses (FM setting). The
result is that a combination of low values of v(1) and W, and high
values of l (1) contribute to high doses.
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3.5 Two spheres. Applying variance based methods
in estimation/calibration problems

Let us consider the two-spheres example introduced in Chapter
2, a case of estimation of an over-parameterised model (Ratto,
2003). The estimation ultimately consists of the optimisation of a
loss function or likelihood, which is usually a function of the mean
squared error between model simulations and observations. We
assumed that the model factors interact in such a way that the op-
timum lies on the surface of two three-dimensional spheres, such
as:
(√

X2
1 + X2

2 + X2
3 − R1

)2/
A1 +

(√
X2

4 + X2
5 + X2

6 − R2

)2/
A2 = 0.

(3.16)

Moreover, we also assume not to know the easy geometrical
properties of the optimum, but we only have a computational
version of the model and of the likelihood function to optimise.

This model is over-parameterised, since only two parameters
would be identifiable (the two radii), but six parameters have to
be optimised; as a result many different combinations of the pa-
rameters are equally able to provide best fitting model simulations.
Such combinations lie on the two three-dimensional spheres.

Let us fix the coefficients:

R1 = R2 = 0.9

A1 = A2 = 0.001

and assume the six input factors having prior distributions N(0,
0.35). Starting from the prior assumptions, we want to analyse and
search the optimal structure of model parameters for the ‘black-
box’ function

f (X1, . . . , X6) = −
(√

X2
1 + X2

2 + X2
3 − R1

)2/
A1

−
(√

X2
4 + X2

5 + X2
6 − R2

)2/
A2, (3.17)

which can be seen as the kernel of a log-likelihood function ob-
tained from comparisons between model simulations and obser-
vations, which has to be maximised.
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If we apply tools such as correlation analysis, principal com-
ponent analysis and Monte Carlo filtering we have no chance of
highlighting the three-dimensional structures.

On the other hand, if we apply global (variance based) sensitiv-
ity methods, we can identify the interaction structure. In fact, the
sensitivity indices tell us that:

� only terms up to the third order are non-zero, implying that the
largest interaction structure has dimension three;

� among the third-order terms, only the third-order terms of the
groups [X1, X2, X3] and [X4, X5, X6] are non-zero, suggesting
that the key interaction structure is given by two subsets of three
factors;

� third-order closed sensitivity indices of the two disjoint groups
[X1, X2, X3] and [X4, X5, X6] sum up exactly to 1, implying that
the interaction structure is exactly decomposable into the two
groups!

The only limit is that SA tools cannot identify the spherical con-
figuration: global SA tools enable identification of the elements
and the groups characterising the interaction structure, but not
the topological configuration of that structure. This result guides
the analyst to a more efficient search in the two relevant subsets,
which might allow one to ultimately elucidate the spherical geom-
etry, showing that global SA results are useful as a ‘prior’ to the
search of complex optimum structures.

This example and the following one (a chemical experiment) can
also be seen as a ‘mix’ of settings described in Chapter 2:

� the Factors Mapping (FM) Setting, in which categorisation be-
tween acceptable and unacceptable behaviour is not obtained
through the filtering, but through the ‘labelling’ of each Monte
Carlo run according to the loss function/likelihood value;

� the Factors’ Prioritisation (FP) Setting, in which taking the vari-
ance decomposition of the loss/likelihood function, the modeller
is addressed to the subset of factors driving the acceptable be-
haviour of the model;
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� the Factors’ Fixing (FF) Setting, in which, always taking the
variance decomposition of the loss/likelihood function, the mod-
eller can ignore a subset of irrelevant factors in the calibration
procedure.

3.6 A chemical experiment. Applying variance based methods
in estimation/calibration problems

Let us assume that we are performing a set of experiments in a labo-
ratory with the aim of studying the time evolution of an isothermal
first-order irreversible reaction in a batch system A → B (Ratto
et al., 2001). We also assume that we want to fit a kinetic model
using the set of observations. We would like to know not only the
optimum, but also the structure of the model parameters that al-
low a good fit. The first-order chemical process is described by the
following differential equation:

dyB

dt
= kyA (3.18)

where

yi = ni

nT
= ni

n0
A + n0

B

(3.19)

i = A, B, is the dimensionless concentration, and k is the chemical
kinetics rate constant.

The solution to this ordinary differential equation leads to:

yB(t) = 1 + (
y0

B − 1
)

exp(−kt) (3.20)

A pseudo-experiment has been simulated, by considering the fol-
lowing conditions for the chemical system:

k = k∞ exp(−E/RT)
k∞ = 2.5e5 s−1

E/R = 5000 K
T = 300 K
[k = 0.014 s−1]
y0

B = 0.1

(3.21)
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Table 3.7 Prior distributions of the
kinetic model.

Factor Distribution

k∞ U[0, 5e5]
E U[4500, 5500]
y0

B U[0, 0.3]

where k∞ is the Arrhenius pre-exponential factor, E is the activa-
tion energy, R is the gas constant, T is the absolute temperature
and y0

B is the initial concentration of B in the reactor.
To simulate observations, a normally distributed error has been

added to the analytical behaviour defined in Equation (3.20), with
zero mean and standard deviation 0.05.

We consider a vector of three parameters to be estimated: X =
[k∞, E, y0

B]. We start from our prior beliefs on the model parame-
ters, formalised in the prior distributions presented in Table 3.7.

The acceptability of model factors is then classified according to
a loss, a likelihood or a weighting function, which, as in the two-
spheres case, will be based on the errors between model predictions
and observations. We assume one can measure the concentration
of B and we define the weighting function as (see Chapter 6 for
details):

f
(
x(i)

1 , x(i)
2 , x(i)

3

) =
(

1

σ (i)2

)α

, i = 1, . . .N (3.22)

where σ (i)2 = 1/2 · Nobs
∑Nobs

t=1 (ŷBt(X = x(i)) − yBt)2 is the mean
square error, N is the number of Monte Carlo runs performed,
Nobs is the number of observations available, X = [X1, . . . , X3] is
the vector of input factors, ŷBt(X = x(i)) and yBt are the simulated
and observed time evolutions respectively of B.

As in the two-spheres example, we use global SA tools to iden-
tify the main properties of the acceptable set of model parameters
(i.e. the optimal parameter structure). This also allows one to as-
sess the identifiability of the parameters by highlighting those more
clearly driven by data. This allows the dimension of the estimation
problems to be reduced by ignoring/fixing the subset of factors
classified as irrelevant by the sensitivity analysis.
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The two-spheres case study was designed to represent an over-
parameterised model, with a complex structure, in which the un-
derlying interaction between factors is not elementarily detectable.
In this case we show that even a very simple estimation problem can
present aspects of over-parameterisation and interaction. In fact,
the strong interaction between k∞ and E is a well-known feature
in the estimation of chemical rate constants (see e.g. Bard, 1974).

Two types of output have been considered: the physical out-
put yB(t) and the weighting function arising from comparisons
between model runs and observations.

Physical output
The sum of the first-order indices of the three model factors is never
less than 0.86 and the initial condition y0

B has a non-negligible
effect only at the very beginning of the simulation. Therefore little
interaction is revealed by the analysis of the physical output, which
simply singles out the importance of both kinetic factors and the
irrelevance of the initial condition for most of the simulation.

Weighting function
The first-order sensitivity indices are much smaller than the main
effects for the physical output and their sum is less than 0.2, im-
plying that none of the four parameters is clearly identifiable from
data. By analysing the total effect indices, very high sensitivity is
detected for the chemical kinetics factors, implying that the be-
havioural runs are driven by an interaction between them. On the
other hand, the influence of the initial condition is also small in
terms of total effect.

From global sensitivity analysis results, we could conclude that:

� the initial condition y0
B is unimportant and therefore unidentifi-

able from data: i.e. any value in the prior distribution is equally
likely to allow a good fit to observations;

� the chemical rate factors mainly drive the model fit to the exper-
imental data;

� on the other hand, the chemical rate factors cannot be precisely
estimated, since the absolute values of the first-order indices are
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small, leaving the main contribution to the output variance to
interaction terms;

� the model is over-parameterised since there is a large difference
between main and total effects.

In this example we also show that, changing the data set, by adding
measurements at different temperatures, the identifiability/ over-
parameterisation issues can drastically change: this allows us to
show that the same model may or may not be over-parameterised
according to the evidence with which it is compared.

3.7 An analytical example. Applying the method of Morris

The analytical example presented here is taken by Morris (1991).
The model contains twenty input factors and has the following
form:

y = β0 +
20∑

i=1

βiwi +
20∑

i<j

βi, jwiw j +
20∑

i<j<l

βi, j,lwiw jwl

+
20∑

i<j<l<s

βi, j,l,swiw jwlws (3.23)

where wi = 2 × (xi − 1/2) except for i = 3, 5, and 7, where wi =
2 × (1.1xi/(xi + 0.1) − 1/2). Coefficients with relatively large val-
ues are assigned as

βi = +20 i = 1, . . . , 10; βi, j = −15 i, j = 1, . . . , 6;

βi, j,l = −10 i, j, l =1, . . . , 5; βi, j,l,s = +5 i, j, l, s =1, . . . , 4.

The remaining first-and second-order coefficients are indepen-
dently generated from a normal distribution with zero mean and
unit standard deviation; the remaining third-and fourth-order co-
efficients are set to zero.

This simple analytical model has been used to test the perfor-
mance of the Morris screening method and proves its capabilities
to distinguish between factors that have negligible effects, linear
and additive effects, or non-linear or interaction effects.
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Results showed that, considering both the Morris measures µ

and σ , one can conclude that:

(i) the first ten factors are important;

(ii) of these, the first seven have significant effects that involve
either interactions or curvatures;

(iii) the other three are important mainly because of their first-
order effect.

These results are in line with what is expected by looking at the
analytical form of the model and at the factor values, thus con-
firming the effectiveness of the Morris method in determining the
relative importance of the model input factors.





4 THE SCREENING
EXERCISE

4.1 Introduction

Mathematical models are often very complex, computationally ex-
pensive to evaluate, and involve a large number of input factors. In
these cases, one of the aims in modelling is to come up with a short
list of important factors (this is sometimes called the principle of
parsimony or Occam’s razor). The question to address is: ‘Which
factors – among the many potentially important ones – are really
important?’

Answering this question is important for a number of reasons.
When a few important factors are identified, the modeller may
choose to simplify the model structure by eliminating parts that
appear to be irrelevant or he may decide to proceed with model
lumping and extract a simpler model from the complex one. The
identification of the input factors driving most of the variation
in the output is also a mean of quality assurance. If the model
shows strong dependencies on factors that are supposed not to be
influential, or the other way around, one may rethink the model
and eventually decide to revise its structure. Furthermore, addi-
tional studies may be devoted to improving the estimates of the
most influential factors, so as to increase the accuracy of model
predictions.

To identify the most important factors from among a large num-
ber, the choice of a well-designed experiment is essential. The
experiment must be designed to be computationally cheap, i.e.

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1
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requiring a relatively small number of model evaluations. Screen-
ing designs fulfil this requirement. These designs are conceived to
deal with models containing tens or hundreds of input factors effi-
ciently. As a drawback, these methods tend to provide qualitative
sensitivity measures, i.e. they rank the input factors in order of
importance, but do not quantify how much a given factor is more
important than another.

Screening designs are a convenient choice when the problem
setting is that defined in Chapter 2 as Factors’ Fixing (FF). In the
FF setting the objective is to identify the subset of input factors
that can be fixed at any given value over their range of uncertainty
without significantly reducing the output variance. The screening
methods provide a list of factors ranked in order of decreasing
importance, allowing the modeller to identify the subset of less
influential ones.

Screening techniques have been applied to several practical sim-
ulation studies in different domains, providing good results. In
general, screening designs perform better when the number of
important factors in the model is small compared with the total
number of factors. In other words, they perform better under the
assumption that the influence of factors in the model is distributed
as the wealth in nations, i.e. it follows Pareto’s law, with a few,
very influential factors and a majority of non-influential ones. In
practice this is often verified and the results of screening exercises
are generally rather satisfactory.

Several screening designs have been proposed in the literature
(for a review see Saltelli et al. (2000b, p. 65)). In this chapter we
shall focus on the design proposed by Morris (1991), and on some
extensions of it (Campolongo et al., 2003), as we believe this design
to be the most appealing in several problem settings.

The method of Morris varies one-factor-at-a-time and is there-
fore referred to as an OAT method. Each input factor may assume
a discrete number of values, called levels, which are chosen within
the factor range of variation. Two sensitivity measures are pro-
posed by Morris for each factor: a measure µ that estimates the
overall effect of the factor on the output, and a measure σ that,
according to Morris, estimates the ensemble of the second- and
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higher-order effects in which the factor is involved (including cur-
vatures and interaction effects). The Morris measure, µ, is obtained
by computing a number, r, of incremental ratios at different points
x(1), . . . , x(r ) of the input space, and than taking their average. The
number, r, of selected points is called the sample size of the ex-
periment. Here we also describe a third measure, µ∗, proposed by
Campolongo et al. (2003), which is a revised version of the Morris
µ. µ∗ is very successful in ranking factors in order of importance
and performs capably when the setting is that of Factor’s Fixing.

The method illustrated in this chapter is simple, easy to imple-
ment, and the results are easily interpreted. It is economic in the
sense that it requires a number of model evaluations that are linear
in the number of model factors. As a drawback, the method relies
on a sensitivity measure, called the elementary effect, which uses
incremental ratios and is apparently a local measure. However,
the final measure, µ and µ∗, are obtained respectively by averag-
ing several elementary effects and their absolute values computed
at different points of the input space, so as to lose the dependence
on the specific points at which the elementary effects are computed.
In this sense, as it attempts to explore several regions of the input
space, the method can be regarded as global.

Other screening methods that it is worth mentioning are:
the design of Cotter (1979), the Iterated Fractional Factorial
Designs, IFFDs (Andres and Hajas, 1993), and the sequential bi-
furcation proposed by Bettonvil (Bettonvil, 1990; Bettonvil and
Kleijnen, 1997). However, with respect to each of these methods,
the Morris’s design has the benefit of a greater applicability. While
the design of Cotter performs well when factors do not have ef-
fects that cancel each other out, the IFFD is recommended when
only a restricted number of factors is important, and sequential
bifurcation is ideal when factor effects have known signs (which
means that the analyst knows whether a specific individual fac-
tor has a positive or negative effect on the simulation response);
the Morris’s design does not rely on restricted assumptions and is
therefore model independent.

A description of these methods and a discussion on their prop-
erties can be found in Saltelli et al. (2000b, p. 65).
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4.2 The method of Morris

The guiding philosophy of the Morris method (Morris, 1991) is to
determine which factors may be considered to have effects which
are (a) negligible, (b) linear and additive, or (c) non-linear or in-
volved in interactions with other factors. The experimental plan
proposed by Morris is composed of individually randomised ‘one-
factor-at-a-time’ experiments; the impact of changing one factor
at a time is evaluated in turn.

In order to illustrate this experimental plan, assume that the
k-dimensional vector X of the model input has components Xi

each of which can assume integer values in the set {0, 1/(p − 1),
2/(p − 1), . . . ,1}. The region of experimentation, �, will then be
a k-dimensional p-level grid.1

The method suggested by Morris is based on what is called an
elementary effect. The elementary effect for the ith input is defined
as follows. Let � be a predetermined multiple of 1/(p − 1). For a
given value x of X, the elementary effect of the ith input factor is
defined as

di (x) = [y(x1, . . . , xi−1, xi + �, xi+1, . . . , xk) − y(x)]
�

(4.1)

where x = (x1, x2, . . . , xk) is any selected value in � such that the
transformed point (x + ei�), where ei is a vector of zeros but with
a unit as its ith component, is still in � for each index i = 1, . . . , k.

The finite distribution of elementary effects associated with the
ith input factor, is obtained by randomly sampling different x from
�, and is denoted by Fi . The number of elements of each Fi is
pk−1 [p − �(p − 1)]. Assume for instance that k = 2, p = 5, and
� = 1/4, for a total number of 20 elements for each Fi . The five-
level greed in the input space is represented in Figure 4.1. The
total number of elementary effects can be counted from the grid
by simply keeping in mind that each elementary effect relative to
a factor i is computed by using two points whose relative distance
in the coordinate Xi is �.

1 In practical applications, the values sampled in � are subsequently rescaled to generate the
actual values assumed by the input factors.
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Figure 4.1 Representation of the five-level grid (p = 5) in the two-
dimensional input space (k = 2). The value of � is 1/4. Each arrow identifies
the couple of points needed to compute one elementary effect. The horizon-
tal arrows identify the 20 elementary effects relative to X1, while the vertical
ones identify the 20 elementary effects relative to X2.

Campolongo et al. (2003) proposed that the distribution of the
absolute values of the elementary effects, namely Gi , should also
be considered. The examination of the distributions Fi and Gi

provides useful information about the influence of the ith input
factor on the output.

Here we take as the most informative sensitivity measures µ∗,
the mean of the distribution Gi , and σ , the standard deviation of
Fi . µ∗ is used to detect input factors with an important overall
influence on the output. σ is used to detect factors involved in
interaction with other factors or whose effect is non-linear.

Note that in the original work of Morris (Morris, 1991) the
two sensitivity measures proposed were respectively the mean, µ,
and the standard deviation, σ , of Fi . However, choosing Morris
has the drawback that, if the distribution, Fi , contains negative
elements, which occurs when the model is non-monotonic, when
computing the mean some effects may cancel each other out. Thus,
the measure µ on its own is not reliable for ranking factors in order
of importance. It is necessary to consider at the same time the values
of µ and σ , as a factor with elementary effects of different signs
(that cancel each other out) would have a low value of µ but a
considerable value of σ that avoids underestimating the factors’
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importance. For interpreting results by simultaneously taking into
account the two sensitivity measures, Morris suggested a graphical
representation. The estimated mean and standard deviation of each
sample of elementary effects are displayed in the (σ, µ) plane (see
examples in Figures 4.4 and 4.5). The plotted values may thus be
examined relative to each other to see which input factor appears
to be the most important.

When the goal is to rank factors in order of importance by mak-
ing use of a single sensitivity measure, our advice is to use µ∗,
which by making use of the absolute value, avoids the occurrence
of effects of opposite signs.

The mean of the distribution Fi , which comes out at no extra
computational cost, can still be used to detect additional informa-
tion on the signs of the effects that the factor has on the output.
If the mean of Fi is high, it implies not only that the factor has
a large effect on the output but also that the sign of this effect is
always the same. If, in contrast, the mean of Fi is low, while the
mean of Gi is high, it means that the factor examined has effects of
different signs depending on the point in space at which the effect
is computed.

To examine the effects due to interactions we use the original
measure proposed by Morris and consider the standard deviation
of the distribution Fi . An intuitive interpretation of its meaning
is the following. Assume that, for factor Xi , we get a high value
of σ . This means that the elementary effects relative to this factor
are significantly different from each other, i.e. the value of an ele-
mentary effect is strongly affected by the choice of the point in the
input space at which it is computed, i.e. by the choice of the other
factor’s values. In contrast, a low σ indicates very similar values
of the elementary effects, implying that the effect of Xi is almost
independent of the values taken by the other factors.

The sensitivity measures preferred here are therefore µ∗, the
mean of the distribution Gi , and σ , the standard deviation of Fi .
If we attempt to make a comparison with the variance-based mea-
sures proposed in Chapter 5, we see that µ∗ is the best parallel of
the total sensitivity index STi . In fact, if we were to express µ∗ in
terms of variance operators, we would write µ∗ = E[ψ (Y| X−i )]
where ψ( �) is the operator taking the absolute local variation.
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Therefore, µ∗ is the best parallel to STi as far as the operator ψ can
be assimilated into the variance operator.

The Morris design focuses on the problem of sampling a number,
r, of elementary effects from each distribution Fi (and hence from
each Gi ) in order to estimate the distribution’s statistics. In the
simplest form, since each elementary effect requires the evaluation
of y twice, the total computational effort required for a random
sample of r values from each Fi , is n = 2rk runs, where k is the
number of input factors. The economy of the design, defined by
Morris as the number of elementary effects produced by the design
divided by the number of experimental runs necessary to produce
them, is then rk/2rk, i.e. 1/2.

Morris suggests a more efficient design, with a larger value of
the economy. Note that the larger the value of the economy for a
particular design or method, the better it is in terms of providing in-
formation for sensitivity. The design proposed by Morris is based
on the construction of a matrix, B*, of dimension k-by-(k + 1),
whose rows represent input vectors xs, for which the correspond-
ing experiment provides k elementary effects, one for each input
factor, from (k + 1) runs. The economy of the design is therefore
increased to k/(k + 1).

A convenient choice for the parameters p and � of the design is
p even and � equal to p/[2(p − 1)]. This choice has the advantage
that, although the design sampling strategy does not guarantee
equal-probability sampling from each Fi , at least a certain sym-
metric treatment of inputs that may be desirable is ensured (for
details see Morris (1991)).

The Morris designs starts by randomly selecting a ‘base’ value
x* for the vector X. Each component xi of x* is sampled from
the set {0, 1/(p − 1), 2/(p − 1), . . . , 1}. Note that the vector x*
is used to generate the other sampling points but it is not one
of them. The model is never evaluated at x*. The first sampling
point, x(1), is obtained by increasing one or more components of
x* by �. The choice of the components of x* to be increased is
conditioned by x(1) still being in �. The second sampling point is
generated from x* with the property that it differs from x(1) in
its ith component that has been either increased or decreased by
�. The index i is randomly selected in the set {1, 2, . . . , k}. In
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mathematical notation x(2) = (x(1)
1 , . . . , x(1)

i−1, x(1)
i ± �, x(1)

i+1, . . . ,

x(1)
k ) = (x(1) ± ei�). The third sampling point, x(3), is again gen-

erated from the ‘base’ value x*. One or more of the k compo-
nents of x* are increased by �, with the property that x(3) differs
from x(2) for only one component j, for any j 	= i . It can be either
x(3)

j = x(2)
j + � or x(3)

j = x(2)
j − �. The design proceeds producing

a succession of (k + 1) sampling points x(1), x(2), . . . , x(k+1), with
the key property that two consecutive points differ in only one
component. Furthermore any component i of the ‘base vector’ x*
has been selected at least once to be increased by � in order to
calculate one elementary effect for each factor.

Note that while each component of the ‘base’ vector x* can only
be increased (and not decreased) by �, a sampling point x(l+1), with
l in {1, . . . , k}, may be different from x(l) also because one of its
components has been decreased (see example below).

The succession of sampling points x(1), x(2), . . . , x(k+1) defines
what is called a trajectory in the input space. It also defines a
matrix B*, with dimension (k + 1) × k, whose rows are the vectors
x(1), x(2), . . . , x(k+1). B* represents the design matrix and is called
the Orientation matrix. An example of a trajectory is given in
Figure 4.2 for k = 3.

Once a trajectory has been constructed and the model evaluated
at its points, an elementary effect for each factor i, i = 1, . . . , k, can
be computed. If x(l) and x(l+1), with l in the set {1, . . . , k}, are two

Figure 4.2 An example of trajectory in the input factor space when k = 3
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sampling points differing in their ith component, the elementary
effect associated with the factor i is either

di (x(l)) = [y(x(l+1)) − y(x(l))]
�

, (4.2)

if the ith component of x(l) has been increased by � or

di (x(l)) = [y(x(l)) − y(x(l+1))]
�

, (4.3)

if the ith component of x(l) has been decreased by �.
In other words, the orientation matrix B* provides a single ele-

mentary effect per input factor and corresponds to a trajectory of k
steps, in the input space, with starting point x(1). Technicalities on
how to build a design orientation matrix are given in Section 4.3.

The goal of the experiment is to estimate the mean and the
variance of the distributions Fi and Gi , i = 1, . . . , k . To this end
a random sample of r elements from each Fi has to be selected,
thus automatically providing a corresponding sample of r elements
belonging to Gi . The extraction of such a sample requires the
construction of r orientation matrices, independently generated,
corresponding to r different trajectories in the input space. Each
trajectory has a different starting point that is randomly generated.
Since each orientation matrix provides an elementary effect per
factor, the r matrices all together provide k r-dimensional samples,
one for each Fi .

Although a characteristic of this sampling method is that points
belonging to the same trajectory are not independent, the r points
sampled from each Fi belong to different trajectories and are there-
fore independent. The same obviously applies to Gi . Therefore, the
mean and standard deviation of each distribution Fi and Gi can
be estimated by using the same estimators that would be used with
independent random samples, i.e. as

µ =
r∑

i=1

di/r (4.4)

σ =
√√√√

r∑

i=1

(di − µ)2/r (4.5)
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where di , i = 1, . . . , r , are the r elementary effects (or their absolute
values) sampled from Fi (or from Gi ).

Results of the Morris experiment can be easily interpreted. A
large (absolute) measure of central tendency for Gi , i.e. a value of
mean that is substantially different from zero, indicates an input
with an important ‘overall’ influence on the output.

A large measure of spread, i.e. a high value of the standard
deviation of Fi , indicates an input with a non-linear effect on the
output, or an input involved in interaction with other factors. To
rank factors in order of importance it is advisable to use µ∗, as this
measure provides an estimate of the overall factor importance.

4.3 Implementing the method

To implement the Morris design, a number, r, of orientation matri-
ces B* have to be constructed. To build a matrix B*, the first step
is the selection of a matrix B, whose dimensions are (k + 1) × k,
with elements that are 0s and 1s and the key property that for
every column index j, j = 1, . . . , k, there are two rows of B that
differ only in the jth entry. A convenient choice for B is a strictly
lower triangular matrix of 1s.

The matrix B′, given by,

B′ = Jk+1,1x∗ + �B, (4.6)

where Jk+1,k is a (k + 1) × k matrix of 1s, and x* is a randomly
chosen ‘base value’ of X, could be used as a design matrix, since
the corresponding experiment would provide k elementary effects,
one for each input factor, with a computational cost of (k + 1) runs.
However, the problem with B′ is that the k elementary effects that
it produces would not be randomly selected.

Assume that D* is a k-dimensional diagonal matrix in which
each element is either +1 or −1 with equal probability, and P*
is a k-by-k random permutation matrix in which each column
contains one element equal to 1 and all others equal to 0 and no
two columns have 1s in the same position.
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A randomized version of the sampling matrix is given by

B∗ = (Jk+1,1 x∗ + (�/2)[(2B − Jk+1,k)D∗ + Jk+1,k])P∗. (4.7)

B∗ provides one elementary effect per input, which is randomly
selected.

Example

Consider a model with two input factors taking values in the set
{0, 1/3, 2/3, 1}. In this case k = 2, p = 4, and � = 2/3.

The matrix B is given by

B =



0 0
1 0
1 1


 ,

and the randomly generated x*, D* and P* are

x∗ = (0, 1/3); D∗ =
[

1 0
0 −1

]
; P∗ = I.

For these values, then

(�/2)[(2B − Jk+1,k)D∗ + Jk+1,k] =



0 �

� �

� 0


 =




0 2/3
2/3 2/3
2/3 0




and

B∗ =



0 1
2/3 1
2/3 1/3


 ,

so that

x(1) = (0, 1); x(2) = (2/3, 1); x(3) = (2/3, 1/3).

Figure 4.3 shows the resulting trajectory in the input space.
When implementing the Morris exercise on a model, the first

problem to be addressed concerns the choice of the p levels among
which each input factor is varied. For a factor following a uniform
distribution, the levels are simply obtained by dividing the interval
in which each factor varies into equal parts. For a factor following
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Figure 4.3 An example of trajectory in the two-dimensional space.

distributions other than uniform, it is opportune to select the levels
in the space of the quantiles of the distribution.

Input values are then not sampled directly. Instead, the sam-
pling is carried out in the space of the quantiles of the distribu-
tions, which is a k-dimensional hyper-cube (each quantile varies in
[0, 1]). Then, given a quantile value for a given input factor, the ac-
tual value taken by the factor is derived from its known statistical
distribution (Campolongo et al., 1999).

The choice of the number of levels, p, or, in other words, the
choice of the sampling step �, which is linked to p by the re-
lation � = p/2(p − 1), is an open problem. The choice of p is
strictly linked to the choice of r. When the sampling size r is
small, it is likely that not all the possible factor levels are ex-
plored within the experiment. For instance, in the above exam-
ple, if r = 1, factor 1 never gets the values 1/3 and 1 while factor
2 never gets the values 0 and 2/3. Increasing the sampling size,
thus reproducing the matrix B* r times, would increase the prob-
ability that all the levels are explored at least once. Considering
a high value of p, thus producing a high number of possible lev-
els to be explored, only appears to augment the accuracy of the
sampling. If this is not coupled with the choice of a high value
of r, the effort will be wasted as many possible levels will re-
main unexplored. Previous experiments (Campolongo and Saltelli,
1997; Campolongo et al., 1999; Saltelli et al., 2000b, p. 367) have
demonstrated that the choice of p = 4 and r = 10 has produced
valuable results. Morris (1991) used a sample size of r = 4, this is
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probably the minimum value to place confidence in the experiment
results.

The Morris method is implemented in SIMLAB.

4.4 Putting the method to work: an analytical example

The twenty factor analytical example used to test the performance
of the Morris method, which is taken from Morris (1991), was de-
scribed in Section 3.7. Parameters of the Morris experiment were
set respectively to p = 4, � = 2/3 and r = 4. Using the same rep-
resentation as in Morris (1991), the values obtained for the sensi-
tivity measures µ and σ are displayed in Figure 4.4.

The pattern described in Figure 4.4 almost reproduces the one
shown in Figure 1 of Morris (1991). Input variables 1–10, which
are supposed to have a significant effect on the output, are well
separated from the others. In particular, as shown in Morris (1991),
variables 8, 9 and 10 are separated from the others because of
their high mean (abscissa) values. Hence, considering both means
and standard deviations together, one can conclude that the first
ten factors are important; of these, the first seven have significant
effects that involve either interactions or curvatures; the other three
are important mainly because of their first-order effect.
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Figure 4.4 Results of the Morris experiment on the analytical model de-
scribed in Chapter 3.
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4.5 Putting the method to work: sensitivity analysis
of a fish population model

The method of Morris in its extended version is applied to the
model of fish population dynamics described in Chapter 3. The
goal of the experiment is twofold: (i) to establish the relative im-
portance of the various physical and ecological process involved in
the dynamics of the fish population, so improving our understand-
ing of the system; and/or (ii) to eliminate those factors or group of
factors that seem to be irrelevant in order to reduce the complexity
of the model and increase its efficiency.

To start the analysis, the quantities of interest have to be deter-
mined. First, it is essential to specify which is the model response
(or model output) regarded as the most informative for the goal
of the analysis. In this study, we focus on λmax, which is the dom-
inant eigenvalue of the population matrix. The eigenvalue λmax

represents the population growth rate. If λmax = 1 the population
is stationary. In particular, the quantity of interest is λ365, which is
λmax after one year simulation time, representing the annual popu-
lation growth. The total number of model input factors is 103. Of
these, 72 are factors that represent the daily natural mortality (Z),
duration (D), and daily fecundity (F) of each of the three species un-
der study (sardines (I), anchovies (J) and mackerel (K)). Their best
values and ranges of variation are specified in the Tables 3.2–3.4
in Chapter 3. Best values are chosen to produce a dominant eigen-
value in the population matrix equal to 1. Daily fecundity fac-
tors of early development stages with min = max = 0 are not
considered.

To simplify the notation, these 72 factors are denoted by two
capital letters, the first indicating the type of factor (Z, D or F), and
the second indicating the species to which it is referring (I, J or K).
The numbers between brackets denote the life-stage: i = 1, 13 for
sardines, i.e. from egg to late adult following the life stages given
in Table 3.2, and i = 1, 9 for anchovies and mackerel, from egg to
late adult following the life stages given respectively in Tables 3.3
and 3.4. For example, ZJ(3) denotes the mortality (Z) of anchovies
(J) in the early larvae stage. The remaining 31 inputs are factors
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Figure 4.5 Graph displaying the Morris sensitivity measures µ∗ and σ for
the 103 model input factors. Only the most important factors are labelled.

involved in the migration and interspecies competition between
larvae and juveniles. Lower case letters denote these factors.

The extended Morris method is applied to the fish population
model with a sample size r = 10. Each of the 103 input factors
is assumed to follow a uniform distribution between its extreme
values, reported in Tables 3.2–3.4. In the design, each factor is
varied across four levels (p = 4). A total number N = 1040 of
model evaluations is performed (N = r × (k + 1), where k is the
number of input factors).

The results of the experiment exercise are shown in Figure 4.5,
where the sensitivity measures µ∗ and σ are plotted for the 103
input factors. Labels indicating the names of the factors are given
only for the ten most important factors.

Factors can also be ranked in (decreasing) order of importance
according to µ∗, which is a measure of the overall factor impor-
tance. However, it is worth noting that in this case the order of
importance that would have been obtained by using σ instead of
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µ∗ is very similar. Results of the experiment show that each input
factor with a high value for the estimated mean, µ∗, also has a high
value for the estimated standard deviation, σ , or in other words,
none of the factors has a purely linear effect. This is also evident
from Figure 4.5, where all the points lie around the diagonal.

A number of conclusions can be drawn by examining Figure 4.5.
The first group of factors is clearly separated from the others, indi-
cating a large influence on the population growth rate. These are
(in decreasing order of importance): ZK(1), the daily natural mor-
tality for mackerel at the egg stage; DK(5) and DK(4), the duration
for mackerel at the juvenile and early juvenile stage respectively;
DJ(3), the duration for anchovies at the early larvae stage, which
is also the factor that is less involved in the interaction and/or cur-
vature effects, as it does not lie exactly on the diagonal of the (µ∗,
σ ) plane but in the µ∗ > σ zone. A second group of factors that
are quite influential on the output include (not in order of impor-
tance): DJ(4), DJ(6) and DJ(7), i.e. the duration for anchovies at the
late larvae, late juvenile and prerecruit stages; DK(1), DK(2) and
DK(3), i.e. the duration for mackerel at the egg and early and late
larvae stages; ZJ(1), ZJ(3), ZJ(4), ZJ(5) and ZJ(6), i.e. the mortal-
ity for anchovies at the egg, early and late larvae, and early and late
juvenile stages; and ZK(5), i.e. the mortality for mackerel at the ju-
venile stage. Then other factors follow immediately: DJ(2), i.e. the
duration for anchovies at the yolk-sac larvae stage, ZJ(7), i.e. the
mortality for anchovies at the prerecruit stage, and so on. Values
of µ∗ for these remaining factors decrease smoothly, without
any discontinuity, indicating that it is very difficult to distinguish
a group of important factors from a group of non-important
ones.

Input factors involved in interspecies competition between lar-
vae and juveniles are not very important with respect to the others.
None of them appear among the first thirty that were identified by
Morris, even if they were responsible for the fluctuations observed
in the simulations. This means they do not influence the magni-
tude of the fluctuations. The conclusion is that, if our modelling
approach is correct, it would be difficult to identify interspecies
competition in real time series data, as it will be masked by envi-
ronmental fluctuations.
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Other relevant conclusions include:

1. the daily fecundity (F) factors are not very significant for any of
the three species at any life stage;

2. none of the most important twenty factors are related to adult
life stages;

3. the daily natural mortality and duration factors play a more
substantial role on the dynamics of the three populations;

4. the sardine population appears to be less influential on the over-
all population dynamics than do other populations.

The results of the screening experiment have, on the one hand,
contributed to improving our understanding of the fish population
dynamics; on the other hand, they may be used to update the model
in order to make it more efficient and/or more consistent with
observed data. For instance, point (4) above may call for a revision
of the role of sardines in the model or one may think of focusing
on a simplified version of the model obtained by eliminating the
parameters relative to interspecies competition between larvae and
juveniles that do not seem to play a substantial role. Furthermore,
results can be used to prioritise further research and experiments by
addressing the estimates of those parameters that have the greatest
effect on the output of interest.

4.6 Conclusions

We suggest that one uses the method discussed in this chapter
when the problem is that of screening a few important input fac-
tors among a large number contained in the model, or in other
words for setting Factor’s Fixing. Operatively, when factors with
small values of µ∗ are identified, these can be fixed at any value
in their uncertainty distribution without any significant loss of in-
formation. At times, this may lead to segment of the model being
dropped.

The main advantage of the method is its low computational
cost: the plan then requires a total number of runs that is a linear
function of the number of examined factors.
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The method has a number of advantages with respect to other
screening methods that are widely accepted in the literature. For
example, with respect to methods based on Fractional Factorials
(Saltelli et al., 2000b, p. 53), the Morris design is computationally
more efficient. A fractional factorial design with high resolution
(high resolution is desirable to avoid confounding effects of differ-
ent orders) may be too expensive to perform.

A more economical design such as that proposed by Cotter
(1979) relies on strict assumptions and fails when these assump-
tions are not fulfilled.

The Iterated Fractional Factorial Design proposed by Andres
and Hajas (1993) is based on the idea of grouping factors and
performs appropriately when the number of factors that is impor-
tant is restricted. The sequential bifurcation proposed by Bettonvil
(1990) is applicable only when factor effects have known signs,
which means the analyst knows whether a specific individual fac-
tor has a positive or negative effect on the simulation response, an
assumption that is rarely fulfilled.

The Morris method, as all screening methods, provide sensitivity
measures that tend to be qualitative, i.e. capable of ranking the
input factors in order of importance, but do not attempt to quantify
by how much one given factor is more important than another. A
quantitative method would provide an estimate, for example, of
the exact percentage of total output variance that each factor (or
group of factors) accounts for. However, quantitative methods are
more computational expensive (see Chapter 5) and not affordable
when a large number of input factors are involved in the analysis
or the model is time consuming.



5
METHODS BASED ON
DECOMPOSING THE
VARIANCE OF THE OUTPUT

The purpose of this chapter is to describe in some detail the vari-
ance based methods that were succinctly introduced in Chapter 1.
We start by showing how they can tackle some of the settings dis-
cussed in Chapter 2, and how their properties compare with respect
to what one might desire, from model independence to the capacity
to assess the importance of groups of uncertain factors (Chapter 2,
Table 2.1). At the end of this chapter, we suggest strategies for the
estimation of the sensitivity measures for the two radically differ-
ent cases of orthogonal and non-orthogonal input factors.

5.1 The settings

We recall briefly the settings for sensitivity analysis defined in
Chapter 2.

1. In Factors Prioritisation (FP) Setting we want to make a rational
bet on what is the factor that one should fix to achieve the
greatest reduction in the uncertainty of the output.

2. In Factors Fixing (FF) Setting we try to screen the input factors
by identifying factors or sets of factors that are non-influential.

3. In Variance Cutting (VC) Setting we would like to make a ratio-
nal bet on what is the minimal subset of factors that one should
fix to achieve a prescribed reduction in the uncertainty of the
output.

4. In Factors Mapping (FM) Setting we look for factors mostly
responsible for producing realisations of Y in a given region.

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1
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As we shall see below, the first three settings are particularly apt to
structure our analysis of model sensitivity in terms of variance. In
turn, they also offer a quite intuitive way to interpret the sensitivity
measures that are ‘variance based’. The fourth setting is mostly
related to Monte Carlo filtering techniques and will be analysed in
detail in Chapter 6.

5.2 Factors Prioritisation Setting

We shall discuss here Setting FP in some detail, with examples, to
offer the reader an overview of what it implies and how it can be
tackled. Some of the key concepts have already been touched upon
in Chapters 1 and 2, but they are repeated here in full.

Let us assume that all the factors X are left free to vary over their
entire range of uncertainty. The corresponding uncertainty of the
model output y = f (X) is quantified by its unconditional variance
V(Y).

Our objective in this setting is to rank the factors according to
the amount of output variance that is removed when we learn the
true value of a given input factor Xi .

The factors could then be ranked according to V(Y|Xi = x∗
i ),

the variance obtained by fixing Xi to its true value x∗
i . This vari-

ance is taken over all factors but Xi . We could normalise it by the
output (unconditional) variance, to obtain V(Y|Xi = x∗

i )/V(Y).
Note that V(Y|Xi = x∗

i ) could even be larger than V(Y) for par-
ticular values of x∗

i (see Box 2.4 Conditional and unconditional
variances, Chapter 2). The problem is that we do not know
what x∗

i is for each Xi . It hence sounds sensible to look at the
average of the above measure over all possible values x∗

i of Xi , i.e.
E(V(Y|Xi )), and take the factor with the smallest E(V(Y|Xi )). We
have dropped the dependence from x∗

i in the inner variance as this
is eliminated by the outer mean. In a richer notation, to indicate
the conditioning argument, we could write it as EXi (VX−i (Y|Xi ))
where X−i denotes the vector of all the input factors but factor Xi .

Given that V(Y) is a constant and V(Y) = V(E(Y|Xi )) +
E(V(Y|Xi )), betting on the lowest E(V(Y|Xi )) is equivalent to bet-
ting on the highest V(E(Y|Xi )).



First-order effects and interactions 111

Several practitioners of sensitivity analysis have come up with
different estimates of Vi = V(E(Y|Xi )) as a measure of sensitiv-
ity. Investigators have given the Vi , or the ratios Si = Vi/V(Y),
the names ‘importance measure’, ‘correlation ratio’ or ‘sensitivity
index’ (see Saltelli et al., 2000a, p. 167 and Saltelli et al., 1999,
2000b for reviews). Statisticians and practitioners of experimental
design call Vi (or Si ) the ‘first-order effect’ of Xi on Y (see, for
example, Box et al., 1978).

Based on this discussion, we have already claimed in Chapter 1
that the measure Si is the proper instrument to use for Setting FP. In
the next sections we illustrate this with simple examples, while re-
calling some concepts associated with the variance based methods.

5.3 First-order effects and interactions

We need to have a few words here about the concept of ‘inter-
action’, repeating some of the concepts introduced in Chapter 1.
Two factors are said to interact when their effect on Y cannot be
expressed as a sum of their single effects on Y. This definition will
become more precise in the following. Interactions may imply, for
instance, that extreme values of the output Y are uniquely associ-
ated with particular combinations of model inputs, in a way that
is not described by the first-order effects Si , just mentioned. Inter-
actions represent important features of models, e.g. when models
are employed in risk analysis. Interactions are also more difficult
to detect than first-order effects. For example, by using regression
analysis tools it is fairly easy to estimate first-order indices, but
not interactions (remember the relationship Sxi = β2

xi
discussed in

Chapter 1 for linear models and orthogonal inputs, where βxi is
the standardised regression coefficient for factor Xi ). Interactions
are described well in terms of variance. For example, the effect of
the interaction between two orthogonal factors Xi and Xr on the
output Y can be defined in terms of conditional variances as:

Vir = V(E(Y
∣∣Xi , Xr )) − V(E(Y

∣∣Xi )) − V(E(Y
∣∣Xr )). (5.1)

In this equation, V(E(Y|Xi , Xr )) measures the joint effect of the
pair (Xi , Xr ) on Y. In V(E(Y|Xi , Xr )) the inner average is evaluated
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over the space of all factors but Xi , Xr and the outer variance over
all possible values of Xi , Xr .

The term Vir is the joint effect of Xi and Xr minus the first-
order effects for the same factors. This is known as a second-order,
or two-way, effect (Box et al. 1978). Analogous formulae can be
written for higher orders as we shall see in a moment.

When the input factors are orthogonal, the conditional variances
such as V(E(Y|Xi )) and V(E(Y|Xi , Xr )) can be seen in the context
of the general variance decomposition scheme proposed by Sobol’
(1990), whereby the total output variance V(Y) for a model with
k input factors can be decomposed as:

V(Y) =
∑

i

Vi +
∑

i

∑

j>i

Vi j + . . . + V12...k (5.2)

where

Vi = V(E(Y
∣∣Xi )) (5.3)

Vi j = V(E(Y
∣∣Xi , Xj )) − Vi − Vj (5.4)

Vi jm = V(E(Y
∣∣Xi , Xj , Xm)) −Vi j −Vim −Vjm −Vi −Vj −Vm (5.5)

and so on. A model without interactions, i.e. a model for which
only the terms in (5.3) are different from 0, is said to be additive
in its factors.

5.4 Application of Si to Setting ‘Factors Prioritisation’

Imagine that the set of the input factors (X1, X2, . . . , Xk) is or-
thogonal. If the model is additive, i.e. if the model does not in-
clude interactions between the input factors, then the first-order
conditional variances Vi = V(E(Y|Xi )) are indeed all that we need
to know in order to decompose the model’s variance. In fact, for
additive models,

∑

i

Vi = V(Y) (5.6)

or, equivalently,
∑

i

Si = 1. (5.7)
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Let us now assume that the influence of factors Xi and Xr on the
output Y, which is measured by Vi and Vr , is smaller than the in-
fluence of the factor Xj , which is quantified by Vj . Imagine also
that the output Y is influenced by an interaction (or synergy) be-
tween Xi and Xr . Are we now sure that Xj is more important
than Xi and Xr under Setting FP? Or should the answer depend
upon the interaction between Xi and Xr on Y? It should not, as
no assumption of additivity was made in the discussion of Sec-
tion 5.2 above. To confirm this let us look at a didactical exam-
ple: a simple function Y = m(X1, X2) where one of the two Sis is
zero and a large interaction component is present. This exercise
will also help us to get accustomed to the role of interactions in
models.

A Legendre polynomial of order d is discussed in McKay (1996):

Y = Ld(X) = 1
2d

d/2∑
m=0

(−1)m

(
d
m

) (
2d − 2m

d

)
Xd−2m (5.8)

where Ld(X) is a function of two orthogonal input factors, X (an
independent variable) and d (the order of the polynomial). X is
a continuous uniformly distributed factor in [−1, 1], and d is a
discrete uniformly distributed factor in d ∈ [1, 5]. Ld(X) is shown
in Figure 5.1.

Consider the decomposition (5.2) for the model Ld(X): 1 =
SX + Sd + SXd. Only two of these terms are non-zero: SX = 0.2
and SXd = 0.8, while Sd = 0. The equality Sd = 0 can easily be
explained (Figure 5.1). Fixing d at any given value does not help
reduce the uncertainty in Ld(X). This is because the mean of Ld(X)
over X does not depend on d in d ∈ [1, 5]. On the other hand, the
best gain that can be expected in terms of reduction of output vari-
ance is 20%, that obtained on average by learning X. We recall that
SX = {V(Y) − E[V(Y|X)]}/V(Y) = 0.2. If setting FP is phrased in
terms of a bet on which factor will reduce the output variance the
most, then this case tells us that the best choice is to bet on factor
X. For orthogonal factors, the proper measure of sensitivity to use
in order to rank the input factors in order of importance according
to setting FP is Vi , or equivalently Si = Vi/V(Y), whether or not
the factors interact.
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Figure 5.1 Legendre polynomials of order d.

What happens when the input factors are not independent of
each other?1 We can anticipate here that the same conclusion ap-
plies, i.e. the first-order indices Si remain the measure to use for
setting FP. Because interactions (a property of the model) and non-
orthogonality (a property of the factors) can often interplay, it is
instructive to consider some simple examples to see these effects
at work.

Consider a linear and additive model (Model 1):

y =
∑

i

Xi (5.9)

and Model 2, a non-linear, non-additive model:

y =
∑

i

Xi + 5X1 X3 (5.10)

X ≡ (X1, X2, X3) . (5.11)

1 The most intuitive type of dependency among input factors is given by correlation. However,
dependency is a more general concept than correlation, i.e. independency means orthogonality
and also implies that correlation is null, while the converse is not true, i.e. null correlation
does not necessarily imply orthogonality (see e.g. Figure 6.6 and the comments to it). The
equivalence between null correlation and independency holds only for multivariate normal
distributions.
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To analyse non-orthogonality for both models we shall test three
alternative correlation structures: X ∼ N(0, I), X ∼ N(0, C1) and
X ∼ N(0, C2), where I is the identity matrix and:

C1 =
∣∣∣∣∣∣

1 0.7 0.1
1 0.7

1

∣∣∣∣∣∣
(5.12)

and

C2 =
∣∣∣∣∣∣

1 0.7 0.

1 0.

1

∣∣∣∣∣∣
. (5.13)

Model 1, no correlation
The factors are uncorrelated and follow a standard normal distri-
bution (i.e. they are orthogonal). As already discussed, the first-
order terms are sufficient for assessing the importance of orthog-
onal factors. All the Vi are equal to 1 and the total variance V is
3 (all the results are given in Table 5.1). Each of the three factors
has first-order importance Vi/V equal to 1/3, and in Setting FP;
no factor can be identified as most important.

Table 5.1 Vi for Models 1 and 2 and different correlation structures.

Xi Vi

Model 1 (additive) Model 2 (non additive)

1 1 1
Correlation matrix I 2 1 1

3 1 1

Total variance V = 3 V = 28

1 3.2 4
Correlation matrix C1 2 5.7 18

3 3.2 4

Total variance V = 6 V = 32

1 2.9 2.9
Correlation matrix C2 2 2.9 2.9

3 1.0 1.0

Total variance V = 4.4 V = 29.3
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Model 1, Correlation C1

The pairs X1, X2, and X2, X3 are correlated and X3 is weakly
correlated to X1. Now, the total variance V increases to 6, V2

raises to 5.7, both V1 and V3 increase to 3.2. This is because the
correlations in which X2 is involved are stronger than those of
X1 and X3. The symmetry in the model and in the correlation
structures yields V1 = V3. The largest gain in variance reduction
is obtained by fixing X2. There are no reasons to question this
statement, thus confirming that in Setting FP, also in the presence of
correlations, the fractional variances Vi are the measure to choose
to make an informed choice. What happens instead if the model is
non-additive?

Model 2, no-correlation
The total variance is V = 28, and the fraction of output variance
explained by the first-order terms is only

∑3
i=1 Vi/V = 3/28. The

second-order term V13 accounts for the remaining 25/28. Nothing
new here; as for the case of the Legendre polynomial, we can base
our analysis on the first-order terms Vi and, for the purpose of our
bet (which factor would one fix to obtain the largest expected re-
duction in variance?), the three factors are to be considered equally
important. There is only one case remaining, i.e. that of the simul-
taneous occurrence of correlation and interactions.

Model 2, correlation C1

The total variance increases to V = 32, V2 is equal to 18 and V1 =
V3 = 4. The Vis identify X2 as the most important factor. Note
that:

1. Comparing the Vi for Models 1 (correlation C1) and 2 (same
correlation), we note that adding an interaction between X1

and X3 actually promotes X2, i.e. increases its first-order effect.
This promotion is indeed due to the correlation of X2 with X1

and X3.

2. When C 	= I, it does not help to compare the summation
of the first-order terms with the total variance. For Model
2 (correlation C1),

∑
i Vi = 26, and V = 32, but we cannot

conclude that the missing fraction of variance is that due to
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interaction (Equation (5.2) does not hold here). The fraction
due to interaction could be much higher.

Let us further consider Models 1 and 2, with the same correlation
C2, a case where only X1 and X2 are correlated.

The total variance for Model 1 becomes V = 4.4 and that for
Model 2 becomes V = 29.3. We observe that:

1. Calculating the indices Vi , we obtain the same values for both
Models 1 and 2, i.e. V1 = V2 = 2.9 and V3 = 1. In other words,
moving from Model 1 to Model 2 with the same correlation
structure C2, the first-order indices do not see the interaction
between X1 and X3. This is because X1 and X2 are correlated but
do not interact, while X1 and X3 interact but are not correlated.

2. Further, comparing Model 2, no-correlation, with the same
model and correlation C2, we see again that, for the same rea-
sons as above, the effect of the interaction X1, X3 is not seen:
V3 = 1 for both cases.

But this is the same situation met in the Legendre polynomials’ ex-
ample. In fact it does not matter whether the factors interact or not,
because under the Setting FP we indeed ‘act’ on one factor at a time,
looking for the factor that, when fixed to its true – albeit unknown,
value, guarantees, on average, the largest variance reduction
of Y.

This measure is nothing other than Vi . With a given correlation
structure C 	= I, the presence of interactions may (C = C1) or may
not (C = C2) change the values of Vi and, hence, change the out-
come of our informed choice. When it does not, this simply means
that the factors involved do not gain or lose importance in this
setting because of their interaction.

In other words, Setting ‘Factors Prioritisation’ assumes that fac-
tors are fixed singularly, as discussed in Section 5.2 above. This
would normally prevent the detection of interactions. Yet in the
presence of non-orthogonal input factors, fixing one factor also
influences the distribution of the others. This may allow the influ-
ence of interactions to emerge, depending on the relative patterns
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of non-orthogonality (e.g. correlation) and interactions. In conclu-
sion, in the FP Setting, the fractional variances Vi are the proper
measure to use for making an informed choice, for any combina-
tion of interaction and non-orthogonality among factors.

When adopting the Setting FP, we accept the risk of remaining
ignorant about an important feature of the model object of the
sensitivity analysis: the presence of interactions in the model.

5.5 More on variance decompositions

Let us now return to our variance decomposition (5.2) (Sobol’
1990) which is valid for the orthogonal case, i.e.

V(Y) =
∑

i

Vi +
∑

i

∑

j>i

Vi j + . . . + V12...k,

where Vi = V(E(Y
∣∣Xi )), Vi j = V(E(Y

∣∣Xi , Xj )) − Vi − Vj and so
on. Sobol’s decomposition is based on a decomposition of the func-
tion Y = f (X) itself into terms of increasing dimensionality, i.e.,

f = f0 +
∑

i

fi +
∑

i

∑

j>i

fi j + . . . + f12...k (5.14)

where each term is a function only of the factors in its index, i.e.
fi = fi (Xi ), fi j = fi j

(
Xi , Xj

)
and so on. The decompositions in

Equations (5.2) and (5.14) are unique, provided that the input fac-
tors are orthogonal and that the individual terms fi1i2...is are square
integrable over the domain of existence. Note that the first-order
terms fi in (5.14) are the same as those plotted in the Box 2.5 High
dimensional model representation in Chapter 2.

As illustrated in Chapter 1, one important aspect of the Sobol’
development is that similar decompositions can be written by tak-
ing the factors into subsets. Imagine that the factors have been
partitioned into a trial set u = (Xi1,Xi2, . . . , Xim), and the remain-
ing set v = (Xl1,Xl2, . . . , Xlk−m). Then, according to Sobol’, the total
variance associated with u can be computed as

= V(Y) − V(E(Y
∣∣v)) (5.15)
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In Equation (5.15) V(E(Y|v)) is the first-order effect of the set v,
and V(Y) − V(E(Y|u) − V(E(Y|v) is the interaction term between
the sets u and v. Equation (5.15) shows that the variance based
sensitivity measure described in this chapter are indeed capable of
treating factors in a group, as requested in Chapter 2.

We now introduce one last conditional variance (Homma and
Saltelli, 1996), V(E(Y|X− j )). This is the closed contribution to
the variance of Y due to non-Xj , i.e. to the k − 1 remaining
factors. This implies that, for orthogonal inputs, the difference
V(Y) − V(E(Y|X− j )) is equal to the sum of all terms in the vari-
ance decomposition (Equation (5.2)) that include Xj . We illustrate
this for the case k = 3:

ST1 = V(Y) − V(E(Y
∣∣X−1))

V(Y)

= E(V(Y
∣∣X−1))

V(Y)
= S1 + S12 + S13 + S123 (5.16)

and analogously:

ST2 = S2 + S12 + S23 + S123

ST3 = S3 + S13 + S23 + S123
(5.17)

where each sensitivity index is defined as Si1,...,im = Vi1,...,im/V(Y).
The reader will remember the STj as they have been introduced
in Chapter 1. We have called the STjs total effect terms. The total
effects are useful for the purpose of SA, as discussed in Saltelli et al.
(1999), as they give information on the non-additive part of the
model. As mentioned, for a purely additive model and orthogonal
inputs,

∑k
i=1 Si = 1, while for a given factor Xj a significant dif-

ference between STj and Sj flags an important role of interactions
for that factor in Y.2 Clearly the same information could be ob-
tained by computing all terms in Equation (5.2), but these are as
many as 2k − 1. This problem has been referred to as ‘the curse of
dimensionality’. For this reason we customarily tend to compute
the set of all Si plus the set of all STi , which gives a fairly good
description of the model sensitivities at a more reasonable cost.

2 See the comments on Table 1.10 for the implications on main and total effects coming from
non-orthogonal inputs.
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Moreover, while the STj = [V(Y) − V(E(Y|X− j ))]/V(Y) can
always be computed, whatever the dependency structure among
input factors, the decomposition (5.2) and the last right-hand side
terms in Equations (5.16)–(5.17) are valid only for orthogonal in-
puts. Many applications of this strategy to different models can be
found in various chapters of Saltelli et al. (2000a).

5.6 Factors Fixing (FF) Setting

One interesting remark about the total effect indices, STjs, and the
associated variances E(V(Y|X− j )) is that these give us the frac-
tion of the total variance that would be left on average if all fac-
tors but Xj were fixed. In other words, E(V(Y|X− j )) represents
the average output variance that would remain as long as Xj re-
mains unknown. For these reason Jansen et al. (1994) call the
E(V(Y|X− j )) ‘bottom marginal variances’. They analogously call
the V(E(Y|Xj )) ‘top marginal variances’. The concept of bottom
marginal could be turned into a setting: ‘Which is the factor that,
being left undetermined while all others are fixed, would leave
the largest variance in the output?’ The educated guess (because
even here we do not know where the other factors are fixed) is:
the factor with the highest E(V(Y|X− j )) or STj . It is straightfor-
ward to understand that the STjs are also the measure of choice
to tackle the setting FF. If Xj has no influence at all, then fix-
ing X− j also fixes Y, and the measure V(Y|X− j ) will equal zero.
A fortiori, the average of V(Y|X− j ) over Xj , i.e. E(V(Y|X− j )),
will likewise be zero. On the other hand, if E(V(Y|X− j )) is zero,
V(Y|X− j ) must also be identically zero over the Xj axis, given
that it cannot be negative. If this happens, then Xj is totally non-
influential on Y. In conclusion, STj = 0 is condition necessary
and sufficient for Xj to be non-influential. Therefore, Xj can be
fixed at any value within its range of uncertainty without affect-
ing the value of the output unconditional variance V(Y). This is
an advantage as we can reduce the dimensionality of the input
space.

In summary, the output variance V(Y) can always be decom-
posed by conditioning with respect to both Xj and X− j , no matter
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whether the input is orthogonal or not:

V(Y) = V(E(Y
∣∣Xj )) + E(V(Y

∣∣Xj ))

V(Y) = V(E(Y
∣∣X− j )) + E(V(Y

∣∣X− j )).

Let us normalise the two decompositions as:

( )( ) ( )( )

( )( ) ( )( )
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XYVE

YV

XYEV

YV

XYVE

YV

XYEV

jj

jj

−− +=

+=

TjS

jS

.

From the first term in the first decomposition we can obtain Sj ,
whilst from the second term in the second decomposition we obtain
STj .

5.7 Variance Cutting (VC) Setting

As has been done already in Chapter 1, we would like to intro-
duce a more compact notation for the higher-order conditional
variances (e.g. Equations (5.3)–(5.5)). Let us use Vc

i1i2...is , where the
superscript c stands for ‘closed’, to indicate the sum of all Vi1i2...is
terms in Equation (5.2) that is closed in the indices i1, i2, . . . is .
This is expressed as Vc

i1i2...is = V(E(Y|Xi1, Xi2, . . . , Xis )) giving, for
example,

Vc
i = Vi = V(E(Y

∣∣Xi )) (5.18)

Vc
i j = [Vi + Vj + Vi j ] = V(E(Y|Xi , Xj )) (5.19)

Vc
i jm = [Vi + Vj + Vm + Vi j + Vjm + Vim + Vi jm]

= V(E(Y
∣∣Xi , Xj , Xm)) (5.20)

and so on, where the expressions in square brackets hold only for
orthogonal inputs. Likewise Vc

−i1i2...is will indicate the sum of all
Vl1l2...lk−s that are closed within the complementary set of i1, i2, . . . is .

We are now ready to suggest a strategy to tackle the problem
Setting VC. This is particularly complex, especially for the general
case where the input factors are non-orthogonal. The problem with
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non-orthogonal input, in brief, is that the reduction in variance
that can be achieved fixing one factor depends on whether or not
other factors have been fixed, and the incremental reduction in
variance for each factor depends on the order in which the factors
are fixed. Equation (5.2) loses its uniqueness in this case. One can
still compute closed variances, such as Vc

i j = V(E(Y|Xi Xj )), but
this can no longer be decomposed as first order and interaction
effects in a unique way. Imagine that the Setting ‘Variance Cutting’
as been formulated, again in terms of a bet, so that in order to win
one has to identify the smallest subset u = (Xi1,Xi2, . . . Xim) of X
so that fixing u, the variance of Y will be reduced by Vr , with
Vr < V.

In Saltelli and Tarantola (2002), we have suggested the follow-
ing empirical procedures for this Setting when the input factors
are orthogonal. We compute the full set of Vjs and VTjs and use
the latter to rank the factors. A sequence VTR1

, VTR2, . . . , VTRk is
thus generated where VTR1 > VTR2 > . . . > VTRk. If VR1 is larger
than Vr , then XR1 is the factor on which we can bet, as it is more
likely that, fixing XR1 at some value within its range of uncer-
tainty, we actually obtain Vr < V. If VR1 is smaller than Vr , we
have to consider the factor with the second highest total index,
i.e. XR2 , and we check whether Vc

R1 R2
> Vr . If this happens, we

will bet on the pair XR1, XR2 . It this does not happen, we have
to add XR3 and so on. This procedure should work for additive
as well as for non-additive models, and its empirical justification
is that one seeks to fix the factors with the highest overall ‘total
effect’ in the hope that the right combination of factors will yield
the desired reduction. Clearly this procedure has an alternative in
a brute force search of all combinations of factors in Equation
(5.2). This search will certainly be more informative but it would
again confront us with the curse of dimensionality. The procedure
for the non-orthogonal case (additive or non-additive model) is
more complex and the reader is referred to Saltelli and Tarantola
(2002). As a trace, we can say that in this case an empirical ap-
proach is also taken, favouring the selection of factors with high
overall interactions (as before), and trying not to select for the trial
those factors with high average correlation with the factors already
fixed.
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In conclusion, we see that for the orthogonal case, a rational
selection strategy for the subset of interest is based on the com-
putation of the full sets of STj (but when doing this all the Sj are
computed as well, see the following sections), plus a variable num-
ber of higher-order conditional variances. This strategy is meant
to fight the curse of dimensionality, as attempting all combina-
tion of factors in a brute-force search for the smallest subset of X
that gives the desired reduction in V(Y) would be computation-
ally prohibitive; one would have to compute all 2k − 1 terms in
Equation (5.2).

Note that, for the non-orthogonal case, one might still engage
in a brute force search computing all possible closed terms Vc

i1i2...is .
For the non-orthogonal case, the Vc

i1i2...is can no longer be decom-
posed meaningfully into the sum of lower dimensionality terms,
but would still allow a perfectly informed choice, as would the full
set of the Vi1i2...is in the orthogonal case.

5.8 Properties of the variance based methods

In Chapter 7 we offer a description of the computational meth-
ods available in SIMLAB to estimate the variance based measures.
We would like to summarise here some of the properties of these
measures that correspond to the ‘desired properties’ of an ideal
sensitivity analysis method, as described in Chapter 2.

� An ideal sensitivity analysis method should cope with the in-
fluence of scale and shape. The influence of the input should
incorporate the effect of the range of input variation and the
form of its probability density function (pdf). It matters whether
the pdf of an input factor is uniform or normal, and what are
the distribution parameters. Variance based methods meet this
demand.

� A good method should allow for multidimensional averaging,
contrary, for example, to what is done in computing partial
derivatives, where the effect of the variation of a factor is taken
when all others are kept constant at the central (nominal) value.
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The measures described in this chapter instead evaluate the effect
of a factor while all others are also varying, as evident from the
averaging operator in their definition.

� A sensitivity measure should be model independent. The method
should work regardless of the additivity or linearity of the test
model. A global sensitivity measure must be able to appreciate the
so-called interaction effect, especially important for non-linear,
non-additive models. The property is evident with the variance
based measures.

� An ideal measure should be able to treat grouped factors as if they
were single factors. This property of synthesis is useful for the
agility of the interpretation of the results. One would not want
to be confronted with an SA made of dense tables of input–
output sensitivity indices. Variance based methods are capable
of grouping the factors, as we have seen already in Chapter
1. The applications below will also show the utility of such a
property.

5.9 How to compute the sensitivity indices: the case
of orthogonal input

In this section we offer the best recipe at our disposal to compute
the full set of first-order and total-order indices for a model of
k orthogonal factors. The reader who is already set on using the
SIMLAB software and is not interested in numerical estimation can
hence skip both this section and the next (sections 5.9 and 5.10) in
this chapter. We shall not offer demonstrations of the procedure,
though hints will be given to help the reader to understand how
the methods work.

At first sight, the computational strategy for the estimation
of conditional variances such as V(E(Y|Xi )) and V(E(Y|Xi , Xj ))
would be the straightforward computation of the multidimen-
sional integrals in the space of the input factors, writing in explicit
form the E and V operators as integrals. To give an example,
in computing V(E(Y|Xi )), the operator E would call for an inte-
gral over X−i , i.e. over all factors but Xi , including the marginal
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distributions for these factors, while the operator V would imply
a further integral over Xi and its marginal distribution.

This approach might be needed when the input factors are
non-orthogonal and it is quite expensive computationally, as cus-
tomarily these integrals are estimated via Monte Carlo methods.
We would need an inner Monte Carlo loop to compute, say,
E(Y|Xi = x∗

i ), and an outer loop to apply the variance operator
to obtain V(E(Y|Xi )). This is not necessary in the case of orthog-
onal factors, where the computation can be greatly accelerated.
We anticipate here that we are able to obtain the full set of all k
indices of the first order Ŝ j , plus all k total effect indices ŜTj , plus
each of the

(k
2

)
closed effect indices V̂c

−i j (of order k − 2), at the
cost of N(k + 2) model evaluations. We have used the superscript
‘hat’ to denote the numeric estimates, k is the number of orthogo-
nal factors and N is the number representative of the sample size
required to compute a single estimate. To give an order of mag-
nitude, N can vary between a few hundred to one thousand. The
Vc

−i j closed indices are of order k − 2, since they are closed over all
factors (k) minus two (Xi , Xj ), and there are

(k
2

)
of them, since this

is the number of combinations of two elements from a set of k. We
shall come back to this immediately below, after giving the reader a
recipe for how to compute the sensitivity indices. Demonstrations
can be found elsewhere (Saltelli, 2002).

Let us start with two input sample matrices M1 and M2:

M1 =

x(1)
1 x(1)

2 . . . x(1)
k

x(2)
1 x(2)

2 . . . x(2)
k

. . . . . . . . . . . .

x(N)
1 x(N)

2 . . . x(N)
k

(5.21)

M2 =

x(1′)
1 x(1′)

2 . . . x(1′)
k

x(2′)
1 x(2′)

2 . . . x(2′)
k

. . . . . . . . . . . .

x(N′)
1 x(N′)

2 . . . x(N′)
k

(5.22)
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where both matrices have row dimension k, the number of factors,
and column dimension N, the sample size used for the Monte
Carlo estimate. Each column of both M1 and M2 is a sample from
the marginal distribution of the relative factor. Each row in both
M1 and M2 is an input sample, for which a model output Y can
be evaluated. All the information that we need about the form
and scale of the input probability distribution functions is already
contained in these matrices, which are all that we need in terms of
generation of the input sample.

From M1 and M2 we can build a third matrix N j :

N j =

x(1′)
1 x(1′)

2 . . . x(1)
j

x(2′)
1 x(2′)

2 . . . x(2)
j

. . . . . . . . . . . .

x(N′)
1 x(N′)

2 . . . x(N)
j

. . . x(1′)
k

. . . x(2′)
k

. . . . . .

. . . x(N′)
k

(5.23)

If one thinks of matrix M1 as the ‘sample’ matrix, and of M2 as the
‘re-sample’ matrix, then N j is the matrix where all factors except
Xj are re-sampled.

E(Y), the unconditional mean, and V(Y), the unconditional vari-
ance, can be either estimated from values of Y computed on the
sample in M1 or in M2, for example if M1 is used:

Ê(Y) = 1
N

N∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)
(5.24)

V̂(Y) = 1
N − 1

N∑

r=1

f 2(x(r )
1 , x(r )

2 , . . . , x(r )
k

) − Ê2(Y
)
. (5.25)

The first-order sensitivity measure for a generic factorXj , i.e.
V(E(Y|Xj )), can be computed as

Sj = V(E(Y
∣∣Xj ))/V(Y) (5.26)

V(E(Y
∣∣Xj )) = Uj − E2(Y) (5.27)

where Uj can be obtained from values of Y corresponding to the
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sample in matrix N j i.e. by:

Ûj = 1
N − 1

N∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)

f
(
x(r ′)

1 , x(r ′)
2 , . . . , x(r ′)

( j−1), x(r )
j , x(r ′)

( j+1), . . . , x(r ′)
k

)
(5.28)

If again one thinks of matrix M1 as the ‘sample’ matrix, and of
M2 as the ‘re-sample’ matrix, then Ûj is obtained from the prod-
ucts of values of f computed from the sample matrix times values
of f computed from N j , i.e. a matrix where all factors except
Xj are re-sampled. Note again that the hat is used to indicate
estimates. As mentioned, we do not want to offer a demonstra-
tion of the above. Here we give a hand waiving illustration. If
Xj is an influential factor, then high values of f (x(r )

1 , x(r )
2 , . . . , x(r )

k )
in Equation (5.28) above will be preferentially associated with
high values of f (x(r ′)

1 , x(r ′)
2 , . . . , x(r ′)

( j−1), x(r )
j , x(r ′)

( j+1), . . . , x(r ′)
k ). If Xj

is the only influential factor (all the others being dummies)
then the two values of f will be identical. If Xj is a totally
non-influential factor (a dummy), then high and low values of
f (x(r )

1 , x(r )
2 , . . . , x(r )

k ) will be randomly associated with high and low
values of f (x(r ′)

1 , x(r ′)
2 , . . . , x(r ′)

( j−1), x(r )
j , x(r ′)

( j+1), . . . , x(r ′)
k ). In this way,

the estimate of the sensitivity measure, Equation (5.28) above,
will be much higher for an influential factor Xj than for a non-
influential one. It is easy to see that Sj will vary between 0 and 1,
moving from a dummy (where Ûj ≈ Ê2 (Y)) to a totally influential
factor (where Ûj − Ê2 (Y) ≈ V̂ (Y)).

Having thus discussed Equations (5.24)–(5.28), the following
generalisation should be easy to grasp:

Vc
i1i2...is = V(E(Y

∣∣Xi1 Xi2 . . . Xis )) = Ui1i2...is − E2(Y). (5.29)

This generalises Equations (5.26) and (5.27) to a closed index of
order s. Recall that Vc

i1i2...is is a sensitivity measure that is closed
within a subset of factors, i.e. for orthogonal inputs Vc

i1i2...is is the
sum of all Vi1i2...is terms in Equation (5.2) that is closed in the indices
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i1, i2, . . . is : Vc
1 = V1, Vc

i j = Vi + Vj + Vi j , and so on.

Ûi1i2...is = 1
N − 1

N∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)

f
(
x(r )

i1 , x(r )
i2 , . . . , x(r )

is , x(r ′)
l1 , x(r ′)

l2 , . . . , x(r ′)
lk−s

)
. (5.30)

This generalises Equation (5.28). The corresponding equation for
the complementary set is:

Û−i1i2...is = 1
N − 1

N∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)

f
(
x(r ′)

i1 , x(r ′)
i2 , . . . , x(r ′)

is , x(r )
l1 , x(r )

l2 , . . . , x(r )
lk−s

)
. (5.31)

Recall that Vc
−i1i2...is indicates the sum of all indices that are closed

within the complementary set of i1, i2, . . . is , i.e. Vc
−i1i2...is = Vc

l1l2...lk−s

where i p 	= lq for all p ∈ [1, 2, . . . , s], q ∈ [1, 2, . . . , k − s]. Hence:

Vc
l1l2...lk−s

= V(E(Y|Xl1 Xl2 . . . Xlk−s )) = U−i1i2...is − E2(Y). (5.32)

The total effect indices can be computed from

ŜTj = 1 − (Û− j − Ê2(y))

V̂(y)
(5.33)

where

Û− j = 1
N − 1

N∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

( j−1), x(r ′)
j , x(r )

( j+1), . . . , x(r )
k

)
. (5.34)

Although the above estimates might seem odd at first sight, they all
obey an easy rule: all estimates are scalar products of f values. In
these products, some of the factors are re-sampled (i.e. taken from
M1in the first f and from M2 in the second f ) and some are not re-
sampled (taken from M1 for both f ). The rule is: do not re-sample
the factors whose effect you want to estimate; for Ûj , needed to
estimate Sj , do not resample Xj . For Û− j , needed to estimate STj ,
but based on computing the effect of non-Xj , re-sample only Xj ,
and so on.
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Our last step in the recipe to compute the sensitivity indices is to
arrange the input sample so as to keep the number of model eval-
uations, which we assume to be the expensive step of the analysis,
to a minimum.

Let ai1i2...is denote the vector of length N containing model evalu-
ations corresponding to the rows of the input factor matrix Ni1i2...is .
As in Equation (5.23) above, the matrix Ni1i2...is is obtained from
matrix M1 by substituting all columns except i1, i2, . . . is by the
corresponding columns of matrix M2. a0 will hence denote a set
of model evaluations corresponding entirely to matrix M2, while
ai1i2...ik will indicate the vector of model evaluations corresponding
entirely to matrix M1

a0 = f (M2)

a12...k = f (M1)

ai1i2...is = f (Ni1i2...is ).

(5.35)

Table 5.2 gives a summary of what sensitivity indices can be com-
puted using what ai1i2...is vector. It corresponds to the value k = 5,
a choice that shall be explained immediately below.

Table 5.2 Terms that can be estimated given the corresponding vectors
of model evaluations, k = 5.

a0 a1 a2 a3 a4 a5 a2345 a1345 a1245 a1235 a1234 a12345

a0 V̂

a1 ŜT1 V̂

a2 ŜT2 V̂c
−12 V̂

a3 ŜT3 V̂c
−13 V̂c

−23 V̂

a4 ŜT4 V̂c
−14 V̂c

−24 V̂c
−34 V̂

a5 ŜT5 V̂c
−15 V̂c

−25 V̂c
−35 V̂c

−45 V̂

a2345 Ŝ1 Ê2 V̂c
12 V̂c

13 V̂c
14 V̂c

15 V̂

a1345 Ŝ2 V̂c
12 Ê2 V̂c

23 V̂c
24 V̂c

25 V̂c
−12 V̂

a1245 Ŝ3 V̂c
13 V̂c

23 Ê2 V̂c
34 V̂c

35 V̂c
−13 V̂c

−23 V̂

a1235 Ŝ4 V̂c
14 V̂c

24 V̂c
34 Ê2 V̂c

45 V̂c
−14 V̂c

−24 V̂c
−34 V̂

a1234 Ŝ5 V̂c
15 V̂c

25 V̂c
35 V̂c

45 Ê2 V̂c
−15 V̂c

−25 V̂c
−35 V̂c

−45 V̂

a12345 Ê2 (y) Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5 ŜT1 ŜT2 ŜT3 ŜT4 ŜT5 V̂
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A few notes:

1. Table 5.2 can be interpreted by referring to the equations just
given in this section. For example, we have labelled the entry
corresponding to the intersection a0 and a1 as ŜT1, as a0 · a1

yields Û−1 that in turn can be used to compute ŜT1 (Equation
(5.34)) and so on for the other terms.

2. The diagonal has been labelled as providing an estimate of V̂(Y),
as this is what can be obtained by the scalar product a2

i1i2...is . In
fact each of the 2k + 2 vectors ai1i2...is can yield an estimate of
Ê(Y). The known Ê(Y) for each ai1i2...is can again be used to
estimate V̂(Y).

3. The intersection of vectors a1 and a2345 has been labelled as an
estimate of Ê2(Y), as all columns in the two sampling matrices
are different and the scalar product ai1i2...is a j1 j2... jr provides an
estimate of the square of E(Y). We shall come back to this point
in a moment.

4. The two vectors a2 and a2345 allow the computation of V̂c
12 as

columns 1 and 2 are identical in the two sampling matrices.

5. The two vectors a2345 and a1345 allow the computation of Vc
345 =

V̂c
−12 as columns 3, 4 and 5 are identical in the two sampling

matrices.

The shaded cells in the table are those whose computation is sug-
gested, i.e. our recommendation to the reader is to evaluate the
model output Y for the seven vectors {a0, a1, a2, a3, a4, a5, a12345}.
It is easy to see that this allows the computation of all the ŜTjs
and Ŝ j indices, with j ∈ [1, 2, 3, 4, 5] at the cost of N(k + 2) = 7N
model evaluations. Furthermore, in this way we have produced one
estimate for each of the

(5
3

) = 10 indices, V̂c
−i j , complementary to

the second-order ones, that for k = 5 happen to be closed indices
of the third order. Note that for k = 6 we would have obtained one
estimate for each of the

(6
4

) = 15 closed indices of the fourth order
and so on for larger values of k, based on the known property that(k

j

) = ( k
k− j

)
for k ≥ j.
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The reader may easily discover arrangements alternative to that
suggested in the grey cells. The table also shows that if one were
to decide to compute all vectors in the table at a cost of (2k + 2)N
model runs, i.e. not only {a0, a1, a2, a3, a4, a5, a12345} but also
{a2345, a1345, a1245, a1235, a1234}, one would obtain double, rather
than single, estimates for each of the ŜTjs, Ŝ j and V̂c

−i j . Additionally

one would obtain double estimates for each of the
(5

2

) = 10 closed
indices of the second order. The reader may easily verify as an ex-
ercise that for k = 4, Table 5.2 would look somehow different: we
would obtain more estimates of the second-order terms. For k = 3
we would obtain more estimates of the first-order terms. In con-
clusion, the illustration offered with k = 5 is of more general use.

For the reader who wants to re-code the algorithms in this sec-
tion, we offer without demonstration an additional tip. This is to
compute two different estimates of the squared mean, which is
needed to compute all indices:

Ê2 =
(

1
N

n∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)
)2

(5.36)

and

Ê2 = 1
N

n∑

r=1

f
(
x(r )

1 , x(r )
2 , . . . , x(r )

k

)
f
(
x(r ′)

1 , x(r ′)
2 , . . . , x(r ′)

k

)
. (5.37)

Equation (5.36) is simply Equation (5.24) squared. Equation
(5.37) is also a valid estimate, based on the product a0 · a12...k,
i.e. on matrices M1 and M2. Equation (5.37) should be used in
Equation (5.25), i.e. to compute the estimates of first-order indices
Ŝ j , while Equation (5.36) should be used in Equation (5.33), to
estimate the total indices ŜTj .

We have given no prescription about how to build the sample
matrices M1 and M2, which form the basis for the analysis. As men-
tioned, each column in these matrices represents an independent
sample from the marginal distribution of a factor. Usually these can
be obtained via standard statistical packages that provide, given
a set of random numbers ς (r ) ∈ [0, 1], r = 1, 2, . . . N, the corre-

sponding factor values x(r )
j as a solution of ς (r ) = ∫ x(r )

j
−∞ p(xj )dxj ,
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where p(xj ) is the marginal probability density function of factor
Xj .

5.9.1 A digression on the Fourier Amplitude Sensitivity Test (FAST)

A very elegant estimation procedure for the first-order indices, Si ,
and orthogonal input is the classical FAST, developed by Cukier
et al. (1973) and then systematised by Cukier et al. (1978) and
Koda et al. (1979).

An extension to FAST was proposed by Saltelli et al. (1999) for
the estimation of the total sensitivity index, STi . The advantage of
the extended FAST is that it allows the simultaneous computation
of the first and total effect indices for a given factor Xi . We refer to
the papers just cited for a thorough explanation of the techniques.
Both the classical FAST and the extended FAST are implemented
in SIMLAB.

5.10 How to compute the sensitivity indices: the case
of non-orthogonal input

When the uncertain factors Xi are non-orthogonal, the output vari-
ance cannot be decomposed as in Equation (5.2). Consequently, the
computational shortcuts available for orthogonal inputs, described
in the previous section, are no longer applicable. Vi = V(E(Y|Xi ))
(or Si = Vi/V(Y)) is still the sensitivity measure for Xi in terms of
Setting FP, but now Vi also carries over the effects of other factors
that can, for example, be positively or negatively correlated to Xi .
So, the sum of all the Vi across all the inputs might be higher than
the unconditional variance V(Y), as already discussed. The term
V(E(Y|Xi , Xj )) (or Vc

i j for brevity) is the measure of the joint effect
of the pair (Xi , Xj ). However, for non-orthogonal input we cannot
write that Vc

i j = Vi + Vj + Vi j , i.e. relate Vc
i j to the sum of the indi-

vidual effects Vi and Vj , and a pure interaction term. Higher order
terms (e.g., Vc

i jlm...) have similar meaning. A number of approaches
exist in order to estimate the partial variances Vi , Vc

i j , Vc
i jl , etc., as

discussed next.
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The terms Vi , Vc
i j , Vc

i jl , Vc
i jlm, etc. can be estimated by means

of multidimensional integrals in the space of the input factors,
writing in explicit form the operators E and V (brute force ap-
proach). The integrals can be estimated via Monte Carlo methods.
However, this approach is quite computationally expensive. To es-
timate Vi = V(E(Y|Xi )) for a given input factor Xi we have to fix
Xi at a value x∗

i selected within its range of uncertainty, and evalu-
ate the (k − 1)-dimensional integral E(Y|Xi = x∗

i ) by Monte Carlo
sampling over the space (X1, . . . , Xi−1, x∗

i , Xi+1, . . . Xk). This step
may require, say, N = 100 sample points (which corresponds to
N model evaluations). Then, this procedure has to be repeated by
fixing Xi at different values (say again r = 100 to give an idea),
to explore the Xi axis. This means that r different integrals of di-
mension k − 1 have to be estimated, and it implies that the total
number of model runs is Nr .

The final step is to estimate the variance of the r condi-
tional expectations E(Y|Xi = x∗

i ). This last integral is just a one-
dimensional integral over Xi and does not require any new model
run. Given that this has to be performed for each factor in turn,
we would need to make kNr runs of the model.

The same procedure applies for the terms Vc
i j . In this case

we fix the pair (Xi , Xj ) at a value (x∗
i , x∗

j ), and evaluate the
(k − 2)-dimensional integral E(Y|Xi = x∗

i , Xj = x∗
j ) by Monte

Carlo sampling over the space (X1, . . . , Xi−1, x∗
i , Xi+1, . . . , Xj−1,

x∗
j , Xj+1, . . . Xk). This step again requires N sample points (i.e.,

model runs), and the procedure is repeated by considering r dif-
ferent pairs (x∗

i , x∗
j ). The variance of the r conditional expecta-

tions E(Y|Xi = x∗
i , Xj = x∗

j ) is a two-dimensional integral over
(Xi , Xj ) and does not require any further model run. There are
1
2k(k − 1) possible combinations of second-order terms Vc

i j . If we
were interested in all of them, we would need to execute our model
1
2k(k − 1)Nr times.

A problem that we have not tackled here is how to gen-
erate samples from conditional distributions. For example, to
estimate Vi we need to generate a sample from the space
(X1, . . . , Xi−1, x∗

i , Xi+1, . . . Xk). Usually, some form of rejection
sampling method is used, such as Markov Chain Monte Carlo.
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However, this is not the approach implemented in SIMLAB and is
hence not described here.

A rather efficient estimation procedure is available for the first-
order terms that is due to McKay (1995) and uses the replicated
Latin hypercube sampling design (r-LHS, McKay et al., 1979).
The procedure that follows, implemented in SIMLAB, is an exten-
sion of McKay’s approach to the non-orthogonal case (Ratto and
Tarantola 2003). Note that in McKay’s approach the cost of the
estimate is not kNr but simply Nr , as the same sample can be used
to estimate main effects for all factors, as described below.

When using simple LHS, the range of variability of each factor
is divided into N non-overlapping intervals, or bins, of equal prob-
ability, i.e. such that the probability for that factor to fall in any of
the bins is exactly 1/N. Imagine we generate, independently one
from another, r such samples (replicated LHS, or r-LHS). Consider
a factor Xj and let pi (Y|Xj = x∗

j,i ) be the conditional distribution

of Y when Xj is fixed to the value x∗
j,i in the ith bin. Let (y(li)

j ,
l = 1, 2, . . . r ) be a value of Y corresponding to replica l from that
distribution. There will be in total r N such points in the r-LHS
design, as i = 1, 2, . . . N (the bins) and l = 1, 2, . . . r (the replicas),
see Figure 5.2.

The sample conditional and unconditional means are:

E(Y|Xj = x∗
j,i ) = ȳ(i)

j = 1
r

r∑

l=1

y(li)
j (5.38)

E(Y) = ȳ = 1
N

N∑

i=1

ȳ(i)
j . (5.39)

The main effect sensitivity index is computed as:

Sj = Vj

V
(5.40)

Vj = 1
N

N∑

i=1

(ȳ(i)
j − ȳ)2 (5.41)

V = 1
Nr

N∑

i=1

r∑

l=1

(y(li)
j − ȳ)2. (5.42)
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The SIMLAB routines that implement this procedure also include
a correction term to reduce bias, due to McKay (1995).

One feature of a non-orthogonal r-LHS sample is that in draw-
ing r different samples of dimension N, we take care of selecting
for each factor always the same cell in each bin. This way, all r
LHS samples use the same values for each factor in each bin (see
Figure 5.2). For orthogonal inputs this could be done simply by
making r independent random permutations of the columns of a
base LHS sample, while for non-orthogonal inputs it is necessary
to generate r different LHS samples, in order to preserve the depen-
dency structure that would be destroyed by the random permuta-
tion. We can take the inner conditional expectations E(Y|Xj = x∗

j )
in each bin and for any factor, Xj , using a unique r-LHS design
to compute all the indices, Sj . The total number of runs is there-
fore as high as r N for the r-LHS design, reducing the cost with
respect to a brute force approach by a factor k. The methods for
generating non-orthogonal LHS samples are the method of Iman
and Conover (1982), for creating LHS samples with a user-defined
rank correlation structure, and the method of Stein (1987), for
creating LHS samples from any type of non-orthogonal sample,
both implemented in SIMLAB.

When generating the sample it is suggested that one takes N
always larger than r ; it is also advisable to use values of r that
are not greater than 50 and use N as the reference parameter to
increase asymptotic convergence.

Another approach, not implemented in SIMLAB yet, is to ap-
ply the estimator in Equation (5.28) for orthogonal input to the
non-orthogonal case, using the r-LHS design. This can be found
in Ratto and Tarantola (2003). It is evident from this section
that a re-coding of the algorithms for sensitivity indices for the
non-orthogonal case is not straightforward. For example, one has
to code LHS and the Iman and Conover procedure for gener-
ating rank-correlated input samples. Public domain software (in
FORTRAN) for the latter is available (Iman and Shortencarier
1984). In general, we would recommend the reader to recur to
non-orthogonal input only when essential, as convergence of sen-
sitivity estimates is much slower for the non-orthogonal cases than
for the orthogonal ones, and bias has to be taken care of.
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Figure 5.2 Example of r-LHS sampling for two variables the number of bins
N = 5, the number of replicates r = 2. In each replicate, the same values for
each factor are used in each bin.

5.11 Putting the method to work: the Level E model

Before we apply the variance based sensitivity measures to a test
case, we would like to recall briefly some of their properties that
will come handy in the interpretation of the results.

1. Whatever the correlations/dependencies among the factors and
the interactions in the model, Si gives how much one could
reduce the variance on average if one could fix Xi .

2. Whatever the correlations/dependencies among the factors and
the interactions in the model, Sc

i1i2...is gives how much one could
reduce the variance on average if one could fix Xi1, Xi2, . . . Xis .

3. With orthogonal input, STi is greater than Si (or equal to Si in
the case where Xi is not involved in any interaction with other
input factors). The difference STi − Si is a measure of how much
Xi is involved in interactions with any other input variable. In
the presence of non-orthogonal input, STi can be lower than Si .
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4. Whatever the dependency structure among the factors and
the interactions in the model, STi = 0 implies that Xi is non-
influential.

5. With orthogonal input, the sum of all the Sis is less than 1
for non-additive models and equal to 1 for additive ones. The
difference 1 − ∑

i Si gives a measure of the interactions of any
order. This is not the case for non-orthogonal inputs.

In all the tests in this section, which concern the Level E model de-
scribed in Chapter 3, the output of interest is the total radiological
dose Y(t) from Equation (3.15). The radiological dose is predicted
at 26 time points in the range (103–107 yr). The model includes
twelve uncertain input variables, which are listed in Table 3.5,
which we reproduce below as Table 5.3.

We want to achieve two objectives in this exercise:

� To identify non-relevant input factors for model reduction pur-
poses (i.e. Setting FF). This implies calculating total effect, STi

sensitivity indices for individual input factors. If STi ≈ 0 for all
the time points, the input factor Xi does not influence the model
output at any time point. Therefore the factor Xi can be frozen
to any value within its range of variation because it does not
contribute to the output variance neither singularly or in combi-
nation with other input factors.

� To identify relevant input factors for subsequent calibration /
optimisation tasks, or for prioritisation of research (i.e. Set-
ting FP). To achieve this objective we need to estimate the
Si ∀i = 1, . . . , 12 for all the input factors. A high value for the
Si indicates an input factor Xi that drives the model output vari-
ance consistently. This can be seen as indicating where to direct
effort in the future to reduce that uncertainty.

5.11.1 Case of orthogonal input factors

Let us first focus on the case of orthogonal input factors, as the
approach to the calculation of the sensitivity indices is much easier
to tackle.
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Table 5.3 List of input factors for the Level E Model

Notation Definition Distribution Range Units

T Containment time Uniform [100, 1000] yr

kI Leach rate for iodine Log-Uniform [10−3, 10−2] mol/yr

kC Leach rate for Np chain
nuclides

Log-Uniform [10−6, 10−5] mol/yr

v(1) Water velocity in the first
geosphere layer

Log-Uniform [10−3, 10−1] m/yr

l (1) Length of the first geosphere
layer

Uniform [100, 500] m

R(1)
I Retention factor for iodine in

the first layer
Uniform [1, 5] —

R(1)
C Retention factor for the chain

elements in the first layer
Uniform [3, 30] —

v(2) Water velocity in the second
geosphere layer

Log-Uniform [10−2, 10−1] m/yr

l (2) Length of the second
geosphere layer

Uniform [50, 200] m

R(2)
I Retention factor for iodine in

the second layer
Uniform [1, 5] —

R(2)
C Retention factor for the chain

elements in the second layer
Uniform [3, 30] —

W Stream flow rate Log-Uniform [105, 107] m3/yr

C0
I Initial inventory for 129I Constant 100 mol

C0
Np Initial inventory for 237Np Constant 1000 mol

C0
U Initial inventory for 233U Constant 100 mol

C0
Th Initial inventory for 229Th Constant 1000 mol

w Water ingestion rate Constant 0.73 m3/yr

βI Ingestion-dose factor for 129I Constant 56 Sv/mol

βNp Ingestion-dose factor for 237Np Constant 6.8 × 103 Sv/mol

βU Ingestion-dose factor for 233U Constant 5.9 × 103 Sv/mol

βTh Ingestion-dose factor for 229Th Constant 1.8 × 106 Sv/mol

Box 5.1 Level E

The user might want to run a small-sample Monte Carlo anal-
ysis to estimate preliminary model output statistics (including
shape of model output distribution). This Monte Carlo anal-
ysis is shown in this Box. Let us generate a random sample of
size N = 1024 over the space of 12 input factors and run the
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Level E model. The model output mean and 90% uncertainty
bounds are given in the figure below:

The figure shows the dynamics of the total output dose, char-
acterised by two maxima, corresponding to the release of two
different isotopes 129I (fast dynamics) and 239Np (slower dy-
namics) respectively. The second maximum has smaller peak
values, but in terms of mean path it is comparable to the first
one.
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With these model runs we can also compute the Standard-
ised Regression Coefficients (SRC’s), the Standardised Rank
Regression Coefficients (SRRC’s) and the corresponding coef-
ficients of determination across time.3 The results are shown
in the second figure above. The figure indicates that the model
has a strong non-additive, non-monotonic behaviour, espe-
cially around 105 yr. The effect of studying ranks instead of
raw values is such that all monotonic input–output relation-
ships are linearised (see also Saltelli and Sobol’ (1995)). This
means that, for example, an exponential relationship, which
would be badly identified by SRCs, would provide a very high
SRRC. So we can say that the R2

y of SRCs measures the degree
of linearity of the model, while the R∗2

y of SRRCs measures
the degree of monotonicity of the additive components.

In the same figure, we also show the cumulative sums of
the first-order sensitivity indices, for both the raw values, Si ,
and the ranks, S∗

i . Keeping in mind that the sum of the first-
order sensitivity indices measures the degree of additivity of
the model, regardless of the monotonicity of the input–output
relationship, it is interesting to note that:

1. the values for ranks are always larger than the values for
raw values;

2. as expected, the cumulative sum of the first-order indices
is always larger than the corresponding R2

y;

3. for raw values, when the difference between the cumulative
sum of the Sis and R2

y is small, the additive components of
the model are mainly linear;

4. for ranks, when the difference between the cumulative sum
of the S∗

i s and R∗2
y is small, the additive components of the

model are mainly monotonic;

5. for raw values, when the cumulative sum of the Sis is
large and R2

y is small, the model has a significant additive

3 SRRC’s are the same as SRC’s but on ranks instead than on raw values.
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component which is either non-linear or non-monotonic,
implying that SRCs are ineffective;

6. for ranks, when the cumulative sum of the S∗
i s is large and

R∗2
y s is small, the model has a significant additive compo-

nent which is non-monotonic, implying that SRRCs are
ineffective;

7. when the cumulative sum of the S∗
i s is large (yet always

<1!) and the cumulative sum of the Sis is small (as in the
Level E model), this is usually due to outputs characterised
by distributions with very long tails, whose extreme values
are connected to particular combinations of factors, i.e.
the non-additive components of the model (interactions)
have peaks concentrated in small regions of the input factor
space, where the output varies by orders of magnitude. This
extreme effect of interactions can be drastically smoothed
using ranks;

8. when the model is additive, both the cumulative sums of
the S∗

i s and Sis must be equal to 1, apart from numerical
error.

We use a base sample of N = 550 points. At the total cost of N ×
(2k + 2) = 550 × 26 = 14 300 model evaluations, the method al-
lows us to estimate all the Si and the STi (shown in Table 5.4 for the
most important factors) and, therefore, to fulfil both the objectives
set out before.

First objective
For time dependent model outputs it is custom and practice to
display the sensitivity indices as cumulative area plots. The area
plot for the total indices is shown in Figure 5.3. We can see that
the parameters kC, T and kI are non-influential at any time point,
i.e. their corresponding areas are just lines. Therefore they can be
fixed in a subsequent analysis and the dimensionality of the space
of the input factors can be reduced from 12 to 9. The variables v(1),
l (1), W, R(1)

C and R(1)
I show high values for their total indices along

almost all the time range. This means that an input factor might
influence the output through interactions with other input factors.



142 Methods based on decomposing the variance of the output Chap. 5

Table 5.4 First-order and total effect sensitivity indices obtained with
N = 550 for the three most important variables.

STV(1) STL(1) STW
Time (yr) SV(1) STV(1) −SV(1) SL(1) STL(1) −SL(1) SW STW −SW

20 000 0.1211 0.8044 0.6833 0.0065 0.4324 0.4259 0.1027 0.5659 0.4632

40 000 0.0736 0.8301 0.7565−0.0199 0.3913 0.4112 0.2077 0.6448 0.4371

60 000 0.0024 0.848 0.8456−0.0063 0.3808 0.3871 0.1117 0.5859 0.4742

80 000 0.0158 0.9389 0.9231 0.0098 0.4657 0.4559 0.1368 0.579 0.4422

100 000 0.1649 0.8967 0.7318 0.0041 0.4893 0.4852 0.0983 0.5379 0.4396

200 000 0.0256 0.9649 0.9393−0.0013 0.6492 0.6505 0.1249 0.476 0.3511

400 000 0.0672 0.8863 0.8191 0.0055 0.5002 0.4947 0.0126 0.5058 0.4932

600 000 0.0553 0.7171 0.6618−0.0027 0.3926 0.3953 0.0014 0.5068 0.5054

800 000 0.0568 0.6629 0.6061 0.006 0.3713 0.3653 0.0026 0.4988 0.4962

1 000 000 0.0618 0.6541 0.5923 0.0154 0.3558 0.3404 0.0039 0.4893 0.4854

2 000 000 0.0729 0.6729 0.6 0.0163 0.3719 0.3556 0.0043 0.4755 0.4712

4 000 000 0.047 0.6105 0.5635 0.0225 0.3114 0.2889 0.0079 0.5351 0.5272

6 000 000 0.0423 0.6857 0.6434 0.0157 0.4374 0.4217 0.0555 0.6022 0.5467

8 000 000 0.087 0.68 0.593 −0.0142 0.3277 0.3419 0.1108 0.6937 0.5829

Negative signs in the table are due to numerical errors in the Sobol’ estimates. Such negative
values can often be encountered for the Sobol’ method when the analytical sensitivity indices are
close to zero (i.e. for unimportant factors). Increasing the sample size of the analysis reduces the
probability of having negative estimates. FAST estimates are always positive, by construction.

Second objective
We display the first order indices, Si , in Figure 5.4. The input fac-
tors with high first-order effects are v(1), W and l (1). A high value
for Si corresponds to an input factor Xi , giving a consistent con-
tribution to the model output variance. Si can be high in some
time intervals and low in others. In the example, the input factors
v(1) and W jointly account for about 20% of the output variance
up to time = 100 000 years. Then, at 200 000 years, there is a
strong decrease in the output variance explained by the first-order
effects and, correspondingly, an increase in the total effects. The
sum of the first-order indices is less then 5% of the overall output
variance: the output seems to be driven mostly by interactions be-
tween the factors. Around 200 000 years, the model coefficient of
determination on ranks is also very low. All these are symptoms
that something is happening in the model. Actually, we are in a
transition phase where the fast dynamics is ending and the slow
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Figure 5.3 Area plot of asymptotic values for the total sensitivity indices
(obtained with N �1000) for the Level E model. The areas are cumulated
from the most important factors (areas at the bottom) to the least ones (areas
at the top). In the legend, factors are ordered by importance from the top
(important) to the bottom (unimportant).
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Figure 5.4 Area plot of asymptotic values for the first-order sensitivity in-
dices (obtained with N � 1 000) for the Level E model.
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dynamics is starting. After that, the first-order indices return at
higher values.

We can also investigate whether the input factor Xi is involved in
interactions with other input factors. The difference STi − Si , also
shown in Table 5.3 for the most important variables, is a measure
of the pure interaction between a given factor Xi and all the others.
Highlighting interactions among variables helps to improve our
understanding of the model structure. For example, the factor v(1)

is important through the interactions with other factors. We will
discover other interesting features of v(1)in Chapter 6.

5.11.2 Case of correlated input factors

Let us now consider the Level E with the input correlation structure
given in Table 3.6, repeated below as Table 5.5.

We use the estimator described in Section 5.10 to estimate all the
Si . For the r-LHS design we select a base sample of size N = 1000
with r = 20 replicates.

The total cost of estimating all the Si is hence N × r = 20 000.
The results of the uncertainty analysis are quite similar to that

for the orthogonal case. The results of the sensitivity analysis are
shown in Figure 5.5 for the time range t = (20 000–9 000 000)
years. While, in the orthogonal case, the factor v(1) was the most
important one in terms of Si , now the high correlation with both T
and v(2), which are less influential, makes v(1) less influential too. In

Table 5.5 Configuration for correlated
input of the Level E model.

Pairs of correlated factors Rank correlation

kI , kC 0.5

R(1)
I , R(1)

C 0.3

R(2)
I , R(2)

C 0.3

T, v(1) −.7

v(1), v(2) 0.5

R(1)
I , R(2)

I 0.5

R(1)
C , R(2)

C 0.5
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Figure 5.5 Area plot of the first-order sensitivity indices, Si , for the Level
E model and correlated input at N × r = 20 000.

fact, W has the largest Si all through the dynamic of iodine. After
t = 200 000 years, v(1) and W have similar values of Si . Unlike
the orthogonal case where v(1) and W account for most of the
output uncertainty, some influence of the other factors can be noted
in Figure 5.5. These factors contribute to the output uncertainty
thanks to the correlations in which they are involved.

The omission of correlations in the original specification of the
Level E exercise was legitimate as far as uncertainty analysis is
concerned, as the output dose does not change much, but there was
an over-simplification as far as the identification of the influential
factors is concerned.

5.12 Putting the method to work: the bungee jumping model

We consider here the simple model bungee jumping, presented in
Chapter 3. We aim at minimising the variable hmin (i.e. the mini-
mum distance to the asphalt during the oscillation) given the uncer-
tainty in the three factors H, M and σ . The lower hmin is, the higher
will be the risk (and the excitement) of the jump. We apply sensi-
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Table 5.6 List of input factors for the bungee jumping model.

Notation Definition Distribution Range Unit

H The distance from the platform to
the asphalt Uniform [40; 60] m

M Our mass Uniform [67; 74] kg

σ The number of strands in the cord Uniform [20; 40] –

tivity analysis to see how input factors influence the uncertainty of
hmin in terms of setting FP.

The initial configuration for the input factors is given in
Table 5.6

We remind ourselves that the model has the simple form given
in Equation (3.1):

hmin = H − 2Mg
kelσ

.

We run a sensitivity analysis with the classic FAST method. We
select 1000 sample points (which coincides with the total cost of
the analysis in the case of FAST). The method provides the first
order indices, Si , (see Table 5.7) and also the uncertainty analysis
(see Figure 5.6) that show that the jump is not always successful.

We also test the method of Sobol’ on the same example. We use a
base sample of N = 256 points. At the total cost of N × (k + 2) =
256 × 5 = 1280 model runs, the method provides all Si and STi

(see again Table 5.7), though, in setting FP, we are interested only
in the Si .

The estimates of Si are very close for both methods. For orthog-
onal inputs, the total indices cannot be, by definition, smaller than
the corresponding first-order indices. However, due to numerical
error, this can occur for the Sobol’ estimates at a small base sample
size.

Let us take into account the results of FAST. We can see that
the most important factor is σ , which approximately accounts for
55% of the variance of hmin. This means that, in order to achieve
our objective (i.e., to reduce the uncertainty of hmin below certain
levels), we should try to reduce the uncertainty of σ .

The distance platform–asphalt, H, is important and we should
try to get better knowledge for this variable as well. However, we
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Table 5.7 Estimates of sensitivity indices for
the bungee-jumping test case.

Input factor Si (FAST) Si (Sobol’) STi (Sobol’)

H 0.4370 0.4511 0.4538

M 0.0114 0.0116 0.0115

σ 0.5458 0.5610 .5595

Figure 5.6 Uncertainty analysis of the bungee jumping excitement indicator
hmin with three uncertain factors.

would be wasting time in trying to improve the knowledge of our
mass, as its effect on the uncertainty of hmin is negligible.

Adding up the three sensitivity indices, we can see that their
sum is very close to 1 (the method of Sobol’ yields a number that
is greater than one: this is again due to the small sample size used
to estimate the indices). This means that, in spite of its analytic
formulation, the model is almost fully additive, i.e. no interaction
emerges between the variables M and σ . As an exercise for the
reader, we suggest finding when the interactions emerge by chang-
ing the input distributions.
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Figure 5.7 Uncertainty analysis of the bungee jumping excitement indicator
hmin with two uncertain factors and 25 strands in the bungee cord.

What happens if we remove the uncertainty on σ by selecting a
specific cord? Let us select σ = 25 strands and execute a Monte
Carlo uncertainty analysis by generating 1000 random points over
the space (H, M) and evaluating the model. We get a safe jump
(S J = 100%) with hmin ranging between 1.3 m and 24.7 m above
the asphalt. Figure 5.7 gives the distribution of hmin after the num-
ber of strands has been fixed at 25. The standard deviation of hmin

has decreased from 8.72 m (in the previous situation, see Figure
5.6) to 6.1 m. The jump seems to be more exciting now.

5.13 Caveats

The variance-based methods are extremely powerful in quantifying
the relative importance of input factors or of groups of them. The
main drawback is the cost of the analysis, which, in the case of
computationally intensive models, can become prohibitive. In such
situations we suggest using the revised Morris method, which, as
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discussed in Chapter 4, provides a quick response in terms of the
measures µ∗s that are best parallel to total sensitivity indices. This
allows fixing a subset of model input factors and, if the model is not
too expensive, carrying out, on the reduced set of factors, a more
parsimonious analysis with variance based methods. In the case of
extremely computationally expensive models, the revised Morris
method alone can provide a satisfactory sensitivity portrait.

We have mainly concentrated on applications and methods of
computation for orthogonal inputs because they are more efficient
and also because the introduction of a dependency structure in
the input factors makes the interpretation of results more difficult,
as discussed in Chapter 1. For example, a strong interaction in
the model can be compensated for by a correlation structure in
such a way that first-order and total effects become equal, leading
one to a misleading conclusion that the model is additive. For this
reason we suggest that one always performs a first analysis with
orthogonal inputs. The analysis of the effects of non-orthogonality
in the input factors should be postponed at a second stage, only if
deemed necessary. In this way the interpretation of results would
be easier and unambiguous.





6
SENSITIVITY ANALYSIS IN
DIAGNOSTIC MODELLING:
MONTE CARLO FILTERING AND
REGIONALISED SENSITIVITY
ANALYSIS, BAYESIAN
UNCERTAINTY ESTIMATION
AND GLOBAL SENSITIVITY
ANALYSIS

In the preceding chapters we have mainly focused on a prognostic
use of models. In this chapter we would like to return to a diag-
nostic use of models, i.e. in model calibration, with the purpose of
describing in some detail the sensitivity issues pertaining to it. We
start by showing how this is related to the Factors Mapping Setting,
introduced in Chapter 2. Then two classes of methods, Monte
Carlo filtering and Bayesian estimation, are discussed, showing
how sensitivity analysis can tackle most of the critical questions
raised by the calibration exercise.

6.1 Model calibration and Factors Mapping Setting

As some readers may have noted, there is some resonance between
the quantitative sensitivity approaches presented in this book and
the Monte Carlo-based approaches to model calibration that have
appeared in the literature in the last two decades, mainly in the
framework of environmental sciences. We refer here to the prob-
lem of an analyst trying to ‘adjust’ his model to some ‘acceptable
behaviour’. Even if classical model fitting falls under this kind of

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1
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problem, we address here the broader contexts of model calibra-
tion and acceptability, by allowing for, e.g., the use of qualitative
definitions expressed in terms of thresholds, based on ‘theoreti-
cal’ (physical, chemical, biological, economical, etc.) constraints,
expert opinions, legislation, etc.

Mechanistic models used in many scientific contexts (e.g. en-
vironmental sciences), based on traditional scientific descriptions
of component processes, almost always contain ill-defined pa-
rameters and are thus referred to as over-parameterised mod-
els (e.g. Draper and Smith, 1981, p. 487). Accordingly, it is of-
ten concluded that the estimation of a unique set of parameters,
optimising goodness of fit criteria given the observations, is not
possible. Moreover, different competing model structures (differ-
ent constitutive equations, different types of process considered,
spatial/temporal resolution, etc.) are generally available that are
compatible with the same empirical evidence (see e.g. Hornberger
and Spear, 1981).

This implies the unfeasibility of the traditional estimation/fitting
approach. The investigator is then referred to the ‘weaker’ cate-
gorisation into acceptable/ unacceptable behaviour. As a result one
needs to establish magnitude and sources of model prediction un-
certainty, as well as the characterisation of model acceptable prop-
erties, i.e. which assumptions, structures or combinations of model
parameters are compatible with the defined acceptability criteria.
This is done with Monte Carlo simulation analyses, which can be
divided into two big classes: Monte Carlo filtering and Bayesian
analysis. Both approaches entail an uncertainty analysis followed
by a sensitivity analysis, which now assumes a peculiar and critical
value. In fact, the scope of sensitivity analysis is not only to quantify
and rank in order of importance the sources of prediction uncer-
tainty, similarly to the settings discussed in the previous chapters,
but, what is much more relevant to calibration, to identify the el-
ements (parameters, assumptions, structures, etc.) that are mostly
responsible for the model realisations in the acceptable range.

Where a classical estimation approach is impractical and model
factors cannot be defined, for example, by an estimate minus/plus
some standard error, or the clear definition of a well defined model
structure or set of hypotheses cannot be established, applying, e.g.,



Monte Carlo filtering and regionalised sensitivity analysis 153

standard statistical testing procedures, sensitivity analysis becomes
an essential tool. Model factors can be classified, for example, as
‘important/unimportant’ according to their capability of driving
the model behaviour. Such capability is clearly highlighted by the
sensitivity analysis, which plays a similar role, e.g., of a t-test on
a least square estimate of a linear model. To exemplify the rele-
vance of sensitivity analysis in this context, we can even say that
sensitivity indices are to calibration, what standard statistical tests
are to estimation. A detailed review on calibration and sensitivity
analysis can be found in Ratto (2003), from which most of the
analytical examples presented in this chapter are also taken.

The use of sensitivity analysis described here exactly fits the
Setting Factors Mapping (FM), introduced in Chapter 2, in which
‘we look for factors mostly responsible for producing realisations
of Y in a given region’. The ‘region’ that we are dealing with now is
the region classified as acceptable according to the categorisation
criteria defined to calibrate the model, or the region of high ‘fit’,
if some cost function or likelihood measure is used to classify the
model behaviour.

In the next sections we shall discuss the two Monte Carlo cal-
ibration approaches cited above, in combination with a suitable
sensitivity analysis technique. Specifically, Monte Carlo filtering is
coupled with the so-called regionalised sensitivity analysis (RSA),
(Hornberger and Spear, 1981); Bayesian analysis is coupled with
global sensitivity analysis (Ratto et al., 2001).1

6.2 Monte Carlo filtering and regionalised sensitivity analysis

The Monte Carlo approach to uncertainty and calibration of com-
plex models, which came to be called regionalised sensitivity anal-
ysis (RSA), was first developed some twenty years ago within the
context of environmental quality studies, (Hornberger and Spear,
1981; see also Young et al., 1996; Young, 1999, and the refer-
ences cited therein). In RSA a multi-parameter Monte Carlo study
is performed, sampling parameters from statistical distribution

1 An extension of RSA in the Bayesian framework can be found in Freer et al. (1996).
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functions. Two tasks are required for a RSA exercise (Hornberger
and Spear, 1981; Osidele, 2001):

� a qualitative definition of the system behaviour (a set of con-
straints: thresholds, ceilings, time bounds based on available in-
formation on the system);

� a binary classification of model outputs based on the specified
behaviour definition (qualifies a simulation as behavioural, B,
if the model output lies within constraints, non-behavioural, B̄,
otherwise).

Define a range for k input factors Xi [i = 1, . . . , k], reflecting un-
certainties in the model and make a sufficiently large number of
Monte Carlo simulations. Each Monte Carlo simulation is associ-
ated with a vector of values of the input factors. Classifying sim-
ulations as either B or B̄, a set of binary elements are defined,
distinguishing two sub-sets for each Xi : (Xi |B) of m elements and
(Xi |B̄) of n elements (where n + m = N, the total number of Monte
Carlo runs performed).

The Smirnov two-sample test (two-sided version) is performed
for each factor independently. Under the null hypothesis that the
two distributions fm(Xi |B) and fn(Xi |B̄) are identical:

H0 : fm(Xi |B) = fn(Xi |B̄)
H1 : fm(Xi |B) 	= fn(Xi |B̄).

(6.1)

The test statistic is defined by

dm,n(Xi ) = supy

∥∥Fm(Xi |B) − Fn(Xi |B̄)
∥∥ (6.2)

where F are marginal cumulative probability functions, f are
probability density functions.

The question answered is: ‘At what significance level α does the
computed value of dm,n determine the rejection of H0 ?’

� A low level implies a significant difference between fm(Xi |B) and
fn(Xi |B̄), suggesting that Xi is a key factor in producing the
defined behaviour for the model.
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Figure 6.1 Graphical representation of the dm,n measure used for the
Smirnov test.

� A high level supports H0 , implying an unimportant factor: any
value in the predefined range is likely to fall either in B or in B̄.

To perform the Smirnov test, we must choose the significance level
α, which is the probability of rejecting H0 when it is true (i.e. to
recognise a factor as important when it is not). Derive the criti-
cal level Dα at which the computed value of dm,n determines the
rejection of H0 (the smaller α, the higher Dα).

If dm,n >Dα, then H0 is rejected at significance level α. The pro-
cedure is exemplified in Figure 6.1.

The importance of the uncertainty of each parameter is inversely
related to this significance level. Input factors are grouped into
three sensitivity classes, based on the significance level for rejecting
H0 :

1. critical (α<1%);

2. important (α ∈ 1% − 10%);

3. insignificant (α>10%).

6.2.1 Caveats

RSA has many ‘global’ properties, similar to variance based
methods:
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1. the whole range of values of input factors is considered;

2. all factors are varied at the same time.

Moreover, RSA classification is related to main effects of variance
based methods (it analyses univariate marginal distributions).

However, no higher-order analysis is performed with the RSA
approach, i.e. no attempt is made to search for interaction struc-
ture. Spear et al. (1994) reviewing their experience with RSA, high-
lighted two key drawbacks to it:

1. the success rate: the fraction of B is hardly larger than 5% over
the total simulations for large models (with the number of fac-
tors k>20), implying a lack in statistical power;

2. correlation and interaction structures of the B subset (see also
Beck’s review, 1987):

(i) the Smirnov test is a sufficient test only if H0 is rejected
(i.e. the factor is important); the acceptance of H0 does not
ensure non-importance;

(ii) any covariance structure induced by the classification is
not detected by the univariate dm,n statistic: for example,
factors combined as products or quotients may compensate
(see Example 1 below);

(iii) bivariate correlation analysis is not revealing in many cases
(see Example 2 below), i.e. the interaction structure is often
far too complex for correlation analysis to be effective.

Such aspects of RSA imply that no complete assessment can be
performed with RSA, since, for those factors taken as unimportant
by the Smirnov test, further inspection is needed (e.g. applying
global SA tools) to verify that they are not involved in higher-order
interaction terms. Only after this subsequent inspection, can the
relevance/unimportance of an input factor be completely assessed.

In order to address these limitations of RSA and to better un-
derstand the impact of uncertainty and interaction in the high-
dimensional parameter spaces of models, Spear et al. (1994)



Monte Carlo filtering and regionalised sensitivity analysis 157

developed the computer intensive tree-structured density estima-
tion technique (TSDE), ‘which allows the characterization of com-
plex interaction in that portion of the parameter space which gives
rise to successful simulation’. Interesting applications of TSDE in
environmental sciences can be found in Spear (1997), Grieb et al.
(1999) and Osidele and Beck (2001).

In view of variance based analysis, the filtering approach has
a further limitation, in that it takes into account only the output
variation in the acceptable–unacceptable direction, while it ignores
the variations of the output within the class of the acceptable val-
ues. In other words, an influential parameter could escape such
an analysis only because it drives variation within the behavioural
range.

Example 1

Let us consider the following elementary model

Y = X1 X2, X1, X2 ∼ U[−0.5, 0.5]. (6.3)

The criterion for acceptable (behavioural) runs is Y > 0. Applying
this criterion to a sample of X1, X2 gives the filtered sample shown
in Figure 6.2.

When trying a Smirnov test for the acceptable/unacceptable sub-
sets (Figure 6.3), no significance is detected for the two model pa-
rameters in driving the acceptable runs.

In this case, a correlation analysis would be helpful in high-
lighting the parameter interaction structure driving the model be-
haviour. In fact, computing the correlation coefficient of (X1, X2)
for the B set, we get a quite high value: ρ ∼= 0.75.

This suggests performing a Principal Component Analysis (PCA)
(see, for example, Draper and Smith, 1981, for details on PCA) on
the B set, obtaining the two components (the eigenvectors of the
correlation matrix):

PC1 = (0.7079, 0.7063); accounting for the 87.5% of the

variation of the B set.

PC2 = (−0.7063, 0.7079); accounting for the 12.5% of the

variation of the B set.
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Figure 6.2 Scatter plot in the plane (X1, X2) of the acceptable subset B for
Example 1.

Figure 6.3 Cumulative distributions for X1 and X2 of the original sample
(prior distribution), the B subset and the B̄ subset. The Smirnov test in unable
to highlight an effect of the model parameters in driving acceptable runs!
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Figure 6.4 Scatter plot of the acceptable/unacceptable subsets for the prin-
cipal components.

The direction of the principal component, PC1, indicates the priv-
ileged orientation for acceptable runs.

If we make the Smirnov analysis for the principal components,
we get the scatter plot in Figure 6.4 and the cumulative distribu-
tions for PC1 and PC2 in Figure 6.5 (original sample, B subset, B̄
subset). Now the level of significance for rejecting the null hypoth-
esis when it is true is very small (< 0.1%), implying a very strong
relevance of the linear combinations of the two input factors, de-
fined by the principal component analysis.

Example 2

Let us consider this other model:

Y = X2
1 + X2

2, X1, X2 ∼ U[−0.5, 0.5]. (6.4)

The criterion for acceptable runs is now: [0.2 < Y < 0.25].
Plotting the B set for this case, we get the pattern in Figure 6.6.
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Figure 6.5 Cumulative distributions for PC1 and PC2 of the original sample
(prior distribution), the B subset and the B̄ subset.

Figure 6.6 Acceptable subset B in the plane (X1, X2) for Example 2.

Also in this case, the Smirnov test is unable to detect any rele-
vance for the model parameters in driving the model output be-
haviour (the marginal distributions are also flat in this case).

Moreover, even a correlation analysis would be ineffective for
highlighting some aspects of the interaction structure driving the
model acceptable runs. In fact, the empirical correlation coeffi-
cient of (X1, X2) of the elements of the B subset in Figure 6.6 is
ρ ≈ −0.04. This is a small value, implying that any linear trans-
formation of (X1, X2) would not allow any improvement in the
detection of a structure in the B subset. Moreover, although it is
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clear from Figure 6.6 that there is a strong coupling of (X1, X2)
in driving the model behaviour, the correlation coefficient is abso-
lutely ineffective in highlighting it.

6.3 Putting MC filtering and RSA to work: the problem
of hedging a financial portfolio

A Monte Carlo filtering / Smirnov analysis is performed on the
portfolio model shown in Chapter 3. A full description of the fi-
nancial features of the portfolio under analysis can be found in
Campolongo and Rossi (2002).

The goal of the exercise is to analyse the risk associated with the
portfolio, identify its sources, and improve our understanding of
the relationship holding between the potential loss incurred and
the uncertain variables causing this loss.

The output Y of interest is the hedging error, which is defined
as the difference between the value of the portfolio at maturity,
and what would have been gained investing the initial value of the
portfolio at the interest rate prevailing on the market (the market
free rate). When this error is positive the bank, although failing
in their hedging purpose, makes a profit. But when this error is
negative, the bank faces a loss that arises from having chosen a
risky investment rather than a risk-free one.

Given the problem setting, a Monte Carlo filtering / Smirnov
analysis is the most appropriate here. In fact, the focus is on the
identification of the factors most responsible for the model out-
put behaviour in a region of interest, which is defined as ‘Y < 0’
(negative error), where the bank is facing a loss, and in the iden-
tification of the factors most responsible for splitting the reali-
sations of Y into acceptable–unacceptable (here ‘loss–profit’). In
other words, we are within the problem Setting Factors Mapping
(FM), defined in Chapter 2, where the definition of an ‘acceptable
model behaviour’ is desirable.

The hedging error, Y, depends upon a number of factors. In
our analysis we decided to include only four: a factor representing
the variability of the dynamics of the evolution of the interest rate
through time (ε); the number of portfolio revisions to be performed
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(N. rev.); and the parameters a and σ of the Hull and White model
of the spot rate. It is worth noting that the type of uncertainty
affecting these inputs is of a different nature. The dynamics of the
interest rate is an intrinsically uncertain factor, in the sense that it
is totally out of the control of the analyst. In contrast, the number
of portfolio revisions is a factor, which is uncertain but in a sense
‘controllable’ by the analyst. Any time that the portfolio is updated
a cost is incurred, thus reducing the benefit derived by the update.
Therefore, it is not true that the higher the number of revisions, the
better the portfolio performance. There exists an optimal number
of revisions that the bank may decide to carry out. Unfortunately
this number is a priori unknown and therefore uncertain. Splitting
the total output uncertainty into a part associated with ‘uncontrol-
lable’ factors (a, σ , ε) and a part that can be reduced by optimising
the input values (N. rev.) is a precious piece of information. It helps
to assess the percentage of risk associated with the portfolio that
is unavoidable.

The input factors’ statistical distributions chosen for the uncer-
tainty and sensitivity analysis exercise are given in Chapter 3.

A Monte Carlo filtering analysis was performed by setting as
‘acceptable’ output values those that are positive, i.e. correspond-
ing to a profit for the bank. The MC sample size was set to 16 384.

The analysis was repeated for five possible scenarios resulting
from five different assumptions for the values of the transaction
costs. In the first scenario there are no costs. In the other four sce-
narios the costs are assumed to be a fixed proportion of the amount
of contracts exchanged which can be either 2%, 5%, 10% or 20%.
Note that the decision to treat different transaction cost values as
different scenarios, rather than considering the transaction costs
as an uncertain input factor taking on different possible values,
was based on the fact that transaction costs are affected by natural
spatial variability, varying for instance from one financial market
to another. Their value is therefore unknown a priori but becomes
known once the market of action has been chosen, i.e. when the
model is then to be applied. The analysis is thus repeated for dif-
ferent scenarios to represent what happens in different markets.

First of all an uncertainty analysis was performed on the model.
Results are shown in Figure 6.7, which shows the histograms of the
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Figure 6.7 Histograms of the output distributions in each of the five trans-
action cost scenarios.

output distributions in each of the five transaction cost scenarios.
The five histograms show that the risk of facing a loss increases as
transaction costs increase. The average hedging error (loss in this
case as it is negative) increases from −1.15 in the case where costs
are 0 to −4.33 in the case where costs are 20%. This leads to the
conclusion that the problem of hedging and offsetting financial risk
gets more difficult as the costs for the transactions get higher. This
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Table 6.1 Number of acceptable output values at
different transaction costs.

Number of acceptable values
Transaction costs out of 16 384

0 7585
2% 6880
5% 6505

10% 5857
20% 4334

Table 6.2 Smirnov test for different values of the transaction costs.

Transaction cost scenarios

Input factors 0 2% 5% 10% 20%

a 0.003 3 0.003 3 0.003 3 0.003 3 0.005 3
σ 0.012 3 0.036 1 0.039 1 0.055 1 0.055 1
N. rev. 0.092 1 0.122 1 0.140 1 0.174 1 0.337 1
ε 0.432 1 0.476 1 0.504 1 0.555 1 0.534 1

result is also confirmed by the filtering analysis, which shows that
the number of acceptable output values decreases as transaction
costs increase (see Table 6.1).

The results of the Smirnov test are reported in Table 6.2 for
several values of the transaction costs. The bold numbers indicate
the level of confidence of the test results and hence the level of
importance of a factor: 1 is a highly important factor, 2 is important
(no factor falls in this category in Table 6.2) and 3 is not important.

As the Smirnov test is a sufficient but not necessary condition
to recognise the influence of a factor, the results in Table 6.2 do
not allow the conclusion that the model parameter a is irrelevant
and can be fixed to its nominal base value. To complement the
analysis we first computed in each scenario the correlation coeffi-
cients among factors. However this did not help, as no significant
correlation values were detected.

We therefore proceeded to perform a global sensitivity analy-
sis to the (unfiltered!) output Y, the hedging error, in order to
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Table 6.3 First-order sensitivity indices.

Tr = 0 Tr = 2% Tr = 5% Tr = 10% Tr = 20%

a 9.1E-05 8.1E-05 8.4E-05 1.0E-04 1.3E-04
σ 9.4E-03 1.1E-02 1.3E-02 1.6E-02 1.8E-02

N. rev. 3.0E-01 3.0E-01 2.9E-01 2.6E-01 2.1E-01
ε 5.8E-02 6.8E-02 7.9E-02 9.4E-02 9.9E-02

Table 6.4 Total-order sensitivity indices.

Tr = 0 Tr = 2% Tr = 5% Tr = 10% Tr = 20%

a 4.4E-01 4.4E-01 4.4E-01 4.4E-01 4.8E-01
σ 4.5E-01 4.5E-01 4.5E-01 4.6E-01 5.1E-01

N. rev. 8.7E-01 8.6E-01 8.5E-01 8.3E-01 8.0E-01
ε 6.6E-01 6.6E-01 6.6E-01 6.8E-01 7.1E-01

assess the overall importance of each factor by computing its total
index.

The results are shown in Table 6.3 for the first-order indices and
Table 6.4 for the total-order indices.

The global sensitivity indices indicate that, although less im-
portant than the uncertainty due to the unknown interest rates
dynamics, ε, or than the number of portfolio revisions performed,
N. rev., the model parameter a has a non-negligible total effect
(∼0.4), due mostly to its interaction with other factors. Therefore
its value cannot be fixed and its uncertainty should be taken into
account in further studies.

The sensitivity analysis provides an encouraging insight: the un-
certainty in the optimal number of revisions is the main contributor
to the uncertainty in the output. As this is a ‘controllable’ factor,
we are encouraged to carry out further analysis searching for the
optimal value for this factor, thus reducing uncertainty in the anal-
ysis outcome. If this had not been the case, we would have accepted
the fact that most of the uncertainty in the hedging error is due to
intrinsic problem uncertainty and therefore unavoidable.

To improve our understanding of the relationship linking the
number of portfolio revisions and the hedging error, we plotted
histograms of the number of acceptable outputs as a function of the
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Figure 6.8 Histograms of the number of acceptable output values as a
function of the number of portfolio revisions performed. Three scenarios
are considered: free transaction, and costs equal respectively to 5% or 20%
of the amount of contracts exchanged.

number of revisions in three scenarios (see Figure 6.8). In the first
scenario, when there are no transaction costs involved, the highest
percentage of acceptable values is obtained when performing the
maximum number of portfolio revisions. As expected, when trans-
action costs are introduced, it is more appropriate to reduce the
number of revisions, as evident from the extreme case when costs
are up to 20% of the amount exchanged. In general, the analysis
of the distribution of the acceptable values as a function of the
number of portfolio revisions performed provides an indication
on the optimal number of revisions that the bank should carry out
in order to reduce the potential loss.

Although the test case shown here is very simple and takes into
account only a limited number of uncertain input factors, it sug-
gests that the Monte Carlo filtering/Smirnov approach is an ap-
pealing tool for financial risk management and portfolio hedging.
The definition of the ‘acceptable’ model behaviour is particularly
meaningful when addressing risk problems where the output is
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required to stay below a given threshold. The split of the risk into
the ‘not reducible’ amount and its complementary part provides
an indication of the actual risk faced by investors and assists them
in making decisions about future hedging strategies.

The analysis also provides an indication of the type of relation-
ship that links the input and output values, which is one of the main
problems addressed by financial analysts. The MC/Smirnov anal-
ysis can be usefully complemented by a global sensitivity analysis.

6.4 Putting MC filtering and RSA to work:
the Level E test case

Let us once again consider the Level E test case. In Figure 6.9 the
mean and the 90% confidence bound of the dose released by the
nuclear disposal obtained with Monte Carlo simulations (already
shown and commented in Box 5.1 Level E).

To fix the ideas, let us concentrate on the t = 2 × 105yr time
point. Focusing on the upper 5th percentile of the model output at

Figure 6.9 Uncertainty plot for the model output: mean and 90% uncer-
tainy bound.
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that time point and filtering the sample accordingly, the modeller
can investigate which and what combination of input variables has
produced such high values.

First, we can take the Smirnov test for the input factors and
search for some significant separation between the two subsets
obtained by the filtering procedure. Specifically, we can compare
the cumulative distributions for the two subsets corresponding to
the 0–95% and 95–100% percentiles of the model output at t =
2 × 105yr.

In Figure 6.10 the implementation of the Smirnov test is shown
for all variables. For each plot, we show the significance level, α,
for rejecting the null hypothesis (the higher α, the less important is
the variable), together with the magnitude of the test statistic dm,n,
where m = 1000, n = 19 000. The variables v(1) and W contribute
significantly to producing high output values at t = 2 × 105yr. In
particular, low values of v(1) and W are mainly responsible for
producing high doses. R(1)

C and R(2)
C also have significant effects

(α<1%).
In addition to the Smirnov test on the marginal distributions, we

can also analyse the correlation of the filtered sample, which some-
times is capable of revealing aspects of the interaction structure.

The 12 × 12 correlation matrix for the input variables calculated
in correspondence with the upper 5th percentiles of the output at
t = 2 × 105yr (see Figure 6.11) reveals an interesting correlation
pattern. All significant correlation terms involve v(1), suggesting
that this variable interacts strongly with the others, so as to pro-
duce high values of the model output. In particular, the highest
correlation terms are those with the other three important vari-
ables: W (positive correlation) followed by R(1)

C and R(2)
C (negative

correlation). Moreover, there are significant terms including l (1),
v(2) and l (2). This behaviour is confirmed by the variance based
analysis, in which v(1) has the dominant total order effect (0.91) at
t = 2 × 105yr, while all other factors with significant total effect
are the same as those highlighted by the correlation analysis.

Correlation coefficients are useful because they also suggest
some qualitative way of interacting: in particular if the coeffi-
cient is positive, the pair of factors act in the model as a quo-
tient/difference; if it is negative they act as a product/sum.
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Figure 6.11 Graphical representation of the empirical correlation matrix
of the input variables for the upper 5th percentile of the model output values.
Darker shading indicates stronger correlation. Values are reported only for
significant terms.

6.5 Bayesian uncertainty estimation and global
sensitivity analysis

6.5.1 Bayesian uncertainty estimation

Here we go back in a simplified way to the general concepts
of Bayesian analysis tools, known as Bayesian model averaging.
Readers are directed, for example, to Kass and Raftery (1995) and
Hoeting et al. (1999) for a complete and rigorous discussion on
the matter.

Bayesian model averaging (BMA) is an approach to modelling
in which all possible sources of uncertainty are taken into account
(model structures, model parameters and data uncertainty) based
on Bayesian theory.

First, let us consider a given deterministic model that has to be
calibrated according to some set of observations. Assume also that
the analyst has a set of prior assumptions on the model factors,
expressed in terms of prior distributions pr(X).
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The posterior distribution of the model factors given the data
set D is, applying the Bayes chain rule,

pr(X|D) ∝ pr(D|X) pr(X)

i.e. the product of the prior by the likelihood. The likelihood func-
tion, by definition, tells us how much the experimental data sup-
port the various possible statistical hypotheses on model parame-
ters. Analytically it is a scalar function of model parameters. For
example, in a standard linear regression model where the vari-
ance of the error terms is known, the log-likelihood turns out to
be proportional to the sum of the squared errors between model
predictions and observations. We do not provide further details
on the matter, leaving the reader to the specific literature for a
comprehensive discussion. For the purposes of the present book,
it is sufficient to recognise that the likelihood function is where the
model structure and the data enter the problem, possibly in terms
of the sums of squared errors, as in the case of a simple linear
regression model.

If Y is the model output of interest and, keeping in mind that
we are dealing with a deterministic model, as usual expressed as
Y = f (X1, . . . , Xk), its posterior mean and variance are expressed
as follows:

E(Y|D) = Ŷ =
∫

f (X) pr(X|D)dX
(6.5)

V(Y|D) =
∫

f 2(X) pr(X|D)dX − Ŷ2.

Similarly, Bayesian parameter estimates can be given in terms of
posterior mean and covariance as:

E(X|D) = X̂ =
∫

X pr(X|D)dX
(6.6)

V = COV(X|D) =
∫

(X − X̂)(X − X̂)T pr(X|D)dX.

As typical of Bayesian methods, BMA is an intuitively attractive
solution to the problem of accounting for the different sources
of uncertainty, but presents several difficulties. Among others, the
integrals implicit in (6.5)–(6.6) can in general be hard to com-
pute. Monte Carlo methods (acceptance sampling, importance
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sampling, see e.g. Hammersly and Handscomb, 1964; Geweke,
1999 or, better, Markov chain Monte Carlo methods (Gibbs sam-
pler, Metropolis-Hastings, see e.g., Ripley, 1987; Geweke, 1999)
have (at least partly) overcome most of the problems of effi-
ciency and convergence of the estimation of the posterior distribu-
tions, allowing the use of Bayesian methods to grow rapidly since
1990.

If one follows the simplest Monte Carlo solution and samples
the model parameters from the prior distribution pr(X), the Monte
Carlo computation of integrals (6.5)–(6.6) is trivial, remembering
that pr(X|D) ∝ pr(D|X) pr(X).

With x(i) being the ith element of the N-dimensional sample of
the model parameters, taken from the prior distribution, for the
model output we would have:

E(Y|D) = Ŷ =

N∑
i=1

f (x(i)) pr(D|x(i))

N∑
i=1

pr(D|x(i))

(6.7)

V[Y|D] =

N∑
i=1

f 2(x(i)) pr(D|x(i))

N∑
i=1

pr(D|x(i))
− Ŷ2

while for the posterior mean and covariance of the model param-
eters we get:

E(X|D) = X̂ =

N∑
i=1

x(i)pr(D|x(i))

N∑
i=1

pr(D|x(i))

(6.8)

cov(Xl, Xj |D) =

N∑
i=1

(
x(i)

l − x̂l
)(

x(i)
j − x̂j

)
pr(D|x(i))

N∑
i=1

pr(D|x(i))
.

Unfortunately, if the posterior distribution is concentrated rela-
tive to the prior (and this is almost always the norm), the ‘rate of



Bayesian uncertainty estimation and global sensitivity analysis 173

success’ of this MC strategy is very small, i.e. most of the x(i) have
very small likelihood values, implying that all inference is dom-
inated by a few points with large likelihood values and that the
algorithm converges very slowly. This is the reason, why, for exam-
ple, in importance sampling, one defines an ‘importance sampling
distribution’ j(x) allowing (hopefully!) a higher rate of success.

6.5.2 The GLUE case

The Generalised Likelihood Uncertainty Estimation (GLUE) is a
simplified Bayesian approach, which is quite broadly applied in
hydrological and environmental sciences, and is due to Keith Beven
and co-workers (Beven and Binley, 1992). In GLUE, the Bayesian
inference assumes the simplest setting described in Equations (6.7)–
(6.8), i.e. in a situation in which we sample directly from the prior
distributions, regardless of the efficiency problems that this might
imply.

As in the more general Bayesian setting, different sets of initial,
boundary conditions, model specifications or hypotheses can be
considered. Based on comparing model simulations and observed
responses, for example on a sum of squared scores, each set of fac-
tor values is assigned a so-called ‘likelihood’ of being a simulator
of the system. The ‘likelihood’ measure as defined by Beven and
co-workers does not correspond to the definition of likelihood
function in estimation or Bayesian theory, but it is a qualitative
measure of fit or loss function that we henceforth call the ‘weight-
ing function’. Assuming that the information set, D, consists of
a single time series, Yt, such a weighting function is typically a
decreasing function of the sum of squared errors, such as:

pr(D|x(i)) ≡ w(Yt|x(i)) ≡ w(i) ∝ exp
(−σ (i)2

/σ 2
re f

)
, i = 1, . . . , N

(6.9)
or even more simply

w(i) ∝
(

1
σ (i)2

)α

, i = 1, . . . , N (6.10)

where σ (i)2 = 1/2 · T
∑T

t=1 ( ft(x(i)) − Yt)2, x(i) indicates the ith re-
alisation of X drawn from its prior distribution, Yt is the observed
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time series, ft(X) is the model evaluation at time t, T is the num-
ber of observations and N is the sample size of the Monte Carlo
procedure.

Rescaling the weights such that their cumulative sum equals
1,

∑N
i=1 w(i) = 1, yields the ‘posterior weights’ for the model pa-

rameters. From this the uncertainty estimation can be performed
by computing the model output cumulative distribution, together
with prediction quantiles.

In particular, by replacing pr(D|X) by the weighting func-
tion w(Yt|X) in Equations (6.7)–(6.8), we can obtain the mean
and variance of the predicted variable of interest (which can be
in the simplest case the prediction of ỸT+ j outside the obser-
vation sample) as well as the Bayesian estimates of the model
parameters.

Moreover, weights can be used to estimate the posterior dis-
tributions and prediction quantiles. For example, the cumulative
posterior distribution of Yt is obtained as follows.

1. Sort the values of Yt and store them into a new vector Y*
t .

2. Order the w according to the sorted column vector Y*
t and store

it into a new vector w*.

3. For all s ∈ [1, N], define the vector of partial cumulative sums
W*(s) = ∑s

j=1 w*( j).

4. The empirical cumulative distribution function of Y*
t is then

expressed by

P(Y < Y*(1)) = 0

P(Y*(s) < Y < Y*(s+1)) = W*(s), for s ∈ [1, N − 1]

P(Y > Y*(n)) = 1

The weights are also useful for bootstrapping, i.e. re-sampling with
replacement of model runs. If model runs (or input parameters) are
re-sampled with a probability proportional to the weights (Russian
roulette), a bootstrap sample of the posterior distribution can be
obtained.
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Caveats
Two main problematic aspects have to be always kept in mind
when applying GLUE.

1. The definition of the weighting function is a fundamental aspect
for GLUE and the uncertainty prediction can strongly depend
on that definition. In a Bayesian framework, this is connected
to how errors in the observations and in the model structure
are represented by a statistical model. In GLUE the ‘qualitative’
definition of the weights, based essentially on an inverse rela-
tionship to the mean square error, makes this procedure easier
and more flexible, but a bit ambiguous.

2. The sampling strategy of GLUE has very poor efficiency prop-
erties, as discussed in the previous section, which can make
the statistical properties of the GLUE inference poorly signif-
icant. The use of importance sampling could be a first step in
the direction of improving efficiency, without introducing too
much complication in the methodology (see also Young and
Romanowicz, 2003, for a further discussion on this matter and
Romanowicz et al., 1994, for a further discussion on GLUE and
Bayesian analysis).

The GLUE methodology has been applied to a variety of envi-
ronmental prediction problems, such as rainfall-runoff modelling
(Beven and Binley, 1992; Beven, 2001), flood inundation predic-
tion (Romanowicz and Beven, 1998; Beven et al., 2000) and air
pollution modelling (Romanowicz et al., 2000).

6.5.3 Using global sensitivity analysis in the Bayesian
uncertainty estimation

As discussed at the beginning of this chapter, the aim of applying
sensitivity analysis in the Bayesian framework is to address the
problem of describing the acceptable parameter structure, i.e. to
specify the parameter calibration (Ratto et al., 2001). There are at
least two possibilities for performing a sensitivity analysis: on the
model output itself or on the likelihood. The calibration issue is
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addressed by performing a global sensitivity analysis of the likeli-
hood (or of the weighting function for GLUE).

Taking the global SA of the likelihood, means decomposing the
variance of the likelihood over the model parameter space, i.e. we
are asking ourselves which parameters drive most of the variation
of the likelihood. Is this a significant analysis? In other words,
does the analysis of the variance give information on which model
parameters mainly drive the goodness of the model? In order to
answer this question let us consider the following example.

As described in Chapter 5, sensitivity is computed through vari-
ances of conditional expectations. If we are analysing the likeli-
hood function, the main effect is given by

Si = Vi/V = V[E(pr(D|X1, . . . , Xk)|Xi )]/V (6.11)

This quantity measures the variation of the univariate func-
tion E[pr(D|X1, . . . , Xk)|Xi ] ≡ pr(D|Xi ) around the uncondi-
tional mean pr(D). The latter expression is given by pr(D) =∫

pr(D|X) pr(X)dX and is called the ‘integrated likelihood’ in the
Bayesian literature. Such a quantity is a measure of the goodness
of a model. Accordingly, we can define pr(D|Xi ) as the conditional
integrated likelihood.

If the main effect is high, the conditional integrated likelihood
pr(D|Xi ) will have a strong pattern, i.e. there will be values of Xi

for which pr(D|Xi ) is significantly smaller than pr(D) and other
values for which pr(D|Xi ) is significantly larger than pr(D). This
means that if we were allowed to tune (or fix) the values of Xi , we
would be able to let the integrated likelihood increase (i.e. increase
the goodness of the model). The same holds if groups of factors
are considered, allowing one to identify interaction structures for
the acceptable behaviour.

Developing this reasoning further, it can be demonstrated that
from the computation of main effects and total effects, we can
classify the model factors in terms of necessary and sufficient con-
ditions as follows:

1. factors with a high main effect: such factors affect model good-
ness singularly, independently of interaction (necessary and suf-
ficient condition);
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2. factors with a small main effect but high total effect: such fac-
tors influence the model goodness mainly through interaction
(necessary and sufficient condition);

3. factors with a small main and total effect: such factors have a
negligible effect on the model goodness and can be ignored in
the further inspection of the behavioural regions (necessary and
sufficient condition).

The first class of factors can also be detected with the other method-
ological approaches (RSA, scatter plots, regression analysis), while
the second class can in general be detected only using global SA or
other advanced techniques such as the tree-structured density esti-
mation of Spear et al. (1994). Moreover, as a general rule, a large
difference between main and total effects implies that the model is
over-parameterised.

Finally, if group effects are analysed:

4. for groups of factors having a high group effect: such a groups
affect model goodness singularly, independently of interaction
with parameters outside that group (necessary and sufficient
condition).

In conclusion, global SA is able to highlight much more complex
interaction structures than classical analysis such as PCA or co-
variance analysis. The main limit is that global SA can identify the
key parameters for the interaction structure, but it gives no ‘topo-
logical’ information on the relevant behavioural zones. However,
global SA is able to give quantitative and synthetic information, in
terms of necessary and sufficient conditions, which facilitates the
subsequent inspection of the behavioural regions. Since a global SA
sample is just like any other Monte Carlo sample used for Bayesian
uncertainty estimation, we get additional useful information at vir-
tually no additional cost in terms of number of model evaluations.

Any other tool adopted to represent the interaction structure –
from correlation coefficients to Principal Component Analysis to
Bayesian networks to tree-structured density estimation – will con-
form to the general features identified by global SA.
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6.5.4 Implementation of the method

In practice, the way of combining global SA and Bayesian anal-
ysis is straightforward. It is necessary that the sample generated
for the Bayesian analysis is also designed for the computation of
variance-based sensitivity indices. In this way, by applying the same
set of model runs, predictive uncertainty can be estimated and sen-
sitivity indices computed. This is particularly simple in the GLUE
case, since the samples are drawn directly from the prior distribu-
tions and usually no correlation terms in the prior distributions are
considered in GLUE, so that the sampling designs for orthogonal
inputs such as Sobol’ or FAST can be directly applied.2

6.6 Putting Bayesian analysis and global SA to work:
two spheres

Let us consider the ‘Two spheres’ example, introduced in Chapters
2 and 3. Let us perform a Monte Carlo analysis, sampling the
six input factors from normal prior distributions N(0, 0.35). We
want to analyse the following function, as if it were a black-box
function

f (X1, . . . , X6) = −
(√

X2
1 + X2

2 + X2
3 − R1

)2
/A1

−
(√

X2
4 + X2

5 + X2
6 − R2

)2
/A2 (6.12)

which, as explained in Chapters 2 and 3, represents a likeli-
hood or a weighting function obtained in an estimation/calibration
procedure, e.g. it can be seen as the kernel of a weighting
function obtained using a GLUE approach: f (X1, . . . , X6) ∝
w(D|X1, . . . , X6).3

2 If importance sampling techniques were used (in order to improve the efficiency of GLUE),
the sample would surely be non-orthogonal, and sampling designs of variance based global
SA methods for non-orthogonal inputs could still be used straightforwardly; while in the
case of MCMC techniques, the use of classical sampling designs of variance based global SA
techniques would be problematic. In such cases, approximated estimation tools are available,
as described in Ratto and Tarantola (2003).

3 The scale of f is actually a log-likelihood scale (see negative values in Figures 6.12–6.13).



Putting Bayesian analysis and global SA to work: two spheres 179

Figure 6.12 Scatter plots of f (X1, . . . , X6).

Scatter plots for the plain Monte Carlo runs are shown in Figure
6.12. We can see that there is a strong pattern (i.e. main effect) of
factors in driving ‘bad’ runs (small values of f for central values
of parameters), but the maximum seems flat.

A first step for inspecting the acceptable parameter regions could
be to proceed with a filtering. We filtered runs according to the rule
f > (−200) and plotted the results in Figure 6.13. In the scatter
plots, no pattern is visible and nothing can be said regarding an op-
timal subset from the marginal distributions of the six-dimensional
parameter space. In other words, nothing can be said in terms of
first-order effects.

Another ‘classical’ approach would be to look at some correla-
tion structure. This can be done by analysing the correlation matrix
of the filtered sample: no significant correlation term is detected.
As shown in Table 6.5, the largest correlation term is, in absolute
value, 0.0254.

Consequently, a PCA would also give no useful result in de-
scribing the behavioural structure of the factors, being based on
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Table 6.5 Correlation coefficients of the sample filtered according to the
rule f > (−200).

X1 X2 X3 X4 X5 X6

X1 1.0000 −0.0031 −0.0112 −0.0180 −0.0195 −0.0129
X2 −0.0031 1.0000 −0.0133 −0.0160 −0.0086 −0.0254
X3 −0.0112 −0.0133 1.0000 −0.0191 −0.0010 −0.0239
X4 −0.0180 −0.0160 −0.0191 1.0000 −0.0056 −0.0220
X5 −0.0195 −0.0086 −0.0010 −0.0056 1.0000 −0.0127
X6 −0.0129 −0.0254 −0.0239 −0.0220 −0.0127 1.0000

Figure 6.13 Scatter plots of f (X1, . . . , X6) filtering runs according to the
rule f > (−200).

the correlation matrix (see e.g. Ratto et al., 2001, for the use of
PCA in identifying structures in the behavioural sets).

A further possibility would be to consider the two-dimensional
projections of the filtered sample (Figure 6.15) and compare it to
the original sample (Figure 6.14); also in this case, no structure is
detected.

A further resource for analysing the behavioural structure is
given by global SA. Sensitivity indices of first, second and third
order are shown in Figure 6.16 and Figure 6.17.
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Figure 6.14 Two-dimensional projection of the unfiltered input sample.

Figure 6.15 Two-dimensional projections of the filtered input sample. No
structure appears, with respect to the unfiltered input sample.
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Figure 6.16 Main effects (upper panel) and second-order effects of the two-
spheres problem (Sobol’ estimates).
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Figure 6.17 Third-, fourth-, and fifth-order effects (Sobol’ estimates).
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Main effects (Figure 6.16, upper panel). There are significant
main effects for all factors, mainly due to the effect of single factors
in driving ‘bad’ runs (connected to small values of f in Figure 6.12).

Second-order effects (Figure 6.16, lower panel). Relevant
second-order effects can be noticed for the sub-sets involving the
groups [X1, X2, X3] and [X4, X5, X6]. This is another major dif-
ference with standard correlation or projection analysis. From the
definition of the objective function, it is clear that first-, second-
and third-order interaction terms should be present. It is very im-
portant that global SA is able to detect second-order terms, while
PCA or correlation analysis are not, implying that global SA is
more powerful in identifying interaction structures.

Third-order effects (Figure 6.17, upper panel). Only two peaks
of third-order effects are detected, corresponding to the groups
[X1, X2, X3] and [X4, X5, X6]. Again, this is a very clear example
of the capabilities of the variance decomposition in highlighting
interaction structures.

Higher-order effects (Figure 6.17, lower panel). Estimates of the
higher-order effects are almost null (10−15), so it is evident that
no interaction larger than three-dimensions is present (theoretical
values are exactly zero!).

Finally, the global SA analysis can be concluded considering the
estimates of the third-order closed effects of the groups [X1, X2,
X3] and [X4, X5, X6]:

Sc
123 = S1 + S2 + S3 + S12 + S13 + S23 + S123 = 0.5

Sc
456 = S4 + S5 + S6 + S45 + S46 + S56 + S456 = 0.5

The estimates of such third-order closed effects sum exactly to 1,
clearly implying that interaction occurs within each subset but not
across them.

From global SA it is possible to conclude that the interaction
structure yielding behavioural parameter subsets is given by two
separated subsets in three-dimensions: [X1, X2, X3] and [X4, X5,
X6].

Global SA is unable to show exactly the spherical symmetry of
the problem, but does give a hint of it, highlighting the two main
subsets of factors. No simple method would in any case be able to
provide such detailed information on spherical symmetry.
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Readers can imagine what kind of difficulties can be encountered
by a modeller in trying to describe the acceptable model behaviour
in a calibration exercise of real black-box system, i.e. characterised
by a complex computational model, which is compared with a set
of observations.

6.7 Putting Bayesian analysis and global SA to work:
a chemical experiment

Let us consider the simple chemical system introduced in Chapter
3, consisting of the observation of the time evolution of an isother-
mal first-order irreversible reaction in a batch system A→B. The
analyst wants to calibrate a simple kinetic model considering the
pseudo-experiment shown in Figure 6.18.

There were three factors to be considered for the calibration
study X = [k∞, E, y 0

B ]. A sample of size 2048 was generated to es-
timate sensitivity indices (first and total effect). Two model outputs
have been considered: the physical output yB(t) and the weighting
function, based on the mean squared error σ 2:

f
(
x(i)

1 , x(i)
2 , x(i)

3

) = w(i) ∝
(

1
σ (i)2

)α

, i = 1, . . . , N (6.13)

with α = 1, 4. This weighting function is obtained from a GLUE
type analysis (Bayesian simplified approach). By increasing α, we

Figure 6.18 Experimental time series and 5% and 95% confidence bounds
for the output yB: (a) no weighting function used; (b) using the weighting
function 1/σ 2; (c) using the weighting function (1/σ 2)4.
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give a much higher weight to good runs, while most runs are clas-
sified as ‘unlikely’.

6.7.1 Bayesian uncertainty analysis (GLUE case)

In Figure 6.18 the confidence bound (5% and 95%) of the output
yB(t) is shown, for three cases:

(a) no weighting function is applied and the uncertainty bound is
given purely by the propagation of the prior distributions of
the model parameters;

(b) applying the weighting function (6.13) with α = 1;
(c) applying the weighting function (6.13) with α = 4.

This is an example of the use of GLUE for the prediction uncer-
tainty. The effect of using the weights for constructing the uncer-
tainty bounds is clear from the three plots. Mean values and confi-
dence bounds change drastically when different types of weighting
functions are applied. This allows one to perform an uncertainty
analysis using data, without any true estimation step. On the other
hand, this also makes clear the arbitrariness of the definition of the
weighting function, compared with rigorous Bayesian analysis.

6.7.2 Global sensitivity analysis

In Figure 6.19 scatter plots are shown for the weighting function
with α = 1 vs. the three factors. Sensitivity indices are shown in
Figure 6.20 for the physical output yB(t) and in Figure 6.21 for
the weighting function. Scatter plots provide the same type of
information as main effect sensitivity indices. In fact, the condi-
tional variance defining main effects can be ‘visualised’ in scatter
plots: a high main effect corresponds to a clear pattern in scatter
plots.

Analysis of the physical output
Sensitivity indices have a trend in time where the initial condition
y0

B is important for the very initial time period, while the factors
of the chemical rate constant prevail for the rest of the simula-
tion. The sum of the first-order indices is never less than 0.86. By
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Figure 6.19 Scatter plots of the weighting function 1/σ 2 vs. k∞, E and yB
0.

Figure 6.20 Sobol’ sensitivity indices for the output yB(t) [cumulative plot].

considering the total effect sensitivity indices, a very slight increase
in the absolute values with respect to the first-order sensitivity in-
dices is detected. This implies that little interaction is revealed by
the analysis of the physical output, which simply singles out the
importance of both kinetic factors.
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Figure 6.21 Sobol’ sensitivity indices for the weighting function (1/σ 2).

Analysis of the weighting function
In this case, the dependence over time is eliminated, making the
analysis more synthetic and strongly changing the sensitivity be-
haviour. By considering the scatter plots, no clear trend can be seen
for any of the three factors. Also, applying the Smirnov test (not
shown here), no appreciable separation in the factor distribution
is detected, when filtering runs with high/small weights. This is re-
flected in the first-order sensitivity indices, which are much smaller
than the main effects for the physical output. From the analysis
of the main effect (Smirnov, scatter plots, first-order indices) we
can conclude that no single factor drives the model to be more
‘behavioural’ and that interaction mainly characterises model cal-
ibration. On the basis of the main effect, it is not possible to get
any information about the interaction structure.

By analysing the total effect indices, very high sensitivity is
detected for the chemical kinetics factors, implying that the be-
havioural runs are driven by an interaction between them. On the
other hand, the influence of the initial condition is also small in
terms of the total effect.

Conclusions drawn from global SA
From these results, one may conclude the following.

1. The initial condition can be judged as unimportant, as it has
the smallest total effect (sufficient and necessary condition).
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2. The chemical rate factors mainly drive the model fit to the ex-
perimental data, as they have the highest main and total effects
(sufficient and necessary condition).

3. On the other hand, the chemical rate factors cannot be precisely
estimated (unidentifiability), as the absolute values of the first-
order indices are small, leaving the main contribution to the
output variance to interaction terms.

4. The high difference between main and total effects implies that
the model is over-parameterised.

Of particular interest is the relationship singled out in items (3) and
(4) between (i) the difference between total- and first-order sensitiv-
ity indices, (ii) the indeterminacy of the optimisation (estimation)
problem, and (iii) the interaction structure of the input factors in
the posterior distribution after conditioning to the observations.

SA on model output and on its weighting function:
what differences?
By comparing results in the previous sections, it is evident that
the input–output structure is much more complicated when using
the weights than when considering the physical output. In par-
ticular, we should generally expect that the weighting function is
non-monotonic with respect to the input factors and that more
interactions are reflected by the use of the weights. This implies
some restriction as far as the SA tools to be applied: specifically,
only variance-based methods are suitable, since they are model
free, they are able to deal with non-monotonic behaviour and to
reveal interaction terms.

6.7.3 Correlation analysis

In this simple case, a correlation analysis of the posterior joint dis-
tribution of the model parameters would be useful. Correlation
coefficients allow one to evaluate the pair-wise interaction struc-
ture.

The matrix shown in Table 6.6 gives the posterior correla-
tion structure. The posterior distribution confirms the interaction
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Table 6.6 Estimate of the correlation matrix of the
posterior joint distribution.

k∞ E yB
0

k∞ 1 0.6682 −0.0387
E 0.6682 1 0.0901
yB

0 −0.0387 0.0901 1

between the kinetic factors highlighted by the global SA. When
high values of the correlation coefficients are detected, they also
suggest a way to reduce the input factor space. In particular, if the
coefficient is positive, the couple of factors acts in the model as
a quotient/difference, if it is negative they act as a product/sum.
In the case under analysis, the positive sign correctly reveals the
quotient interaction of k∞ and E. This is a clarification of what
we claimed in the previous paragraphs: global SA allows a general,
quantitative, model free identification of basic features of the inter-
action structure. On the other hand, it does not allow a complete
analytical representation of such a structure. Such a representation
can be drawn by applying other tools, which, in turn, require the
introduction of more stringent assumptions about the interaction
structure and have a less general applicability. In all cases, such
representations confirm global SA results (in this case the inter-
action between the kinetic factors) and global SA, therefore, is a
‘common denominator’ to them.

6.7.4 Further analysis by varying temperature in the data set:
fewer interactions in the model

Let us now consider the same chemical system, but assume that
nine sets of observations are available at nine different temper-
atures: in particular, we considered five measurements at each
temperature for a total of 45 observations. The new pseudo-
experimental data are shown in Figure 6.22. It is assumed that
the temperature of each observation is known so that the model
always contains three factors for calibration. The weighting func-
tion is always the inverse of the mean square difference between
the model and experiments over the nine time series (equation 6.13
with α = 1).
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Table 6.7 Sensitivity indices obtained with the new
observation data set (Figure 6.22).

First order Tot. order

k∞ 0.63072 0.68821
E 0.07971 0.11696
y0

B 0.29506 0.3192

Table 6.8 Correlation matrix of the posterior joint pdf obtained
by performing the Bayesian and global SA analysis with the new
observation data set (Figure 6.22).

k∞ E yB
0

k∞ 1 0.0366 −0.0432
E 0.0366 1 0.0079
yB

0 −0.0432 0.0079 1
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Figure 6.22 Experimental data at nine different temperature versus dimen-
sionless time-scale.

Sensitivity indices for the weighting function are shown in Table
6.7. The correlation matrix under the posterior joint pdf is shown
in Table 6.8.

As expected, when the temperature range of the different ex-
perimental measurements is varied significantly, the interaction
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between the kinetic factors is strongly reduced. Correspondingly
the absolute values of the first-order sensitivity indices become
much larger, summing almost to one. Under the particular operat-
ing conditions chosen, the influence of the two kinetic factors does
not split uniformly, but concentrates on k∞. This is not a general
result. What has to be expected in general is the decrease in the
interaction of the model as a whole. This means that the ‘posterior’
pdf (probability distribution function) structure can be described
in elementary terms as a summation of first-order effects.

Also the correlation structure is now very weak, confirming
that by changing the data set, the effect of the kinetic factors
is de-coupled. This also exemplifies that a model can be over-
parameterised or not, according to the evidence with which it is
compared, implying that the calibration and sensitivity analysis
exercise is also useful when the same mathematical model is used
to describe different realities.

Finally, parameter identifiability can also be more precisely as-
sessed, as in the classical estimation problems. In the present case,
the Arrhenius pre-exponential factor will be very well estimated,
while the activation energy is not well determined, not because of
under-determination, but because it does not significantly affect
the ‘objective’ function.

6.8 Caveats

The performance of a global SA to the weighting/likelihood func-
tions gives a full interaction structure, which obviously is not the
same as a functional representation.4 The latter is something ad-
ditional with respect to the performance of a global SA and can,
in some cases, be a formidable task. This task usually requires the
use of computationally intensive methods and/or the formulation
of hypotheses about the interaction structure and the introduction
of a certain degree of arbitrariness for such a representation.

4 An example of functional representation is the High Dimensional Model Representation, see
Box 2.5 in Chapter 2.
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On the other hand, the application of a global SA provides a
quantitative evaluation about fundamental aspects of the calibra-
tion problem, such as:

� which factors are important for calibration, i.e. which are some-
how conditioned by observations;

� the degree of complexity of the interaction structure;

� which factors are involved in the interaction structure.

Such information has a general validity, since it is obtained without
assumptions about the model structure and/or the error structure.
So, global SA reveals the fundamental properties of such a struc-
ture, which are common to any more detailed representation and
which are not affected by any ‘modeller’s prejudice’.



7 HOW TO USE SIMLAB

7.1 Introduction

SIMLAB is didactical software designed for global uncertainty and
sensitivity analysis. These analyses are based on performing multi-
ple model evaluations with probabilistically selected input factors,
and then using the results of these evaluations to determine (1) the
uncertainty in model predictions and (2) the input factors that
gave rise to this uncertainty. To use SIMLAB the user performs the
following operations.

1. Select a range and distribution for each input factor. These se-
lections will be used in the next step for the generation of a
sample from the input factors. If the analysis is primarily of an
exploratory nature, then quite rough distribution assumptions
may be adequate.

2. Generate a sample of elements from the distribution of the in-
puts previously specified. The result of this step is a sequence of
sample elements.

3. Feed the model with the sample elements and produce a set
of model outputs. In essence, these model evaluations create
a mapping from the space of the inputs to the space of the
results. This mapping is the basis for subsequent uncertainty
and sensitivity analysis.

4. Use the results of model evaluations as the basis for uncer-
tainty analysis. One way to characterise the uncertainty is with
a mean value and a variance. Other model output statistics are
provided.

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
F. Campolongo and M. Ratto C© 2004 John Wiley & Sons, Ltd. ISBN 0-470-87093-1
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5. Use the results of model evaluations as the basis for sensitivity
analysis.

This chapter gives an overview of the functionalities of the soft-
ware. For a deeper understanding and practical use, the reader is
referred to the on-line manual.

7.2 How to obtain and install SIMLAB

SIMLAB can be downloaded at the URL of this book
http://www.jrc.cec.eu.int/uasa/primer-SA.asp or, directly, at the
SIMLAB URL: http://www.jrc.cec.eu.int/uasa/prj-sa-soft.asp. To
install the software the user has to be provided with a per-
sonal licence number. To obtain the licence number, please email:
stefano.tarantola@jrc.it. After installing SIMLAB, the user has to
set the following PC options.

1. Start the Control Panel, click on Regional Options and then on
Numbers.

2. Set the Decimal Symbol to ‘Dot’ and Digit Grouping Symbol to
‘blank’.

7.3 SIMLAB main panel

At the start SIMLAB displays the main panel (Figure 7.1); this
panel is logically divided in three frames:

1. The Statistical Pre Processor module: generates a sample in the
space of the input factors.

2. The Model Execution module: executes the model for each
point in the sample of input factors.

3. The Statistical Post Processor module: performs the uncertainty
and sensitivity analysis.
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Statistical Preprocessor 
module 

Model execution 
module 

Statistical Postprocessor 
module 

Figure 7.1 SIMLAB main panel.

The SIMLAB main panel provides a special configuration called
Demo mode that contains some test functions. The user can test
different sampling strategies for the same built-in demo model.
Demo files will not be overwritten.

The codes of the test cases shown in this book are available as
executable files in .\SIMLAB\models. This enables the user to test
SIMLAB on these functions. SIMLAB provides four different test
functions in the Demo mode:

1. Linear model. Three input factors, X1,X2,X3, are defined as
uniform distributions varying over a specific range:

X1 ∼ U(0.5, 1.5)

X2 ∼ U(1.5, 4.5)

X3 ∼ U(4.5, 13.5).

The output variable Y is simply the sum of the three input
factors.
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2. G-function of Sobol’. This is a non-monotonic function whose
analytical expression takes the form:

Y =
k∏

j=1

g j (Xj )

where g j (Xj )= (
∣∣4Xj − 2

∣∣ + a j )/(1+a j ) with a j ≥ 0 and k = 8.
a j = 0 means that the associated factor is very important. For
a j = 1 the input factor is slightly less important. If a j = 99, the
corresponding factor is absolutely unimportant. The eight input
factors Xj are uniformly distributed in the range (0,1).

The user can choose between four different sets of a j param-
eters:

a j = {0, 0, 0, 0, 0, 0, 0, 0} [all the factors very important]
a j = {99, 99, 99, 99, 99, 99, 99, 99} [factors equally

non − important]
a j = {0, 1, 4.5, 9, 99, 99, 99, 99} [in decreasing order of

importance]
a j = {99, 0, 9, 0, 99, 4.5, 1, 99} [in random order of

importance]

3. Ishigami function. Another non-monotonic function with three
input factors X1, X2, X3. The factors are uniformly distributed
in (−π, π). The model is:

Y = sin X1 + Asin2 X2 + BX4
3 sin X1.

The parameters A and B have values A = 7 and B = 0.1. The
main peculiarity of this model is the dependence on X3, which
has no addictive effect on Y but interacts only with X1 (see also
Box 2.5 in Chapter 2).

4. Level E. The Level E model has been treated in detail in this
book (Chapters 3, 5 and 6). It is a computer code used in
safety assessment for nuclear waste disposal. It predicts the ra-
diological dose to humans over geological time scales due to the
underground migration of radionuclides from a nuclear waste
disposal site through a system of natural and engineered barri-
ers. The core of the model is a set of partial differential equa-
tions that describe the migration of four nuclides through two
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geosphere layers characterized by different hydro-geological
properties (see Chapter 3). The processes being considered in the
model are radioactive decay, dispersion, advection and chem-
ical retention between the migrating nuclides and the porous
medium. The model has a total of 33 factors, 12 of which are
taken as independent uncertain factors for SA, see Table 3.5.

The user will exit the Demo mode by choosing the menu item Exit
Demo mode in the Demo menu or pressing the button Exit Demo
mode located on the SIMLAB main panel. The demo configuration
will be discarded, so the user will have to save it under a different
name if any changes have been made.

7.4 Sample generation

The first step in the sample generation phase is to select ranges
and distributions (probability distribution functions, pdfs) for the
input factors. This selection makes use of the best information
available on the statistical properties of the input factors. In some
instances, it is possible to get empirical estimates of pdfs from
available underlying data for the input factors. The effort put in
at this stage is related to the scope of the analysis: if the analysis is
at an exploratory stage, then rather crude pdfs could be adequate:
the cost of getting better pdfs may be relatively high.

A set of twelve types of pdfs is available in SIMLAB. A complete
list of the distributions and a description of the corresponding
panels is given in Appendix C of the on-line manual.

The second step is to select a sampling method from among the
available ones. The sampling techniques available in SIMLAB are
FAST, Extended FAST, Fixed sampling (a predetermined sequence
of points), Latin Hypercube, replicated Latin Hypercube, Morris,
Quasi-random LpTau, Random and Sobol’ (see below). SIMLAB
visualises only those techniques that are suitable for the current
factor configuration. Note also that the choice of sampling method
has implications on what type of sensitivity analysis the user is able
to perform later (for example, if the user selects FAST sampling,
he cannot perform the analysis using the method of Morris).
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The third step is the actual generation of the sample from the
input pdfs. The generated sample can be visualised using scatter
plots, cobwebs, histograms and tables. The user can also look at
the sample correlation.

7.4.1 FAST

The classical FAST method estimates the first-order effects. The ex-
tension of FAST computes first-order effects and total effects. This
technique can also be used by grouping sub-sets of factors together.
The FAST method can be used with a set of orthogonal factors.
The algorithm is based on a transformation that converts a multi-
dimensional integral over all the uncertain model inputs into a one-
dimensional integral. Specifically, a search curve, which scans the
whole parameter space, is constructed in order to avoid the mul-
tidimensional integration. A decomposition of the Fourier series
representation is used to obtain the fractional contribution of the
individual input variables to the variance of the model prediction.

7.4.2 Fixed sampling

The generation of the sample is completely controlled by the user,
who decides where to select the sample points within the sample
space.

7.4.3 Latin hypercube sampling (LHS)

This is a particular case of stratified sampling. LHS performs bet-
ter than random sampling when the output is dominated by a few
components of the input factors. The method ensures that each
of these components is represented in a fully stratified manner, no
matter which components might turn out to be important. LHS is
better than random sampling for estimating the mean and the pop-
ulation distribution function. LHS is asymptotically better than
random sampling in that it provides an estimator (of the expecta-
tion of the output function) with lower variance. In particular, the
closer the output function is to being additive in its input variables,
the more reduction in variance. LHS yields biased estimates of the
variance of the output variables.
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7.4.4 The method of Morris

The guiding philosophy of the Morris method is to determine
which factors may be considered to have effects, which are neg-
ligible, linear and additive, or non-linear or involved in interac-
tions with other parameters. The sensitivity measures provided in
SIMLAB are µ∗ and σ (see Chapter 4). The experimental plan is
composed of individually randomised ‘one-factor-at-a-time’ exper-
iments, in which the impact of changing the value of each of the
chosen factors is evaluated in turn.

The number of model executions is computed as r (k + 1), where
r is the number of trajectories (sequences of points starting from a
random base vector in which two consecutive elements differ only
for one component) and k, the number of model input factors.

For each factor, the Morris method operates on selected levels.
These levels correspond to the quantiles of the factor distribution.
In particular:

For four levels, the 12.50th, 37.50th, 62.50th and 87.50th quan-
tiles are taken.

For six levels, the 8.33th, 25.00th, 41.66th, 58.33th, 75.00th,
91.66th quantiles are taken.

For eight levels, the 6.25th, 18.75th, 31.25th, 43.75th, 56.25th,
68.75th, 81.25th and 93.75th quantiles are taken.

The method of Morris can only be used with a set of orthogonal
factors.

7.4.5 Quasi-Random LpTau

The method generates uniformly distributed quasi-random se-
quences within the hypercube � = {[0; 1] × [0; 1] × . . .} of unit
volume that have the property of minimising discrepancy. The
sample looks like a quasi-regular grid of points that are located
so that there exists a direct proportionality between any hyper-
cube of volume V< 1 and the number of sample points within
that hypercube, whatever hypercube is considered in �. From the
unit hypercube, the sample is then automatically transformed to
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the actual parameters values using the marginal distributions de-
fined by the user.

The method generates sets of orthogonal input factors. The num-
ber of input factors cannot exceed 51.

7.4.6 Random

With this method a sample of the desired dimension is gener-
ated from the marginal distributions. Random sampling is also
referred to as pseudo random, as the random numbers are machine-
generated with deterministic process. Statistically, random sam-
pling has advantages, as it produces unbiased estimates of the mean
and the variance of the output variables.

7.4.7 Replicated Latin Hypercube (r-LHS)

The sample in r-LHS is generated by replicating r times a base sam-
ple set created using the LHS algorithm (see Chapter 5 for details).
The r-LHS is used to estimate importance measures (also called
correlation ratios, in other words V[E(Y|Xi )]/V(Y)). Given the
high computational effort required, this technique is employed in
SIMLAB only for non-orthogonal input. r-LHS is used in associa-
tion with either the Iman–Conover rank correlation method or the
Stein method (see below for more information on how to induce
dependencies in the input factors).

7.4.8 The method of Sobol’

The method prepares a sample for subsequent use in the estimation
of the Sobol’s sensitivity indices. The users can select up to what
order they want to estimate the sensitivity indices. An estimate of
the total sensitivity indices is also included at no extra cost. The
sampling method generates orthogonal samples.

7.4.9 How to induce dependencies in the input factors

The user can specify a dependency structure in the sample de-
sign. SIMLAB implements three methods to induce a dependency
structure.
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The Iman and Conover method
This is used to induce a desired rank correlation on pairs of input
factors. Its characteristics are:

� rank correlations can be set independently on marginal distribu-
tions;

� the original form of the marginal distributions is preserved;

� it may be used with many sample schemes;

� if the correlations imposed are ill-defined, the resulting rank cor-
relation matrix may not be positive definite, and an error message
is displayed.

The dependence-tree/copula method
This method is related to influence diagrams, but makes use of
undirected acyclic graphs instead of directed graphs that are used
in influence diagrams. The user can specify correlations between
input factors that form a tree structure. Whatever correlation val-
ues are imposed by the user in this way, it is guaranteed that a joint
pdf exists. The joint pdf has the minimum information amongst all
those joint distributions that satisfy the criteria given by the user.

The Stein method
This method allows the user to generate an LHS sample from any
type of non-orthogonal sample. The user must provide an ASCII
file (see format in Appendix C of the manual) that contains a non-
orthogonal sample (e.g., a random sample, or even an empirical
sample generated by an experiment). The method generates an
LHS sample with the same dependency structure of the sample
provided by the user.

7.5 How to execute models

There are different modalities to execute a model with SIMLAB.
In the external modality the users use a stand-alone application

in which they have coded the model. Examples of such applications
are the executable files that the users can find in .\SIMLAB\models.
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The application is built so as to read the sample file and to produce
an output file using the format specifications of SIMLAB (see
Appendix C in the on-line manual). The external model execution
was studied to allow the interface to complex models.

SIMLAB can also run models built in Microsoft ExcelTM.
SIMLAB generates the sample and saves all the information in
an Excel worksheet called ‘Inputs’. The model in Excel must be
built so as to read from this worksheet the inputs one row at a
time and to write the model outputs into another worksheet called
‘Outputs’. When the model runs have terminated, Simlab imports
the model outputs from the Worksheet ‘Outputs’ and the sensitiv-
ity calculations can start. Time dependent model outputs cannot
be used in the Excel environment.

It is also possible to perform sensitivity analyses in batch mode.
First, the users generate the sample with SIMLAB. Then they call
an external model to execute the runs, and, finally, they supply
SIMLAB with a model output file.

In the internal modality, a parser helps the user to edit straight-
forward equations and build simple analytical models (no time
dependent outputs). This allows the user to conduct quick and
easy tests.

7.6 Sensitivity analysis

With the previous stage the user has created a mapping from input
factors to output results of the form

[
y(i)

1 , y(i)
2 , . . . , y(i)

m , x(i)
1 , x(i)

2 , . . . , x(i)
k

]
, i = 1, . . . , N

where m is the number of model outputs, k is the number of model
inputs and N is the number of model evaluations.

This mapping can be explored in many ways to determine the
sensitivity of model predictions to individual input variables.

The right-hand frame of the SIMLAB main panel is dedicated
to this task.

Uncertainty analysis is straightforward. Means, variances and
distribution functions can be estimated directly from the model
predictions. The user can set a number of parameters related to
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the calculation of some statistical hypothesis tests. Examples of
tests implemented in SIMLAB are: the Smirnov test, used to test
the hypothesis that a sample comes from a particular distribution;
and the Tchebycheff’s and t-tests to compute confidence bounds
on µ, the population mean of Y.

For sensitivity analysis, a number of techniques are available
in SIMLAB. The generation of scatter plots is undoubtedly the
simplest sensitivity analysis technique. This approach consists of
generating plots of the points (x(i)

j , y(i)), i = 1, . . . , N, for each in-
dependent variable X j . Scatter plots offer a qualitative measure of
sensitivity.

Another simple measure of sensitivity is the Pearson product
moment correlation coefficient (PEAR) which is the usual linear
correlation coefficient computed on the

x(i)
j , y(i)(i = 1, . . . , N).

For non-linear models the Spearman coefficient (SPEA) is preferred
as a measure of correlation. This is essentially the same as PEAR,
but uses the ranks of both Y and Xj instead of the raw values i.e.,

SPEA(Y, Xj ) = PEAR(R(Y), R(Xj ))

where R(.) indicates the transformation that substitutes the vari-
able value with its rank.

More quantitative measures of sensitivity are based on regres-
sion analysis. Standardised Regression Coefficients (SRC) quantify
the linear effect of each input variable (see Box 2.2 in Chapter 2).

The Partial Correlation Coefficient (PCC) gives the strength of
the correlation between Y and a given input Xj cleaned of any
effect due to correlation between Xj and any other input. In other
words, PCC provides a measure of variable importance that tends
to exclude the effects of other variables. In the particular case in
which the input variables are orthogonal, the order of variable
importance based on either SRC or PCC (in their absolute values)
is exactly the same.

Regression analysis often performs poorly when the relation-
ships between the input variables are non-linear. The problem
associated with poor linear fits to non-linear data can often be
avoided with the use of the rank transformations. Standardised
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Rank Regression Coefficients are the SRC calculated in terms of
R(yi ) and R(xk).

Similarly, the PCC can be computed on the ranks giving the
Partial Rank Correlation Coefficients.

The extension of the method of Morris presented in this book
estimates two indicators (µ∗ and σ ). Small values for µ∗ point
to factors with negligible effect; σ measures the strength of the
interaction effects. This method can be used only if the Morris
sampling plan has been selected (Chapter 4).

The FAST method produces model-free estimates of first-order
sensitivity indices using the algorithm proposed by Cukier et al.
(1973). An extension of the FAST method is implemented in
SIMLAB, which produces estimates of both first-order indices and
total effect indices. SIMLAB also implements the extended FAST
for groups of factors. SIMLAB provides visualisation of the in-
dices in the form of pie-charts. This method can be used only if the
corresponding FAST sampling plan has been selected.

The importance measure is model-free sensitivity technique that
supplies the first-order indices (main effects) of individual factors.
This measure is less efficient than others for orthogonal input. It
becomes useful when the inputs are non-orthogonal. The impor-
tance measure uses r-LHS as sampling design.

The method of Sobol’ produces model-free estimates of first-
order sensitivity indices, higher-order indices and total indices us-
ing the algorithm proposed by Sobol’ 1990. SIMLAB provides vi-
sualisation of the indices in the form of pie-charts. This method
can be used only if the corresponding Sobol’ sampling plan has
been selected.



8
FAMOUS QUOTES: SENSITIVITY
ANALYSIS IN THE SCIENTIFIC
DISCOURSE

Sensitivity analysis is considered by some as a prerequisite for
model building in any setting, be it diagnostic or prognostic, and
in any field where models are used. Kolb, quoted in (Rabitz 1989),
noted that theoretical methods are sufficiently advanced, so that
it is intellectually dishonest to perform modelling without SA.
Fürbinger (1996) muses:

Sensitivity analysis for modellers?
Would you go to an orthopaedist who didn’t use X-ray?

Among the reasons for an increased role of sensitivity analysis
in the scientific discourse is the change in the role of science in
society in the last decade. This has seen the emergence of issues
such as legitimacy (the end of scientists’ purported neutrality; the
need to cope with plurality of frames of reference and value judge-
ment . . . ) and relevance (models are questioned). Quantitative sen-
sitivity analysis becomes a prescription in this context, as part of
the quality assurance of the process. Especially crucial is its role
in contributing to the defensibility of model-based analysis. Some
quotes from practitioners make the point.

According to Hornberger and Spear (1981):

. . . most simulation models will be complex, with many parameters, state-variables
and non linear relations. Under the best circumstances, such models have many
degrees of freedom and, with judicious fiddling, can be made to produce virtually
any desired behaviour, often with both plausible structure and parameter values.

Examples of instrumental use of models can be found in the liter-
ature, especially when models are used for making decisions that

Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models A. Saltelli, S. Tarantola,
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will have a large social and economic impact. Thus, it is not sur-
prising to meet cynical opinions about models. An example was in
The Economist (1998) where one reads that:

based largely on an economic model . . . completing K2R4 [a nuclear reactor] in 2002
has a 50% chance of being ‘least cost’.

Given that the model was used to contradict a panel of ex-
perts on the opportunity to build the aforementioned reactor, The
Economist comments:

Cynics say that models can be made to conclude anything provided that suitable
assumptions are fed into them.

The problem, highlighted by Hornberger and illustrated by the
example above, is acutely felt in the modelling community. An
economist, Edward E. Leamer (1990), has a solution:

I have proposed a form of organised sensitivity analysis that I call ‘global sensitivity
analysis’ in which a neighbourhood of alternative assumptions is selected and the
corresponding interval of inferences is identified. Conclusions are judged to be sturdy
only if the neighbourhood of assumptions is wide enough to be credible and the
corresponding interval of inferences is narrow enough to be useful.

This awareness of the dangers implicit in selecting a model struc-
ture as true and working happily thereafter leads naturally to the
attempt to map rigorously alternative model structures or work-
ing hypotheses into the space of the model predictions. The natural
extension of this is the analysis of how much each source of un-
certainty weights on the model prediction. One possible way to
apportion the importance of the input factor with respect to the
model output is to apply global quantitative sensitivity analysis
methods. Here the expression, ‘Global Sensitivity Analysis’, takes
on an additional meaning, with respect to that proposed by Leamer,
in that a decomposition of the total uncertainty is sought.

Hornberger’s concern about models is better known in the sci-
entific community as the problem of the GIGO models (Garbage
In-Garbage Out).1 There is apparently even an operative definition
of a GIGO principle (Stirling, 1998):

1 Assuming one has already got rid of the garbage in between, i.e. numerical or conceptual code
errors.
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Precision of outputs goes up as accuracy of inputs goes down.

In other words, one way of GIGOing is to obtain precise outputs
by arbitrarily restricting the input space.

Andrew Stirling studies ‘precautionary’ and ‘science based’ ap-
proaches to risk assessment and environmental appraisal. In a re-
cent work, which is the compilation of four different studies on the
subject, he studies what the precautionary principle implies and
how can it be operationalised (Stirling, 1999a,b). One of the rec-
ommendations he arrives at is ‘Express Analytical Results Using
Sensitivity Analysis’ (Stirling, 1999b, p. 78):

It has been shown in this interim report that – in a variety of areas – risk as-
sessment results are often presented with a very fine degree of numerical preci-
sion. Such a style conveys the impression of great accuracy, and distracts atten-
tion from the crucial question of the sensitivity of final results to changes in start-
ing assumptions. This problem is particularly acute, where the values obtained
– and even the ordering of different options – are quite volatile under the per-
spectives in appraisal associated with different social constituencies and economic
interests. A practical and well-established way of dealing with such a problem
lies in ‘sensitivity analysis’ – a technique involving the explicit linking of alter-
native framing assumptions with the results, which they yield. Rather than being
expressed as discrete scalar numbers, then, risk assessment results might be ex-
pressed as ranges of values, with the ends of the ranges reflecting extremities in
the framing assumptions associated with different stakeholders in the appraisal
process.

Stirling introduces in this text the value-laden nature of different
framing assumptions, a familiar topic in present-day discourse on
governance (see also Lemons et al., 1997).

One more illustration of how sensitivity analysis (or the lack of
it) might impinge on the defensibility of a model-based analysis is
the following.

A team led by Daniel Esty of Yale University, with support from
Columbia University, produced on behalf of the World Economic
Forum a new Environmental Sustainability Index (ESI, 2001), and
presented it to the annual Davos summit in 2001. This study
contains a detailed assessment of dozens of variables that influ-
ence the environmental health of economies, producing an overall
index that allows countries to be ranked. Mathis Wackernagel, in-
tellectual father of the ‘Ecological Footprint’ and thus an authori-
tative source in the sustainable development community, concludes
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a critique of the study done by Daniel Esty et al. by noting
(Wackernagel, 2001):

Overall, the report would gain from a more extensive peer review and a sensitivity
analysis. The lacking sensitivity analysis undermines the confidence in the results
since small changes in the index architecture or the weighting could dramatically
alter the ranking of the nations.

It is clear from this example that index numbers, such as the ESI,
can be considered as models. In Saltelli et al. (2000a, p. 385) it has
been shown how SA can be used to put an environmental debate on
track by suggesting that the uncertainty in the decision on whether
to burn or otherwise dispose of solid urban waste depends on the
choice of the index and not on the quality of the available data
(e.g. emission factors).

Oreskes et al. (1994) in an article in Science entitled ‘Verifica-
tion, validation and confirmation of numerical models in the earth
sciences’, puts SA in an apparently different context. The SA is not
treated as a tool to build or improve a model, but it represents
one of the possible licit uses that can be done of the model itself.
According to Oreskes, who takes a Popperian stance on the issue,
natural systems are never closed, and models put forward as de-
scription of these are never unique. Hence, models can never be
‘verified’ or ‘validated’, but only ‘confirmed’ or ‘corroborated’ by
the demonstration of agreement (non-contradiction) between ob-
servation and prediction. Since confirmation is inherently partial,
models are qualified by a heuristic value: models are representa-
tions, useful for guiding further study, but not susceptible to proof.
In Oreskes et al.’s point of view:

Models can corroborate a hypothesis . . . Models can elucidate discrepancies with
other models. Models can be used for sensitivity analysis – for exploring ‘what if’
questions – thereby illuminating which aspects of the system are most in need of
further study, and where more empirical data are most needed.

A last quote for this chapter is from Peter Høeg, a Danish novelist,
who notes in his excellent Borderliners (1995):

That is what we meant by science. That both question and answer are tied up with
uncertainty, and that they are painful. But that there is no way around them. And
that you hide nothing; instead, everything is brought out into the open.
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Høeg, like Oreskes, seems to think that uncertainty is not an acci-
dent of the scientific method, but its substance.

Summing up the thoughts collected so far, one could say that the
role of scientists in society today is not that of revealing truth, but
rather of providing evidence, be it ‘crisp’ or circumstantial, based
on incomplete knowledge, sometimes in the form of probability,
before and within systems of conflicting stakes and beliefs (see also
Funtowicz et al., 1996).

As a result, scientists need to provide evidence that is defensi-
ble, transparent in its assumptions and comparable against and
across different framing assumptions. The term ‘socially robust
knowledge’ is also used by some to identify that process whereby
different views of the issues, different value judgement systems and
framing assumptions, have been incorporated into the analysis. In
most controversial debates where science plays a role, the negoti-
ation takes place in the space of the uncertainties that arise both
from the poor understanding of the issue and the different expec-
tations and values referred to it. Characterising the uncertainties
is an essential ingredient of the process, and this entails sensitivity
analysis.
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