

Services Standard Build User Guide

SSB v6, July 2018

This document is intended to be a user-friendly guide explaining how to set-up the Services Standard

Build, as well as its applications.

Services Standard Build User Guide Page 2 of 50

Document Revision History

Revision
Date

Written/Edited By Comments

February
2013

Blake Bowen Initial Creation (Current IdentityIQ version: 6.0)

March 2013 Tina Timmerman 1st Revision

April 2013 Brendon Jones 2nd Revision

June 2013 Blake Bowen Final Revision for SSB 1.2, posted to Compass

August 2013 Blake Bowen Updated Compass links to new Compass

January
2015

Blake Bowen Updated with version 1.5 features, new Compass links,
and further clarification.

June 2016 Blake Bowen Updated Compass link to point to SSD get started page

September
2016

Paul Wheeler Updated with new features added in v2.

October
2016

Paul Wheeler Minor corrections for revision 2.0.1.

December
2016

Paul Wheeler Example custom script file names modified so that they
do not execute unless renamed.

January
2017

Paul Wheeler Support for environment-specific build.properties files
clarified.

February
2017

Paul Wheeler Minor restructure and updates for SSB v3 release

June 2017 Justin Choponis, Paul
Wheeler

Formatting and structure changes. Updates for SSB v4
release

December
2017

Paul Wheeler Added plugin build information for SSB v5, added
Deprecation Scanner in the Build Checks.

July 2018 Paul Wheeler Added functionality for subset builds, IdentityIQ
keystore file deployment and “secret” target.properties
files for SSB v6. Expansion of efixes in timestamp
order. Additional Build Check for Workflow trace
setting. Added information on the Dependency Check
utility.

Services Standard Build User Guide Page 3 of 50

© Copyright 2018 SailPoint Technologies, Inc., All Rights Reserved.

SailPoint Technologies, Inc. makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose. SailPoint Technologies shall not be liable for errors contained herein or direct, indirect,

special, incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Restricted Rights Legend. All rights are reserved. No part of this document may be photocopied, reproduced, or translated to another

language without the prior written consent of SailPoint Technologies. The information contained in this document is subject to change without

notice.

Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the

Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies.

Regulatory/Export Compliance. The export and reexport of this software is controlled for export purposes by the U.S. Government. By

accepting this software and/or documentation, licensee agrees to comply with all U.S. and foreign export laws and regulations as they relate to

software and related documentation. Licensee will not export or reexport outside the United States software or documentation, whether

directly or indirectly, to any Prohibited Party and will not cause, approve or otherwise intentionally facilitate others in so doing. A Prohibited

Party includes: a party in a U.S. embargoed country or country the United States has named as a supporter of international terrorism; a party

involved in proliferation; a party identified by the U.S. Government as a Denied Party; a party named on the U.S. Government's Entities List; a

party prohibited from participation in export or reexport transactions by a U.S. Government General Order; a party listed by the U.S.

Government's Office of Foreign Assets Control as ineligible to participate in transactions subject to U.S. jurisdiction; or any party that licensee

knows or has reason to know has violated or plans to violate U.S. or foreign export laws or regulations. Licensee shall ensure that each of its

software users complies with U.S. and foreign export laws and regulations as they relate to software and related documentation.

Trademark Notices. Copyright © 2018 SailPoint Technologies, Inc. All rights reserved. SailPoint, the SailPoint logo, SailPoint IdentityIQ, and

SailPoint Identity Analyzer are trademarks of SailPoint Technologies, Inc. and may not be used without the prior express written permission of

SailPoint Technologies, Inc. All other trademarks shown herein are owned by the respective companies or persons indicated.

Services Standard Build User Guide Page 4 of 50

Table of Contents
Services Standard Build Overview ... 7

SSB Components ... 7

Apache Ant ... 7

Ant Contrib .. 8

Catalina-Ant .. 8

Custom Ant Tasks ... 8

Process Overview .. 9

Downloading the Services Standard Build .. 10

Folder Structure .. 10

.keep Files .. 13

Exporting Custom Objects .. 13

Running the Export Script ... 14

Build Structure Set-up .. 17

Configuration Objects ... 17

IdentityIQ Product Files... 17

Plugins .. 17

Build/Compilation of Plugins .. 17

Automatic Deployment of Plugins .. 18

JDBC Drivers .. 19

Build Configuration ... 20

Configuring the build.properties file ... 20

Supporting multiple platforms (Windows/Linux/Unix) for different environments 25

Non-default spadmin password and importing artifacts ... 26

Setting up environment-specific properties files .. 26

Configuring iiq.properties files ... 26

Configuring target.properties files .. 28

Configuring “secret” target.properties files for storing sensitive token values 29

Configuring Subset Builds with includefiles.properties files ... 30

Configuring ignorefiles.properties files ... 31

Configuring log4j.properties files ... 31

Configuring deployment of encryption keys for each environment ... 32

Setting the environment name for a build .. 33

Services Standard Build User Guide Page 5 of 50

Using the SPTARGET environment variable to specify the build environment 33

Setting the target variables by editing servers.properties ... 33

Executing the Build .. 34

Executing a Repeatable, Initial Build of IdentityIQ with SSB ... 35

Initial Build Prerequisites ... 35

Initial Build Target Chaining... 37

Installation ... 37

Removal .. 37

Dev targets explained ... 38

No target (just entering “build” into a windows terminal or “./build.sh” into a Linux terminal) 38

main.. 38

clean ... 38

cleanWeb ... 38

createdb ... 39

cycle ... 39

dropdb .. 39

dist .. 40

dependency-check .. 40

deploy ... 40

document .. 40

down ... 40

extenddb ... 41

export ... 41

import-all ... 41

import-custom ... 41

import-lcm ... 42

import-stock .. 42

import (deprecated) .. 42

importcycle ... 42

importdynamic .. 43

importjava ... 43

initial-build... 43

patchdb ... 43

Services Standard Build User Guide Page 6 of 50

runSql ... 43

runUpgrade ... 44

up ... 45

war ... 45

Build Checks .. 45

Controlling Build Checks ... 45

Available Build Checks ... 45

Checks after SSB Build Expansion Phase ... 45

Checks after SSB Token Substitution Phase ... 46

Project-Specific Build Checks ... 47

Build Check Output ... 47

OWASP Dependency Check Vulnerability Detection .. 48

The Dependency Check Utility .. 48

Running the Dependency Check Utility ... 48

The suppressions.xml File .. 49

Updating the Dependency Check Utility .. 49

Further Information on the Dependency Check Utility ... 50

Services Standard Build User Guide Page 7 of 50

Services Standard Build Overview

A build process is critical to the smooth deployment to production of a configured IdentityIQ

environment. A build process helps streamline the process of promoting an IdentityIQ installation’s

configuration objects through the development, test and production environments so that all three

contain the same custom objects like applications, rules, task definitions and identity mappings. It also

allows for new custom objects and custom Java code to be integrated into IdentityIQ with a

simple, manageable set of commands that can be easily automated.

The Services Standard Build (SSB) is a set of artifacts developed by the SailPoint Services team to

support the build process for IdentityIQ deployments. These tools were designed with the following

goals in mind:

• Automate effort of generating deployments for various environments such as development,

testing, UAT, and production.

• Reduce time frame for new team members to become familiar with project structure and

customizations.

• Reduce likelihood of errors due to improper deployment of patches, efixes, and configurations.

• Accelerate the software development process with useful methods and tools that make

configuring IdentityIQ more efficient.

• Enable the SailPoint support team to quickly replicate IdentityIQ environments.

• Provide a build structure that is familiar to J2EE and servlet application developers that appeals
to a broad audience.

The SSB tools should be configured directly after installing IdentityIQ in the first development
environment for a project.

The SSB is a subset of what is known as the Services Standard Deployment (SSD). The SSB can be

downloaded as a standalone build tool, but downloading the SSD will incorporate all elements of the

SSB with some additional artifacts to help with deployment, known as the Services Standard

Frameworks (SSF), Services Standard Test (SST) and Services Standard Performance (SSP).

Configuration and use of the larger SSD and these other components is available on Compass but is

outside the scope of this document.

SSB Components

SSB scripts (build.xml, scripts/build.dev.xml, etc.) utilize Apache Ant 1.8.2, along with ant-

contrib 1.0b3 and catalina-ant (for Tomcat 7.x).

Apache Ant

This is the main build tool using XML documents as build instructions. You don’t have to do anything

special to start using Ant when using the SSB – it’s bundled right along with the other SSB artifacts (in

the lib/ant folder)!

See the project page at: https://ant.apache.org/. There is a user guide for 1.9.x and 1.10.x – these are

largely the same content that applies to the 1.8.x version used in SSB.

https://ant.apache.org/

Services Standard Build User Guide Page 8 of 50

Ant Contrib

This has extensions for Ant and custom Ant tasks (like <if><then> blocks).

See the project page for more information: https://sourceforge.net/projects/ant-contrib/files/ant-contrib/.

Catalina-Ant

If using Apache Tomcat, Ant has extensions to manage certain aspects of the servlet container -

generally this will only be used by those with more advanced SSB requirements.

While this included jar is technically part of Tomcat 7, it should work with later versions of Tomcat. If

there is any doubt, the catalina-ant.jar file can always be replaced with one for your version of Tomcat

(<tomcat install folder>/lib).

See the project page for more details if appropriate (Tomcat 8.0 example link):

https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/ant/.

Custom Ant Tasks

There are also custom Ant task extensions created by SailPoint that are bundled with the SSB that

support the build scripts. These are in servicestools/sailpoint/services/tools/ant and should

not be modified (unless there is a specific reason to do so). For more information about custom Ant

task development see: https://ant.apache.org/manual/develop.html.

https://sourceforge.net/projects/ant-contrib/files/ant-contrib/
https://tomcat.apache.org/tomcat-8.0-doc/api/org/apache/catalina/ant/
https://ant.apache.org/manual/develop.html

Services Standard Build User Guide Page 9 of 50

Process Overview

Before beginning, please ensure you have the following:

1. Access to SailPoint’s Compass (community) website: https://community.sailpoint.com/

2. Command-line access to your development and/or test servers.

a. These are the servers where IdentityIQ’s servlet container (web application server) runs.

b. This may be JBoss, Tomcat, WebSphere, or WebLogic, depending on the environment.

c. Note that command line access to your production servers is only necessary if you will

be installing IdentityIQ and migrating custom code to your production servers.

3. Ability to create a directory in the WEB-INF/bin folder of your Identity IQ installation directory on

your development server.

4. Ability to stop and start your web application server (Tomcat, JBoss, WebLogic, WebSphere,

etc.).

5. Ability to copy a directory from your development server to your test and/or production server.

The steps you will perform to complete this process are as follows:

1. Download the Services Standard Build from Compass.

2. Export the custom objects from your development environment.

a. If this is a new IdentityIQ installation, there won’t be any objects to export.

3. Set up the directory structure of the build.

4. Configure the build.

5. Run the build command.

https://community.sailpoint.com/

Services Standard Build User Guide Page 10 of 50

Downloading the Services Standard Build

First, download the latest version of the standalone Services Standard Build or the full Services

Standard Deployment from Compass.

Download the zip file with the latest version and unzip it into a file directory accessible to the

development environment. This will create the base build structure. Make note of the directory where

you have un-zipped the services standard build files; this directory will be called the “SSB Install

Directory” throughout the remainder of this guide, and you will return to it repeatedly throughout the

build process.

Folder Structure

This is the high-level folder structure of the build. The top-level directories should not be modified,

though objects will be placed into these folders, either directly or in subfolders, to be used in the build

process.

• base - Contains binaries distributed by SailPoint. You can download these from Compass.

o efix - Contains any efix archives sorted by directory name where the directory name

follows the naming convention <version><patchlevel>. If there is no patch level it will

just have the version number. Because efix solutions only work with the specific product

version they were designed for, you must make a unique directory for each version and

patch level you want to build against. If a properly named efix directory is not found, the

build will generate one. Efix files in .jar and .zip formats are supported. Efixes will be

expanded in order of the creation timestamp on the zip or jar file; files with an earlier

Services Standard Build User Guide Page 11 of 50

creation timestamp will be expanded first. In the case of filesystems that do not have

creation timestamps (Unix/Linux), the last modified timestamp will be used to define the

order of expansion.

o ga - Contains the SailPoint GA release binary. You can have as many GA release

binaries as you want to build against and the appropriate one will be selected using the

values you set in the build.properties file.

Example: /base/ga/identityiq-7.1.zip

o patch - Contains the SailPoint patch binaries. You can have as many patch binaries as

you want to build against and the appropriate patch will be selected using the values you

set in the build.properties file.

Example: /base/patch/identityiq-7.1p1.jar

• config - Contains all your custom XML configuration objects sorted by folders where each sub

directory is named by the type of top level SailPoint object it holds. In the provided example

Application, Rule, TaskDefinition and TaskSchedule directories are shown. In general, as

you customize more object types, you should add a directory to contain that object. While

writing code, try to make the separation of object types as granular as possible such that it is

easy to view all objects of a particular type. For example, instead of inserting a rule directly into

a TaskDefinition, a reference to that rule should be created and the Rule itself would live in

its own file in the Rule directory. The idea is to separate and encapsulate.

o Note: While we recommend there just be objects in directories named for that object

type (Application, Bundle, etc), there is nothing special about the directory names under

the config directory. All files under config whose names end with a ‘.xml’ suffix will be

transformed through the build and tokenization and prepared for import into

IdentityIQ. Files with other kinds of name extensions (.txt, .old, etc.) under config are

ignored by the build process.

• db - Contains customized database scripts.

• lib - Contains libraries used by the build process. It contains Java code the Ant build scripts

use, but it does not get added to your installation of IdentityIQ. Do not put additional jars here.

Put them in the web/WEB-INF/lib directory.

• scripts - Except for the master build.xml file in the root directory, all other build files are

contained in this directory. Shipped and supported build files are read-only and follow the name

convention build.*.xml. If you customize the build process you must declare your

customizations in build files that follow the naming convention build.custom.*.xml.

o Three example scripts are provided illustrate how to extend the build process with site-

specific custom scripts.

▪ scripts/example.build.custom.Extend-idAttrs.xml (Configure extended

searchable Identity attributes using the ExtendedPropertyAccessor class)
▪ scripts/example.build.custom.Modify-WEB-XML.xml (Example of generic

replacement of text in the web.xml file)
▪ scripts/example.build.custom.modify-web_xml_timeout.xml (Modify the

timeout value in web.xml)

o Custom Ant scripts can inject their own site-specific logic in one of three places:

Services Standard Build User Guide Page 12 of 50

▪ The clean target, which allows the custom Ant script take whatever actions are

necessary when resetting the builds to a clean or blank state.

▪ The post.expansion.hook target, which allows the custom Ant script to

implement site-specific logic after the build has expanded the stock IdentityIQ

war file into the build/extract directory. This is an opportunity to transform

files or alter what will end up in the finished .war file.

▪ The post.war.hook target, which allows the custom script to take any action

after the war file has been zipped together into a single file. This is commonly

used for automated copying or deployment of the war file to a file server or

repository.

o The example scripts provide guidance in their comments for readers interested in using

them as templates to create their own site-specific build script functionality. They will not

execute during the build process unless their names are changed to the

build.custom.*.xml format.

o Readers interested in learning more about how Ant works are encouraged to review

Apache Ant documentation: (http://ant.apache.org/manual/).

• servicestools - Contains the source code and an Ant project to build the services-tools.jar

which is placed in the lib directory of the build. Code compiled and placed into the services-

tools.jar is responsible for creating sp.init-custom.xml. Calling import sp.init-

custom.xml from the iiq console is an additional way to push custom objects from your <SSB

Install Directory>/config folder into your IdentityIQ database.

• src - Contains all your custom Java files. Note this Java will be compiled and placed in a jar file,

which will be placed in the main IdentityIQ installation’s WEB-INF/lib directory. It will be named

based on the customer property in build.properties. The jar will become

identityiqCustomizations.customer.jar. You should NOT "clone and own" SailPoint-

shipped classes in this area. Since they will be placed in the classpath at the same level as the

shipped classes, you may get behavior you do not expect. If you absolutely must modify a core

class, you will have to define a build.custom.*.xml file to handle layout of these files as you

are effectively defining your own efix. By default, the SSB will not acknowledge with this

practice; it is discouraged.

• web - Contains content that will be directly overlaid on the IdentityIQ folder structure. Examples

include: custom graphics/branding, xhtml, jsp, custom message catalogs, and additional jar

libraries. Under web you will need to create the folder structure for the location where these files

are normally stored. For information on custom branding for your enterprise, go here:

https://community.sailpoint.com/docs/DOC-7952.

o Example: to include custom changes to the Hibernate XML configuration file for identity

extended attributes, put your customized version of IdentityExtended.hbm.xml in this

directory nested in the full directory path: web/WEB-

INF/classes/sailpoint/object/IdentityExtended.hbm.xml.

http://ant.apache.org/manual
https://community.sailpoint.com/docs/DOC-7952

Services Standard Build User Guide Page 13 of 50

Figure 1 - Example of using "web" in the SSB folder structure

.keep Files

There are .keep files in several areas of the SSB folder structure. These are to preserve an empty

folder structure if git is used for source control (which is increasingly common). While SVN preserves

empty folders upon a check-in, git does not. Thus, a .keep file is a common way to make an empty

folder a trackable object in git.

The .keep files are stripped out of build directory of the SSB project so they are not deployed to the

web application server.

If you are not using git, these placeholder files can be removed from the core folders, but leaving them

does no harm.

Exporting Custom Objects

This section assumes that IdentityIQ has been successfully installed into a development environment

and that object definitions (e.g., applications, rules) have been created. If IdentityIQ has not been

installed in at least your development environment, please do this first. If there are no custom object

definitions to export now, skip this step and add them to the build’s <SSB install

directory>\config folder as they are created. No out of the box objects need to be added to your

build directory; they are all added to the IdentityIQ database when running import init.xml, and if

implementing the Lifecycle Manager functionality of IdentityIQ, import init-lcm.xml. However, if

you change an out-of-the-box object (ObjectConfig-“Identity” is an example of a common out of the box

object that changes when configuring identity mappings), this does need to be added to your build’s

config folder. This will ensure those changes migrate from environment to environment.

For further information on the object types that should be managed in your build, see the “Best

Practices: Deployment, Migration, Upgrade, and Artifact Management” document on Compass

here: https://community.sailpoint.com/docs/DOC-2264.

Note that there are several ways to export XML objects to the filesystem. The SailPoint Services team

now recommends using the Object Exporter task (available in the SSD or separately on Compass)

and/or the IdentityIQ Deployment Accelerator (also on Compass). However, the information below

covers the Export Script, an older method of exporting XML objects which is detailed here for reference.

https://community.sailpoint.com/docs/DOC-2264

Services Standard Build User Guide Page 14 of 50

Running the Export Script

The SSB includes an export script (called Export Script.txt), which tells IdentityIQ to export some of the

most common object classes. It exports all objects of each object type into a separate file per object

type. For example, one line of the export script is export -clean

exports/CurrentApplicationExported.xml Application. This line exports all the Application

objects into a file called CurrentApplicationExported.xml. These objects must be exported from

the development environment and included in the build directory tree to be included in the build

process. (Note: The -clean argument will tell the exporter to strip the object of all Hibernate-generated

IDs. This is important for porting objects between environments)

Use the iiq console command line utility to see the configuration objects your environment has by

type:

1. Navigate to the WEB-INF\bin folder within your IdentityIQ installation directory from a command

prompt. Enter the command iiq console once inside this directory.

2. Enter the command list to see all the object types or classes.

3. Enter list <objectType> to see all the objects of that type in your environment.

If your environment has configuration object types not covered in the object classes listed in the export

script, edit the file to add more export commands, following the syntax of the provided lines:

export -clean exports/CurrentObjectClassNameExported.xml <ObjectClassName>

Copy the ExportScript.txt from the <SSB install directory> directory you unzipped earlier.

Paste this text file into the WEB-INF\bin folder of your IdentityIQ installation directory. Also, create a

folder called exports in the WEB-INF\bin folder.

Services Standard Build User Guide Page 15 of 50

Navigate back to the WEB-INF\bin folder within your IdentityIQ installation directory from a command

prompt. Launch the console by entering the command iiq console.

When you see the > prompt, enter the command source ExportScript.txt. This will run the export

script and export all your environment’s configuration objects into the exports folder you just created.

Many installations choose to split the export files into multiple files, storing each individual object in its

own XML file. This practice is recommended, but not required. This makes it easier in the future to

track exactly which objects have been changed between releases.

Services Standard Build User Guide Page 16 of 50

There is a Perl script on Compass that will perform the object separation. It is located here:

https://community.sailpoint.com/docs/DOC-2103.

To split the objects up manually, copy an object’s entire definition into a separate file, wrapped in the

following header, opening, and closing tags:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE sailpoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<sailpoint>

<Put Object Definition Here>

</sailpoint>

Place each xml object into its respective class folder. The recommended naming convention for each of

these object files is ObjectType-Name.xml. For example, CurrentApplicationExported.xml would

be split into Application-ActiveDirectory.xml and Application-PeopleSoft.xml, etc.

https://community.sailpoint.com/docs/DOC-2103

Services Standard Build User Guide Page 17 of 50

Build Structure Set-up

Configuration Objects

For the build process, all your environment’s configuration objects should be placed into the <SSB

install directory>config directory. Inside of this config folder, create a folder for every object

class you exported. Folders for some objects -- Application, LocalizedAttribute, Rule,

TaskDefinition, and TaskSchedule already exist as examples.

Place your exported xml files into their respective folders. For example, place the exported Application

files into the <SSB install directory>\config\Application folder.

IdentityIQ Product Files

The build process will rebuild IdentityIQ for deployment into the target environment, merging the

product zip files, patch jar files, and your custom artifacts. So next, you must put the desired product

version zip files and patch jar files into the build directory tree.

Copy the zip file for the IdentityIQ version you are using into the <SSB install directory>\base\ga

folder. Zip files can be downloaded from Compass if needed. NOTE: Multiple IdentityIQ zip files can

coexist in this directory; a variable in the build.properties file for each environment determines

which .zip file the build process will use.

If you are running a patched version of IdentityIQ, place the patch .jar file for your installation into the

<SSB install directory>\base\patch folder. Again, multiple patch jar files can coexist in this

directory and the build.properties file specifies which to use in the build (with the IIQPatchLevel

variable). All patch .jar files can be downloaded from Compass as well.

If you have any efixes for your current patch, be certain to copy those to an appropriate efix directory

and remember to check them into your revision control system if you are using one on your project.

Plugins

The SailPoint Plugin Framework is an extension framework model for IdentityIQ which enables third

parties to develop rich application and service-level enhancements to the core SailPoint platform. For

supported versions of IdentityIQ (7.1 and higher), plugins may be added to the build so that they will be

built and/or automatically installed or uninstalled.

Build/Compilation of Plugins

The SSB build process can build and compile plugins automatically from the plugin source code. This

requires that the plugins are placed under the pluginsrc folder at the root of the SSB, under a

subfolder named for each plugin. In addition, the components of the plugin must be located in specific

subfolders as shown in the table below.

Services Standard Build User Guide Page 18 of 50

Subfolder Description

pluginsrc/<PluginName>/db Contains the database scripts for the plugin (within
install, uninstall and upgrade subfolders)

pluginsrc/<PluginName>/import Contains the XML artifacts to be imported

pluginsrc/<PluginName>/lib Contains any extra jar files that will ship with the plugin

pluginsrc/<PluginName>/src Contains the source code for the plugin (in package
subfolders)

pluginsrc/<PluginName>/ui Contains the UI elements of the plugin (such as images,
CSS files, HTML templates, and JavaScript)

pluginsrc/<PluginName>/manifest.xml Mandatory file that defines plugin parameters

For more information on each of these components, please refer to the Plugin Developer Guide for

IdentityIQ at https://community.sailpoint.com/docs/DOC-7562.

Plugins configured correctly under the pluginsrc folder will be built and compiled by the SSB. When

building plugins with the SSB there is no need for the separate build.xml or build.properties files

described in the Developer Guide.

Plugins will be built to the build/plugins folder when the main build is executed. The plugin zip file

will be located in the build/plugins/<PluginName>/dist folder. It will also be copied to the

web/plugins/system/SSB/install folder in the IdentityIQ build for automatic deployment (see

below).

Automatic Deployment of Plugins

Automatic deployment of plugins relies on the presence of a ServiceDefinition xml file to be imported

with the build, and a Jar file which contains a service that manages plugin installation and removal.

The files are in the following locations in the SSB:

config/ServiceDefinition/SSB_PluginImporterService.xml

web/WEB-INF/lib/ssb-plugin-importer.jar

In addition, the deployPluginImporter property in the build.properties file must be set to true.

If the plugin is not being compiled as part of the build process (see above) and you already have a

plugin packaged in a zip archive file, you can automatically deploy it by placing the zip file in the correct

location. If the plugin is being compiled by the build process, the zip file will automatically be created

and deployed.

To have IdentityIQ install a plugin, place the plugin archive in the web/plugins/system/SSB/install

folder of your SSB build. The following points apply for installing plugins in this way:

• Installation of any plugins in the install folder of the deployed build will be attempted on

server start and thereafter once per day

• If the plugin is already installed it will not be reinstalled

• If the version of the plugin in the install folder is newer that the existing installed plugin it will

be upgraded.

https://community.sailpoint.com/docs/DOC-7562

Services Standard Build User Guide Page 19 of 50

To have IdentityIQ uninstall a plugin, place the plugin archive that matches the installed plugin version

in the web/plugins/system/SSB/uninstall folder of your SSB build. The following points apply for

uninstalling plugins in this way:

• An attempt will be made to uninstall any plugins in the uninstall folder of the deployed build

on server start and thereafter once per day

• If the plugin is not currently installed it will be ignored

• If the installed plugin is a different version than the plugin present in the uninstall folder the

plugin will not be uninstalled.

The frequency at which the install and uninstall folders are searched for plugins can be varied by

modifying the number of seconds defined in the interval property of the PluginImporter

ServiceDefinition object.

JDBC Drivers

A common practice with any IdentityIQ deployment is to update the JDBC driver used specific to your

database management system. This can help to avoid issues with performance and with vulnerabilities

associated with outdated versions of the driver. A guide on Compass outlines this procedure:

https://community.sailpoint.com/docs/DOC-4111.

Note when a JDBC driver is put in the SSB project folder area web/WEB-INF/lib, the developer should

check to remove the out-of-the-box JDBC driver by having the older jar deleted at build. This will ensure

that a deploy includes only the latest JDBC jar specific to your environment.

First, get your updated JDBC driver and place it in the web/WEB-INF/lib area of the SSB project. For

SQL Server, this might be sqljdbc42.jar. Run a build clean main target set and check the

build/extract/WEB-INF/lib folder for legacy jar files for your database system. In this example, that

may be sqljdbc4.jar (the default SQL Server driver that comes with IdentityIQ 7.0). Take note of the

jar file (generally is only one) and adjust the main target in build.xml.

Add a line to the main target (near top of target, there are a few of them already) like this:

<delete file="${build.web-inf.lib}/sqljdbc4.jar"/>

In this example sqljdbc4.jar was used – each installation may differ. This is one exception where

modifying the default SSB build file makes sense – usually the default targets and build files should not

be modified.

https://community.sailpoint.com/docs/DOC-4111

Services Standard Build User Guide Page 20 of 50

Build Configuration

Configuring the build.properties file

The build.properties file is a crucial configuration file that specifies many important configuration

arguments, like the version of IdentityIQ you are running, the Customer name, and the path to your

IdentityIQ installation. Without this information, the build cannot run successfully.

Now configure the build.properties file found in the <SSB install directory>. Use your favorite

text editor to edit this file.

Services Standard Build User Guide Page 21 of 50

Set properties in the build.properties as described in the table below.

Variable Description Required?

IIQVersion Specify the base version of
IdentityIQ that you are building, e.g.
6.0, 6.1, 6.2, 6.3, 6.4, 7.0, 7.1

Yes

IIQPatchLevel If you want to deploy a patch
version, specify what level with pX
syntax, e.g. p1 or p6.
If you are deploying only the GA
version, leave this blank.

No, only if deploying a patch version

IIQHome The home directory of the IdentityIQ
web application in your
sandbox/development environment.
When using the deploy build

target, the IIQHome property tells

the build where to deploy your
custom IdentityIQ installation.

No, only when using deploy target

customer The name of the client or project
phase. The build will create a .jar
file, compiling all .java code in the
build’s src folder and name that jar
identityIqCustomizations.C

ustomer.jar.

Yes

jdk.home The path on your system to the
Java Development Kit (jdk) you
want to use to compile any custom
Java code you may have developed
as part of your IdentityIQ
configuration. As with all system
paths, if there are spaces in your jdk
path, put the entire path in double
quotes. In lieu of this, you can set
the JAVA_HOME environment

variable for your OS.

No

runCustomScripts (true/false) Generally, the default
SSB build scripts are not meant to
be modified directly. The main build
has two hook points after file layout
and after war creation where you
can execute customized build
scripts. This flag indicates if these
customizations should be executed.

Yes, leave as false if unsure

runCodeChecks If set to true, checks as defined in
the Build Checks section of this
document are performed.

No

codeCheck.namingConvention Defines a naming convention used
by the checks described in the Build
Checks section of this document.

No

application.server.host The IP address of your application
server in your
sandbox/development environment

No, only when using cycle or

importcycle build targets

application.server.port The port the application server is
running on. For example, 8080 is
the Tomcat default.

No, only when using cycle or

importcycle build targets

Services Standard Build User Guide Page 22 of 50

application.server.start
Script to start the application server.

Since there are so many different
application servers we leave it to
you to write a script that starts and
stops the server, sets up JVM
parameters etc. Many application
servers already ship with these but
you can specify which ones you
want to use here. This script (and
the stop script below) is used in
development targets that include
steps to cycle the application server
for you.

No, only when using cycle,

importcycle, up, or down targets

application.server.stop Script to stop the application server.
No, only when using cycle,

importcycle, up, or down targets

db.url The JDBC URL to your local
database. No, only when using targets

createdb, dropdb, extenddb,

initial-build, etc.

db.userid Database user with create and drop
schema privileges (e.g. root on

MySQL). NOTE: Supply this
parameter only for low-risk, non-
production environments (e.g.
sandbox/development), as it is not
designed for production
environment use at this time.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.password The password for the root DB user.
Not supported as an IdentityIQ-
encrypted string at this time. NOTE:
Supply this parameter only for low-
risk, non-production environments
(e.g. sandbox/development), as it is
not designed for production
environment use at this time.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.driver The class of the JDBC driver to use
for SQL connections. This is the
same value you would put in your
iiq.properties file, as

instructed in the IdentityIQ
Installation Guide.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

iiq.path The installation directory within the
application server directory of the
IdentityIQ application. Usually /iiq

or /identityiq

Yes

db.type One of these values: db2, mysql,

oracle, sqlserver; used to pick

which database scripts to run

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.name Name of the IdentityIQ database No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

Services Standard Build User Guide Page 23 of 50

db.userName Name of user account that will be
created using the DB script

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.userPassword Password of user account that will
be created using the DB script. Not
supported as an IdentityIQ-
encrypted string at this time. NOTE:
Supply this parameter only for low-
risk, non-production environments
(e.g. sandbox/development), as it is
not designed for production
environment use at this time.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.sqlserver.checkpolicy SQL Server setting that defines
whether Windows password policy
should be checked when creating a
login for SQL authentication. Default
is off.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.sqlserver.loginName
plugin.db.sqlserver.loginName

SQL Server has an additional item
created in the script for the Login
name, which is separate from the
user name. Specify that here.

IdentityIQ 7.1 and SSB v4 added
the
plugin.db.sqlserver.loginN

ame for the plugin DB.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.db2.databaseName
db.db2.bufferpool
db.db2.tableSpaceName

DB2 requires a separate database
name and file/bufferpool for its
scripts. Specify those values here.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

db.oracle.createUser
db.oracle.createTableSpace
db.oracle.tableSpaceName
db.oracle.tableSpacePath
db.oracle.useFastDropScript

For the createdb/dropdb scripts

for Oracle, we have the option to
uncomment the lines that create the
tablespace and user, as well as
removing them. These variables
need to be set to enable that.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

installJavaMelody If using JavaMelody, set this to true
to gather SQL statistics in Oracle

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

override.safety.prompts Certain dangerous build targets like
dropdb will prompt the user for

confirmation before executing. If
you are using the build to make test
cases you may want to turn off
these prompts.

Yes, leave as false if unsure

installDate For the export target, the original

install date string that we can use to
determine new or changed objects.

No, only if using the export target

manager.url URL to the tomcat manager script
interface; Prior to Tomcat Version 6
the URL is usually /manager but

post Version 6 it is
/manager/text.

Only if deploying using Tomcat
application server

Services Standard Build User Guide Page 24 of 50

manager.login A user who has the manager-

script role in the Tomcat

manager application. For
information on how to set this up
check out:
 http://tomcat.apache.org/tomcat-
7.0-doc/manager-
howto.html#Executing_Manager_C
ommands_With_Ant

Only if deploying using Tomcat
application server

manager.pw The password for the above
account. Only if deploying using Tomcat

application server

tomcat.home Set this to the value of
CATALINA_HOME you want to use

when starting and stopping Tomcat

Only if deploying using Tomcat
application server

usingLcm If your implementation includes
Lifecycle Manager, you can ensure
that it is included in your project
build by setting the usingLcm

property to true. This will insure

that init- lcm.xml is imported if

the target import-lcm is called

directly or indirectly.

Yes

console_user Username used by
importdynamic (and other targets

utilizing import functionality) to
access the console.

 See section: Non-default spadmin
password and importing artifacts

console_pass Encrypted password used by
importdynamic (and other targets

utilizing import functionality) to
access the console.

See section: Non-default spadmin
password and importing artifacts

updateLog4jLoggers If set to true, the

log4j.properties file in WEB-

INF/classes will be updated

during the build process with a line
for every logger that is found in
BeanShell code in the XML files or
in custom Java source code. These
lines will be commented out. This
helps during troubleshooting when a
logger needs to be enabled but the
name of the logger is not known
without looking it up in the code. To
enable a logger the appropriate line
just needs to be uncommented in
log4j.properties and set to the

required log level before refreshing
the logging configuration in
IdentityIQ.

No

usingDbSchemaExtensions This switch enables the extenddb

target to be run. It would be enabled
(true) if

IdentityExtended.hbm.xml (or

Only if you plan to use the
extenddb or initial-build

targets

http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Executing_Manager_Commands_With_Ant
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Executing_Manager_Commands_With_Ant
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Executing_Manager_Commands_With_Ant
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html#Executing_Manager_Commands_With_Ant

Services Standard Build User Guide Page 25 of 50

similar object hbm.xml) was
customized with named columns
and placed in web/WEB-

INF/classes/sailpoint AND

ObjectConfig for a matching

object was customized. Default is
false.

plugin.db.name
plugin.db.userName
plugin.db.userPassword

These mirror the “normal” db.name

and similar settings. These were
introduced in SSB v4 to handle the
IdentityIQ 7.1 plugin DB.
The password is not supported as
an IIQ-encrypted string at this time.
NOTE: Supply these parameters
only for low-risk, non-production
environments (e.g.
sandbox/development), as they are
not designed for production
environment use at this time.

No, only when using targets
createdb, dropdb, extenddb,

initial-build, etc.

deployPluginImporter If set to true and the version of

IdentityIQ being deployed is 7.1 or
higher, the PluginImporter

ServiceDefinition object will be
deployed, enabling plugins to be
automatically installed from the
filesystem.

No

Note that there are also some other variables in the build.properties file that start with deploy, such

as deploySSF, deployGenericImporter and deployObjectExporter. These are only used in the full

SSD to define which of the SSD components and tools should be deployed in the build. In the stand-

alone SSB they are not used.

Supporting multiple platforms (Windows/Linux/Unix) for different environments

If your installation uses different operating systems for different stages of IdentityIQ development – for

example, Windows for sandboxes and Linux for Test and Production servers – you must configure

multiple build.properties files.

The generic build.properties file described above loads the defaults for the build with respect to the

path to Java binaries, IdentityIQ version and other details. These can be overridden on a per-server or

per-environment basis by specifying another properties file with properties that just apply to one server

or one environment. Each server or environment used in development and testing can override the

settings in build.properties by using its own <hostname>.build.properties or

<environment>.build.properties file. For example, if your host is named sailsandbox then the

properties file unique to that server would be called sailsandbox.build.properties. Or if your

environment (SPTARGET) is called dev you could have dev.build.properties. The server or

environment’s properties file has exactly the same format and fields as the build.properties file

described in the previous section and only has to specify the fields that it wants to override with values

that are different from the default build.properties file’s values. If you are running a build on a

Services Standard Build User Guide Page 26 of 50

server that has its own server-specific version of build.properties for an environment that has its

own environment-specific version, the server-specific values override the environment-specific values,

which in turn override the generic build.properties file. If you have servers or environments with

identical build.properties, do not create server-specific or environment-specific files. Put those

values in build.properties. The build will recognize that there is no file specific to the server or

environment, and will use build.properties as the default.

Note: Prior to version 4 of the SSB build.properties.<environment> or

build.properties.<hostname> were supported. Note those naming conventions, while still

supported, have been deprecated and may be removed in a future release of the SSB. This has been

done to further standardize the naming convention of various SSB host- and environment-specific

artifacts. This also means the .properties extension is recognized by various properties-aware

editors.

Non-default spadmin password and importing artifacts

The default spadmin username and encrypted password are set using the console_user and

console_pass properties in build.properties.
Username and encrypted password used by importdynamic to access the console.

This can be removed, in which case the user will be prompted for credentials.

console_user=spadmin

console_pass=1:p+qvPBo4Rig8PYlNWbr3Zg==

These can be used to inject credentials when targets using console iiqBeans are employed. This

may involve several targets like: import-custom, import-stock, import-lcm, import-all,

importdynamic, deploy, importcycle, etc.

Use the console command iiq encrypt <password> to get the encrypted value of your password to

use here. Alternatively, the console_user and console_pass lines can be removed from

build.properties, which will force the user to enter them each time importdynamic (or a similar

target using import functionality) is run.

Setting up environment-specific properties files

The goal of the build process is to create a uniform Identity IQ distribution process for all environments

(development, test, and production), but each environment will need many different parameters that are

specific to that environment, such as login usernames, IP addresses, passwords, database connection

strings etc. It is important that the build process can perform substitution of these values for each

environment, as well as ensuring connection to the right IdentityIQ database and, where necessary,

including or excluding files from an environment-specific build.

Configuring iiq.properties files

The iiq.properties file contains properties used by IdentityIQ for connecting to and interacting with

its own database. Your build environment can specify different iiq.properties files for the build to

use for deploying to each target environment. Create separate <environment>.iiq.properties files

Services Standard Build User Guide Page 27 of 50

for each environment by copying and editing the product iiq.properties, and place them in the build

directory (wherever you unzipped the SSB).

1. Download the product image

2. Expand the idenitityiq-<version>.zip

3. Expand the identityiq.war

4. Copy the iiq.properties to the SSB <environment>.iiq.properties file.

a. For example Copy WEB-INF/classes/iiq.properties to sandbox.iiq.properties

For example, if your environments are sandbox, test, UAT and prod, you would have four files each

containing the iiq.properties that know how to connect to the database server in that environment.

This way you can support different properties for different environments, such as having a direct

connection in sandbox and test while having a JNDI named connection in UAT and production. When

creating these <environment>.iiq.properties files, use the iiq.properties file that ships with

your IdentityIQ version’s .zip file and edit as appropriate for the environment.

Example file names:

sandbox.iiq.properties

test.iiq.properties

UAT.iiq.properties

prod.iiq.properties

Example test.iiq.properties file (yours may differ due to IdentityIQ version changes):

iiq.properties #####

(c) Copyright 2008 SailPoint Technologies, Inc., All Rights Reserved.

This file contains configuration settings for IdentityIQ. For your unique

environment, you will need to adjust the username and password properties on

the dataSource below and uncomment the applicable database settings.

Data Source Properties #####

dataSource.maxWait=10000

dataSource.maxActive=50

dataSource.minIdle=5

#dataSource.minEvictableIdleTimeMillis=300000

#dataSource.maxOpenPreparedStatements=-1

dataSource.username=root

dataSource.password=root

MySQL 5 #####

URL Format:

dataSource.url=jdbc:mysql://<host_name>:<port>/<dbname>?useServerPrepStmts=true&tin

yInt1isBit=true&useUnicode=true&characterEncoding=utf8

dataSource.url=jdbc:mysql://localhost/identityiq?useServerPrepStmts=true&tinyInt1is

Bit=true&useUnicode=true&characterEncoding=utf8

dataSource.driverClassName=com.mysql.jdbc.Driver

sessionFactory.hibernateProperties.hibernate.dialect=org.hibernate.dialect.MySQL5In

noDBDialect

Services Standard Build User Guide Page 28 of 50

Setting for the BSFManagerPool set on the ruleRunner

bsfManagerFactory.maxManagerReuse=100

bsfManagerPool.maxActive=30

bsfManagerPool.minEvictableIdleTimeMillis=900000

bsfManagerPool.timeBetweenEvictionRunsMillis=600000

Debug Settings #####

Uncomment to send all SQL queries to std out. This provides a lot of output

and slows down execution, so use it wisely.

#sessionFactory.hibernateProperties.hibernate.show_sql=true

Hibernate Transaction Isolation Levels

1 = Read Uncommitted, 2 = Read Committed, 4 = Repeatable Read, 8 = Serializable

#sessionFactory.hibernateProperties.hibernate.connection.isolation=1

Configuring target.properties files

It is important to configure environment-specific properties files that the SSB can use to do token string

replacements in the objects during the build process. The SSB will automatically look for tokenized

strings in your custom configuration XML and substitute the appropriate values per environment. A

target.properties file should be created for each environment, containing key/value pairs for token

substitution during build time. The name of each target.properties file should be in the format

<environment>.target.properties.

Examples:

sandbox.target.properties

test.target.properties

UAT.target.properties

prod.target.properties

Each file is just a list of key/value pairs. The build’s convention is that the keys follow a %%KEYNAME%%

pattern.

For example, you may have an Active Directory application configuration that looks like this:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE sailpoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<sailpoint>

<Application authoritative="true" connector="sailpoint.connector.ADLDAPConnector"

featuresString="AUTHENTICATE, MANAGER_LOOKUP, SEARCH, UNSTRUCTURED_TARGETS" name="AD"

profileClass="" type="Active Directory">

 <Attributes>

 <Map>

 <entry key="IQServiceHost" value="iqservicehost.example.com"/>

 <entry key="IQServicePort" value="5051"/>

 <entry key="password" value="2:omj3oouHSFb7dIPItTjNIgBCeZjxP+Vr9TewSXIIbxs="/>

 <entry key="managerCorrelationFilter">

 <value>

 <Filter operation="EQ" property="DN" value="manager"/>

 </value>

 </entry>

Services Standard Build User Guide Page 29 of 50

 <entry key="user" value="productionADuser"/>

 <entry key="groupHierarchyAttribute" value="memberOf"/>

 <entry key="authorizationType" value="simple"/>

...

Note that the password has been encrypted using the iiq encrypt utility; you should always do this,

especially if the password values are being stored in a properties or XML file that is part of a build
stored in a location where it may be accessible by users who do not need to know it.

To support deploying the same XML artifact to multiple environments, you would substitute passwords,
ports, etc. with keys that will go in your <environment>.target.properties file, so your application

configuration file instead looks like this:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE sailpoint PUBLIC "sailpoint.dtd" "sailpoint.dtd">

<sailpoint>

<Application authoritative="true" connector="sailpoint.connector.ADLDAPConnector"

featuresString="AUTHENTICATE, MANAGER_LOOKUP, SEARCH, UNSTRUCTURED_TARGETS" name="AD"

profileClass="" type="Active Directory">

 <Attributes>

 <Map>

 <entry key="IQServiceHost" value="%%AD_IQSERVICE_HOST%%"/>

 <entry key="IQServicePort" value="%%AD_IQSERVICE_PORT%%"/>

 <entry key="password" value="%%AD_PROXY_PASSWORD%%"/>

 <entry key="managerCorrelationFilter">

 <value>

 <Filter operation="EQ" property="DN" value="manager"/>

 </value>

 </entry>

 <entry key="user" value="%%AD_PROXY_USER%%"/>

 <entry key="groupHierarchyAttribute" value="memberOf"/>

 <entry key="authorizationType" value="simple"/>

...

Then, for example, in the file prod.target.properties you would have:

%%AD_IQSERVICE_HOST%%=iqservicehost.example.com

%%AD_IQSERVICE_PORT%%=5051

%%AD_PROXY_USER%%=productionADuser

%%AD_PROXY_PASSWORD%%=2:omj3oouHSFb7dIPItTjNIgBCeZjxP+Vr9TewSXIIbxs=

… and so on for each of your environments.

If a token exists in an XML artifact but there is no corresponding token in the target.properties file,

the build process will prompt the user for the value that should replace the token. The token will then

be created in the target.properties file and its value replaced in the resulting XML file during the

build.

Configuring “secret” target.properties files for storing sensitive token values

In the above example, a username and an encrypted password are stored in the target.properties file.

Some customers may consider even the encrypted password to be too risky to store in a file on their

version control repository or other location where it could be accessed by users who do not need to

know this password. Other values may also be considered too sensitive to store in that location. By

Services Standard Build User Guide Page 30 of 50

using a “secret” target.properties file, the sensitive values can be stored in a separate file, and this file

can then be excluded from the version control system and moved to a more secure location. A trusted

user managing the build process can be given access to this file and can use it in a local copy of the

SSD so that the sensitive tokens can be used when creating the build. The name of the file used for

the “secret” target.properties file should be in the format <environment>.secret.target.properties

and the values stored in it will be used to replace the tokens in the XML file in the same way as the

regular target.properties file.

In the above example, the %%AD_PROXY_USER%% and %%AD_PROXY_PASSWORD%% tokens may be

considered too sensitive to be stored in the main target.properties file and would be removed, so that

the prod.target.properties file would only have these values for the AD application:

%%AD_IQSERVICE_HOST%%=iqservicehost.example.com

%%AD_IQSERVICE_PORT%%=5051

The sensitive tokens would then be stored in a file called prod.target.secret.properties:

%%AD_PROXY_USER%%=productionADuser

%%AD_PROXY_PASSWORD%%=2:omj3oouHSFb7dIPItTjNIgBCeZjxP+Vr9TewSXIIbxs=

The build process will first attempt to replace tokens found in XML files using corresponding values
found in the target.properties file, followed by any others found in the secret.target.properties file.

Configuring Subset Builds with includefiles.properties files

Depending on a customer’s preferred processes for deploying changes to IdentityIQ, it is sometimes
useful to be able to define a ‘subset’ build, which only includes a specific set of XML files to import into
an existing IdentityIQ environment, without deploying an entire build. This can be achieved by using an
includefiles.properties file specifying the set of XML files to include in the subset build; all other

XML files will be excluded from the subset build.

To enable subset builds as part of a regular SSB build, set the buildSubset property to true in the

build.properties file:

buildSubset=true

Create an includefiles.properties file for each environment where you want to create a subset build. A
sandbox example file is provided with the build (sandbox.includefiles.properties). You can copy,

paste, and rename this file for all your environments as a template to get started.

See the provided file for an example of how to populate the list of files that will be included in each
environment.

The file naming pattern is <environment>.includefiles.properties. For instance:

prod.includefiles.properties or test.includefiles.properties.

On running a build, a subfolder called subset will be created under the build folder. This will have a

WEB-INF/config/custom folder structure where the subset XML files are located. There is also a

sp.init-custom.xml file under WEB-INF/config that references the files as ImportAction lines so that

when this file is imported, all the subset files will be imported. The folder structure should be copied to

Services Standard Build User Guide Page 31 of 50

an IdentityIQ server and overlaid over the existing WEB-INF folder in the IdentityIQ application, and the

sp.init-custom.xml file imported.

For convenience of copying the subset to a server, a zip file of the subset folder structure is created
under the build/deploy folder after running a build. This is named identityiqSubset.zip.

Note that the subset build is only useful for deploying specified XML objects to an existing IdentityIQ
system and does not include any items that reside on the filesystem, such as IdentityIQ product files,
custom Java code or branding. It is not a substitute for the full build process.

Configuring ignorefiles.properties files

The build process can be configured to define certain XML files that should be skipped during the
import for a specific environment. Implement this by creating a text file for each environment where you
want to skip the import of specific files. A sandbox example file is provided with the build
(sandbox.ignorefiles.properties). You can copy, paste, and rename this file for all your

environments as a template to get started.

See the provided file for an example of how to populate the list of files that can be ignored in each
environment.

The file naming pattern is <environment>.ignorefiles.properties. For instance:

prod.ignorefiles.properties or test.ignorefiles.properties.

It is recommended to have an ignorefiles.properties file for each environment the SSB manages.

The SSF (Services Standard Framework) comes with a template ignore file called
ssf.ignorefiles.properites that may contain important information (depending upon features

used). Refer to the related SSF guide for more detail. Whatever the application of an ignore file, there is
only one per environment, and it can contain a large number of items.

This feature has multiple uses. Below are a few examples:

• Configure different applications with the same name that contain entirely different XML contents
and connector configurations in your development versus UAT and production environments

o For example, you could use a JDBC application to simulate Active Directory in your
sandbox environment but use a “proper” Active Directory application in your UAT and
production environments

• Selectively load temporary or testing applications in your sandbox or development environments
and not load those applications in your UAT or production environments

• Load quick link objects into certain environments and redact them from others, allowing
customization of dashboard configurations for each environment

• Utilize different system configuration files across your environments by redacting different
configuration files from each environment's build

Note: Care should be taken when choosing which files to ignore in specific environments. One goal of
the SSB is to synchronize the configuration elements across development, UAT/test, and production
installations of IdentityIQ. Using this feature intentionally creates configuration drift, and it should be
thoughtfully managed.

Configuring log4j.properties files

Log4j is used for IdentityIQ logging, with the loggers and log levels defined in the log4j.properties file. It

is possible to define a custom log4j file with a name in the format

Services Standard Build User Guide Page 32 of 50

<environment>.log4j.properties for each environment. This file should be at the root of the

build and will be copied as log4j.properties to the WEB-INF/classes folder in the resulting build for a

specific environment.

Note that if you also have the “updateLog4jLoggers” property set to “true” in build.properties (see

“Configuring the build.properties file” above), the resulting log4j.properties will include the entries in the

environment-specific log4j.properties file as well as commented-out loggers discovered from BeanShell

code in XML artifacts or from Java source code in the build.

Configuring deployment of encryption keys for each environment

IdentityIQ can be configured to use site-specific encryption keys for encrypting and decrypting

passwords, and this is considered best practice. This makes use of the IdentityIQ keystore, and with

this feature enabled a password used on one site cannot be decrypted on another site without having

the site-specific encryption keys. It is also recommended to use different encryption keys for each

environment. Information on the keystore and its configuration can be found in the IdentityIQ

Administration Guide, and additional details are available at https://community.sailpoint.com/docs/DOC-

2031.

Once the keystore is configured for an IdentityIQ environment, the keystore files are stored in the

following default locations on each server:

WEB-INF/classes/iiq.cfg

WEB-INF/classes/iiq.dat

The SSB can manage deployment of keystore files only if they are stored in the default location. Some

customers place the files in a location external to the IdentityIQ application and reference their location

in the iiq.properties file. This can enhance security by limiting filesystem access to this location to

specific trusted users, but the SSB will not be able to manage the keystore in these cases, although it

will still be possible to specify the location of the files in the environment-specific iiq.properties file using

the keyStore.file and keyStore.passwordFile properties (see the documentation).

It is also important to point out that if you choose to let the SSB manage deployment of the keystore

files they will need to be stored in the build files on the filesystem. Usually, the build will be committed

to a version control system repository, and this may result in the keystore files being available to users

who should have access to the main build files but should not be given access to the keystore.

The decision to allow the SSB to manage the deployment of the keystore files rests with the customer,

and if the access to the build can be protected it is a convenient way to push the keystore files out with

the build. If this is not done, the keystore files will need to be stored in an external location or copied

manually to the default location on each server after deploying a build.

To manage the deployment of the keystore files, prefix their names with ‘<environment>.’ and place

them at the root of the build. For example:

prod.iiq.cfg

prod.iiq.dat

https://community.sailpoint.com/docs/DOC-2031
https://community.sailpoint.com/docs/DOC-2031

Services Standard Build User Guide Page 33 of 50

The files will be deployed in the resulting build as:

WEB-INF/classes/iiq.cfg

WEB-INF/classes/iiq.dat

Setting the environment name for a build

After configuration of the environment-specific properties files, the build process needs to be told which
environment to build for. This can be done by the use of the SPTARGET environment variable or

alternatively by using a mapping in the servers.properties files.

Note that when both methods are employed, the SPTARGET environment variable “wins”. This is by

design to provide on-the-fly flexibility.

Using the SPTARGET environment variable to specify the build environment

The SPTARGET environment variable will dictate which <environment>.iiq.properties file,

<environment>.target.properties file, <environment>.ignorefiles.properties and (where

configured) <environment>.build.properties file to use. Here is an example of using the SPTARGET

environment variable on a Linux system to create a dev, test, and prod war file. See the next section

for more details on executing the build.

./build.sh clean

export SPTARGET=dev
./build.sh war
mv identityiq.war identityiq-dev.war

export SPTARGET=test
./build.sh war
mv identityiq.war identityiq-test.war

export SPTARGET=prod
./build.sh war
mv identityiq.war identityiq-prod.war

Setting the target variables by editing servers.properties

If the SPTARGET environment variable is not set, the build process will attempt to find the environment

name by using the servers.properties file, mapping the host where the build is being executed to an

environment name. It is common for deployments to specify each environment’s hostnames in the
servers.properties file to support running the build on every server in the environment. This tells

the build which environment you want to use, which depends on the name of the server running the
build. This is an example of a servers.properties file:

Services Standard Build User Guide Page 34 of 50

Replace YOURMACHINENAME with your sandbox hostname, SAILPTAPP with your production hostname,

etc. The build will detect the hostname of the machine on which you are running the build script, and

apply sandbox.target.properties if you are running the build on your sandbox. There can be

multiple hosts pointing to the same target (e.g. if you have 2 prod application servers, you might have 2

hostnames (1 per line) pointing to prod).

Note: The hostnames used in servers.properties are case-sensitive. To get the proper value, you

need to check an environment variable for each host entry. For Windows, use the value exactly as
specified by the COMPUTERNAME environment variable (e.g. echo %COMPUTERNAME%). For

Linux/Unix/Mac, use the value exactly as specified by the HOSTNAME environment variable (e.g. echo

$HOSTNAME).

Executing the Build

Once you have performed all the steps in the previous sections, you are ready to build. If you are using
the servers.properties file to define the build environment name, copy your entire build structure

and add it to your new environment. Otherwise, set the SPTARGET environment variable to the correct

target environment name on the host that will run the build. This helps to ensure that environment-
specific variables defined in <environment>.iiq.properties, <environment>.target.properties

and <environment>.ignorefiles.properties will be added to your war file. Ensure your

build.properties file is configured to match the environment.

A common approach to copying the entire build to a new server is to check in the entire build (and all
the files, directories, and artifacts included with it) into a revision control system like SVN, CVS, Git or
TFS. Tools like these can automate checking out the entire current copies of set of files onto new
target servers. More basic installations sometimes simply "zip up" the entire set of artifacts and transfer
one file to the new target server (e.g. a generated war file, as demonstrated later in this section). As a
best practice, SailPoint strongly recommends using a revision control system if one is available. If
existing source control is not available, git could be easily used to create a stand-alone, offline
repository for tracking with no additional architecture.

To create a custom IdentityIQ war file (J2EE Web Application Archive) that can be deployed to a web

application server such as Tomcat, you can perform the following steps.

• Open a Terminal or Command Prompt window

• Navigate to <SSB install directory>\

• Enter build war

• This will generate a deployable war file in your <SSB install directory>\deploy folder and

you will receive a confirmation message like the one below:

war:

 [war] Building war:

/home/workspace/SSB/build/deploy/identityiq.war

 [echo] A MD5 checksum was generated for this war file and

placed in the war file directory. Keep this checksum to diagnose

potential version issues

BUILD SUCCESSFUL

Services Standard Build User Guide Page 35 of 50

• Deploy this file to the target web application server. You may need to consult your application

server’s deployment guide for details. For Tomcat:

o Copy this custom identityiq.war to a folder under <Tomcat>/webapps

▪ (e.g. <Tomcat>/webapps/identityiq)

o Navigate to that directory and expand the war: jar xvf identityiq.war

o Delete the war file once you have expanded it

If this is a new deployment (and you don’t need to do a repeatable build – if so, see next heading) or if

the build is an upgrade of the IdentityIQ version running on that server, you will need to perform

additional actions to create the IdentityIQ database and tables or upgrade the system; consult the

IdentityIQ Installation Guide for details as needed. Otherwise you are ready to use your customized

IdentityIQ application.

If you wish to update any custom objects and redeploy them to IdentityIQ you can perform the following

steps. Open a terminal or command prompt window,

• Navigate to the <SSB install directory> folder and enter build importdynamic. This

command will import all the custom XML artifacts from your config folder into IdentityIQ. It will

utilize the DB connection from <environment>.iiq.properties and import those XML objects

into the IdentityIQ database. Target importdynamic will not cycle the application server, a step

required if changes are made to any class files included in your SSB directory. An alternative to

using build importdynamic is to manually import the sp.init-custom.xml file that was

generated during the build, using the command import sp.init-custom.xml inside iiq

console.

• Open IdentityIQ in a web browser and you will see the applications, rules, and other custom

objects from your original environment in this new one.

• Note that the SSB modifies the init.xml normally used for a “fresh” build of IdentityIQ. The

SSB modifies this file from the defaults to import all content (custom objects, LCM objects if

desired, and default objects).

Executing a Repeatable, Initial Build of IdentityIQ with SSB

In certain situations (e.g. a non-production environment), it may be appropriate to rebuild an IdentityIQ

system many times during development iterations. In a non-production environment, it may be faster to

drop the database instead cleaning it up if development tasks go awry – this is especially true during

initial deployment phases.

This may mean treating the lowest environment (e.g. dev or sandbox) as “expendable”, which has a

real benefit of forcing developers to work from an IDE (Eclipse or IntelliJ, for instance) and keep

artifacts in source control. All changes in source control are easily tracked and deployed, while those

made in the UI, debug page, or database are harder to measure and port across environments.

Initial Build Prerequisites

To deploy IdentityIQ initially (i.e. install IdentityIQ, create the database, import all objects, etc.), several

prerequisites must be met:

Services Standard Build User Guide Page 36 of 50

• You should have a solid understanding of the dev targets involved and how to target

environments properly to control builds – if you do not, proceeding with an “initial build” may put

your system at risk and result in data loss. Automation is powerful and can be destructive if

used improperly – if there are any doubts, confirm comprehension before executing a build

command!

• You should not use an “initial build” for production systems.

• As of SSB v4, MySQL and SQL Server have been tested for “initial build” (Oracle and DB2 may

work but have not been as thoroughly tested).

• As of SSB v4, Apache Tomcat has been tested for “initial build” (other application servers may

work but have not been tested).

• IdentityIQ 7.0 or higher is recommended for “initial build”. Pre-7.0 versions have not been tested

with SSB v4 “initial build”.

• The createdb and dropdb commands will be used – thus, the build.properties settings

db.userid and db.password should have administrative rights to your targeted database

instance (create users, delete users, create database, delete database, drop tables, create

tables, grant access, etc.). This account will connect to the database server and run SQL

scripts. For instance, if SQL Server, use the sysadmin server role.

• The database user mentioned by build.properties settings dataSource.username and

dataSource.password should not exist when starting an “initial build”, as this may cause the

process to fail. These should only be managed via the “initial build” process. This is the user

that will be created and managed to connect to the IdentityIQ DB. The user specified here

should be also specified as the IdentityIQ DB connection user in iiq.properties for the build

environment.

• If you are using 7.1 or above, there’s a new “plugin” DB, which is separate from the main

IdentityIQ DB. The build.properties settings of plugin.db.userName and

plugin.db.userPassword should be updated (as this is the account that will access the plugin

DB). The user specified here should be also specified as the plugin DB connection user in

iiq.properties for the build environment.

• The build.properties settings for the main IdentityIQ DB (db.name) and plugin DB

(plugin.db.name - if 7.1+) should be set as desired.

• You must have properly configured the build.properties settings for db.url (set as the DB

connection string for the DB server where the IdentityIQ DB will be created), usingLcm,

console_user, console_pass, db.type, and db.driver.

• You must be able to place web content where IIQHome in build.properties points (could be

a network share or local path), as using targets like dist or deploy are mandatory for an “initial

build”. Furthermore, this directory should be empty or non-existent.

• The build.properties setting override.safety.prompts will help avoid safety prompts for

dropdb and cleanWeb (destructive targets).

• If you want to make use of the cycle or up or down targets, you need to have a working script to

start or stop your application server (and have the build process running in a security context

with rights to do). Furthermore, you need to have the build.properties settings

application.server.start and/or application.server.stop configured to point to

appropriate scripts.

Services Standard Build User Guide Page 37 of 50

While the above list may seem daunting, clarifying such items will make the IdentityIQ deployment a

refined, smoot process for development iteration.

Initial Build Target Chaining

Installation

Running an “initial build” via the SSB targets will:

• Build the build folder and its extracted contents

• Create an empty, unpatched database

• Apply custom, named object fields to the DB (extend DB schema), if needed

• Import stock (default) IdentityIQ artifacts

• Import stock (default) IdentityIQ LCM artifacts if needed

• Patch the DB if needed

• Run the patch command

• Import custom XML artifacts

• Deploy web content to the web application server

An example “initial build” chained target set might be (this is all 1 line but may appear wrapped):

build clean cleanWeb main createdb extenddb import-stock import-lcm patchdb

runUpgrade import-custom dist

You may want to put a flurry of such targets between a down and up target as well.

The main Ant file build.xml has a sample target initial-build that encapsulates these targets (no

up or down targets though). Advanced SSB users might tweak this target to provide flexibility in the

“initial build” process.

For instance, the above commands would be equivalent to: build initial-build

As a bonus, you could cycle the application server: build down initial-build up

Removal

Removing IdentityIQ via the SSB targets (reverse of “initial build”) will:

• Stop the application server

• Destroy the IdentityIQ DB (and plugin DB if 7.1+)

• Wipe the web application directory

• Start the application server

Example destroy target set might be: build main down dropdb cleanWeb clean up

Note the main target here ensures the latest files are placed for dropdb to use before the command is

executed.

No equivalent wrapper target has been provided for removing IdentityIQ, as the above functions are

destructive and should require more deliberate effort to instrument.

Services Standard Build User Guide Page 38 of 50

Dev targets explained

The following section outlines helpful targets and their application. Note targets can be chained

together to be run in sequence and many targets outlined below are simply “helpers” that chain targets.

(e.g. build main dist import-custom cycle is equivalent to build importcycle).

No target (just entering “build” into a windows terminal or “./build.sh” into

a Linux terminal)

Runs the entire build process, placing a fully expanded war file in the <SSB install

directory>\build\extract folder, and all compiled, custom .class files in <SSB install

directory>\build\classes. This is target “main”.

main

Default Ant target - runs this target when no target is specified.

This target has a hook to run custom Ant scripts - post.expansion.hook.

Example: build without a target is essentially build main.

This target also calls the scripts that perform checks as defined in the Build Checks section of this

document.

clean

Deletes everything in the <SSB install directory>\build directory.

It is recommended to run the clean target before most deployments, as this ensures a clean working

directory.

Examples: build clean main or build clean deploy or build clean dist

cleanWeb

Deletes everything in the directory as specified by build property IIQHome (generally the web directory).

You should stop the web application server before running this target (either with the down target or via

another method). It obeys the build property override.safety.prompts.

It is recommended to use caution when running this target as it essentially removes the web

application. This can be desirable to ensure a clean, fresh deployment directory.

By default, a build dist or similar deployment command pushes files to the directory specified by the

IIQHome build property – it may overwrite files, but does not remove any files. For example, if a file

myJavaLibrary.jar is in the SSB folder web/WEB-INF/lib and deployed to the web server, it will stay

on the web server until it is specifically removed. Even if the example jar file is removed from the SSB

project folder and a build clean deploy is run, myJavaLibrary.jar (our example) still remains on

Services Standard Build User Guide Page 39 of 50

the web server. The cleanWeb target is meant to address this issue (specifically in non-production

environments).

createdb

Depends on the build.properties file having a database account set up that has schema-creation

privileges. The properties db.url, db.password, and db.userid in the build.properties file must

be configured properly to use this build target. This will set up the IdentityIQ schema.

Prior to SSB v4, this target also applied patches to the database. Now, the patchdb target handles this

action and is called separately.

SSB editions (prior to v4) included an import-stock target call, which would attempt to fill the newly-

created database with stock and custom artifacts all at once. As of SSB v4, the import-stock call has

been removed from the createdb target. Thus, this target (alone) simply creates a database and tables

and leaves them empty.

Note that IdentityIQ 7.1 introduces a new, separate database (identityiqPlugin by default). In this

release (v4), only the sqlserver and mysql database types for this target have been updated to work

with the new plugin DB. The other types (oracle and db2) will be addressed in a future release.

cycle

Helper target that depends on both application.server.start and application.server.stop

properties being properly set in build.properties. This will cycle your application server and reload

the web application. This is equivalent to calling targets down and up in sequence (with a pause in

between). The security context of the build process must have rights to perform the custom script

actions.

dropdb

Drops the IdentityIQ database – use with care. Depends on the build.properties file having a

database account setup that has drop privileges. The properties db.url, db.password, and

db.userid in the build.properties file must be configured properly to use this build target.

Note that IdentityIQ 7.1 introduces a new, separate database (identityiqPlugin by default). In this

release (v4), only the sqlserver and mysql database types for this target have been updated to work

with the new plugin DB. The other types (oracle and db2) will be addressed in a future release.

It obeys the build property override.safety.prompts.

When using this target, it is advisable to stop the web application server to close open database

connections (otherwise, your drop of the DB may fail). A properly-configured down target would suffice

here.

Services Standard Build User Guide Page 40 of 50

dist

Copies the entire expanded war content to your application server webapps directory (wherever the

IIQHome property points to).

dependency-check

Runs the OWASP Dependency Check utility. See the OWASP Dependency Check Vulnerability

Detection section of this document for details.

deploy

Runs entire build process and deploys the expanded war content to your application server webapps

directory (wherever the IIQHome property points to) and also import custom XML artifacts. The

equivalent of running the build with no target, plus running the dist and import-custom targets (i.e.

build main dist import-custom == build deploy).

document

Creates Javadoc-style documentation for the configuration of the XML objects in the custom folder.

Runs through the main build process first in order to create the objects in that folder, then writes out

html files detailing the configuration of each object to the <SSB install

location>/build/doc/TechnicalConfig folder in the resulting build. Open the index.html file in

the TechnicalConfig folder to view the generated documentation.

The following object types are currently supported by the document target:

Application, AuditConfig, Bundle, Capability, CertificationDefinition, CertificationGroup, Configuration,
CorrelationConfig, Custom, DashboardContent, Dictionary, Dynamic Scope, EmailTemplate, Form, FullTextIndex,
GroupDefinition, GroupFactory, Identity/Workgroup, IdentityTrigger, IntegrationConfig, LocalizedAttribute,
ObjectConfig, PasswordPolicy, Policy, QuickLink, QuickLinkOptions, RequestDefinition, Rule, RuleRegistry,
ServiceDefinition, SPRight, TargetSource, TaskSchedule, UIConfig, Workflow

When using this feature, you should ensure that application passwords and other sensitive data are not

being stored in clear text in the source files or in values substituted by tokens to avoid them being

shown in the resulting document.

Note that this documentation is intentionally generated outside of the build/extract folder, as it

should not be deployed to the web server during a build deploy (or similar target action).

down

Runs a custom script, as defined by application.server.stop in build.properties, to stop the

application server. The security context of the build process must have rights to execute your custom

script.

Services Standard Build User Guide Page 41 of 50

extenddb

This target allows for the deployment of named, extended attributes for objects that support such

extensions (Identity, Application, etc.). Prior to SSB v4, field-delivered customizations were needed to

deploy DB schema extensions, with the only default object extensions available as numbered columns.

This was especially true for initial builds of IdentityIQ using the SSB. SSB v4 delivers this target to

meet such needs and allows for low-touch deployments that use named fields.

This target is designed to be used immediately after createdb, but it can be run anytime the schema

extensions need to be added. It will not remove schema extensions, as it acts upon output from iiq

extendedSchema. This target relies on both the build.properties setting

usingDbSchemaExtensions and having customized Hibernate (hbm) and ObjectConfig XML files in the

SSB locations web/WEB-INF/classes/sailpoint/object and config/ObjectConfig (respectively,

and the ObjectConfig folder is optional). Because there are not special artifact requirements here, this

target can be used with or without fresh, initial builds of IdentityIQ.

This target will apply the output from iiq extendedSchema to your database, after applying DB naming

customizations. Exercise care, as this will actually run a SQL script for your database type (similar to

createdb and dropdb targets).

In SSB v4, only the sqlserver and mysql database types for this target have been established. The

other types (oracle and db2) will be addressed in a future release.

export

Exports objects specified within objectsToExport.properties (this will now be generated – edit

Rule-OutputCustomObjectFile.xml in scripts if you need to add more objects to ignore or export –

the variable name of ignored object classes is listOfIgnoredClasses) from your IIQHome repository

to build/export so that you don’t manually have to copy and paste XML from console-exported files

to your build environment. Edit the property file to include all types of objects you want to export, as

well as the names of the objects for each type.

import-all

Helper target that simply calls the following targets (in order): import-stock, import-lcm, import-

custom.

Attempting to use an import target on a fresh DB (right after createdb finishes) will fail if you have

named, extended fields for objects (e.g. Identity, Application, etc.). See extenddb target for more

information.

import-custom

Does a console iiqBeans call to import <build extract location>/WEB-INF/config/sp.init-

custom.xml. This imports all custom XML artifacts into the database. This is usually not called

directly and is part of a higher-level call (e.g. deploy target). The exception here is a from-scratch

build.

Services Standard Build User Guide Page 42 of 50

Can utilize the console_user and console_pass build properties.

Attempting to use an import target on a fresh DB (right after createdb finishes) will fail if you have

named, extended fields for objects (e.g. Identity, Application, etc.). See extenddb target for more

information.

import-lcm

Does a console iiqBeans call to import <build extract location>/WEB-INF/config/init-

lcm.xml. This imports all default Lifecycle Manager (LCM) XML artifacts into the database. This

target is generally used for a from-scratch build.

Can utilize the console_user and console_pass build properties.

Attempting to use an import target on a fresh DB (right after createdb finishes) will fail if you have

named, extended fields for objects (e.g. Identity, Application, etc.). See extenddb target for more

information.

import-stock

Does a console iiqBeans call to import <build extract location>/WEB-INF/config/init-

default_org.xml. This imports the stock (i.e. out-of-the-box) XML items that represent a base artifact

set for IdentityIQ. Note that the SSB renames the default init.xml to be init-default_org.xml.

This means importing init.xml from the build extract area includes customized elements (i.e. like

sp.init-custom.xml). Thus, the import-stock target merely imports default XML artifacts (it will not

import your customizations). This target is generally used for from-scratch builds. This target does not

import LCM-related elements.

Can utilize the console_user and console_pass build properties.

Attempting to use an import target on a fresh DB (right after createdb finishes) will fail if you have

named, extended fields for objects (e.g. Identity, Application, etc.). See extenddb target for more

information.

import (deprecated)

Deprecated target as of SSB v4. Maintained only for backwards compatibility at this time. Duplicates

the functionality of target import-custom. New work using the SSB should not use this target; use

import-custom instead.

importcycle

Helper target that runs the entire build process, imports custom XML artifacts, copies Java classes and

static web content, and cycles (restarts) the application server. Useful while developing custom Java.

(i.e. equivalent to build main dist import-custom cycle).

Can utilize the console_user and console_pass build properties (indirectly).

Services Standard Build User Guide Page 43 of 50

importdynamic

Helper target that runs the entire build process and imports some content that does not require an
application reload: custom XML, static web content etc. Useful for developing rules, workflow and
branding (i.e. equivalent to build main dist import-custom).

Can utilize the console_user and console_pass build properties (indirectly).

importjava

Helper target that runs the entire build process, copies Java classes and static web content, and cycles

(restarts) the application server. Useful while developing custom Java and you want to skip importing

custom XML artifacts. (i.e. equivalent to build main dist cycle).

initial-build

Helper target that runs several other targets. Requires careful planning but allows for rapid, repeatable

builds of an IdentityIQ environment.

Note: initial-build target is not recommended for production environments.

See section Executing a Repeatable, Initial Build of IdentityIQ with SSB for more details.

patchdb

Prior to SSB v4, a call to createdb would implicitly run the patch sql script

(upgrade_identityiq_tables... version and DB-specific). Now, that functionality has been broken out

into the target patchdb. This target is only effective if there is a patch level for IdentityIQ specified in

build.properties.

runSql

Can run arbitrary SQL scripts of your choosing against the IdentityIQ DB. This leverages the same

build.properties settings as other DB-related targets (i.e. createdb). Also like the other DB-related

targets, this uses the Ant sql task.

This target differs from most others in the SSB, as target properties can be passed in during the call. A

-D prefix is used with each property (e.g. -Dproperty1=value).

The table below shows the valid properties for command line use. Technically, these could also be

defined in build.properties. They are not defined there by default to increase the flexibility of the

target call.

Name Description Required

sql.input.file SQL script file you want to invoke against the
IdentityIQ DB

Yes

Services Standard Build User Guide Page 44 of 50

sql.output.file File to receive query output. Can be useful if
query output should be saved or used for other
automation.

No.
If omitted, output is only
printed to the screen
(standard out).

sql.error.action Specifies if a SQL error should stop script
processing. Sometimes, there are errors that can
be safely ignored.

No.
If omitted, action is “abort” on
any SQL script error.

In addition to passing in properties for this command, know that Ant properties in the SQL script will be

expanded. Thus, instead of hard-coding your DB name for the script (as it will be the IdentityIQ DB)

like:

create table identityiq.myTable;

You could use the statement below because your build.properties settings will be expanded when

the SQL script runs:

create table ${db.name}.myTable;

You could really define any arbitrary property for SQL script expansion that you’d like (either in the

relevant build.properties file (recommended) or ad-hoc via the command line.

Below are a few use case examples.

Example command (Windows pathing) that runs some SQL and saves output. Continues on error.

build runSql -Dsql.input.file=C:\input.sql -Dsql.output.file=C:\output.sql -Dsql.error.action=continue

Example command (Windows pathing) that runs some SQL and prints output to screen. Aborts on

error.

build runSql -Dsql.input.file=C:\input.sql

If sql.input.file is defined in build.properties, you could run the command without passing in

command-line parameters. Note that this reduces flexibility of the command if multiple files need to be

processed.

build runSql

runUpgrade

Runs the patch command via sailpoint.launch.Launcher, which applies a patch to an IdentityIQ

installation. This is generally only needed when creating a new install via “initial build”.

Can utilize the console_user and console_pass build properties.

Services Standard Build User Guide Page 45 of 50

up

Runs a custom script, as defined by application.server.start in build.properties, to start the

application server. The security context of the build process must have rights to execute your custom

script.

war

Make a war file from the output generated by target main in the build/extract directory. A war file is

essentially a compressed archive file (known as Web Application Archive) that can be used for

deploying web applications to Tomcat or similar servers. The generated war file, identityiq.war, is

put into build/deploy.

This target includes a hook to run custom Ant scripts - post.war.hook.

Build Checks

SSB v4 adds a series of checks around the build process to alert the deployer to common

misconfigurations and deviations from best practices. The results of these checks are written to a log

file.

Please note these checks are only indicative in nature and can result in false positives.

Controlling Build Checks

Build checks are disabled by default. They can be enabled by setting the property runCodeChecks to

true in the build.properties file.

Available Build Checks

There are two sets of build checks, one which is executed after the expansion phase and another which

takes place after token substitution.

Checks after SSB Build Expansion Phase

The following checks are performed after the base files used for the build are expanded.

1. Wildcard import check. XML files are checked to verify whether they have any wildcard import

statements in BeanShell code. Best practice is to avoid this because it is associated with a

performance overhead.

For example: import sailpoint.object.*;

2. Code comments check. Java files are checked for the absence of code comments. Best

practice is to add comments that will make your code easy for another developer to understand.

3. System.out check. Java files are checked for the presence of System.out statements. Best

practice is to use log statements which can be switched on or off using Log4j log levels.

4. Naming convention check. All XML files are checked to verify whether they adhere to a

specified naming convention.

Services Standard Build User Guide Page 46 of 50

The naming convention is specified with the codeCheck.namingConvention property in

build.properties. This property takes a Java Regular Expression and recognizes two keywords:

OBJECT and FOLDER. OBJECT represents the object class represented in an XML file (e.g. Rule or

Workflow). FOLDER represents the subfolder directly under the SSB config folder where an XML file is

located.

For example, if you are working on a project called “XYZ” where the naming convention specifies files

in this format:

<project name>-<object type>-<free text description>.xml

you could use this as the naming convention in build.properties:

codeCheck.namingConvention=XYZ-OBJECT-.*.xml

This would match the file XYZ-Application-ActiveDirectory.xml if that file contains an IdentityIQ

Application object. The file could be anywhere in the directory structure under the config folder.

Alternatively, if the naming convention specifies this format:

<project name>-<folder name>-<free text description>.xml

you could use this in build.properties:

codeCheck.namingConvention=XYZ-FOLDER-.*.xml

This will match the file XYZ-Rule-AD_Correlation.xml but only if that file is located directly under the

config/Rule folder.

It is possible to exclude specific folders from the naming convention check by editing the

ignoreFolderList property in the verifyNamingConvention entry in the file

scripts/build.check.xmlVerifyNamingConvention.xml. This contains a comma-separated list of

folders to ignore. By default it will exclude the SSF_Tools, SSF_Features, SSF_Frameworks and

SSP_Tools folders from the check:

ignoreFolderList="SSF_Tools,SSF_Features,SSF_Frameworks,SSP_Tools"

When the OBJECT keyword is specified and more than one object type is represented in an individual

file, the task will exclude that file from the naming convention check.

Any file or folder which is excluded from the check will be written to the log under the section “Skipped

for Name Convention checks”.

Checks after SSB Token Substitution Phase

The following checks are performed after tokens have been substituted from the target.properties

files.

1. Application password encryption check. All XML files that represent Application objects are

checked to verify whether they have passwords that are not encrypted.

Services Standard Build User Guide Page 47 of 50

2. iiq.properties password encryption check. All iiq.properties files are checked to verify

whether they have passwords that are not encrypted.

3. Workflow trace enabled check. All Workflow XML objects are checked to verify whether the

trace variable has been initialized to true. This should normally be set to false in production

environments to avoid unnecessary logging which could affect performance.

4. BeanShell code deprecation check. BeanShell code in the build is scanned to determine

whether there are any methods that are deprecated in the version of IdentityIQ that the build is

running for. This can be particularly useful when you are upgrading IdentityIQ, as manually

checking your BeanShell code for deprecations can be a time-consuming process. In the

current version of the deprecation scanner code there are a few limitations to be aware of:

• Classes declared within BeanShell are not handled, and invocations within can result in
false positives

• Any catch/finally blocks are not handled, and invocations within them are not scanned

• Chained invocations like method1().method2().method3() are not processed

• If a deprecated method is invoked multiple times it will be listed multiple times in the
log

• Variables representing objects where the object type is not declared can result in false
positives. When the scanner cannot determine the object type it checks only the
method portion against all deprecations known within the BeanShell namespace and
indicates any found as a “possible deprecated method” in the log.

• Missing import statements can also result in “possible deprecation” in the log.

Project-Specific Build Checks

An implementation team can choose to add their own build Checks to enforce or validate project-

specific rules by creating new build check scripts, using the provided scripts as examples. All build

checks are implemented as Ant script files and reside within the scripts folder. The following naming

convention for build check scripts that are performed after the SSB expansion phase is:

build.check.<name>.xml

The naming convention for build check scripts that are performed after the SSB token substitution

phase is:

build.postcheck.<name>.xml

Each build check script is required to implement a sp.services.runCodeChecks target.

Build Check Output

Once the build checks are complete, the output is generated in the file

build/buildChecks/buildCheck.log.

Services Standard Build User Guide Page 48 of 50

OWASP Dependency Check Vulnerability Detection

The Dependency Check Utility

The Open Web Application Security Project (OWASP) provides a utility called Dependency Check,

which identifies project dependencies and checks if there are any known, publicly disclosed,

vulnerabilities. The Ant implementation of this is included in the SSB and can check for vulnerabilities

in any third-party libraries that ship with IdentityIQ or are added by implementers. An HTML report is

generated, including the Common Vulnerabilities and Exposures (CVE) number, a description, a

severity classification and number, and the affected library. Clicking on the CVE provides further

details on the vulnerability.

Part of a generated Vulnerability Report for IdentityIQ is shown below. The vulnerabilities listed here

are related to the MySQL and SQL Server driver files. These are showing on the report because the

versions of these files that ship with the product are not the most recent (but provided to ensure

backwards compatibility) and are subject to some known vulnerabilities; this is one reason why it is

always recommended to update the JDBC drivers (see the JDBC Drivers section of this document

under Build Structure Set-up).

Running the Dependency Check Utility

To run the Dependency Check utility in the SSB, run the dependency-check target (build

dependency-check). This should be done from a computer that has Internet access as it needs to

download and process the latest data from the National Vulnerability Database (NVD) hosted by NIST:

https://nvd.nist.gov.

Running this target will first expand the product files and patches so that the library files are ready for

analysis. The first time the utility is executed it will download the latest vulnerability data. It will then

analyze the library files in the build/extract/WEB-INF/lib folder to determine whether there are any

matching vulnerabilities. Reports will then be generated in the build/dependency-check-reports folder.

https://nvd.nist.gov/

Services Standard Build User Guide Page 49 of 50

A detailed Dependency Check report is generated in HTML, CSV, XML and JSON formats. A summary

Dependency Check Vulnerability report (as shown above) is generated in HTML format.

The suppressions.xml File

The Dependency Checker includes a suppressions.xml file in the dependency-check-ant folder at the

root of the SSB, which suppresses reporting on CVEs for libraries that are included in IdentityIQ where

the product is known to be unaffected by the vulnerability. This is in the format of a series of

<suppress> entries like this:

 <suppress>

 <notes><![CDATA[

 This suppresses CVE-2017-5662 for batik-awt-util-1.6-1.jar.

 The documented CVE for this version of this library is related to an XML Entity Attack while parsing SVG files.

 IdentityIQ does not contain any support for SVG formatted files or parsing of them and therefore is not vulnerable.

]]></notes>

 <filePath regex="true">.*\bbatik-awt-util-1\.6-1\.jar</filePath>

 <cve>CVE-2017-5662</cve>

 </suppress>

This includes information about the library, the CVE and an explanation of why the detected

vulnerability does not affect IdentityIQ. In time, new vulnerabilities may be found, and if IdentityIQ is not

affected by these vulnerabilities the suppressions.xml file may need to be updated to suppress

reporting of them. SailPoint hopes to be able to provide and maintain a list of these detected

vulnerabilities on Compass in the near future so that questions resulting from any vulnerabilities

exposed by this utility can be quickly addressed.

The suppressions.xml file also contains a <suppress> entry for excluding any CVEs that have a score

below a given value. By default this value is 7, which represents the number above which a CVE is

given a severity of ‘High’.

 <suppress>
 <notes><![CDATA[

 This suppresses all CVE entries that have a score below CVSS 7.
]]></notes>

 <cvssBelow>7</cvssBelow>

 </suppress>

Updating the Dependency Check Utility

At times you may see a message like this in the output screen when you run the dependency-check

target if there is a new version available:

[dependency-check] A new version of dependency-check is available. Consider

updating to version 3.2.1.

The latest version can be downloaded from this location:

https://jeremylong.github.io/DependencyCheck/dependency-check-ant/index.html

This will be in the form of a zip file that can be expanded to replace the existing dependency-check-ant

folder at the root of the SSB. Ensure you copy across the existing suppressions.xml file.

Note that the latest version at the time of writing (July 2018) is 3.3.0. During testing, SailPoint has

found issues with this version which prevent the check from completing. For that reason, the previous

https://jeremylong.github.io/DependencyCheck/dependency-check-ant/index.html

Services Standard Build User Guide Page 50 of 50

version (3.2.1) is the version that currently ships with the SSB. SailPoint advises customers and

partners to wait for the next version after 3.3.0 before updating.

Further Information on the Dependency Check Utility

Further information on the OWASP Dependency Check utility can be found here:

https://www.owasp.org/index.php/OWASP_Dependency_Check

Information on the Ant implementation can be found here:

https://jeremylong.github.io/DependencyCheck/dependency-check-ant/index.html

https://www.owasp.org/index.php/OWASP_Dependency_Check
https://jeremylong.github.io/DependencyCheck/dependency-check-ant/index.html

