v1.1.0

SimpleSQL

SQLite manager for Unity3D

echo17.com

Table of Contents

Table Of CONTENTS - - - e e e e e e e i
L OVEIVIBIN oo e e e e 1
2. WOrKfIOW oo 3
3. SatingUp Your Project - -« oo 4
4., CreatingaDatabase - - - i 8
4.1 Create an Empty Database using SimpleSQL inUnity -+« 8
Creae fromthe UNIty MENU -« v« v vt e ettt e et 9

Create FroMthe PrOJECt MENU - -« « v v o ev et e e e e e et e e 10

Create FrOM thE ASSEE IMIENU -« -+« « v ettt e e e et e et e e e et e e e e et 10

4.2 CreateaDatabasewithaThird Party Tool -« v 11

4.3 Making Changesto YOUr Dataase -« -« v vernenunet ittt e i e iees 12

5. CreatingaDatabase Manager -« -« v vt et 13
5.1 Creating aSimpleSQLIMaNAGEr « « -+« + v v ettt a et e 13
Create Through the UNity MENU «+« vttt e et et et e e e 14

Create Through the Hierarchy Menu - -+« oo oo 15

Attach to an Existing GameObject - - - - -+« oo v 15
Dragging the SCript t0 the GAMEODJEC « -« « « « « «« v v e et e et et e e e 16
Attaching the Script Throughthe Unity Menu — « -« oo oo oo 17

5.2 Create aSimpleSQLManager with System.Data -« - -+ v v v v 17

5.3 MaANAQEr SEINGS -+« v v v v vreee ettt e e et e 19

Database File - o v e e e e e s 19

Drag Database ASSet t0 the INSPECIOr + -« « « + v v et e et 20

Select the Database from the Object Browser -+« -« oo oo v oo i 20

Change WOTKING NBIME « -« « -+« v e e ettt ettt et et et e 21
OVEIWIILE T EXISIS + « + v« v o v v e ettt et et e e e e e e e e e e e e e e e e e e 22

DEDUG TFACE -« « + v v v vttt et ettt e e e e e e 23

B. Data SIrUCIUI e - oot e e e 24
6.1 USING NET'SSYSIEM.DAA - -« v v vveeneee e e e et et e e et e e 25

6.2 USINGHE ORM -« et et enet e e e e et e e e et 26
SAMPIE CIASSES « « v+« v e v e ettt et et e e 27

AT DULES -+ v vt et e e e e e e e 28

T QUEIIES -ttt e 31
71 QUETY EXAMPIES - v v vt e e e et e e e e e 31
Retrieve All Datafrom @Table -« -« v e nvrne e et e e e e e e e e e e 31
Iterating the RESUITS « -+« v v v e et e e e e e e 32
Retrieve Datafrom aTaDIE JOIN - -« v« v v v e ne et e e e e e e e e e e e e e e e e 32

Using Linqto RetrieveaTablesData - - -« -« 33

7.2 System.Data QUErY EXAMPIES -« « « « v v vttt 34
Retrieve datafrom atableand storeinaDataTable - oo oo 34

8. INSErtiNg RECOIAS - -t vt 36
8.1 INSErt RECOr EXAMPIES - -+« v v v v e en et e e e e e e e e et 36
INSErt With SQL SEALEMENT -+« v v v v ettt et e et et e e et e e e e 36

INSErt With Class DEFINItION -« « v« « e v e ettt e e e e e e e e e e e e e e e e et e 37

9. Updating RECOrAS - -« v v ot 38
9.1 Update RECOM EXAMPIES « - -+« vt e v ettt et e e et ettt e e 38
Update With SQL SEEEEMENE « + + -+« « v e e v et e e et e e e e et e et 38
Update With Class DEFINItION « - -« « v« veve e e et et e et e e et e 39

10. DeetiNngRECOIAS -« v v o e 40
10.1 Delete RECOI EXAMPIES -« -« v v ettt et et e et et e e e 40
Delete With SQL SEEIEMENt -« -« v o v e et et et e ettt e e et e e e 40

Delete With Class DEfINITION -« « -« ««« v v e nee e e et e e e e e e e e e e e e 40

11, TranSaClIONS - -ttt e e 42

iv | Table of Contents

12.

13.

14.

15.

16.

11.1 Transaction EXAMPIES -« v v ve e e 42
Transactions With SQL SEAEMENLS « « « « « -« v e v vttt ettt e et e e ettt e e 42
Transactions With Class DEFINItIONS -« « « « « « « v v v v e ettt ettt et e et e ettt e 43

Creating, Altering, and Dropping Tableso 45

121 Crea@ TADIE EXAMPIES - -« v v rv et et et et ettt e e e 45
Create Table With SQL SEEMENLS -« « « « ««c v v vt ettt et e et e e e eeeees 45
Create Table With Class DEFINItION « « « <+« v v e v nre e ettt et e e et e e et e e 46

122 AREr TADIE EXAMPIES « - v v vttt e et e e e e ettt et e 46
Alter Table With SQL SEIEMENTS « -+« « « c v v v v ee e et et et e ettt e e e e 46
Alter Table With SQL SEAteMENtSH 2 - - - -+ v vt ettt e e 47

12.3 DIOP TAIE vttt 48

Upgrading Databases - -« -« v v v v 50

13.1 Datadase WOTKFIOW - - -« e e 50

13.2 UPGrade Patil « - v v v et 51

13.3 REJUNDANCY -+ v v ov ettt et e et et e 52

Optionsand Optimization -« -« oo ot 53
141 OPtMIZE PlAfOrM « v v ettt 53
14.2 Optimize DA@Library -« vc vttt 55

FAQ and Troubleshooting - -« -« v v 57
151 QUESHIONS/ EITOIS - v vt v ettt et et e e e e e e e et e e e 57
15.2 ANSWEIS/ RESOIULIONS - - -« v e e e e 57

Q: Why are the changes I've made to the database in my project not showing up when | run my

AEPHICAHIONT? - v e e e 58
Q: Why can't | drag my database to the manager? -« -« -« v venenenene i 59
Q: Error: Failed to open database at theworking path -« -« oo e e e 60
Q: Error: If you want to change the database's working name, then you will need to supply anew

working name in the SIMPIESOLMaNAGEr « - -+« ««« v v e ve e e e e e e e e e e 60
Q: Error: SQLiteEXCEption: N0 SUChtable « -+« « v v v v e e e e 61

REVISIONS it ittt i s e i e e e e e e e e e e e e e 62

1.

Overview

SimpleSQL isaplugin for Unity3D that allows you to easily query or modify datain a database.

Its primary advantage over other pluginsisthat you don't have to concern yourself with the specialized
dll's necessary for connecting to a database. Also, it simplifies publishing to mobile devices by doing all

the work of moving data to your application’'s working directory for you.

Some examples of how you can use a database in a game or project include (but are not limited to):

o Keeptrack of player stats

» Storeinventory information, such asitems weight, cost, damage, armor, €etc.
o Keep track of progress and visited areas in agame

e Store maps of your world with interlinking connections

e Storedialog for an RPG with quick lookups based on person and place

e And many more!

SimpleSQL uses SQL ite as the database format for its data storage. Y ou can easily create and modify
databases programmatically or with third party tools. A few examples of free tools that you can use

include:

e SQLite Manager addon for Firefox (requires Firefox browser - also free):
https.//addons.mozilla.org/en-US/firef ox/addon/sglite-manager/

e SQLite Administrator: http://sgliteadmin.orbmu2k.de/

e SQLiteman: http://sgliteman.com/page/4.html

These tools are not supported by echol7, so you should check with the above providersif you have
guestions regarding their products. Training on these products is outside of the scope of echol7 and this

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http://sqliteadmin.orbmu2k.de/
http://sqliteman.com/page/4.html

2 | Overview

documentation.

2.
Workflow

SimpleSQL only works with databases in your application's working directory so the databases in your

project will never be updated at runtime.

Y ou can use this workflow to your advantage by making your project database atemplate that can create

one or many working databases.

If you do not have a working database in existence then SimpleSQL will copy the project database to
your working directory. If you do have a working database in existence, then SimpleSQL will only copy

the project database over to the working directory if you tell it to.

If you are using data statically (not making changes at runtime), then you can overwrite your working
database(s) without any consequences. This keeps your working databases in sync with what you have
set up in your project.

If you are using data dynamically (making changes at runtime), then you DO NOT want to
overwrite your working database since this would wipe out any changes since the last time
the application was run. If you need to make changes to your working database(s)' structure
or static data, then you will need to follow an upgrade path as outlined in Upgrading
Databases.

Y ou may want to divide your data into multiple databases. For instance, you could keep all
your static data such as room layout, maps, unit properties, etc. in one database and al your
dynamic data such as player stats and achievementsin another database. This allows you to
overwrite the static database without worrying about wiping out dynamic data.

3.
Setting Up Your Project

To use SimpleSQL in your project, first create a new project in Unity. It's best to create a new project for
any version changes so you can have a history of the plugin in case something goes wrong and you want
to revert to an earlier version.

Figure3-1 New Project
U " 1 Dleyuery.u
File Edit Assets GameObject Comp

MNew Scene Cerl+n -
Open Scene Ctrl+0

ro

-

Save Scene Ctrl+5
Save Scene as... Ctrl+sShift+5

Mew Project...
Open Project...
Save Project

Build Settings... Ctrl+Shift+B
Build & Run Ctrl+B

Exit

Y ou can then import the SimpleSQL plugin from the asset store. Go to Window > Asset Store.

Figure3-2 Asset Store

pleSQL I Window Help

Mext Window Ctrl+Tab
Previous Window Ctrl+Shift+Tab

Layouts * lcr
Scene Ctrl+1 D
Game Cri+2 Lc
Inspector Ctrl+3 M
Hierarchy Ctrl+4 2
Project Ctrl+5
Animation Ctrl+6
Particle Effect Ctrl+8
Prafiler CErl+7

. Asset Store Ctrl+9
Asset Server Chrl+0
Lightmapping

T | ocdusionculing

lJavigation [
Console Ctrl+Shift+C &

Search for SimpleSQL in the Asset Store.

Figure3-3 Asset Store Search

'Q simplesal])

Categories
Home
» 3D Models

» Textures & Materials

» Audin

If you have not purchased SimpleSQL, you can click on the Buy link.

6 | Setting Up Your Project

Figure3-4 Buy
SimpleSQL

Category: Scripting/Integration
Publisher: echol?

Rating: * % K Kk K

Your Rating: % % % % %
Version: 1.0.0¢290ct2101)
Price: $40.00

oly53000 | V)

SimpleSQOL helps you integrate database storage
into your game or project. Create level map links,
store player stats, keep inventory specs, and much
more!

If you have already purchased SimpleSQL, you will either be shown a download or import link,

depending on if you have the latest version.

Thiswill download the entire SimpleSQL package, demo and all, to your new project. Once you have
the files, you can copy the SimpleSQL _Editor.dll file to your Editor folder in your game project, and the
SimpleSQL_Runtime.dll to your Plugins folder in your game project.

Figure3-5 Editor Plugin Folders

MName = I Size I Type I
[AssetStoreTools File Folder

) Demos File Folder
|-2)Documentation File Folder

[)Editor File Folder

I Plugins File Folder

IEJ readme.txt 1KB Text Document

Y our final game project layout should have the two dll'sin their respective directories:
SimpleSQL_Editor.dll in the Editor directory and SimpleSQL_Runtime.dll in the Plugins directory.

Figure3-6 Dlls

7

4,

Creating a Database

Before you can use SimpleSQL in Unity, you will first need to create a database. There are a couple of
waysto do this:

1. Create an empty database in Unity using SimpleSQL, then add tables and data programmatically at
runtime or modify the database with athird party tool

2. Create adatabase in athird party tool such as the SQLite manager plugin for Firefox

Databases for SimpleSQL have to have the extension ".bytes". You can tell SimpleSQL to
change the file name after it has copied the file to your application's working directory, but
Unity requires all non-standard assets (such as a SQL ite database) that will be streamed to

have this extension within your project.

4.1 Create an Empty Database using
SimpleSQL in Unity

There are afew ways to create an empty database using SimpleSQL

1. Create from the unity menu
2. Create from the project menu

Create an Empty Database using SimpleSQL in Unity | 9

3. Create from the asset menu

Create from the Unity Menu

To create a database from the Unity menu, select SimpleSQL > Create Empty Database

Figure4-1 Create Database From Unity Menu

errain | SimpleSQL Window Help

T Create SimpleSQL Database Manager
Create Empty Database

Thiswill add anew empty database file to the currently selected folder (or the folder of the currently
selected object). SimpleSQL automatically assigns the ".bytes" extension to your new file, which is not

visible from within Unity, but can be seen in your OS's folder browser.

Figure4-2 New Empty Database

€ 06_CreateAndDropTable
v Cd DataBases
Fantasy
New Database
SciFi

w 52 Crrinte

Figure4-3 BytesFiles

MName -~ I Size I Type I
Fantasy.bytes 192 KB BYTES File
@ SciFi.bytes 96 KB BYTES File

@ New Database.bytes 0KB BYTES File

10 | Creating a Database

Create From the Project Menu

Y ou can a'so create a new database from the Project window menu by clicking on the Create dropdown

and going to SimpleSQL > Empty Database.

Figure4-4 Create Database From Project Menu

3 Project | =
[Create'l (ar All D)
' Folder

ery
Javascript fQuery
C# Script
Boo Script
Shader

hdDropTable
Prefab -
Material Query
Animation uery
Cubemap exQuery
Lens Flare xQuery
Custom Font
Physic Material ommand
GUI Skin

DeleteCommand

Create From the Asset Menu

Y ou can also create a new database by right-clicking in your project window and going to Create >
SimpleSQL > Empty Database. This allows you to specify the exact sub-folder of the database without

having to move it there.

Create a Database with a Third Party Tool | 11

Figure4-5 Create Database From Asset Menu
Y Ub_CreateAndDroplable "

Folder

a
Show in Explorer .
=| Sc Open Javascripk
v & Serip v C# Script
viE 0} Boo Script
& Import New Asset. ., Shader
& 0? Import Package »
Export Package ez
v & 03 Material

Find References In Scene .
Animation

v 04 Select Dependencies o
Refresh Ctrl+R Lens Flare
viEo Reimport Custom Font
. Physic Material
v C306 Reimport Al GUI Skin
:
v CiFa Sync MonoDevelop Project Empty.Database
Location "
[2l Wweanan

4.2 Create a Database with a Third Party

Tool

It is beyond the scope of this document on how you can create a database using a third party tool such as
SQLite Manager for Firefox. The key thing to keep in mind here is make sure your database has the
extension of ".bytes".

Figure4-6 BytesFiles

Name - | Size | Type |
@ Fantasy.bytes 192 KB BYTES File
@ SciFi.bytes 96 KB BYTES File

12 | Creating a Database

Y ou can change the extension of the database with the SimpleSQL Manager discussed later by

changing the database's working name. The ".bytes" extension is necessary for your project.

4.3 Making Changes to Your Database

Y ou can make changes to your database through third party tools or through code programmatically at
runtime. If you are setting up a database structure or data that will persist, it is probably better to set up
your changesin athird party tool. If your database structure will change dynamically then you may want

to make your changesin code.

If your database's data will be updated then you will need to make any structure changesin
code through an upgrade path. Please see Upgrading Databases for more information.

5.

Creating a Database Manager

Once you have your database files ready to go, you are now ready to use the datain a scene.

Each database that you will reference in a scene will need a SimpleSQL Manager script to interact with

it. You can attach this script to any object, but it is usually cleaner to have this on its own GameObject.

Y ou can have multiple managers in a single scene, each accessing a database. Y ou may want
to divide out your static data into a separate database from your dynamic data for instance.
Thisway you can overwrite your static database with any new settings or changes without

worrying about overwriting dynamic data.

5.1 Creating a SimpleSQLManager

Thiswill show you how to set up a SimpleSQL Manager that will use only the ORM data
class structure. If you are interested in including System.Data structures, see Create a
SimpleSQLManager with System.Data.

There are afew ways to create a SimpleSQLManager in a scene:

1. Create through the unity menu

14 | Creating a Database Manager

2. Create through the Hierarchy menu
3. Attach to an existing GameObject

Create Through the Unity Menu

To create a new SimpleSQL Manager through the Unity menu, click on the SimpleSQL > Create
SimpleSQL Database Manager.

Figure5-1 Create SimpleSQLManager Through Unity Menu

This creates anew DB Manager object in the scene with the SimpleSQL Manager script attached.

Figure5-2 New Database Manager

© Inspector
‘ ™ DB Manager | [Static v
 Tag | Untagged ¢ | Layer | Default 3|
e E Fal

Creating a SimpleSQLManager | 15

Create Through the Hierarchy Menu

To create a DB Manager through the Hierarchy menu, Click the Hierarchy window's Create button and
select SimpleSQL > Database Manager.

Figure5-3 Create SimpleSQLManager Through Hierarchy Menu

E Hierarchy | = © Inspect
| Create 'l ar All D,

=

Particle System
Camera

GUI Text

GUI Texture
3D Text

Directional Light
Point Light
Spotlight

Area Light

Cube

] Sphere
Capsule
Cylinder

" Plane l —

Cloth

| Audio Reverb Zone

Bry

Ragdoll...
Tree
Wind Zone

SimplesQL ld Database Manager

Attach to an Existing GameObject

Y ou can attach the SimpleSQLManager script to an existing GameObject by:

1. Dragging the script to the GameObject
2. Attaching the script through the Unity menu

16 | Creating a Database Manager
Dragging the Script to the GameObject

Select the GameObject you want the script to be attached to.
Expand the SimpleSQL_Runtime dIl in your project window. Y ou should see the
SimpleSQL Manager script located there.

3. Drag this script onto the currently selected GameObject.

Figure5-4 Select GameObject

GameObject

all Ll

Figure5-5 Drag Script to GameObject

© Inspector

‘ M [GameObject | [Staticv
Tag | Untagged ¢ | Layer |Default ¢
- wsforn 7

Create a SimpleSQLManager with System.Data | 17

Attaching the Script Through the Unity Menu

Y ou can attach the script through the Unity menu by:

1. Select the GameObject you want the script to be attached to.
2. Inthe Unity menu, go to Component > Scripts > Simple SQL Manager.

Figure5-6 Select GameObject

= Hierarchy
Create | (ar All)

GameObject
Main Camera

Figure5-7 Attach SimpleSQLManager Script Through Menu

«ct | Component Terrain SimpleSQL Window Help

E Mesh »
Effects

»
sle Pphysics »
"ﬁ‘ Mavigation »
Audio >
Rendering >
Miscellaneous »
d Complex Query
Create And Drop Table
Delete Command
Insert Command

Simple Query

Ylanager

Update Command

5.2 Create a SimpleSQLManager with
System.Data

18 | Creating a Database Manager

If you want to use System.Data with your SimpleSQL Manager, then you'll need to set up
your project to accommodate. See Optimize Data Library on how to set your project to use
System.Data.

9 Y ou can still use the ORM classes alongside the System.Data structures.

Once you have your project set to use the System.Datalibrary, you can drag the
SimpleSQLManager_WithSystemData script from the Plugins folder to your gameobject.

Figure5-8 SimpleSQLManager WithSystemData
S

client device will wipe but any changes the user has
made since last runnil. this scene.

Overwriting is good static data, but bad for

dynamic data.

Manager Settings | 19

5.3 Manager Settings

Once you have your manager set up in a GameObject, you can specify its settings:

e Database File - Thisisthe SQL.ite file that will be used by the manager.

¢ Change Working Name - Using this value lets you change the file's working name from the project's
name to whatever you wish.

¢ Ovewriteif Exists- Thiswill overwrite the database stored in your application’'s working directory
with the database in your project. Use this with extreme caution asit can wipe out any changes made
by your application.

e Debug Trace - Thiswill output the SQL statements used by the manager to the debug console
window for better debugging in the editor.

Database File

To assign a database file to the manager, you can do one of the following:

1. Drag the database asset to the the database file field of the inspector

2. Click onthecircleto the right of the database file field of the inspector and browse for your
database

Y ou can store your databases in whatever folder structure that you choose as long as thefile
has the extension ".bytes".

20 | Creating a Database Manager
Drag Database Asset to the Inspector

Figure5-9 DatabaseFile

Select the Database from the Object Browser

Figure5-10 Select Database File Browser

I"T1None (TextAsset)

Manager Settings | 21

Figure5-11 Select Database from Browser

|
@ D,
 Assets
None
[c:) complexQuery
[) createAndDropTable
) Deletecommand
Fantasy
) InsertCommand
) Location
@ PlayerStats
=] SimpleQuery
SimpleSQLManager
SimpleSQLManagerIinspector

[c-] starship ﬂ

- |

None

Change Working Name

Y ou may wish to have a different name for your working database other than the project database's
name. This can be useful if you are using the same project database template to create multiple working
directories or if you just prefer your database to have a different extension, perhaps. Y ou can change the
working database's name by checking the Change Working Name toggle and filling in the name field.

Figure5-12 Change Extension

v [} simple SQLManager (Script) %,
[0}

Database File |1 SciFi

["1Overwrite If Exists

) If you don't toggle the Change Working Name property on, then your database will be copied
over with the same name as the project database with the ".bytes" extension.

22 | Creating a Database Manager

I If you do toggle the Change Working Name property on, then you must supply a name or you
will get an error.

Overwrite if Exists

SimpleSQL will first copy your database from the project to your application's working directory if it
does not aready exist. All interaction with the database is done from the working directory. The
project's database will remain untouched.

If you want to copy the database asit isin your project to your application's working directory, then you
will want to toggle this on.

Figure5-13 Overwrite If Exists

[V Overwrite If Exists

Warning! Overwriting the database if it exists on the
client device will wipe out any changes the user has
made since last running this scene.

Overwriting is good for static data, but bad for
dynamic data.

Y ou will be warned that checking this property on will overwrite the database in your working directory.

Static database are good for having the Overwrite If Exists property on. Since they do not
change at runtime, there is no harm overwriting the working database.

Dynamic databases should NOT have the Overwrite If Exists property on since thiswill wipe
out any changes made during runtime with the database from the project.

Manager Settings | 23

See Workflow for an explanation of how SimpleSQL uses databases.

If you need to make changes to a database's structure in the working directory, but you don't
want to overwrite the database and wipe out any changes in data, then you should follow an

upgrade path explained in Upgrading Databases.

Debug Trace

This setting is only used in the editor and has no effect on your runtime code within your target device.
Setting this value will allow you to see the SQL statements that pass through the manager. This can help
you debug your SQL by showing the statements in the debug console.

Figure5-14 Debug Trace

|
[V Debug Trace

6.

Data Structure

SimpleSQL allows you to optionally choose to use .NET data structures such as DataT able, DataRow,
and DataView or use alighter-weight class-based ORM (Object Relational Mapping).

Some advantages of using the ORM method:

¢ Much smaller memory footprint. The System.Data dll that is required for the standard .NET data
structures takes up a full megabyte of storage. In addition to this, you also have to use the full .NET
Unity library for thisto work properly, further bloating your application.

o Strongly-typed field casting that is set up once. Y ou don't need to constantly cast the data you
retrieve from your database to the proper types, cutting down on the risk of typos and bugs.

o Simple callsto update and modify your database with little need for SQL syntax. Queries and
complex modifications can still be called with SQL statements, if you prefer.

SimpleSQL makes use of the Generic library to be able to store your arrays without having to
cast them each time they are referenced. Be sure your scripts have areference to the

System Col | ecti ons. Generi c library.

Using .NET's System.Data | 25

6.1 Using .NET's System.Data

If you decide you want to use .NET's System.Data library, then you can set thisin the Options by going
to the Unity menu SimpleSQL > Options.

Figure6-1 Options
iols |SimpIeSQL Window Help

Create SimpleSQL Database Manager —
Create Empty Database
Options

fo

From there you can choose the Data Library Optimization setting. If you wish to use System.Data, you'll
need to select the appropriate option:

Figure6-2 Use System Data

Optimize Data Libraries

il >

-

No System.Data Use System.Data

Smaller Pacakge Larger Package

When you choose to use the System.Data library, you will be alerted to the fact that you will need to set
your project's player setting's APl Compatibility Level to the full .NET library (not just the subset).

26 | Data Structure

Figure6-3 UseFull .NET

Notice

Please be sure to set your player setting's API
Compatibility Level to .NET 2.0 {not subset) for the
System.Data library to work properly at runtime.

/1. Using System.Data requires the full .NET library in your player settings. Thiswill increase
your final package size.

) Youcan still usethe ORM classes alongside the System.Data structures.

6.2 Using the ORM

If you decide to use the ORM, then you can turn off the System.Data library to streamline your
application. Note that you can leave the System.Data library in your application without harm, it will
just make the final package larger.

Figure6-4 No System.Data

Optimize Data Libraries

Mo System.Data Use System.Data

Smaller Pacakge Larger Package

Using the ORM | 27

I Youwill be asked to confirm removing the System.Data library and warned that doing so
may cause errors if you have scripts or gameobjectsin your scene referencing thislibrary. Be

sure you remove al these references before turning off System.Data to avoid errors.

Figure6-5 Confirm System.Data Removal

Confirm System.Data Removal

Be sure you remove all references to System.Data and
SimpleSQLManager_WithSystemData from your scripts
and gameaobjects before continuing. If you do not,
Unity will likely crash or give errors when the libraries
are removed.

Are you sure you want to continue?

Yes Mo

Sample Classes

Below isan example of asimple class used to store weapon information in your game. This structureis
designed around the results of aquery, so it actually has more fields than the Weapon table in the
database. Y ou can find this class along with the corresponding database in the demo project included
with SimpleSQL.

usi ng Si npl eSQL;

public class Wapon

{
/1 The WeaponlI D field is set as the primary key in the SQ.ite

dat abase,
/'l so we reflect that here with the PrinmaryKey attribute

[PrimaryKey]

28 | Data Structure

public int Weaponl D { get; set; }
public string WaponNanme { get; set; }
public float Damage { get; set; }
public float Cost { get; set; }

public float Wight { get; set; }
public int WeaponTypel D { get; set; }

public string WaponTypeDescription { get; set; }

The actual Weapon table in the database uses all these fields except for the WeaponTypeDescription field
which ispulled in by using aJJOIN in aquery.

Attributes

Y ou can specify attributes for your fields that will allow you to communicate traits to your database. In
the above example, the Weaponi D field has a [PrimaryKey] attribute added that signifies that thisfield isa
unique key field in the data table. Other attributes that you can add to your fields include:

e PrimaryKey - Table'sunique key field

e Indexed - Tableisindexed based on thisfield

e NotNull - Thisfield cannot be null

o Default(value) - If no valueis provided when inserting, then the default value set here will be used
e MaxLength(value) - The maximum length of a string field

Hereis an example data structure class that uses multiple attributes on several fields:

Using the ORM | 29

usi ng Si npl eSQL;

public class Star Ship
{

/1 StarShiplDis the primary key, which automatically gets the
Not Nul | attribute

[PrimaryKey]

public int StarShipl D { get; set; }

/[l The starship nane will have an index created in the database.
/[l It's max length is set to 60 characters.

/'l The nanme cannot be null.

[ndexed, MaxLengt h(60), Not Null]

public string StarShi pNane { get; set; }

/1 The honme planet name's maxi mumlength is set to 100
characters.

/1 The default value is set to Earth

[MaxLengt h(100), Default("Earth")]

public string HonePl anet { get; set; }

/1 The range cannot be null.
[Not Nul |]
public float Range { get; set; }

[/ The arnor's default value is set to 120
[Defaul t (120. 0f)]
public float Arnmor { get; set; }

/'l Firepower has no restrictions
public float Firepower { get; set; }

30 | Data Structure

In the next chapter, you will see how these classes can be used in quick and smple retrieval of datafrom
your database.

7.

Queries

The most common task of a database isto quickly retrieve data. SimpleSQL passes a SQL statement to
the database and returns alist of data stored in the format of your custom classes that you set up.

7.1 Query Examples

Most of these samples can be found in the demo that comes with the SimpleSQL plugin so
only the relevant information will be highlighted. Please refer to these demos for complete

Implementations.

Retrieve All Data from a Table

This sample shows how easy it isto retrieve data from the Weapon table of your database and store the

resultsin ageneric list of your Weapon class.
public SinpleSQ. Si npl eSQLManager dbManager ;

void Start ()
{

32 | Queries

string sql = "SELECT * FROM Wapon";
Li st <Weapon> weapons = dbManager. Quer y<Weapon>(sql);
}

Note that somewhere in your script you will need to set a public reference to the SimpleSQL Manager
object in your scene that controls the database you are wishing to query.

From now on we will leave out the lines that show the reference to the manager object since it
isimplied that one is needed.

Iterating the Results

Once you have your data stored, you can access it by looping through the list of results.

foreach (Wapon weapon i n weapons)

{

Debug. Log(weapon. WeaponNane + " " + weapon. Damage);

Notice the ssmplicity here as compared to accessing the datain a.NET DataT able where you
would need to cast each field to its appropriate type before using. Predefining a class once
with types ssmplifies the amount of work required for every task afterward.

Retrieve Data from a Table Join

string sql = "SELECT " +
"W Weaponl D, " +

Query Examples | 33

"W WeaponNane, " +

"T. Description AS WeaponTypeDescription " +
"FROM Weapon W" +

"JO N WeaponType T " +

"ON W WeaponTypel D = T. WeaponTypel D ";

Li st <Weapon> weapons = dbManager. Quer y<Weapon>(sql);

If you look at the Weapon class where we are storing the results of the query, you'll notice that it has a
field for the WeaponTypeDescription even though the Weapon table does not carry thisfield. We put
thisfield in the class so that we can store the joined value.

Y ou do not need to fill every field of aclass. In the above example only three of the Weapon
class fields are being populated with data.

Using Linqg to Retrieve a Table's Data

Y ou can quickly retrieve all the datain atable using Ling without writing any SQL syntax. Be sure you

have areference to the Syst em Li nq library in your scriptsif you choose to use this method.

Li st <Weapon> weapons =
new Li st <Weapon> (from w dbManager . Tabl e<Weapon> ()
sel ect w);

Y ou can aso easily filter down the results by using a where clause with Ling.

Li st <Weapon> weapons =
new Li st <Weapon> (from w i n Tabl e<Weapon> ()
wher e w. WeaponNane == " Sword"
select w).FirstODefault ();

34 | Queries

7.2 System.Data Query Examples

Retrieve data from a table and store in a DataTable

This example shows how you can retrieve data from a SQL ite table and store it in a DataTable. Y ou can
then process the table by iterating over the rows, filter using a DataView, or anything else the
System.Datalibrary allows.

public Sinpl eSQLManager Wt hSyst enDat a nanager;
public QU Text text;

void Start ()
{

int row = O;
text.text = ""

Dat aTabl e dt = nanager. Query("SELECT " +
"W Weaponl D, " +
"W WeaponNane, " +
"W Damage, " +
"W Cost, " +
"W Wei ght, " +
"W WeaponTypel D, " +
"T. Description AS
WeaponTypeDescri ption " +
"FROM " +
"Weapon W" +
"JO N WeaponType T " +
"ON W WeaponTypel D =

System.Data Query Examples | 35

T. WeaponTypel D " +
"ORDER BY " +

"W Weaponl D ");
foreach (DataRow dr in dt.Rows)

{
text.text += "Row. " + row ToString() + " ";
for (int c=0; c<dt.Colums. Count; c++)
{
text.text += dt.Colums[c].ColumNane + "=" +
dr[c].ToString() + " ";
}
text.text += "\n";
r OWH+;
}

One advantage to querying your data using this method is that you do not need to know the
fields or their types beforehand. The DataT able stores each cell generically as an object type
which will need to be cast when using the data | ater.

8.

Inserting Records

To get datainto your database, you use insert commands.

8.1 Insert Record Examples

Insert with SQL Statement

Y ou can insert into a database using SQL statements. Y ou can aso bind parameters using the ? value in

your sgl statement. To insert, you call the Execute function in your manager.
string sql = "INSERT I NTO Pl ayer Stats " +
"(PlayerName, Total Kills, Points) " +

"VALUES (?, ?, ?2)";

dbManager . Execut e(sql, "New Player”, 3, 50000);

I Notethat we had three ? parameters and passed three values in our execute command. The

number of parameters must match the number of values.

Insert Record Examples | 37

Y ou do not need to use parameters at all if you prefer. Y ou could just as easily built up a SQL

string using concatenation.

Insert with Class Definition

Y ou can aso quickly insert into a database using the class definition of your table. We first create an
instance of our class definition, fill it in with data, and pass the instance to our manager using Insert.

Pl ayerStats playerStats = new PlayerStats { PlayerNane = "New
Player", Total Kills = 3, Points = 50000};

dbManager . I nsert (pl ayer Stats);

For this method to work, your class definition must match the table definition with no extra

fields. For example, the Weapon class could not be used like this because it has a definition
of afield populated by ajoin with another table (WeaponTypeDescription). Y ou may need to
create separate classes for your table definitions and your query results.

9.

Updating Records

To change existing data in your database, you use update commands.

9.1 Update Record Examples

Update with SQL Statement

string sql = "UPDATE Pl ayerStats " +
"SET Pl ayerName = ?, " +
"TotalKills =2, " +
"Points = ? " +
"WHERE " +

"PlayerI D = ?";

dbManager . Execut e(sql, "Updated Pl ayer Nane", 55, 120321, 2);

Note that you can use parameter binding with the ?in your SQL statement to simplify and

reuse your query.

Update Record Examples | 39

Update with Class Definition

Pl ayerStats playerStats = new PlayerStats { PlayerIl D = 2, Pl ayerNane
= "Updated Pl ayer Name", TotalKills = 55, Points = 120321};

dbManager . Updat eTabl e(pl ayer St at s) ;

To call the UpdateTable function in your manager, you set al the values of your classinstance,
including the key field. The UpdateTable function will use the key field to look up the record. For thisto

work, you must specify the primary key in your class definition.

10.

Deleting Records

To remove records from your database, you will call delete commands.

10.1 Delete Record Examples

Delete With SQL Statement

string sql = "DELETE FROM Pl ayer Stats WHERE Pl ayer|I D = ?";

dbManager . Execute(sql, 2);

Note that you can use parameter binding with the 2 to simplify and reuse your SQL

statements.

Delete With Class Definition

Delete Record Examples | 41

Pl ayerStats playerStats = new Pl ayerStats { PlayerlD = 2};

dbManager . Del et e<Pl ayer St at s>(pl ayer Stats) ;

To delete with the class definition, you set up your instantiated class object with the primary key set.

Then call Delete with the object, casting to the appropriate class structure. Y our class must have a
primary key attribute for this to work.

11.

Transactions

A transcation is a collection of database modification commands that will be run al at once.
Transactions vastly improve performance of Insert, Update, and Delete functions on a database. If you
are calling many commands all in arow, you will see an improvement in performance by using a

transaction.

To start atransaction, ssimply call before your statements you want to batch:
dbManager . Begi nTransacti on();

When you are done with your statements, you can then commit the transaction to the database, making it

run all the commands:

dbManager . Comm t () ;

11.1 Transaction Examples

Transactions with SQL Statements

Transaction Examples | 43

string sql = "INSERT I NTO Pl ayer Stats (Pl ayerNane, Total Kills,
Poi nts) VALUES (?, ?, ?2)";

dbManager . Begi nTransaction();
dbManager . Execute(sql, "Player 1", 2, 100);
dbManager . Execute(sql, "Player 2", 11, 1584);

dbManager . Execute(sql, "Player 3", 0, 0);

dbManager. Comm t () ;

Y ou can see in this example why setting up your SQL statement with parameter bindings
using the ? can come in handy. Y ou only have to specify the SQL statement once and then

bind it multiple times.

Note that your commands will not process until you call the Commit function if you have

started a Transaction.

Transactions With Class Definitions

In this example we first set up alist of PlayerStats. We will pass this list to the manager using the
InsertAll function which starts and commits a transaction for us. We populate the list with instantiated
objects of our PlayerStats class.

Pl ayer St at s pl ayer St at s;

Li st <Pl ayer St at s> pl ayer Stat sCol | ecti on = new Li st <Pl ayer St at s>();

44 | Transactions

pl ayer St at s “"Player 1", Total Kills

= 2, Points

new Pl ayer Stats { Pl ayer Nanme
100} ;
pl ayer St at sCol | ecti on. Add (pl ayer Stats);

pl ayer Stats = new Pl ayerStats { Pl ayer Nane
= 11, Points = 1584};
pl ayer St at sCol | ecti on. Add (pl ayer Stats);

“"Player 2", TotalKills

pl ayer St at s "Player 3", TotalKills

= 0, Points

new Pl ayer Stats { Pl ayer Nanme
0};
pl ayer St at sCol | ecti on. Add (pl ayer Stats);

dbManager . I nsert Al | (pl ayer St at sCol | ecti on);

12.
Creating, Altering, and Dropping Tables

Y ou can create and drop tables programmatically at runtime.

12.1 Create Table Examples

Create Table With SQL Statements

This example shows how to create a table and an index for the table. Y ou can set the attributes of each

field (such as primary key, not null, etc.) using the SQL statement.
string sql;

sql = "CREATE TABLE \"StarShip\" " +
“(\"StarShiplD\" | NTEGER PRI MARY KEY NOT NULL, " +
"\ " St ar Shi pNane\ " varchar(60), " +
"\ "HonePl anet\" varchar(100), " +
"\"Range\" FLOAT, " +
"\"Arnor\" FLOAT, " +
"\"Fi repower\" FLQOAT)";

dbManager . Execut e(sql) ;

46 | Creating, Altering, and Dropping Tables

sqgl = "CREATE | NDEX \" St ar Shi p_St ar Shi pNane\" on
\ " St ar Shi p\ " (\ " St ar Shi pName\ ") " ;
dbManager . Execut e(sql) ;

Create Table With Class Definition

This example shows how powerful SimpleSQL iswhen creating a table from a predefined class
definition. See the Data Structure Chapter to see the StarShip class definition.

dbManager . Cr eat eTabl e<St ar Shi p>() ;

12.2 Alter Table Examples

Alter Table With SQL Statements

This example shows how to add a column to atable
string sql;

sgl = "ALTER TABLE \"Locati onMappi ng\" ADD COLUWN \" NewFi el d\ "
| NTECER";

dbManager . Execut e(sqgl) ;

Alter Table Examples | 47

Alter Table With SQL Statements # 2

Though not technically an alter statement, this example shows how to drop a column from atable.

This example removes a column by first renaming atable to atemporary location, then creating a new
table with the original name, then copying the data from the temp table to the new table, and finally

removing the temp table. All thisis necessary because you cannot simply drop a column.

This method can also be used to change column names, ordering, or types as well.

Note that we use a transaction here to group all the commands into asingle call for efficiency
and performance.

string sql;

/] start a transaction to speed up processing
dbManager . Begi nTransacti on();

/'l rename our table to a backup nane
sql = "ALTER TABLE \"Star Shi p\" RENAVE TO \" Tenp_Star Ship\"";
dbManager . Execut e(sql) ;

/'l create a new table with our desired structure, |eaving out the
dr opped col um(s)

sql = "CREATE TABLE \"Star Ship\" " +
"(\"StarShiplD\" integer PRIMARY KEY NOTI NULL , " +
"\ " St ar Shi pNane\" varchar(60) NOT NULL , " +
"\ "HonmePl anet\" varchar(100) DEFAULT Earth , " +
"\"Range\" float NOT NULL , " +

“\"Arnor\" float DEFAULT 120 , " +

48 | Creating, Altering, and Dropping Tables

"\"Fi repower\" fl oat)
dbManager . Execute (sql);

/'l copy the data fromthe backup table to our new table
sql = "INSERT INTO \"Star Ship\" " +
"SELECT " + "" +
“StarShiplD\", " +
" St ar Shi pNanme\ ", " +
"HomePl anet\", " +
"Range\", " +

“"Arnmor\", " +

_ -

"Fi repower\" " +
"FROM \ " Tenp_Star Ship\"";
dbManager . Execut e(sql) ;

/1l drop the backup table
sql = "DROP TABLE \"Tenp_Star Ship\"";

dbManager . Execute (sql);

// commt the transaction and run all the conmmmands
dbManager . Commi t () ;

12.3 Drop Table

To drop atable and/or index programmatically, you call the SQL statement like this:

Drop Table | 49

string sql;

sgl = "DROP | NDEX \ " St ar Shi p_St ar Shi pNane\ " "
dbManager . Execut e(sql) ;

sql = "DROP TABLE \"Star Ship\"";
dbManager . Execut e(sql) ;

13.
Upgrading Databases

13.1 Database Workflow

SimpleSQL uses the database located in your application's working directory at runtime. This directory
is not the same as your project directory, where you set up the link to the database. This allows
SimpleSQL to make modifications to the database. It also alows you to create multiple working
databases from a single project database. Using an Object Oriented Programming analogy, you can think
of the project database as the template or class and the working databases as the object or instantiated

class.

If your database's data will change during runtime, then your database is said to have dynamic data. If
you are only using the database for settings and values that will not change during runtime, then your

database is said to have static data. Y ou may aso have some data that is dynamic and some that is static.

If you are using only static data, then you can safely check the Overwrite if Exists property on the
SimpleSQLManager. Thiswill completely wipe out the database that exists in your device's working
directory and replace it with the database in your project. Since nothing changes in your working

directory, wiping it out will have no consequence.

If you are using dynamic only data or a mixture of static and dynamic data, then you DO NOT want to
check the Overwrite if Exists property on the SimpleSQL Manager. Overwriting the data would wipe out

any changes the user makes at runtime and would not be desireable.

Upgrade Path | 51

So how do you update a dynamic database if you can't overwrite it?

13.2 Upgrade Path

The most common method for keeping a working database in sync with your project database isto keep
track of your database version (not the same as your project version). Y ou can then upgrade your tables
and table structures based on a set of steps between the working database's current version and the

project database's version. Thisis known as the upgrade path.

Typically you will store the database version inside each of your databases so that you know what

upgrade path to take for each.
For example:

Let's say your project database is at version 3.0. Y ou may have three working databases in your
application's working directory that are at versions 1.0, 2.0, and 3.0, all created from this project
database.

In order to get al your databases in sync with your project database, you will need to create an upgrade
path for each version of your database. At the beginning of your application's life cycle, you would call
the upgrade path on each of your databases. Something like this (psuedocode):

if (dbVersion == 1.0)
{

/1l add tables, change table structure, or nodify data to get to

version 2.0

dbVersion = 2.0;
/| update dbVersion in database to 2.0

52 | Upgrading Databases

if (dbVersion == 2.0)
{

/1 add tables, change table structure, or nodify data to get to

version 3.0

dbVersion = 3. 0;
/'l update dbVersion in database to 3.0

Y our database at version 1.0 will enter the first logic block, upgrading to 2.0. It will then enter the
second logic block sinceit isnow at 2.0 and upgrade to 3.0.

Y our database at version 2.0 will skip the first logic block and enter the second, upgrading to 3.0.

Y our database at version 3.0 won't enter any upgrade logic blocks since it is aready up-to-date.

13.3 Redundancy

Y ou may note that using an upgrade path can introduce redundancy. For example, let's say in the logic
blocks above for upgrading from 1.0 to 2.0 you add atable called "TableA™. Then in the logic block for
upgrading 2.0 to 3.0 you delete the table "TableA". If your databaseis at version 1.0, it will add then
immediately delete "TableA", which on the surface seems pointless, but gives you complete control over

a database's changes from any starting version to the final version.

14,

Options and Optimization

To allow more flexibility and optimization, SimpleSQL has the ability to use different DLLs for

different platforms and data structure libraries. To access the options window, go to the Unity menu

SimpleSQL > Options.

Figure14-1 Options

ols |SimpIeSQL Window Help

Create SimpleSQL Database Manager E

Create Empty Database
Options

o]

14.1 Optimize Platform

Figure14-2 Optimize Platform

Optimize Platform

Mac OS / iOS

Smallest Package
No sqlite3

54 | Options and Optimization

If you will be running your application only on Mac OS or iOS, then the first platform option is the best
solution. It strips out the sglite3 library which already exists on these platforms, making your final
package much smaller.

If you will be running your application on Windows 32 bit, Mac OS, or i0OS, then the Universal optionis
the best solution. It will include the sqlite3 libraries required by Windows, but will also make your final
package alittle larger.

Note that you can aso use the Universal package if you are running on Windows 64 and you
select the Windows option in the target platform in the Build Settings.

Figure 14-3 Windows 32

*J PC and Mac Standalone

Target Platform | Windows Al
Development Build v Windows
Autoconnect Profiler Windows 64-bit
Script Debugging Mac O5 X

If you will be running your application on Windows 64 bit, then you'll want to choose the last option. It
has a sglite3 library specially tailored to the 64 bit platform. Note that thisis only relevant if you choose
the Windows 64 bit build option in the Build Settings.

Figure 14-4 Windows 64

*J PC and Mac Standalone

Target Platform | Windows 64-bit ™
Development Build Windows
Autoconnect Profiler v Windows 64-bit
Script Debugging Mac O3 X

Optimize Data Library | 55

14.2 Optimize Data Library

Figure 14-5 Optimize Data Library

Optimize Data Libraries

—_

No System.Data Use System.Data

Smaller Pacakge Larger Package

If you want to use the NET System.Data library which includes data structures such as DataT abl e,
DataRow, and DataView, then you'll need to select Use System.Data. If you do not need these structures
and prefer to use the ORM classes, then you'll want to select No System.Data.

If you switch from using System.Data to not using it, then you will be warned that you should remove
all references to System.Data and SimpleSQLManager WithSystemData from your scripts and
gameobjects. Failure to do so may cause errors or Unity to crash.

Figure14-6 Confirm System.Data Removal

Confirm System.Data Removal

Be sure you remove all references to System.Data and
SimpleSQLManager_WithSystemData from your scripts
and gameabjects before continuing. If you do nat,
Unity will likely crash or give errors when the libraries
are removed.

Are you sure you want to continue?

Yes No

If you switch from not using System.Data to using it, you will be notified that you'll need to set the full

56 | Options and Optimization
.NET API inthe player settings for the library to work properly at runtime.

Figure14-7 UseFull .NET

Notice

Please be sure to set your player setting's API
Compatibility Level to .NET 2.0 {not subset) for the
System.Data library to work properly at runtime.

Figure14-8 Full .NET API

Optimization
Api Compatibility Level | .NET2.0 % |
* sh, v .MNET 2.0 l:iple platforms.

\NET 2.0 Subset

"= For more information about us ng System.Data see Using .NET's System.Data and
System.Data Query Examples.

Y ou can still use the ORM classes alongside the System.Data structures.

15.
FAQ and Troubleshooting

15.1 Questions / Errors

Q: Why are the changes I've made to the database in my project not showing up when | run my
application?

Q: Why can't | drag my database to the manager?

Q: Error: Failed to open database at the working path

Q: Error: If you want to change the database's working name, then you will need to supply a new
working name in the SimpleSQL M anager

Q: Error: SQLiteException: no such table

15.2 Answers / Resolutions

58 | FAQ and Troubleshooting

Q: Why are the changes I've made to the database in my

project not showing up when | run my application?

A: SimpleSQL uses the database in your application's working directory when running the application,
not the database in your project. SimpleSQL copies the database from your project to your application's
working directory if one does not already exist. If aworking database already exists, then SimpleSQL
will only overwrite the working database if you tell it to in the SimpleSQL Manager object in your scene.

Figure15-1 Overwrite If Exists

[V Overwrite If Exists

Warning! Overwriting the database if it exists on the
client device will wipe out any changes the user has
made since last running this scene.

Overwriting is good for static data, but bad for
dynamic data.

See Overwrite if Exists for more information.

Use extreme caution when overwriting a database since this will wipe out any changes made

while your application was running.

If you need to make changes to a working database, but don't want to overwrite any changes,

see the upgrade path in Upgrading Databases.

Answers / Resolutions | 59

Q: Why can't | drag my database to the manager?

Figure 15-2 Bad Extension

= Fantasy.bytes
SciFi.bytes

96 KB BYTES File
192KB SQLITE File

N =
anagel CFIPT, !

Warning! Overwriting the database if itexi
client device will wipe out any changeg"

4
0
Overwriting is good for static data,q.l bad for

made since last running this scene.

A: Be sure your project database has the extension ".bytes". Unity requires this extension when looking
for text assets that it can stream to aworking directory.

Figure15-4 BytesFiles

=) Fantasy.bytes
SciFi.bytes 96 KB BYTES File
MNew Database.bytes 0KB BYTES File

60 | FAQ and Troubleshooting

Y ou can change the name of your database in the working directory in the

SimpleSQLManager in your scene. See Change Working Name for more details.

Q: Error: Failed to open database at the working path

A: Thiserror is caused if the database is being used by another program. Be sure you do not have a
third-party application using the working database (not the project database) while running your project.
It can aso be caused by a crash in Unity, which would leave the database in an unclosed state.
Restarting Unity should resolve the issue.

This error can also be caused if there is no database set in the SimpleSQLManager. Be sure you set a
valid database before running your application.

See Database File for more information on how to assign a database to your manager.

!

Q: Error: If you want to change the database's working
name, then you will need to supply a new working name in

the SimpleSQLManager

A: Thiserror is caused by checking the option to change the working database name, but not providing a
new name. Be sure you either uncheck the name change, or provide a new name for the database in the

SimpleSQLManager.

See Change Working Name for more information.

Answers / Resolutions | 61

Q: Error: SQLiteException: no such table

A: Be sure the working database has a table with the one you are trying to access. Also, be sure you are

referencing avalid databasefile.

16.

Revisions

2012.07.16.1

- Added System.Data information to:

¢ Create a SimpleSQLManager with System.Data
e Using .NET's System.Data

¢ System.Data Query Examples

e Optimize Data Library

- Added Options and Optimization.

	SimpleSQL
	Table of Contents
	1. Overview
	2. Workflow
	3. Setting Up Your Project
	4. Creating a Database
	4.1 Create an Empty Database using SimpleSQL in Unity
	Create from the Unity Menu
	Create From the Project Menu
	Create From the Asset Menu

	4.2 Create a Database with a Third Party Tool
	4.3 Making Changes to Your Database

	5. Creating a Database Manager
	5.1 Creating a SimpleSQLManager
	Create Through the Unity Menu
	Create Through the Hierarchy Menu
	Attach to an Existing GameObject
	Dragging the Script to the GameObject
	Attaching the Script Through the Unity Menu

	5.2 Create a SimpleSQLManager with System.Data
	5.3 Manager Settings
	Database File
	Drag Database Asset to the Inspector
	Select the Database from the Object Browser

	Change Working Name
	Overwrite if Exists
	Debug Trace

	6. Data Structure
	6.1 Using .NET's System.Data
	6.2 Using the ORM
	Sample Classes
	Attributes

	7. Queries
	7.1 Query Examples
	Retrieve All Data from a Table
	Iterating the Results
	Retrieve Data from a Table Join
	Using Linq to Retrieve a Table's Data

	7.2 System.Data Query Examples
	Retrieve data from a table and store in a DataTable

	8. Inserting Records
	8.1 Insert Record Examples
	Insert with SQL Statement
	Insert with Class Definition

	9. Updating Records
	9.1 Update Record Examples
	Update with SQL Statement
	Update with Class Definition

	10. Deleting Records
	10.1 Delete Record Examples
	Delete With SQL Statement
	Delete With Class Definition

	11. Transactions
	11.1 Transaction Examples
	Transactions with SQL Statements
	Transactions With Class Definitions

	12. Creating, Altering, and Dropping Tables
	12.1 Create Table Examples
	Create Table With SQL Statements
	Create Table With Class Definition

	12.2 Alter Table Examples
	Alter Table With SQL Statements
	Alter Table With SQL Statements # 2

	12.3 Drop Table

	13. Upgrading Databases
	13.1 Database Workflow
	13.2 Upgrade Path
	13.3 Redundancy

	14. Options and Optimization
	14.1 Optimize Platform
	14.2 Optimize Data Library

	15. FAQ and Troubleshooting
	15.1 Questions / Errors
	15.2 Answers / Resolutions
	Q: Why are the changes I've made to the database in my project not showing up when I run my application?
	Q: Why can't I drag my database to the manager?
	Q: Error: Failed to open database at the working path
	Q: Error: If you want to change the database's working name, then you will need to supply a new working name in the SimpleSQLManager
	Q: Error: SQLiteException: no such table

	16. Revisions

