
Qualcomm Technologies, Inc.

Questions or comments: developer.qualcomm.com/llvm-forum

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm
Technologies, Inc. or its subsidiaries.

Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and
brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.

This document contains material provided to Qualcomm Technologies, Inc. under licenses reproduced in Appendix A that are provided to you
for attribution purposes only. Your license to this document is from Qualcomm Technologies, Inc.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2013-2016 Qualcomm Technologies, Inc. All rights reserved.

Snapdragon ARM LLVM Compiler for Android
User Guide

80-VB419-90 Rev. K

March 14, 2016

https://developer.qualcomm.com/llvm-forum

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 2

Contents

1 Introduction... 8
1.1 Overview .. 8
1.2 Features... 9
1.3 Languages... 9
1.4 GCC compatibility.. 9
1.5 Processor versions .. 10
1.6 LLVM versions... 10
1.7 Using the document.. 11
1.8 Notation .. 12
1.9 Feedback... 12

2 Getting Started.. 13
2.1 Overview .. 13
2.2 Create source file .. 14
2.3 Compile program.. 14
2.4 Execute program... 14

3 Using the Compilers... 15
3.1 Overview .. 15
3.2 Starting the compilers... 16
3.3 Input and output files.. 17
3.4 Compiler options .. 18

3.4.1 Display .. 24
3.4.2 Compilation... 24
3.4.3 C dialect .. 25
3.4.4 C++ dialect.. 26
3.4.5 Warning and error messages ... 26
3.4.6 Debugging... 31
3.4.7 Diagnostic format.. 32
3.4.8 Individual warning groups .. 35
3.4.9 Compiler crash diagnostics ... 37
3.4.10 Linker.. 37
3.4.11 Preprocessor .. 38
3.4.12 Assembling ... 41
3.4.13 Linking.. 41

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

Snapdragon ARM LLVM Compiler for Android Contents

3.4.14 Directory search .. 42
3.4.15 Processor version .. 43
3.4.16 Code generation .. 47
3.4.17 Vectorization ... 58
3.4.18 Parallelization ... 59
3.4.19 Optimization ... 60
3.4.20 Specific optimizations... 62
3.4.21 Math optimization... 65
3.4.22 Link-time optimization ... 67
3.4.23 Profile-guided optimization .. 67
3.4.24 Optimization reports ... 68
3.4.25 Compiler security.. 68

3.5 Warning and error messages... 70
3.5.1 Controlling how diagnostics are displayed ... 70
3.5.2 Diagnostic mappings... 70
3.5.3 Diagnostic categories .. 71
3.5.4 Controlling diagnostics with compiler options ... 71
3.5.5 Controlling diagnostics with pragmas .. 72
3.5.6 Controlling diagnostics in system headers.. 73
3.5.7 Enabling all warnings ... 74

3.6 Using GCC cross compile environments ... 74
3.7 Using LLVM with GNU Assembler... 76
3.8 Built-in functions.. 76
3.9 Compilation phases .. 77

4 Code Optimization.. 79
4.1 Overview .. 79
4.2 Optimizing for performance ... 80
4.3 Optimizing for code size .. 80
4.4 Automatic vectorization ... 81
4.5 Automatic parallelization ... 82

4.5.1 Auto-parallelization using SYMPHONY library.. 83
4.6 Merging functions .. 85
4.7 Link-time optimization... 86
4.8 Profile-guided optimization.. 87

4.8.1 Instrumentation-based PGO.. 87
4.8.2 Instrumentation-based profile gen with Android apps...................................... 89
4.8.3 Sampling-based PGO.. 90
4.8.4 Sampling-based PGO on Snapdragon MDP... 91
4.8.5 Profile resiliency ... 92
4.8.6 PGO tips.. 93

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

Snapdragon ARM LLVM Compiler for Android Contents

4.9 Loop optimization pragmas.. 94
4.9.1 Pragma syntax... 94
4.9.2 Compile options .. 95
4.9.3 Vectorization pragmas... 96
4.9.4 Reporting... 97
4.9.5 Examples... 98

4.10 Optimization reports... 100
4.10.1 Example output ... 100
4.10.2 Optimization report message details... 101

5 Compiler Security Tools .. 108
5.1 Overview .. 108
5.2 Sanitizer support... 109
5.3 Sanitizer special case lists .. 109
5.4 Sanitizer usage on Android .. 110
5.5 Sanitizer usage on Linux .. 112
5.6 Address Sanitizer.. 113

5.6.1 Usage... 113
5.6.2 Symbolizing the reports .. 115
5.6.3 Additional checks.. 115
5.6.4 Issue suppression .. 116
5.6.5 Suppressing memory leaks ... 118
5.6.6 Limitations .. 118
5.6.7 Options.. 118
5.6.8 Notes ... 120

5.7 Data Flow Sanitizer .. 120
5.7.1 Usage... 120
5.7.2 ABI list.. 120
5.7.3 Example .. 122
5.7.4 Notes ... 123

5.8 Leak Sanitizer ... 123
5.8.1 Usage... 123
5.8.2 Notes ... 123

5.9 Memory Sanitizer ... 124
5.9.1 Usage... 124
5.9.2 Report symbolization .. 125
5.9.3 Origin tracking .. 126
5.9.4 Use-after-destruction detection ... 127
5.9.5 Handling external code ... 127
5.9.6 Limitations .. 127
5.9.7 Notes ... 127

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

Snapdragon ARM LLVM Compiler for Android Contents

5.10 Thread Sanitizer.. 128
5.10.1 Usage... 128
5.10.2 Limitations .. 130
5.10.3 Notes ... 130

5.11 Undefined Behavior Sanitizer .. 131
5.11.1 Usage... 131
5.11.2 Available checks.. 132
5.11.3 Stack traces and report symbolization... 133
5.11.4 Issue suppression... 134
5.11.5 Notes ... 135

5.12 LLVM Symbolizer.. 136
5.12.1 Usage... 136
5.12.2 Options.. 137

5.13 Control flow integrity ... 138
5.13.1 Configuration .. 138
5.13.2 Usage... 139
5.13.3 Options.. 140
5.13.4 Handler functions.. 141
5.13.5 Notes ... 141

5.14 Static program analysis... 142
5.14.1 Static analyzer ... 143
5.14.2 Post processor ... 148
5.14.3 Scan-build ... 148

6 Porting Code from GCC... 149
6.1 Overview .. 149
6.2 Command options... 150
6.3 Errors and warnings.. 150
6.4 Function declarations.. 150
6.5 Casting to incompatible types .. 151
6.6 aligned attribute .. 151
6.7 Reserved registers... 152
6.8 Inline versus extern inline .. 152

7 Coding Practices .. 154
7.1 Overview .. 154
7.2 Use int types for loop counters... 155
7.3 Mark function arguments as restrict (if possible)... 155
7.4 Do not pass or return structs by value .. 156
7.5 Avoid using inline assembly... 157

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

Snapdragon ARM LLVM Compiler for Android Contents

8 Language Compatibility... 158
8.1 Overview .. 158
8.2 C compatibility ... 159

8.2.1 Differences between various standard modes... 159
8.2.2 GCC extensions not implemented yet... 160
8.2.3 Intentionally unsupported GCC extensions .. 161
8.2.4 Lvalue casts... 161
8.2.5 Jumps to within __block variable scope ... 161
8.2.6 Non-initialization of __block variables .. 162
8.2.7 Inline assembly ... 162

8.3 C++ compatibility... 163
8.3.1 Deleted special member functions .. 163
8.3.2 Variable-length arrays ... 164
8.3.3 Unqualified lookup in templates... 165
8.3.4 Unqualified lookup into dependent bases of class templates.......................... 168
8.3.5 Incomplete types in templates... 169
8.3.6 Templates with no valid instantiations.. 170
8.3.7 Default initialization of const variable of a class type.................................... 171
8.3.8 Parameter name lookup... 171

A Acknowledgements ... 172

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

Snapdragon ARM LLVM Compiler for Android Tables

Tables
Table 3-1 Compiler input files ... 17
Table 3-2 Compiler output files ... 18
Table 4-1 Optimizing for performance .. 80
Table 4-2 Optimizing for code size .. 80
Table 4-3 SYMPHONY library versions ... 84
Table 4-4 Loop pragmas... 94
Table 4-5 Loop pragma options ... 95
Table 4-6 Loop pragma option combinations .. 95
Table 4-7 Loop optimization reporting .. 97
Table 5-1 Sanitizer support .. 109
Table 5-2 ASan options .. 119
Table 5-3 UBSan checks .. 132
Table 5-4 Symbolizer options .. 137
Table 5-5 Static compiler options... 140

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

1 Introduction

1.1 Overview
This document describes C and C++ compilers for the ARM® processor architecture. The
compilers are based on the LLVM compiler framework, and are collectively referred to as
the LLVM compilers.

NOTE The LLVM compilers are commonly referred to as Clang.

It is highly recommended to try using the various LLVM code optimizations
to improve the performance of your program. Using just the default
optimization settings is likely to result in suboptimal performance.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

Snapdragon ARM LLVM Compiler for Android Introduction

1.2 Features
The LLVM compilers offer the following features:

■ ISO C conformance
Supports the International Standards Organization (ISO) C language standard

■ Compatibility
Supports LLVM extensions and most GCC extensions to simplify porting

■ System library
Supports standard libraries as provided in the Android NDK

■ Processor-specific libraries
Provides library routines that are optimized for the Qualcomm ARM architecture

■ Intrinsics
Provides a mechanism for emitting LLVM assembly instructions in C source code

1.3 Languages
The LLVM compilers support C, C++, and many dialects of those languages:

■ C language: K&R C, ANSI C89, ISO C90, ISO C94 (C89+AMD1),
ISO C99 (+TC1, TC2, TC3)

■ C++ language: C++98, C++11

In addition to these base languages and their dialects, the LLVM compilers support a
broad variety of language extensions. These extensions are provided for compatibility
with the GCC, Microsoft, and other popular compilers, as well as to improve functionality
through the addition of extensions unique to the LLVM compilers.

All language extensions are explicitly recognized as such by the LLVM compilers, and
marked with extension diagnostics which can be mapped to warnings, errors, or simply
ignored.

1.4 GCC compatibility
The LLVM compiler driver and language features are intentionally designed to be as
compatible with the GNU GCC compiler as reasonably possible, easing migration from
GCC to LLVM. In most cases, code "just works".

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

Snapdragon ARM LLVM Compiler for Android Introduction

1.5 Processor versions
The LLVM compilers can generate code for all versions of the ARM processor
architecture that are supported by the standard LLVM compiler.

However, full support is provided only for ARMv7 (which includes Krait) and ARMv8
(which is ARM's newest architecture).

ARMv8 supports two instruction set architectures (ISA):

■ AArch64 – the new 64-bit ISA, which supports a larger virtual and physical
address space. All general purpose registers (and many of the system registers) are
64 bits. All instructions are encoded in 32 bits.

■ AArch32 – a 32-bit ISA which incorporates the ARMv7 ISA for both ARM and
Thumb modes, and also includes many aspects of AArch64 (including support for
cryptography and enhanced floating point).

For more information see the ARMv8-A Reference Manual.

1.6 LLVM versions
The LLVM compilers are based on LLVM 3.8, as defined at llvm.org.

http://gcc.gnu.org
http://clang.llvm.org/
http://llvm.org/

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

Snapdragon ARM LLVM Compiler for Android Introduction

1.7 Using the document
This document is designed as a reference for experienced C/C++ programmers. It
describes the LLVM compilers and language implementations.

The document contains the following chapters:
■ Chapter 1, Introduction, presents an overview of the compilers and the document.

■ Chapter 2, Getting Started, explains how to compile and execute a simple C
program.

■ Chapter 3, Using the Compilers, describes the command line syntax, console
messages, and input and output files.

■ Chapter 4, Code Optimization, describes features for improving the size and speed
of program code.

■ Chapter 5, Compiler Security Tools, describes tools and features for improving the
security and reliability of program code.

■ Chapter 6, Porting Code from GCC, describes issues commonly encountered
while porting GCC code to LLVM LLVM.

■ Chapter 7, Coding Practices, describes recommended coding practices for
ensuring the generation of efficient object code.

■ Chapter 8, Language Compatibility, describes how the compilers implement the C
language standard.

■ Appendix A presents the LLVM license statements governing this document.

C language reference

This document does not describe the C or C++ languages. The suggested references are:
■ The C Programming Language (2nd Edition), Brian Kernighan and Dennis

Ritchie, Prentice Hall, 1988.

■ The C++ Programming Language (3rd Edition), Bjarne Stroustrup, Addison-
Wesley, 1997.

Compiler references

This document does not provide detailed descriptions of the code optimizations performed
by LLVM. Suggested compiler references are:

■ Compilers: Principles, Techniques, and Tools (2nd Edition), Alfred Aho, Monica
Lam, Ravi Sethi, and Jeffrey Ullman, Prentice Hall, 2006

■ Engineering a Compiler (2nd Edition), Keith Cooper and Linda Torczon, Morgan
Kaufmann, 2011

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

Snapdragon ARM LLVM Compiler for Android Introduction

1.8 Notation
This document uses italics for terms and document names:

The C Programming Language (2nd Edition)

Courier font is used for computer text:
int main()
{
 printf(“Hello world\n”);
 return(0);
}

The following notation is used to define the syntax of functions and commands:

■ Square brackets enclose optional items (e.g., help [command]).

■ Bold is used to indicate literal symbols (e.g., the brackets in array[index]).

■ The vertical bar character | is used to indicate a choice of items.

■ Parentheses are used to enclose a choice of items (e.g., (on|off)).

■ An ellipsis, ..., follows items that can appear more than once.

■ Italics are used for terms that represent categories of symbols.

Examples:
#define name(parameter1[, parameter2...]) definition
logging (on|off)

In the above examples #define is a preprocessor directive and logging is an
interactive compiler command.

name represents the name of a defined symbol.

parameter1 and parameter2 are macro parameters. The second parameter is optional since
it is enclosed in square brackets. The ellipsis indicates that the macro accepts more than
parameters.

on and off are bold to show that they are literal symbols. The vertical bar between
them shows that they are alternative parameters of the logging command.

1.9 Feedback
If you have any comments or suggestions regarding the LLVM compilers (or this
document), please send them to:

developer.qualcomm.com/llvm-forum

NOTE If you are a commercial licensee of Qualcomm, use your normal support
channels for support.

http://developer.qualcomm.com/llvm-forum
mailto:rgleaves@qualcomm.com

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

2 Getting Started

2.1 Overview
This chapter shows how to build and execute a simple C program using the LLVM
compiler.

The program is built in the Linux environment, and executed directly on ARMv7 or
ARMv8 hardware running Linux.

NOTE The Android NDK is assumed to be already installed on your computer. This
includes the tools required for assembling and linking a compiled program.

The commands shown in this chapter are for illustration only – for detailed
information on building programs see Chapter 3.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Snapdragon ARM LLVM Compiler for Android Getting Started

2.2 Create source file
Create the following C source file:

#include <stdio.h>

int main()
{
 printf(“Hello world\n”);
 return(0);
}

Save the file as hello.c.

2.3 Compile program
Compile the program with the following command:

clang hello.c -o hello

This translates the C source file hello.c into the executable file hello.

2.4 Execute program
To execute the program, use the following command:

hello

The program outputs its message in the terminal:

Hello world

You have now compiled and executed a C program using the LLVM compiler. For more
information on using the compiler see the following chapter.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

3 Using the Compilers

3.1 Overview
The LLVM compilers translate C and C++ programs into LLVM processor code.

C and C++ programs are stored in source files, which are text files created with a text
editor. LLVM processor code is stored in object files, which are executable binary files.

This chapter covers the following topics:

 Starting the compilers

 Input and output files

 Compiler options

 Warning and error messages

 Using GCC cross compile environments

 Built-in functions

 Compilation phases

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.2 Starting the compilers
To start the C compiler from a command line, type:

clang [options...] input_files...

To start the C++ compiler from a command line, type:
clang++ [options...] input_files...

The compilers accept one or more input files on the command line. Input files can be
C/C++ source files or object files. For example:

clang hello.c mylib.c

Command switches are used to control various compiler options (Section 3.4). A switch
consists of a dash character (‘-’) followed by a switch name and optional parameter.

Switches are case-sensitive and must be separated by at least one space. For example:
clang hello.c -o hello

To list the available command options, use the --help option:
clang --help
clang++ --help

This option causes the compiler to display the command line syntax, followed by a list of
the available command options.

NOTE clang is the name of the front end driver for the LLVM compiler framework.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.3 Input and output files
The LLVM compilers preprocess and compile one or more source files into object files.
The compilers then invoke the linker to combine the object files into an executable file.

Table 3-1 lists the input file types and the tool that processes files of each type. The
compilers use the file name extension to determine how to process the file.

NOTE All file name extensions are case-sensitive literal strings. Input files with
unrecognized extensions are treated as object files.

For more information on LLVM IR files see llvm.org.

Table 3-1 Compiler input files

Extension Description Tool

.c C source file C compiler

.i C preprocessed file

.h C header file

.cc

.cp

.cxx

.cpp

.CPP

.c++

.C

C++ source file C++ compiler

.ii C++ preprocessed file

.h

.hh

.H

C++ header file

.bc

.ll
LLVM intermediate representation (IR) file C/C++ compiler

.s

.S
Assembly source file Assembler

other Binary object file Linker

http://llvm.org

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

Snapdragon ARM LLVM Compiler for Android Using the Compilers

Table 3-2 lists the output file types and the tools used to generate each file type.

Compiler options (Section 3.4) are used to specify the output file type.

3.4 Compiler options
The LLVM compilers can be controlled by command-line options (Section 3.2). Many of
the GCC options are supported, along with options that are LLVM-specific.

NOTE Many of the -f, -m, and -W options can be written in two ways: -f<option>
to enable a binary option, or -fno-<option> to disable the option.

-mllvm is not a stand-alone option, but rather a standard prefix that appears in
many LLVM-specific option names.

Display

See Section 3.4.1

-help
-v

Compilation

See Section 3.4.2

-###
-c -cc1 -ccc-print-phases
-E -S -pipe
-o file
-Wp,arg[,arg...]
-Wa,arg[,arg...]
-Wl,arg[,arg...]
-x language
-Xclang arg
-no-canonical-prefixes

Table 3-2 Compiler output files

File Type Default
File Name Input Files

Executable file a.out The specified source files are compiled and
linked to a single executable file.

Object file file.o Each specified source file is compiled to a
separate object file (where file is the source file
name).

Assembly source file file.s Each specified source file is compiled to a
separate assembly source file (where file is the
source file name).

Preprocessed C/C++
source file

stdout The preprocessor output is written to the
standard output.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

Snapdragon ARM LLVM Compiler for Android Using the Compilers

C dialect

See Section 3.4.3

-ansi -fno-asm -fblocks -fgnu-runtime -fgnu89-inline
-fsigned-bitfields -fsigned-char -funsigned-char
-no-integrated-cpp -std=(c89|gnu89|c94|c99|gnu99)
-traditional -Wpointer-sign

C++ dialect

See Section 3.4.4

-cxx-isystem dir
-ffor-scope -fno-for-scope -fno-gnu-keywords
-ftemplate-depth-n -fvisibility-inlines-hidden
-fuse-cxa-atexit -nobuiltininc -nostdinc++
-Wc++0x-compat -Wno-deprecated
-Wnon-virtual-dtor -Woverloaded-virtual
-Wreorder

Warning and error messages

See Section 3.4.5

-ferror-limit=n -ftemplate-backtrace-limit=n
-ferror-warn filename -fsyntax-only -pedantic
-pedantic-errors -Q-unused-arguments
-w -Wfoo -Wno-foo -Wall -Warray-bounds
-Wcast-align -Wchar-subscripts
-Wcomment -Wconversion
-Wdeclaration-after-statement -Wno-deprecated-declarations
-Wempty-body -Wendif-labels -Werror
-Werror=foo -Wno-error=foo
-Werror-implicit-function-declaration
-Weverything -Wextra -Wfloat-equal
-Wformat -Wformat=2 -Wno-format-extra-args
-Wformat-nonliteral -Wformat-security
-Wignored-qualifiers
-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Wno-invalid-offsetof -Wlong-long -Wmain
-Wmissing-braces -Wmissing-declarations
-Wmissing-noreturn -Wmissing-prototypes -Wno-multichar
-Wnonnull -Wpacked -Wpadded -Wparentheses -Wpedantic
-Wpointer-arith -Wreturn-type -Wshadow -Wsign-compare
-Wswitch -Wswitch-enum -Wsystem-headers
-Wtrigraphs -Wundef -Wuninitialized -Wunknown-pragmas
-Wunreachable-code -Wunused -Wunused-function -Wunused-label
-Wunused-parameter -Wunused-value -Wunused-variable
-Wno-vectorizer-no-neon -Wwrite-strings

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 20

Snapdragon ARM LLVM Compiler for Android Using the Compilers

Debugging

See Section 3.4.6

-dumpmachine -dumpversion
-feliminate-unused-debug-symbols
-ftime-report
-g[level] -gline-tables-only
-print-diagnostic-categories
-print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib
-print-multi-os-directory -print-prog-name=program
-print-search-dirs
-save-temps -time

Diagnostic format

See Section 3.4.7

-fcaret-diagnostics -fno-caret-diagnostics
-fdiagnostics-format=(clang|msvc|vi)
-fdiagnostics-show-option -fno-diagnostics-show-option
-fdiagnostics-show-category=(none|id|name)
-fdiagnostics-print-source-range-info
-fno-diagnostics-print-source-range-info
-fdiagnostics-parseable-fixits
-fdiagnostics-show-note-include-stack
-fdiagnostics-show-template-tree
-fmessage-length=n

Individual warning groups

See Section 3.4.8

-Wextra-tokens -Wambiguous-member-template
-Wbind-to-temporary-copy

Compiler crash diagnostics

See Section 3.4.9

-fno-crash-diagnostics

Linker

See Section 3.4.10

-fuse-ld=(gold|bfd|qcld)

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

Snapdragon ARM LLVM Compiler for Android Using the Compilers

Preprocessor

See Section 3.4.11

-A pred=ans -A -pred=ans -ansi -C -CC -d(DMNU)
-D name -D name=definition -fexec-charset=charset
-finput-charset=charset -fpch-deps -fpreprocessed
-fstrict-overflow -ftabstop=width -fwide-exec-charset=charset
-fworking-directory --help -H -I dir -I- -include file
-isystem prefix -isystem-prefix prefix
-ino-system-prefix prefix
-M -MD -MF file -MG -MM -MMD -MP -MQ target -MT target
-nostdinc -nostdinc++ -o file -P -remap --target-help
-U name -v -version --version -w -Wall -Wcomment
-Wcomments -Wendif-labels -Werror -Wimport
-Wsystem-headers -Wtrigraphs -Wundef -Wunused-macros
-Xpreprocessor option

Assembling

See Section 3.4.12

-Xassembler option
-integrated-as -no-integrated-as

Linking

See Section 3.4.13

object_file_name -c -dynamic -E
-l library -moslib=library
-nodefaultlibs -nostartfiles -nostdlib
-pie -s -S -shared -shared-libgcc
-static -static-libgcc
-symbolic -u symbol -Xlinker option

Directory search

See Section 3.4.14

-Bprefix
-F dir -I dir
--gcc-toolchain=prefix
-I-
-Ldir
--sysroot=prefix

Processor version

See Section 3.4.15

-target triple
-march=version
-mcpu=version
-mfpu=version
-mfloat-abi=(soft|softfp|hard)

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 22

Snapdragon ARM LLVM Compiler for Android Using the Compilers

Code generation

See Section 3.4.16

-fasynchronous-unwind-tables
-fchar-array-precise-tbaa -fno-char-array-precise-tbaa
-femit-all-data -femit-all-decls
-ffp-contract=(fast|on|off)
-fno-exceptions
-fmerge-functions
-fpic -fPIC -fpie -fPIE
-fsanitize=address -fno-sanitize=address
-fsanitize=memory -fno-sanitize=memory
-fsanitize=event[,event...] -fno-sanitize=event[,event...]
-fsanitize-blacklist=file -fno-sanitize-blacklist
-fsanitize-messages -fno-sanitize-messages
-fsanitize-opt-size -fno-sanitize-opt-size
-fsanitize-source-loc -fno-sanitize-source-loc
-fsanitize-use-embedded-rt
-fsanitize-memory-track-origins[=level]
-fshort-enums -fno-short-enums
-fshort-wchar -fshort-wchar
-ftrap-function=value -ftrapv -ftrapv-handler
-funwind-tables -fverbose-asm
-fvisibility=[default|internal|hidden|protected]
-fwrapv
-mhwdiv=(arm|thumb|arm,thumb|none)
-mllvm -aarch64-disable-abs-reloc
-mllvm -aggressive-jt
-mllvm -arm-expand-memcpy-runtime
-mllvm -arm-memset-size-threshold
-mllvm -arm-memset-size-threshold-zeroval
-mllvm -arm-opt-memcpy
-mllvm -disable-thumb-scale-addressing
-mllvm -emit-cp-at-end
-mllvm -enable-android-compat
-mllvm -enable-arm-addressing-opt
-mllvm -enable-arm-peephole
-mllvm -enable-arm-zext-opt
-mllvm -enable-print-fp-zero-alias
-mllvm -enable-round-robin-RA
-mllvm -enable-select-to-intrinsics
-mllvm -favor-r0-7
-mllvm -force-div-attr
-mllvm -prefetch-locality-policy=(L1|L2|L3|stream)
-mrestrict-it -mno-restrict-it

Vectorization

See Section 3.4.17

-fvectorize-loops -ftree-vectorize
-fvectorize-loops-debug
-fprefetch-loop-arrays[=stride] -fno-prefetch-loop-arrays

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

Snapdragon ARM LLVM Compiler for Android Using the Compilers

Parallelization

See Section 3.4.18

-fparallel
-fparallel-symphony

Optimization

See Section 3.4.19

-O -O0 -O1 -O2 -O3 -O4 -Os -Oz
-Ofast -Osize

Specific optimizations

See Section 3.4.20

-falign-functions[=n] -falign-jumps[=n]
-falign-labels[=n] -falign-loops[=n]
-falign-inner-loops -fno-align-inner-loops
-falign-os -fno-align-os
-fdata-sections -ffunction-sections
-finline -finline-functions
-floop-pragma -fnomerge-all-constants
-fomit-frame-pointer -foptimize-sibling-calls
-fstack-protector -fstack-protector-all
-fstack-protector-strong -fstrict-aliasing
-funit-at-a-time -funroll-all-loops
-funroll-loops -fno-zero-initialized-in-bss
--param ssp-buffer-size=size

Math optimization

See Section 3.4.21

-fassociative-math -ffast-math -ffinite-math-only
-fmath-errno -fno-math-errno -freciprocal-math
-fno-signed-zeros -fno-trapping-math
-funsafe-math-optimizations

Link-time optimization

See Section 3.4.22

-flto

Profile-guided optimization

See Section 3.4.23

-fprofile-instr-generate[=filename]
-fprofile-instr-use=filename
-fprofile-sample-use=filename

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 24

Snapdragon ARM LLVM Compiler for Android Using the Compilers

Optimization reports

See Section 3.4.24

-fopt-reporter=(vectorizer|parallelizer|all)
-polly-max-pointer-aliasing-checks
-Rpass=loop-opt
-Rpass-missed=loop-opt

Compiler security

See Section 3.4.25

--analyze -analyzer-checker=checker -analyzer-checker-help
-analyzer-disable-checker=checker --analyzer-output html
--analyzer-Werror --compile-and-analyze dir
-ffcfi -fno-fcfi

3.4.1 Display
-help

Display compiler command and option summary.

-v

Display compiler release version.

3.4.2 Compilation
-###

Print commands used to perform the compilation.

-c

Compile source file, but do not link it.

-cc1

Bypass the compiler driver and go directly to LLVM.

-ccc-print-phases

Print the compilation stages as they occur.

-E

Preprocess source file only, do not compile it.

-S

Compile source file, but do not assemble it.

-pipe

Communicate between compiler stages using pipes not temporary files.

-o file
Specify the name of the compiler output file.

-Wp,arg[,arg...]
Pass the specified arguments to the preprocessor.

-Wa,arg[,arg...]

Pass the specified arguments to the assembler.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-Wl,arg[,arg...]
Pass the specified arguments to the linker.

-x language
Specify language of the subsequent source files specified on the command line.

-Xclang arg
Pass the specified argument to the compiler.

-no-canonical-prefixes

When processing a pathname:

 Do not expand any symbolic links.

 Do not resolve any references to “/./” or “/../”.

 Do not make relative prefixes absolute.

3.4.3 C dialect
-ansi

For C, support ISO C90. For C++, remove conflicting GNU extensions.

-fno-asm

Do not recognize asm, inline, or typeof as keywords.

-fblocks

Enable the Apple “blocks” extension.

-fgnu-runtime

Generate output compatible with the standard GNU Objective-C runtime.

-fgnu89-inline

Use the gnu89 inline semantics.

-fsigned-bitfields

Define bitfields as signed.

-fsigned-char

Define char type as signed.

-funsigned-char

Define char type as unsigned.

-no-integrated-cpp

Compile using separate preprocessing and compilation stages.

-std=(c89|gnu89|c94|c99|gnu99|c11)
LLVM language mode. The default setting is gnu99.

-traditional

Support pre-standard C language.

-Wpointer-sign

Flag pointers when assigned or passed values with a differing sign.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.4 C++ dialect
-cxx-isystem dir

Add specified directory to C++ SYSTEM include search path.

-ffor-scope
-fno-for-scope

Control whether the scope of a variable declared in a for statement is limited to
the statement or to the scope enclosing the statement.

-fno-gnu-keywords

Disable recognizing typeof as a keyword.

-ftemplate-depth-n
Specify the maximum instantiation depth of a template class.

-fvisibility-inlines-hidden

Specify default visibility for inline C++ member functions.

-fuse-cxa-atexit

Register destructors with function __cxa_atexit (instead of atexit). This
applies only to objects that have static storage duration.

-nobuiltininc

Disable builtin #include directories.

-nostdinc++

Disable standard #include directories for the C++ standard library.

-Wc++0x-compat

Generate warnings for C++ constructs with different semantics in ISO C++ 1998
and ISO C++ 200x.

-Wno-deprecated

Do not generate warnings when deprecated features are used.

-Wnon-virtual-dtor

Generate warning when a polymorphic class is declared with a non-virtual
destructor.

-Woverloaded-virtual

Generate warning when a function hides virtual functions from a base class.

-Wreorder

Generate warning when member initializers do not appear in the code in the
required execution order.

3.4.5 Warning and error messages
-ferror-limit=n

Stop emitting diagnostics after n errors have been produced. The default setting is
20. The error limit can be disabled with the option -ferror-limit=0.

-ftemplate-backtrace-limit=n
Only emit up to n template instantiation notes within the template instantiation
backtrace for a single warning or error. The default setting is 10. The limit can be
disabled with the option -ftemplate-backtrace-limit=0.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 27

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-ferror-warn filename
Convert the specified set of compiler warnings into errors.

The specified text file contains a list of warning names, with each warning name
separated by whitespace in the file.

Warning names are based on the switch names of the corresponding compiler
warning-message options. For example, to convert the warnings generated by the
option -Wunused-variable, use the warning name unused-variable.

This option can be specified multiple times.

NOTE This option (and its associated file) can be integrated into a build system, and
used to iteratively resolve the warning messages generated by a project.

-fsyntax-only

Check for syntax errors only.

-pedantic
-Wpedantic

Generate all warnings required by the ISO C and ISO C++ standards.

-pedantic-errors

Equivalent to -pedantic, but generate errors instead of warnings.

-Qunused-arguments

Do not generate warnings for unused driver arguments.

-w

Suppress all warnings.

-Wfoo
Enable the diagnosticfoo.

-Wno-foo

Disable the diagnosticfoo.

-Wall

Enable all -W options.

-Warray-bounds

Generate warning if array subscripts are out of bounds.

-Wcast-align

Generate warning if a pointer cast increases the required alignment of the target.

-Wchar-subscripts

Generate warning if array subscript is type char.

-Wcomment

Generate warning if a comment symbol appears inside a comment.

-Wconversion

Generate warning if an implicit conversion may alter a value.

-Wdeclaration-after-statement

Generate warning when a declaration appears in a block after a statement.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-Wno-deprecated-declarations

Do not generate warnings for functions, variables, or types assigned the attribute
deprecated.

-Wempty-body

Generate warning if an if, else, or do while statement contains an empty body.

-Wendif-labels

Generate warning if an #else or #endif directive is followed by text.

-Werror

Convert all warnings into errors.

-Werror=foo
Convert the diagnostic foo into an error.

-Wno-error=foo
Keep the diagnostic foo as a warning, even if -Werror is used.

-Werror-implicit-function-declaration

Generate warning or error if a function is used before being declared.

-Weverything

Enable all warnings.

-Wextra

Enable selected warning options, and generate warnings for selected events.

-Wfloat-equal

Generate warning if two floating point values are compared for equality.

-Wformat

In calls to printf, scanf, and other functions with format strings, ensure that the
arguments are compatible with the specified format string.

-Wformat=2

This option is equivalent to specifying the following options: “-Wformat
-Wformat-nonliteral -Wformat-security -Wformat-y2k”.

-Wno-format-extra-args

Do not generate warning for passing extra arguments to printf or scanf.

-Wformat-nonliteral

Generate warning if the format string is not a string literal, except if the format
arguments are passed through va_list.

-Wformat-security

Generate warning for format function calls that may cause security risks.

-Wignored-qualifiers

Generate warning if a return type has a qualifier (for example, const).

-Wimplicit

Equivalent to -Wimplicit-int and -Wimplicit-function-declaration.

-Wimplicit-function-declaration

Generate warning if a function is used before it is declared.

-Wimplicit-int

Generate warning if a declaration does not specify a type.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-Wno-invalid-offsetof

Do not generate warning if macro offsetof is passed a non-POD type.

-Wlong-long

Generate warning if typelong long is used.

-Wmain

Generate warning if the function main() has any suspicious properties.

-Wmissing-braces

Generate warning if an aggregate or union initializer is not properly bracketed.

-Wmissing-declarations

Generate warning if a global function is defined without being first declared.

-Wmissing-noreturn

Generate warning if a function does not include a return statement.

-Wmissing-prototypes

Generate warning if a global function is defined without a prototype.

-Wno-multichar

Do not generate warning if a multicharacter constant is used.

-Wnonnull

Generate warning if a null pointer is passed to an argument that is specified to
require a non-null value (with the nonnull attribute).

-Wpacked

Generate warning if the memory layout of a structure is not affected after the
structure is specified with the packed attribute.

-Wpadded

Generate warning if the memory layout of a structure includes padding.

-Wparentheses

Generate warning if the parentheses are omitted in certain cases.

-Wpedantic

See -pedantic.

-Wpointer-arith

Generate warning if any code depends on the size of void or a function type.

-Wreturn-type

Generate warning if a function returns a type that defaults to int, or a value
incompatible with the defined return type.

-Wshadow

Generate warning if a local variable shadows another local variable, global
variable, or parameter; or if a built-in function gets shadowed.

-Wsign-compare

Generate warning in a signed/unsigned compare if the result may be inaccurate
due to the signed operand being converted to unsigned.

-Wswitch
-Wswitch-enum

Generate warning if a switch statement uses an enumeration type for the index,
and does not specify a case for every possible enumeration value, or specifies a
case with a value outside the enum range.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 30

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-Wsystem-headers

Generate warning for constructs declared in system header files.

-Wtrigraphs

Generate warning if a trigraph forms an escaped newline in a comment.

-Wundef

Generate warning if an undefined non-macro identifier appears in an #if
directive.

-Wuninitialized

Generate warning if referencing an uninitialized automatic variable.

-Wunknown-pragmas

Generate warning if a #pragma directive is not recognized by the compiler.

-Wunreachable-code

Generate warning if code will never be executed.

-Wunused

Specifies all of the -Wunused options.

-Wunused-function

Generate warning if a static function is declared without being defined or used.

NOTE No warning is generated for functions declared or defined in header files.

-Wunused-label

Generate warning if a label is declared without being used.

-Wunused-parameter

Generate warning if a function argument is not used in its function.

-Wunused-value

Generate warning if the value of a statement is not subsequently used.

-Wunused-variable

Generate warning if a local or non-constant static variable is not used in its
function.

-Wno-vectorizer-no-neon

Do not generate the warning “Vectorization flags ignored because armv7/armv8
and neon not set”.

Vectorization requires the target to be ARMv7 or ARMv8, and the NEON feature
to be enabled. If the vectorization options are used without these required options,
a warning is normally generated and the vectorization options are ignored.

-Wwrite-strings

For C, assign string constants the type const char[length] to ensure that a
warning is generated if the string address gets copied to a non-const char *
pointer. For C++, generate warning if converting a string constant to char *.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 31

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.6 Debugging
-dumpmachine

Display the target machine name.

-dumpversion

Display the compiler version.

-feliminate-unused-debug-symbols

Generate debug information only for the symbols that are used. (Debug
information is generated in STABS format.)

-time
-ftime-report

Display the elapsed time for each stage of the compilation.

-g[level]
Generate complete source-level debug information.

-gline-tables-only

Generate source-level debug information with line number tables only.

-print-diagnostic-categories

Display mapping of diagnostic category names to category identifiers.

-print-file-name=library

Display the full library path of the specified file.

-print-libgcc-file-name

Display the library path for file libgcc.a.

-print-multi-directory

Display the directory names of the multi libraries specified by other compiler
options in the current compilation.

-print-multi-lib

Display the directory names of the multi libraries paired with the compiler options
that specified the libraries in the current compilation.

-print-multi-os-directory

Display the relative path that gets appended to the multilib search paths.

-print-prog-name=program
Display the absolute path of the specified program.

-print-search-dirs

Display the search paths used to locate libraries and programs during compilation.

-save-temps

Save the normally-temporary intermediate files generated during compilation.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 32

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.7 Diagnostic format
The LLVM compilers aim to produce beautiful diagnostics by default, especially for new
users just beginning to use LLVM. However, different users have different preferences,
and sometimes LLVM may be driven by another program which needs the diagnostic
output to be simple and consistent rather than user-friendly. For these cases, LLVM
provides a wide range of options to control the output format of the diagnostics that it
generates.

-fcaret-diagnostics
-fno-caret-diagnostics

Print source line and ranges from source code in diagnostic.

Control whether LLVM prints the source line, source ranges, and caret when
emitting a diagnostic. The default setting is enabled. When enabled, LLVM will
print something like:

test.c:28:8: warning: extra tokens at end of #endif directive
[-Wextra-tokens]
#endif bad
 ^
 //

-fdiagnostics-format=(clang|msvc|vi)

Change diagnostic output format to better match IDEs and command line tools.

This option controls the output format of the filename, line number, and column
printed in diagnostic messages. The default setting is clang. The effect of the
setting on the output format is shown below.

clang

t.c:3:11: warning: conversion specifies type 'char *' but the
argument has type 'int'

msvc

t.c(3,11) : warning: conversion specifies type 'char *' but the
argument has type 'int'

vi

t.c +3:11: warning: conversion specifies type 'char *' but the
argument has type 'int'

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 33

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fdiagnostics-show-option
-fno-diagnostics-show-option

Enable [-Woption] information in diagnostic line.

Control whether LLVM prints the associated warning group option name
(Section 3.5.3) when outputting a warning diagnostic. The default setting is
disabled. For example, given the following diagnostic output:

test.c:28:8: warning: extra tokens at end of #endif directive
[-Wextra-tokens]
#endif bad
 ^
 //

In this case, specifying -fno-diagnostics-show-option prevents LLVM from
printing the [-Wextra-tokens] information in the diagnostic output. This
information indicates the option needed to enable or disable the diagnostic, either
from the command line or by using the pragma GCC diagnostic (Section 3.5.5).

-fdiagnostics-show-category=(none|id|name)

Enable printing category information in diagnostic line.

This option controls whether LLVM prints the category associated with a
diagnostic when emitting it. The default setting is none. The effect of the setting
on the output format is shown below.

none

t.c:3:11: warning: conversion specifies type 'char *' but the
argument has type 'int' [-Wformat]

id

t.c:3:11: warning: conversion specifies type 'char *' but the
argument has type 'int' [-Wformat,1]

name

t.c:3:11: warning: conversion specifies type 'char *' but the
argument has type 'int' [-Wformat,Format String]

Each diagnostic may or may not have an associated category; if it has one, it is
listed in the diagnostic category field of the diagnostic line (in the []'s).

This option can be used to group diagnostics by category, so it should be a high-
level category: the goal is get dozens of categories, not hundreds or thousands of
them.

80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 34

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fdiagnostics-print-source-range-info
-fno-diagnostics-print-source-range-info

Print machine-parseable information about source ranges.

This option controls whether LLVM prints information about source ranges in a
machine-parseable format after the file/line/column number information. The
default setting is disabled. The information is a simple sequence of brace-enclosed
ranges, where each range lists the start and end line/column locations. For
example, given the following output:

exprs.c:47:15:{47:8-47:14}{47:17-47:24}: error: invalid operands
to binary expression ('int *' and '_Complex float')
P = (P-42) + Gamma*4;
    ~~~~~~ ^ ~~~~~~~

In this case the {}'s are generated by -fdiagnostics-print-source-range-
info.

The printed column numbers count bytes from the beginning of the line; take care 
if your source contains multibyte characters.

-fdiagnostics-parseable-fixits

Print Fix-Its in a machine-parseable format.

This option makes LLVM print available Fix-Its in a machine-parseable format at 
the end of diagnostics. The following example illustrates the format:

 fix-it:"t.cpp":{7:25-7:29}:"Gamma" 

In this case the range printed is half-open, so the characters from column 25 up to 
(but not including) column 29 on line 7 of file t.cpp should be replaced with the 
string Gamma. Either the range or replacement string can be empty (representing 
strict insertions and strict erasures, respectively). Both the file name and insertion 
string escape backslash (as   "\\"), tabs (as "\t"), newlines (as "\n"), double 
quotes (as "\""), and non-printable characters (as octal "\xxx").

The printed column numbers count bytes from the beginning of the line; take care 
if your source contains multibyte characters.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 35
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fdiagnostics-show-template-tree 

For large templated types, this option causes LLVM to display the templates as an 
indented text tree, with one argument per line, and any differences marked inline.

default

t.cc:4:5: note: candidate function not viable: no known conversion 
from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], 
map<double, [...]>>>' for 1st argument; 

-fdiagnostics-show-template-tree

t.cc:4:5: note: candidate function not viable: no known conversion 
for 1st argument;
  vector<
    map<
      [...],
      map<
        [float != float],
        [...]>>>

-fmessage-length=n 
Format error messages to fit on lines with the specified number of characters.

3.4.8 Individual warning groups
-Wextra-tokens

Warn about excess tokens at the end of a preprocessor directive.

This option enables warnings about extra tokens at the end of preprocessor 
directives. The default setting is enabled. For example:

test.c:28:8: warning: extra tokens at end of #endif directive
[-Wextra-tokens]
#endif bad
       ^ 

These extra tokens are not strictly conforming, and are usually best handled by 
commenting them out.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 36
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-Wambiguous-member-template

Warn about unqualified uses of a member template whose name resolves to 
another template at the location of the use.

This option (which is enabled by default) generates a warning in the following 
code:

template<typename T> struct set{};
template<typename T> struct trait { typedef const T& type; }; 
struct Value {
  template<typename T> void set(typename trait<T>::type value){}
};

void foo() {
  Value v;
  v.set<double>(3.2);
}

C++ requires this to be an error, but because it is difficult to work around, LLVM 
downgrades it to a warning as an extension.

-Wbind-to-temporary-copy

Warn about an unusable copy constructor when binding a reference to a 
temporary.

This option enables warnings about binding a reference to a temporary when the 
temporary does not have a usable copy constructor. The default setting is enabled. 
For example:


struct NonCopyable {
  NonCopyable();
private:
  NonCopyable(const NonCopyable&); 
};
void foo(const NonCopyable&);
void bar() {
  foo(NonCopyable());   // Disallowed in C++98; allowed in C++11.
}


struct NonCopyable2 {
  NonCopyable2();
  NonCopyable2(const NonCopyable2&); 
};
void foo(const NonCopyable2&);
void bar() {
  foo(NonCopyable2());   // Disallowed in C++98; allowed in C++11.
}

NOTE If NonCopyable2::NonCopyable2() has a default argument whose 
instantiation produces a compile error, that error will still be a hard error in 
C++98 mode, even if this warning is disabled.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 37
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.9 Compiler crash diagnostics
The LLVM compilers may crash once in a while. Generally, this only occurs when using 
the latest versions of LLVM.

LLVM goes to great lengths to assist you in filing a bug report. Specifically, after a crash it 
generates preprocessed source file(s) and associated run script(s). These files should be 
attached to a bug report to ease reproducibility of the failure. The following compiler 
option is used to control the crash diagnostics.

-fno-crash-diagnostics

Disable auto-generation of preprocessed source files during a LLVM crash.

This option can be helpful for speeding up the process of generating a delta 
reduced test case.

3.4.10 Linker
-fuse-ld=(gold|bfd|qcld)

Specify an alternative linker to use in place of the default system linker.

Several mechanisms are provided for specifying the system linker that is used in 
the Snapdragon ARM LLVM toolchain:

 -fuse-ld: This option causes the toolchain to use the specified linker (see 
below for details).

 --gcc-toolchain: If -fuse-ld is not used, this option causes the toolchain 
to use whatever linker is found in the GCC toolchain option path.

 --sysroot: If neither -fuse-ld nor --gcc-toolchain are used, this option 
causes the toolchain to use whatever linker is found in the specified sysroot.

 If none of the above options are used, the toolchain uses the host linker by 
default. Note that this will result in errors during linking.

The -fuse-ld option can be used to specify the gold, bfd, or qcld linker as the 
system linker.

gold and bfd are typically included in the GNU GCC sysroots (version 4.7 and 
later). gold provides the plugin interface that is necessary to support link-time 
optimization (Section 4.7), while bfd does not.

qcld specifies the Snapdragon ARM LLVM linker. For more information see the 
Snapdragon Arm LLVM Linker User Guide.

NOTE When using link-time optimization, the default system linker changes to 
qcld. In this case either qcld or gold must be used as the system linker 
(otherwise, the optimization will fail).

For more information on sysroots see Section 3.6.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 38
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.11 Preprocessor
-A pred=ans

Assert the predicate pred and answer ans. 

-A -pred=ans
Cancel the specified assertion.

-ansi

Use C89 standard.

-C

Retain comments during preprocessing.

-CC 

Retain comments during preprocessing, including during macro expansion. 

-d(DMNU)
D     Print macro definitions in -E mode in addition to normal output

M     Print macro definitions in -E mode instead of normal output

N     Print macro names in -E mode in addition to normal output

U     Print referenced macro definitions in -E mode in addition to normal output. 
        Additionally print #undefs for macros that are undefined when referenced. 
        Both are printed at the point they are referenced.

-D name
-D name=definition 

Define the specified macro symbol.

-fexec-charset=charset 

Specify the character set used to encode strings and character constants. The 
default character set is UTF-8.

-finput-charset=charset

Specify the character set used to encode the input files. The default is UTF-8.

-fpch-deps

Cause the dependency-output options to additionally list the files from a 
precompiled header’s dependencies.

-fpreprocessed 

Notify the preprocessor that the input file has already been preprocessed. 

-fstrict-overflow

Enforce strict language semantics for pointer arithmetic and signed overflow.

-ftabstop=width

Specify the tab stop distance.

-fwide-exec-charset=charset

Specify the character set used to encode wide strings and character constants. The 
default character set is UTF-32 or UTF-16, depending on the size of wchar_t.

-fworking-directory

Generate line markers in the preprocessor output. The compiler uses this to 
determine what the current working directory was during preprocessing.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 39
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

--help

Display the preprocessor release version.

-H

Display the header includes and nesting depth.

-I dir 
Add the specified directory to the list of search directories for header files. 

-I- 

This option is deprecated.

-include file 

Include the contents of the specified source file.

-isystem prefix
Treat an included file as a system header if it is found on the specified path 
(Section 3.5.6).

-isystem-prefix prefix
Treat an included file as a system header if it is found on the specified subpath of 
a defined include path (Section 3.5.6).

-ino-system-prefix prefix
Do not treat an included file as a system header if it is found on the specified 
subpath of a defined include path (Section 3.5.6).

-M

Output a make rule describing the dependencies of the main source file.

-MD

Equivalent to -M -MF file, except -E is not implied.

-MF file 

Write dependencies to the specified file.

-MG

Add missing headers to the dependency list.

-MM

Equivalent to -M, except do not mention header files found in the system header 
directories.

-MMD

Equivalent to -MD, except only mention user header files, not system header files. 

-MP

Create artificial target for each dependency.

-MQ target
Specify target to quote for dependency.

-MT target 
Specify target for dependency.

-nostdinc

Omit searching for header files in the standard system directories.

-nostdinc++

Omit searching for header files in the C++-specific standard directories.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 40
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-o file
Specify the name of the preprocessor output file.

-P 

Disable linemarker output when using -E.

-remap 

Generate code for file systems that only support short file names.

--target-help

Display all command options and exit immediately.

-traditional-cpp 

Emulate pre-standard C preprocessors. 

-trigraphs

Preprocess trigraphs.

-U name
Cancel any previous definition of the specified macro symbol.

-v

Equivalent to -help.

-version 

Display the preprocessor version during preprocessing.

--version

Display the preprocessor version and exit immediately.

-w

Suppress all preprocessor warnings.

-Wall

Enable all warnings.

-Wcomment 
-Wcomments

Generate warning if a comment symbol appears inside a comment.

-Wendif-labels

Generate warning if an #else or #endif directive is followed by text. 

-Werror

Convert all warnings into errors.

-Wimport 

Generate warning when #import is used the first time.

-Wsystem-headers

Generate warning for constructs declared in system header files.

-Wtrigraphs

Generate warning if a trigraph forms an escaped newline in a comment.

-Wundef

Generate warning if an undefined non-macro identifier appears in an #if 
directive.

-Wunused-macros

Generate warning if a macro is defined without being used. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 41
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.12 Assembling
-integrated-as
-no-integrated-as

Use the LLVM integrated assembler when compiling C and C++ source files.

-no-integrated-as explicitly disables the use of the integrated assembler.

By default, the integrated assembler is enabled.

NOTE If a program can potentially generate hardware divide instructions (SDIV, 
UDIV), it is strongly recommended to use the integrated assembler. Older 
GNU assemblers may not understand these instructions.

When directly assembling a.s source file, LLVM still invokes the external 
assembler because it cannot correctly translate all GNU assembly language 
constructions. As a result, not all GNU assembler options (which are passed 
with the -Wa option) will work with the integrated assembler.

The integrated assembler can process its own assembly-generated code, along 
with most hand-written assembly that conforms to the GNU assembly syntax.

-Xassembler arg

Pass the specified argument to the assembler.

3.4.13 Linking
Starting with the 3.7 LLVM release, Clang should be used as the driver for linking.

object_file_name
Linker input file.

-c

Do not perform linking. This option is used with spec strings.

-dynamic

Link with a shared library (instead of a static library).

-E

Do not perform linking. This option is used with spec strings.

-l library
Search the specified library file while linking.

-moslib=library
Search the RTOS-specific library named liblibrary.a. The search paths for the 
library and include files must be explicitly specified.

-nodefaultlibs

Do not use the standard system libraries when linking.

-nostartfiles

Do not use the standard system startup files when linking.

-nostdlib

Do not use the standard system startup files or libraries when linking.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 42
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-pie

Generate a position-independent executable as the output file.

-s 

Delete all symbol table information and relocation information from the 
executable. 

-S 

Do not perform linking. This option is used with spec strings.

-shared

Generate a shared object as the output file. The resulting file can be subsequently 
linked with other object files to create an executable.

-shared-libgcc

Link with the shared version of the librarylibgcc.

-static

Do not link with the shared libraries. Only relevant when using dynamic libraries.

-static-libgcc

Link with the static version of the librarylibgcc.

-symbolic

Bind references to global symbols when building a shared object.

-u symbol 
Pretend the symbol symbol is undefined, to force linking of library modules to 
define it.

-Xlinker arg
Pass the specified argument to the linker.

3.4.14 Directory search
-Bprefix

Specify the top-level directory of the compiler.

-F dir
Add the specified directory to the search path for framework includes.

--gcc-toolchain=prefix
Equivalent to -B above.

-I dir
Add the specified directory to the include file search path.

-I-

This option is deprecated.

-Ldir
Add the specified directory to the list of directories searched by the -l option.

--sysroot=prefix
Specify the root directory of the system tools environment (Section 3.6).



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 43
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.15 Processor version
LLVM defines the options -target, -march, and -mcpu for specifying the ARM 
processor version to generate code for.

If none of these options are specified, the LLVM compilers by default generate code for 
the lowest ARMv4t instruction set architecture, in ARM mode, for the ARM7tdmi CPU.

If the ARMv7 or ARMv8 architecture is specified using the options -march or -mcpu, but 
ARM mode (i.e., 32-bit-only mode) is not specified on the command line, the LLVM 
compilers default to generating code in Thumb2 mode. To disable Thumb mode, use the 
options -mno-thumb or -marm.

-target triple
Specify the ARM architecture, operating system, and ABI for code generation.

The triple argument has the following format:

  arch-platform-abi

For example, to generate code for the ARMv7a which runs on Linux and 
conforms to gnueabi, specify the following option:

  clang -target armv7a-linux-gnueabi foo.c

The best way to specify the architecture version and CPU is by using the -march 
and -mcpu options respectively. Even though a target triple can be used to specify 
the architecture, it must match the GCC tools sysroot (Section 3.6). Thus, the 
above command can be alternately expressed as follows:

  clang -target arm-linux-gnueabi -mcpu=cortex-a9 foo.c

... where cortex-a9 indicates ARMv7a as the CPU.

Here are some commonly-used target triples:

  arm-linux-gnueabi

  arm-none-linux-gnueabi (equivalent to arm-linux-gnueabi)
  arm-linux-androideabi (for code conforming to Android EABI)

  aarch64-linux-gnu (for ARMv8 AArch64 mode)

  aarch64-linux-android (for code conforming to Android EABI)

  armv8-linux-gnu (for ARMv8 AArch32 mode)

  arm-none-eabi (for ARM bare-metal executables)

NOTE In older versions of LLVM the -target option was named -triple. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 44
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-march=version
Specify the ARM architecture for code generation.

This option has the following possible values:
  armv5e
  armv6j
  armv7
  armv7-a
  armv7-m
  armv8
  armv8-a

-mcpu=version
Specify the ARM CPU for code generation.

For a complete list of the values defined for this option, run the following 
command:

  llvm-as | </dev/null | llc -march=arm -mcpu=help

Here are some commonly-used CPU values:

  ARMv7:
  cortex-a8
  cortex-a9
  cortex-a15

  Qualcomm ARMv7:
  scorpion
  krait

  ARMv8:
  cortex-a53
  cortex-a57
  kryo

NOTE -mcpu=krait2 is deprecated. Instead, use -mcpu=krait.

-mcpu automatically sets -mfpu.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 45
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-mfpu=version
Specify the ARM architecture extensions.

For a complete list of the values defined for this option, run the following 
command:

  llvm-as | </dev/null | llc -march=arm -mcpu=help

Here are some commonly-used option values for -mfpu:

neon

Enable the NEON single instruction, multiple data (SIMD) architecture extension 
for the ARM Cortex-A (cortex-a9) or Qualcomm ARM v7 (krait) and 
ARMv8 processors.

vfpv4

Enable the VFPv4 architecture extensions. The VFPv4 extension enables code 
generation of the fused multiply add and subtract instructions (Section 3.4.16).

neon-fp-armv8

Enable NEON and ARMv8 FP extensions.

crypto-neon-fp-armv8

Enable Cryptography, NEON, and ARMv8 FP extensions.

Here are examples of valid -mfpu option values for ARM and AArch64:

vfp
vfpv2
vfpv3
vfpv3-fp16
vfpv3-d16
vfpv3-d16-fp16
vfpv3xd
vfpv3xd-fp16
vfpv4
vfpv4-d16
fpv4-sp-d16
fpv5-d16
fpv5-sp-d16
fp-armv8
neon
neon-fp16
neon-vfpv4
neon-fp-armv8
crypto-neon-fp-armv8



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 46
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

NOTE Using the -mcpu option automatically enables the default NEON and FP 
extensions for the specified CPU target. For example:

   -mcpu=krait

      Automatically enables the NEON and VFPv4 extensions.

   -mcpu=cortex-a9

      Automatically enables the NEON and VFPv3 extensions (including the half-
      precision extension).

   -mcpu=cortexa57

      Automatically enables the Cryptography, NEON, and ARMv8 FP extensions.

NOTE To disable a specific NEON or FP extension, use -mcpu along with -mfpu. 
But note that using -mcpu, -march, or --target with -mfpu will generate an 
error if the specified -mfpu option is invalid.

-mfloat-abi=(soft|softfp|hard)
Specify the floating-point ABI. 

NOTE ARMv8 mandates hardware floating point.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.16 Code generation
-fasynchronous-unwind-tables 

Generate unwind table. The table is stored in DWARF2 format.

-fchar-array-precise-tbaa
-fno-char-array-precise-tbaa

Prevent aliasing of char arrays by non-char pointers.

This option causes the compiler to assume that no pointer other than a pointer to 
char can reference an element in a char array. 

The default is disabled.

NOTE -fchar-array-precise-tbaa is enabled by default at the -Ofast level.

In the example below, enabling -fchar-array-precise-tbaa results in the 
statement "d = *p" being hoisted out, because p is a pointer to int.

  typedef struct {
    char a;
    char b[100];
    char c;
   } S;

  int *p;
  S x;

  void func1 (char d) {
    for (int i = 0; i < 100; i++) {
      x.b[i] += 1;
      d = *p;
      x.a += d;
    }
  }

-femit-all-data

Emit all data, even if unused.

-femit-all-decls

Emit all declarations, even if unused.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 48
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-ffp-contract=(fast|on|off)

Fused multiply add and subtract operations (VFMLA,VFMS) are more accurate 
than chained multiply add and subtract operations (VMLA, VMLS) because the 
chained operations perform rounding both after the multiply and before the 
add/subtract. While rounding itself introduces only a small error, cumulatively it 
can have a huge impact on the final result. 

While fused operations are IEEE compliant, it is not IEEE compliant for the 
compiler to automatically replace a multiply followed by an add/subtract (or 
VMLA/VMLS) with the equivalent fused operation, since the numeric result can 
differ so much. However, if a programmer explicitly specifies the use of a fused 
operation, then the substitution is considered IEEE compliant.

Fused operations are explicitly specified with the -ffp-contract option. It has 
the following possible values:

fast

Enable fused operations throughout the program.

on

Enable fused operations according to the FP_CONTRACT pragma (default).

off

Disable fused operations throughout the program.

NOTE This option must be used with the -mfpu=neon-vfpv4 option.

Enabling fused operations causes the compiler to relax IEEE compliance for 
floating point computation.

-fno-exceptions

Do not generate code for propagating exceptions.

-finstrument-functions 

Generate instrumentation calls in function entries and exits.

-fmerge-functions
-fno-merge-functions

Attempt to merge functions that are equivalent, or differ by only a few instructions 
(Section 4.6). The default setting is disabled.

This option attempts to improve code size by merging similar functions. It uses a 
number of heuristics to determine whether it is worthwhile to merge a pair of 
functions. For instance, very small functions or functions with significant 
differences are usually not merged.

NOTE Because this option may have a negative impact on program performance, it is 
disabled by default, and becomes enabled only when it is specified explicitly.

-fpic

Generate position-independent code (PIC) for use in a shared library.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fPIC

Generate position-independent code for dynamic linking, avoiding any limits on 
the size of the global offset table.

-fpie
-fPIE

Generate position-independent code (PIC) for linking into executables.

-fsanitize=address
-fno-sanitize=address

Generate instrumentation for the address sanitizer (Section 5.3).

-fsanitize=memory
-fno-sanitize=memory

Generate instrumentation for the memory sanitizer (Section 5.9).

-fsanitize=event[,event...]
-fno-sanitize=event[,event...]

Generate instrumentation for the undefined behavior sanitizer. One or more events 
can be specified.

This option accepts the following event values:

alignment

Misaligned pointers or creating a misaligned reference.

bool

Loading boolean values that are neither true nor false.

bounds

Out-of-bounds array indexes (when the bounds can be statically determined).

enum

Loading enum values that are out-of-range for an enum type.

float-cast-overflow

Floating-point conversion which would overflow the destination.

float-divide-by-zero

Floating-point division by zero.

function

Indirect function calls through a pointer of the wrong type (Linux and C++ only).

integer-divide-by-zero

Integer division by zero.

nonnull-attribute

Returning null pointer from a function declared to never return null.

null

Using a null pointer or creating a null reference.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

object-size

Attempts to use bytes that the optimizer can determine are not part of the object 
being accessed. (Object sizes are determined with __builtin_object_size, so 
it may be possible to detect more problems at higher optimization levels.)

return

In C++, reaching the end of a value-returning function without returning a value.

returns-nonnull-attribute

Returning null pointer from a function declared to never return null.

shift

Shift operators where the amount shifted is less than zero, or greater than or equal 
to the promoted bit-width of the left hand side, or where the left hand side is 
negative. For a signed left shift, it also checks for signed overflow in C, and for 
unsigned overflow in C++.

signed-integer-overflow

Signed integer overflow, including all the checks added by -ftrapv, and 
checking for overflow in signed division (INT_MIN / -1).

unreachable

Program control flow reaches __builtin_unreachable.

unsigned-integer-overflow

Unsigned integer overflows.

vla-bound

Variable-length arrays whose bounds do not evaluate to a positive value.

vptr

Use of an object whose vptr indicates that it is of the wrong dynamic type, or that 
its lifetime has not begun or has ended. Incompatible with -fno-rtti and 
-fsanitize-use-embedded-rt.

NOTE Using this option requires user-defined diagnostic handler functions. For 
more information see the undefined behavior sanitizer (Section 5.11).

-fsanitize=integer

Generate instrumentation for the undefined behavior sanitizer for the following 
events (as defined above):

  signed-integer-overflow
  unsigned-integer-overflow
  shift
  integer-divide-by-zero



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 51
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fsanitize=undefined

Generate instrumentation for the undefined behavior sanitizer for the following 
events (as defined above):

  alignment
  bool
  bounds
  enum
  float-cast-overflow
  float-divide-by-zero
  function
  integer-divide-by-zero
  nonnull-attribute
  null
  object-size
  return
  returns-nonnull-attribute
  shift
  signed-integer-overflow
  unreachable
  vla-bound
  vptr

NOTE vptr is not included when this option is used with -fsanitize-use-
embedded-rt.

-fsanitize-blacklist=file
-fno-sanitize-blacklist

Disable the generation of -fsanitize runtime checks in the specified functions 
or source code files (Section 5.3).

The specified option argument is a text file, with each line in the file specifying 
the name of a function or source file:

 Function names are prefixed with fun:

 File names are prefixed with src:

For example:

  # Disable checks in function and source file
  fun:my_func
  src:my_file

Empty lines and lines starting with “#” are ignored.

File and function names can be specified using regular expressions, but note 
that“#” works as it does in shell wildcarding.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 52
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fsanitize-memory-track-origins[=level]
Track the origin of uninitialized memory in the memory sanitizer (Section 5.9).

This option accepts the following level values:

0

Disable origin tracking.

1

Track and report where uninitialized values were allocated (default).

2

Track and report where uninitialized values were allocated, along with 
information on intermediate stores that the uninitialized values went through.

-fsanitize-messages
-fno-sanitize-messages

Control the generation of diagnostic messages for undefined behavior violations 
when using -fsanitize-use-embedded-rt. Enabled by default.

-fsanitize-opt-size
-fno-sanitize-opt-size

Reduce the code size of undefined behavior runtime checks when using 
-fsanitize-use-embedded-rt. Using this option may decrease program 
performance. Disabled by default.

-fsanitize-source-loc
-fno-sanitize-source-loc

Control the generation of file and line number information in messages for 
undefined behavior violations when using -fsanitize-use-embedded-rt.
Enabled by default, except when used with -fsanitize-opt-size, then 
disabled by default.

-fsanitize-use-embedded-rt

Use alternate undefined behavior sanitizer instrumentation and runtime 
appropriate for embedded environments.

-fshort-enums
-fno-short-enums

Allocate to an enum type only as many bytes necessary for the declared range of 
possible values. The default is disabled.

-fshort-wchar
-fno-short-wchar

Force wchar_t to be short unsigned int. The default is disabled.

-ftrap-function=name
Issue a call to the specified function rather than a trap instruction.

-ftrapv

Trap on integer overflow.

-ftrapv-handler=name

Specify the function to be called in the case of an overflow.

-funwind-tables

Similar to -fexceptions, except that it only generates any necessary static data, 
without affecting the generated code in any other way.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 53
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fverbose-asm

Add commentary information to the generated assembly code to improve code 
readability.

-fvisibility=[default|internal|hidden|protected]
Set the default symbol visibility for all global declarations.

-fwrapv

Treat signed integer overflow as two's complement.

-mhwdiv=(arm|thumb|arm,thumb|none)
Control the generation of hardware divide instructions in ARM or Thumb mode.

arm

Generate hardware divide instructions in Arm mode only.

thumb

Generate hardware divide instructions in Thumb mode only.

arm,thumb

Generate hardware divide instructions in ARM and Thumb modes.

none

Do not generate hardware divide instructions (default).

NOTE This option applies only to ARMv7 processors that support hardware divide.

-mcpu=krait automatically sets -mhwdiv=arm,thumb.

-mllvm -aarch64-disable-abs-reloc

Eliminate absolute relocation by changing all global variable references to be PC-
relative.

This option is commonly used with -mllvm -emit-cp-at-end.

-mllvm -aggressive-jt

A jump table is an efficient method to optimize switch statements by replacing 
them with unconditional branch instructions and simple operations to transfer 
program flow to them.

This option enables switch statements with small ranges to be automatically 
converted to jump tables.

The default is disabled.

-mllvm -arm-expand-memcpy-runtime

Set a threshold of 8 or 16 bytes for expanding (inlining) memcpy calls.

This option enables the generation of runtime checks for copy sizes 8 or 16 bytes, 
and inlining of memcpy calls that have copy sizes smaller than or equal to 8 or 16 
bytes. For any other copy size the memcpy function is invoked.

Enabling this option causes an LLVM IR-level transformation. The resultant code 
might be vectorized, if NEON is enabled.

This option is effective for optimization level equal or higher than -O1, Os, and 
Oz. Otherwise it is silently ignored.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 54
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-mllvm -arm-memset-size-threshold

Control the code generation for memset library calls using NEON vector stores.

This option specifies the maximum number of bytes of data in memset call that 
should be implemented with NEON vector stores. A memset call with data size 
above the specified threshold will not be compiled into vector store operations.

The default is 128.

-mllvm -arm-memset-size-threshold-zeroval

Control the code generation for memset library calls that write 0 value using 
NEON vector stores.

This option specifies the maximum number of bytes of data in memset call that 
writes 0 value that can be implemented with NEON vector stores. A memset call 
that writes 0 value with data size above the specified threshold will not be 
compiled into vector store operations.

The default is 32.

-mllvm -arm-opt-memcpy

The optimized libc for Krait targets includes two specialized memcpy functions 
for copy sizes greater than 8 and 16 bytes: 
  memcpyGT8(void*, const void*, size_t)

  memcpyGT16(void*, const void*, size_t)

When this option is set in conjunction with -mllvm -arm-expand-memcpy-
runtime, the compiler transforms the LLVM IR by replacing memcpy calls with 
the runtime checks for copy size less than or equal to 8 or 16 bytes and these 
specialized memcpy calls. Their implementation uses vector instructions and 
requires NEON to be enabled.

Note the user needs to additionally set the option for copy size threshold, -mllvm 
-arm-expand-memcpy-runtime.

This option has no effect if -mllvm -arm-expand-memcpy-runtime is disabled.

This option is effective for optimization level equal or higher than -O1, Os and Oz. 
Otherwise it is silently ignored.

The default is disabled.

-mllvm -disable-thumb-scale-addressing

Control the code generation of scaled immediate addressing in Thumb mode.

By default scaled immediate addressing is enabled in Thumb mode, unless 
-mcpu=krait is set in the command line.

To disable it, set -mllvm -disable-thumb-scale-addressing=true.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 55
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-mllvm -emit-cp-at-end

Place constant pool at the end of a function.

When this option is used in conjunction with -mllvm -aarch64-disable-abs-
reloc (which changes all global variable references to be PC-relative), the 
compiler places the constant pool at the end of a function.

The default is disabled.

In the following example global variable "a" is loaded using the default relocation 
code:

  movz x8, #:abs_g3:a
  movk x8, #:abs_g2_nc:a
  movk x8, #:abs_g1_nc:a
  movk x8, #:abs_g0_nc:a
  ldr w0, [x8]

Enabling this option with -mllvm -aarch64-disable-abs-reloc changes the 
code to the following:

  ldr x8, .LCPI0_0
  ldr w0, [x8]
  ret
  .LCPI0_0:
  .xword a    // address of "a"

-mllvm -enable-android-compat

Control the generation of hardware divide instructions (Section 3.6).

-mllvm -enable-arm-addressing-opt

Promotes use of optimized address modes by merging ADD operations into the 
associated LOAD instruction.

The default is enabled.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 56
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-mllvm -enable-arm-peephole

Enable peephole optimizations to eliminate VMOV instructions, which can be an 
expensive operations.

This option controls two peephole optimizations:

 Eliminate vmovs from D to R to S 

Eliminates excess VMOVs that result from copying a value from a D register to 
an S register. 

There is no copy instruction from D to S, so the code generator inserts a VMOV 
from D to R and then another VMOV from R back to S. This peephole 
optimization eliminates the VMOVs by using D registers that alias S registers – 
registers D0-D15 are aliases as S0-S31. No copy is necessary to get to an S 
register from these D registers.

 Eliminate VMOVs from D to R for an ADD operation.

Eliminates excess VMOVs that result from an ADD instruction whose operands 
are defined by VMOVs from a D register. The ADD is replaced with a horizontal 
ADD using the VPADD instruction and a VMOV to get the result to the R 
register.

The default is enabled.

-mllvm -enable-arm-zext-opt

Removes redundant ZERO-EXTEND operations, for example, when preceded by 
a LOAD instruction that zero-extends the value to 32 bits as part of its operation.

The default is enabled.

-mllvm -enable-print-fp-zero-alias

When this option is used in conjunction with -no-integrate-as, the compiler 
prints FP compare-with-zero instructions using the alias format "fcmXY ..., #0" 
instead of the default LLVM format "fcmXY ..., #0.0" specified in the ARMv8 
documentation.

This ensures assembly code compatibility between LLVM and GNU tools while 
the tools are out of sync (i.e., the 4.9 GNU assembler currently uses "#0" syntax).

-mllvm -enable-round-robin-RA

Enable a round-robin register allocation heuristic which selects registers avoiding 
back-to-back reuse to minimize false data dependency. 

This heuristic works well for targets with limited register renaming capability, as 
in Krait targets.

The default is disabled, unless -mcpu=krait is specified.

-mllvm -enable-select-to-intrinsics

Expose more if-statements to be converted into LLVM IR's SELECT instruction 
which in turn can more easily be mapped to ARM HW instructions.

The default is disabled, unless -mcpu=krait is specified.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 57
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-mllvm -favor-r0-7

Enable a heuristic in the Greedy Register Allocator that better guides the 
assignment of high-order registers (R8-R15) which are currently avoided 
aggressively in the allocator. The allocator exploits the fact that a Thumb2 
instruction that uses one of R8-15 registers must be encoded in 32 bits. So a 
candidate assigned to these registers has a very a high cost. 

With this option, the allocator avoids this register assignment based on an 
additional cost, the candidate frequency in a function. The benefits are better code 
size reduction, better performance/power generated from better code density, and 
reduced spilling. This change impacts mostly Thumb code generation, but ARM 
code generation can also be affected because it disables R8-15 register avoidance.

The default is disabled.

NOTE Use -falign-inner-loops with -favor-r0-7 to achieve the maximum 
benefit from loop alignment.

-mllvm -force-div-attr

Control the generation of hardware divide instructions (Section 3.6).

-mllvm -prefetch-locality-policy=(L1|L2|L3|stream)
Configure data prefetch to be temporal or non-temporal. 

L1

Temporal or retained prefetch allocated in L1 cache.

L2

Temporal or retained prefetch allocated in L2 cache.

L3

Temporal or retained prefetch allocated in L3 cache.

stream

Streaming or non-temporal prefetch.

The default is L1.

NOTE This option is available only for AArch64, and only when
–fprefetch-loop-arrays is enabled. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 58
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-mrestrict-it
-mno-restrict-it

Control the code generation of IT blocks.

In the ARMv8 architecture (AArch32) IT blocks are deprecated in Thumb mode. 
They can only be one instruction long, and can only contain a subset of all 16-bit 
instructions. 

-mrestrict-it disallows the generation of IT blocks that are deprecated in 
ARMv8. 

-mno-restrict-it allows generation of legacy IT blocks (i.e., deprecated forms 
in ARMv7).

The default option setting is determined by the target architecture (ARMv8 or 
ARMv7). For ARMv8 (AArch32) Thumb mode, -mrestrict-it is enabled by 
default, while for other targets it is disabled by default.

3.4.17 Vectorization
-fvectorize-loops

Perform automatic vectorization of loop code (Section 4.4).

Vectorization is subject to the following constraints:

 On nested loops it is performed only on the innermost loop. 

 It can be used at any code optimization level higher than -O0. 

 It works only with the ARMv7 or ARMv8 processor architecture with the 
NEON extension. NEON is enabled either implicitly (by specifying a target 
processor such as Krait), or explicitly with -mfpu=neon. 

NOTE -fvectorize-loops is enabled by default with -O2, -O3, -O4, and -Ofast.

-ftree-vectorize

Alias of -fvectorize-loops, provided for GCC compatibility.

-fvectorize-loops-debug

Equivalent to -fvectorize-loops, but also generates a report indicating which 
loops in the program were vectorized.

NOTE This option works best when used with the -g option to print out the precise 
location of the loops that get vectorized.

The GCC option -ftree-vectorizer-verbose is not supported in LLVM.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 59
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fprefetch-loop-arrays[=stride]
-fno-prefetch-loop-arrays

Control the automatic insertion of ARM PLD instructions into loops that are 
vectorized.

The argument stride specifies the distance that the PLD instruction attempts to 
load. If the argument is omitted, the compiler automatically chooses a value.

The default is disabled.

NOTE This option must be used with the -fvectorize-loops option.

3.4.18 Parallelization
-fparallel

Perform automatic parallelization of loop code (Section 4.5).

Parallelization is subject to the following restrictions:

 It must be specified (on the command line) when compiling each .c or .cpp 
file.

 It must additionally be specified on the command line that directs linking.

 It can be used only with -O2, -O3, -O4, or -Ofast.

-fparallel-symphony

Perform automatic parallelization of loop code at runtime using the SYMPHONY 
library (Section 4.5.1).

Parallelization using SYMPHONY is subject to the following restrictions:

 The -fparallel-symphony option must be specified when compiling each 
.c or .cpp file.

 The same option must also be specified when linking.

 SYMPHONY works only with dynamically-linked executables.

NOTE This option is an alternative to -fparallel, and must not be used with it.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 60
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.19 Optimization
-O0

Do not optimize. This is the default optimization setting.

-O
-O1

Enable a small set of optimizations. This optimization level is not recommended 
for performance or code size.

-O2

Enable optimizations for performance, including automatic loop vectorization 
(Section 3.4.17). Optimizations enabled at -O2 improve performance but may 
cause a small-to-moderate increase in compiled code size.

-O3

Enable aggressive optimizations for performance. Optimizations enabled at –O3 
improve performance but may cause a large increase in compiled code size.

-O4

Similar to -Ofast, but additionally enables advanced loop fusion and data layout 
optimizations for performance. Optimizations enabled at –O4 improve 
performance but may cause a large increase in compiled code size.

NOTE The Qualcomm LLVM compilers define –O4 differently from the standard 
LLVM compiler. In particular, the Qualcomm compilers do not enable 
link-time optimization (Section 4.7) in –O4, while the standard compiler does 
enable it in –O4,additionally mapping –O4 to –O3.

-Os 

Enable optimizations for code size. Optimizations enabled at –Os reduce code size 
at the cost of a small-to-moderate decrease in compiled code performance.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 61
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-Ofast

The following optimizations are enabled at the -Ofast level:

 All options enabled with -O3 (including -fvectorize-loops)

 -mllvm -switch-transpose=true

 -mllvm -unroll-allow-partial=true

 -mllvm -unroll-threshold=1000

 -mllvm -inline-threshold=375

 -ffast-math and -fmath-errno

 If compiling for ARM mode:

• -mllvm -unroll-rt-prolog=false

 If compiling for Thumb mode:

• -mllvm -unroll-rt-prolog=true

• -mllvm -enable-lsr-nested=true

• -mllvm -lsr-no-outer=false

• -mllvm -favor-r0-7=true

 If -mllvm -favor-r0-7=true is successfully set, then -falign-inner-
loops=8 option is also enabled.

For details on the -mllvm options listed above, please refer to the LLVM 
documentation. The LLVM options -mllvm -favor-r0-7 and -falign-inner-
loops are further described in this document.

If the user sets any of the above options in the command line, then the user setting 
prevails. For example, it the user sets -mllvm -favor-r0-7=false or -fno-
align-inner-loops, then -Ofast will not enable favoring r0 to r7 registers nor 
inner loops alignment.

If -Ofast is combined with any other optimization level (-Os, -O0 to -O4) in the 
command line, the last -O option prevails.

The following are the recommended options for performance and code size 
optimizations.

1. Performance optimizations

The LLVM compilers generate the best performing code with the -Ofast option.

The following combination of options are recommended for Krait cores:

-Ofast -mcpu=krait (Thumb mode and -fvectorize-loops are enabled by 
default)

-Ofast -mcpu=krait -marm (ARM mode and -fvectorize-loops are 
enabled by default)



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 62
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

For non-Krait cores the following options are recommended:

-O3 -mllvm -unroll-threshold=1000 -mllvm -unroll-allow-partial 
-mllvm -inline-threshold=325

The -unroll-threshold and -inline-threshold options increase the limits 
of loop unrolling and inlining respectively to exploit superscalar architectures 
such as Krait. In general, more aggressive loop unrolling and function inlining 
contributes to better performance.

2. Code-size optimizations

Currently, LLVM generates smallest code when compiled for Thumb2 mode. The 
following are the options recommended for generating compact code:

-Os -mthumb

-Osize

Enable -Os level optimizations and some additional options that trade off 
performance for best code size.

If -Osize is combined with any other optimization level (-Os, -Ofast, -O0 to 
-O4) in the command line, the last -O option prevails.

NOTE This option has been tuned for ARMv7 targets only. It has not been tuned for 
ARMv8 targets (AArch32 and AArch64) and therefore should not be used 
with them.

-Oz

Enable optimizations for code size at the expense of performance. Optimizations 
enabled with –Oz reduce code size at the cost of a potentially significant decrease 
in compiled code performance.

3.4.20 Specific optimizations
-falign-functions[=n]

Control function alignment.

Setting -falign-functions=1 and -fno-align-functions are equivalent, 
resulting in disabling function alignment.

Setting -falign-functions=0 or -falign-functions (with no value 
specified) enables function alignment using the target's default alignment value.

Setting -falign-functions=n enables function alignment using the next power-
of-two greater than n as the alignment value, where n is the number of bytes.

The default is to not align functions.

To enable function alignment at the -Os level, an additional falign-os option 
must be set.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 63
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-falign-jumps[=n]
Control jump alignment.

Setting -falign-jumps=1 and -fno-align-jumps are equivalent, resulting in 
disabling jump alignment.

Setting -falign-jumps=n enables jump alignment using the next power-of-two 
greater than n as the alignment value, where n is the number of bytes.

The default is to not align jumps.

To enable jump alignment at the Os level, an additional falign-os option must 
be set.

-falign-labels[=n]
Control label (branch target) alignment. 

Setting -falign-labels=1 and -fno-align-labels are equivalent, resulting 
in disabling label alignment.

Setting -falign-labels =0 or -falign-labels (with no value specified) 
enables labels alignment using the target's default alignment value.

Setting -falign-labels=n enables label alignment using the next power-of-two 
greater than n as the alignment value, where n is the number of bytes.

The default is to not align labels.

To control the type of label that should be aligned, use the -mllvm branch-
target-align option with strings "none" (do not align branch targets), "nocalls" 
(do not align function calls), "allcalls" (align after function calls).

To enable label alignment at the Os level, -falign-os must also be set.

-falign-loops[=n]
Control loop alignment.

Setting -falign-loops=1 and -fno-align-loops are equivalent, resulting in 
disabling loop alignment.

Setting -falign-loops=0 or -falign-loops (with no value specified) enables 
loop alignment using the target's default alignment value.

Setting -falign-loops=n enables loop alignment using the next power-of-two 
greater than n as the alignment value, where n is the number of bytes.

The default is to not align loops.

To enable loop alignment at the Os level, an additional falign-os option must be 
set.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 64
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-falign-inner-loops
-fno-align-inner-loops

Control innermost loop alignment. When enabled, only the start basic block of 
innermost loops is aligned.

Setting -falign-inner-loops=1 and -fno-align-inner-loops are 
equivalent, resulting in disabling innermost loop alignment.

Setting -falign-inner-loops=0 or -falign-inner-loops (with no value 
specified) enables innermost loop alignment using the target's default alignment 
value.

Setting -falign-inner-loops=n enables innermost loop alignment using the 
next power-of-two greater than n as the alignment value, where n is the number of 
bytes.

-falign-loops and -falign-inner-loops are incompatible and cannot be set 
simultaneously, otherwise a compiler error is generated.

The default is to not align innermost loops.

To enable innermost loop alignment at the Os level, an additional -falign-os 
must be set.

-falign-os
-fno-align-os

Control alignment in Os level.

The default is to ignore alignment options in Os level.

When enabling alignment of loops, functions and labels in Os level set -falign-
os, otherwise the compiler generates a warning of unused option. To disable it, set 
-fno-align-os.

-fdata-sections

Assign each data item to its own section.

-ffunction-sections

Assign each function item to its own section in the output file. The section is 
named after the function assigned to it.

-finline

Specify the inline keyword as active.

-finline-functions

Perform heuristically-selected inlining of functions.

-floop-pragma

Enable auto-parallelization and auto-vectorization when using loop pragmas.

-fnomerge-all-constants

Do not merge constants.

-fomit-frame-pointer

Do not store the stack frame pointer in a register if it is not required in a function.

-foptimize-sibling-calls

Optimize function sibling calls and tail-recursive calls. 

-fstack-protector

Generate code which checks selected functions for buffer overflows.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 65
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-fstack-protector-all

Generate code which checks all functions for buffer overflows.

-fstack-protector-strong

Generate code which applies strong heuristic to check additional selected 
functions for buffer overflows.

Additional functions checked include those with local array definitions or 
references to local frame addresses. 

-fstrict-aliasing

Enforce the strictest possible aliasing rules for the language being compiled.

-funit-at-a-time

Parse the entire compilation unit before beginning code generation.

-funroll-all-loops

Unroll all loops.

-funroll-loops

Unroll selected loops.

-fno-zero-initialized-in-bss

Assign all variables that are initialized to zero to the BSS section.

--param ssp-buffer-size=size
Specify the minimum size (in bytes) that a buffer must be in order to have buffer-
overflow checks generated for it by the -fstack-protector options. The default 
value is 8.

3.4.21 Math optimization
-fassociative-math

Allow the operands in a sequence of floating-point operations to be re-associated.

Because this option may reorder floating-point operations, it should be used with 
caution when exact results are required (with no expectation of an error cutoff).

To use this option, both -fno-signed-zeros and -fno-trapping-math must 
be enabled, while -frounding-math must not be enabled.

NOTE This option enables additional features of parallelization (Section 4.5).

-ffast-math

Enable 'fast-math' mode in the compiler front-end. This has no effect on 
optimizations, but defines the preprocessor macro __FAST_MATH__ which is the 
same as the GCC -ffast-math option.

-ffinite-math-only

Enable optimizations which assume that floating-point argument and result values 
are never NaNs nor +-Infs.

-fno-math-errno

Do not set errno after using single-instruction math functions.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 66
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

-freciprocal-math

Enable optimizations which assume that the reciprocal of a value can be used 
instead of dividing by the value.

-fno-signed-zeros

Enable optimizations which ignore the sign of floating point zero values.

-fno-trapping-math 

Enable optimizations which assume that floating-point operations cannot generate 
user-visible traps.

-funsafe-math-optimizations

Enable code optimizations which assume that the floating-point arguments and 
results are valid, and which may violate IEEE or ANSI standards. 

This option enables -fno-signed-zeros, -fno-trapping-math, 
-fassociative-math, and -freciprocal-math. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 67
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.22 Link-time optimization
-flto

Perform link-time optimization (Section 4.7).

This option can be used when the files in a program are compiled separately. In 
this case the option must be specified when compiling each source file, and again 
when the compiler is used to link the resulting object files.

When this option is used with -c, it produces a bitcode file which is used during 
link-time optimization (LTO).

NOTE All compile-time options must be passed to the linker command line so that 
LTO can generate code for the specified optimization level. To ensure that the 
options are passed correctly, it is strongly recommended to use 
clang/clang++ to perform the linking.

NOTE When this option is used, the default system linker changes to the qcld linker, 
and either qcld or the gold linker must be used as the system linker. The 
gold linker can be specified with the -fuse option (Section 3.4.10).

The gold linker cannot be used with the Windows version of the LLVM 
compilers – in this case only the qcld linker can be used to perform LTO.

3.4.23 Profile-guided optimization
-fprofile-instr-generate[=filename]

Specify the name and location of the raw profile data file to be created. The 
default name is default.profraw. The default location is “/sdcard” for 
Android applications, or the current directory for non-Android applications.

The raw profile data file is used in instrumentation-based profile-guided 
optimization (Section 4.8).

-fprofile-instr-use=filename
Use the specified instrumentation-generated profile data file to perform profile-
guided optimization.

-fprofile-sample-use=filename
Use the specified sampling-generated profile data file to perform profile-guided 
optimization.

--fprofile-instr-sync-interval=interval
Periodically sync the collected profile data to the profile data file with the 
specified time interval (in milliseconds).



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 68
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.4.24 Optimization reports
-fopt-reporter=(vectorizer|parallelizer|all)

Request the specified type of optimization report data (Section 4.10).

-polly-max-pointer-aliasing-checks

Increase the number of runtime checks that are allowed to be inserted into a loop 
in order to disambiguate the pointers, thus enabling the loop to be vectorized

-Rpass=loop-opt

Output the line numbers of the loops that were auto-parallelized and/or 
vectorized.

-Rpass-missed=loop-opt

Output the line number and reason why a loop was not optimized. 

3.4.25 Compiler security
--analyze

Invoke the static program analyzer (Section 5.14.1) on the specified input files.

-analyzer-checker=checker 
Enable the specified checker or checker category in the static program analyzer.

The checker categories are alpha, core, cplusplus, debug, and security. 
Enabling a checker category enables all the checkers in that category.

For a complete list of checker names use -analyzer-checker-help.

NOTE -analyzer-checker must be prefixed with -Xclang

-analyzer-checker-help

List the complete set of checkers and their categories for use in 
-analyzer-checker and -analyzer-checker-disable.

NOTE -analyzer-checker-help must be prefixed with -cc1

-analyzer-disable-checker=checker
Disable the specified checker or checker category in the static program analyzer.

The checker categories are alpha, core, cplusplus, debug, and security. 
Disabling a checker category disables all the checkers in that category.

For a complete list of checker names use -analyzer-checker-help.

NOTE -analyzer-disable-checker must be prefixed with -Xclang

--analyzer-output html

Generate the static analyzer output report in HTML format.

The default report format is plist.

NOTE --analyzer-output and its argument must each be prefixed with -Xclang.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 69
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

--analyzer-Werror

Convert all static analyzer warnings into errors.

--compile-and-analyze dir 
Invoke static program analyzer on an entire program.

The analysis report files are written to the specified directory.

-ffcfi

Enable control-flow integrity checks (Section 5.13).

-fno-fcfi

Disable control-flow integrity checks.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 70
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.5 Warning and error messages
LLVM provides a number of ways to control which code constructs cause the compilers to 
emit errors and warning messages, and how the messages are displayed to the console.

3.5.1 Controlling how diagnostics are displayed
When LLVM emits a diagnostic, it includes rich information in the output, and gives you 
fine-grain control over which information is printed. LLVM has the ability to print this 
information. The following options are used to control the information:

 A file/line/column indicator which shows exactly where the diagnostic occurs in 
your code.

 A categorization of the diagnostic as a note, warning, error, or fatal error.

 A text string describing the problem.

 An option indicating how to control the diagnostic (for diagnostics that support it) 
[-fdiagnostics-show-option].

 A high-level category for the diagnostic for clients that want to group diagnostics 
by class (for diagnostics that support it) [-fdiagnostics-show-category].

 The line of source code that the issue occurs on, along with a caret and ranges 
indicating the important locations [-fcaret-diagnostics].

 "FixIt" information, which is a concise explanation of how to fix the problem 
(when LLVM is certain it knows) [-fdiagnostics-fixit-info].

 A machine-parseable representation of the ranges involved (disabled by default) 
[-fdiagnostics-print-source-range-info].

For more information on these options see Section 3.4.7.

3.5.2 Diagnostic mappings
All diagnostics are mapped into one of the following classes:

 Ignored

 Note

 Warning

 Error

 Fatal



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 71
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.5.3 Diagnostic categories
Though not shown by default, diagnostics can each be associated with a high-level 
category. This category is intended to make it possible to triage builds which generate a 
large number of errors or warnings in a grouped way.

Categories are not shown by default, but they can be turned on with the -fdiagnostics-
show-category option (Section 3.4.7). When this option is set to "name", the category is 
printed textually in the diagnostic output. When set to "id", a category number is printed. 

NOTE The mapping of category names to category identifiers can be obtained by 
invoking LLVM with the option -print-diagnostic-categories.

3.5.4 Controlling diagnostics with compiler options
LLVM can control which diagnostics are enabled through the use of options specified on 
the command line.

The -W options are used to enable warning diagnostics for specific conditions in a 
program. For instance, -Wmain will generate a warning if the compiler detects anything 
unusual in the declaration of function main().

-Wall enables all the warnings defined by LLVM. -w disables all of them.

Warnings for a specific condition can be disabled by specifying the corresponding -Wcond 
option as -Wno-cond. For instance, -Wno-main disables the warning normally enabled by 
-Wmain.

-Werror=cond changes the specified warning to an error (Section 3.5.2). -Werror 
specified without a condition changes all the warnings to errors. -ferror-warn changes 
just the warnings that are listed in the specified text file.

-pedantic and -pedantic-errors enable diagnostics that are required by the ISO C 
and ISO C++ standards.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 72
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.5.5 Controlling diagnostics with pragmas
LLVM can also control which diagnostics are enabled through the use of pragmas in the 
source code. This is useful for disabling specific warnings in a section of source code. 
LLVM supports GCC's pragma for compatibility with existing source code, as well as 
several extensions.

The pragma may control any warning that can be used from the command line. Warnings 
can be set to ignored, warning, error, or fatal. The following example instructs LLVM or 
GCC to ignore the -Wall warnings:

#pragma GCC diagnostic ignored "-Wall"

In addition to all the functionality provided by GCC's pragma, LLVM also enables you to 
push and pop the current warning state. This is particularly useful when writing a header 
file that will be compiled by other people, because you don't know what warning flags 
they build with.

In the below example -Wmultichar is ignored for only a single line of code, after which 
the diagnostics return to whatever state had previously existed:

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmultichar"

char b = 'df'; // no warning.

#pragma clang diagnostic pop

The push and pop pragmas save and restore the full diagnostic state of the compiler, 
regardless of how it was set. That means that it is possible to use push and pop around 
GCC-compatible diagnostics, and LLVM will push and pop them appropriately, while 
GCC will ignore the pushes and pops as unknown pragmas.

NOTE While LLVM supports the GCC pragma, LLVM and GCC do not support the 
same set of warnings. Thus even when using GCC-compatible pragmas there 
is no guarantee that they will have identical behavior on both compilers.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 73
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.5.6 Controlling diagnostics in system headers
Warnings are suppressed when they occur in system headers. By default, an included file 
is treated as a system header if it is found in an include path specified by -isystem, but 
this can be overridden in several ways.

The system_header pragma can be used to mark the current file as being a system 
header. No warnings will be produced from the location of the pragma onwards within the 
same file.

char a = 'xy'; // warning

#pragma clang system_header

char b = 'ab'; // no warning

The options -isystem-prefix and -ino-system-prefix can be used to override 
whether subsets of an include path are treated as system headers. When the name in a 
#include directive is found within a header search path and starts with a system prefix, 
the header is treated as a system header. The last prefix on the command-line which 
matches the specified header name takes precedence. For example:

$ clang -Ifoo -isystem bar -isystem-prefix x/ 
    -ino-system-prefix x/y/

Here, #include "x/a.h" is treated as including a system header, even if the header is 
found in foo, and #include "x/y/b.h" is treated as not including a system header, 
even if the header is found in bar.

An #include directive which finds a file relative to the current directory is treated as 
including a system header if the including file is treated as a system header.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 74
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.5.7 Enabling all warnings
In addition to the traditional -W flags, all warnings can be enabled by specifying the 
option -Weverything. 

-Weverything works as expected with -Werror, and also includes the warnings from 
-pedantic.

NOTE When this option is used with -w (which disables all warnings), -w takes 
priority.

3.6 Using GCC cross compile environments
The LLVM compilers are stand-alone compilers which rely on an existing system tools 
"root" environment – also known as sysroot – for accessing include files and libraries (as 
well as an ARM cross linker). The compilers are prebuilt to work with a GCC sysroot 
environment: to include header files and libraries in the build, they assume a predefined 
directory structure anchored by a GCC system root directory.

For example, the GCC sysroot for the ARMv8 AArch64 toolchain has the following 
structure:

/aarch64-linux-gnu/
/bin/
/debug-root/
/include/
/include/c++/4.8.2/
/backward/
/lib/
/libc/
/usr/

/include/

The top level of the GCC tools directory must have a subdirectory that matches the target 
triple specified on the compiler command line (Section 3.4.15). The target triple directory 
typically contains a libc directory which mimics a host compilation environment by 
storing the following items:

 The library files in GCC-top/target-triple/libc/lib

 The include files in GCC-top/target-triple/libc/usr/include

Thus the sysroot location is GCC-top/target-triple/libc.

The sysroot location is specified with the compile option --sysroot.

The LLVM compilers additionally require the location of the GNU linker (and also an 
assembler, if not using the LLVM integrated assembler). This location is specified with the 
option -B or -gcc-toolchain, and must point to the top of the GCC toolchain directory.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 75
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

For example, the following two LLVM commands compile a source file and generate code 
for the ARMv8 AArch64 ISA:

clang -target aarch64-linux-gnu --sysroot=GCC-top/aarch64-
                                   linux-gnu/libc -BGCC-top foo.c 

clang -target aarch64-linux-gnu --sysroot=GCC-top/aarch64-linux-
                           gnu/libc --gcc-toolchain=GCC-top foo.c

With C++, it may be necessary to add a set of C++ include directories so the LLVM 
compilers can correctly search for the header files. Note that this is required only with 
certain GCC toolchain sysroots – in such cases the following directories should be added 
to the LLVM compiler command using the -isystem option:

-isystem GCC-top/include/c++/GCC-version
-isystem GCC-top/include/c++/GCC-version/triple
-isystem GCC-top/include/c++/GCC-version/backward

... where GCC-version indicates the version number of the GCC toolchain (4.6, 4.8.1, 
etc.).

NOTE The target triple specified above may differ from the target triple used on the 
compiler command line.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 76
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.7 Using LLVM with GNU Assembler
Snapdragon LLVM includes support for using the GNU Assembler (GAS) as the system 
assembler. The options “-mllvm -enable-android-compat” and “-mllvm 
-force-div-attr” (Section 3.4.16) are used to control the generation of hardware 
divide instruction so it is compatible with various versions of GAS.

By default the LLVM compiler only emits the DIV attribute when the -mhwdiv option is 
specified. Depending on the GAS version you are using, it may be necessary to change 
this default behavior. Use the following guideline:

 GCC 4.6 and older releases

 The DIV attribute is not emitted by GCC/GAS compiler/assembler.

When using LLVM with this GNU version, you must specify the option 
“-mllvm -enable-android-compat”.

 GCC 4.6 / 4.7 releases

 The DIV attribute is emitted whether or not the option -mhwdiv is specified. 
It is given a different value depending on the target architecture specified:

• 0 - Allow hardware division if supported in the target architecture, or if no 
information exists.

• 1 - Disallow hardware division.

• 2 - Allows hardware division as an optional extension above the base 
target architecture hardware features.

When using LLVM with this GNU version, you must specify the option 
“-mllvm -force-div-attr”.

 Post GCC 4.7 releases

 The DIV attribute is emitted only when the option -mhwdiv is specified.

3.8 Built-in functions
__builtin_neon_memcpy_1024(void*, const void*, size_t)

The header file arm_memcpy_bias.h contains the declaration of a specialized ARM 
memcpy builtin for copy size of 1024.

Using this built-in function in the source will result in generated code with a runtime 
check for copy size of 1024 and the inlining of the memcpy specialized implementation for 
copy size 1024 using vector instructions.

NOTE NEON must be enabled to use this built-in.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 77
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

3.9 Compilation phases
The LLVM compiler consists of a driver program (named cc1) which in turn invokes a set 
of tools that perform the various phases of the overall compilation process.

View phases

To view these phases during compilation, invoke the compiler using the option 
-ccc-print-phases (Section 3.4.2). For example:

clang -ccc-print-phases test.c

This option prints the following information during compilation:

0: input, "test.c", c
1: preprocessor, {0}, cpp-output
2: compiler, {1}, assembler
3: assembler, {2}, object
4: linker, {3}, image

This option is useful when paired with options that control compilation. For example:

clang -c -ccc-print-phases test.c
0: input, "test.c", c
1: preprocessor, {0}, cpp-output
2: compiler, {1}, assembler
3: assembler, {2}, object

clang --analyze -ccc-print-phases test.c
0: input, "test.c", c
1: preprocessor, {0}, cpp-output
2: analyzer, {1}, plist



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 78
 
 

Snapdragon ARM LLVM Compiler for Android Using the Compilers

View phase commands

To view the actual tool commands performed by the driver program at each compilation 
phase, invoke the compiler using the option -### (Section 3.4.2). For example:

clang -### test.c --sysroot=path_to_aarch64_android_sysroot
                  --gcc-toolchain=path_to_aarch64_android_tools
                  --target=aarch64-linux-android

This option prints the following command information:

Preprocessor and compiler:

clang-3.8" "-cc1" "-triple" "armv4t--linux-androideabi" 
"-emit-obj"
...
"-o" "/tmp/t-871e8e.o" "-x" "c" "t.c"

Linker:

"ld" "--sysroot=..."
...
"-o" "a.out"
...
"/tmp/t-2e40e1.o" 

Specify phase options

To pass a command option to the tool that performs a specific compilation phase, invoke 
the compiler using the option -X (Section 3.4.2). For example:

clang -Xlinker --print-map test.c

In this example, -X is used to pass the option --print-map to the linker.

-X specifies the tool that the option will be passed to:

If the option to be passed contains one or more arguments that are separated from the 
option name by spaces, then you will need to use -X multiple times in order to pass the 
option. For example:

clang --analyze -Xclang -analyzer-output -Xclang html
                                                   -o dir test.c

In this example, -X is used twice to pass the option “-analyzer-output html” to the 
compiler.

-Xclang Compiler

-Xassembler Assembler

-Xlinker Linker

-Xanalyzer Static analyzer



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 79
 
 

4 Code Optimization

4.1 Overview
The LLVM compilers provide many tools and features for improving the size or speed of 
the generated object code.

This chapter covers the following topics:

 Optimizing for performance

 Optimizing for code size

 Automatic vectorization

 Automatic parallelization

 Merging functions

 Profile-guided optimization

 Loop optimization pragmas

 Optimization reports

NOTE It is highly recommended to try using the various code optimizations to 
improve the performance of your program. Using just the default optimization 
settings is likely to result in suboptimal performance.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 80
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.2 Optimizing for performance
LLVM currently generates the fastest code when compiling for ARM mode. 

Table 4-1 lists the options to use for optimizing code performance.

For more information on -Ofast see Section 3.4.19.

4.3 Optimizing for code size
LLVM currently generates the smallest code when compiling for Thumb2 mode.

NOTE Thumb2 is available only on ARMv7 and AArch32. 

Table 4-2 lists the options to use for optimizing code size.

For ARMv7, the -Osize option is preferred over -Os because it enables additional code-
size optimizations.

For more information on -Osize see Section 3.4.19.

Table 4-1 Optimizing for performance

Core Options
ARMv7 -Ofast -mcpu=krait

ARMv8 (AArch32) -Ofast -mcpu=cortex-a57

ARMv8 (AArch64)

Table 4-2 Optimizing for code size

Core Options
ARMv7 -Osize -mthumb

ARMv8 (AArch32)

ARMv8 (AArch64) -Os -mcpu=cortex-a57



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 81
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.4 Automatic vectorization
LLVM includes support for automatic code vectorization. By default the vectorizer is 
enabled at code optimization level -O2 or higher. To enable it at lower optimization levels 
use the -fvectorize-loops option (Section 3.4.17).

Vectorization can be used at any code optimization level higher than -O0.

To see which loops in a program get vectorized, use the following option:

-fvectorize-loops-debug

Vectorization works only with the ARMv7 or ARMv8 processor architecture with the 
NEON extension. NEON is enabled either implicitly (by specifying a target processor 
such as -mcpu=krait), or explicitly with -mfpu=neon. 

The following is an example of a loop that can be vectorized with -fvectorize-loops:

  void foo(int * restrict A, int N) {
    for (int i = 0; i < N; i++)
      A[i] = A[i] + 1;
  }

For vectorization of floating point computation, the GCC option -ffast-math should be 
specified. Because floating point vectorizations (reductions in particular) are not IEEE 
compliant, the fast math option is required to ensure maximum vectorization of floating 
point computations.

NOTE The vectorizer can also be enabled using the option -ftree-vectorize, 
which is an alias for -fvectorize-loops.

The GCC option -ftree-vectorizer-verbose (for printing out verbose 
information on a vectorized loop) is not supported. Instead, use 
-fvectorize-loops-debug.

The vectorizer currently operates only on the innermost loop of a nested loop.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 82
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.5 Automatic parallelization
The Qualcomm LLVM compilers include support for automatic code parallelization. By 
default parallelization is disabled – to enable it use the -fparallel option 
(Section 3.4.18).

Parallelization can be used only with code optimization level -O2, -O3, -O4, or -Ofast.

Automatic code parallelization enables selected loops to be executed in parallel for faster 
performance. During parallelization, if a loop is determined to be free of any data, control, 
or memory dependencies, it is then split into multiple loops, each of which performs part 
of the work from the original loop. The resulting loops are dispatched to work queues on 
separate cores so they can be executed in parallel.

Parallelization requires a runtime component which is linked into the final executable 
image. The purpose of the component is to initialize a new thread at program initialization 
time, and subsequently manage the work queues during parallel execution.

While automatic code parallelization can significantly improve overall performance by 
distributing work across multiple cores, it accomplishes this by putting otherwise 
underutilized cores to use. Because other cores get used, performance becomes a function 
of the entire system, and is not fully determinable at compile time. Thus it is possible for 
performance to improve, but also for the net performance to decline. Although the threads 
maintain the cores in a power-saving mode when they are not working, the additional 
work that is done in parallel can increase the overall power usage.

For this reason automatic code parallelization is not enabled by default in the compiler, 
and its use must be evaluated on a case-by-case basis.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 83
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.5.1 Auto-parallelization using SYMPHONY library
The Qualcomm LLVM compilers use a library named SYMPHONY to manage loop auto-
parallelization at runtime in multicore asynchronous runtime environments. SYMPHONY 
uses work stealing and adaptive scheduling to provide more opportunities for speeding up 
parallel loops when using auto-parallelization.

Using SYMPHONY

To perform auto-parallelization with SYMPHONY, use the -fparallel-symphony 
option (Section 3.4.18).

-fparallel-symphony is used in place of -fparallel, and can be used with the other 
auto-parallelization options (such as -fparallel-num-workloads to control loop 
chunking).

It is recommended to use -fparallel-symphony only with the highest optimization level 
(-Ofast). However, it can be used with lower optimization levels. 

NOTE For full documentation on SYMPHONY (including instructions on how to 
download the SYMPHONY System Manager SDK), see: 
https://developer.qualcomm.com/software/symphony-system-manager-sdk

SYMPHONY can be used only with Android applications.

SYMPHONY library

To perform auto-parallelization with SYMPHONY, the SYMPHONY dynamic library 
must be available on the target Android device. If this library is not found on the device, 
the program will generate an error message indicating that it is unable to load 
SYMPHONY.

The SYMPHONY library file libsymphony-1.0.0.so should be stored in the following 
location:

 /system/vendor/lib64   (Android 64-bit devices)

 /system/vendor/lib   (Android 32-bit devices)

To obtain the proper version of the SYMPHONY library for your Android device, 
download it from:

      https://developer.qualcomm.com/software/symphony-system-manager-sdk

https://developer.qualcomm.com/software/mare-sdk
https://developer.qualcomm.com/software/symphony-system-manager-sdk
https://developer.qualcomm.com/software/mare-sdk
https://developer.qualcomm.com/software/symphony-system-manager-sdk


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 84
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

Table 4-3 lists the SYMPHONY library versions for the supported development 
platforms.

The Android adb utility can be used to push the library file to the Android file system:

 adb push libsymphony-1.0.0.so /system/vendor/lib64/  (64-bit)
 adb push libsymphony-1.0.0.so /system/vendor/lib/  (32-bit)

Command line example

The following example shows the commands necessary to compile, link, and run a 
program using auto-parallelization with the SYMPHONY library.

Compile:

$ clang --target aarch64-linux-android
--sysroot=<AArch64_Android_Sysroot>
--gcc-toolchain=<AArch64_Android_Toolchain>
-Ofast -fparallel-symphony -c /tmp/test.c

Link:

$ clang --target aarch64-linux-android
--sysroot=<AArch64_Android_Sysroot>
--gcc-toolchain=<AArch64_Android_Toolchain>
-Ofast -fparallel-symphony /tmp/test.o -o a.out

Run:

$ adb push a.out /data/data/
$ adb shell chmod 755 /data/data/a.out
$ adb shell /data/data/a.out

The executable file a.out will run without problems as long as the SYMPHONY library 
is available in the specified location, and the application can be parallelized. 

Table 4-3 SYMPHONY library versions

Platform SYMPHONY Library File
Windows 64-bit C:\Program Files (x86)\Qualcomm\Symphony SDK\

1.0.0\aarch64-linux-android\lib 
32-bit C:\Program Files (x86)\Qualcomm\Symphony SDK\

1.0.0\arm-linux-androideabi\lib

Linux 64-bit /opt/Qualcomm/Symphony/
1.0.0/aarch64-linux-android\lib

32-bit /opt/Qualcomm/Symphony/
1.0.0/arm-linux-androideabi\lib



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 85
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.6 Merging functions
LLVM includes support for function merging. By default this optimization is disabled – to 
enable it use the -fmerge-functions option (Section 3.4.16).

Function merging attempts to improve code size by merging functions that are equivalent 
or differ in only a few instructions. The optimization uses a number of heuristics to 
determine whether it is worthwhile to merge a pair of functions. For instance, very small 
functions or functions with significant differences are usually not merged.

The following example shows how function merging works:

int f1(int a, int b) {          int f2(int a, int b) {
int x; int x;
x = a + 4; x = a + 10;
return x * b; return x * b;
}                               }

Function merging determines that functions f1 and f2 are similar, and replaces them with 
the following functions:

int f1__merged(int a, int b, int choice) {
int x;
if (choice)

x = a + 10;
else

x = a + 4;
return x * b;
}

int f1(int a, int b) {
return f1__merged(a, b, 0);
}

int f2(int a, int b) {
return f1__merged(a, b, 1);
}

This example is for illustration purposes only. In practice, the optimizer would determine 
that functions f1 and f2 are too small to be worth merging.

NOTE Because function merging may have a negative impact on program 
performance, it is disabled by default, and becomes enabled only when it is 
specified explicitly.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 86
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.7 Link-time optimization
Link-time optimization (LTO) comprises a set of powerful inter-modular optimizations 
which are performed during the linking stage of compilation.

LTO expands the scope of optimizations from individual modules to the entire program (or 
at least to all the modules visible at link time). This enables deeper compiler analysis (such 
as better alias analysis) and more effective code transformations (such as function 
inlining), which can result in improved performance and code size.

When used with -c, the -flto option produces a file containing the LLVM compiler's 
intermediate representation (also known as bitcode). This file can be subsequently used in 
a final link step which then performs inter-module code optimizations on the file contents.

LTO comprises the following elements:

 The link-time optimizer, a compiler feature (controlled with -flto) which 
performs the inter-modular optimizations while linking the files together.

 The LTO-specific attribute lto_preserve, which when applied to a C or C++ 
function or variable prevents it from being discarded by the link-time optimizer.

NOTE The Snapdragon LLVM ARM linker has been verified to support LTO on 
ARMv7 and ARMv8 targets, and Linux and Windows hosts. The GNU Gold 
linker may support LTO for ARMv8, depending on the GCC toolchain/
sysroot version used. LTO is not supported on Windows using the Gold linker.

For more information on the Snapdragon ARM LLVM linker, see the 
Snapdragon Arm LLVM Linker User Guide.

For more information on the Gold linker see llvm.org/docs/GoldPlugin.html.

Link-time optimizer

The link-time optimizer is invoked with the following command:
clang -flto input_files...

The optimizer inputs several LLVM bitcode files or archives. It then links the specified 
files together, performs the specified inter-modular optimizations on them as a whole, and 
finally generates a single assembly file containing the optimized result.

An important optimization that the optimizer performs is the aggressive removal of any 
functions that it determines are not used. To provide the optimizer with a larger context for 
determining if a function is used, the list of filenames may include additional non-bitcode 
objects and archives. The optimizer will use the symbol information in these files to 
determine if a function should be preserved.

NOTE The optimizer requires archives to be homogeneous: the members of a given 
archive must be either all bitcode files or all object files.

http://llvm.org/docs/GoldPlugin.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 87
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.8 Profile-guided optimization
Profile-guided optimization (PGO) is a two-step process:

 A program is first executed to collect profile information on it.

 The program is then recompiled, this time using the collected profile information 
to improve the code optimization that can be performed on the program.

The availability of accurate source code profile information enables the compiler to 
generate better optimized code: the compiler can focus on costly high-performance 
optimizations (in terms of code size or compile time) at the profile-identified hot spots, 
while limiting adverse code generation trade-offs to pathways that are relatively cold. 

PGO can use two different kinds of profile information: 

 Instrumentation-based profiling

 Sampling-based profiling

Each method offers distinct advantages and disadvantages when performing PGO. 
However, both provide the compiler with useful information for improving code 
optimization.

PGO uses the same compile options that are described here: 

       clang.llvm.org/docs/UsersManual.html#profile-guided-optimization

4.8.1 Instrumentation-based PGO
The instrumentation-based approach to PGO relies on a special build of the user’s code, 
which inserts instrumentation that generates the appropriate profile information. The 
resulting information can be used for PGO during a subsequent build.

NOTE An instrumented binary has extra runtime overhead and executes more slowly 
than normal, but the generated profile information still accurately reflects the 
code’s un-instrumented execution. 

The following procedure explains how to perform instrumentation-based PGO:

Step 1: Build instrumented application

Compile and link your application code, using the compile option –fprofile-instr-
generate. For example: 

   clang++ –O2 –fprofile-instr-generate source.cc –o application

NOTE –fprofile-instr-generate optionally accepts a filename argument which 
specifies the name and location of the raw profile data file to be created. 
Otherwise the file will be created with the default name and location.

http://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 88
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

Step 2: Generate profile information

Run the built application on your device to generate the profile information. For example, 
to run the above application on Android, perform the following commands:

HOST$: adb push application /data/local/tmp
HOST$: adb shell
DEVICE$ cd /data/local/tmp
DEVICE$ ./application

This command sequence creates the raw profile data file “/sdcard/default.profraw”.

Step 3: Convert profile information

Profile information can be generated either by running the instrumented program once 
(which results in a single set of profile information), or by running the program several 
times with different input data (which results in several sets of profile information).

In either case, the collected “raw” profiles must be converted to a file format profile that is 
compatible with the Snapdragon LLVM version of PGO. To do this, use the LLVM tool 
llvm-profdata and its “merge” functionality. For example: 

llvm-profdata merge –output=application.profile dataset-1.profraw
                                               dataset-2.profraw

The above example inputs two raw profile files (dataset-1.profraw, 
dataset-2.profraw), merges their contents, converts the merged profiles to a format 
usable in PGO, and writes the merged data to the file application.profile.

NOTE The “merge” step is required even if you only have a single profile file.

A raw profile data file can be merged with an existing merged profile data 
file, or with multiple profile data files that have already been merged.

Step 4: Rebuild application using PGO

Enable PGO in your application builds, using the profile data generated in the previous 
step. For example: 

clang++ –O3 –fprofile-instr-use=application.profile source.cc
                                                 –o application

NOTE PGO profiles can be used at any code optimization level, and with any other 
compile option (Section 4.8.5).



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 89
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.8.2 Instrumentation-based profile gen with Android apps
In instrumentation-based PGO the collected profile data is normally written to a profile 
data file when the application exits. However, Android applications (APKs) typically do 
not have an exit mechanism. Therefore, to collect profile data while developing Android 
applications, use the compile option -fprofile-instr-sync-interval (along with the 
other profile- generation options).

This option directs the compiler to create a background writer thread which syncs the 
collected profile data to the file at a user-specified interval (expressed in milliseconds).

The following example directs the compiler to sync collected profile data to the file 
/sdcard/default.profraw, with a sync period of 1 second:

clang++ -O2 -fprofile-instr-generate=/sdcard/default.profraw
                   -fprofile-instr-sync-interval=1000 source.cc

NOTE At every sync event the collected profile data is appended to the raw profile 
output file. This causes the file to progressively grow in size. Raw profile files 
are compressed to their normal size after the usual post-processing is 
performed with the llvm-profdata tool.

Controlling profile generation

As an alternative to using -fprofile-instr-sync-interval, Snapdragon LLVM also 
provides APIs which can be used to limit profile generation to specific parts of a program. 

The APIs (which must be added to the program source code) explicitly control syncing of 
the collected profile data to the profile data file:

 Profile start: extern "C" int llvm_start_profile();

 Profile stop: extern "C" int lvm_stop_profile();

llvm_start_profile() resets the profile data counters to zero, thus resetting the 
collected profile data.

llvm_stop_profile() syncs the currently-collected profile data to the file, and then 
resets the profile data counters to zero.

NOTE The APIs are intended for advanced users who need finer control over profile 
generation than is offered by -fprofile-instr-sync-interval.

The APIs return a value indicating success (0) or failure (-1). The most 
common source of failure is an inaccessible write location or disk full.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 90
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.8.3 Sampling-based PGO
The sampling-based approach to PGO requires two external tools to set up the profile 
information:

 Profile generator: Linux perf profiler    (perf.wiki.kernel.org)

 Profile converter: autofdo    (github.com/google/autofdo)

The file format for sample-based profile information is described here:

       clang.llvm.org/docs/UsersManual.html#sample-profile-format

Any profile generator or converter tool that can work with this file format can be used 
instead of the tools listed above.

NOTE Sample-based profiling has less runtime overhead than instrumentation-based 
profiling. However, its effectiveness tends to be directly proportional to the 
number of samples collected. Thus, obtaining more accurate sampled profile 
information requires collecting larger amounts of sampled profile data.

The following procedure explains how to use Linux perf and autofdo to perform 
sampling-based PGO:

Step 1: Build the application

Build the application code with the compile option –gline-tables-only. For example:

clang++ –gline-tables-only –O2 source.cc –o application

NOTE The application must be compiled with –gline-tables-only (or –g) to 
ensure that the profile information maps accurately back to the source code.

Step 2: Generate profile information

Use the profile generator perf to collect the profile information. For example:

perf record -e cycles -c 10000 ./application

This command generates a profile data file named perf.data.

NOTE On most commercial devices, installing perf requires root access. 

Step 3: Convert profile information

Install the autofdo tool and convert the raw profiles into the required sample profile 
format. For example:

create_llvm_prof --binary=./application --out=application.profile

http://perf.wiki.kernel.org/
http://perf.wiki.kernel.org
http://perf.wiki.kernel.org
http://github.com/google/autofdo
http://github.com/google/autofdo
clang.llvm.org/docs/UsersManual.html#sample-profile-format
clang.llvm.org/docs/UsersManual.html#sample-profile-format
http://clang.llvm.org/docs/UsersManual.html#sample-profile-format


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 91
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

Step 4: Rebuild application using PGO

Enable PGO in your application build, using the profile data generated in the previous 
step. For example: 

clang++ –O3 –gline-tables-only –fprofile-sample-use=
                  application.profile source.cc –o application

NOTE The application must be compiled with –gline-tables-only to ensure that 
the profile information maps accurately back to the source code.

Sample-based profile information can be used even as the user code changes 
over time (Section 4.8.5).

4.8.4 Sampling-based PGO on Snapdragon MDP
Snapdragon Mobile Development Platform (MDP) devices are targeted for application 
developers, and contain the latest Snapdragon processors and mobile features. MDP 
devices additionally include hardware and software features that specifically support 
application development.

Detailed information on Snapdragon MDP is presented here:

     developer.qualcomm.com/mobile-development/development-devices/
                                                                                    mobile-development-platform-mdp

One of the MDP developer features is the collection of sample-based profiles. Normally a 
device must be rooted to collect sample data. However, MDP is preconfigured for this, and 
thus makes profile collection easy to perform using production applications.

NOTE The only additional step necessary is to add the location of perf to your 
PATH before using it.

The following procedure explains how to perform sampling-based PGO on a Snapdragon 
MDP:

Step 1: Build the application

Build the application code with the compile option –gline-tables-only:

clang++ –gline-tables-only –O2 source.cc –o application

After building the application, move the resulting binary file to the MDP.

Step 2: Generate profile information

perf is pre-installed on a Snapdragon MDP – you just need to add it to PATH:

export PATH=/data/data/com.qualcomm.qview/:$PATH
perf record -e cycles -c 10000 ./application

After running perf, move the generated profile data files back to the host.

http://developer.qualcomm.com/mobile-development/development-devices/mobile-                                                                                             development-platform-mdp
http://developer.qualcomm.com/mobile-development/development-devices/mobile-                                                                                             development-platform-mdp
https://developer.qualcomm.com/mobile-development/development-devices/mobile-development-platform-mdp
https://developer.qualcomm.com/mobile-development/development-devices/mobile-development-platform-mdp


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 92
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

Step 3: Convert profile information

Install the autofdo tool on the host and convert the raw profiles into the required sample 
profile format. For example:

create_llvm_prof --binary=./application --out=application.profile

Step 4: Rebuild application using PGO

Enable PGO in your application build, using the profile data generated in the previous 
step: 

clang++ –O3 –gline-tables-only –fprofile-sample-use=
                  application.profile source.cc –o application

4.8.5 Profile resiliency
Profile information collected for PGO is associated back to the user’s source code, and 
then used to perform PGO. As the user source code changes over time, LLVM will 
associate as much of the profile information with the code as it can. In cases where LLVM 
cannot associate the profiles back to source code, a warning message is generated and the 
unmappable profile information is ignored. The compiler then continues associating the 
profiles for the remaining parts of the user code.

LLVM profiles are thus quite resilient to changes in the source code. The user can reuse 
the collected application profiles over time, without needing to re-profile the application 
every time. LLVM will continue using the profiles as best as it can. Over time, as the user 
code evolves, the utility of these application profiles will degrade, and they will need to be 
refreshed. However, these profile refreshes are usually proportional to the scale of 
evolution of the application code.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 93
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.8.6 PGO tips
 The benefits of using PGO are closely tied to the quality of the profiles collected. The 

profiles should reflect the workloads and user experience that you are trying to 
optimize performance for. Often, collecting profiles while running automated 
“correctness” tests for an application does not adequately exercise the hot loops. In 
this case, consider creating tests that specifically target what you are optimizing for. 
Improved performance of the final LLVM-generated binary is usually proportional to 
how relevant the input profiles are.

 Ensure that the profiles collected cover the different use cases and are collected over 
multiple runs of the same input data set (especially when using sampling-based PGO). 
The accuracy of sampling-based profilers tends to improve as the sample coverage 
increases.

 PGO has a greater impact on application performance when compiling at higher 
optimization levels, especially if PGO is combined with link-time optimization (LTO). 
With LTO profile-guided inlining is more powerful because it operates across module 
boundaries. With LTO profile-guided indirect call promotion is enabled. This 
optimization resolves the frequent targets for indirect or virtual calls, and thus 
improves the performance of applications with indirect or virtual calls.

 Sampling-based profiling requires using the options -g or -gline-tables-only. It 
helps LLVM accurately associate the generated profiles to source code.

 PGO is resilient to changes to the user's code. The profiles generated can be reused 
over time even as the application code changes. LLVM adjusts and uses the still-
relevant profiles, while ignoring the profiles it deems outdated.

 When using instrumented PGO the linker option -static (which is used to build 
static executables) is not supported.

 Profile data generated with -fprofile-instr-sync-interval may include a final 
profile counter section which is truncated. This can result in warnings or errors while 
post-processing with llvm-profdata. In this case the messages can be ignored 
because all the preceding profile data sections were handled correctly by llvm-
profdata. The post-processed output is thus valid and usable for PGO.

 When a program is compiled with -fprofile-instr-generate, errno may not be 
initially set to zero at the instrumented executable’s startup.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 94
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.9 Loop optimization pragmas
The compiler supports pragmas which can be used to selectively enable and disable the 
following loop transformations:

 Auto-vectorization

NOTE The compiler always verifies the correctness of any transformation, and will 
not vectorize a loop unless it can prove it is safe to do so. 

4.9.1 Pragma syntax
The syntax used for loop pragmas follows the conventions used by the LLVM community.

To add a pragma to a loop, specify the pragma immediately before the target loop, using 
the following syntax:

#pragma clang loop pragma [...pragma]

Table 4-4 lists the supported loop pragmas – for detailed descriptions of these pragmas, 
see Section 4.9.3 and Section 4.9.4.

Table 4-4 Loop pragmas

Name Description
Vectorization pragmas

vectorize(enable) Enable auto-vectorization for a loop.

vectorize(disable) Disable auto-vectorization for a loop.

vectorize_width(N) Enable auto-vectorization for a loop with the specified 
vector factor N. The vector factor is the number of 
iterations that will be executed in parallel. 
NOTE - The value N must be a power of 2.

http://github.com/google/autofdo


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 95
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.9.2 Compile options
The loop pragmas for auto-vectorization take effect whenever the auto-vectorization 
transformations are enabled. These transformations can be enabled explicitly with a 
compile option (e.g., -fvectorize-loops) or implicitly with an optimization level (e.g., 
auto-vectorization is enabled at -O3). 

As long as the corresponding transformation is enabled, no extra compile options are 
necessary to cause loop pragmas to take effect. To have a loop pragma take effect without 
enabling the transformation in general, specify the option -floop-pragma. For example, 
to vectorize only a specific loop, add the following pragma to the loop and compile the file 
with -floop-pragma:

#pragma clang loop vectorize(enable)

Table 4-5 lists the compile options that enable auto-vectorization.

The -floop-pragma option enables the compiler to vectorize loops with enable pragmas. 
Currently, -floop-pragma must be used to respect the enable pragmas when auto-
vectorization is not otherwise enabled.

NOTE This restriction is expected to be lifted in the future so enable pragmas can be 
supported without the need for an additional compile option. 

Table 4-6 lists the command option combinations that can enable auto-vectorization.

Table 4-5 Loop pragma options

Name Description
-fvectorize-loops Enable auto-vectorization for all eligible loops.

-floop-pragma Enable auto-vectorization for loops specified with an "enable" 
pragma.

Table 4-6 Loop pragma option combinations

 Combination Description
-fvectorize-loops -floop-pragma Enable auto-vectorization for all eligible loops.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 96
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.9.3 Vectorization pragmas
The Snapdragon LLVM compiler supports the following vectorization pragmas:

 #pragma clang loop vectorize(enable)

 #pragma clang loop vectorize(disable)

 #pragma clang loop vectorize_width(N)

NOTE These are the same vectorization pragmas that are supported by the LLVM 
community compiler.

#pragma clang loop vectorize(enable)

Enable vectorization for a loop.

This pragma has two primary use cases:

1. Enable vectorization for a specific loop when auto-vectorization is not enabled in 
general.

2. Override the profitability heuristic of the auto-vectorizer.

Case 1 requires the use of the compile option -floop-pragma to enable the vectorizer to 
act on loops with enabling pragmas. Case 2 can be used to vectorize loops with constant 
upper bounds that would not normally be vectorized.

Safety conditions are always enforced by the compiler. The loop will not be vectorized 
unless the compiler can prove it is safe, regardless of the existence of the enable pragma.

NOTE Unlike the threadify(enable)pragma, this pragma does override the 
profitability conditions checked by the compiler.

#pragma clang loop vectorize(disable)

Disable vectorization for a loop.

This pragma is used to disable vectorization for a specific loop. It can be used to avoid 
vectorizing loops that are not profitable, or to work around bugs in the vectorizer by not 
vectorizing loops that are incorrectly vectorized.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 97
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

#pragma clang loop vectorize_width(N)

Set vector factor used to vectorize a loop.

The vector factor determines how many iterations of a loop are done in parallel. The 
vector width must be a power of 2. Invalid vector widths are ignored. If the vector width is 
greater than the size of the vector register, the loop is unrolled until the specified vector 
width is reached.

For example, if the vector width is set to 16 and the vector register holds 4 elements, the 
loop is unrolled 4 times to achieve the requested vector width.

Setting the vector width to a value greater than 1 adds an implicit vectorize(enable) 
pragma to the loop. Setting the vector width to 1 is equivalent to using a 
vectorize(disable) pragma.

4.9.4 Reporting
The presence of a loop pragma can have an impact on what reports are generated for a 
loop. The compile option -floop-pragma has no impact on the reports generated by the 
auto-vectorizer when auto-vectorization is enabled. When auto-vectorization is disabled, 
-floop-pragma triggers reporting only for loops that have pragmas.

Table 4-7 shows the interaction between reporting, options, and loop pragmas. A 
checkmark indicates that the option is enabled (either from the command line or implicitly 
by the optimization level), while an X indicates that the option is disabled (either explicitly 
on the command line or by not appearing).

Table 4-7 assumes that all report data is requested (-fopt-reporter=all). The reports 
can be further filtered using the usual mechanism of passing a specific transformation to 
the -fopt-reporter option.

A new report code has been added for loops that are explicitly disabled by a loop pragma. 
If the loop would otherwise be vectorized but has been disabled by a loop pragma, a "loop 
failed" report is generated with a "loop pragma disable" reason code.

Table 4-7 Loop optimization reporting

-fvectorize-loops -floop-pragma Report Content
X X No reporting

X ✔ Report on vectorization results only for 
loops with enable pragmas

✔ X Report vectorization results only

✔ ✔ Report vectorization results for all loops

X ✔ Report vectorization results only for loops 
with enable pragmas

✔ X Report vectorization results for all loops

✔ ✔ Report vectorization results for all loops



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 98
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.9.5 Examples
This section presents a number of examples showing how to use pragmas and command 
options to perform loop vectorization. The examples are not exhaustive – they are 
intended to show how to achieve specific results.

4.9.5.1 Vectorize only a specific loop

This example demonstrates how to restrict auto-vectorization to only act on a specific 
loop.

Command line

clang -Os -floop-pragma

Pragma

#pragma clang loop vectorize(enable)

Example

Normally vectorization is disabled at -Os, but the pragma and -floop-pragma option 
ensure that the loop is vectorized.

void foo(int *A, int N) {
#pragma clang loop vectorize(enable)
for(int i = 0; i < N; ++i)

A[i] += 1;
}

4.9.5.2 Disable vectorization of a specific loop

This example demonstrates how to disable auto-vectorization of a specific loop.

Command line

clang -mfpu=neon -mcpu=cortex-a57 -Ofast -fvectorize-loops

Pragma

#pragma clang loop vectorize(disable)

Example

The pragma ensures that the loop is not vectorized even though the -fvectorize-loops 
option is specified on the command line.

void foo(int *A, int N) {
#pragma clang loop vectorize(disable)
for(int i = 0; i < N; ++i)

A[i] += 1;
}



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 99
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.9.5.3 Vectorize a "non-profitable" loop

The auto-vectorizer may decide that a loop is not profitable to vectorize, and disable 
vectorization of the loop. In this case a loop pragma can be used to specifically enable 
vectorization of the loop.

Command line

clang -mfpu=neon -mcpu=cortex-a57 -Ofast
-fvectorize-loops

Pragma

#pragma clang loop vectorize(enable)

Example

Enable vectorization for the inner loop. Without the option, the auto-vectorizer could 
decide that the loop is not profitable to vectorize.

void foo (int *A, int n) {
  for (int j = 0; j < n; j++) {
    int *p = A + 4*j;
#pragma clang loop vectorize(enable)
    for (int i = 0; i < 4; i++)
      p[i] += 1;
  }
}

4.9.5.4 Vectorize a loop with a different vector factor

The auto-vectorizer chooses a vector factor for the loop based on an internal heuristic. 
This can be overridden by using a loop pragma.

Command line

clang -mfpu=neon -mcpu=cortex-a57 -Ofast -fvectorize-loops

Pragma

#pragma clang loop vectorize_width(16)

Example

Auto-vectorize the loop in function foo, and enforce a vector factor of 16. Without the 
pragma, the vectorizer could choose a different vector factor.

void foo (int *A, int n) {
#pragma clang loop vectorize_width(16)
    for (int i = 0; i < n; i++)
      A[i] += 1;
}



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 100
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.10 Optimization reports
Optimization reports are a new compiler reporting mode which can be used to obtain 
information on why a loop is not auto-vectorized or auto-parallelized.

NOTE This feature is under development, and is subject to change in future releases. 
We encourage interested users to experiment with this feature and provide 
feedback on its usefulness.

The optimization report is a performance tool whose main purpose is to provide feedback 
to the user on why a loop could not be vectorized or parallelized. It is particularly useful 
when you have a loop you want to optimize, but the compiler optimizations are not 
working on the loop. Using optimization reports, you can learn why the compiler could 
not optimize the loop, and possibly take action to enable the desired optimization. 

Using optimization reports to analyze a loop is an iterative process. There may be multiple 
reasons why a loop cannot be transformed. The compiler will only report the first problem 
it finds with the loop. After fixing the initial problem, there may be additional problems 
with the loop that will be reported (by recompiling the modified source code), and will 
need to be fixed before the loop is finally optimized.

The optimization report extends the community's LLVM optimization report for auto-
vectorization and auto-parallelization optimizations. The standard LLVM options for 
enabling community optimization reports are described here:

    clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports 

To enable loop optimization reporting output from the compiler, specify the pass name as 
loop-opt. Two options are used to output the compiler remarks:

 -Rpass=loop-opt outputs the line number of the loops that were auto-
parallelized and/or vectorized, depending on what optimization is enabled by the 
compile options.

 -Rpass-missed=loop-opt outputs the line number and the reason why the loop 
was not optimized. 

4.10.1 Example output
Here is an example of an optimization report – it shows the messages a user will see when 
a loop is successfully vectorized.

$ cat t.c
void v1(int *A, int *B, int N) {
  for (int i = 0; i < N; ++i)
    A[i] += B[i];
}

$ clang -mfpu=neon -mcpu=krait -Ofast -c -g -Rpass=loop-opt  t.c
t.c:2:3: remark: Vectorized loop. [-Rpass=loop-opt]
  for (int i = 0; i < N; ++i)
  ^

http://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports 
clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports
http://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports 


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 101
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.10.2 Optimization report message details
This section describes the most common messages produced by the compiler. Each 
message description includes an example of what code triggers the message, along with 
potential actions a user can take to avoid the problem and vectorize the loop.

4.10.2.1 Unsupported control flow

The unsupported control flow message indicates that a loop contains control flow and 
cannot be vectorized. This is the most common message a user is likely to encounter. All 
outer and nested loops will be marked as invalid because of this reason (because they 
contain an inner loop, which is control flow). In many cases the control flow in an inner 
loop is unavoidable, but sometimes a user can rewrite the code slightly to make it 
friendlier for the vectorizer.

void foo(int *A, int *B, int N, int c, int d, int e) {
  for (int i = 0; i < N; ++i) {
    if (A[i] < c)
      B[i] += d;
    else if (A[i] > c)
      B[i] += e;
  }
}

t.c:2:8: remark: Loop body contains unsupported control flow [-
Rpass-missed=loop-opt]
  for (int i = 0; i < N; ++i) {

The control flow could be eliminated by the compiler if there was a store to B[i] in all 
cases. In this example an else clause can be added, which enables the compiler to remove 
the control flow and vectorize the loop:

void foo(int *A, int *B, int N, int c, int d, int e) {
  for (int i = 0; i < N; ++i) {
    if (A[i] < c)
      B[i] += d;
    else if (A[i] > c)
      B[i] += e;
    else
      B[i] = B[i];
  }
}

t.c:2:3: remark: Vectorized loop. [-Rpass=loop-opt]
  for (int i = 0; i < N; ++i) {



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 102
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.10.2.2 Non-affine loop bound

The loop optimizer requires all loop bounds to be affine, which is a linear function of the 
loop induction variable. If the loop bound is not affine – meaning that the number of 
iterations of the loop cannot be analyzed – then the loop is marked as invalid for 
optimization.

typedef struct S {
  int a;
  struct S *next;
} S;

int foo(S *s) {
  while (s->next != 0) {
    s->a += 1;
    s = s->next;
  }
  return 0;
}

t.c:8:5: remark: Failed to derive an affine function from the loop 
bounds.
      [-Rpass-missed=loop-opt]
    s->a += 1;
    ^

The loop bound is non-affine because the compiler cannot analyze how many iterations 
the loop will execute ahead of time, because it depends on the length of the list of S 
structs. Contrast this case with a standard for loop (e.g., for (int i = 0; i < N; 
++i){...}), where it is known that the loop will execute N times.

void foo(int *A, unsigned int N) {
  for (unsigned i = 0; i < N; i+=2) {
    A[i] += 1;
  }
}

t.c:3:5: remark: Failed to derive an affine function from the loop 
bounds.
      [-Rpass-missed=loop-opt]
    A[i] += 1;
    ^

This example shows the problem of using unsigned variables for the loop index, with a 
non-unit step. On each iteration, the loop induction variable increases by two. Because the 
variable is unsigned, the C language requires that the value wrap if it reaches the max 
unsigned integer value. Because the variable may wrap, it is impossible for the compiler to 
compute how many iterations the loop may execute.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 103
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

This problem can be fixed by using an int for the loop variable. Unlike unsigned ints, a 
plain int has undefined behavior when it wraps beyond the maximum value. The compiler 
can exploit this fact to assume that the value does not wrap, and compute how many times 
the loop executes (N/2 in this case).

void foo(int *A, unsigned int N) {
  for (int i = 0; i < N; i+=2) {
    A[i] += 1;
  }
}

t.c:2:3: remark: Vectorized loop. [-Rpass=loop-opt]
  for (int i = 0; i < N; i+=2) {
  ^

4.10.2.3 Unspecified error

This message is generated in cases where a problem cannot be easily described in terms of 
actionable error messages. One example of when this message is generated is from the 
complex control flow surrounding a loop. 

int bar();
void foo(int *A, int N) {
  while(1) {
    while (*A < 10) {
      if (bar())
        (*A++) += 1;
      else
        break;
    }
    if (*A == 100)
      break;
  }
}
t.c:3:3: remark: Unspecified error. [-Rpass-missed=loop-opt]
  while(1) {
  ^
t.c:4:5: remark: Unspecified error. [-Rpass-missed=loop-opt]
    while (*A < 10) {
    ^



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 104
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.10.2.4 Non loop-invariant loop bound

This message is generated when the compiler cannot prove that the loop bound does not 
change during execution of the loop. The user can fix the problem by hoisting the loop 
bound computation out of the loop.

int bar(int);
void n3(int *A, int *B, int N) {
  for (int i = 0; i < bar(N); ++i)
    A[i] += B[i];
}

t.c:4:5: remark: Loop bound may change between two different loop 
iterations.
      [-Rpass-missed=loop-opt]
    A[i] += B[i];
    ^

In this example the loop bound is computed as the return value from function bar(). The 
compiler cannot see the definition of bar(), so it assumes that it must be computed on each 
loop iteration. The fix is to hoist the call out of the loop.

int bar(int);
void n3(int *A, int *B, int N) {
  int Bound = bar(N);
  for (int i = 0; i < Bound; ++i)
    A[i] += B[i];
}

t.c:4:3: remark: Vectorized loop. [-Rpass=loop-opt]
  for (int i = 0; i < Bound; ++i)
  ^



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 105
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.10.2.5 Inst_FuncCall

This message is generated when the loop body contains a function call. You can work 
around the problem by inlining the function call into the loop body (if possible).

int inc(int);
void n5(int *A, int *B, int N) {
  for (int i = 0; i < N; ++i)
    A[i] = inc(B[i]);
}

t.c:4:12: remark: This function call cannot be handled. Try to 
inline it.
      [-Rpass-missed=loop-opt]
    A[i] = inc(B[i]);
           ^

If the function body is known, you can either inline the definition into the loop, or add 
__attribute__((always_inline)) to the function definition. Here it is assumed that 
inc() is a simple function which increments its arguments.

void n5(int *A, int *B, int N) {
  for (int i = 0; i < N; ++i)
    A[i] = B[i] + 1;
}

t.c:3:3: remark: Vectorized loop. [-Rpass=loop-opt]
  for (int i = 0; i < N; ++i)
  ^

4.10.2.6 Base pointer not loop invariant

This message indicates that a pointer used to access memory can potentially change during 
the execution of the loop. In order to successfully vectorize a loop, the compiler depends 
on having base values that do not move during the loop. The problem may not always be 
obvious when examining the source code, because it could be caused by potential aliasing 
of values in the loop.

typedef struct {
  int **b;
} S;
void foo(S *A, int N) {
  for (int i = 0; i < N; ++i)
    A->b[i] = 0;
}

t.c:6:5: remark: The base address of this array is not invariant 
inside the loop
      [-Rpass-missed=loop-opt]
    A->b[i] = 0;
    ^



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 106
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

In this example the base value is loaded from the A struct at each iteration of the loop. The 
loop can be vectorized if the load of the base pointer is hoisted out of the loop.

typedef struct {
  int **b;
} S;
void foo(S *A, int N) {
  int **b = A->b;
  for (int i = 0; i < N; ++i)
    b[i] = 0;
}

t.c:6:3: remark: Vectorized loop. [-Rpass=loop-opt]
  for (int i = 0; i < N; ++i)
  ^

4.10.2.7 Non-affine memory access

This message indicates that a memory access in the loop is non-affine, meaning that it is 
not a linear function of the loop induction variable. Often, these accesses are the result of 
double indirections in the memory access, but they can also arise from non-linear 
arithmetic (e.g. A[i*i], A[i%n]).

void n4(int *A, int *B, int N) {
  for (int i = 0; i < N; ++i)
    A[B[i]] += 1;
}

t.c:3:5: remark: The array subscript of "A" is not affine [-Rpass-
missed=loop-opt]
    A[B[i]] += 1;
    ^

In this example the double indirection is the problem. The memory location accessed in 
the A array is read from the B array, which makes the access to A non-affine. If possible, 
the programmer should try to remove the double indirection in order to vectorize the loop.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 107
 
 

Snapdragon ARM LLVM Compiler for Android Code Optimization

4.10.2.8 Memory alias

This message indicates that the compiler was unable to vectorize the loop because of 
aliasing problems with pointers in the loop. Normally, the compiler will insert runtime 
checks to disambiguate the pointers to enable vectorization. However, if there are too 
many pointers the runtime checks will not be inserted because the checks themselves may 
be more costly than the benefit gained from vectorizing the loop.

The fix for this error is to increase the number of allowed runtime checks by using the 
option “-mllvm -polly-max-pointer-aliasing-checks”, or by adding “restrict” 
to the pointer parameters that are passed to the function.

void n4(int *A, int *B, int *C, int *D, int *E, int N) {
  for (int i = 0; i < N; ++i)
    A[i] = B[i] + C[i] + D[i] + E[i] + 1;
}

t.c:3:5: remark: Accesses to the arrays "B", "C", "D", "E", "A" may 
access the same memory.
      [-Rpass-missed=loop-opt]
    A[i] = B[i] + C[i] + D[i] + E[i] + 1;
    ^

The compiler reports an aliasing issue with the pointers in the loop. In this case the 
number of runtime checks can be increased using the option “-mllvm -polly-max-
pointer-aliasing-checks=5” in order to vectorize the loop.

Alternatively, “restrict” could be added to the function parameters to tell the compiler 
that the pointers do not alias. Adding restrict is the preferred fix in this case because it 
avoids the overhead of runtime checks and leads to more efficient code.

void n4(int * restrict A, int * restrict B, int * restrict C, int * 
restrict D, int * restrict E, int N) {
  for (int i = 0; i < N; ++i)
    A[i] = B[i] + C[i] + D[i] + E[i] + 1;
}

t.c:2:3: remark: Vectorized loop. [-Rpass=loop-opt]



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 108
 
 

5 Compiler Security Tools

5.1 Overview
The LLVM compilers support several tools and features for improving the security and 
reliability of program code.

This chapter covers the following topics:

 Sanitizer support

 Sanitizer special case lists

 Sanitizer usage on Android

 Sanitizer usage on Linux

 Address Sanitizer

 Data Flow Sanitizer

 Leak Sanitizer

 Memory Sanitizer

 Thread Sanitizer

 Undefined Behavior Sanitizer

 LLVM Symbolizer

 Control flow integrity

 Static program analysis



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 109
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.2 Sanitizer support
Not all sanitizers are supported on all targets. Table 5-1 shows which sanitizers are 
supported on which targets.

5.3 Sanitizer special case lists
The behavior of the sanitizers can be controlled for certain source-level entities (such as 
functions) by providing a special file at compile-time. This file is called a special case list.

Special case lists are used to do the following things:

 Speed up time-critical functions that are already known to be correct

 Ignore functions that perform low-level operations (such as traversing thread 
stacks, which bypasses the stack frame boundaries)

 Ignore functions with known problems

To create a special case list, create a text file which lists the source-level entities to be 
ignored. Then pass this file to the compiler with the option -fsanitize-blacklist 
(Section 3.4.16).

Example case list:

# Disable checks in function and source file
fun:my_func
src:my_file

Each line in a special case list file has the following syntax:

   entityregexp[category]

entity specifies the type of source-level entity. It has the following possible values:

 src – source file

 fun – function

 global – global variable (ASan only)

 type – class or struct type (ASan only)

Table 5-1 Sanitizer support

Sanitizer AARCH64-Linux AARCH64-Android ARM-Linux ARM-Android
Address Sanitizer ✔ ✔ ✔ ✔

Data flow Sanitizer ✔ X X X

Leak Sanitizer ✔ X X X

Memory Sanitizer ✔ X X X

Thread Sanitizer ✔ X X X

Undefined Behavior 
Sanitizer

✔ X ✔ X



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 110
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

global and type are specific to the Address Sanitizer. They are used to suppress error 
reports for out-of-bound accesses to the specified global symbols, or to instances of the 
specified class or struct type.

regexp specifies a regular expression which specifies the entity name.

category optionally specifies a category value to associate with the entity. Category 
values are specific to each sanitizer.

Empty lines and lines starting with # are ignored. The meaning of * in regular expression 
for entity names is different – it is treated as in shell wildcarding.

For example:

# Lines starting with # are ignored.
# Turn off checks for the source file (use absolute path or path 
relative
# to the current working directory):
src:/path/to/source/file.c
# Turn off checks for a particular functions (use mangled names):
fun:MyFooBar
fun:_Z8MyFooBarv
# Extended regular expressions are supported:
fun:bad_(foo|bar)
src:bad_source[1-9].c
# Shell like usage of * is supported (* is treated as .*):
src:bad/sources/*
fun:*BadFunction*
# Specific sanitizer tools may introduce categories.
src:/special/path/*=special_sources

5.4 Sanitizer usage on Android
Generating an Android LLVM executable with sanitizer instrumentation requires the 
following items:

 The Android NDK (for its linker)

 sysroot (for building the executable)

Once the executable is built, push your executable, the sanitizer runtime library, and the 
LLVM Symbolizer (Section 5.12) to an Android device. The sanitizer runtime library is a 
shared object which must be preloaded into the executable when launched.

The shared object can be found under the LLVM release tools installation directory:

export INSTALL_PREFIX=LLVM_release_tools_install_dir
file $INSTALL_PREFIX/lib/clang/*/lib/linux/libclang_rt.xsan-
                                                   arm-android.so

NOTE xsan specifies a sanitizer library (asan, msan, etc.).



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 111
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

Example

Choose one of the examples that are provided in the individual sanitizer sections (for 
example, Section 5.6.1).

1. Build a C/C++ executable with the sanitizer instrumentation:

$ mkdir -p out
$ $INSTALL_PREFIX/bin/clang++ -target arm-linux-androideabi -g 
-fsanitize=san_opt boom.cc -o out/boom
--sysroot=Android_ARM_sysroot
--gcc-toolchain=Android_NDK_toolchain

NOTE san_opt specifies a sanitizer option value (address, memory, etc.).

2. Push the executable, sanitizer runtime library, and symbolizer to Android device 
(Jellybean or later)

$ adb push out/boom /data/data/
$ adb push $INSTALL_PREFIX/lib/clang/*/lib/linux/
                                  libclang_rt.xsan-arm-android.so
/data/data/
$ adb push $INSTALL_PREFIX/arm-linux-androideabi/llvm-symbolizer 
/data/data/

NOTE xsan specifies a sanitizer library (asan, msan, etc.).

3. Run the sanitizer-instrumented executable:

$ adb shell "san_path_SYMBOLIZER_PATH=/data/data/llvm-symbolizer 
LD_PRELOAD=/data/data/libclang_rt.xsan-arm-android.so 
/data/data/boom"

NOTE san_path and xsan specify a sanitizer path variable (ASAN, MSAN, etc.). 
and library (asan, msan, etc.).

Include the symbolizer in the argument string (as shown above) only if the 
sanitizer you are using requires a symbolizer to resolve the symbol names.

If the command line execution outputs the error “CANNOT LINK 
EXECUTABLE: could not load library”, try exporting the 
LD_LIBRARY_PATH:

      adb shell "export LD_LIBRARY_PATH=/data/data/ ; 
      san_path_SYMBOLIZER_PATH=/data/data/llvm-symbolizer
      LD_PRELOAD=/data/data/libclang_rt.xsan-arm-android.so
      /data/data/boom"



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 112
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.5 Sanitizer usage on Linux
1. Build a C/C++ executable with sanitizer instrumentation:

$INSTALL_PREFIX/bin/clang++ -target arm-linux-gnueabi
--sysroot=Linux_ARM_sysroot
--gcc-toolchain=Linux_ARM_toolchain
-g
-fsanitize=san_opt boom.cc
-o boom

2. Run the ARM sanitizer-instrumented executable. You can run the executable on an 
ARM Linux system:

san_path_SYMBOLIZE_PATH=$INSTALL_PREFIX/arm-linux-gnueabi/
                                          llvm-symbolizer ./boom

NOTE san_opt and san_path specify a sanitizer option value (address, 
memory, etc.) and path variable (ASAN, MSAN, etc.).

Include the symbolizer (as shown above) only if the sanitizer you are using 
requires a symbolizer to resolve the symbol names.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 113
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.6 Address Sanitizer
The LLVM compiler release includes a tool named Address Sanitizer (ASan) which can be 
used to detect memory errors in C and C++ code.

ASan controls checking for the following memory errors:

 Out-of-bounds accesses to heap, stack, and globals

 Use-after-free

 Use-after-return (to a certain extent)

 Double-free, invalid free

 Double-free, invalid free

 Memory leaks (experimental)

ASan is a runtime tool which requires compile-time instrumentation of the code, and a 
dedicated runtime library. If ASan encounters a bug during the execution of a program, it 
halts the execution and displays (on stderr) an error message and stack trace.

NOTE A program instrumented with ASan typically runs 2x slower.

5.6.1 Usage
To use ASan you must instrument your C/C++ code and generate an Android/Linux 
executable.

To instrument your C/C++ code with ASan, add the following options to both the compile 
and link options in LLVM:

-g -fsanitize=address

The ASan runtime library must be linked to the final executable – be sure to use clang 
(not ld) for the final link step.

When linking shared libraries, the ASan runtime is not linked, so -Wl,-z,defs may 
cause link errors (do not use it with ASan). To get a reasonable performance add -O1 or 
higher. To get nicer stack traces in error messages, add -fno-omit-frame-pointer. To 
get perfect stack traces it may be necessary to disable inlining (just use -O1) and tail call 
elimination (-fno-optimize-sibling-calls).



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 114
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

For example:

% cat example_UseAfterFree.cc
int main(int argc, char **argv) {
  int *array = new int[100];
  delete [] array;
  return array[argc];  // BOOM
}

# Compile and link
% clang -O1 -g -fsanitize=address -fno-omit-frame-pointer 
example_UseAfterFree.cc

Or:

# Compile
% clang -O1 -g -fsanitize=address -fno-omit-frame-pointer -c 
example_UseAfterFree.cc
# Link
% clang -g -fsanitize=address example_UseAfterFree.o

If a bug is detected, the program will print an error message to stderr and exit with a non-
zero exit code. ASan exits on the first detected error. This is by design:

 This approach enables ASan to produce faster and smaller generated code (both 
by approximately 5%).

 Fixing bugs becomes unavoidable. ASan does not produce false alarms. Once 
memory is corrupted the program is in an inconsistent state, which can lead to 
confusing results and potentially misleading subsequent reports.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 115
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.6.2 Symbolizing the reports
To make ASan symbolize its output, you must set the ASAN_SYMBOLIZER_PATH 
environment variable to point to the llvm-symbolizer binary (or alternatively ensure 
that llvm-symbolizer is in your $PATH).

For example:

% ASAN_SYMBOLIZER_PATH=/usr/local/bin/llvm-symbolizer ./a.out
==9442== ERROR: AddressSanitizer heap-use-after-free on address 
0x7f7ddab8c084 at pc 0x403c8c bp 0x7fff87fb82d0 sp 0x7fff87fb82c8
READ of size 4 at 0x7f7ddab8c084 thread T0
    #0 0x403c8c in main example_UseAfterFree.cc:4
    #1 0x7f7ddabcac4d in __libc_start_main ??:0
0x7f7ddab8c084 is located 4 bytes inside of 400-byte region 
[0x7f7ddab8c080,0x7f7ddab8c210)
freed by thread T0 here:
    #0 0x404704 in operator delete[](void*) ??:0
    #1 0x403c53 in main example_UseAfterFree.cc:4
    #2 0x7f7ddabcac4d in __libc_start_main ??:0
previously allocated by thread T0 here:
    #0 0x404544 in operator new[](unsigned long) ??:0
    #1 0x403c43 in main example_UseAfterFree.cc:2
    #2 0x7f7ddabcac4d in __libc_start_main ??:0
==9442== ABORTING

5.6.3 Additional checks
ASan performs the following additional checks.

Initialization order checking

ASan can optionally detect dynamic initialization order problems, when initialization of 
globals defined in one translation unit uses globals defined in another translation unit. To 
enable this check at runtime, you should set environment variable 
ASAN_OPTIONS=check_initialization_order=1.

Memory leak detection

For more information on memory leak detection in ASan, see Section 5.8. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 116
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.6.4 Issue suppression
ASan generally does not produce false positives, so if you see one, look again. Most likely 
it is a true positive.

Suppressing reports in external libraries

Runtime interposition allows ASan to find bugs in code that is not being recompiled. If 
you run into an issue in external libraries, we recommend immediately reporting it to the 
library maintainer so that it gets addressed. However, you can use the following 
suppression mechanism to unblock yourself and continue on with the testing. This 
suppression mechanism should only be used for suppressing issues in external code; it 
does not work on code recompiled with ASan. To suppress errors in external libraries, set 
the environment variable ASAN_OPTIONS to point to a suppression file. You can specify 
either the full path to the file, or the path of the file relative to the location of your 
executable.

For example:

ASAN_OPTIONS=suppressions=MyASan.supp

Use the following format to specify the names of the functions or libraries you want to 
suppress. You can see these in the error report. Remember that the narrower the scope of 
the suppression, the more bugs you will be able to catch.

interceptor_via_fun:NameOfCFunctionToSuppress
interceptor_via_fun:-[ClassName objCMethodToSuppress:]
interceptor_via_lib:NameOfTheLibraryToSuppress

__has_feature(address_sanitizer)

In some cases you may need to execute different code depending on whether ASan is 
enabled. The language extension __has_feature can be used for this purpose.

For example:

#if defined(__has_feature)
#  if __has_feature(address_sanitizer)
// code that builds only under AddressSanitizer
#  endif
#endif

__has_feature is a function-like macro which accepts a single identifier argument that is 
the name of a feature. It evaluates to 1 if the feature is both supported by Clang and 
standardized in the current language standard. If not, it evaluates to 0.

Another use of __has_feature is to check for compiler features not related to the 
language standard (such as ASan itself).



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 117
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

__attribute__((no_sanitize("address"))) 

Some code should not be instrumented by ASan. To disable the instrumentation of a 
particular function, use the following function attribute: 

__attribute__((no_sanitize("address")))

NOTE The no_sanitize attribute has the deprecated synonyms 
no_sanitize_address and no_address_safety_analysis.

Blacklist

ASan supports the use of sanitizer special case lists to suppress error reports in the 
specified source files or functions (Section 5.3). Additionally, it defines the ASan-specific 
entity types global and type for suppressing error reports on any out-of-bound accesses 
to globals with certain names and types (you can only specify class or struct types).

ASan defines a the sanitizer-specific category init, which can be used in a case list to 
suppress error reports about initialization-order problems occurring in certain source files 
or with certain global variables.

For example:

# Suppress error reports for code in a file or in a function:
src:bad_file.cpp
# Ignore all functions with names containing MyFooBar:
fun:*MyFooBar*
# Disable out-of-bound checks for global:
global:bad_array
# Disable out-of-bound checks for global instances of a given class 
...
type:Namespace::BadClassName
# ... or a given struct. Use wildcard to deal with anonymous 
namespace.
type:Namespace2::*::BadStructName
# Disable initialization-order checks for globals:
global:bad_init_global=init
type:*BadInitClassSubstring*=init
src:bad/init/files/*=init



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 118
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.6.5 Suppressing memory leaks
If the Leak Sanitizer (Section 5.8) is run as part of ASan, any memory leak reports it 
generates can be suppressed by a separate file passed to the compiler using the 
environment variable LSAN_OPTIONS. For example:

LSAN_OPTIONS=suppressions=MyLSan.supp

The specified text file (in this case, MyLSan.supp) contains one or more lines of the 
following form:

   leakpattern

Memory leaks will be suppressed if the any of the patterns specified in this file match a 
function name, source file name, or library name in the symbolized stack trace of the leak 
report. For details see Section 5.8.

5.6.6 Limitations
 ASan uses more real memory than a native run. Exact overhead depends on the 

allocations sizes. The smaller the allocations you make the bigger the overhead is.

 ASan uses more stack memory. We have seen up to 3x increase.

 On 64-bit platforms ASan maps (but not reserves) 16+

 Terabytes of virtual address space. This means that tools like ulimit may not work 
as usually expected.

 Static linking is not supported.

5.6.7 Options
When you run your instrumented executable and ASan does not detect any errors, you will 
see no output. Conversely, when you see no output, it can mean either that no errors 
occurred, or that your executable was not instrumented with the ASan runtime.

To verify that your executable is instrumented with ASan, use the environment variable 
ASAN_OPTIONS and the flag “verbosity=1”. Doing this directs the ASan runtime to 
output a startup message when your executable is launched. For example (in Bash):

$ ASAN_OPTIONS=verbosity=1 ./myExe

If no output is generated while verbose mode is enabled, this implies your executable was 
not instrumented with ASan. Check that the option -fsanitize=address was passed to 
`clang` for both for the compilation step and the linking step.

ASan offers a variety of options for controlling the runtime behavior and enabling/ 
disabling its functionality. For example, if you are running out of memory, set 
“qualantine_size=0”. This causes ASan to miss any use-after-free errors but still detect 
buffer-overflow errors. Similarly, if you are overflowing the stack, set “redzone=0” to 
save stack space. In this case you will miss buffer-overflow errors, but can still detect use-
after-free errors.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 119
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

You can specify multiple options by separating flags with a colon. For example:

$ ASAN_OPTIONS=log_path=my-asan-report:redzone=8

Table 5-2 lists the options supported in ASan.

Table 5-2 ASan options 

Option Default Description
verbosity 0 Be more verbose (mostly for testing the tool 

itself)

malloc_context_size 30 Number of frames in malloc/free stack 
traces (0-256).

redzone 16 Size of minimal redzone.

log_path stderr Path to log files. If specified as 
log_path=PATH, every process will write 
error reports to PATH.PID.

sleep_before_dying 0 Sleep for the specified number of seconds 
before exiting the process on failure.

quarantine_size 256Mb Size of quarantine (in bytes) for finding use-
after-free errors. Lower values save memory 
but increase false negatives rate.

exitcode 1 Call _exit(exitcode) on error.

abort_on_error 0 If set to 1, on error call abort() instead of 
_exit(exitcode).

strict_memcmp 1 If set to 1 (default), treat memcmp("foo", 
"bar", 100) as a bug.

alloc_dealloc_mismatch 1 If set to 1, check for mismatches between 
malloc()/new/new and 
free()/delete/delete.

handle_segv 1 If set to 1, ASan installs its own handler for 
SIGSEGV.

allow_user_segv_handler 0 If set to 1, allows user to override SIGSEGV 
handler installed by ASan.

check_initialization_order 0 If set to 1, detect existing initialization order 
problems. 

strip_path_prefix "" If strip_path_prefix=PREFIX, 
remove the substring .*PREFIX from the 
reported file names.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 120
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.6.8 Notes
The ASan runtime library does not yet demangle symbols, but the LLVM symbolizer can 
be used to demangle symbols (Section 5.12).

The ASan runtime library cannot be statically linked on Android. The linker does not load 
the libc symbols before any others, as it does on Linux systems. ASan relies on this 
feature to hijack symbols before any other shared objects are loaded. Therefore, on 
Android it is necessary to use the LD_PRELOAD trick.

For more information on ASan see:

     clang.llvm.org/docs/AddressSanitizer.html

5.7 Data Flow Sanitizer
The LLVM compiler release includes a tool named Data Flow Sanitizer (DFSan) which 
can be used to perform generalized data flow analysis on C and C++ code.

Unlike the other sanitizers, DFSan is not designed to detect a specific class of bugs on its 
own. Instead, it provides a generic dynamic data flow analysis framework to be used by 
clients to help detect application-specific issues within their own code.

5.7.1 Usage 
With no program changes, applying DFSan to a program will not alter its behavior. To use 
DFSan, the program uses API functions to apply tags to data to cause it to be tracked, and 
to check the tag of a specific data item. DFSan manages the propagation of tags through 
the program according to its data flow.

The APIs are defined in the header file sanitizer/dfsan_interface.h. For further 
information about each function, please refer to the header file.

5.7.2 ABI list
DFSan uses a list of functions known as an ABI list to decide whether a call to a specific 
function should use the operating system’s native ABI, or whether it should use a variant 
of this ABI that also propagates labels through function parameters and return values.

The ABI list file also controls how labels are propagated in the former case. DFSan comes 
with a default ABI list which is intended to eventually cover the glibc library on Linux, 
but it may become necessary for users to extend the ABI list in cases where a particular 
library or function cannot be instrumented (for example, because it is implemented in 
assembly or another language that DFSan does not support) or a function is called from a 
library or function which cannot be instrumented.

http://clang.llvm.org/docs/AddressSanitizer.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 121
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

DFSan’s ABI list file uses the same format as a sanitizer special case list (Section 5.3). 
The pass treats every function in the uninstrumented category in the ABI list file as 
conforming to the native ABI. Unless the ABI list contains additional categories for those 
functions, a call to one of those functions will produce a warning message, as the labeling 
behavior of the function is unknown. 

DFSan defines the sanitizer-specific categories discard, functional, and custom to 
control the sanitizer behavior:

 discard – To the extent that this function writes to (user-accessible) memory, it 
also updates labels in shadow memory (this condition is trivially satisfied for 
functions which do not write to user-accessible memory). Its return value is 
unlabelled.

 functional – Like discard, except that the label of its return value is the union of 
the label of its arguments.

 custom – Instead of calling the function, a custom wrapper __dfsw_F is called, 
where F is the name of the function. This function may wrap the original function 
or provide its own implementation. This category is generally used for 
uninstrumentable functions which write to user-accessible memory or which have 
more complex label propagation behavior. The signature of __dfsw_F is based on 
that of F with each argument having a label of type dfsan_label appended to the 
argument list. If F is of non-void return type a final argument of type 
dfsan_label * is appended to which the custom function can store the label for 
the return value.

For example:

void f(int x);
void __dfsw_f(int x, dfsan_label x_label);

void *memcpy(void *dest, const void *src, size_t n);
void *__dfsw_memcpy(void *dest, const void *src, size_t n,
                    dfsan_label dest_label, dfsan_label src_label,
                    dfsan_label n_label, dfsan_label *ret_label);

If a function defined in the translation unit being compiled belongs to the uninstrumented 
category, it will be compiled so as to conform to the native ABI. Its arguments will be 
assumed to be unlabeled, but it will propagate labels in shadow memory.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 122
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

For example:

# main is called by the C runtime using the native ABI.
fun:main=uninstrumented
fun:main=discard
# malloc only writes to its internal data structures, not
# user-accessible memory.
fun:malloc=uninstrumented
fun:malloc=discard
# tolower is a pure function.
fun:tolower=uninstrumented
fun:tolower=functional
# memcpy needs to copy the shadow from the source to the 
destination region.
# This is done in a custom function.
fun:memcpy=uninstrumented
fun:memcpy=custom

5.7.3 Example
The following program demonstrates label propagation by checking that the correct labels 
are propagated.

#include <sanitizer/dfsan_interface.h>
#include <assert.h>

int main(void) {
  int i = 1;
  dfsan_label i_label = dfsan_create_label("i", 0);
  dfsan_set_label(i_label, &i, sizeof(i));

  int j = 2;
  dfsan_label j_label = dfsan_create_label("j", 0);
  dfsan_set_label(j_label, &j, sizeof(j));

  int k = 3;
  dfsan_label k_label = dfsan_create_label("k", 0);
  dfsan_set_label(k_label, &k, sizeof(k));

  dfsan_label ij_label = dfsan_get_label(i + j);
  assert(dfsan_has_label(ij_label, i_label));
  assert(dfsan_has_label(ij_label, j_label));
  assert(!dfsan_has_label(ij_label, k_label));

  dfsan_label ijk_label = dfsan_get_label(i + j + k);
  assert(dfsan_has_label(ijk_label, i_label));
  assert(dfsan_has_label(ijk_label, j_label));
  assert(dfsan_has_label(ijk_label, k_label));

  return 0;
}



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 123
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.7.4 Notes
For more information on DFSan see:

     clang.llvm.org/docs/DataFlowSanitizer.html

5.8 Leak Sanitizer
The LLVM compiler release includes a tool named Leak Sanitizer (LSan) which can be 
used to detect runtime memory leaks in C and C++ code.

LSan can be combined with the Address Sanitizer (Section 5.6) to enable both memory 
error and leak detection, or it can be used as a stand-alone tool.

NOTE LSan adds almost no performance overhead until the very end of the process, 
when an extra leak detection phase is performed.

5.8.1 Usage
To use LSan, simply build your program with the Address Sanitizer (Section 5.6).

For example:

$ cat memory-leak.c
#include <stdlib.h>
void *p;
int main() {
  p = malloc(7);
  p = 0; // The memory is leaked here.
  return 0;
}
% clang -fsanitize=address -g memory-leak.c ; ./a.out
==23646==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 7 byte(s) in 1 object(s) allocated from:
    #0 0x4af01b in __interceptor_malloc /projects/compiler-
rt/lib/asan/asan_malloc_linux.cc:52:3
    #1 0x4da26a in main memory-leak.c:4:7
    #2 0x7f076fd9cec4 in __libc_start_main libc-start.c:287
SUMMARY: AddressSanitizer: 7 byte(s) leaked in 1 allocation(s).

To use LSan in stand-alone mode, link your program with the option -fsanitize=leak. 
Be sure to use clang (not ld) for the link step, to ensure that the proper LSan runtime 
library is linked into the final executable.

5.8.2 Notes
For more information on LSan see:

     clang.llvm.org/docs/LeakSanitizer.html

http://clang.llvm.org/docs/DataFlowSanitizer.html
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/LeakSanitizer.html
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/DataFlowSanitizer.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 124
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.9 Memory Sanitizer
The LLVM compiler release includes a tool named Memory Sanitizer (MSan) which can 
be used to detect the use of uninitialized memory in C and C++ code.

MSan is a runtime tool which requires compile-time instrumentation of the code, and a 
dedicated runtime library. If MSan encounters a bug during the execution of a program, it 
halts the execution and displays (on stderr) an error message and stack trace. In addition, it 
may optionally display information on where the uninitialized memory was originally 
allocated.

5.9.1 Usage
To instrument your C/C++ code with MSan, add the following option to both the compile 
and link options in LLVM:

-fsanitize=memory

The MSan runtime library must be linked to the final executable – be sure to use clang 
(not ld) for the final link step.

When linking shared libraries, the MSan runtime is not linked, so -Wl,-z,defs may 
cause link errors (do not use it with MSan). For reasonable execution performance use -O1 
or higher. For meaningful stack traces in error messages use -fno-omit-frame-
pointer. For perfect stack traces you may need to disable inlining (just use -O1) and tail 
call elimination (-fno-optimize-sibling-calls).

For example:

% cat umr.cc
#include <stdio.h>

int main(int argc, char** argv) {
  int* a = new int[10];
  a[5] = 0;
  if (a[argc])
    printf("xx\n");
  return 0;
}

% clang -fsanitize=memory -fno-omit-frame-pointer -g -O2 umr.cc



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 125
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

If a bug is detected, the program will print an error message to stderr and exit with a non-
zero exit code:

% ./a.out
WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x7f45944b418a in main umr.cc:6
    #1 0x7f45938b676c in __libc_start_main libc-start.c:226

NOTE By default, MSan exits on the first detected error. If you find the error report 
hard to understand, try enabling origin tracking (Section 5.9.3).

__has_feature(memory_sanitizer)

In some cases you may need to execute different code depending on whether MSan is 
enabled. The language extension __has_feature can be used for this purpose.

For example:

#if defined(__has_feature)
#  if __has_feature(memory_sanitizer)
// code that builds only under MemorySanitizer
#  endif
#endif

__has_feature is a function-like macro which accepts a single identifier argument that is 
the name of a feature. It evaluates to 1 if the feature is both supported by Clang and 
standardized in the current language standard. If not, it evaluates to 0.

Another use of __has_feature is to check for compiler features not related to the 
language standard (such as MSan itself).

__attribute__((no_sanitize_memory)) 

Some code should not be instrumented by MSan. To disable the instrumentation of a 
particular function, use the following function attribute: 

__attribute__((no_sanitize_memory))

To avoid false positives MSan may still instrument such functions.

Blacklist

MSan supports the use of sanitizer special case lists to suppress error reports in the 
specified source files or functions (Section 5.3). All “Use of uninitialized value” warnings 
are suppressed, and all values loaded from memory are considered fully initialized.

5.9.2 Report symbolization
MSan uses an external symbolizer to print files and line numbers in reports. Ensure that 
the llvm-symbolizer binary is in PATH, or set the environment variable 
MSAN_SYMBOLIZER_PATH to point to it.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 126
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.9.3 Origin tracking
MSan can track origins of uninitialized values, similar to Valgrind’s –track-origins 
option. This feature is enabled with the option -fsanitize-memory-track-origins=2 
(or simply -fsanitize-memory-track-origins). 

Example of origin tracking (using the code from the preceding example):

% cat umr2.cc
#include <stdio.h>

int main(int argc, char** argv) {
  int* a = new int[10];
  a[5] = 0;
  volatile int b = a[argc];
  if (b)
    printf("xx\n");
  return 0;
}

% clang -fsanitize=memory -fsanitize-memory-track-origins=2 -fno-
omit-frame-

pointer -g -O2 umr2.cc
% ./a.out
WARNING: MemorySanitizer: use-of-uninitialized-value
    #0 0x7f7893912f0b in main umr2.cc:7
    #1 0x7f789249b76c in __libc_start_main libc-start.c:226

  Uninitialized value was stored to memory at
    #0 0x7f78938b5c25 in __msan_chain_origin msan.cc:484
    #1 0x7f7893912ecd in main umr2.cc:6

  Uninitialized value was created by a heap allocation
    #0 0x7f7893901cbd in operator new[](unsigned long) 
msan_new_delete.cc:44
    #1 0x7f7893912e06 in main umr2.cc:4

By default, MSan collects both the allocation points and all intermediate stores that the 
uninitialized value went through.

Origin tracking has proved to be very useful for debugging MSan reports. It slows down 
program execution by a factor of 1.5x-2x on top of the usual MSan slowdown, and 
increases memory overhead.

The option -fsanitize-memory-track-origins=1 enables a slightly faster mode 
when MSan collects only allocation points and not intermediate stores.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 127
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.9.4 Use-after-destruction detection
MSan supports use-after-destruction detection. After its destructor is invoked, an object is 
considered no longer readable, and using the underlying memory will lead to error reports 
in runtime.

To enable this feature at runtime, perform the following procedure:

1. During compilation, specify the option -fsanitize-memory-use-after-dtor.

2. Before running the program, set the environment variable 
MSAN_OPTIONS=poison_in_dtor=1.

NOTE This feature is experimental.

5.9.5 Handling external code
MSan requires all program code to be instrumented, including any libraries that the 
program depends on (even libc).

Failure to do this may result in the generation of false reports.

Full MSan instrumentation is very difficult to achieve. To make it easier, the MSan 
runtime library includes 70+ interceptors for the most common libc functions. This 
makes it possible to run MSan-instrumented programs linked with an uninstrumented 
version of libc.

5.9.6 Limitations
 MSan uses 2x more real memory than a native run, and 3x with origin tracking.

 MSan maps (but not reserves) 64 terabytes of virtual address space. This means 
that tools like ulimit may not work as expected.

 Static linking is not supported.

 Older versions of MSan (LLVM 3.7 and older) didn’t work with non-position-
independent executables, and could fail on some Linux kernel versions with 
disabled ASLR. For more information see the LLVM documentation for older 
versions.

5.9.7 Notes
For more information on MSan see:

     clang.llvm.org/docs/MemorySanitizer.html

http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/DataFlowSanitizer.html
http://clang.llvm.org/docs/LeakSanitizer.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 128
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.10 Thread Sanitizer
The LLVM compiler release includes a tool named Thread Sanitizer (TSan) which can be 
used to detect data race conditions in C and C++ code.

TSan is a runtime tool which requires compile-time instrumentation of the code, and a 
dedicated runtime library. 

If TSan encounters a bug during the execution of a program, it displays (on stderr) an error 
message.

TSan slows down program execution by a factor of 5x-15x, with a memory overhead of 
about 5x-10x.

NOTE Currently TSan symbolizes its error output using an external addr2line 
process (this will be fixed in the future).

5.10.1 Usage
To instrument your C/C++ code with TSan, add the following option to both the compile 
and link options in LLVM:

-fsanitize=thread

The TSan runtime library must be linked to the final executable – be sure to use clang 
(not ld) for the final link step.

For reasonable execution performance use -O1 or higher. To include file names and line 
numbers in the generated error messages use -g.

For example:

% cat projects/compiler-rt/lib/tsan/lit_tests/tiny_race.c
#include <pthread.h>
int Global;
void *Thread1(void *x) {
  Global = 42;
  return x;
}
int main() {
  pthread_t t;
  pthread_create(&t, NULL, Thread1, NULL);
  Global = 43;
  pthread_join(t, NULL);
  return Global;
}

$ clang -fsanitize=thread -g -O1 tiny_race.c



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 129
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

If a data race is detected, the program will print an error message to stderr:

% ./a.out
WARNING: ThreadSanitizer: data race (pid=19219)
  Write of size 4 at 0x7fcf47b21bc0 by thread T1:
    #0 Thread1 tiny_race.c:4 (exe+0x00000000a360)

  Previous write of size 4 at 0x7fcf47b21bc0 by main thread:
    #0 main tiny_race.c:10 (exe+0x00000000a3b4)

  Thread T1 (running) created at:
    #0 pthread_create tsan_interceptors.cc:705 (exe+0x00000000c790)
    #1 main tiny_race.c:9 (exe+0x00000000a3a4)

__has_feature(thread_sanitizer)

In some cases you may need to execute different code depending on whether TSan is 
enabled. The language extension __has_feature can be used for this purpose.

For example:

#if defined(__has_feature)
#  if __has_feature(thread_sanitizer)
// code that builds only under ThreadSanitizer
#  endif
#endif

__has_feature is a function-like macro which accepts a single identifier argument that is 
the name of a feature. It evaluates to 1 if the feature is both supported by Clang and 
standardized in the current language standard. If not, it evaluates to 0.

Another use of __has_feature is to check for compiler features not related to the 
language standard (such as TSan itself).

__attribute__((no_sanitize_thread)) 

Some code should not be instrumented by TSan. To disable the instrumentation of a 
particular function, use the following function attribute: 

__attribute__((no_sanitize_thread))

To avoid false positives and provide meaningful stack traces, TSan may still instrument 
such functions.

Blacklist

TSan supports the use of sanitizer special case lists to suppress data race reports in the 
specified source files or functions (Section 5.3).

NOTE Unlike functions marked with no_sanitize_thread, blacklisted functions 
are not instrumented at all. This can result in false positives due to missed 
synchronization via atomic operations, and missed stack frames in reports.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 130
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.10.2 Limitations
 TSan uses more real memory than a native run. At the default settings the memory 

overhead is 5x plus 1Mb per thread. Settings with 3x (less accurate analysis) and 
9x (more accurate analysis) overhead are also available.

 TSan maps (but does not reserve) a lot of virtual address space. This means that 
tools like ulimit may not work as usually expected.

 libc/libstdc++ static linking is not supported.

 Non-position-independent executables are not supported. Therefore:

 When compiling without -fPIC, -fsanitize=thread causes the compiler to 
act as though -fPIE had been specified.

 When linking an executable, -fsanitize=thread causes the compiler to act 
as though -pie had been specified.

5.10.3 Notes
For more information on TSan see:

     clang.llvm.org/docs/ThreadSanitizer.html

http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/DataFlowSanitizer.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 131
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.11 Undefined Behavior Sanitizer
The LLVM compiler release includes a tool named Undefined Behavior Sanitizer (UBSan) 
which can detect code whose behavior is undefined according to the C language 
specification.

UBSan can catch a wide variety of errors, including the following:

 Using misaligned or null pointers

 Signed integer overflow

 Conversions to, from, or between floating-point types which result in overflow

UBSan is a runtime tool which requires compile-time instrumentation of the code. It 
includes an optional runtime library which provides better error reporting.

If UBSan encounters code with undefined behavior during the execution of a program, it 
displays (on stderr) an error message, and then responds according to the type of program 
behavior:

 After a signed integer overflow, the program continues executing.

 After the invalid use of a null pointer, the program is halted.

 After the use of a misaligned pointer, a trap is generated.

5.11.1 Usage
To instrument your C/C++ code with UBSan, add the following option to both the compile 
and link options in LLVM:

-fsanitize=undefined

If you link the UBSan runtime library to the final executable, be sure to use clang++ (not 
ld) for the final link step, to ensure that the executable is linked with the proper UBSan 
runtime libraries. 

NOTE When using C code, you can link with clang instead of clang++.

For example:

% cat test.cc
int main(int argc, char **argv) {
  int k = 0x7fffffff;
  k += argc;
  return 0;
}
% clang++ -fsanitize=undefined test.cc
% ./a.out
test.cc:3:5: runtime error: signed integer overflow: 2147483647 + 1 
cannot be represented in type 'int'



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 132
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

You can configure UBSan to change the following behavior:

 Enable only a subset of the regular UBSan checks.

 Define how UBSan responds to each type of undefined program behavior (either 
continue, halt, or trap).

For example:

% clang++ -fsanitize=signed-integer-overflow,null,alignment -fno-
sanitize-recover=null -fsanitize-trap=alignment

In this example the program will continue executing after a signed integer overflow, exit 
after the invalid use of a null pointer, and trap after the use of a misaligned pointer.

NOTE The trap option does not require UBSan runtime support.

5.11.2 Available checks
The checks performed by UBSan are individually controlled by option values passed to 
the -fsanitize=event option (Section 3.4.16).

Table 5-3 lists the individual checks and their option values.

Table 5-3 UBSan checks 

Option Value Description
alignment Use of a misaligned pointer or creation of a misaligned reference.

bool Load of a bool value which is neither TRUE nor FALSE.

bounds Out-of-bounds array indexing, in cases where the array bound can be statically 
determined.

enum Load of a value of an enumerated type which is not in the range of representable 
values for that enumerated type.

float-cast-overflow Conversion to, from, or between floating-point types which would overflow the 
destination.

float-divide-by-zero Floating point division by zero.

function Indirect call of a function through a function pointer of the wrong type.

integer-divide-by-zero Integer division by zero.

nonnull-attribute Passing null pointer as a function parameter which is declared to never be null.

null Use of a null pointer or creation of a null reference.

object-size Attempt to use bytes which the optimizer can determine are not part of the object 
being accessed.

return In C++, reaching the end of a value-returning function without returning a value.

returns-nonnull-
attribute

Returning null pointer from a function which is declared to never return null.

shift Shift operators where the amount shifted is greater or equal to the promoted bit-
width of the left hand side or less than zero, or where the left hand side is negative. 
For a signed left shift, also checks for signed overflow in C, and for unsigned 
overflow in C++. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 133
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.11.3 Stack traces and report symbolization
To make UBSan print a symbolized stack trace for each error report, use the following 
procedure:

1. Compile with -g and -fno-omit-frame-pointer to get the proper debug 
information in your binary.

2. Run your program with the environment variable 
UBSAN_OPTIONS=print_stacktrace=1.

3. Ensure that the llvm-symbolizer binary is in PATH.

shift-base Check only left-hand side of a shift operation.

shift-exponent Check only right-hand side of a shift operation.

signed-integer-
overflow

Signed integer overflow, including all the checks added by -ftrapv, and checking for 
overflow in signed division (INT_MIN / -1).

unreachable If control flow reaches __builtin_unreachable.

unsigned-integer-
overflow

Unsigned integer overflows.

unreachable If control flow reaches __builtin_unreachable.

unsigned-integer-
overflow

Unsigned integer overflows.

vla-bound A variable-length array whose bound does not evaluate to a positive value.

vptr Use of an object whose vptr indicates that it is of the wrong dynamic type, or that 
its lifetime has not begun or has ended. Incompatible with -fno-rtti. Link must 
be performed by clang++, not clang, to make sure C++-specific parts of the 
runtime library and C++ standard libraries are present.

undefined All of the checks listed above other than unsigned-integer-overflow.

integer Checks for undefined or suspicious integer behavior (e.g. unsigned integer 
overflow).

Table 5-3 UBSan checks (Continued)

Option Value Description



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 134
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.11.4 Issue suppression
UBSan generally does not produce false positives, so if you see one, look again. Most 
likely it is a true positive.

__attribute__((no_sanitize("undefined"))) 

Some code should not be instrumented by UBSan. To disable the instrumentation of a 
particular function, use the following function attribute: 

__attribute__((no_sanitize_("undefined")))

All values of -fsanitize=event can be used in this attribute. For example, if your 
function deliberately contains possible signed integer overflow, you can use the following:

__attribute__((no_sanitize("signed-integer-overflow"))).

Blacklist

UBSan supports the use of sanitizer special case lists to suppress error reports in the 
specified source files or functions (Section 5.3). 

Runtime suppressions

Sometimes you can suppress UBSan error reports for specific files, functions, or libraries 
without recompiling the code. You need to pass a path to suppression file in a 
UBSAN_OPTIONS environment variable.

UBSAN_OPTIONS=suppressions=MyUBSan.supp

You need to specify a check (Section 5.6.3) you are suppressing, along with the bug 
location. For example:

signed-integer-overflow:file-with-known-overflow.cpp
alignment:function_doing_unaligned_access
vptr:shared_object_with_vptr_failures.so

Several limitations apply:

 Sometimes your binary must have enough debug info and/or symbol table, so that 
the runtime could figure out source file or function name to match against the 
suppression.

 It is only possible to suppress recoverable checks. For the example above, you can 
additionally pass -fsanitize-recover=signed-integer-overflow,alignment,vptr, 
although most of UBSan checks are recoverable by default.

 Check groups (such as undefined) cannot be used in suppressions files. Only 
fine-grained checks are supported.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 135
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.11.5 Notes
In the C language specification, undefined behavior is the result of performing certain 
erroneous operations that are not flagged with an error. Note that a single instance of 
undefined behavior causes all of a program’s output to be considered unpredictable and 
therefore useless.

For more information on undefined behavior see:

     blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

For more information on UBSan see:

     clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/DataFlowSanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 136
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.12 LLVM Symbolizer
The LLVM compiler release includes a tool named LLVM Symbolizer, which can be used 
to convert program addresses into source code locations.

Symbolizer is a command-line tool – it reads object file names and addresses from the 
standard input, and writes the corresponding source code locations to the standard output.

If an object file name is directly specified as a command-line argument, Symbolizer treats 
it as the name of the input object file, and reads only addresses from the standard input. 

NOTE To perform its conversion, Symbolizer uses the symbol tables and debug info 
sections that are stored in the object files.

To start Symbolizer from a command line, type:

llvm-symbolizer options...

Command options are used to control the symbolizer (Section 5.12.2).

NOTE The Symbolizer normally returns 0 as a program return code. Any other code 
values indicate that an internal program error.

The Symbolizer is used with ASan (Section 5.6), MSan (Section 5.9), and 
UBSan (Section 5.11).

5.12.1 Usage
$ cat addr.txt
a.out 0x4004f4
/tmp/b.out 0x400528
/tmp/c.so 0x710
/tmp/mach_universal_binary:i386 0x1f84
/tmp/mach_universal_binary:x86_64 0x100000f24
$ llvm-symbolizer < addr.txt
main
/tmp/a.cc:4

f(int, int)
/tmp/b.cc:11

h_inlined_into_g
/tmp/header.h:2
g_inlined_into_f
/tmp/header.h:7
f_inlined_into_main
/tmp/source.cc:3
main
/tmp/source.cc:8



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 137
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

_main
/tmp/source_i386.cc:8

_main
/tmp/source_x86_64.cc:8
$ cat addr2.txt
0x4004f4
0x401000
$ llvm-symbolizer -obj=a.out < addr2.txt
main
/tmp/a.cc:4

foo(int)
/tmp/a.cc:12

5.12.2 Options
Symbolizer is controlled by command-line options. 

Table 5-4 lists the options supported in Symbolizer.

Table 5-4 Symbolizer options 

Option Description
-obj Path to object file to be symbolized.

-functions=(none|short|linkage) Specify how function names are printed.
none – Omit function name
short – Print short function name
linkage – Print full linkage name
The default is linkage.

-use-symbol-table Favor function names stored in the symbol table 
over function names in debug info sections.
The default is enabled.

-demangle Print demangled function names.
The default is enabled.

-inlining If a source code location is in an inlined function, 
prints all the inlined frames.
The default is enabled.

-default-arch arch_name If a binary contains object files for multiple 
architectures (e.g., it is a Mach-O universal 
binary), symbolize the object file for the specified 
architecture.
The architecture name is specified as a string 
value. The default is an empty string.
The architecture can alternatively be specified by 
passing the string “binary_name:arch_name” 
as part of the input (Section 5.12.1).
NOTE - If an architecture is not specified in either 
way, addresses will not be symbolized.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 138
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.13 Control flow integrity
Control flow integrity (CFI) is a compiler feature which is designed to abort the program 
upon detecting certain forms of undefined behavior that can potentially allow attackers to 
subvert the program’s control flow.

When CFI is enabled, the program code is instrumented with fast checks for indirect calls, 
and hooks for a function to report violations of forward-edge control-flow integrity.

CFI is controlled with the compile options -ffcfi and -fno-fcfi. For example:

clang -S -emit-llvm -ffcfi -o foo.ll foo.c 

5.13.1 Configuration
CFI must be configured to handle control-flow violations; otherwise, by default the 
violations are ignored.

It can also be configured to generate different types of code instrumentation. Different 
types of programs may execute more efficiently with different types of instrumentation.

CFI configuration is performed with the LLVM static compiler tool.

NOTE The static compiler is different from the normal LLVM compiler – it is 
invoked by the latter to translate LLVM bitcode into target native code.

To start the static compiler from a command line, type:

llc options...

Command options are used to control the static compiler (Section 5.13.3). 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 139
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.13.2 Usage
The following example shows how to use CFI.

1. Compile program files, enabling CFI and generating LLVM bitcode files:

clang -S -emit-llvm -ffcfi -o foo.ll foo.c 
clang -S -emit-llvm -ffcfi -o bar.ll bar.c 

2. Link bitcode files:

llvm-link -o prog.ll foo.ll bar.ll

3. Static-compile bitcode files, configuring CFI and generating relocatable object file:

llc -cfi-enforcing -cfi-type=sub -jump-table-type=simplified
                                 -filetype=obj -o prog.o prog.ll

4. Link relocatable object file into executable binary:

clang -o prog prog.o

5. Run CFI-instrumented executable binary:

./prog



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 140
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.13.3 Options
The LLVM static compiler is controlled by command-line options.

Table 5-4 lists the CFI options supported in the static compiler.

Table 5-5 Static compiler options 

Option Description
-cfi-enforcing Enforce control-flow integrity.

By default, integrity violations invoke a handler function 
specified with -cfi-func-name.
If no function is specified the violation is ignored.

-cfi-func-name=name Specify the handler function that is called when a CFI 
violation occurs.
NOTE - This option is superseded by -cfi-enforcing.

-cfi-type=(sub|ror|add) Specify the type of CFI checks to be performed. 
sub

Subtract pointer from table base, then mask (default).
ror

Use rotate to check offset from table base.
add

Mask out high bits and add to aligned base.

-jump-table-type=
(single|arity|
simplified|full)

Specify the type of jump table to use for CFI instrumentation.
single

Create a single table for all functions (default).
arity

Group functions into tables by the number of arguments they 
receive.
simplified

Create one table per simplified function type.
full

Create one table per function type.

NOTE - simplified is recommended, as it offers the best 
balance between security and robustness.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 141
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.13.4 Handler functions
If a user-defined handler function is specified (with option -cfi-func-name), the 
function must accept two char* parameters.

The first parameter is a C string which will contain the name of the function where the 
control-flow integrity violation occurred.

The second parameter will contain the pointer that violated control-flow integrity.

The handler function must be defined as a linker symbol in order to be specified using 
-cfi-func-name.

5.13.5 Notes
For more information on CFI see:

    clang.llvm.org/docs/ControlFlowIntegrity.html

For more information on the LLVM static compiler see:

    llvm.org/docs/CommandGuide/llc.html

The current CFI implementation does not imply –fsanitize or -flto. Therefore you 
must compile each source file to bitcode using -ffcfi, and then compile and link the 
bitcode files into native code.

The LLVM Snapdragon compiler includes support for a particular CFI scheme known as 
forward-edge control flow integrity. It is supported on ARMv7 and ARMv8 (AArch32 and 
AArch64) targets. For more information on this scheme see:

     www.pcc.me.uk/~peter/acad/usenix14.pdf

http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://llvm.org/docs/CommandGuide/llc.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 142
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.14 Static program analysis
The LLVM compiler release includes the following tools for performing static analysis on 
a program:

 Static analyzer

 Post processor

 Scan-build

The static analyzer is a source code analysis tool which finds potential bugs in C and C++ 
programs. It can be used to analyze individual files or entire programs.

The post processor creates a summary of the report that is generated by performing static 
analysis while compiling a program.

Scan-build is an additional tool for compiling and statically analyzing a program. It can be 
used with a Make-based build system.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 143
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.14.1 Static analyzer
The static analyzer is a source code analysis tool which is integrated into the LLVM 
compiler. It analyzes a program for various types of potential bugs – including security 
threats, memory corruption, and garbage values – and generates a diagnostic report 
describing the potential bugs it detected.

The static analyzer has the following features:

 It supports more than 100 distinct checkers which are organized into the 
categories alpha, core, cplusplus, debug, and security

 Checkers can be selectively enabled or disabled from the command line

 Disabling a checker category disables all the checkers in that category

 Selected parts of the program code can be excluded from checking

5.14.1.1 Analyzing source files

To use the static analyzer on specific program source files, invoke the LLVM compiler on 
the files using the static analyzer options (Section 3.4.25). For example:

clang --analyze -Xclang --analyzer-output -Xclang html
                                                    -o dir files

--analyze causes the compiler to generate a static analyzer report instead of a program 
object file.

“--analyzer-output html” specifies that the report is generated in HTML format.

NOTE -Xclang must be used (twice) to pass the option “--analyzer-output 
html” to the compiler. For details see Section 3.4.2.

-o specifies the directory where the report files will be stored. (If the directory does not 
exist, the compiler automatically creates it.). The files are named report*.html.

files specifies the program source files to be analyzed.

Example of a diagnostic report entry:

// @file: test.cpp
int main() {
  int* p = new int();
  return* p;
}
warning: Potential leak of memory pointed to by ‘p’

NOTE Each potential bug flagged in a report includes the path (i.e., control and data) 
needed for locating the bug in the program.

Static analyzer warnings can be converted to errors with the option 
--analyzer-Werror.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 144
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.14.1.2 Analyzing programs

To use the static analyzer on an entire program, invoke the LLVM compiler on the 
program using the option --compile-and-analyze (Section 3.4.25). For example:

clang --compile-and-analyze dir input_files...

--compile-and-analyze specifies the directory where the static analyzer report will be 
stored. (If the directory does not exist, the compiler automatically creates it.). The report is 
automatically generated in HTML format. The files are named report*.html.

input_files specifies the program source files.

Statically analyzing an entire program at once (as opposed to selected source files) is 
recommended for the following reasons:

 The generated analysis report files are all stored in a single location.

 The command option can be passed from the build system, which helps perform 
the static analysis and compilation every time the program is built.

 Because build systems are good at tracking files that have changed, and compiling 
only the minimal set of required files, the overall turnaround time for static 
analysis is relatively small, making it reasonable to run the static analyzer with 
every build.

NOTE When using a build system, specifying the same directory name throughout 
the build will generate all the HTML report files in the specified directory.

The filenames generated for a report are based on hashing functions, so the 
report files will not be overwritten.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 145
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.14.1.3 Managing checkers

The static analyzer supports more than 100 individual checkers which can analyze 
programs for various types of potential bugs. By default only a subset of these checkers is 
enabled, to minimize both the compile time and the generation of false positives.

To enable additional checkers, invoke the static analyzer using the option -analyzer-
checker (Section 3.4.25). For example:

clang --analyze -Xclang -analyzer-output -Xclang html
                     -Xclang -analyzer-checker=NewDelete -o dir

-analyzer-checker specifies the checker to be enabled (in this case, NewDelete).

To disable individual checkers, invoke the static analyzer using the option -analyzer-
disable-checker (Section 3.4.25). For example:

clang --analyze -Xclang -analyzer-output -Xclang html
         -Xclang -analyzer-disable-checker=NullDereference -o dir

NOTE -Xclang must be used to pass the options -analyzer-output, -analyzer-
checker, and -analyzer-disable-checker to the compiler. For details see 
Section 3.4.2.

To list all the supported checkers, use the following command:

clang -cc1 -analyzer-checker-help

To list just the default checkers, use the option -### (Section 3.4.2).

Packages

The individual checkers are organized into the following categories:

 alpha

 core

 cplusplus (only for analyzing C++ programs)

 debug

 security

 unix

Each category (or package) is defined to include a number of checkers. For example, the 
checker NullDereference is a core checker, while NewDelete is a cplusplus checker. 
Organizing checkers into packages (and sub-packages) makes it easier to enable/disable 
specific sets of checkers.

Example of using the static analyzer with all alpha checkers enabled:

clang --analyze -Xclang -analyzer-output -Xclang html
                          -Xclang -analyzer-checker=alpha -o dir



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 146
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

Example of using the static analyzer with all core.DivideZero checkers disabled:

clang --analyze -Xclang -analyzer-output -Xclang html 
    -Xclang -analyzer-disable-checker=core.DivideZero -o dir

NOTE The list of supported checkers includes all the supported packages and sub-
packages.

Lists

To enable or disable multiple individual checkers, multiple checker and package names 
can be specified as a single comma-separated list. For example:

clang --analyze -Xclang -analyzer-output -Xclang html 
                 -Xclang -analyzer-checker=alpha,core -o dir

5.14.1.4 Handling false positives

While checking a program for potential bugs, the static analyzer may report false 
positives, which are sections of code that the analyzer incorrectly flags as bugs.

To minimize false positives, the static analyzer by default enables a set of checkers that 
has been tested to identify a high percentage of actual program bugs (Section 5.14.1.3). 
And if necessary, additional checkers can be individually enabled.

However, despite the overall accuracy of the checkers, several cases still exist where false 
positives can be generated. For instance, if you enable the checker used to analyze dead 
code, the static analyzer will flag as a false positive any code that has been conditionally 
enabled for debugging purposes.

To handle such cases, the static analyzer supports several features for handling false 
positives:

 Special comment

 Preprocessor symbol

 Function attribute

NOTE Using comments or symbols to handle false positives is not recommended, as 
they make the code inaccessible to the analyzer. Instead, please report any 
false positives so the existing checkers can be improved to eliminate them.

For more information on false positives see clang-analyzer.llvm.org/faq.html.

http://clang-analyzer.llvm.org/faq.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 147
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

Special comment

Individual lines of code can be excluded from checking by adding the following comment 
to the line:

// clang_sa_ignore [checker] [user_comment_text]

checker specifies a checker, package, or list (Section 5.14.1.3) that is excluded from 
being applied to the line of code. It must be enclosed in square brackets. For example:

g_ptr = new int(0); // clang_sa_ignore [deadcode.DeadStores]
g_ptr = new int(0); // clang_sa_ignore [alpha] my comment text
g_ptr = new int(0); // clang_sa_ignore [alpha,deadcode.DeadStores]

Preprocessor symbol

One or more lines of code can be conditionally excluded from all checking by using the 
preprocessor symbol __clang_analyzer__, which is automatically defined by the static 
analyzer. For example:

#ifndef __clang_analyzer__
   // Code excluded from checking
#endif

When using the preprocessor symbol with the static analyzer, the code must remain 
compilable, even though it does not need to be linkable or executable. For example, to 
exclude the body of a function from being analyzed, use the following conditional code:

  #ifdef __clang_analyzer__
  void noisyFunction(); // this version is for analysis only

  #else // __clang_analyzer__
  static void noisyFunction() {
    // function body is generating too many false positives
  }

     #endif // __clang_analyzer__

Function attribute

A common source of false positives is non-returning functions such as assert functions. 

Although the static analyzer is aware of the standard library non-returning functions, if 
(for example) a program has its own implementation of asserts, it helps to mark them with 
the following function attribute:

__attribute__((__noreturn__))

Using this attribute greatly improves the static analysis diagnostics and lessens the number 
of false positives. For example:

void my_abort(const char* msg) __attribute__((__noreturn__)) {
printf("%s", msg);
exit(1);
}



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 148
 
 

Snapdragon ARM LLVM Compiler for Android Compiler Security Tools

5.14.2 Post processor
The post processor is a report generator which is implemented as a stand-alone script. It 
creates a summary of the report that is generated by using the option -compile-and-
analyze (Section 5.14.1).

The post processor is invoked with the following command:

post-process --report-dir dir --html-title title

The post processor reads all the files from the directory specified by the option 
--report-dir, and writes in the same directory a summary report file named 
index.html.

The report title is specified with the option --html-title.

For more information on the post processor use the command post-process --help.

NOTE The post processor script is stored in the directory $INSTALL_PREFIX/bin.

In some cases the static analyzer may generate multiple report files for the 
same bug. The post processor cleans up after multiple report files. For this 
reason it should be run regularly to keep the report directory clean.

5.14.3 Scan-build
Scan-build is a stand-alone tool for compiling and statically analyzing a program. It can 
be used with a Make-based build system (though it is recommended to instead use the 
LLVM static analyzer whenever possible – see Section 5.14.1).

Scan-build enables a user to run the static analyzer as part of regular build process. Here 
are two examples of invoking scan-build:

scan-build clang++ -c test.cpp

scan-build -v -k -o out-dir -disable-checker deadcode
                     -use-c++=clang++ --use-c=clang make -j8

Scan-build works well with a Make-based build system. 

For more information invoke scan-build --help.

NOTE The Scan-build script is stored in the directory $INSTALL_PREFIX/bin.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 149
 
 

6 Porting Code from GCC

6.1 Overview
This chapter describes issues commonly encountered while porting to LLVM an 
application that was previously built only with GCC. 

It covers the following topics:

 Command options

 Errors and warnings

 Function declarations

 Casting to incompatible types

 aligned attribute

 Reserved registers

 Inline versus extern inline

NOTE For more information on GCC compatibility see Chapter 8.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 150
 
 

Snapdragon ARM LLVM Compiler for Android Porting Code from GCC

6.2 Command options
LLVM supports many but not all of the GCC command options. Unsupported options are 
either ignored or flagged with a warning or error message: most receive warning 
messages.

For more information see Section 3.4.5.

6.3 Errors and warnings
LLVM enforces strict conformance to the C99 language standard. As a result, you may 
encounter new errors and warnings when compiling GCC code.

To handle these messages when porting to LLVM, consider the following steps:

1. Remove the command option -Werror if it is being used (as it converts all 
warnings into errors).

2. Update the code to eliminate the remaining errors and warnings.

6.4 Function declarations
LLVM enforces the C99 rules for function declarations. In particular:

 A function declared with a non-void return type must return a value of that type.

 A function referenced before being declared is assumed to return a value of type 
int. If the function is subsequently declared to return some other type, it will be 
flagged with an error.

 A function declaration with the inline attribute assumes the existence of a 
separate definition for the function, which does not include the inline attribute. 
If no such definition appears in the program, a link-time error will occur.

To satisfy these restrictions when porting to LLVM, consider the following steps:

1. Use option -Wreturn-type to generate a warning whenever a function definition 
does not return a value of its declared type.

2. Use -Wimplicit-function-declaration to generate a warning whenever a 
function is used before being declared.

3. Update the code to eliminate the remaining errors and warnings.

For more information on inlining see http://clang.llvm.org/compatibility.html#inline.

A discussion of different inlining approaches can be found at 
http://www.greenend.org.uk/rjk/tech/inline.html.

http://clang.llvm.org/compatibility.html#inline
http://www.greenend.org.uk/rjk/tech/inline.html


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 151
 
 

Snapdragon ARM LLVM Compiler for Android Porting Code from GCC

6.5 Casting to incompatible types
LLVM enforces the C99 rules for strict aliasing. 

In the C language, two pointers that reference the same memory location are said to alias 
one another. Because any store through an aliased pointer can potentially modify the data 
referenced by one of its pointer aliases, pointer aliases can limit the compiler’s ability to 
generate optimized code.

In strict aliasing, pointers to different types are prevented from being aliased with one 
another. The compiler flags pointer aliases with an error message.

Note that strict aliasing has a few exceptions:

 Any pointer type can be cast to char* or void*.

 A char* or void* can be cast to any pointer type.

 Pointers to types that differ only by signedness (e.g., int versus unsigned int) 
can be aliased.

To satisfy strict aliasing when porting to LLVM, consider the following steps:

1. Use option -Wcast-align to generate a warning whenever a pointer alias is 
detected.

2. Update the code to eliminate the resulting warnings.

NOTE Dereferencing a pointer that is cast from a less strictly aligned type has 
undefined behavior.

6.6 aligned attribute
LLVM does not allow the aligned attribute to appear inside the __alignof__ operator.

To satisfy this restriction when porting to LLVM, create a typedef with the aligned 
attribute. For example:

typedef unsigned char u8;
#ifdef __llvm__
    typedef u8 __attribute((aligned)) aligned_u8;
#endif
unsigned int foo()
{      
#ifndef __llvm__
    return __alignof__(u8 __attribute__ ((aligned)));
#else
    return __alignof__(aligned_u8);      
#endif      
}



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 152
 
 

Snapdragon ARM LLVM Compiler for Android Porting Code from GCC

6.7 Reserved registers
LLVM does not support the GCC extension to place global variables in specific registers.

To satisfy this restriction when porting to LLVM, use the equivalent LLVM intrinsics 
whenever possible. For example:

#ifndef __llvm__
    register unsigned long current_frame_pointer asm("r11");
#endif
…
#ifndef __llvm__
    fp = current_frame_pointer;
#else
    fp = (unsigned long)__builtin_frame_address(0);      
#endif

6.8 Inline versus extern inline
LLVM conforms to the C99 language standard, which defines different semantics for the 
inline keyword than GCC. For example, consider the following code:

inline int add(int i, int j) { return i + j; }

int main() {
  int i = add(4, 5);
  return i;
}

In C99 the function attribute inline specifies that a function's definition is provided only 
for inlining, and that another definition (without the inline attribute) is specified 
elsewhere in the program.

This implies that the above example is incomplete, because if add() is not inlined (for 
example, when compiling without optimization), then main() will include an unresolved 
reference to that other function definition. This will result in the following link-time error:

Undefined symbols:
  "_add", referenced from:   _main in cc-y1jXIr.o

By contrast, GCC's default behavior follows the GNU89 dialect, which is based on the 
C89 language standard. C89 does not support the inline keyword; however, GCC 
recognizes it as a language extension, and treats it as a hint to the optimizer.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 153
 
 

Snapdragon ARM LLVM Compiler for Android Porting Code from GCC

There are several ways to fix this problem:

 Change add() to a static inline function. This is usually the right solution if only 
one translation unit needs to use the function. Static inline functions are always 
resolved within the translation unit, so it will not be necessary to add a non-inline 
definition of the function elsewhere in the program.

 Remove the inline keyword from this definition of add(). The inline 
keyword is not required for a function to be inlined, nor does it guarantee that it 
will be. Some compilers ignore it completely. LLVM treats it as a mild suggestion 
from the programmer.

 Provide an external (non-inline) definition of add() somewhere else in the 
program. Note that the two definitions must be equivalent.

 Compile with the GNU89 dialect by adding -std=gnu89 to the set of LLVM 
options. This approach is not recommended.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 154
 
 

7 Coding Practices

7.1 Overview
This chapter describes recommended coding practices for users of the LLVM compilers. 
These practices typically result in the compiler generating more optimized code.

This chapter covers the following topics:

 Use int types for loop counters

 Mark function arguments as restrict (if possible)

 Do not pass or return structures by value

 Avoid using inline assembly



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 155
 
 

Snapdragon ARM LLVM Compiler for Android Coding Practices

7.2 Use int types for loop counters
Using an int type for loop counters is strongly recommended and results in the compiler 
generating more efficient code. If the code uses a non-int type, then the compiler will 
have to insert zero and sign-extensions to abide by C rules. For example, the following 
code is not recommended:

extern int A[30], B[30]; 
for (short int ctr = 0; ctr < 30; ++ctr) {
    A[ctr] = B[ctr] + 55;
}

Use this code instead:

extern int A[30], B[30]; 
for (int ctr = 0; ctr < 30; ++ctr) {
    A[ctr] = B[ctr] + 55;
}

7.3 Mark function arguments as restrict (if possible)
LLVM supports the restrict keyword for function arguments. Using restrict on a 
pointer passed in as a function argument indicates to the compiler that the pointer will be 
used exclusively to dereference the address it points at. This allows the compiler to enable 
more aggressive optimizations on memory accesses.

NOTE When using the restrict keyword, you must ensure that the restrict 
condition holds for all calls made to that function. If an argument is 
erroneously marked as restrict, the compiler may generate incorrect code.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 156
 
 

Snapdragon ARM LLVM Compiler for Android Coding Practices

7.4 Do not pass or return structs by value
It is strongly recommended that structs get passed to (and returned from) functions by 
reference and not by value.

If a struct is passed to a function by value, the compiler must generate code which makes a 
copy of the struct during application runtime. This can be extremely inefficient, and will 
reduce the performance of the compiled code. For this reason, it is recommended that 
structs be passed by pointer.

For instance, the following code is inefficient:

struct S {
   int z;
   int y[50];
   char *x;
   long int w[40];
};

int bar(struct S arg1) {
   …
}

int baz() {
  struct S s;
   …
   bar(s);
} 

While this code is much more efficient:

struct S {
   int z;
   int y[50];
   char *x;
   long int w[40];
};

int bar(struct *S arg1) {
  /* Access z here using ‘arg1->z’ (instead of ‘arg1.z’) */
  …
}

int baz() {
  struct S s;
   …
   bar(&s);
} 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 157
 
 

Snapdragon ARM LLVM Compiler for Android Coding Practices

Alternatively, in C++, the efficient code can be simplified by using reference parameters:

struct S {
   int z;
   int y[50];
   char *x;
   long int w[40];
};

int bar(struct &S arg1) {
   …
}

int baz() {
  struct S;
   … populate elements of S …
   bar(S);
} 

7.5 Avoid using inline assembly
Using inline assembly snippets in C files is strongly discouraged for two reasons:

 Inline assembly snippets are extremely difficult to write correctly. For instance, 
omitting the input, output, or clobber parameters frequently leads to incorrect 
code. The resulting failure can be extremely difficult to debug. 

 Inline assembly is not portable across processor versions. If you need to emit a 
specific assembly instruction, it is recommended to use a compiler intrinsic 
instead of inline assembly.

Intrinsics are easy to insert in a C file, and are portable across processor versions. If 
intrinsics are insufficient, then you should add a new function written in assembly which 
contains the desired functionality. The assembly function should be called from C code.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 158
 
 

8 Language Compatibility

8.1 Overview
LLVM strives to both conform to current language standards, and to implement many 
widely-used extensions available in other compilers, so that most correct code will "just 
work" when compiled with LLVM. However, LLVM is more strict than other popular 
compilers, and may reject incorrect code that other compilers allow.

This chapter describes common compatibility and portability issues with LLVM to help 
you understand and fix the problem in your code when LLVM emits an error message.

It covers the following topics:

 C compatibility

 C++ compatibility



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 159
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.2 C compatibility
This section describes common compatibility and portability issues with LLVM C. It 
covers the following topics:

 Differences between various standard modes

 GCC extensions not implemented yet

 Intentionally unsupported GCC extensions

 Lvalue casts

 Jumps to within __block variable scope

 Non-initialization of __block variables

 Inline assembly

8.2.1 Differences between various standard modes
LLVM supports the -std option, which changes what language mode LLVM uses. The 
supported modes for C are c89, gnu89, c94, c99, gnu99, c11, and various aliases for those 
modes. If no -std option is specified, LLVM defaults to gnu99 mode.

The c* and gnu* modes have the following differences:

 c* modes define __STRICT_ANSI__.

 Target-specific defines not prefixed by underscores (such as “linux”) are defined 
in gnu* modes.

 Trigraphs default to being off in gnu* modes; they can be enabled by the 
-trigraphs option.

 The parser recognizes asm and typeof as keywords in gnu* modes; the variants 
__asm__ and __typeof__ are recognized in all modes.

 Arrays that are VLA's according to the standard, but which can be constant folded 
by the compiler front end are treated as fixed size arrays. This occurs for things 
such as “int X[(1, 2)];”, which is technically a VLA. c* modes are strictly 
compliant and treat these as VLAs.

 The Apple “blocks” extension is recognized by default in gnu* modes on some 
platforms. It can be enabled in any mode with the -fblocks option.

The *99 and *11 modes have the following differences:

 Warnings for use of C11 features are disabled.

 __STDC_VERSION__ is defined to 201112L rather than 199901L.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 160
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

The *89 and *99 modes have the following differences:

 The *99 modes default to implementing inline as specified in C99, while the 
*89 modes implement the GNU version. This can be overridden for individual 
functions with the __gnu_inline__ attribute.

 Digraphs are not recognized in c89 mode.

 The scope of names defined in a for, if, switch, while, or do statement is 
different. (example: "if ((struct x {int x;}*)0) {}".)

 __STDC_VERSION__ is not defined in *89 modes.

 inline is not recognized as a keyword in c89 mode.

 restrict is not recognized as a keyword in *89 modes.

 Commas are allowed in integer constant expressions in *99 modes.

 Arrays which are not lvalues are not implicitly promoted to pointers in *89 
modes.

 Some warnings are different.

c94 mode is identical to c89 mode except that digraphs are enabled in c94 mode.

8.2.2 GCC extensions not implemented yet
LLVM tries to be compatible with GCC as much as possible, but the following GCC 
extensions are not yet implemented in LLVM:

 #pragma weak – This is likely to be implemented at some point in the future, at 
least partially.

 Decimal floating (_Decimal32, etc.) and fixed-point types (_Fract, etc.) – No 
one has expressed interest in these yet, so it is currently unclear when they will be 
implemented.

 Nested functions – This is a complex feature which is infrequently used, so it is 
unlikely to be implemented anytime soon.

 Global register variables – This is unlikely to be implemented soon as it requires 
additional LLVM back end support.

 Static initialization of flexible array members – This appears to be a rarely used 
extension, but could be implemented pending user demand.

 __builtin_va_arg_pack and __builtin_va_arg_pack_len – This is used 
rarely, but in some potentially interesting places such as the glibc headers, so it 
may be implemented pending user demand. Note that because LLVM pretends to 
be like GCC 4.2, and this extension was introduced in 4.3, the glibc headers will 
currently not try to use this extension with LLVM.

 Forward-declaring function parameters – This has not showed up in any real-
world code yet, though, so it might never be implemented.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 161
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.2.3 Intentionally unsupported GCC extensions
LLVM intentionally does not implement the following GCC extensions:

 Variable-length arrays in structures – This is not implemented for several 
reasons: it is tricky to implement, the extension is completely undocumented, and 
the extension appears to be rarely used. Note that LLVM does support flexible 
array members (arrays with a zero or unspecified size at the end of a structure).

 An equivalent to GCC's "fold" – This implies that LLVM does not accept some 
constructs GCC might accept in contexts where a constant expression is required, 
such as "x-x" where x is a variable.

 __builtin_apply and related attributes – This extension is extremely obscure 
and difficult to implement reliably.

8.2.4 Lvalue casts
Old versions of GCC permit casting the left-hand side of an assignment to a different type. 
LLVM produces an error for code like this:

lvalue.c:2:3: error: assignment to cast is illegal, lvalue casts 
are not supported
(int*)addr = val;  
^~~~~~~~~~ ~

To fix this problem, move the cast to the right-hand side. In this example, one could use:

 addr = (float *)val;

8.2.5 Jumps to within __block variable scope
LLVM disallows jumps into the scope of a __block variable. Variables marked with 
__block require special runtime initialization. A jump into the scope of a __block 
variable bypasses this initialization, leaving the variable's metadata in an invalid state. 

Consider the following code fragment:

int fetch_object_state(struct MyObject *c) {
  if (!c->active) goto error;

  __block int result;
  run_specially_somehow(^{ result = c->state; });
  return result;

 error:
  fprintf(stderr, "error while fetching object state");
  return -1;
}



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 162
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

GCC accepts this code, but produces code that will usually crash when the result goes out 
of scope if the jump is taken. (It's possible for this bug to go undetected, because it often 
will not crash if the stack is fresh – i.e., is still zeroed.) Therefore, LLVM rejects this code 
with a hard error:

t.c:3:5: error: goto into protected scope
    goto error;
    ^
t.c:5:15: note: jump bypasses setup of __block variable
  __block int result;
              ^

The fix is to rewrite the code to not require jumping into a __block variable's scope; for 
example, by limiting that scope:

  {
    __block int result;
    run_specially_somehow(^{ result = c->state; });
    return result;
  }

8.2.6 Non-initialization of __block variables
In the following example code, the variable x is used before it is defined:

int f0() {
  __block int x;
  return ^(){ return x; }();
}

By an accident of implementation, GCC and llvm-gcc unintentionally always zero any 
initialized __block variables. However, any program that depends on this behavior is 
relying on unspecified compiler behavior. Programs must explicitly initialize all local 
block variables before they are used, as with other local variables.

LLVM does not zero-initialize local block variables – thus any programs that rely on such 
behavior will most likely break when built with LLVM.

8.2.7 Inline assembly
In general, LLVM is highly compatible with the GCC inline assembly extensions, 
allowing the same set of constraints, modifiers and operands as GCC inline assembly.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 163
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.3 C++ compatibility
This section describes common compatibility and portability issues with LLVM C++. It 
covers the following topics:

 Deleted special member functions

 Variable-length arrays

 Unqualified lookup in templates

 Unqualified lookup into dependent bases of class templates

 Unqualified lookup into dependent bases of class templates

 Incomplete types in templates

 Templates with no valid instantiations

 Default initialization of const variable of a class type

 Parameter name lookup

8.3.1 Deleted special member functions
In C++11, the explicit declaration of a move constructor, or a move assignment operator 
within a class, deletes the implicit declaration of the copy constructor and copy 
assignment operator. This change occurred fairly late in the C++11 standardization 
process, so early implementations of C++11 (including LLVM before 3.0, GCC before 
4.7, and Visual Studio 2010) do not implement this rule, leading them to accept the 
following ill-formed code:

struct X {
  X(X&&); // deletes implicit copy constructor:
  // X(const X&) = delete;
};

void f(X x);
void g(X x) {
  f(x); // error: X has a deleted copy constructor
}

This affects some early C++11 code, including Boost's popular shared_ptr, up to version 
1.47.0. The fix for Boost's shared_ptr is described here:

     svn.boost.org/trac/boost/changeset/73202

https://svn.boost.org/trac/boost/changeset/73202


80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 164
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.3.2 Variable-length arrays
GCC and C99 allow an array’s size to be determined at run time. This extension is not 
permitted in standard C++. However, LLVM supports such variable length arrays in very 
limited circumstances for compatibility with GNU C and C99 programs:

 The element type of a variable length array must be a "plain old data" (POD) type, 
which means that it cannot have any user-declared constructors or destructors, any 
base classes, or any members of non-POD type. All C types are POD types.

 Variable length arrays cannot be used as the type of a non-type template 
parameter.

If your code uses variable length arrays in a manner that LLVM does not support, several 
ways are available to fix your code:

1. Replace the variable length array with a fixed-size array if you can determine a 
reasonable upper bound at compile time; sometimes this is as simple as changing 
int size = ...; to const int size =  ...; (if the initializer is a 
compile-time constant);

2. Use std::vector or some other suitable container type; or

3. Allocate the array on the heap instead using new Type[] – just remember to 
delete[] it.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 165
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.3.3 Unqualified lookup in templates
Some versions of GCC accept the following invalid code:

template <typename T> T Squared(T x) {
  return Multiply(x, x);
}

int Multiply(int x, int y) {
  return x * y;
} 

int main() {
  Squared(5);
}

LLVM flags this code with the following messages:

my_file.cpp:2:10: error: call to function 'Multiply' that is 
neither visible in the template definition nor found by argument-
dependent lookup

   return Multiply(x, x);
          ^

my_file.cpp:10:3: note: in instantiation of function template 
specialization 'Squared<int>' requested here

  Squared(5);
  ^

my_file.cpp:5:5: note: 'Multiply' should be declared prior to the 
call site

  int Multiply(int x, int y) {
      ^

The C++ standard states that unqualified names such as “Multiply” are looked up in two 
ways:

 First, the compiler performs an unqualified lookup in the scope where the name 
was written. For a template, this means the lookup is done at the point where the 
template is defined, not where it's instantiated. Because Multiply has not been 
declared yet at this point, unqualified lookup will not find it.

 Second, if the name is called like a function, then the compiler also does 
argument-dependent lookup (ADL). In ADL the compiler looks at the types of all 
the arguments to the call. When it finds a class type, it looks up the name in that 
class's namespace; the result is all the declarations it finds in those namespaces, 
plus the declarations from unqualified lookup. However, the compiler does not do 
ADL until it knows all the argument types.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 166
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

In the example code above, Multiply is called with dependent arguments, so ADL isn't 
done until the template is instantiated. At that point the arguments both have type int, 
which does not contain any class types, and so ADL does not look in any namespaces. 
Since neither form of lookup found the declaration of Multiply, the code does not 
compile.

Here's another example, this time using overloaded operators, which obey very similar 
rules.

#include <iostream>

template<typename T>

void Dump(const T& value) {
  std::cout << value << "\n";
}

namespace ns {
  struct Data {}; 
} 

std::ostream& operator<<(std::ostream& out, ns::Data data) {  
  return out << "Some data";
} 

void Use() {
  Dump(ns::Data());
}

Again, LLVM flags this code with the following messages:

my_file2.cpp:5:13: error: call to function 'operator<<' that is 
neither visible in the template definition nor found by argument-
dependent lookup

  std::cout << value << "\n"; 
            ^

my_file2.cpp:17:3: note: in instantiation of function template 
specialization 'Dump<ns::Data>' requested here

  Dump(ns::Data());
  ^

my_file2.cpp:12:15: note: 'operator<<' should be declared prior to 
the call site or in namespace 'ns'

  std::ostream& operator<<(std::ostream& out, ns::Data data) {     
                ^



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 167
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

Just as before, unqualified lookup did not find any declarations with the name 
operator<<. Unlike before, the argument types both contain class types: 

 One of them is an instance of the class template type std::basic_ostream

 The other is the type ns::Data that is declared in the example above

Therefore, ADL will look in the namespaces std and ns for an operator<<. Because 
one of the argument types was still dependent during the template definition, ADL is not 
done until the template is instantiated during Use, which means that the operator<< it 
should find has already been declared. Unfortunately, it was declared in the global 
namespace, not in either of the namespaces that ADL will look in!

Two ways exist to fix this problem:

1. Make sure the function you want to call is declared before the template that might 
call it. This is the only option if none of its argument types contain classes. You 
can do this either by moving the template definition, or by moving the function 
definition, or by adding a forward declaration of the function before the template.

2. Move the function into the same namespace as one of its arguments so that ADL 
applies.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 168
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.3.4 Unqualified lookup into dependent bases of class 
templates
Some versions of GCC accept the following invalid code:

template <typename T> struct Base {  
  void DoThis(T x) {}  
  static void DoThat(T x) {}
}; 

template <typename T> struct Derived : public Base<T> { 
  void Work(T x) { 
    DoThis(x); // Invalid! 
    DoThat(x); // Invalid!
  }
};

LLVM correctly rejects this code with the following errors (when Derived is eventually 
instantiated):

my_file.cpp:8:5: error: use of undeclared identifier 'DoThis'

  DoThis(x);
  ^   
  this-> 

my_file.cpp:2:8: note: must qualify identifier to find this 
declaration in dependent base class

void DoThis(T x) {}
     ^ 

my_file.cpp:9:5: error: use of undeclared identifier 'DoThat'   

DoThat(x);
^  
this->

my_file.cpp:3:15: note: must qualify identifier to find this 
declaration in dependent base class  

static void DoThat(T x) {}

As noted in Section 8.3.3, unqualified names such as DoThis   and DoThat are looked 
up when the template Derived is defined, not when it's instantiated. When looking up a 
name used in a class, we usually look into the base classes. However, we can't look into 
the base class Base<T> because its type depends on the template argument T, so the 
standard says we should just ignore it.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 169
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

The fix, as LLVM indicates, is to tell the compiler that we want a class member by 
prefixing the calls with this->:

 void Work(T x) {
  this->DoThis(x);
  this->DoThat(x);
 }

Alternatively, you can tell the compiler exactly where to look:

 void Work(T x) {
   Base<T>::DoThis(x); 
   Base<T>::DoThat(x);
 }

This works whether the methods are static or not, but be careful: if DoThis   is virtual, 
calling it this way will bypass virtual dispatch! 

8.3.5 Incomplete types in templates
The following code is invalid, but compilers are allowed to accept it:

class IOOptions;  

template <class T> bool read(T &value) {
  IOOptions opts;
  return read(opts, value);
}

class IOOptions { bool ForceReads; };
bool read(const IOOptions &opts, int &x);
template bool read<>(int &);

The standard says that types which don't depend on template parameters must be complete 
when a template is defined if they affect the program's behavior. However, the standard 
also says that compilers are free to not enforce this rule. Most compilers enforce it to some 
extent; for example, it would be an error in GCC to write opts.ForceReads in the 
code above. In LLVM, the decision to enforce the rule consistently provides a better 
experience, but unfortunately it also results in some code getting rejected that other 
compilers accept. 



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 170
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.3.6 Templates with no valid instantiations
The following code contains a typo: the programmer meant init()   but wrote 
innit() instead.

template <class T> class Processor {
  ...   
  void init();
  ...
};

... 

template <class T> void process() {
  Processor<T> processor;
  processor.innit();      // <-- should be 'init()' 
  ...
}

Unfortunately, the compiler can't flag this mistake as soon as it detects it: inside a 
template, we're not allowed to make assumptions about "dependent types" such as 
Processor<T>. Suppose that later on in this file the programmer adds an explicit 
specialization of Processor, like so:

template <> class Processor<char*> {
  void innit();
};

Now the program will work – but only if the programmer ever instantiates process() 
with T = char*! This is why it's hard, and sometimes impossible, to diagnose mistakes 
in a template definition before it's instantiated. 

The standard states that a template with no valid instantiations is ill-formed. LLVM tries to 
do as much checking as possible at definition-time instead of instantiation-time: not only 
does this produce clearer diagnostics, but it also substantially improves compile times 
when using pre-compiled headers. The downside to this philosophy is that LLVM 
sometimes fails to process files because they contain broken templates that are no longer 
used. The solution is simple: since the code is unused, just remove it.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 171
 
 

Snapdragon ARM LLVM Compiler for Android Language Compatibility

8.3.7 Default initialization of const variable of a class type
The default initialization of a const variable of a class type requires a user-defined default 
constructor.

If a class or struct has no user-defined default constructor, C++ does not allow you 
to default-construct a const instance of it. For example:

class Foo {
public:
  // The compiler-supplied default constructor works fine, so we  
  // don't bother with defining one.
  ...
}
void Bar() {
  const Foo foo; // Error!
  ...
}

To fix this, you can define a default constructor for the class:

class Foo { 
public:
  Foo() {}
  ...
};

void Bar() {
  const Foo foo; // Now the compiler is happy.
  ...
}

8.3.8 Parameter name lookup
Due to a bug in its implementation, GCC allows the redeclaration of function parameter 
names within a function prototype in C++ code, e.g.

void f(int a, int a);

LLVM diagnoses this error (where the parameter name has been redeclared). To fix this 
problem, rename one of the parameters.



80-VB419-90 Rev. K MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 172
 
 

A Acknowledgements

We would like to thank the LLVM community for their many contributions to the LLVM 
Project.

This document includes content derived from the LLVM Project documentation under the 
terms of the LLVM Release License:

     llvm.org/releases/3.8.0/LICENSE.TXT

http://www.llvm.org/releases/3.8.0/LICENSE.TXT

	1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Languages
	1.4 GCC compatibility
	1.5 Processor versions
	1.6 LLVM versions
	1.7 Using the document
	1.8 Notation
	1.9 Feedback

	2 Getting Started
	2.1 Overview
	2.2 Create source file
	2.3 Compile program
	2.4 Execute program

	3 Using the Compilers
	3.1 Overview
	3.2 Starting the compilers
	3.3 Input and output files
	3.4 Compiler options
	3.4.1 Display
	3.4.2 Compilation
	3.4.3 C dialect
	3.4.4 C++ dialect
	3.4.5 Warning and error messages
	3.4.6 Debugging
	3.4.7 Diagnostic format
	3.4.8 Individual warning groups
	3.4.9 Compiler crash diagnostics
	3.4.10 Linker
	3.4.11 Preprocessor
	3.4.12 Assembling
	3.4.13 Linking
	3.4.14 Directory search
	3.4.15 Processor version
	3.4.16 Code generation
	3.4.17 Vectorization
	3.4.18 Parallelization
	3.4.19 Optimization
	3.4.20 Specific optimizations
	3.4.21 Math optimization
	3.4.22 Link-time optimization
	3.4.23 Profile-guided optimization
	3.4.24 Optimization reports
	3.4.25 Compiler security

	3.5 Warning and error messages
	3.5.1 Controlling how diagnostics are displayed
	3.5.2 Diagnostic mappings
	3.5.3 Diagnostic categories
	3.5.4 Controlling diagnostics with compiler options
	3.5.5 Controlling diagnostics with pragmas
	3.5.6 Controlling diagnostics in system headers
	3.5.7 Enabling all warnings

	3.6 Using GCC cross compile environments
	3.7 Using LLVM with GNU Assembler
	3.8 Built-in functions
	3.9 Compilation phases

	4 Code Optimization
	4.1 Overview
	4.2 Optimizing for performance
	4.3 Optimizing for code size
	4.4 Automatic vectorization
	4.5 Automatic parallelization
	4.5.1 Auto-parallelization using SYMPHONY library

	4.6 Merging functions
	4.7 Link-time optimization
	4.8 Profile-guided optimization
	4.8.1 Instrumentation-based PGO
	4.8.2 Instrumentation-based profile gen with Android apps
	4.8.3 Sampling-based PGO
	4.8.4 Sampling-based PGO on Snapdragon MDP
	4.8.5 Profile resiliency
	4.8.6 PGO tips

	4.9 Loop optimization pragmas
	4.9.1 Pragma syntax
	4.9.2 Compile options
	4.9.3 Vectorization pragmas
	4.9.4 Reporting
	4.9.5 Examples
	4.9.5.1 Vectorize only a specific loop
	4.9.5.2 Disable vectorization of a specific loop
	4.9.5.3 Vectorize a "non-profitable" loop
	4.9.5.4 Vectorize a loop with a different vector factor


	4.10 Optimization reports
	4.10.1 Example output
	4.10.2 Optimization report message details
	4.10.2.1 Unsupported control flow
	4.10.2.2 Non-affine loop bound
	4.10.2.3 Unspecified error
	4.10.2.4 Non loop-invariant loop bound
	4.10.2.5 Inst_FuncCall
	4.10.2.6 Base pointer not loop invariant
	4.10.2.7 Non-affine memory access
	4.10.2.8 Memory alias



	5 Compiler Security Tools
	5.1 Overview
	5.2 Sanitizer support
	5.3 Sanitizer special case lists
	5.4 Sanitizer usage on Android
	5.5 Sanitizer usage on Linux
	5.6 Address Sanitizer
	5.6.1 Usage
	5.6.2 Symbolizing the reports
	5.6.3 Additional checks
	5.6.4 Issue suppression
	5.6.5 Suppressing memory leaks
	5.6.6 Limitations
	5.6.7 Options
	5.6.8 Notes

	5.7 Data Flow Sanitizer
	5.7.1 Usage
	5.7.2 ABI list
	5.7.3 Example
	5.7.4 Notes

	5.8 Leak Sanitizer
	5.8.1 Usage
	5.8.2 Notes

	5.9 Memory Sanitizer
	5.9.1 Usage
	5.9.2 Report symbolization
	5.9.3 Origin tracking
	5.9.4 Use-after-destruction detection
	5.9.5 Handling external code
	5.9.6 Limitations
	5.9.7 Notes

	5.10 Thread Sanitizer
	5.10.1 Usage
	5.10.2 Limitations
	5.10.3 Notes

	5.11 Undefined Behavior Sanitizer
	5.11.1 Usage
	5.11.2 Available checks
	5.11.3 Stack traces and report symbolization
	5.11.4 Issue suppression
	5.11.5 Notes

	5.12 LLVM Symbolizer
	5.12.1 Usage
	5.12.2 Options

	5.13 Control flow integrity
	5.13.1 Configuration
	5.13.2 Usage
	5.13.3 Options
	5.13.4 Handler functions
	5.13.5 Notes

	5.14 Static program analysis
	5.14.1 Static analyzer
	5.14.1.1 Analyzing source files
	5.14.1.2 Analyzing programs
	5.14.1.3 Managing checkers
	5.14.1.4 Handling false positives

	5.14.2 Post processor
	5.14.3 Scan-build


	6 Porting Code from GCC
	6.1 Overview
	6.2 Command options
	6.3 Errors and warnings
	6.4 Function declarations
	6.5 Casting to incompatible types
	6.6 aligned attribute
	6.7 Reserved registers
	6.8 Inline versus extern inline

	7 Coding Practices
	7.1 Overview
	7.2 Use int types for loop counters
	7.3 Mark function arguments as restrict (if possible)
	7.4 Do not pass or return structs by value
	7.5 Avoid using inline assembly

	8 Language Compatibility
	8.1 Overview
	8.2 C compatibility
	8.2.1 Differences between various standard modes
	8.2.2 GCC extensions not implemented yet
	8.2.3 Intentionally unsupported GCC extensions
	8.2.4 Lvalue casts
	8.2.5 Jumps to within __block variable scope
	8.2.6 Non-initialization of __block variables
	8.2.7 Inline assembly

	8.3 C++ compatibility
	8.3.1 Deleted special member functions
	8.3.2 Variable-length arrays
	8.3.3 Unqualified lookup in templates
	8.3.4 Unqualified lookup into dependent bases of class templates
	8.3.5 Incomplete types in templates
	8.3.6 Templates with no valid instantiations
	8.3.7 Default initialization of const variable of a class type
	8.3.8 Parameter name lookup


	A Acknowledgements

