Preface This solution manual was prepared as an aid for instructors who will benefit by having solutions available. In addition to providing detailed answers to most of the problems in the book, this manual can help the instructor determine which of the problems are most appropriate for the class. The vast majority of the problems have been solved with the help of available computer software (SAS, S-Plus, Minitab). A few of the problems have been solved with hand calculators. The reader should keep in mind that round-off errors can occur—particularly in those problems involving long chains of arithmetic calculations. We would like to take this opportunity to acknowledge the contribution of many students, whose homework formed the basis for many of the solutions. In particular, we would like to thank Jorge Achcar, Sebastiao Amorim, W. K. Cheang, S. S. Cho, S. G. Chow, Charles Fleming, Stu Janis, Richard Jones, Tim Kramer, Dennis Murphy, Rich Raubertas, David Steinberg, T. J. Tien, Steve Verrill, Paul Whitney and Mike Wincek. Dianne Hall compiled most of the material needed to make this current solutions manual consistent with the sixth edition of the book. The solutions are numbered in the same manner as the exercises in the book. Thus, for example, 9.6 refers to the 6^{th} exercise of chapter 9. We hope this manual is a useful aid for adopters of our Applied Multivariate Statistical Analysis, 6th edition, text. The authors have taken a little more active role in the preparation of the current solutions manual. However, it is inevitable that an error or two has slipped through so please bring remaining errors to our attention. Also, comments and suggestions are always welcome. Richard A. Johnson Dean W. Wichern # Chapter 1 1.1 $$\bar{x}_1 = 4.29$$ $$\bar{x}_2 = 6.29$$ $$s_{11} = 4.20$$ $$s_{12} = 3.70$$ 1.2 a) b) s_{12} is negative c) $$\overline{x}_i = 5.20$$ $$\overline{x}_2 = 12.48$$ $s_{11} = 3.09$ $s_{22} = 5.27$ $$s_{11} = 3.09$$ $$s_{22} = 5.27$$ $$s_{12} = -15.94$$ $r_{12} = -.98$ $$r_{12} = -.98$$ Large x_1 occurs with small x_2 and vice versa. d) $$\overline{x} = \begin{bmatrix} 5.20 \\ 12.48 \end{bmatrix}$$ $S_n = \begin{bmatrix} 3.09 & -15.94 \\ -15.94 & 5.27 \end{bmatrix}$ $R = \begin{bmatrix} 1 & -.98 \\ -.98 & 1 \end{bmatrix}$ $$\bar{x} = \begin{bmatrix} 6 \\ 8 \\ 2 \end{bmatrix}$$ $$\bar{x} = \begin{bmatrix} 6 \\ 8 \\ 2 \end{bmatrix}$$ $$S_n = \begin{bmatrix} 6 & 4 & -1.4 \\ 8 & 1.2 \\ (symmetric) 2 \end{bmatrix}$$ $$R = \begin{bmatrix} 1 & .577 \\ 1 \\ (symmetric) \end{bmatrix}$$ $$R = \begin{bmatrix} 1 & .577 & -.404 \\ & 1 & .300 \\ (symmetric) & 1 \end{bmatrix}$$ a) There is a positive correlation between x_1 and x_2 . Since sample size is 1.4 small, hard to be definitive about nature of marginal distributions. However, marginal distribution of x_1 appears to be skewed to the right. The marginal distribution of x_2 seems reasonably symmetric. $$\bar{x}_1 = 155.60$$ $$\bar{x}_2 = 14.70$$ $$s_{11} = 82.03$$ $s_{22} = 4.85$ $$s_{22} = 4.85$$ $$s_{12} = 273.26$$ $$r_{12} = .69$$ Large profits (x_2) tend to be associated with large sales (x_1) ; small profits with small sales. a) There is negative correlation between x_2 and x_3 and negative correlation between x_1 and x_3 . The marginal distribution of x_1 appears to be skewed to the right. The marginal distribution of x_2 seems reasonably symmetric. The marginal distribution of x_3 also appears to be skewed to the right. 1.5 **1.5** b) $$\overline{x} = \begin{bmatrix} 155.60 \\ 14.70 \\ 710.91 \end{bmatrix} \qquad S_n = \begin{bmatrix} 82.03 & 273.26 & -32018.36 \\ 273.26 & 4.85 & -948.45 \\ -32018.36 & -948.45 & 461.90 \end{bmatrix}$$ $$R = \begin{bmatrix} 1 & .69 & -.85 \\ .69 & 1 & -.42 \\ -.85 & -.42 & 1 \end{bmatrix}$$ 1.6 ### a) Histograms X_1 NUMBER OF MIDDLE OF MIDDLE OF NUMBER OF INTERVAL OBSERVATIONS OBSERVATIONS 5. 2 3 ** INTERVAL 5 **** 6. *** 5. 8 ****** 7. 5 **** 6. ****** 7 8. 5 **** 7. ******* 9. 11 ó ***** 8. 9. 5 **** 10. 4 *** ***** 4 6 10. 11. **** 12. **** 4 X_2 13. *** 14. 15. NUMBER OF HIDDLE OF 16. 0 **OBSERVATIONS** INTERVAL 17. 30. 1 * 18. 40. 3 *** 19. 0 50. 2 ** 0 20. 3 *** 40. 10 ******* 70. 80. 12 ******* 8 90. ****** X 100. 2 ** 1 110. * X_3 | MIDDLE OF | NUMBER | R OF | |-----------|--------|------------| | INTERVAL | OBSERV | ATIONS | | 2. | 1 | * | | 3. | 5 | **** | | 4. | 19 | ********** | | s. | 9 | ***** | | 6. | . 3 | *** | | 7. | 5 | **** | X_4 X_7 MIDDLE OF 2. 4. 6. 8. 10. 12. 14. 16. 18. 20. 22. 24. 26. INTERVAL X₅ NUMBER OF 3 7 5 2 OBSERVATIONS *** **** **** ** ** * ***** ***** ****** | MIDDLE OF
INTERVAL | NUMBE | R OF
VATIONS | MIDDLE OF
INTERVAL | NUMBE | R OF
VATIONS | |-----------------------|-------|-----------------|-----------------------|-------|-----------------| | THIEKAND | | , | | | | | 1. | 13 | ******** | 2. | 7 | **** | | 2. | 15 | ********* | 3. | 25 | *************** | | 3. | . 8 | ***** | 4. | 9 | ***** | | 4. | 5 | **** | 5. | · 1 | *. | | 5. | . 1 | * | • | | | 1.6 b) $$\bar{x} = \begin{bmatrix} 7.5 \\ 73.857 \\ 4.548 \\ 2.191 \\ 10.048 \\ 9.405 \\ 3.095 \end{bmatrix} S_n = \begin{bmatrix} 2.440 & -2.714 & -.369 & -.452 & -.571 & -2.179 & .167 \\ 293.360 & 3.816 & -1.354 & 6.602 & 30.058 & .609 \\ 1.486 & .658 & 2.260 & 2.755 & .138 \\ 1.154 & 1.062 & -.791 & .172 \\ 11.093 & 3.052 & 1.019 \\ 30.241 & .580 \\ .467 \end{bmatrix}$$ The pair x_3 , x_4 exhibits a small to moderate positive correlation and so does the pair x_3 , x_5 . Most of the entries are small. 1.7 1.8 Using (1-12) $$d(P,Q) = \sqrt{(-1-1)^2 + (-1-0)^2} = \sqrt{5} = 2.236$$ Using (1-12) $$d(P,Q) = \sqrt{(-1-1)^2 + 2(\frac{1}{9})(-1-1)(-1-0) + \frac{4}{27}(-1-0)^2} = \sqrt{\frac{52}{27}} = 1.388$$ Using (1-20) $d(P,Q) = \sqrt{\frac{1}{3}(-1-1)^2 + 2(\frac{1}{9})(-1-1)(-1-0) + \frac{4}{27}(-1-0)^2} = \sqrt{\frac{52}{27}} = 1.388$ Using (1-20) the locus of points a constant squared distance 1 from Q = (1,0) is given by the expression $\frac{1}{3}(x_1-1)^2+\frac{2}{9}(x_1-1)x_2+\frac{4}{27}x_2^2=1$. To sketch the locus of points defined by this equation, we first obtain the coordinates of some points satisfying the equation: (-1,1.5), (0,-1.5), (0,3), (1,-2.6), (1,2.6), (2,-3), (2,1.5), (3,-1.5) The resulting ellipse is: 1.9 a) $$s_{11} = 20.48$$ 1.9 b) c) $$\tilde{s}_{11} = 24.90$$ $\tilde{s}_{22} = 1.77$ (Note $\tilde{s}_{12} = .00$) d) $$(\tilde{x}_1, \tilde{x}_2) = (2.72, -3.55)$$ $$d(0,P) = 2.72 \text{ using } (1-17).$$ - e) d(0,P) = 2.72 using (1-19). - 1.10 a) This equation is of the form (1-19) with $a_{11} = 1$, $a_{12} = \frac{1}{2}$ and $a_{22} = 4$. Therefore this is a distance for correlated variables if it is non-negative for all values of x_1 , x_2 . But this follows easily if we write $x_1^2 + 4x_2^2 + x_1x_2 = (x_1 + \frac{1}{2}x_2)^2 + \frac{15}{4}x_2^2 \ge 0$. - b) In order for this expression to be a distance it has to be non-negative for all values x_1 , x_2 . Since, for $(x_1,x_2) = (0,1)$ we have $x_1^2 2x_2^2 = -2$, we conclude that this is not a valid distance function. 1.11 $$d(P,Q) = \sqrt{4(x_1-y_1)^2 + 2(-1)(x_1-y_1)(x_2-y_2) + (x_2-y_2)^2}$$ $$= \sqrt{4(y_1-x_1)^2 + 2(-1)(y_1-x_1)(y_2-x_2) + (x_2-y_2)^2} = d(Q,P)$$ Next, $$4(x_1-y_1)^2 - 2(x_1-y_1)(x_2-y_2) + (x_2-y_2)^2 =$$ = $(x_1-y_1-x_2+y_2)^2 + 3(x_1-y_1)^2 \ge 0$ so $d(P,Q) \ge 0$. The second term is zero in this last expression only if $x_1 = y_1$ and then the first is zero only if $x_2 = y_2$. - 1.12 a) If P = (-3,4) then d(0,P) = max(|-3|,|4|) = 4 - b) The locus of points whose squared distance from (0,0) is 1 is - c) The generalization to p-dimensions is given by $d(0,P) = max(|x_1|,|x_2|,...,|x_p|)$. - 1.13 Place the facility at C-3. 1.14 a) Strong positive correlation. No obvious "unusual" observations. # b) Multiple-sclerosis group. $$\bar{x} = \begin{pmatrix} 42.07 \\ 179.64 \\ 12.31 \\ 236.62 \\ 13.16 \end{pmatrix}$$ $$R = \begin{pmatrix} 1 & .200 & -.106 & .167 & -.139 \\ & 1 & .438 & .896 & .173 \\ & & 1 & .375 & .892 \\ & & & 1 & .133 \\ & & & & 1 \end{pmatrix}$$ (symmetric) # Non multiple-sclerosis group. $$\vec{x} = \begin{pmatrix} 37.99 \\ 147.21 \\ 1.56 \\ 195.57 \\ 1.62 \end{pmatrix}$$ $$S_{n} = \begin{pmatrix} 273.61 & 95.08 & 5.28 & 101.67 & 3.20 \\ & 110.13 & 1.84 & 103.28 & 2.15 \\ & & 1.78 & 2.22 & .49 \\ & & & 183.04 & 2.35 \\ & & & & & 2.32 \end{pmatrix}$$ (symmetric) $$R = \begin{pmatrix} 1 & .548 & .239 & .454 & .127 \\ & 1 & .132 & .727 & .134 \\ & & 1 & .123 & .244 \\ & & & 1 & .114 \\ & & & & 1 \end{pmatrix}$$ (symmetric) 1.15 a) Scatterplot of x_2 and x_3 . | 4.0 | | | 1 | | |----------|----------------|--------|-----------|------| | 3,6 | | . 1 | | | | | 1 | | • | , | | 3.2 | 1 1 | 1 | 1 | 1 | | | 1 | 1 | | | | \$
\$ | 1 1 | 1 1 | ; | | | E 2.4 | 111 1 | 1 | 1 1 | | | Х, | 2 1 | 1 ,1,1 | | | | .2.0 | 1 1
3 1 1 | 1 | • | | | 1.6 | 1 1 1 | 1 1 | 1 | | | 1.2 | 1 | 1 1 | | 1 | | | 1 4 2 1 | | 1 | | | .80 | 1 | ! | • | | | | .750 1.25 1.75 | 2.25 | 2.75 3.25 | 3,75 | b) $$\overline{x} = \begin{pmatrix} 3.54 \\ 1.81 \\ 2.14 \\ 2.21 \\ 2.58 \\ 1.27 \end{pmatrix}$$ The largest correlation is between appetite and amount of food eaten. Both activity and appetite have moderate positive correlations with symptoms. Also, appetite and activity have a moderate positive correlation. There are significant positive correlations among all variables. The lowest correlation is 0.4420 between Dominant humerus and Ulna, and the highest correlation is 0.89365 bewteen Dominant hemerus and Hemerus. $$\mathbf{\bar{x}} = \begin{pmatrix} 0.8438 \\ 0.8183 \\ 1.7927 \\ 1.7348 \\ 0.6938 \end{pmatrix}, \quad \mathbf{R} = \begin{pmatrix} 1.00000 & 0.85181 & 0.69146 & 0.66826 & 0.74369 & 0.67789 \\ 0.85181 & 1.00000 & 0.61192 & 0.74909 & 0.74218 & 0.80980 \\ 0.69146 & 0.61192 & 1.00000 & 0.89365 & 0.55222 & 0.44020 \\ 0.66826 & 0.74909 & 0.89365 & 1.00000 & 0.62555 & 0.61882 \\ 0.74369 & 0.74218 & 0.55222 & 0.62555 & 1.00000 & 0.72889 \\
0.67789 & 0.80980 & 0.44020 & 0.61882 & 0.72889 & 1.00000 \end{pmatrix}$$ $$\mathbf{S}_n = \begin{pmatrix} 0.0124815 & 0.0099633 & 0.0214560 & 0.0192822 & 0.0087559 & 0.0076395 \\ 0.0099633 & 0.0109612 & 0.0177938 & 0.0202555 & 0.0081886 & 0.0085522 \\ 0.0214560 & 0.0177938 & 0.0771429 & 0.0641052 & 0.0161635 & 0.0123332 \\ 0.0192822 & 0.0202555 & 0.0641052 & 0.0667051 & 0.0170261 & 0.0161219 \\ 0.0087559 & 0.0081886 & 0.0161635 & 0.0170261 & 0.0111057 & 0.0077483 \\ 0.0076395 & 0.0085522 & 0.0123332 & 0.0161219 & 0.0077483 & 0.0101752 \end{pmatrix}$$ There are large positive correlations among all variables. Particularly large correlations occur between running events that are "similar", for example, the 100m and 200m dashes, and the 1500m and 3000m runs. $$\mathbf{x} = \begin{bmatrix} 11.36 \\ 23.12 \\ 51.99 \\ 2.02 \\ 4.19 \\ 9.08 \\ 153.62 \end{bmatrix} \quad \mathbf{S_n} = \begin{bmatrix} .152 & .338 & .875 & .027 & .082 & .230 & 4.254 \\ .338 & .847 & 2.152 & .065 & .199 & .544 & 10.193 \\ .875 & 2.152 & 6.621 & .178 & .500 & 1.400 & 28.368 \\ .027 & .065 & .178 & .007 & .021 & .060 & 1.197 \\ .082 & .199 & .500 & .021 & .073 & .212 & 3.474 \\ .230 & .544 & 1.400 & .060 & .212 & .652 & 10.508 \\ 4.254 & 10.193 & 28.368 & 1.197 & 3.474 & 10.508 & 265.265 \end{bmatrix}$$ $$\mathbf{R} = \begin{bmatrix} 1.000 & .941 & .871 & .809 & .782 & .728 & .669 \\ .941 & 1.000 & .909 & .820 & .801 & .732 & .680 \\ .871 & .909 & 1.000 & .806 & .720 & .674 & .677 \\ .809 & .820 & .806 & 1.000 & .905 & .867 & .854 \\ .782 & .801 & .720 & .905 & 1.000 & .973 & .791 \\ .728 & .732 & .674 & .867 & .973 & 1.000 & .799 \\ .669 & .680 & .677 & .854 & .791 & .799 & 1.000 \end{bmatrix}$$ There are positive correlations among all variables. Notice the correlations decrease as the distances between pairs of running events increase (see the first column of the correlation matrix \mathbf{R}). The correlation matrix for running events measured in meters per second is very similar to the correlation matrix for the running event times given in Exercise 1.17. $$\vec{\mathbf{x}} = \begin{bmatrix} 8.81 \\ 8.66 \\ 7.71 \\ 6.60 \\ 5.99 \\ 5.54 \\ 4.62 \end{bmatrix} \qquad \mathbf{S}_n = \begin{bmatrix} .091 & .096 & .097 & .065 & .082 & .092 & .081 \\ .096 & .115 & .114 & .075 & .096 & .105 & .093 \\ .097 & .114 & .138 & .081 & .095 & .108 & .102 \\ .065 & .075 & .081 & .074 & .086 & .100 & .094 \\ .082 & .096 & .095 & .086 & .124 & .144 & .118 \\ .092 & .105 & .108 & .100 & .144 & .177 & .147 \\ .081 & .093 & .102 & .094 & .118 & .147 & .167 \end{bmatrix}$$ $$\mathbf{R} = \begin{bmatrix} 1.000 & .938 & .866 & .797 & .776 & .729 & .660 \\ .938 & 1.000 & .906 & .816 & .806 & .741 & .675 \\ .866 & .906 & 1.000 & .804 & .731 & .694 & .672 \\ .797 & .816 & .804 & 1.000 & .906 & .875 & .852 \\ .776 & .806 & .731 & .906 & 1.000 & .972 & .824 \\ .729 & .741 & .694 & .875 & .972 & 1.000 & .854 \\ .660 & .675 & .672 & .852 & .824 & .854 & 1.000 \end{bmatrix}$$ 1.19 (a) | ULNA | O_ULNA | HUMERUS | D_HUMERUS | RADIUS | D_RADIUS | • | | |------|----------|----------|-----------|----------|----------|-----------|--| | | | | | | UED 0.86 | D_RADIUS | | | | | | | UFD 0.84 | 377 | RADIUS | | | | | | #ED | | | D_HUMERUS | | | | | WED 1.78 | | | | HUMERUS | | | | | | | | | D_ULNA | | | | NAX 0.87 | | | | | ULNA | | 1.19 (b) - (a) The plot looks like a cigar shape, but bent. Some observations in the lower left hand part could be outliers. From the highlighted plot in (b) (actually non-bankrupt group not highlighted), there is one outlier in the nonbankrupt group, which is apparently located in the bankrupt group, besides the strung out pattern to the right. - (b) The dotted line in the plot would be an orientation for the classification. - (a) There are two outliers in the upper right and lower right corners of the plot. - (b) Only the points in the gasoline group are highlighted. The observation in the upper right is the outlier. As indicated in the plot, there is an orientation to classify into two groups. 1.22 Possible outliers are indicated. 1.24 Cluster 3 # Cluster 4 Cluster 5 Cluster 6 Cluster 7 We have clustered these faces in the same manner as those in Example 1.12. Note, however, other groupings are equally plausible. For instance, utilities 9 and 18 might be switched from Cluster 2 to Cluster 3 and so forth. We illustrate one cluster of "stars". The remaining stars (not shown) can be grouped in 3 or 4 additional clusters. # 1.26 Bull data | (a) | XBAR | R | | | | | | | • | | |-----|-----------|-----------|--------|--------|-----------|----------|---------|--------------|-------------|-----------------| | | | Breed | SalePr | YrHgt | FtFrBody | PrctFFB | Frame | BkFat | SaleHt | SaleWt | | | 4.3816 | 1.000 | -0.224 | 0.525 | 0.409 | 0.472 | 0.434 | -0.615 | 0.487 | 0.116 | | | 1742.4342 | -0.224 | 1.000 | 0.423 | 0.102 | -0.113 | 0.479 | 0.277 | 0.390 | 0.317 | | | 50.5224 | 0.525 | 0.423 | 1.000 | 0.624 | 0.523 | 0.940 - | -0.344 | 0.860 | 0.368 | | | 995.9474 | 0.409 | 0.102 | 0.624 | 1.000 | 0.691 | 0.605 - | -0.168 | 0.699 | 0.555 | | | 70.8816 | 0.472 | -0.113 | 0.523 | 0.691 | 1.000 | 0.482 - | -0.488 | 0.521 | 0.198 | | | 6.3158 | 0.434 | 0.479 | 0.940 | 0.605 | 0.482 | 1.000 - | -0.260 | 0.801 | 0.368 | | | 0.1967 | -0.615 | 0.277 | -0.344 | -0.168 | -0.488 | -0.260 | 1.000 | -0.282 | 0.208 | | | 54.1263 | 0.487 | 0.390 | 0.860 | 0.699 | 0.521 | 0.801 - | -0.282 | 1.000 | 0.566 | | | 1555.2895 | 0.116 | 0.317 | 0.368 | 0.555 | 0.198 | 0.368 | 0.208 | 0.566 | 1.000 | | | Sn | | | | | | • | | 1 1 N | | | | Breed | SalePr | YrHgt | FtFrBo | dy PrctFI | B Fran | e BkFat | t Sale | Ht f | SaleWt | | | 9.55 | -429.02 | 2.79 | 116. | 28 4.7 | 73 1.2 | 3 -0.17 | 7 3. | 00 | 46.32 | | | -429.02 | 383026.64 | 450.47 | 5813. | 09 -226.4 | 16 272.7 | 8 15.24 | 4 480. | 56 253 | 308.44 | | | 2.79 | 450.47 | 2.96 | 98. | 81 2.9 | 92 1.4 | 9 -0.0 | 5 2. | 94 | 81.72 | | | 116.28 | 5813.09 | 98.81 | 8481. | 26 206.7 | 75 51.2 | 7 -1.38 | 3 128. | 23 65 | 592.41 | | | 4.73 | -226.46 | 2.92 | 206. | 75 10.5 | 55 1.4 | 4 -0.14 | 4 3. | 37 | 82.82 | | | 1.23 | 272.78 | 1.49 | 51. | 27 1.4 | 14 0.8 | 5 -0.03 | 21. | 47 . | 43.74 | | | -0.17 | 15.24 | -0.05 | -1. | 38 -0.1 | 4 -0.0 | 2 0.0 | 1 -0. | 05 | 2.38 | | | 3.00 | 480.56 | 2.94 | 128. | 23 3.3 | 37 1.4 | 7 -0.0 | 5 3. | 97 | L 45. 35 | | | 46.32 | 25308.44 | 81.72 | 6592. | 41 82.8 | 32 43.7 | 4 2.38 | 3 145. | 35 166 | 28.94 | ## (a) Correlation r = .173 - (b) Great Smoky is unusual park. Correlation with this park removed is r = .391. This single point has reasonably large effect on correlation reducing the positive correlation by more than half when added to the national park data set. - (c) The correlation coefficient is a dimensionless measure of association. The correlation in (b) would not change if size were measured in square miles instead of acres. # Chapter 2 2.1 a) b) i) $$L_{\frac{x}{2}} = \sqrt{x^{2}x} = \sqrt{35} = 5.916$$ ii) $$cos(\theta) = \frac{x'y}{L_xL_y} = \frac{1}{19.621} = .051$$ iii) projection of $$\underline{y}$$ on \underline{x} is $\left|\frac{\underline{y}'\underline{x}}{\underline{x}'\underline{x}}\right| \underline{x} = \frac{1}{35}\underline{x} = \left[\frac{1}{7}, \frac{1}{35}, \frac{3}{35}\right]'$ c) 2.2 a) $$5A = \begin{bmatrix} -5 & 15 \\ 20 & 10 \end{bmatrix}$$ b) $BA = \begin{bmatrix} -16 & 6 \\ -9 & -1 \\ 2 & -6 \end{bmatrix}$ b) BA = $$\begin{bmatrix} -16 & 6 \\ -9 & -1 \\ 2 & -6 \end{bmatrix}$$ c) A'B' = $$\begin{bmatrix} -16 & -9 & 2 \\ 6 & -1 & -6 \end{bmatrix}$$ d) C'B = [12, -7] 2.3 a) $$A' = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = A$$ so $(A')' = A' = A$ b) $$C' = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$; $(C')^{-1} = \begin{bmatrix} -\frac{2}{10} & \frac{3}{10} \\ \frac{4}{10} & -\frac{1}{10} \end{bmatrix}$ $$c^{-1} = \begin{bmatrix} -\frac{2}{10} & \frac{4}{10} \\ \frac{3}{10} & -\frac{1}{10} \end{bmatrix}; \qquad (c^{-1})' = \begin{bmatrix} -\frac{2}{10} & \frac{3}{10} \\ \frac{4}{10} & -\frac{1}{10} \end{bmatrix} = (c')^{-1}$$ (AB)' = $$\begin{bmatrix} 7 & 8 & 7 \\ 16 & 4 & 11 \end{bmatrix}' = \begin{bmatrix} 7 & 16 \\ 8 & 4 \\ 7 & 11 \end{bmatrix}$$ $$B'A' = \begin{bmatrix} 1 & 5 \\ 4 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 7 & 16 \\ 8 & 4 \\ 7 & 11 \end{bmatrix} = (AB)'$$ has (i,j)th entry d) $$a_{ij} = a_{il}b_{lj} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} = \sum_{\ell=1}^{k} a_{i\ell}b_{\ell j}$$ Consequently, (AB) has (i,j) th entry $$c_{ji} = \sum_{k=1}^{k} a_{jk}b_{ki}.$$ Next B' has ith row $[b_{1i}, b_{2i}, \dots, b_{ki}]$ and A' has jth column $$[a_{j1}, a_{j2}, \dots, a_{jk}]'$$ so B'A' has $(i,j)^{th}$ entry $$b_{1i}a_{j1} + b_{2i}b_{j2} + \cdots + b_{ki}a_{jk} = \sum_{\ell=1}^{k} a_{j\ell}b_{\ell i} = c_{ji}$$ Since i and j were arbitrary choices, (AB)' = B'A'. - 2.4 a) I = I' and $AA^{-1} = I = A^{-1}A$. Thus $I' = I = (AA^{-1})' = (A^{-1})'A'$ and $I = (A^{-1}A)' = A'(A^{-1})'$. Consequently, $(A^{-1})'$ is the inverse of A' or $(A')^{-1} = (A^{-1})'$. - b) $(B^{-1}A^{-1})AB = B^{-1}(\underline{A^{-1}A})B = B^{-1}B = I$ so AB has inverse $(AB)^{-1} = B^{-1}A^{-1}$. It was sufficient to check for a left inverse but we may also verify $AB(B^{-1}A^{-1}) = A(\underline{BB^{-1}})A^{-1} = AA^{-1} = I$. 2.5 $$QQ' = \begin{bmatrix} \frac{5}{13} & \frac{12}{13} \\ \frac{-12}{13} & \frac{5}{13} \end{bmatrix} \begin{bmatrix} \frac{5}{13} & \frac{-12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{bmatrix} = \begin{bmatrix} \frac{169}{169} & 0 \\ 0 & \frac{169}{169} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Q'Q.$$ - 2.6 a) Since A = A', A' is symmetric. - b) Since the quadratic form $$x'Ax = [x_1, x_2]$$ $\begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ = $9x_1^2 - 4x_1x_2 + 6x_2^2$ = $$(2x_1-x_2)^2 + 5(x_1^2+x_2^2) > 0$$ for $[x_1,x_2] \neq [0,0]$ we conclude that A is positive definite. 2.7 a)
Eigenvalues: $\lambda_1 = 10$, $\lambda_2 = 5$. Normalized eigenvectors: $e_1' = [2/\sqrt{5}, -1/\sqrt{5}] = [.894, -.447]$ $e_2' = [1/\sqrt{5}, 2/\sqrt{5}] = [.447, .894]$ b) $$A = \begin{bmatrix} 9 & -2 \\ -2 & 9 \end{bmatrix} = 10 \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}, & -1/\sqrt{5} \end{bmatrix} + 5 \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{5}, & 2/\sqrt{5} \end{bmatrix}$$ c) $$A^{-1} = \frac{1}{9(6)-(-2)(-2)} \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix} = \begin{bmatrix} .12 & .04 \\ .04 & .18 \end{bmatrix}$$ d) Eigenvalues: $$\lambda_1 = .2$$, $\lambda_2 = .1$ Normalized eigenvectors: $e_1' = [1/\sqrt{5}, 2/\sqrt{5}]$ $$e_2' = [2/\sqrt{5}, -1/\sqrt{5}]$$ 2.8 Eigenvalues: $$\lambda_1 = 2$$, $\lambda_2 = -3$ Normalized eigenvectors: $e_1 = [2/\sqrt{5}, 1/\sqrt{5}]$ $$e_2^1 = [1/\sqrt{5}, -2/\sqrt{5}]$$ $$A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} = 2 \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}, & 1/\sqrt{5} \end{bmatrix} - 3 \begin{bmatrix} 1/\sqrt{5} \\ -2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{5}, & -2/\sqrt{5} \end{bmatrix}$$ 2.9 a) $$A^{-1} = \frac{1}{1(-2)-2(2)} \begin{bmatrix} -2 & -2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{6} \end{bmatrix}$$ b) Eigenvalues: $$\lambda_1 = 1/2$$, $\lambda_2 = -1/3$ Normalized eigenvectors: $e_1' = [2/\sqrt{5}, 1/\sqrt{5}]$ $$e_2^1 = [1/\sqrt{5}, -2/\sqrt{5}]$$ c) $$A^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{6} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5}, & 1/\sqrt{5} \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1/\sqrt{5} \\ -2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 1/\sqrt{5}, & -2/\sqrt{5} \end{bmatrix}$$ $$B^{-1} = \frac{1}{4(4.002001) - (4.001)^2} \begin{bmatrix} 4.002001 & -4.001 \\ -4.001 & 4 \end{bmatrix}$$ $$= 333,333 \begin{bmatrix} 4.002001 & -4.001 \\ -4.001 & 4 \end{bmatrix}$$ $$A^{-1} = \frac{1}{4(4.002) - (4.001)^2} \begin{bmatrix} 4.002 & -4.001 \\ -4.001 & 4 \end{bmatrix}$$ $$= -1,000,000 \begin{bmatrix} 4.002 & -4.001 \\ -4.001 & 4 \end{bmatrix}$$ Thus $A^{-1} = (-3)B^{-1}$ 2.11 With $$p = 1$$, $|a_{11}| = a_{11}$ and with $p = 2$ $$\begin{vmatrix} a_{11} & 0 \\ 0 & a_{22} \end{vmatrix} = a_{11}a_{22} - 0(0) = a_{11}a_{22}$$ Proceeding by induction, we assume the result holds for any $(p-1)\times(p-1)$ diagonal matrix A_{11} . Then writing $$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & A_{11} & 0 \\ 0 & & & \end{bmatrix}$$ we expand |A| according to Definition 2A.24 to find $|A| = a_{11} |A_{11}| + 0 + \cdots + 0$. Since $|A_{11}| = a_{22}a_{33} \cdots a_{pp}$ by the induction hypothesis, $|A| = a_{11}(a_{22}a_{33} \cdots a_{pp}) = a_{11}a_{22}a_{33} \cdots a_{pp}$ - By (2-20), $A = P\Lambda P'$ with PP' = P'P = I. From Result 2A.11(e) $|A| = |P| |\Lambda| |P'| = |\Lambda|$. Since Λ is a diagonal matrix with diagonal elements $\lambda_1, \lambda_2, \dots, \lambda_p$, we can apply Exercise 2.11 to get $|A| = |\Lambda| = \prod_{i=1}^{n} \lambda_i$. - 2.14 Let λ be an eigenvalue of A. Thus $0 = |A-\lambda I|$. If Q is orthogonal, QQ' = I and |Q||Q'| = I by Exercise 2.13. Using Result 2A.11(e) we can then write $$0 = |Q| |A-\lambda I| |Q'| = |QAQ'-\lambda I|$$ and it follows that λ is also an eigenvalue of QAQ' if Q is orthogonal. 2.16 $$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_p \end{bmatrix} = Ax. \text{ Then } 0 \le y_1^2 + y_2^2 + \cdots + y_p^2 = y \cdot y = x \cdot A \cdot Ax$$ and A'A is non-negative definite by definition. 2.18 Write $c^2 = x'Ax$ with $A = \begin{bmatrix} 4 & -\sqrt{2} \\ \sqrt{2} & 3 \end{bmatrix}$. The eigenvalue-normalized eigenvector pairs for A are: $$\lambda_1 = 2$$, $e_1' = [.577, .816]$ $$\lambda_2 = 5$$, $e_2^1 = [.816, -.577]$ For $c^2 = 1$, the half lengths of the major and minor axes of the ellipse of constant distance are $$\frac{c}{\sqrt{\lambda_1}} = \frac{1}{\sqrt{2}} = .707$$ and $\frac{c}{\sqrt{\lambda_2}} = \frac{1}{\sqrt{5}} = .447$ respectively. These axes lie in the directions of the vectors end end respectively. For $c^2 = 4$, the half lengths of the major and minor axes are $$\frac{c}{\sqrt{\lambda_1}} = \frac{2}{\sqrt{2}} = 1.414$$ and $\frac{c}{\sqrt{\lambda_2}} = \frac{2}{\sqrt{5}} = .894$. As c² increases the lengths of the major and minor axes increase. 2.20 Using matrix A in Exercise 2.3, we determine $$\lambda_1 = 1.382$$, $e_1 = [.8507, -.5257]$ ' $\lambda_2 = 3.618$, $e_2 = [.5257, .8507]$ ' We know $$A^{1/2} = \sqrt{\lambda_1} e_1 e_1' + \sqrt{\lambda_2} e_2 e_2' = \begin{bmatrix} 1.376 & .325 \\ .325 & 1.701 \end{bmatrix}$$ $$A^{-1/2} = \frac{1}{\sqrt{\lambda_1}} e_1 e_1' + \frac{1}{\sqrt{\lambda_2}} e_2 e_2' = \begin{bmatrix} .7608 & -.1453 \\ -.1453 & .6155 \end{bmatrix}$$ We check $$A^{1/2} A^{-1/2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A^{-1/2} A^{1/2}$$ 2.21 (a) $$\mathbf{A'A} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & -2 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 2 & 2 \end{bmatrix} \quad = \quad \begin{bmatrix} 9 & 1 \\ 1 & 9 \end{bmatrix}$$ $0=|\mathbf{A'A}-\lambda~\mathbf{I}~|=(9-\lambda)^2-1=(10-\lambda)(8-\lambda)~$, so $\lambda_1=10$ and $\lambda_2=8.$ Next, $$\begin{bmatrix} 1 & 1 \\ 1 & 9 \end{bmatrix} \quad \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = 10 \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \quad \text{gives} \quad e_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$ $$\begin{bmatrix} 1 & 1 \\ 1 & 9 \end{bmatrix} \quad \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = 8 \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \quad \text{gives} \quad e_2 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$ **(b)** $$\mathbf{A}\mathbf{A}' = \begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 2 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 2 & 2 \\ 1 & -2 & 2 \end{bmatrix} \quad = \quad \begin{bmatrix} 2 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 8 \end{bmatrix}$$ $$0 = |\mathbf{A}\mathbf{A}' - \lambda \mathbf{I}| = \begin{vmatrix} 2 - \lambda & 0 & 4 \\ 0 & 8 - \lambda & 0 \\ 4 & 0 & 8 - \lambda \end{vmatrix}$$ = $(2 - \lambda)(8 - \lambda)^2 - 4^2(8 - \lambda) = (8 - \lambda)(\lambda - 10)\lambda$ so $\lambda_1 = 10, \lambda_2 = 8$, and $\lambda_3 = 0$. $$\begin{bmatrix} 2 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 8 \end{bmatrix} \quad \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} \quad = \quad 10 \quad \begin{bmatrix} e_1 \\ e_2 \\ e_2 \end{bmatrix}$$ gives $$\begin{array}{cccc} 4e_3 & = & 8e_1 \\ 8e_2 & = & 10e_2 \end{array}$$ so $e_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ $$\begin{bmatrix} 2 & 0 & 4 \\ 0 & 8 & 0 \\ 4 & 0 & 8 \end{bmatrix} \quad \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = 8 \begin{bmatrix} e_1 \\ e_2 \\ e_2 \end{bmatrix}$$ gives $$4e_3 = 6e_1 \\ 4e_1 = 0$$ so $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ Also, $e_3 = [-2/\sqrt{5}, 0, 1/\sqrt{5}]'$. $$\begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 2 & 2 \end{bmatrix} = \sqrt{10} \begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ \frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \end{bmatrix} + \sqrt{8} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \end{bmatrix}$$ ### 2.22 (a) $$\mathbf{A}\mathbf{A}' = \begin{bmatrix} 4 & 8 & 8 \\ 3 & 6 & -9 \end{bmatrix} \quad \begin{bmatrix} 4 & 3 \\ 8 & 6 \\ 8 & -9 \end{bmatrix} \quad = \quad \begin{bmatrix} 144 & -12 \\ -12 & 126 \end{bmatrix}$$ $0 = |\mathbf{A}\mathbf{A}' - \lambda \mathbf{I}| = (144 - \lambda)(126 - \lambda) - (12)^2 = (150 - \lambda)(120 - \lambda)$, so $\lambda_1 = 150$ and $\lambda_2 = 120$. Next, $$\begin{bmatrix} 144 & -12 \\ -12 & 126 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = 150 \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \text{ gives } e_1 = \begin{bmatrix} 2/\sqrt{5} \\ -1/\sqrt{5} \end{bmatrix}$$ and $\lambda_2 = 120$ gives $e_2 = [1/\sqrt{5}, 2/\sqrt{5}]'$. **(b)** $$\mathbf{A'A} = \begin{bmatrix} 4 & 3 \\ 8 & 6 \\ 8 & -9 \end{bmatrix} \quad \begin{bmatrix} 4 & 8 & 8 \\ 3 & 6 & -9 \end{bmatrix} \quad = \quad \begin{bmatrix} 25 & 50 & 5 \\ 50 & 100 & 10 \\ 5 & 10 & 145 \end{bmatrix}$$ $$0 = |\mathbf{A'A} - \lambda \mathbf{I}| = \begin{vmatrix} 25 - \lambda & 50 & 5 \\ 50 & 100 - \lambda & 10 \\ 5 & 10 & 145 - \lambda \end{vmatrix} = (150 - \lambda)(\lambda - 120)\lambda$$ so $\lambda_1 = 150$, $\lambda_2 = 120$, and $\lambda_3 = 0$. Next, $$\begin{bmatrix} 25 & 50 & 5 \\ 50 & 100 & 10 \\ 5 & 10 & 145 \end{bmatrix} \quad \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = 150 \begin{bmatrix} e_1 \\ e_2 \\ e_2 \end{bmatrix}$$ gives $$\begin{array}{cccc} -120e_1 & + & 60e_2 & = 0 \\ -25e_1 & + & 5e_3 & = 0 \end{array}$$ or $e_1 = \frac{1}{\sqrt{30}} \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$ $$\begin{bmatrix} 25 & 50 & 5 \\ 50 & 100 & 10 \\ 5 & 10 & 145 \end{bmatrix} \quad \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix} = 120 \begin{bmatrix} e_1 \\ e_2 \\ e_2 \end{bmatrix}$$ gives $$60e_1 + 60e_3 = 0 \ -120e_2 + -240e_3 = 0$$ or $e_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}$ Also, $e_3 = [2/\sqrt{5}, -1/\sqrt{5}, 0]'$. (c) $$\begin{bmatrix} 4 & 8 & 8 \ 3 & 6 & -9 \end{bmatrix}$$ $= \sqrt{150} \left[\begin{array}{c} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{array} \right] \left[\begin{array}{ccc} \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{30}} & \frac{5}{\sqrt{30}} \end{array} \right] + \sqrt{120} \left[\begin{array}{c} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{array} \right] \left[\begin{array}{ccc} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{array} \right]$ c) For $$\ddagger^{-1}$$: $\lambda_1 = 1/4$, $e_1' = [1,0,0]'$ $\lambda_2 = 1/9$, $e_2' = [0,1,0]'$ $\lambda_3 = 1$, $e_3' = [0,0,1]'$ a) $$v^{1/2} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$; $\mathbf{p} = \begin{bmatrix} 1 & -1/5 & 4/15 \\ -1/5 & 1 & 1/6
\\ 4/15 & 1/6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -.2 & .267 \\ -.2 & 1 & .167 \\ .267 & .167 & 1 \end{bmatrix}$ b) $$v^{1/2} \varrho v^{1/2} =$$ $$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1/5 & 4/15 \\ -1/5 & 1 & 1/6 \\ 4/15 & 1/6 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -1 & 4/3 \\ -2/5 & 2 & 1/3 \\ 4/5 & 1/2 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$ $$= \begin{bmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{bmatrix} = \sum_{i=1}^{n} \frac{1}{2}$$ 2.26 a) $$\rho_{13} = \sigma_{13}/\sigma_{11}^{1/2}\sigma_{22}^{1/2} = 4/\sqrt{25}\sqrt{9} = 4/15 = .267$$ b) Write $$X_1 = 1 \cdot X_1 + 0 \cdot X_2 + 0 \cdot X_3 = \frac{1}{2} \frac{1}{2} X$$ with $\frac{1}{2} \frac{1}{2} = [1,0,0]$ $$\frac{1}{2} X_2 + \frac{1}{2} X_3 = \frac{1}{2} \frac{1}{2} X$$ with $\frac{1}{2} = [0, \frac{1}{2}, \frac{1}{2}]$ Then $$Var(X_1) = \sigma_{11} = 25$$. By $(2-43)$, $$Var(\frac{1}{2}X_2 + \frac{1}{2}X_3) = c_2^1 \ddagger c_2 = \frac{1}{4}\sigma_{22} + \frac{2}{4}\sigma_{23} + \frac{1}{4}\sigma_{33} = 1 + \frac{1}{2} + \frac{9}{4}$$ $$= \frac{15}{4} = 3.75$$ By (2-45), (see also hint to Exercise 2.28), $$Cov(x_1, \frac{1}{2}x_1 + \frac{1}{2}x_2) = c_1' \ddagger c_2 = \frac{1}{2}\sigma_{12} + \frac{1}{2}\sigma_{13} = -1 + 2 = 1$$ $$Corr(X_1, \frac{1}{2}X_1 + \frac{1}{2}X_2) = \frac{Cov(X_1, \frac{1}{2}X_1 + \frac{1}{2}X_2)}{\sqrt{var(X_1)} \sqrt{var(\frac{1}{2}X_1 + \frac{1}{2}X_2)}} = \frac{1}{5\sqrt{3.75}} = .103$$ 2.27 a) $$\mu_1 - 2\mu_2$$, $\sigma_{11} + 4\sigma_{22} - 4\sigma_{12}$ b) $$-\mu_1 + 3\mu_2$$, $\sigma_{11} + 9\sigma_{22} - 6\sigma_{12}$ c) $$\mu_1 + \mu_2 + \mu_3$$, $\sigma_{11} + \sigma_{22} + \sigma_{33} + 2\sigma_{12} + 2\sigma_{13} + 2\sigma_{23}$ d) $$\mu_1 + 2\mu_2 - \mu_3$$, $\sigma_{11} + 4\sigma_{22} + \sigma_{33} + 4\sigma_{12} - 2\sigma_{13} - 4\sigma_{23}$ e) $$3\mu_1 - 4\mu_2$$, $9\sigma_{11} + 16\sigma_{22}$ since $\sigma_{12} = 0$. 2.29 2.31 (a) $$E[X^{(1)}] = \mu^{(1)} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$ (b) $A\mu^{(1)} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = 1$ (c) $\operatorname{Cov}(\boldsymbol{X}^{(1)}) = \boldsymbol{\Sigma}_{11} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\operatorname{Cov}(AX^{(1)}) = A\Sigma_{11}A' = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 4$ (e) $E[X^{(2)}] = \mu^{(2)} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \text{(f)} \quad B\mu^{(2)} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ (g) $\operatorname{Cov}(\boldsymbol{X}^{(2)}) = \boldsymbol{\Sigma}_{22} = \begin{bmatrix} 9 & -2 \\ -2 & 4 \end{bmatrix}$ (h) $Cov(BX^{(2)}) = B\Sigma_{22}B' = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 9 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 48 & -8 \\ -8 & 4 \end{bmatrix}$ (i) $\operatorname{Cov}(\boldsymbol{X}^{(1)},\boldsymbol{X}^{(2)}) = \left[\begin{array}{cc} 2 & 2 \\ 1 & 0 \end{array} \right]$ (j) $Cov(AX^{(1)}, BX^{(2)}) = A\Sigma_{12}B' = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \end{bmatrix}$ $$E[\boldsymbol{X}^{(1)}] = \boldsymbol{\mu}^{(1)} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad \text{(b)} \quad A\boldsymbol{\mu}^{(1)} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$$ (c) $$\operatorname{Cov}(\boldsymbol{X}^{(1)}) = \Sigma_{11} = \begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix}$$ (d) $$\operatorname{Cov}(\mathbf{A}X^{(1)}) = \mathbf{A}\Sigma_{11}\mathbf{A}' = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 1 \\ 1 & 5 \end{bmatrix}$$ (e) $$E[X^{(2)}] = \mu^{(2)} = \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}$$ (f) $B\mu^{(2)} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -7 \end{bmatrix}$ (g) $$\operatorname{Cov}(\boldsymbol{X^{(2)}}) = \Sigma_{22} = \left[\begin{array}{ccc} 6 & 1 & -1 \\ 1 & 4 & 0 \\ -1 & 0 & 2 \end{array} \right]$$ (h) $$Cov(BX^{(2)}) = B\Sigma_{22}B'$$ $$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} 6 & 1 & -1 \\ 1 & 4 & 0 \\ -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 12 & 9 \\ 9 & 24 \end{bmatrix}$$ (i) $$Cov(X^{(1)}, X^{(2)}) = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0\\ 1 & -1 & 0 \end{bmatrix}$$ (j) $$Cov(AX^{(1)}, BX^{(2)}) = A\Sigma_{12}B'$$ $$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$ 2.33 (a) $$E[X^{(1)}] = \mu^{(1)} = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix} \quad \text{(b)} \quad A\mu^{(1)} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$ (c) $$\mathrm{Cov}(m{X}^{(1)}\,) = m{\Sigma}_{11} = \left[egin{array}{cccc} 4 & -1 & rac{1}{2} \ -1 & 3 & 1 \ rac{1}{2} & 1 & 6 \end{array} ight]$$ (d) $$\operatorname{Cov}(\mathbf{A}X^{(1)}) = \mathbf{A}\Sigma_{11}\mathbf{A}'$$ $$= \begin{bmatrix} 2 & -1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 4 & -1 & \frac{1}{2} \\ -1 & 3 & 1 \\ \frac{1}{2} & 1 & 6 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 23 & 4 \\ 4 & 63 \end{bmatrix}$$ (e) $$E[X^{(2)}] = \mu^{(2)} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \quad \text{(f)} \quad \mathbf{B}\mu^{(2)} = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$ (g) $$\operatorname{Cov}(X^{(2)}) = \Sigma_{22} = \left[egin{array}{cc} 4 & 0 \ 0 & 2 \end{array} ight]$$ (h) $$Cov(\mathbf{B}X^{(2)}) = \mathbf{B}\Sigma_{22}\mathbf{B}' = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 12 & 0 \\ 0 & 6 \end{bmatrix}$$ $$Cov(X^{(1)}, X^{(2)}) = \begin{bmatrix} -\frac{1}{2} & 0 \\ -1 & 0 \\ 1 & -1 \end{bmatrix}$$ $$\operatorname{Cov}(\mathbf{A}X^{(1)},\mathbf{B}X^{(2)})=\mathbf{A}\Sigma_{12}\mathbf{B}'$$ $$= \left[\begin{array}{ccc} 2 & -1 & 0 \\ 1 & 1 & 3 \end{array} \right] \ \left[\begin{array}{ccc} -\frac{1}{2} & 0 \\ -1 & 0 \\ 1 & -1 \end{array} \right] \ \left[\begin{array}{ccc} 1 & 1 \\ 2 & -1 \end{array} \right] = \left[\begin{array}{ccc} 0 & 0 \\ -4.5 & 4.5 \end{array} \right]$$ 2.34 $$b'b = 4 + 1 + 16 + 0 = 21$$, $d'd = 15$ and $b'd = -2 - 3 - 8 + 0 = -13$ $(b'd)^2 = 169 \le 21(15) = 315$ 2.35 $$b'' d = -4 + 3 = -1$$ $$b'' Bb = \begin{bmatrix} -4 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 \end{bmatrix} \begin{bmatrix} -4 \\ 3 \end{bmatrix} = \begin{bmatrix} -14 & 23 \end{bmatrix} \begin{bmatrix} -4 \\ 3 \end{bmatrix} = 125$$ $$d'' B^{-1} d = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 5/6 & 2/6 \\ 2/6 & 2/6 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 11/6$$ so $$1 = (b'd)^2 \le 125 (11/6) = 229.17$$ 2.36 $$4x_1^2 + 4x_2^2 + 6x_1x_2 = x'Ax \text{ where } A = \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}.$$ $$(4 - \lambda)^2 - 3^2 = 0 \text{ gives } \lambda_1 = 7, \lambda_2 = 1. \text{ Hence the maximum is 7 and the minimum is 1.}$$ 2.37 From (2-51), $$\max_{\underline{x}',\underline{x}=1} \underline{x}' A \underline{x} = \max_{\underline{x}\neq \underline{0}} \frac{\underline{x}' A \underline{x}}{\underline{x}' \underline{x}} = \lambda_1$$ where λ_1 is the largest eigenvalue of A. For A given in Exercise 2.6, we have from Exercise 2.7, $\lambda_1 = 10$ and $e_1' = [.894, -.447]$. Therefore $\max_{\mathbf{x}', \mathbf{x} \neq 1} \mathbf{x}' \mathbf{A} \mathbf{x} = 10$ and this maximum is attained for $x = e_1$. 2.38 Using computer, $\lambda_1 = 18$, $\lambda_2 = 9$, $\lambda_3 = 9$. Hence the maximum is 18 and the minimum is 9. **2.41** (a) $$E(AX) = AE(X) = A\mu_X = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$ (b) $$Cov(\mathbf{AX}) = \mathbf{A}Cov(\mathbf{X})\mathbf{A}' = \mathbf{A}\Sigma_X\mathbf{A}' = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 36 \end{bmatrix}$$ (c) All pairs of linear combinations have zero covariances. **2.42** (a) $$E(AX) = AE(X) = A\mu_X = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$ **(b)** $$Cov(\mathbf{AX}) = \mathbf{A}Cov(\mathbf{X})\mathbf{A'} = \mathbf{A}\Sigma_X\mathbf{A'} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 12 & 0 \\ 0 & 0 & 24 \end{bmatrix}$$ (c) All pairs of linear combinations have zero covariances. # Chapter 3 3.1 a) $$\bar{x} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$ b) $e_1 = y_1 - \bar{x}_1 \frac{1}{2} = [4, 0, -4]^{\frac{1}{2}}$ $e_2 = y_2 - \bar{x}_2 \frac{1}{2} = [-1, 1, 0]^{\frac{1}{2}}$ c) $L_{e_1} = \sqrt{32}$; $L_{e_2} = \sqrt{2}$ Let $$\theta$$ be the angle between e_1 and e_2 , then $\cos(\theta) = -4/\sqrt{32 \times 2} = -.5$ Therefore $\inf_{11} = L_{e_1}^2$ or $\inf_{11} = 32/3$; $\inf_{22} = L_{e_2}^2$ or $\inf_{22} = 2/3$; $\inf_{12} = e_1' e_2$ or $\inf_{12} = -4/3$. Also, $\inf_{12} = \cos(\theta) = -.5$. Consequently $\inf_{12} = \left[\frac{32/3 - 4/3}{-4/3 - 2/3}\right]$ and $\inf_{12} = \left[\frac{1 - .5}{-.5 - 1}\right]$. 3.2 a) $$\bar{x} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$ b) $e_1 = \underline{y}_1 - \bar{x}_1 \cdot \underline{1} = [-1, 2, -1]$, $e_2 = \underline{y}_2 - \bar{x}_2 \cdot \underline{1} = [3, -3, 0]$ c) $$L_{e_1} = \sqrt{6}$$; $L_{e_2} = \sqrt{18}$ Let θ be the angle between e_1 and e_2 , then $\cos(\theta) = -9/\sqrt{6 \times
18} = -.866$. Therefore $n \cdot s_{11} = L_{e_1}^2$ or $s_{11} = 6/3 = 2$; $n \cdot s_{22} = L_{e_2}^2$ or $s_{22} = -18/3 = 6$; $n \cdot s_{12} = e_1' \cdot e_2$ or $s_{12} = -9/3 = -3$. Also, $r_{12} = -18/3 = 6$; $n \cdot s_{12} = e_1' \cdot e_2$ or $s_{12} = -9/3 = -3$. Also, $r_{12} = -18/3 = 6$; $n \cdot s_{12} = -18/3 = 6$. Consequently $s_{11} = -18/3 = 6$ and $s_{12} = -18/3 = 6$. 3.3 $$y_1 = [1, 4, 4]'; \bar{x}_1 = [3, 3, 3]; y_1 - \bar{x}_1 = [-2, 1, 1]'$$ Thus $$y_1 = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \bar{x}_1 \cdot 1 + (y_1 - \bar{x}_1 \cdot 1)$$ 3.5 a) $$X' = \begin{bmatrix} 9 & 5 & 1 \\ 1 & 3 & 2 \end{bmatrix}$$; $\bar{x} 1' = \begin{bmatrix} 5 & 5 & 5 \\ 2 & 2 & 2 \end{bmatrix}$ $$2 S = (X - \frac{1}{2})(X - \frac{1}{2})' = \begin{bmatrix} 4 & 0 & -4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 0 & 1 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 32 & -4 \\ -4 & 2 \end{bmatrix}$$ so $$S = \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix}$$ and $|S| = 12$ b) $$X' = \begin{bmatrix} 3 & 6 & 3 \\ 4 & -2 & 1 \end{bmatrix}$$; $\bar{x} 1' = \begin{bmatrix} 4 & 4 & 4 \\ 1 & 1 & 1 \end{bmatrix}$ $$2S = (X - 1 \overline{X}')'(X - 1 \overline{X}') = \begin{bmatrix} -1 & 2 & -1 \\ 3 & -3 & 0 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 2 & -3 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & -9 \\ -9 & 18 \end{bmatrix}$$ so $$S = \begin{bmatrix} 3 & -9/2 \\ -9/2 & 9 \end{bmatrix}$$ and $|S| = 27/4$ 3.6 a) $$X' - 1 \overline{X}' = \begin{bmatrix} -3 & 0 & -3 \\ 0 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix}$$. Thus $d'_1 = [-3, 0, -3]$, $$d_2' = [0, 1, -1]$$ and $d_3' = [-3, 1, 2]$. Since $d_1 = d_2 = d_3$, the matrix of deviations is not of full rank. b) $$2S = (X - 1 \overline{x'})' (X - 1 \overline{x'}) = \begin{bmatrix} 18 & -3 & 15 \\ -3 & 2 & -1 \\ 15 & -1 & 14 \end{bmatrix}$$ So $$S = \begin{bmatrix} 9 & -3/2 & 15/2 \\ -3/2 & 1 & -1/2 \\ 15/2 & -1/2 & 7 \end{bmatrix}$$ |S| = 0 (Verify). The 3 deviation vectors lie in a 2-dimensional subspace. The 3-dimensional volume enclosed by the deviation vectors is zero. c) Total sample variance = 9 + 1 + 7 = 17. 3.7 All ellipses are centered at \bar{x} . i) For $$S = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$, $S^{-1} = \begin{bmatrix} 5/9 & -4/9 \\ -4/9 & 5/9 \end{bmatrix}$ Eigenvalue-normalized eigenvector pairs for S⁻¹ are: $$\lambda_1 = 1$$, $e_1' = [.707, -.707]$ $\lambda_2 = 1/9$, $e_2' = [.707, .707]$ Half lengths of axes of ellipse $(x-\bar{x})'s^{-1}(x-\bar{x}) \le 1$ are $1/\sqrt{\lambda_1}=1$ and $1/\sqrt{\lambda_2}=3$ respectively. The major axis of ellipse lies in the direction of e_2 ; the minor axis lies in the direction of e_1 . ii) For $$S = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$, $S^{-1} = \begin{bmatrix} 5/9 & 4/9 \\ 4/9 & 5/9 \end{bmatrix}$ Eigenvalue-normalized eigenvectors for S⁻¹ are: $$\lambda_1 = 1$$, $e_1' = [.707, .707]$ $\lambda_2 = 1/9$, $e_2' = [.707, -.707]$ Half lengths of axes of ellipse $(x-\bar{x})^{1}S^{-1}(x-\bar{x}) \leq 1$ are, again, $1/\sqrt{\lambda_{1}}=1$ and $1/\sqrt{\lambda_{2}}=3$. The major axes of the ellipse lies in the direction of e_{2} ; the minor axis lies in the direction of e_{1} . Note that e_{2} here is e_{1} in part (i) above and e_{1} here is e_{2} in part (i) above. iii) For $$S = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$, $S^{-1} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/3 \end{bmatrix}$ Eigenvalue-normalized eigenvector pairs for S⁻¹ are: $$\lambda_1 = 1/3;$$ $e_1' = [1, 0]$ $\lambda_2 = 1/3,$ $e_2' = [0, 1]$ Half lengths of axes of ellipse $(x-\bar{x})^{2}S^{-1}(x-\bar{x}) \leq 1$ are equal and given by $1/\sqrt{\lambda_{1}} = 1/\sqrt{\lambda_{2}} = \sqrt{3}$. Major and minor axes of ellipse can be taken to lie in the directions of the coordinate axes. Here, the solid ellipse is, in fact, a solid sphere. Notice for all three cases |S| = 9. 3.8 a) Total sample variance in both cases is 3. b) For $$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$, $|S| = 1$ For $$S = \begin{bmatrix} 1 & -1/2 & -1/2 \\ -1/2 & 1 & -1/2 \\ -1/2 & -1/2 & 1 \end{bmatrix}$$, $|S| = 0$ **3.9** (a) We calculate $\bar{x} = [16, 18, 34]'$ and $$m{X}_c = egin{bmatrix} -4 & -1 & -5 \ 2 & 2 & 4 \ -2 & -2 & -4 \ 4 & 0 & 4 \ 0 & 1 & 1 \end{bmatrix}$$ and we notice $\operatorname{col}_1(\ m{X}_c) + \operatorname{col}_2(\ m{X}_c) = \operatorname{col}_1(\ m{X}_c)$ so a = [1, 1, -1]' gives $X_c a = 0$. (b) $$\mathbf{S} = \begin{bmatrix} 10 & 3 & 13 \\ 3 & 2.5 & 5.5 \\ 13 & 5.5 & 18.5 \end{bmatrix} \text{ so } |\mathbf{S}| = \begin{cases} 10(2.5)(18.5) & + & 39(15.5) & + & 39(15.5) \\ -(13)^2(2.5) & - & 9(18.5) & - & 55(5.5) & = 0 \end{cases}$$ As above in a) $$\mathbf{S}\boldsymbol{a} = \begin{bmatrix} 10+3-13\\ 3+2.5-5.5\\ 13+5.5-18.5 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ - (c) Check. - 3.10 (a) We calculate $\overline{x} = [5, 2, 3]'$ and $$\boldsymbol{X}_{c} = \begin{bmatrix} -2 & -1 & -3 \\ 1 & 2 & 3 \\ -1 & 0 & -1 \\ 2 & -2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ and we notice } \operatorname{col}_{1}(\boldsymbol{X}_{c}) + \operatorname{col}_{2}(\boldsymbol{X}_{c}) = \operatorname{col}_{1}(\boldsymbol{X}_{c})$$ so a = [1, 1, -1]' gives $X_c a = 0$. (b) $$S = \begin{bmatrix} 2.5 & 0 & 2.5 \\ 0 & 2.5 & 2.5 \\ 2.5 & 2.5 & 5 \end{bmatrix} \quad \text{so} \mid S \mid = \begin{cases} 5(2.5)^2 + 0 + 0 \\ -(2.5)^3 - 0 - (2.5)^3 = 0 \end{cases}$$ Using the save coefficient vector a as in Part a) Sa = 0. (c) Setting Xa = 0, so we must have $a_1 = a_3 = 0$ but then, by the first equation in the first set, $a_2 = 0$. The columns of the data matrix are linearly independent. $$R = \begin{bmatrix} 1 & .9370 \\ .9370 & 1 \end{bmatrix}; \quad D^{1/2} = \begin{bmatrix} 121.6881 & 0 \\ 0 & 124.6515 \end{bmatrix}$$ and $$D^{-1/2} = \begin{bmatrix} .0082 & 0 \\ 0 & .0080 \end{bmatrix}$$ The relationships $R = D^{-1/2} S D^{-1/2}$ and $S = D^{1/2} R D^{1/2}$ can now be verified by direct matrix multiplication. 3.14 a) From first principles we have $$b' \times 1 = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 1 \end{bmatrix} = 21$$ Similarly b' = 2 = 19 and b' = 3 = 8 so sample mean = $$\frac{21+19+8}{3} = 16$$ sample variance = $$\frac{(21-16)^2+(19-16)^2+(8-16)^2}{2}=49$$ Also $$c' x_1 = [-1 \ 2] \begin{bmatrix} 9 \\ 1 \end{bmatrix} = -7; \quad c' x_2 = 1 \text{ and } c' x_3 = 3$$ SÓ sample mean = -1 sample variance = 28 Finally sample covariance = $$\frac{(21-16)(-7+1)+(19-16)(1+1)+(8-16)(3+1)}{2}$$ -28. b) $$\bar{x}' = \begin{bmatrix} 5 & 2 \end{bmatrix}$$ and $S = \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix}$ Using (3-36) sample mean of $$b' = X = b' = [2 \quad 3] \begin{bmatrix} 5 \\ 2 \end{bmatrix} = 16$$ sample mean of $c' = X = [-1 \quad 2] \begin{bmatrix} 5 \\ 2 \end{bmatrix} = -1$ sample variance of $b' = X = b' = [2 \quad 3] \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 49$ sample variance of $c' = X = c' = [-1 \quad 2] \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = 28$ sample covariance of b' X and c' X $$= b'Sc = \begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} 16 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -28$$ Results same as those in part (a). $$\bar{x} = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}$$, $S = \begin{bmatrix} 13 & -2.5 & 1.5 \\ -2.5 & 1 & -1.5 \\ 1.5 & -1.5 & 3 \end{bmatrix}$ sample mean of b' X = 12sample mean of c' X = -1sample variance of b' X = 12sample variance of c' X = 43sample covariance of b' X and c' X = -3 $$= E(\overline{\Lambda\Lambda}_{1}) - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} - E(\overline{\Lambda\Lambda}_{1}) - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$ $$= E(\overline{\Lambda\Lambda}_{1}) - E(\overline{\Lambda})\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$ $$= E(\overline{\Lambda\Lambda}_{1}) - E(\overline{\Lambda})\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$ $$= E(\overline{\Lambda\Lambda}_{1}) - E(\overline{\Lambda})\overline{\Lambda}_{1}^{\Lambda} - \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$$ we have $E(\overline{\Lambda\Lambda}_{1}) = \frac{1}{4} + \overline{\Lambda}^{\Lambda}\overline{\Lambda}_{1}^{\Lambda}$. 3.18 (a) Let $y = x_1 + x_2 + x_3 + x_4$ be the total energy consumption. Then $$\overline{y} = [1 \ 1 \ 1 \ 1]\overline{x} = 1.873$$ $$s_y^2 = [1 \ 1 \ 1 \ 1]S[1 \ 1 \ 1 \ 1]' = 3.913$$ (b) Let $y = x_1 - x_2$ be the excess of petroleum consumption over natural gas consumption. Then $$\overline{y} = [1 \quad -1 \quad 0 \quad 0]\overline{x} = .258$$ $$s_y^2 = [1 \quad -1 \quad 0 \quad 0]S[1 \quad -1 \quad 0 \quad 0]' = .154$$ # Chapter 4 4.1 (a) We are given $$p=2$$, $\mu=\begin{bmatrix} 1\\3 \end{bmatrix}$, $\Sigma=\begin{bmatrix} 2&-.8\times\sqrt{2}\\-.8\times\sqrt{2}&1 \end{bmatrix}$ so $\mid \Sigma\mid = .72$ and $$\Sigma^{-1}=\begin{bmatrix} \frac{1}{.72}&\frac{\sqrt{2}}{.9}\\\frac{\sqrt{2}}{.9}&\frac{2}{.72} \end{bmatrix}$$ $f(\boldsymbol{x})=\frac{1}{(2\pi)\sqrt{.72}}\exp\left(-\frac{1}{2}\left[\frac{1}{.72}(x_1-1)^2+\frac{2\sqrt{2}}{.9}(x_1-1)(x_2-3)+\frac{2}{.72}(x_2-3)^2\right]\right)$ (b) 4.2 (a) We are given $$p=2$$, $\mu=\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $\Sigma=\begin{bmatrix} 2 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 1 \end{bmatrix}$ so $|\Sigma|=3/2$ and $$\Sigma^{-1}=\begin{bmatrix} \frac{2}{\sqrt{3}} & -\frac{\sqrt{2}}{3} \\
-\frac{\sqrt{2}}{3} & \frac{2}{\sqrt{3}} \end{bmatrix}$$ $$f(x)=\frac{1}{(2\pi)\sqrt{3/2}} \, \exp\left(-\frac{1}{2} \left[\frac{2}{3}x_1^2 - \frac{2\sqrt{2}}{3}x_1(x_2-2) + \frac{4}{3}(x_2-2)^2\right]\right)$$ (b) $$\frac{2}{3}x_1^2 - \frac{2\sqrt{2}}{3}x_1(x_2 - 2) + \frac{4}{3}(x_2 - 2)^2$$ (c) $c^2 = \chi_2^2(.5) = 1.39$. Ellipse centered at [0,2]' with the major axis having half-length $\sqrt{\lambda_1}$ $c = \sqrt{2.366}\sqrt{1.39} = 1.81$. The major axis lies in the direction e = [.888, .460]'. The minor axis lies in the direction e = [-.460, .888]' and has half-length $\sqrt{\lambda_2}$ $c = \sqrt{.634}\sqrt{1.39} = .94$. # Constant density contour that contains 50% of the probability 4.3 We apply Result 4.5 that relates zero covariance to statistical independence a) No, $$\sigma_{12} \neq 0$$ b) Yes, $$\sigma_{23} = 0$$ c) Yes, $$\sigma_{13} = \sigma_{23} = 0$$ d) Yes, by Result 4.3, $(X_1+X_2)/2$ and X_3 are jointly normal and their covariance is $\frac{1}{2}\sigma_{13}+\frac{1}{2}\sigma_{23}=0$. their covariance is $\frac{1}{2}\sigma_{13} + \frac{1}{2}\sigma_{23} = 0$. e) No, by Result 4.3 with $A = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{5}{2} & 1 & -1 \end{bmatrix}$, form $A \updownarrow A'$ to see that the covariance is 10 and not 0. 4.4 a) $3X_1 - 2X_2 + X_3$ is N(13,9) b) Require Cov $(X_2, X_2-a_1X_1-a_3X_3) = 3 - a_1 - 2a_3 = 0$. Thus any $\underline{a}' = [a_1, a_3]$ of the form $\underline{a}' = [3-2a_3, a_3]$ will meet the requirement. As an example, $\underline{a}' = [1,1]$. 4.5 a) $X_1 | x_2$ is $N(\frac{1}{\sqrt{2}} (x_2-2), \frac{3}{2})$ b) $X_2|x_1,x_3$ is $N(-2x_1-5, 1)$ c) $x_3|x_1,x_2$ is $N(\frac{1}{2}(x_1+x_2+3),\frac{1}{2})$ 4.6 (a) X_1 and X_2 are independent since they have a bivariate normal distribution with covariance $\sigma_{12} = 0$. (b) X_1 and X_3 are dependent since they have nonzero covariance $\sigma_{13} = -1$. (c) X_2 and X_3 are independent since they have a bivariate normal distribution with covariance $\sigma_{23} = 0$. (d) X_1, X_3 and X_2 are independent since they have a trivariate normal distribution where $\sigma_{12} = 0$ and $\sigma_{32} = 0$. (e) X_1 and $X_1 + 2X_2 - 3X_3$ are dependent since they have nonzero covariance $$\sigma_{11} + 2\sigma_{12} - 3\sigma_{13} = 4 + 2(0) - 3(-1) = 7$$ 4.7 (a) $X_1|x_3$ is $N(1+.5(x_3-2),3.5)$ (b) $X_1|x_2, x_3$ is $N(1+.5(x_3-2), 3.5)$. Since X_2 is independent of X_1 , conditioning further on x_2 does not change the answer from Part a). 4.15 First. $$\sum_{j=1}^{n} (\bar{x} - \mu)(x_{j} - \bar{x})' = (\bar{x} - \mu) \left[\sum_{j=1}^{n} (x_{j} - \bar{x})' \right] \\ = (\bar{x} - \mu)(\sum_{j=1}^{n} x_{j} - n\bar{x})' \\ = (\bar{x} - \mu)(n\bar{x} - n\bar{x})' \\ = 0$$ Also, $$\sum_{j=1}^{n} (x_{j} - \overline{x})(\overline{x} - \underline{\mu})' = \left[\sum_{j=1}^{n} (\overline{x} - \underline{\mu})(x_{j} - \overline{x})'\right]' = 0' = 0.$$ - 4.16 (a) By Result 4.8, with $c_1 = c_3 = 1/4$, $c_2 = c_4 = -1/4$ and $\mu_j = \mu$ for j = 1, ..., 4 we have $\sum_{j=1}^4 c_j \mu_j = 0$ and $(\sum_{j=1}^4 c_j^2) \sum_{j=1}^4 \sum_{j=1}^4$ - (b) Again by Result 4.8, we know that V_1 and V_2 are jointly multivariate normal with covariance $$\left(\sum_{j=1}^{4} b_{j} c_{j}\right) \Sigma = \left(\frac{1}{4} \left(\frac{1}{4}\right) + \frac{-1}{4} \left(\frac{1}{4}\right) + \frac{1}{4} \left(\frac{-1}{4}\right) + \frac{-1}{4} \left(\frac{-1}{4}\right)\right) \Sigma = 0$$ That is, $$\left[egin{array}{c} m{V}_1 \ m{V}_2 \end{array} ight] \quad ext{is distributed} \quad N_{2p} \left(m{0}, \left[egin{array}{cc} rac{1}{4} \Sigma & 0 \ 0 & rac{1}{4} \Sigma \end{array} ight] \ ight)$$ so the joint density of the 2p variables is $$f(\mathbf{v}_1, \mathbf{v}_2) = \frac{1}{(2\pi)^p |\frac{1}{4}\Sigma|} \exp\left(-\frac{1}{2}[\mathbf{v}_1', \mathbf{v}_2'] \begin{bmatrix} \frac{1}{4}\Sigma & 0 \\ 0 & \frac{1}{4}\Sigma \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_1 \end{bmatrix}\right)$$ $$= \frac{1}{(2\pi)^p |\frac{1}{4}\Sigma|} \exp\left(-\frac{1}{8}(\mathbf{v}_1' \Sigma^{-1}\mathbf{v}_1 + \mathbf{v}_2' \Sigma^{-1}\mathbf{v}_2)\right)$$ 4.17 By Result 4.8, with $c_1 = c_2 = c_3 = c_4 = c_5 = 1/5$ and $\mu_j = \mu$ for j = 1, ..., 5 we find that V_1 has mean $\sum_{j=1}^5 c_j \mu_j = \mu$ and covariance matrix ($\sum_{j=1}^5 c_j^2$) $\Sigma = \frac{1}{5}\Sigma$. Similarly, setting $b_1 = b_3 = b_5 = 1/5$ and $b_2 = b_4 = -1/5$ we find that V_2 has mean $\sum_{j=1}^5 b_j \mu_j = \frac{1}{5} \mu$ and covariance matrix $\left(\sum_{j=1}^5 b_j^2\right) \Sigma = \frac{1}{5} \Sigma$. Again by Result 4.8, we know that V_1 and V_2 have covariance $$\left(\sum_{j=1}^{4} b_{j} c_{j}\right) \Sigma = \left(\frac{1}{5} \left(\frac{1}{5}\right) + \frac{-1}{5} \left(\frac{1}{5}\right) + \frac{1}{5} \left(\frac{1}{5}\right) + \frac{-1}{5} \left(\frac{1}{5}\right) + \frac{1}{5} \left(\frac{1}{5}\right)\right) \Sigma = \frac{1}{25} \Sigma$$ 4.18 By Result 4.11 we know that the maximum likelihood estimates of μ and $\bar{x} = [4,6]'$ and $$\frac{1}{n} \sum_{j=1}^{n} (x_{j} - \bar{x}) (x_{j} - \bar{x})' = \frac{1}{4} \left\{ \left(\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right) \left(\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right) \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} -
\begin{bmatrix} 4 \\ 6 \end{bmatrix} \right)' + \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix} - \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix} - \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix} - \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix} - \left(\begin{bmatrix} 4 \\ 7 \end{bmatrix} - \begin{bmatrix} 4 \\ 7 \end{bmatrix} - \left(\left$$ - **4.19** a) By Result 4.7 we know that $(X_1 \mu)^1 + (X_1 \mu) \sim X_6^2$ - b) From (4-23), $\bar{X} \sim N_6(\bar{\mu}, \frac{1}{20}; \pm)$. Then $\bar{X} \bar{\mu} \sim N_6(\bar{0}, \frac{1}{20}; \pm)$ and finally $\sqrt{20}$ $(\bar{X} \bar{\mu}) \sim N_6(\bar{0}, \pm)$ - c) From (4-23), 19S has a Wishart distribution with 19 d.f. - 4.20 B(19S)B' is a 2×2 matrix distributed as $W_{19}(-|B\ddagger B')$ with 19 d.f. where - a) B‡B' has $(1,1) \text{ entry} = \sigma_{11} + \frac{1}{4}\sigma_{22} + \frac{1}{4}\sigma_{33} \sigma_{12} \sigma_{13} + \frac{1}{2}\sigma_{23}$ $(1,2) \text{ entry} = \frac{1}{2}\sigma_{14} + \frac{1}{4}\sigma_{24} + \frac{1}{4}\sigma_{34} \frac{1}{2}\sigma_{15} + \frac{1}{4}\sigma_{25} + \frac{1}{4}\sigma_{35} + \sigma_{16} \frac{1}{2}\sigma_{26} \frac{1}{2}\sigma_{36}$ $(2,2) \text{ entry} = \sigma_{66} + \frac{1}{4}\sigma_{55} + \frac{1}{4}\sigma_{44} \sigma_{46} \sigma_{56} + \frac{1}{2}\sigma_{45}$ $$B^{\dagger}B' = \begin{bmatrix} \sigma_{11} & \sigma_{13} \\ \sigma_{31} & \sigma_{33} \end{bmatrix}.$$ - 4.21 (a) \overline{X} is distributed $N_4(\mu, n^{-1}\Sigma)$ - (b) $X_1 \mu$ is distributed $N_4(0, \Sigma)$ so $(X_1 \mu)'\Sigma^{-1}(X_1 \mu)$ is distributed as chi-square with p degrees of freedom. - (c) Using Part a), $$(\overline{X} - \mu)'(n^{-1}\Sigma)^{-1}(\overline{X} - \mu) = n(\overline{X} - \mu)'\Sigma^{-1}(\overline{X} - \mu)$$ is distributed as chi-square with p degrees of freedom. (d) Approximately distributed as chi-square with p degrees of freedom. Since the sample size is large, Σ can be replaced by S. - 4.22 a) We see that n = 75 is a sufficiently large sample (compared with p) and apply Result 4.13 to get $\sqrt{n}(X-\mu)$ is approximately $N_p(0, 1)$ and that \bar{X} is approximately $N_p(\mu, 1)$. - b) By (4-28) we conclude that $\sqrt{n}(\bar{x}-\mu)'S^{-1}(\bar{x}-\mu)$ is approximately χ_p^2 . - **4.23** (a) The Q-Q plot shown below is not particularly straight, but the sample size n = 10 is small. Difficult to determine if data are normally distributed from the plot. (b) $r_Q = .95$ and n = 10. Since $r_Q = .95 > .9351$ (see Table 4.2), cannot reject hypothesis of normality at the 10% level. **4.24** (a) Q-Q plots for sales and profits are given below. Plots not particularly straight, although Q-Q plot for profits appears to be "straighter" than plot for sales. Difficult to assess normality from plots with such a small sample size (n = 10). (b) The critical point for n = 10 when $\alpha = .10$ is .9351. For sales, $r_Q = .940$ and for profits, $r_Q = .968$. Since the values for both of these correlations are greater than .9351, we cannot reject normality in either case. 4.25 The chi-square plot for the world's largest companies data is shown below. The plot is reasonably straight and it would be difficult to reject multivariate normality given the small sample size of n = 10. Information leading to the construction of this plot is also displayed. $$\overline{\mathbf{x}} = \begin{bmatrix} 155.6 \\ 14.7 \\ 710.9 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} 7476.5 & 303.6 & -35576 \\ 303.6 & 26.2 & -1053.8 \\ -35576 & -1053.8 & 237054 \end{bmatrix}$$ | Ordered SqDist | Chi-square Quantiles | |----------------|----------------------| | .3142 | .3518 | | 1.2894 | .7978 | | 1.4073 | 1.2125 | | 1.6418 | 1.6416 | | 2.0195 | 2.1095 | | 3.0411 | 2.6430 | | 3.1891 | 3.2831 | | 4.3520 | 4.1083 | | 4.8365 | 5.3170 | | 4.9091 | 7.8147 | **4.26** (a) $$\overline{\mathbf{x}} = \begin{bmatrix} 5.20 \\ 12.48 \end{bmatrix}$$, $\mathbf{S} = \begin{bmatrix} 10.6222 & -17.7102 \\ -17.7102 & 30.8544 \end{bmatrix}$, $\mathbf{S}^{-1} = \begin{bmatrix} 2.1898 & 1.2569 \\ 1.2569 & .7539 \end{bmatrix}$ Thus $d_j^2 = 1.8753$, 2.0203, 2.9009, .7353, .3105, .0176, 3.7329, .8165, 1.3753, 4.2153 - (b) Since $\chi_2^2(.5) = 1.39$, 5 observations (50%) are within the 50% contour. - (c) The chi-square plot is shown below. (d) Given the results in parts (b) and (c) and the small number of observations (n = 10), it is difficult to reject bivariate normality. The Q-Q plot is reasonably straight. $r_Q=.978~(\lambda=0)$ For $\lambda=1/4$, $r_Q=.993$ so $\lambda=1/4$ is a little better choice for the normalizing transformation. 4.28 Q-Q plot is shown below. Since $r_Q = .970 < .973$ (See Table 4.2 for n = 40 and $\alpha = .05$), we would reject the hypothesis of normality at the 5% level. 4.29 (a). $$\overline{\mathbf{x}} = \begin{pmatrix} 10.046719 \\ 9.4047619 \end{pmatrix}, \mathbf{S} = \begin{pmatrix} 11.363531 & 3.126597 \\ & 30.978513 \end{pmatrix}.$$ Generalized distances are as follows; | 0.4607 | 0.6592 | 2.3771 | 1.6283 | 0.4135 | 0.4761 | 1.1849 | |---------|--------|--------|--------|--------|--------|--------| | 10.6392 | 0.1388 | 0.8162 | 1.3566 | 0.6228 | 5.6494 | 0.3159 | | 0.4135 | 0.1225 | 0.8988 | 4.7647 | 3.0089 | 0.6592 | 2.7741 | | 1.0360 | 0.7874 | 3.4438 | 6.1489 | 1.0360 | 0.1388 | 0.8856 | | 0.1380 | 2.2489 | 0.1901 | 0.4607 | 1.1472 | 7.0857 | 1.4584 | | 0.1225 | 1.8985 | 2.7783 | 8.4731 | 0.6370 | 0.7032 | 1.8014 | (b). The number of observations whose generalized distances are less than $\chi_2(0.5) = 1.39$ is 26. So the proportion is 26/42 = 0.6190. #### (c). CHI-SQUARE PLOT FOR (X1 X2) - **4.30** (a) $\hat{\lambda}_1 = 0.5$ but $\hat{\lambda}_1 = 1$ (i.e. no transformation) not ruled out by data. For $\hat{\lambda}_1 = 1$, $r_Q = .981 > .9351$ the critical point for testing normality with n = 10 and $\alpha = .10$. We cannot reject the hypothesis of normality at the 10% level (and, consequently, not at the 5% level). - (b) $\hat{\lambda}_1 = 1$ (i.e. no transformation). For $\hat{\lambda}_1 = 1$, $r_Q = .971 > .9351$ the critical point for testing normality with n = 10 and $\alpha = .10$. We cannot reject the hypothesis of normality at the 10% level (and, consequently, not at the 5% level). - (c) The likelihood function $l(\lambda_1, \lambda_2)$ is fairly flat in the region of $\lambda_1 = 1$, $\lambda_2 = 1$ so these values are not ruled out by the data. These results are consistent with those in parts (a) and (b). 4.31 The non-multiple-sclerosis group: | | | | | | 3.6 | 17 | |---|-----------------|--------------|--------------|-----------------------|-------------|------------------------| | 1 | | X_1 | X_2 | X_3 | X_4 | Λ5 | | | | 0.94482* | 0.96133* | 0.95585* | 0.97574* | 0.94446* | | | r_Q | | | | y-3.4 | $(X_5 + 0.005)^{0.32}$ | | | Transformation | $X_1^{-0.5}$ | $X_2^{-3.5}$ | $(X_3 + 0.005)^{0.4}$ | Λ_4 | | | | 114115101111111 | | | 1.1.1 | -1 2000 | | *: significant at 5 % level (the critical point = 0.9826 for n=69). The multiple-sclerosis group: | ٢ | | X_1 | X_2 | <i>X</i> ₃ | X_4 | X_5 | |---|----------------|---------|---------|------------------------|---------|------------------------| | ŀ | TO | 0.97137 | 0.97209 | 0.79523* | 0.97869 | 0.84135* | | ١ | Transformation | _ | | $(X_3 + 0.005)^{0.26}$ | | $(X_5 + 0.005)^{0.21}$ | | L | Transformation | | | l ities point = | | n = 20 | *: significant at 5 % level (the critical point = 0.9640 for n=29). Transformations of X_3 and X_4 do not improve the approximation to normality very much because there are too many zeros. #### 4.32 | | <i>X</i> ₁ | X_2 | X ₃ | X_4 | X_5 | X_6 | |----------------|-------------------------|---------------|----------------|--------------|---------|------------------------| | ro | 0.98464* | 0.94526* | 0.9970 | 0.98098* | 0.99057 | 0.92779* | | Transformation | $(X_1 + 0.005)^{-0.59}$ | $X_2^{-0.49}$ | _ | $X_4^{0.25}$ | | $(X_5 + 0.005)^{0.51}$ | *: significant at 5 % level (the critical point = 0.9870 for n=98). # 4.33 Marginal Normality: | | X_1 | X_2 | <i>X</i> ₃ | X_4 | |----|----------|----------|-----------------------|---------| | rq | 0.95986* | 0.95039* | 0.96341 | 0.98079 | *: significant at 5 % level (the critical point = 0.9652 for n=30). Bivariate Normality: the χ^2 plots are given in the next page. Those for (X_1, X_2) , (X_1, X_3) , (X_3, X_4) appear reasonably straight. 4.34 Marginal Normality: | | X_1 | X_2 | X_3 | X ₄ | X_5 | X_6 | |----|----------|---------|---------|----------------|---------|---------| | rq | 0.95162* | 0.97209 | 0.98421 | 0.99011 | 0.98124 | 0.99404 | *: significant at 5 % level (the critical point = 0.9591 for n=25). Bivariate Normality: Omitted. #### 4.35 Marginal normality: $$T_Q \mid \frac{X_1 \text{ (Density)}}{897*} \quad \frac{X_2 \text{ (MachDir)}}{991} \quad \frac{X_3 \text{ (CrossDir)}}{924*}$$ * significant at the 5% level; critical point = .974 for n = 41 From the chi-square plot (see below), it is obvious that observation #25 is a multivariate outlier. If this observation is removed, the chi-square plot is considerably more "straight line like" and it is difficult to reject a hypothesis of multivariate normality. Moreover, r_Q increases to .979 for density, it is virtually unchanged (.992) for machine direction and cross direction (.926). #### **Chi-square Plot** ## **Chi-square Plot without observation 25** #### 4.36 Marginal normality: $$r_0$$ | r_0 * significant at the 5% level; critical point = .978 for n = 54 Notice how the values of r_Q decrease with increasing distance. As the distance increases, the distribution of times becomes increasingly skewed to the right. The chi-square plot is not consistent with multivariate normality. There are several multivariate outliers. #### 4.37
Marginal normality: * significant at the 5% level; critical point = .978 for n = 54 As measured by r_Q , times measured in meters/second for the various distances are more nearly marginally normal than times measured in seconds or minutes (see Exercise 4.36). Notice the values of r_Q decrease with increasing distance. In this case, as the distance increases the distribution of times becomes increasingly skewed to the left. The chi-square plot is not consistent with multivariate normality. There are several multivariate outliers. # 4.38. Marginal and multivariate normality of bull data ### Normality of Bull Data | . X | BAR | S | | | | | | | |----------|------------------|------------------|----------|------------------|----------|------------------|--------------------------|------------| | • | | Yı | Hgt | FtFrBody | PrctFFB | BkFat | SaleHt | SaleWt | | | 50.5224 | 2.9 | 980 | 100.1305 | 2.9600 | -0.0534 | 2.9831 | 82.8108 | | 1. | 995.9474 | 100.1 | .305 | 8594.3439 | 209.5044 | -1.3982 | 129.9401 | 6680.3088 | | | 70.8816 | 2.9 | 600 | 209.5044 | 10.6917 | -0.1430 | 3.4142 | 83.9254 | | | 0.1967 | -0.0 | 534 | -1.3982 | -0.1430 | 0.0080 | -0.0506 | 2.4130 | | | 54.1263 | 2.9 | 831 | 129.9401 | 3.4142 | -0.0506 | 4.0180 | 147.2896 | | 1 | 555.2895 | 82.8 | 108 | 6680.3088 | 83.9254 | 2.4130 | 147.2896 | 16850.6618 | | | | | | | | | | | | | Ordered | | | Ordered | | Orde | red | | | | dsq | qchisq | | dsq | qchisq | | sq qchis | • | | 1 | 1.3396 | | 26 | | 4.0902 | | 693 6.843 | | | 2 | 1.7751 | 1.1286 | 27 | | 4.1875 | | 748 6.983 | | | 3 | 1.7762 | 1.3793 | 28 | | 4.2851 | | 751 7.127 | | | 4 | 2.2021 | 1.5808 | 29 | | 4.3830 | | 168 7.276 | | | 5 | 2.3870 | 1.7551 | 30 | | 4.4812 | | 863 7.430 | | | 6 | 2.5512 | 1.9118 | 31 | 4.1445 | 4.5801 | | 405 7.589 | | | 7 | 2.5743 | 2.0560 | 32 | | 4.6795 | | 763 7.755 | | | 8 | 2.5906 | 2.1911 | 33 | 4.2522 | 4.7797 | | 577 7.928 | | | 9 | 2.7604 | 2.3189 | 34 | 4.2828 | 4.8806 | | 816 8.108 | | | 10 | 3.0189 | 2.4411 | 35 | 4.4599 | 4.9826 | | 287 8.297 | | | 11 | 3.0495 | 2.5587 | 36 | 4.7603 | 5.0855 | 61 8.0 | | | | 12 | 3.2679
3.2766 | 2.6725
2.7832 | 37 | 4.8587 | | 62 8.6 | | | | 13
14 | 3.2766 | 2.7832 | 38
39 | 5.1129 | 5.2949 | 63 8.7 | | | | 15 | 3.3470 | 2.8912 | 40 | 5.1876 | 5.4017 | 64 8.7 | | | | 16 | 3.3669 | 3.1011 | 41 | 5.2891
5.3004 | | 65 9.3
66 9.3 | | | | 17 | 3.3721 | 3.2036 | 42 | | | 67 9.6 | | | | 18 | 3.4141 | 3.3048 | 43 | | | | 254 9.991
254 10.319 | | | 19 | 3.5279 | 3.4049 | 44 | | | | 254 10.319
958 10.682 | | | 20 | 3.5453 | 3.5041 | 45 | | | | 938 10.002
037 11.093 | | | 21 | 3.6097 | 3.6027 | 46 | | | | 273 11.566 | • | | 22 | 3.6485 | 3.7007 | 47 | | | | 006 12.126 | | | 23 | 3.6681 | 3.7983 | 48 | | | | 216 12.816 | | | 24 | 3.7236 | 3.8957 | 49 | | | | 744 13.722 | | | 25 | 3.7395 | 3.9929 | 50 | | | | 149 15.067 | | | | | | | | | | 751 17.864 | | | | | | | | | | | - | From Table 4.2, with $\alpha = 0.05$ and n = 76, the critical point for the Q - Q plot correlation coefficient test for normality is 0.9839. We reject the hypothesis of multivariate normality at $\alpha = 0.05$, because some marginals are not normal. #### 4.39 (a) Marginal normality: - * significant at the 5% level; critical point = .990 for n = 130 - (b) The chi-square plot is shown below. Plot is straight with the exception of observation #60. Certainly if this observation is deleted would be hard to argue against multivariate normality. Chi-square plot for indep, supp, benev, conform, leader (c) Using the r_Q statistic, normality is rejected at the 5% level for leadership. If leadership is transformed by taking the square root (i.e. $\hat{\lambda} = 0.5$), $r_Q = .998$ and we cannot reject normality at the 5% level. 4.40 (a) Scatterplot is shown below. Great Smoky park is an outlier. (b) The power transformation $\hat{\lambda}_1 = 0.5$ (i.e. square root) makes the size observations more nearly normal. $r_Q = .904$ before transformation and $r_Q = .975$ after transformation. The 5% critical point with n = 15 for the hypothesis of normality is .9389. The Q-Q plot for the transformed observations is given below. (c) The power transformation $\hat{\lambda}_2 = 0$ (i.e. logarithm) makes the visitor observations more nearly normal. $r_Q = .837$ before transformation and $r_Q = .960$ after transformation. The 5% critical point with n = 15 for the hypothesis of normality is .9389. The Q-Q plot for the transformed observations is given next. (d) A chi-square plot for the transformed observations is shown below. Given the small sample size (n = 15), the plot is reasonably straight and it would be hard to reject bivariate normality. **4.41** (a) Scatterplot is shown below. There do not appear to be any outliers with the possible exception of observation #21. (b) The power transformation $\hat{\lambda}_1 = 0$ (i.e. logarithm) makes the duration observations more nearly normal. $r_Q = .958$ before transformation and $r_Q = .989$ after transformation. The 5% critical point with n = 25 for the hypothesis of normality is .9591. The Q-Q plot for the transformed observations is given below. (c) The power transformation $\hat{\lambda}_2 = -0.5$ (i.e. reciprocal of square root) makes the man/machine time observations more nearly normal. $r_Q = .939$ before transformation and $r_Q = .991$ after transformation. The 5% critical point with n = 25 for the hypothesis of normality is .9591. The Q-Q plot for the transformed observations is given next. (d) A chi-square plot for the transformed observations is shown below. The plot is straight and it would be difficult to reject bivariate normality. # Chapter 5 5.1 a) $$\bar{x} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}$$; $S = \begin{bmatrix} 8 & -10/3 \\ -10/3 & 2 \end{bmatrix}$ $$T^2 = 150/11 = 13.64$$ b) $$T^2$$ is $3F_{2,2}$ (see (5-5)) c) $$H_0:\underline{\mu}' = [7,11]$$ $\alpha = .05$ so $F_{2,2}(.05) = 19.00$ Since $T^2 = 13.64 < 3F_{2,2}(.05) = 3(19) = 57$; do not reject H_0 at the $\alpha = .05$ level 5.3 a) $$T^{2} = \frac{(n-1) \left| \sum_{j=1}^{n} (x_{j} - \mu_{0})(x_{j} - \mu_{0})' \right|}{\left| \sum_{j=1}^{n} (x_{j} - \bar{x})(x_{j} - \bar{x})' \right|} - (n-1) = \frac{3(244)}{44} - 3 = 13.64$$ b) $$\Lambda = \left(\frac{\left|\sum_{j=1}^{n} (x_{j} - \bar{x})(x_{j} - \bar{x})'\right|}{\left|\sum_{j=1}^{n} (x_{j} - \mu_{0})(x_{j} - \mu_{0})'\right|}\right)^{n/2} = \left(\frac{44}{244}\right)^{2} = .0325$$ Wilks' lambda = $$\Lambda^{2/n} = \Lambda^{1/2} = \sqrt{.0325} = .1803$$ 5.5 $$H_0: \mu^1 = [.55, .60]; T^2 = 1.17$$ $$\alpha = .05; F_{2,40}(.05) = 3.23$$ Since $T^2 = 1.17 < \frac{2(41)}{40} F_{2,40}(.05) = 2.05(3.23) = 6.62$, we do not reject H_0 at the α = .05 level. The result is consistent with the 95% confidence ellipse for μ pictured in Figure 5.1 since μ' = [.55,.60] is <u>inside</u> the ellipse. 5.8 $$\alpha = S^{-1}(\bar{x} - \mu_0) = \begin{bmatrix} 227.273 & -181.818 \\ -181.818 & 212.121 \end{bmatrix}$$ $\begin{pmatrix} \begin{bmatrix} .564 \\ .603 \end{bmatrix} - \begin{bmatrix} .55 \\ .60 \end{bmatrix} \end{pmatrix}$ $$= \begin{bmatrix} 2.636 \\ -1.909 \end{bmatrix}$$ $$t^2 = \frac{n(\alpha^*(\bar{x} - \mu_0))^2}{\alpha^* S \alpha} = \frac{42([2.434 - 1.909] \begin{bmatrix} .014 \\ .003 \end{bmatrix})^2}{[2.636 - 1.909] \begin{bmatrix} .0144 & .0117 \\ .0117 & .0146 \end{bmatrix} \begin{bmatrix} 2.636 \\ -1.909 \end{bmatrix}} = 1.31 = T^2$$ 5.9 a) Large sample 95% T^2 simultaneous confidence intervals: Weight: (69.56, 121.48) Girth: (83.49, 103.29) Body length: (152.17, 176.59) Head length: (16.55, 19.41) Neck: (49.61, 61.77) Head width: (29.04, 33.22) b) 95% confidence region determined by all μ_1, μ_4 such that $$(95.52 - \mu_1, 93.39 - \mu_4) \begin{bmatrix} .002799 & -.006927 \\ -.006927 & .019248 \end{bmatrix} \begin{pmatrix} 95.52 - \mu_1 \\ 93.39 - \mu_4 \end{pmatrix} \le 12.59/61 = .2064$$ Beginning at the center $\bar{x}' = (95.52, 93.39)$, the axes of the 95% confidence ellipsoid are: major axis $$\pm \sqrt{3695.52} \sqrt{12.59} \begin{pmatrix} .939 \\ .343 \end{pmatrix}$$ minor axis $$\pm \sqrt{45.92} \sqrt{12.59} \begin{pmatrix} -.343 \\ .939 \end{pmatrix}$$ (See confidence ellipsoid in part d.) c) Bonferroni 95% simultaneous confidence intervals (m = 6): $t_{60}(.025/6) = 2.728$ (Alternative multiplier is z(.025/6) = 2.638) Weight: (75.56, 115.48) Girth: (86.27, 100.51) Body length: (155.00, 173.76) Head length: (16.88, 19.08) Neck: (51.01, 60.37) Head width: (29.52, 32.74) d) Because of the high positive correlation between weight (X_1) and girth (X_4) , the 95% confidence ellipse is smaller, more informative, than the 95% Bonferroni rectangle. ## 5.9 (Continued) ### Large sample 95% confidence regions. e) Bonferroni 95% simultaneous confidence interval for difference between mean head width and mean head length $(\mu_6 - \mu_5)$ follows. $(m = 7 \text{ to allow for new statement and statements about individual means}): <math>t_{60}(.025/7) = 2.783$ (Alternative multiplier is z(.025/7) = 2.690) $$\overline{x}_6 - \overline{x}_5 \pm t_{60} (.0036) \sqrt{\frac{s_{66} - 2s_{56} + s_{55}}{n}} = (31.13 - 17.98) \pm 2.783 \sqrt{\frac{21.26 - 2(13.88) + 9.95}{61}}$$ or $$12.49 \le \mu_6 - \mu_5 \le 13.81$$ 5.10 a) $95\% T^2$ simultaneous confidence intervals: Lngth2: (130.65, 155.93) Lngth4: (160.33, 185.95) Lngth3: (127.00, 191.58) Lngth5: (155.37, 198.91) b) 95% T^2 simultaneous intervals for change in length (Δ Lngth): ΔLngth2-3: (-21.24, 53.24) ΔLngth3-4: (-22.70, 50.42) ΔLngth4-5: (-20.69, 28.69) c) 95% confidence region determined by all μ_{2-3} , μ_{4-5} such that $$(16 - \mu_{2-3}, 4 - \mu_{4-5}) \begin{bmatrix} .011024 & .009386 \\ .009386 & .025135 \end{bmatrix} \binom{16 - \mu_{2-3}}{4 - \mu_{4-5}} \le 72.96/7 = 10.42$$ where μ_{2-3} is the mean increase in length from year 2 to 3, and μ_{4-5} is the mean increase in length from year 4 to 5. Beginning at the center $\bar{x}' = (16,4)$, the
axes of the 95% confidence ellipsoid are: major axis $$\pm \sqrt{157.8} \sqrt{72.96} \binom{.895}{-.447}$$ minor axis $$\pm \sqrt{33.53}\sqrt{72.96} \begin{pmatrix} .447 \\ .895 \end{pmatrix}$$ (See confidence ellipsoid in part e.) d) Bonferroni 95% simultaneous confidence intervals (m = 7): Lngth2: (137.37, 149.21) Lngth4: (167.14, 179.14) Lngth3: (144.18, 174.40) Lngth5: (166.95, 187.33) ΔLngth2-3: (-1.43, 33.43) ΔLngth4-5: (-7.55, 15.55) ΔLngth3-4: (-3.25, 30.97) ## 5.10 (Continued) e) The Bonferroni 95% confidence rectangle is much smaller and more informative than the 95% confidence ellipse. 95% confidence regions. 5.11 a) $$\bar{x}' = [5.1856, 16.0700]$$ $$S = \begin{bmatrix} 176.0042 & 287.2412 \\ 287.2412 & 527.8493 \end{bmatrix}; S^{-1} = \begin{bmatrix} .0508 & -.0276 \\ -.0276 & .0169 \end{bmatrix}$$ Eigenvalues and eigenvectors of S: $$\hat{\lambda}_{1} = 688.759 \qquad \hat{\underline{e}}_{1}' = (.49,.87)$$ $$\hat{\lambda}_{2} = 15.094 \qquad \hat{\underline{e}}_{2}' = (.87,-.49)$$ $$\frac{(n-1)p}{(n-p)} F_{p,n-p}(.10) = \frac{8(2)}{7} F_{2,7}(.10) = \frac{16}{7} (3.26) = 7.45$$ # **Confidence Region** b) 90% T^2 intervals for the full data set: Cr: (-6.88, 17.25) Sr: (-4.83, 36.97) [.30, 10] is a plausible value for μ ### 5.11 (Continued) c) Q-Q plots for the marginal distributions of both variables Since r = 0.627 we reject the hypothesis of normality for this variable at $\alpha = 0.01$ Since r = 0.818 we reject the hypothesis of normality for this variable at $\alpha = 0.01$ d) With data point (40.53, 73.68) removed, $$\bar{x}' = [.7675, 8.8688]; S = \begin{bmatrix} .3786 & 1.0303 \\ 1.0303 & 69.8598 \end{bmatrix}$$ $$s^{-1} = \begin{bmatrix} 2.7518 & -.0406 \\ -.0406 & .0149 \end{bmatrix}$$ $$\frac{(n-1)p}{(n-p)}$$ $F_{p,n-p}(.10) = \frac{7(2)}{6}$ $F_{2,6}(.10) = \frac{14}{6}$ (3.46) = 8.07 90% T² intervals: Cr. (.15, 1.39) Sr. (.47, 17.27) 5.12 Initial estimates are $$ilde{\mu} = \left[egin{array}{c} 4 \\ 6 \\ 2 \end{array} \right], \quad ilde{\Sigma} = \left[egin{array}{ccc} 0.5 & 0.0 & 0.5 \\ & 2.0 & 0.0 \\ & & 1.5 \end{array} \right].$$ The first revised estimates are $$\tilde{\mu} = \begin{bmatrix} 4.0833 \\ 6.0000 \\ 2.2500 \end{bmatrix}, \quad \tilde{\Sigma} = \begin{bmatrix} 0.6042 & 0.1667 & 0.8125 \\ & 2.500 & 0.0 \\ & & 1.9375 \end{bmatrix}.$$ 5.13 The χ^2 distribution with 3 degrees of freedom. 5.14 Length of one-at-a time t-interval / Length of Bonferroni interval = $t_{n-1}(\alpha/2)/t_{n-1}(\alpha/2m)$. | | | m | | |----------|--------|--------|--------| | n | 2 | 4 | 10 | | 15 | 0.8546 | 0.7489 | 0.6449 | | 25 | 0.8632 | 0.7644 | 0.6678 | | 50 | 0.8691 | 0.7749 | 0.6836 | | 100 | 0.8718 | 0.7799 | 0.6910 | | ∞ | 0.8745 | 0.7847 | 0.6983 | 5.15 (a). $$E(X_{ij}) = (1)p_i + (0)(1 - p_i) = p_i.$$ $$Var(X_{ij}) = (1 - p_i)^2 p_i + (0 - p_i)^2 (1 - p_i) = p_i (1 - p_i)$$ - (b). $Cov(X_{ij}, X_{kj}) = E(X_{ij}X_{ik}) E(X_{ij})E(X_{kj}) = 0 p_ip_k = -p_ip_k$. - (a). Using $\hat{p}_j \pm \sqrt{\chi_4^2(0.05)} \sqrt{\hat{p}_j(1-\hat{p}_j)/n}$, the 95 % confidence intervals for p_1 , p_2 , p_3 , p_4 , p_5 are (0.221, 0.370), (0.258, 0.412), (0.098, 0.217), (0.029, 0.112), (0.084, 0.198) respectively. (b). Using $\hat{p}_1 - \hat{p}_2 \pm \sqrt{\chi_4^2(0.05)} \sqrt{(\hat{p}_1(1-\hat{p}_1) + \hat{p}_2(1-\hat{p}_2) - 2\hat{p}_1\hat{p}_2)/n}$, the 95 % confidence interval for $p_1 - p_2$ is (-0.118, 0.0394). There is no significant difference in two proportions. 5.17 $\hat{p}_1 = 0.585$, $\hat{p}_2 = 0.310$, $\hat{p}_3 = 0.105$. Using $\hat{p}_j \pm \sqrt{\chi_3^2(0.05)} \sqrt{\hat{p}_j(1-\hat{p}_j)/n}$, the 95 % confidence intervals for p_1 , p_2 , p_3 are (0.488, 0.682), (0.219, 0.401), (0.044, 0.166), respectively. 5.18 - (a). Hotelling's $T^2 = 223.31$. The critical point for the statistic ($\alpha = 0.05$) is 8.33. We reject $H_0: \mu = (500, 50, 30)'$. That is, The group of students represented by scores are significantly different from average college students. - (b). The lengths of three axes are 23.730, 2.473, 1.183. And directions of corresponding axes are $$\left(\begin{array}{c} 0.994\\ 0.103\\ 0.038 \end{array}\right), \quad \left(\begin{array}{c} -0.104\\ 0.995\\ 0.006 \end{array}\right), \quad \left(\begin{array}{c} -0.037\\ -0.010\\ 0.999 \end{array}\right).$$ (c). Data look fairly normal. 5.19 a) The summary statistics are: $$n = 30, \ \bar{x} = \begin{bmatrix} 1860.50 \\ 8354.13 \end{bmatrix}$$ and $S = \begin{bmatrix} 124055.17 & 361621.03 \\ 361621.03 & 3486330.90 \end{bmatrix}$ where S has eigenvalues and eigenvectors $$\lambda_1 = 3407292$$ $e_1' = [.105740, .994394]$ $\lambda_2 = 82748$ $e_2' = [.994394, -.105740]$ Then, since $\frac{1}{n} \frac{p(n-1)}{n-p} F_{p,n-p}(\alpha) = \frac{1}{30} \frac{2(29)}{28} F_{2,28}(.05) = .2306$, a 95% confidence region for μ is given by the set of μ . ≥ .2306 The half lengths of the axes of this ellipse are $\sqrt{.2306} \sqrt{\lambda_1} = 886.4$ and $\sqrt{.2306} \sqrt{\lambda_2} = 138.1$. Therefore the ellipse has the form - b) Since $\mu_0 = [2000, 10000]$ does not fall within the 95% confidence ellipse, we would reject the hypothesis $H_0: \mu = \mu_0$ at the 5% level. Thus, the data analyzed are <u>not</u> consistent with these values. - c) The Q-Q plots for both stiffness and bending strength (see below) show that the marginal normality is not seriously violated. Also the correlation coefficients for the test of normality are .989 and .990 respectively so that we fail to reject even at the 1% significance level. Finally, the scatter diagram (see below) does not indicate departure from bivariate normality. So, the bivariate normal distribution is a plausible probability model for these data. .Correlation = ..990 5.20 (a). Yes, they are plausible since the hypothesized vector μ_0 (denoted as * in the plot) is inside the 95% confidence region. Simultaneous confidence intervals are larger than Bonferroni's confidence intervals. Simultaneous confidence intervals will touch the simultaneous confidence region from outside. (c). Q-Q plots suggests non-normality of (X_1, X_2) . Could try transforming X_1 . HOTELLING T SQUARE - 9.0218 P-VALUE 0.3616 | | N | MEAN | STDEV | T2 INT | ERVAL | | ERRONI | |-----------|----|---------|---------|--------|-------|-------|--------| | x1 | 25 | 0.84380 | 0.11402 | .742 | .946 | .778 | .909 | | x2 | 25 | 0.81832 | 0.10685 | .723 | .914 | .757 | .880 | | x3 | 25 | 1.79268 | 0.28347 | 1.540 | 2.046 | 1.629 | 1.956 | | ×4 | 25 | 1.73484 | 0.26360 | 1.499 | 1.970 | 1.583 | 1.887 | | x5 | 25 | 0.70440 | 0.10756 | .608 | .800 | .642 | .766 | | хб | 25 | 0.69384 | 0.10295 | .602 | .786 | .635 | .753 | The Bonferroni intervals use t (.00417) = 2.88 and the T2 intevals use the constant 4.465. (a). After eliminating outliers, the approximation to normality is improved. ## Outliers removeds | | LOWER | UPPER | |---------------------------------------|-------|-------| | Bonferroni C. I.: Simultaneous C. I.: | 9.63 | 12.87 | | | 5.24 | 9.67 | | | 8.82 | 12.34 | | Simultaneous C. I.: | 9.25 | 13.24 | | | 4.72 | 10.19 | | | 8.41 | 12.76 | Simultaneous confidence intervals are larger than Bonferroni's confidence intervals. ## (b) Full data set: | | Lower | Upper | |---------------------|-------|-------| | Bonferroni C. I.: | 9.79 | 15.33 | | | 5.78 | 10.55 | | | 8.65 | 12.44 | | Simultaneous C. I.: | 9.16 | 15.96 | | | 5.23 | 11.09 | | | 8.21 | 12.87 | 5.23 a) The data appear to be multivariate normal as shown by the "straightness" of the Q-Q plots and chi-square plot below. ### 5.23 (Continued) b) Bonferroni 95% simultaneous confidence intervals (m = p = 4): $t_{29} (.05/8) = 2.663$ MaxBrth: ((128.87, 133.87) BasHgth: (131.42, 135.78) BasLngth: (96.32, 102.02) NasHgth: (49.17, 51.89) 95% T^2 simultaneous confidence intervals: $$\sqrt{\frac{4(29)}{26}F_{4,26}(.05)} = 3.496$$ MaxBrth: (128.08, 134.66) BasHgth: (130.73, 136.47) BasLngth: (95.43, 102.91) NasHgth: (48.75, 52.31) The Bonferroni intervals are slightly shorter than the T^2 intervals. 5.24 Individual \overline{X} charts for the Madison, Wisconsin, Police Department data | | xbar | s | LCL | UCL | | | |----------|---------|--------|---------|---------|---------|-----| | LegalOT | 3557.8 | 606.5 | 1738.1 | 5377.4 | | | | ExtraOT | 1478.4 | 1182.8 | -2070.0 | 5026.9 | use LCL | = 0 | | Holdover | 2676.9 | 1207.7 | -946.2 | 6300.0 | use LCL | = 0 | | COA | 13563.6 | 1303.2 | 9654.0 | 17473.2 | | | | MeetOT | 800.0 | 474.0 | -622.1 | 2222.1 | use LCL | = 0 | Both holdover and COA hours are stable and in control. 5.25 Quality ellipse and T^2 chart for the holdover and COA overtime hours. All points are in control. The quality control 95% ellipse is $$1.37 \times 10^{-6} (x_3 - 2677)^2 + 1.18 \times 10^{-6} (x_4 - 13564)^2 +1.80 \times 10^{-6} (x_3 - 2677)(x_4 - 13564) = 5.99.$$ 5.26 T^2 chart using the data on x_1 = legal appearances overtime hours, x_2 = extraordinary event overtime hours, and x_3 = holdover overtime hours. All points are in control. 5.27 The 95% prediction ellipse for x_3 = holdover hours and x_4 = COA hours is $1.37 \times 10^{-6} (x_3 - 2677)^2 + 1.18 \times 10^{-6} (x_4 - 13564)^2 + 1.80 \times 10^{-6} (x_3 - 2677)(x_4 - 13564) = 8.51.$ The 95% control ellipse for future holdover hours and COA hours 5.28 (a) $$\overline{\mathbf{x}} = \begin{bmatrix} -.506 \\ -.207 \\ -.062 \\ -.032 \\ .698 \\ -.065 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} .0626 & .0616 & .0474 & .0083 & .0197 & .0031 \\ .0616 & .0924 & .0268 & -.0008 & .0228 & .0155 \\ .0474 & .0268 & .1446 & .0078 & .0211 & -.0049 \\ .0083 & -.0008 & .0078 & .1086 & .0221 & .0066 \\ .0197 & .0228 & .0211 & .0221 & .3428 & .0146 \\ .0031 & .0155 & -.0049 & .0066 & .0146 & .0366 \end{bmatrix}$$ The T^2 chart follows. (b) Multivariate observations 20, 33, 36, 39 and 40 exceed the upper control limit. The individual variables that contribute significantly to the out of control data
points are indicated in the table below. | | | Point | Variable | P-Value | |--------------|-----|-------|------------|---------| | Greater Than | UCL | 20 | X1 | 0.0000 | | | | | X2 | 0.0001 | | | | | х3 | 0.0000 | | | | | X4 | 0.0105 | | | | | X5 | 0.0210 | | | | | х6 | 0.0032 | | | | 33 | X4 | 0.0088 | | | | | х6 | 0.0000 | | | | 36 | x1 | 0.0000 | | | | | X2 | 0.0000 | | | | | х3 | 0.0000 | | | | | X4 | 0.0343 | | | | 39 | X2 | 0.0198 | | | | | X4 | 0.0001 | | | | | X 5 | 0.0054 | | | | | X6 | 0.0000 | | | | 40 | X1 | 0.0000 | | | | | X2 | 0.0088 | | | | | X 3 | 0.0114 | | | | | X4 | 0.0013 | - **5.29** $T^2 = 12.472$. Since $T^2 = 12.472 < \frac{29(6)}{24} F_{6,24}(.05) = 7.25(2.51) = 18.2$, we do not reject $H_0: \mu = \mathbf{0}$ at the 5% level. - 5.30 (a) Large sample 95% Bonferroni intervals for the indicated means follow. Multiplier is $t_{40}(.05/2(6)) \approx z(.0042) = 2.635$ Petroleum: $$.766 \pm 2.635(.925/\sqrt{50}) = .766 \pm .345 \rightarrow (.421, 1.111)$$ Natural Gas: $$.508 \pm 2.635(.753/\sqrt{50}) = .508 \pm .282 \rightarrow (.226, .790)$$ Coal: $$.438 \pm 2.635(.414/\sqrt{50}) = .438 \pm .155 \rightarrow (.283, .593)$$ Nuclear: $$.161 \pm 2.635(.207/\sqrt{50}) = .161 \pm .076 \rightarrow (.085, .237)$$ Total: $$1.873 \pm 2.635(1.978/\sqrt{50}) = 1.873 \pm .738 \rightarrow (1.135, 2.611)$$ Petroleum – Natural Gas: $$.258 \pm 2.635(.392/\sqrt{50}) = .258 \pm .146 \rightarrow (.112, .404)$$ (b) Large sample 95% simultaneous T^2 intervals for the indicated means follow. Multiplier is $\sqrt{\chi_4^2(.05)} = \sqrt{9.49} = 3.081$ Petroleum: $$.766 \pm 3.081(.925/\sqrt{50}) = .766 \pm .404 \rightarrow (.362, 1.170)$$ Natural Gas: $$.508 \pm 3.081(.753/\sqrt{50}) = .508 \pm .330 \rightarrow (.178, .838)$$ Coal: $$.438 \pm 3.081(.414/\sqrt{50}) = .438 \pm .182 \rightarrow (.256, .620)$$ Nuclear: $$.161 \pm 3.081(.207/\sqrt{50}) = .161 \pm .089 \rightarrow (.072, .250)$$ Total: $$1.873 \pm 3.081(1.978/\sqrt{50}) = 1.873 \pm .863 \rightarrow (1.010, 2.736)$$ Petroleum – Natural Gas: $$.258 \pm 3.081(.392/\sqrt{50}) = .258 \pm .171 \rightarrow (.087, .429)$$ Since the multiplier, 3.081, for the 95% simultaneous T^2 intervals is larger than the multiplier, 2.635, for the Bonferroni intervals and everything else for a given interval is the same, the T^2 intervals will be wider than the Bonferroni intervals. 5.31 (a) The power transformation $\hat{\lambda}_1 = 0$ (i.e. logarithm) makes the duration observations more nearly normal. The power transformation $\hat{\lambda}_2 = -0.5$ (i.e. reciprocal of square root) makes the man/machine time observations more nearly normal. (See Exercise 4.41.) For the transformed observations, say $y_1 = \ln x_1$, $y_2 = 1/\sqrt{x_2}$ where x_1 is duration and x_2 is man/machine time, $$\overline{\mathbf{y}} = \begin{bmatrix} 2.171 \\ .240 \end{bmatrix}$$ $\mathbf{S} = \begin{bmatrix} .1513 & -.0058 \\ -.0058 & .0018 \end{bmatrix}$ $\mathbf{S}^{-1} = \begin{bmatrix} 7.524 & 23.905 \\ 23.905 & 624.527 \end{bmatrix}$ The eigenvalues for S are $\lambda_1 = .15153$, $\lambda_2 = .00160$ with corresponding eigenvectors $\mathbf{e_1}' = [.99925 - .03866]$, $\mathbf{e_2}' = [.03866 .99925]$ Beginning at center $\overline{\mathbf{y}}$, the axes of the 95% confidence ellipsoid are major axis: $$\pm \sqrt{\lambda_1} \sqrt{\frac{2(24)}{25(23)}} F_{2,23}(.05) \mathbf{e}_1 = \pm .208 \mathbf{e}_1$$ minor axis: $$\pm \sqrt{\lambda_2} \sqrt{\frac{2(24)}{25(23)}} F_{2,23}(.05) e_2 = \pm .021 e_2$$ The ratio of the lengths of the major and minor axes, .416/.042 = 9.9, indicates the confidence ellipse is elongated in the e_1 direction. (b) $t_{24}(.05/2(2)) = 2.391$, so the 95% confidence intervals for the two component means (of the transformed observations) are: $$\overline{y}_1 \pm t_{24} (.0125) \sqrt{s_{11}} = 2.171 \pm 2.391 \sqrt{.1513} = 2.171 \pm .930 \rightarrow (1.241, 3.101)$$ $$\overline{y}_2 \pm t_{24} (.0125) \sqrt{s_{22}} = .240 \pm 2.391 \sqrt{.0018} = .240 \pm .101 \rightarrow (.139, .341)$$ # Chapter 6 6.1 Eigenvalues and eigenvectors of S_d are: $$\lambda_1 = 449.778, e'_1 = [.333, .943]$$ $\lambda_2 = 168.082, e'_2 = [.943, -.333]$ Ellipse centered at $\frac{1}{2}$ = [-9.36, 13.27]. Half length of major axis is 20.57 units. Half length of minor axis is 12.58 units. Major and minor axes lie in e_1 and e_2 directions, respectively. Yes, the test answers the question: Is $\delta = 0$ inside the 95% confidence ellipse? **6.2** Using a critical value $t_{n-1}(\alpha/2p) = t_{10}(0.0125) = 2.6338$, | | LOWER | UPPER | |---------------------|--------|-------| | Bonferroni C. I.: | -20.57 | 1.85 | | | -2.97 | 29.52 | | Simultaneous C. I.: | -22.45 | 3.73 | | | -5.70 | 32.25 | Simultaneous confidence intervals are larger than Bonferroni's confidence intervals. 6.3 The 95% Bonferroni intervals are | | LOWER | UPPER | |---------------------|--------|-------| | Bonferroni C. I.: | -21.92 | -2.08 | | | -3.36 | 20.56 | | Simultaneous C. I.: | -23.70 | -0.30 | | | -5.50 | 22.70 | Since the hypothesized vector $\delta = 0$ (denoted as * in the plot) is outside the joint confidence region, we reject H_0 : $\delta = 0$. Bonferroni C.I. are consistent with this result. After the elimination of the outlier, the difference between pairs became significant. 6.4 (a). Hotelling's $T^2 = 10.215$. Since the critical point with $\alpha = 0.05$ is 9.459, we reject $H_0: \underline{\delta} = 0$. **(b)**. | | Lower | Upper | |-------------------|-------|-------| | Bonferroni C. I.: | -1.09 | -0.02 | | | -0.04 | 0.64 | T² Simultaneous C. I.: -1.18 0.07 -0.10 0.69 95% Confidence Ellipse About the Mean Vector Figure 1: 95% Confidence Ellipse and Simultaneous T^2 Intervals for the Mean Difference (c) The Q-Q plots for ln(DiffBOD) and ln(DiffSS) are shown below. Marginal normality cannot be rejected for either variable. The χ^2 plot is not straight (with at least one apparent bivariate outlier) and, although the sample size (n=11) is small, it is difficult to argue for bivariate normality. 6.5 a) $$H_0: C_{\underline{\mu}} = 0$$ where $C = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}$, $\underline{\mu}' = [\mu_1, \mu_2, \mu_3]$. $$C_{\underline{x}} = \begin{bmatrix} -11.2 \\ 6.9 \end{bmatrix}, CSC' = \begin{bmatrix} 55.5 & -32.6 \\ -32.6 & 66.4 \end{bmatrix}$$ $$T^2 = n(C\bar{x})^{1}(CSC^{1})^{-1}(C\bar{x}) = 90.4; \quad n = 40; \quad q = 3$$ $$\frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(.05) = \frac{(39)2}{38} (3.25) = 6.67$$ Since $$T^2 = 90.4 > 6.67$$ reject $H_0: C_{\mu} = 0$ b) 95% simultaneous confidence intervals: $$\mu_1 - \mu_2$$: (46.1 - 57.3) $\pm \sqrt{6.67}$ $\sqrt{\frac{55.5}{40}} = -11.2 \pm 3.0$ $\mu_2 - \mu_3$: 6.9 \pm 3.3 $\mu_1 - \mu_3$: -4.3 \pm 3.3 The means are all different from one another. Treatment 3: Sample mean vector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$; sample covariance matrix $\begin{bmatrix} 2 & -4/3 \\ -4/3 & 4/3 \end{bmatrix}$ $$S_{pooled} = \begin{bmatrix} 1.6 \\ -1.4 \end{bmatrix}$$ b) $$T^2 = [2-3, 4-2] \left[\left(\frac{1}{3} + \frac{1}{4} \right) \begin{bmatrix} 1.6 & -1.4 \\ -1.4 & 2 \end{bmatrix} \right]^{-1} \begin{bmatrix} 2-3 \\ 4-2 \end{bmatrix} = 3.88$$ $$\frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)} F_{p,n_1+n_2-p-1}(.01) = \frac{(5)2}{4} (18) = 45$$ Since $T^2 = 3.88 < 45$ do not reject $H_0 = 0$ at the $\alpha = .01$ level. c) 99% simultaneous confidence intervals: $$\mu_{21} - \mu_{31}$$: (2-3) $\pm \sqrt{45} \sqrt{(\frac{1}{3} + \frac{1}{4})1.6} = -1 \pm 6.5$ $$\mu_{22} - \mu_{32}$$: 2 ± 7.2 6.7 $$T^2 = [74.4 \ 201.6]$$ $\left[\left(\frac{1}{45} + \frac{1}{55} \right) \begin{bmatrix} 10963.7 & 21505.5 \\ 21505.5 & 63661.3 \end{bmatrix} \right]^{-1} \begin{bmatrix} 74.4 \\ 201.6 \end{bmatrix} = 16.1$ $$\frac{(n_1+n_2-2)p}{n_1+n_2-p-1} F_{p,n_1+n_2-p-1}(.05) = 6.26$$ Since $T^2 = 16.1 > 6.26$ reject $H_0: \mu_1 - \mu_2 = 0$ at the $\alpha = .05$ level. $$\hat{\mathbf{a}} \propto S_{\text{pooled}}^{-1} (\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} .0017 \\ .0026 \end{bmatrix}$$ ### 6.8 a) For first variable: observation = mean + treatment effect + residual $$\begin{bmatrix} 6 & 5 & 8 & 4 & 7 \\ 3 & 1 & 2 \\ 2 & 5 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 2 & 2 & 2 & 2 \\ -2 & -2 & -2 \\ -1 & -1 & -1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 2 & -2 & 1 \\ 1 & -1 & 0 \\ -1 & 2 & 0 & -1 \end{bmatrix}$$ $$SS_{obs} = 246 \qquad SS_{mean} = 192 \qquad SS_{tr} = 36 \qquad SS_{res} = 18$$ For second variable: Cross product contributions: #### b) MANOVA table: | Source of
Variation | SSP | | d.f. | • | |------------------------|--------------|-----------|-------------|-------| | Treatment | B = 36
48 | 48
84 | 3 - 1 | = 2 | | Residual | W = 18 | -13
18 | 5 + 3 + 4 - | 3 = 9 | | Total (corrected) | 54
35 | 35
102 | 1 | 1 | c) $$\Lambda^* = \frac{|W|}{|B+W|} = \frac{155}{4283} = .0362$$ Using Table 6.3 with p = 2 and g = 3 $$\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right)\left(\frac{\Sigma n_{\varrho}-g-1}{g-1}\right) = 17.02.$$ Since $F_{4,16}(.01) = 4.77$ we conclude that treatment differences exist at $\alpha = .01$ level. Alternatively, using Bartlett's procedure, $$-(n-1-\frac{(p+q)}{2}) \ln \Lambda^* = -(12-1-\frac{5}{2}) \ln(.0362) = 28.209$$ Since $\chi_{+}^{2}(.01) = 13.28$ we again conclude treatment differences exist at $\alpha = .01$ level. 6.9 For any matrix C and $$\frac{d}{dj} = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{di} = C(\frac{1}{n} \sum_{i=1}^{n} x_{i}) = C \frac{1}{n}$$ $$\frac{d}{dj} - \frac{1}{n} = C(\frac{1}{n} \sum_{i=1}^{n} x_{i})$$ $$S_{d} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{d}{di} - \frac{1}{n} \cdot \frac{d}{di} - \frac{1}{n} \cdot \frac{1}{n-1} \sum_{i=1}^{n} \frac{d}{di} - \frac{1}{n-1} \cdot \frac{1}{n} \cdot \frac{1}{n-1} \frac{1}{n-$$ 6.10 $$(\bar{x}_{1})'[(\bar{x}_{1}-\bar{x})\underline{u}_{1} + \dots + (\bar{x}_{g}-\bar{x})\underline{u}_{g}]$$ $$=
\bar{x}[(\bar{x}_{1}-\bar{x})n_{1} + \dots + (\bar{x}_{g}-\bar{x})n_{g}]$$ $$= \bar{x}[n_{1}\bar{x}_{1} + \dots + n_{g}\bar{x}_{g}-\bar{x}(n_{1} + \dots + n_{g})]$$ $$= \bar{x}[(n_{1} + \dots + n_{g})\bar{x} - \bar{x}(n_{1} + \dots + n_{g})] = 0$$ 6.11 $$L(\mu_1, \mu_2, \pm) = L(\mu_1, \pm)L(\mu_2, \pm)$$ $$= \left[\frac{1}{(n_1+n_2)p} \frac{1}{2} \frac{n_1+n_2}{|t|^{\frac{n_1+n_2}{2}}} \right] \exp \left\{ -\frac{1}{2} \left(\operatorname{tr} \ t^{-1} [(n_1-1)S_1+(n_2-1)S_2] \right) + n_1 (\bar{x}_1 - \mu_1)^{\frac{1}{2}} t^{-1} (\bar{x}_2 - \mu_2)^{\frac{1}{2}} + n_2 (\bar{x}_2 - \mu_2)^{\frac{1}{2}} t^{-1} (\bar{x}_2 - \mu_2)^{\frac{1}{2}} \right\}$$ using (4-16) and (4-17). The likelihood is maximized with respect to μ_1 and μ_2 at $\hat{\mu}_1 = \bar{x}_1$ and $\hat{\mu}_2 = \bar{x}_2$ respectively and with respect to \hat{x} at $$\frac{2}{7} = \frac{1}{n_1 + n_2} [(n_1 - 1)S_1 + (n_2 - 2)S_2] = \left(\frac{n_1 + n_2 - 2}{n_1 + n_2}\right) S_{pooled}$$ (For the maximization with respect to \ddagger see Result 4.10 with $b = \frac{n_1 + n_2}{2}$ and $B = (n_1 - 1)S_1 + (n_2 - 2)S_2$) # 6.13 a) and b) For first variable: For second variable: Sum of cross products: $$SCP_{tot} = SCP_{mean} + SCP_{fac 1} + SCP_{fac 2} + SCP_{res}$$ $227 = 36 + 148 + 51 - 8$ # c) MANOVA table: | Source of
Variation | SSP | d.f. | |------------------------|--|----------------| | Factor 1 | [104 148]
[148 248] | g1 = 3 - 1 = 2 | | Factor 2 | 90 51
51 54 | b-1=4-1=3 | | Residual | 14 -8 -8 30 | (g-1)(b-1) = 6 | | Total (Corrected) | $\begin{bmatrix} 208 & 191 \\ 191 & 332 \end{bmatrix}$ | gb - 1 = 11 | d) We reject $H_0: \tau_1 = \tau_2 = \tau_3 = 0$ at $\alpha = .05$ level since $$- [(g-1)(b-1) - (\frac{p+1-(g-1)}{2})] \ln \Lambda^* = -[6 - \frac{3-2}{2}] \ln \left(\frac{|SS_{res}|}{|SSP_{fac}|^{+ SSP_{res}}} \right)$$ $$= -5.5 \ln \left(\frac{356}{13204} \right) = 19.87 > \chi_*^2(.05) = 9.49$$ and conclude there are factor 1 effects. We also reject $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$ at the $\alpha = .05$ level since $$- [(g-1)(b-1) - (\frac{p+1-(b-1)}{2}) \ln \Lambda^* = -[6 - \frac{3-3}{2}] \ln \left(\frac{|SSP_{res}|}{|SSP_{fac} 2 + SSP_{res}|} \right)$$ $$= -6 \ln \left(\frac{356}{6887} \right) = 17.77 > \chi_6^2 (.05) = 12.59$$ and conclude there are factor 2 effects. ### 6.14 b) MANOVA Table: c) | Source of
Variation | SSP | d.f. | |------------------------|-------------------------------|--| | Factor 1 | 496 184 184 208 | 2 | | Factor 2 | [36 24]
24 36] | 3 | | Interaction | [32 0]
0 44] | . | | Residual | 312 -84 -84 400 | 12 | | Total (Corrected) | 876 124
124 688 | 23 | | ince -[gb(n-1)-(p | F1 - (g-1)(b-1))/2]&nA*: | = -13.52 n $\frac{ SSP_{res} }{ SSP_{int} + SSP_{res} }$ | = -13.52n(.808) = 2.88 < $$\chi_{12}^2$$ (.05) = 21.03 we do not reject $H_0: Y_{11} = Y_{12} = \dots = Y_{34} = 0$ (no interaction effects) at the α = .05 level. Since $$-[gb(n-1)-(p+1-(g-1))/2] \ln \Lambda^* = -11.5 \ln \left(\frac{|SSP_{res}|}{|SSP_{fac}|^{+} |SSP_{res}|} \right)$$ = -11.5 $$\ln(.2447)$$ = 16.19 > $\chi^2(.05)$ = 9.49 we reject $$H_0:\tau_1 = \tau_2 = \tau_3 = 0$$ (no factor I effects) at the $\alpha = .05$ level. Since $$-[gb(n-1)-(p+1-(b-1))/2]ln\Lambda^* = -12ln\left(\frac{|SSP_{res}|}{|SSP_{fac} 2 + SSP_{res}|}\right)$$ $$= -12 \ln(.7949) = 2.76 < \chi_6^2(.05) = 12.59$$ we do not reject $$H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$ (no factor 2 effects) at the $\alpha = .05$ level. 6.15 Example 6.11, g = b = 2, n = 5; a) For $$H_0: \tau_1 = \tau_2 = 0$$, $\Lambda^* = .3819$ Since $$-[gb(n-1)-(p+1-(g-1))/2] \ln \Lambda^{*} = -14.5 \ln(.3819) =$$ $$= 13.96 > \chi_{3}^{2} (.05) = 7.81,$$ we <u>reject</u> H_0 at α = .05 level. For H_0 : β_1 = β_2 = 0. Δ^* = .5230 and -14.52n (.5230) = 9.40. Again we reject H_0 at α = .05 level. These results are consistent with the exact F tests. 6.16 $$H_0: C\mu = 0; H_1: C\mu \neq 0$$ where $C = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ Summary statistics: $$\bar{x} = \begin{bmatrix} 1906.1 \\ 1749.5 \\ 1509.1 \\ 1725.0 \end{bmatrix}$$; $S = \begin{bmatrix} 105625 & 94759 & 87249 & 94268 \\ & 101761 & 76166 & 81193 \\ & & 91809 & 90333 \\ & & & 104329 \end{bmatrix}$ $$T^2 = n(C\bar{x})'(CSC')^{-1}(C\bar{x}) = 254.7$$ $$\frac{(n-1)(q-1)}{(n-q+1)} F_{q-1,n-q+1}(\alpha) = \frac{(30-1)(4-1)}{(30-4+1)} F_{3,27}(.05) = 9.54$$ Since $T^2 = 254.7 > 9.54$ we reject H_0 at $\alpha = .05$ level. 95% simultaneous confidence interval for "dynamic" versus "static" means $(\mu_1 + \mu_2) - (\mu_3 + \mu_4)$ is, with $C' = [1 \ 1 \ -1 \ -1]$, $C'\bar{x} \pm \sqrt{\frac{(n-1)(q-1)}{(n-q+1)}} \, f_{q-1,n-q+1}(\alpha) \, \sqrt{\frac{c'Sc}{n}}$ $$= 421.5 \pm 174.5$$ \longrightarrow (247.596) Fiffecto | Liteus | Contrast | |--------------|-------------------------------------| | Parity main: | $(\mu_2 + \mu_4) - (\mu_1 + \mu_3)$ | | Format main: | $(\mu_3 + \mu_4) - (\mu_1 + \mu_2)$ | | Interaction: | $(\mu_2 + \mu_3) - (\mu_1 + \mu_4)$ | ### Contrast matrix: $$C = \begin{pmatrix} -1 & 1 & -1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & -1 \end{pmatrix}$$ Since $T^2 = 135.9 > \frac{31(3)}{29}(2.93) = 9.40$, reject $H_0 : \mathbb{C}\mu = 0$ (no treatment effects) at the 5% level. # (b) 95% simultaneous T^2 intervals for the contrasts: Parity main effect: $$-206.4 \pm \sqrt{9.40} \sqrt{\frac{20,598.6}{32}} \rightarrow (-280.3, -125.1)$$ Format main effect: $-307 \pm \sqrt{9.40} \sqrt{\frac{42,939.5}{32}} \rightarrow (-411.4, -186.9)$ Interaction effect: $22.4 \pm \sqrt{9.40} \sqrt{\frac{9,818.5}{32}} \rightarrow (-32.3, 75.0)$ No interaction effect. Parity effect—"different" responses slower than "same" responses. Format effect—"words" slower than "Arabic". (c) The M model of numerical cognition is a reasonable population model for the scores. (d) The multivariate normal model is a reasonable model for the scores corresponding to the parity contrast, the format contrast and the interaction contrast. #### mean vector for females: #### mean vector for males: | X1BAR | X2BAR | |-----------|-----------| | 4.9006593 | 4.7254436 | | 4.6229089 | 4.4775738 | | 3.9402858 | 3.7031858 | SPOOLED 0.0187388 0.0140655 0.0165386 0.0140655 0.0113036 0.0127148 0.0165386 0.0127148 0.0158563 TSQ CVTSQ F CVF PVALUE 85.052001 8.833461 27.118029 2.8164658 4.355E-10 linear combination most responsible for rejection of HO has coefficient vector: COEFFVEC -43.72677 -8.710687 67.546415 95% simultaneous CI for the difference in female and male means LOWER UPPER 0.0577676 0.2926638 0.0541167 0.2365537 0.1290622 0.3451377 Bonferroni CI LOWER UPPER 0.0768599 0.2735714 0.0689451 0.2217252 0.1466248 0.3275751 6.19 a) $$\bar{x}_1 = \begin{bmatrix} 12.219 \\ 8.113 \\ 9.590 \end{bmatrix}$$; $\bar{x}_2 = \begin{bmatrix} 10.106 \\ 10.762 \\ 18.168 \end{bmatrix}$; $$\mathbf{S_1} = \begin{bmatrix} 223.0134 & 12.3664 & 2.9066 \\ & 17.5441 & 4.7731 \\ & & 13.9633 \end{bmatrix}$$ $$S_2 = \begin{bmatrix} 4.3623 & .7599 & 2.3621 \\ 25.8512 & 7.6857 \\ 46.6543 \end{bmatrix};$$ $$S_{pooled} = \begin{bmatrix} 15.8112 & 7.8550 & 2.6959 \\ 20.7458 & 5.8960 \\ 26.5750 \end{bmatrix}$$ $$\left[\left(\frac{1}{n_1} + \frac{1}{n_2}\right)S_{\text{pooled}}\right]^{-1} = \begin{bmatrix} 1.0939 -.4084 -.0203 \\ .8745 -.1525 \\ .5640 \end{bmatrix}$$ $$H_0: \mu_1 - \mu_2 = 0$$ Since $$T^2 = (\bar{x}_1 - \bar{x}_2)^{1} [(\frac{1}{n_1} + \frac{1}{n_2}) S_{pooled}]^{-1} (\bar{x}_1 - \bar{x}_2) = 50.92$$ $$> \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p, n_1 + n_2 - p - 1} (.01) = \frac{(57)(3)}{55} F_{3,55} (.01) = 13,$$ we reject H_0 at the α = .01 level. There is a difference in the (mean) cost vectors between gasoline trucks and diesel trucks. b) $$\hat{a} = S_{\text{pooled}}^{-1} (\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} 3.58 \\ -1.88 \\ -4.48 \end{bmatrix}$$ c) 99% simultaneous confidence intervals are: $$\mu_{11} - \mu_{21}$$: 2.113 ± 3.790 $$\mu_{12} - \mu_{22}$$: -2.650 ± 4.341 $$\mu_{13} - \mu_{23}$$: -8.578 ± 4.913 d) Assumption $\ddagger_1 = \ddagger_2$. Since S_1 and S_2 are quite different, it may not be reasonable to pool. However, using "large sample" theory $(n_1 = 36, n_2 = 23)$ we have, by Result 6.4, $$(\bar{\underline{x}}_1 - \bar{\underline{x}}_2 - (\underline{\mu}_1 - \underline{\mu}_2))' [\frac{1}{n_1} s_1 + \frac{1}{n_2} s_2]^{-1} (\bar{\underline{x}}_1 - \bar{\underline{x}}_2 - (\underline{\mu}_1 - \underline{\mu}_2)) \sim \chi_p^2$$ Since $$(\bar{x}_1 - \bar{x}_2)'[\frac{1}{n_1}S_1 + \frac{1}{n_2}S_2]^{-1}(\bar{x}_1 - \bar{x}_2) = 43.15 > \chi_3^2(.01) = 11.34$$ we reject $H_0: \mu_1 - \mu_2 = 0$ at the $\alpha = .01$ level. This is consistent with the result in part (a). 6.20 (a) - (b) The output below shows that the analysis does not differ when we delete the observation 31 or when we consider it equals 184. Both tests reject the null hypothesis of equal mean difference. The most critical linear combination leading to the rejection of H_0 has coefficient vector [-3.490238; 2.07955]'and the the linear combination most responsible for the rejection of H_0 is the Tail difference. - (c) Results below. Comparing Mean Vectors from Two Populations Obs. 31 Deleted T2 25.005014 5.9914645 Reject HO. There is mean difference 95% simultaneous confidence intervals: LABELCI LICIMD **LSCIMD** Mean Diff. 1: Mean Diff. 2: -11.76436 -1.161905 (Tail difference) -5.985685 8.3392202 (Wing difference) RESULT COEF Coefficient Vector: -3.490238 2.07955 Comparing Mean Vectors from Two Populations T2 C 25.662531 5.9914645 Reject HO. There is mean difference 95% simultaneous confidence intervals: LABELCI LICIMD LSCIMD Mean Diff. 1: -11.78669 -1.27998 Mean Diff. 2: -6.003431 8.1812088 RESULT COEF Coefficient Vector: -3.574268 2.1220203 (d) Female birds are generally larger, since the
confidence interval bounds for difference in Tails (Male - Female) are negative and the confidence interval for difference in Wings includes zero, indicating no significance difference. - 6.21 (a) The (4,2) and (4,4) entries in S_1 and S_2 differ considerably. However, $n_1 = n_2$ so the large sample approximation amounts to pooling. - (b) $H_0: \mu_1 \mu_2 = 0$ and $H_1: \mu_1 \mu_2 \neq 0$ $T^2 = 15.830 > \frac{(38)(4)}{35} F_{4,35}(.05) = 11.47$ so we reject H_0 at the α = .05 level. (c) $$\hat{z} = s_{\text{pooled}}^{-1} (\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} -.24 \\ .16 \\ -3.74 \\ .01 \end{bmatrix}$$ - Looking at the coefficients $\hat{a}_i\sqrt{s_{ii,pooled}}$, which apply to the standardized variables, we see that X_2 : long term interest rate has the largest coefficient and therefore might be useful in classifying a bond as "high" or "medium" quality. - (e) From (b), $T^2 = 15.830$. Have p = 4 and $v = \frac{4+16}{.53556} = 37.344$ so, at the 5% level, the critical value is $$\frac{vp}{v-p+1}F_{p,v-p+1}(.05) = \frac{37.344(4)}{37.344-4+1}F_{4,37,344-4+1}(.05) = \frac{149.376}{34.344}(2.647) = 11.513$$ Since $T^2 = 15.830 > 11.513$, reject $H_0: \mu_1 - \mu_2 = 0$, the same conclusion reached in (b). Notice the critical value here is only slightly larger than the critical value in (b). 6.22 (a) The sample means for female and male are: $$\overline{x}_F = \begin{bmatrix} 0.3136 \\ 5.1788 \\ 2.3152 \\ 38.1548 \end{bmatrix}, \quad \overline{x}_M = \begin{bmatrix} 0.3972 \\ 5.3296 \\ 3.6876 \\ 49.3404 \end{bmatrix}.$$ The Hotelling's $T^2 = 96.487 > 11.00$ where 11.00 is a critical point corresponding to $\alpha = 0.05$. Therefore, we reject $H_0: \mu_1 - \mu_2 = 0$. The coefficient of the linear combination of most responsible for rejection is (-95.600, 6.145, 5.737, -0.762)'. (b) The 95% simultaneous C. I. for female mean - male mean: $$\begin{bmatrix} -0.1697234, & 0.00252336 \\ -1.4650835, & 1.16348346 \\ -1.8760572, & -0.8687428 \\ -17.032834, & -5.3383659 \end{bmatrix}$$ (c) We cannot extend the obtained result to the population of persons in their midtwenties. Firstly this was a self selected sample of volunteers (friends) and is not even a random sample of graduate students. Further, graduate students are probably more sedentary than the typical persons of their age. 6.23 $$n_{1} = n_{2} = n_{3} = 50; \quad p = 2, \quad g = 3 \quad \left(\text{sepal width and petal width} \right)$$ $$\bar{x}_{1} = \begin{bmatrix} 3.428 \\ .306 \end{bmatrix}; \quad s_{1} = \begin{bmatrix} .14364 & -.00474 \\ .18576 \end{bmatrix}$$ $$\bar{x}_{2} = \begin{bmatrix} 2.770 \\ 1.326 \end{bmatrix}; \quad s_{2} = \begin{bmatrix} .09860 & .04128 \\ .03920 \end{bmatrix}$$ $$\bar{x}_{3} = \begin{bmatrix} 2.974 \\ 2.026 \end{bmatrix}; \quad s_{3} = \begin{bmatrix} .10368 & .04764 \\ .07563 \end{bmatrix}$$ #### MANOVA Table: | Source | SSP | d.f. | |-----------|--|------| | Treatment | $B = \begin{bmatrix} 11.344 & -21.820 \\ & 75.352 \end{bmatrix}$ | 2 | | Residual | $W = \begin{bmatrix} 16.950 & 4.125 \\ & 14.729 \end{bmatrix}$ | 147 | | Total | $B+W = \begin{bmatrix} 28.294 & -17.695 \\ & 90.081 \end{bmatrix}$ | 149 | $$\Lambda^* = \frac{|W|}{|B+W|} = \frac{232.64}{2235.64} = .104$$ Since $$\left(\frac{\Sigma n_{\chi}-p-2}{p}\right)\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) = 153.3 > 2.37 = F_{4,292}(.05)$$ we reject H_0 : $\tau_1 = \tau_2 = \tau_3$ at the $\alpha = .05$ level. 6.24 Wilks' lambda: $$\Lambda^* = .8301$$. Since $g = 3$, $\left(\frac{90 - 4 - 2}{4}\right) \left(\frac{1 - \sqrt{.8301}}{\sqrt{.8301}}\right) = 2.049$ is an F value with 8 and 168 degrees of freedom. Since p-value = P(F > 2.049) = .044, we would just reject the null hypothesis $H_0: \underline{\tau}_1 = \underline{\tau}_2 = \underline{\tau}_3 = \underline{0}$ at the 5% level implying there is a time period effect. F statistics and p-values for ANOVA's: | | <u>F</u> | <i>p</i> -value | |----------|----------|-----------------| | MaxBrth: | 3.66 | .030 | | BasHght: | 0.47 | .629 | | BasLgth: | 3.84 | .025 | | NasHght: | 0.10 | .901 | Any differences over time periods are probably due to changes in maximum breath of skull (MaxBrth) and basialveolar length of skull (BasLgth). 95% Bonferroni simultaneous intervals: m = pg(g-1)/2 = 12, $t_{87}(.05/24) = 2.94$ BasBrth $$au_{11} - au_{21}: -1 \pm 2.94 \sqrt{\frac{1785.4}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow -1 \pm 3.44$$ $au_{11} - au_{31}: -3.1 \pm 3.44$ $au_{21} - au_{31}: -2.1 \pm 3.44$ BasHght $au_{12} - au_{22}: 0.9 \pm 2.94 \sqrt{\frac{1924.3}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow 0.9 \pm 3.57$ $au_{12} - au_{32}: -0.2 \pm 3.57$ $au_{22} - au_{32}: -1.1 \pm 3.57$ BasLgth $au_{13} - au_{23}: 0.10 \pm 2.94 \sqrt{\frac{2153}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow 0.10 \pm 3.78$ $au_{13} - au_{33}: 3.14 \pm 3.78$ $au_{23} - au_{33}: 3.03 \pm 3.78$ NasHgth $au_{14} - au_{24}: 0.30 \pm 2.94 \sqrt{\frac{840.2}{87} \left(\frac{1}{30} + \frac{1}{30}\right)} \longrightarrow 0.30 \pm 2.36$ $au_{14} - au_{34}: -0.03 \pm 2.36$ $au_{24} - au_{34}: -0.33 \pm 2.36$ All the simultaneous intervals include 0. Evidence for changes in skull size over time is marginal. If changes exist, then these changes might be in maximum breath and basialveolar length of skull from time periods 1 to 3. The usual MANOVA assumptions appear to be satisfied for these data. 6.25 Without transforming the data, $\Lambda^* = |W| = .1159$ and F = 18.98. |B + W| After transformation, $\Lambda^* = .1198$ and $F = 18.52 > F_{10.98}(.05) = 1.93$ There is a clear need for transforming the data to make the hypothesis tenable. To test for parallelism, consider H_{01} : $C\mu_1 = C\mu_2$ with C given by (6-61). $$C(\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} -.413 \\ -.167 \\ -.036 \end{bmatrix}; \quad (CS_{pooles}C')^{-1} = \begin{bmatrix} 1.674 & .947 & .616 \\ & 2.014 & 1.144 \\ & & 2.341 \end{bmatrix}$$ $T^2 = 9.58 > c^2 = 8.0$, we reject H_0 at the $\alpha = .05$ level. The excess electrical usage of the test group was much lower than that of the control group for the 11 A.M., 1 P.M. and 3 P.M. hours. The similar 9 A.M. usage for the two groups contradicts the parallelism hypothesis. - 6.27 a) Plots of the husband and wife profiles look similar but seem disparate for the level of "companionate love that you feel for your partner". - b) Parallelism hypothesis $H_0: C\mu_1 = C\mu_2$ with C given by (6-61). $$C(\bar{x}_1 - \bar{x}_2) = \begin{bmatrix} -.13 \\ -.17 \\ .33 \end{bmatrix}; \quad CS_{pooled}C' = \begin{bmatrix} .685 & .733 & .029 \\ & .870 & -.028 \\ & .095 \end{bmatrix}$$ For α = .05, c^2 = 8.7 (see (6-62)). Since T^2 = 19.58 > c^2 = 8.7 we reject H_0 at the α = .05 level. 6.28 $T^2 = 106.13 > 16.59$. We reject $H_0: \mu_1 - \mu_2 = 0$ at 5% significance level. There is a significant difference in the two species. Sample Mean for L.torrens and L.carteri: | L.torrens | L.carteri | Difference | |-----------|-----------|------------| | 96.457 | 99.343 | -2.886 | | 42.914 | 43.743 | -0.829 | | 35.371 | 39.314 | -3.943 | | 14.514 | 14.657 | -0.143 | | 25.629 | 30.000 | -4.371 | | 9.571 | 9.657 | -0.086 | | 9.714 | 9.371 | 0.343 | Pooled Sample Covariance Matrix: ``` 6.078 3.675 2.426 2.649 14.595 9.573 36.008 16.639 2.764 2.992 6.101 1.053 0.934 0.692 1.615 0.211 0.671 6.437 0.274 0.229 3.039 2.407 0.565 0.637 13.767 1.213 0.914 0.990 ``` Linear Combination of most responsible for rejection of Ho: L.torrens mean - L.carteri mean = 0 is: (0.006, 0.151, -0.854, 0.268, -0.383, -2.187, 2.971)' 95% Simultaneous C. I. for L.torrens mean - L.carteri mean: ``` UPPER LOWER -8.73 2.96 -4.80 3.14 -6.41 -1.47 -1.84 1.55 -0.76 -7.98 0.99 -1.16 -0.63 1.31 ``` The third and fifth components are most responsible for rejecting H_0 . The χ^2 plots look fairy straight. # CHI-SQUARE PLOT FOR L.carteri 6.29 (a). | | XBAR | S | |---------------------|---------|----------------------------------| | Summary Statistics: | 0.02548 | 0.00366259 0.00482862 0.00154159 | | Jumped y | 0.05784 | 0.00482862 0.01628931 0.00304801 | | | 0.01056 | 0.00154159 0.00304801 0.00602526 | Hotelling's $T^2 = 5.946$. The critical point is 9.979 and we fail to reject $H_0: \mu_1 - \mu_2 = 0$ at 5% significance level. (b). (c). | | LUWER | UPPER | |---------------------|---------|--------| | Bonferroni C. I.: | -0.0057 | 0.0566 | | | -0.0079 | 0.1235 | | | -0.0294 | 0.0505 | | Simultaneous C. I.: | -0.0128 | 0.0637 | | | -0.0228 | 0.1385 | | | -0.0385 | 0.0596 | | | | | 6.30 HOTELLING T SQUARE - 9.0218 P-VALUE 0.3616 | | | | | T2 INT | ERVAL | BONFER | RONI | |------------|----|----------|---------|--------|-------|--------|--------| | | N | MEAN | STDEV | T | 0 | TO | | | x1 | 24 | 0.00012 | 0.04817 | 0443 | .0445 | 0283 | .0285 | | x2 | 24 | -0.00325 | 0.02751 | 0286 | .0221 | 0195 | .0130 | | xЗ | 24 | -0.0072 | 0.1030 | 1020 | .0876 | 0679 | . 0535 | | ×4 | 24 | -0.0123 | 0.0625 | 0701 | .0455 | 0493 | .0247 | | x 5 | 24 | 0.01513 | 0.03074 | 0130 | .0436 | 0030 | .0333 | | хб | 24 | 0.00017 | 0.04689 | 0430 | .0434 | 0275 | .0278 | The Bonferroni intervals use t (.00417) = 2.89 and the T intevals use the constant 4.516. # 6.31 (a) Two-factor MANOVA of peanuts data 7.1291666667 X3 | E = | Error SS&CP Matrix | | | |-----|-----------------------|-------------|--------------| | | X1 | X2 | X3 | | X1 | 104.205 | 49.365 | 76.48 | | X2 | 49.365 | 352.105 | 121.995 | | ХЗ | 76.48 | 121.995 | 94.835 | | H = | Type III SS&CP Matrix | for FACTOR1 | (Location) | | | X1 | X2 | хз | | X1 | 0.7008333333 | -10.6575 | 7.1291666667 | | X2 | -10.6575 | 162.0675 | -108 4125 | Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall FACTOR1 Effect H = Type III SS&CP Matrix for FACTOR1 E = Error SS&CP Matrix -108.4125 72.520833333 | S=1
$M=0.5$ $N=1$ | | | | | | |------------------------|------------|---------|--------|--------|--------| | Statistic | Value | F | Num DF | Den DF | Pr > F | | Wilks' Lambda | 0.10651620 | 11.1843 | 3 | 4 | 0.0205 | | Pillai's Trace | 0.89348380 | 11.1843 | 3 | 4 | 0.0205 | | Hotelling-Lawley Trace | 8.38824348 | 11.1843 | 3 | 4 | 0.0205 | | Roy's Greatest Root | 8.38824348 | 11.1843 | 3 | 4 | 0.0205 | | | | | | | | | H = Ty | pe III SS&CP Matrix | for FACTOR2 | (Variety) | |-----------|---------------------|-------------|--------------| | | X1 | X2 | 73 X3 | | X1 | 196.115 | 365.1825 | 42.6275 | | X2 | 365.1825 | 1089.015 | 414.655 | | ХЗ | 42.6275 | 414.655 | 284.10166667 | Manova Test Criteria and F Approximations for the Hypothesis of no Overall FACTOR2 Effect H = Type III SS&CP Matrix for FACTOR2 E = Error SS&CP Matrix | S=2 M=0 N=1 | | | | | | |------------------------|-------------|---------|--------|--------|--------| | Statistic | Value | F | Num DF | Den DF | Pr > F | | Wilks' Lambda | 0.01244417 | 10.6191 | 6 | 8 | 0.0019 | | Pillai's Trace | 1.70910921 | 9.7924 | 6 | 10 | 0.0011 | | Hotelling-Lawley Trace | 21.37567504 | 10.6878 | 6 | 6 | 0.0055 | | Roy's Greatest Root | 18.18761127 | 30.3127 | 3 | 5 | 0.0012 | #### H = Type III SS&CP Matrix for FACTOR1*FACTOR2 | | X1 | X2 | хз | |-----------|--------------|----------|--------------| | X1 | 205.10166667 | 363.6675 | 107.78583333 | | X2 | 363.6675 | 780.695 | 254.22 | | ХЗ | 107.78583333 | 254.22 | 85.951666667 | Manova Test Criteria and F Approximations for the Hypothesis of no Overall FACTOR1*FACTOR2 Effect H = Type III SS&CP Matrix for FACTOR1*FACTOR2 E = Error SS&CP Matrix | S=2 $M=0$ $N=1$ | | | | | | |------------------------|------------|---------|--------|--------|--------| | Statistic | Value | F | Num DF | Den DF | Pr > F | | Wilks' Lambda | 0.07429984 | 3.5582 | 6 | 8 | 0.0508 | | Pillai's Trace | 1.29086073 | 3.0339 | 6 | 10 | 0.0587 | | Hotelling-Lawley Trace | 7.54429038 | 3.7721 | 6 | 6 | 0.0655 | | Roy's Greatest Root | 6.82409388 | 11.3735 | 3 | 5 | 0.0113 | (b) The residuals for X_2 at location 2 for variety 5 seem large in absolute value, but Q-Q plots of residuals indicate that univariate normality cannot be rejected for all three variables. | CODE | FACTOR1 | FACTOR2 | PRED1 | RES1 | PRED2 | RES2 | PRED3 | RES3 | |------|------------|---------|--------|-------|--------|-------|-------|-------| | a | 4 1 | 5 | 194.80 | 0.50 | 160.40 | -7.30 | 52.55 | -1.15 | | a | 1 | 5 | 194.80 | -0.50 | 160.40 | 7.30 | 52.55 | 1.15 | | | 2 | 5 | 185.05 | 4.65 | 130.30 | 9.20 | 49.95 | 5.55 | | ъ | 2 | 5 | 185.05 | -4.65 | 130.30 | -9.20 | 49.95 | -5.55 | | C | . 1 | 6 | 199.45 | 3.55 | 161.40 | -4.60 | 47.80 | 2.00 | | С | 1 | 6 | 199.45 | -3.55 | 161.40 | 4.60 | 47.80 | -2.00 | | ď | 2 | 6 | 200.15 | 2.55 | 163.95 | 2.15 | 57.25 | 3.15 | | đ | 2 | 6 | 200.15 | -2.55 | 163.95 | -2.15 | 57.25 | -3.15 | | е | 1 | 8 | 190.25 | 3.25 | 164.80 | -0.30 | 58.20 | -0.40 | | e | 1 | 8 | 190.25 | -3.25 | 164.80 | 0.30 | 58.20 | 0.40 | | f | 2 | 8 | 200.75 | 0.75 | 170.30 | -3.50 | 66.10 | -1.10 | | f | 2 | 8 | 200.75 | -0.75 | 170.30 | 3.50 | 66.10 | 1.10 | (c) Univariate two factor ANOVAs follow. Evidence of variety effect and, for X_1 = yield and X_2 = sound mature kernel, a location*variety interaction. Dependent Variable: yield | DF | | | Mean Square | F Value | Pr > F | |------|--|---|---|--|--| | 5 | 401.917 | 75000 | 80.3835000 | 4.63 | 0.0446 | | 6 | 104.205 | 50000 | 17.3675000 | | | | 11 | 506.122 | 25000 | | | | | | | | | | | | Coef | f Var | Root | MSE yield Me | ean | | | 2.1 | 36324 | 4.167 | 7433 195.07 | 750 | | | | | | | | | | DF | Type I | II SS | Mean Square | F Value | Pr > F | | 4 | 0.700 | ายสสส | 0.7008333 | 0.04 | 0.8474 | | 9 | | | - | 5.65 | 0.0418 | | 2 | | | 102.5508333 | 5.90 | 0.0382 | | | 5
6
11
Coef
2.13
DF
1
2 | DF Squ 5 401.917 6 104.209 11 506.122 Coeff Var 2.136324 DF Type II 1 0.700 2 196.119 | 5 401.9175000 6 104.2050000 11 506.1225000 Coeff Var Root 2.136324 4.167 DF Type III SS 1 0.7008333 2 196.1150000 | DF Squares Mean Square 5 401.9175000 80.3835000 6 104.2050000 17.3675000 11 506.1225000 Coeff Var Root MSE yield Me 2.136324 4.167433 195.07 DF Type III SS Mean Square 1 0.7008333 0.7008333 2 196.1150000 98.0575000 | DF Squares Mean Square F Value 5 401.9175000 80.3835000 4.63 6 104.2050000 17.3675000 11 506.1225000 Coeff Var Root MSE yield Mean 2.136324 4.167433 195.0750 DF Type III SS Mean Square F Value 1 0.7008333 0.7008333 0.04 2 196.1150000 98.0575000 5.65 | # Dependent Variable: sdmatker | - | Source | DF | Sum of
Squares | Mean Square | F Value | Pr > F | |------|-----------------------------|---------|-------------------|--------------|---------|--------| | | Model | 5 | 2031.777500 | 406.355500 | 6.92 | 0.0177 | | | Error | 6 | 352.105000 | 58.684167 | | | | | Corrected Total | 11 | 2383.882500 | | | | | | | | | uos admotkon | Noan | | | | R-Square | Coeff | Var Root | MSE sdmatker | Mean | | | | 0.852298 | 4.83 | 2398 7.660 | 559 158. | 5250 | | | | | | | | | | | | Source | DF | Type III SS | Mean Square | F Value | Pr > F | | | | 1: | 162.067500 | 162.067500 | 2.76 | 0.1476 | | | location | 2 | 1089.015000 | 544.507500 | 9.28 | 0.0146 | | | variety
location*variety | 2 | 780.695000 | 390.347500 | 6.65 | 0.0300 | | | 10Cation variety | | | | | | | | | | The GLM Procedu | ire | | | | | ndent Variable: seedsize | | | | | | | Depe | indent variable. Scousing | | | | | | | | | | Sum of | | 2 | | | | Source | DF | Squares | Mean Square | F Value | Pr > F | | | Model | 5 | 442.5741667 | 88.5148333 | 5.60 | 0.0292 | | | Error | 6 | 94.8350000 | 15.8058333 | | | | | Corrected Total | 11 | 537.4091667 | | | | | | | | | | | | | | R-Square | Coeff | Var Root | MSE seedsize | Mean | | | | 0.823533 | 7.18 | 8166 3.975 | 5655 55. | 30833 | | | | | | | | | | | | Source | DF | Type III SS | Mean Square | F Value | Pr > F | | | • | 1 | 72.5208333 | 72.5208333 | 4.59 | 0.0759 | | | location | 1,
2 | 284.1016667 | 142.0508333 | 8.99 | 0.0157 | | | variety | 2 | 85.9516667 | 42.9758333 | 2.72 | 0.1443 | | | location*variety | | 00.00.007 | | | | (d) Bonferroni simultaneous comparisons of variety. Only varieties 5 and 8 differ, and they differ only on X_3 . Bonferroni (Dunn) T tests for variable: X1 Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 38.66333 Critical Value of T= 3.01576 Minimum Significant Difference= 13.26 Comparisons significant at the 0.05 level are indicated by '***'. | | Simultaneous | | Simultaneous | |------------|--------------|------------|--------------| | | Lower | Difference | Upper | | FACTOR2 | Confidence | Between | Confidence | | Comparison | Limit | Means | Limit | | 6 - 8 | -8.960 | 4.300 | 17.560 | | 6 - 5 | -3.385 | 9.875 | 23.135 | | 8 - 6 | -17.560 | -4.300 | 8.960 | | 8 - 5 | -7.685 | 5.575 | 18.835 | | 5 - 6 | -23.135 | -9.875 | 3.385 | | 5 - 8 | -18.835 | -5.575 | 7.685 | | | | | | Bonferroni (Dunn) T tests for variable: X2 Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 141.6 Critical Value of T= 3.01576 Minimum Significant Difference= 25.375 Comparisons significant at the 0.05 level are indicated by '***'. | | | Simultaneous | | Simultaneous | |-----|----------------|--------------|------------|--------------| | | | Lower | Difference | Upper | | FA | CTOR2 | Confidence | Between | Confidence | | Соп | parison | Limit | Means | Limit | | 8 | - 6 | -20.500 | 4.875 | 30.250 | | 8 | - 5 | -3.175 | 22.200 | 47.575 | | 6 | - 8 | -30.250 | -4.875 | 20.500 | | 6 | - 5 | -8.050 | 17.325 | 42.700 | | 5 | - 8 | -47.575 | -22.200 | 3.175 | | 5 | - 6 | -42.700 | -17.325 | 8.050 | Bonferroni (Dunn) T tests for variable: X3 Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 22.59833 Critical Value of T= 3.01576 Minimum Significant Difference= 10.137 Comparisons significant at the 0.05 level are indicated by '***'. | | | Simultaneous | Simultaneous | | | |----|--------------|--------------|--------------|------------|-----| | | | Lower | Difference | Upper | | | F | FACTOR2 | Confidence | Between | Confidence | | | Cc | mparison | Limit | Means | Limit | | | 8 | - 6 | -0.512 | 9.625 | 19.762 | | | 8 | - 5 | 0.763 | 10.900 | 21.037 | *** | | 6 | - 8 | -19.762 | -9.625 | 0.512 | | | 6 | - 5 | -8.862 | 1.275 | 11.412 | | | 5 | - 8 | -21.037 | -10.900 | -0.763 | *** | | 5 | - <u>1</u> 6 | -11 A19 | -1 275 | 8 867 | | 6.32 (a) MANOVA for Species: Wilks' lambda $\Lambda_1^* = .00823$ F = 5.011; p-value = P(F > 5.011) = .173 $F_{4.2}(.05) = 19.25$ Do not reject H_0 : No species effects MANOVA for Nutrient: Wilks' lambda $\Lambda_2^* = .31599$ $$F = 1.082$$; p -value = $P(F > 1.082) = .562$ $F_{2.1}(.05) = 199.5$ Do not reject H_0 : No nutrient effects (b) Minitab output for the two-way ANOVA's: #### 560CM Analysis of Variance for 560CM | Source | DF | SS | MS | F | P | |----------|----|--------|--------|-------|-------| | Spec | 2 | 47.476 | 23.738 | 10.06 | 0.090 | | Nutrient | 1 | 8.260 | 8.260 | 3.50 | 0.202 | | Error | 2 | 4.722 | 2.361 | • | | | Total | 5 | 60.458 | | | | #### <u>720CM</u> Analysis of Variance for 720CM | Source | DF | SS | MS | F | P | |----------|----|---------|---------|-------|-------| | Spec | 2 |
262.239 | 131.119 | 28.82 | 0.034 | | Nutrient | .1 | 4.489 | 4.489 | 0.99 | 0.425 | | Error | 2 | 9.099 | 4.550 | | | | Total | 5 | 275.827 | | | | The ANOVA results are mostly consistent with the MANOVA results. The exception is for 720CM where there appears to be Species effects. A look at the data suggests the spectral reflectance of Japanese larch (JL) at 720 nanometers is somewhat larger than the reflectance of the other two species (SS and LP) regardless of nutrient level. This difference is not as apparent at 560 nanometers. For MANOVA, the value of Wilks' lambda statistic does not indicate Species effects. However, Pillai's trace statistic, 1.6776 with F = 5.203 and p-value = .07, suggests there may be Species effects. (For Nutrient, Wilks' lambda and Pillai's trace statistic give the same F value.) For larger sample sizes, Wilks' lambda and Pillai's trace statistic would give essentially the same result for all factors. 6.33 (a) MANOVA for Species: Wilks' lambda $\Lambda_1^* = .06877$ $$F = 36.571$$; p -value = $P(F > 36.571) = .000$ $$F_{4.52}(.05) = 2.55$$ Reject H_0 : No species effects MANOVA for Time: Wilks' lambda $$\Lambda_2^* = .04917$$ $$F = 45.629$$; p -value = $P(F > 45.629) = .000$ $$F_{4,52}(.05) = 2.55$$ Reject H_0 : No time effects MANOVA for Species*Time: Wilks' lambda $\Lambda_{12}^* = .08707$ $$F = 15.528$$; p -value = $P(F > 15.528) = .000$ $$F_{8,52}(.05) = 2.12$$ Reject H₀: No interaction effects (b) A few outliers but, in general, residuals approximately normally distributed (see histograms below). Observations are likely to be positively correlated over time. Observations are not independent. Histogram of the Residuals (response is 560nm) Histogram of the Residuals (response is 720nm) (c) Interaction shows up for the 560nm wavelength but not for the 720nm wavelength. See the Minitab ANOVA output below. Analysis of Variance for 560nm | Source | DF | SS | MS | F | D | |--------------|----|---------|--------|--------|-------| | Species | 2 | 965.18 | 482.59 | 169.97 | 0.000 | | Time | 2 | 1275.25 | 637.62 | 224.58 | 0.000 | | Species*Time | 4 | 795.81 | 198.95 | | 0.000 | | Error | 27 | 76.66 | 2.84 | , 0.07 | 0.000 | | Total | 35 | 3112.90 | 2.01 | | | #### Analysis of Variance for 720nm | | | | P* | | | |--------------|-----|---------|---------|-------|-------| | Source | DF | SS | MS | F | Þ | | Species | 2 | 2026.86 | 1013.43 | 15.46 | 0.000 | | Time | 2 | 5573.81 | 2786.90 | 42.52 | 0.000 | | Species*Time | . 4 | 193.55 | 48.39 | 0.74 | 0.574 | | Error | 27 | 1769.64 | 65.54 | | | | Total | 35 | 9563 85 | | | | #### 6.33 (Continued) - (d) The data might be analyzed using the growth curve methodology discussed in Section 6.4. The data might also be analyzed assuming species are "nested" within date. In this case, an interesting question is: Is spectral reflectance the same for all species for each date? - 6.34 Fitting a linear growth curve to calcium measurements on the dominant ulna | | XBAR | Grand mean | MLE of beta $[B'Sp^{-}(-1)B]^{-}(-1)$ | |---|----------------|---|---------------------------------------| | | 72.3800 69.28 | 875 71.1939 | 73.4707 70.5049 93.1313 -5.2393 | | | 73.2933 70.65 | 71.8273 | | | | 72.4733 71.18 | | -1.9035 -0.9818 -5.2393 1.2948 | | | 64.7867 64.53 | | | | | | 00.2007 | | | | S1 | | | | | | AA —A AA—————————————————————————————— | S2 | | | | 06 73.3623 74.5890 | | | | | 64 72.9555 71.7728 | | | | | 55 71.8907 63.5918 | | | | 74.5890 71.77 | 28 63.5918 75.4441 | 86.1111 88.2095 80.5506 81.4156 | | | Cmaalad | | | | | Spooled | | W = (N-g)*Spooled | | | | 00 81.7003 80.5487 | | | | | 48 80.8108 80.2745 | 2660.749 2756.009 2343.514 2327 961 | | 1 | 81.7003 80.810 | 08 79.3694 72.3636 | 2369.308 2343.514 2301.714 2098.544 | | 1 | 80.5487 80.274 | 15 72.3636 78.5328 | 2335.912 2327.961 2098.544 2277.452 | | | | | 2021.001 2030.044 2211.402 | | I | Estimated cova | riance matrix | W1 | | | 7.1816 -0.404 | | 2803.839 2610.438 2271.920 2443.549 | | | -0.4040 0.099 | | | | | 0.0000 0.000 | | 2610.438 2821.243 2464.120 2196.065 | | | | | 2271.920 2464.120 2531.625 1845.313 | | | 0.0000 0.000 | 0 -0.3788 0.0936 | 2443.549 2196.065 1845.313 2556.818 | | | | | | Lambda = |W|/|W1| = 0.201 Since, with $\alpha = 0.01$, $-\left[N - \frac{1}{2}(p - q + g)\right] \log(\Lambda) = 45.72 > \chi^2_{(4-1-1)2}(0.01) = 13.28$, we reject the null hypothesis of a linear fit at $\alpha = 0.01$. 6.35 Fitting a quadratic growth curve to calcium measurements on the dominant ulna, treating all 31 subjects as a single group. | XBAR MLE of beta | [B'Sp^(-1)B]^(-1) | |---------------------------------|-------------------------------------| | 70.7839 71.6039 | 92.2789 -5.9783 0.0799 | | 71.9323 3.8673 | -5.9783 9.3020 -2.9033 | | 71.8065 -1.9404 | 0.0799 -2.9033 1.0760 | | 64.6548 | | | | | | S | W = (n-1)*S | | 94.5441 90.7962 80.0081 78.0676 | 2836.322 2723.886 2400.243 2342.027 | | 90.7962 93.6616 78.9965 77.7725 | 2723.886 2809.848 2369.894 2333.175 | | 80.0081 78.9965 77.1546 70.0366 | 2400.243 2369.894 2314.639 2101.099 | | 78.0676 77.7725 70.0366 75.9319 | 2342.027 2333.175 2101.099 2277.957 | | | | | Estimated covariance matrix | W2 | | 3.1894 -0.2066 0.0028 | 2857.167 2764.522 2394.410 2369.674 | | -0.2066 0.3215 -0.1003 | 2764.522 2889.063 2358.522 2387.070 | | 0.0028 -0.1003 0.0372 | 2394.410 2358.522 2316.271 2093.362 | | | 2369.674 2387.070 2093.362 2314.625 | Lambda = |W|/|W2| = 0.7653 Since, with $\alpha = 0.01$, $-\left[n - \frac{1}{2}(p - q + 1)\right] \log(\Lambda) = 7.893 > \chi^2_{4-2-1}(0.01) = 6.635$, we reject the null hypothesis of a quadratic fit at $\alpha = 0.01$. #### **6.36** Here $$p = 2$$, $n_1 = 45$, $n_2 = 55$, $\ln |S_1| = 19.90948$, $\ln |S_2| = 18.40324$, $\ln |S_{pooled}| = 19.27712$ so $$u = \left[\frac{1}{44} + \frac{1}{54} - \frac{1}{44 + 54}\right] \left[\frac{2(4) + 3(2) - 1}{6(2+1)(2-1)}\right] = .02242$$ and $$C = (1 - .02242)(98(19.27712) - 44(19.90948) - 54(18.40324)) = 18.93$$ The chi-square degrees of freedom $v = \frac{1}{2}2(3)(1) = 3$ and $\chi_3^2(.05) = 7.81$. Since $C = 18.93 > \chi_3^2(.05) = 7.83$, reject $H_0: \Sigma_1 = \Sigma_2 = \Sigma$ at the 5% level. 6.37 Here $$p = 3$$, $n_1 = 24$, $n_2 = 24$, $\ln |S_1| = 9.48091$, $\ln |S_2| = 6.67870$, $\ln |S_{pooled}| = 8.62718$ so $$u = \left[\frac{1}{23} + \frac{1}{23} - \frac{1}{23 + 23}\right] \left[\frac{2(9) + 3(3) - 1}{6(3+1)(2-1)}\right] = .07065$$ and $$C = (1 - .07065)(46(8.62718) - 23(9.48091) - 23(6.67870)) = 23.40$$ The chi-square degrees of freedom $v = \frac{1}{2}3(4)(1) = 6$ and $\chi_6^2(.05) = 12.59$. Since $C = 23.40 > \chi_6^2(.05) = 12.59$, reject $H_0: \Sigma_1 = \Sigma_2 = \Sigma$ at the 5% level. **6.38** Working with the transformed data, X_1 = vanadium, X_2 = $\sqrt{\text{iron}}$, X_3 = $\sqrt{\text{beryllium}}$, X_4 = 1/{saturated hydrocarbons}, X_5 = aromatic hydrocarbons, we have p = 5, $n_1 = 7$, $n_2 = 11$, $n_3 = 38$, $\ln |S_1| = -17.81620$, $\ln |S_2| = -7.24900$, $\ln |S_3| = -7.09274$, $\ln |S_{pooled}| = -7.11438$ so $$u = \left[\frac{1}{6} + \frac{1}{10} + \frac{1}{37} - \frac{1}{6+10+37}\right] \left[\frac{2(25) + 3(5) - 1}{6(5+1)(3-1)}\right] = .24429$$ and $$C = (1 - .24429)(53(-7.11438) - 6(-17.81620) - 10(-7.24900) - 37(-7.09274)) = 48.94$$ The chi-square degrees of freedom $v = \frac{1}{2}5(6)(2) = 30$ and $\chi_{30}^2(.05) = 43.77$. Since $C = 48.94 > \chi_{30}^2(.05) = 43.77$, reject $H_0: \Sigma_1 = \Sigma_2 = \Sigma_3 = \Sigma$ at the 5% level. **6.39** (a) Following Example 6.5, we have $(\bar{x}_F - \bar{x}_M)' = (119.55, 29.97)$, $$\left[\frac{1}{28}S_F + \frac{1}{28}S_M\right]^{-1} = \begin{bmatrix} .033186 & -.108533 \\ -.108533 & .423508 \end{bmatrix} \text{ and } T^2 = 76.97. \text{ Since}$$ $T^2 = 76.97 > \chi_2^2(.05) = 5.99$, we reject $H_0: \mu_F - \mu_M = 0$ at the 5% level. (b) With equal sample sizes, the large sample procedure is essentially the same as the procedure based on the pooled covariance matrix. (c) Here p=2, $$t_{54}(.05/2(2)) \approx z(.0125) = 2.24$$, $\left[\frac{1}{28}S_F + \frac{1}{28}S_M\right] = \begin{bmatrix} 186.148 & 47.705 \\ 47.705 & 14.587 \end{bmatrix}$, so $\mu_{\text{Fl}} - \mu_{\text{MI}}$: 119.55 ± 2.24 $\sqrt{186.148} \rightarrow (88.99, 150.11)$ $$\mu_{\rm F2} - \mu_{\rm M2}$$: 29.97 ± 2.24 $\sqrt{14.587} \rightarrow$ (21.41, 38.52) Female Anacondas are considerably longer and heavier than males. 6.41 Three factors: (Problem) Severity, (Problem) Complexity and (Engineer) Experience, each at two levels. Two responses: Assessment time, Implementation time. MANOVA results for significant (at the 5% level) effects. | Effect | Wilks' lambda | F | P-value | |---------------------|---------------|-------|---------| | Severity | .06398 | 73.1 | .000 | | Complexity | .01852 | 265.0 | .000 | | Experience | .03694 | 130.4 | .000 | | Severity*Complexity | .33521 | 9.9 | .004 | Individual ANOVA's for each of the two responses, Assessment time and Implementation time, show only the same three main effects and two factor interaction as significant with p-values for the appropriate F statistics less than .01 in all cases. We see that both assessment time and implementation time is affected by problem severity, problem complexity and engineer experience as well as the interaction between severity and complexity. Because of the interaction effect, the main effects severity and complexity are not additive and do not have a clear interpretation. For this reason, we do not calculate simultaneous confidence intervals for the magnitudes of the mean differences in times across the two levels of each of these main effects. There is no interaction term associated with experience however. Since there are only two levels of experience, we can calculate ordinary t intervals for the mean difference in assessment time and the mean difference in implementation time for gurus (G) and novices (N).
Relevant summary statistics and calculations are given below. Error sum of squares and crossproducts matrix = $\begin{bmatrix} 2.222 & 1.217 \\ 1.217 & 2.667 \end{bmatrix}$ Error deg. of freedom: 11 Assessment time: $\bar{x}_G = 3.68, \bar{x}_N = 5.39$ 95% confidence interval for mean difference in experience: $$3.68 - 5.39 \pm 2.201 \sqrt{\frac{2.222}{11} \frac{2}{8}} = -1.71 \pm .49 \rightarrow (-2.20, -1.22)$$ Implementation time: $\bar{x}_G = 6.80, \bar{x}_N = 10.96$ 95% confidence interval for mean difference in experience: $$6.80 - 10.96 \pm 2.201 \sqrt{\frac{2.667}{11} \frac{2}{8}} = -4.16 \pm .54 \rightarrow (-4.70, -3.62)$$ The decrease in mean assessment time for gurus relative to novices is estimated to be between 1.22 and 2.20 hours. Similarly the decrease in mean implementation time for gurus relative to novices is estimated to be between 3.62 and 4.70 hours. # Chapter 7 7.1 $$\hat{\beta} = (Z'Z)^{-1}Z'y = \frac{1}{120} \begin{bmatrix} 120 & -10 \\ -10 & 1 \end{bmatrix} \begin{bmatrix} 72 \\ 872 \end{bmatrix} = \frac{1}{15} \begin{bmatrix} -10 \\ 19 \end{bmatrix} = \begin{bmatrix} -.667 \\ 1.267 \end{bmatrix}$$ $$\hat{y} = Z\hat{\beta} = \frac{1}{15} \begin{bmatrix} 180 \\ 85 \\ 123 \\ 351 \\ 199 \\ 142 \end{bmatrix} = \begin{bmatrix} 12.000 \\ 5.667 \\ 8.200 \\ 23.400 \\ 13.267 \\ 9.467 \end{bmatrix}; \quad \hat{\varepsilon} = y - \hat{y} = \begin{bmatrix} 15 \\ 9 \\ 3 \\ 25 \\ 9 \\ 13 \end{bmatrix} - \begin{bmatrix} 12.000 \\ 5.667 \\ 8.200 \\ 23.400 \\ 13.267 \\ 9.467 \end{bmatrix} = \begin{bmatrix} 3.000 \\ 3.333 \\ -5.200 \\ 1.600 \\ -6.267 \\ 3.533 \end{bmatrix}$$ Residual sum of squares: $\hat{\epsilon}^{\dagger}\hat{\epsilon} = 101.467$ Fitted equation: $\hat{y} = -.667 + 1.267 z_1$ # 7.2 Standardized variables | z ₁ z ₂ y | | |--|----| | .292 -1.088 .391 Fitted equation | n: | | .166726391 | | | .817726 -1.174 | | | $\hat{y} = 1.33z_1 - 283$.363 1.695 $\hat{y} = 1.33z_1 - 283$ | • | | .117 .726652 | | | .108 1.451 .130 | | Also, prior to standardizing the variables, $\bar{z}_1 = 11.667$, $\bar{z}_2 = 5.000$ and $\bar{y} = 12.000$; $\sqrt{s_{z_1 z_1}} = 5.716$, $\sqrt{s_{z_2 z_2}} = 2.757$ and $\sqrt{s_{yy}} = 7.667$. .79z, The fitted equation for the original variables is $$\frac{\hat{y}-12}{7.667}=1.33\left(\frac{z_1-11.667}{5.716}\right)-.79\left(\frac{z_2-5}{2.757}\right)$$ $$\hat{y} = .43 + 1.78z_1 - 2.19z_2$$ 7.3 Follow hint and note that $\hat{\varepsilon}^* = Y^* - \hat{Y}^* = V^{-1/2}Y - V^{-1/2}Z\beta_W$ and $(n-r-1)\sigma^2 = \hat{\varepsilon}^* \hat{\varepsilon}^*$ is distributed as χ^2_{n-r-1} . 7.4 a) $$V = I$$ so $\hat{\beta}_{W} = (z^{1}z)^{-1}z^{1}y = (\sum_{j=1}^{n} z_{j}y_{j})/(\sum_{j=1}^{n} z_{j}^{2})$. b) V^{-1} is diagonal with $j^{\pm h}$ diagonal element $1/z_j$ so $$\hat{\beta}_{w} = (z'V^{-1}z)^{-1} z'V^{-1}y = (\sum_{j=1}^{n} y_{j})/(\sum_{j=1}^{n} z_{j})$$ c) V^{-1} is diagonal with $j^{\frac{th}{d}}$ diagonal element $1/z_j^2$ so $$\hat{\beta}_{W} = (z^{1}V^{-1}z)^{-1}z^{1}V^{-1}y = (\sum_{j=1}^{n}(y_{j}/z_{j}))/n$$ - 7.5 Solution follows from Hint. - 7.6 a) First note that $\Lambda^- = \operatorname{diag}[\lambda_1^{-1}, \dots, \lambda_{r_1+1}^{-1}, 0, \dots 0]$ is a generalized inverse of Λ since $$\Lambda\Lambda^{-} = \begin{bmatrix} I_{r_1+1} & 0 \\ 0 & 0 \end{bmatrix} \text{ so } \Lambda\Lambda^{-}\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ & \lambda_{r_1+1} & 0 \\ & & 0 \end{bmatrix} = \Lambda$$ Since $$Z'Z = \sum_{i=1}^{p} \lambda_i e_i e_i' = P\Lambda P'$$ $$(Z'Z)^{-} = \sum_{i=1}^{r_1+1} \lambda_i^{-1} e_i e_i' = P\Lambda^{-}P'$$ with $PP' = P'P = I_p$, we check that the defining relation holds $$(Z'Z)(Z'Z)^{-}(Z'Z) = P\Lambda P'(P\Lambda^{-}P')P\Lambda P'$$ $$= P\Lambda \Lambda^{-} \Lambda P'$$ $$= P\Lambda P' = Z'Z$$ b) By the hint, if $Z\hat{\beta}$ is the projection, $0 = Z'(y - Z\hat{\beta})$ or $Z'Z\hat{\beta} = Z'y$. In c), we show that $Z\hat{\beta}$ is the projection of y. c) Consider $$q_i = \lambda_i^{-1/2} Ze_i$$ for $i = 1, 2, ..., r_1 + 1$. Then $$Z(Z'Z)^{-}Z' = Z(\sum_{i=1}^{r_1+1} \lambda_i^{-1} e_i e_i') Z' = \sum_{i=1}^{r_1+1} q_i q_i'$$ The $\{q_i\}$ are r_i+1 mutually perpendicular unit length vectors that span the space of all linear combinations of the columns of Z. The projection of y is then (see Result 2A.2 and Definition 2A.12) $$\sum_{i=1}^{r_1+1} (q_i^! y) q_i = \sum_{i=1}^{r_1+1} q_i (q_i^! y) = (\sum_{i=1}^{r_1+1} q_i q_i^!) y = Z(Z'Z)^{-} Z' y$$ d) See Hint. 7.7 Write $$\beta = \begin{bmatrix} \frac{\beta}{2}(1) \\ \frac{\beta}{2}(2) \end{bmatrix}$$ and $Z = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$. Recall from Result 7.4 that $\hat{\beta} = \begin{bmatrix} \hat{\beta}(1) \\ \hat{\beta}(2) \end{bmatrix} = (Z'Z)^{-1}Z'y$ is distributed as $N_{r+1}(\beta,\sigma^2(Z'Z)^{-1})$ independently of $n\hat{\sigma}^2 = (n-r-1)s^2$ which is distributed as $\sigma^2 \chi^2_{n-r-1}$. From the Hint, $(\hat{\beta}(2)^{-\beta}(2))^4(\hat{C}^2)^2\chi\hat{\beta}(2)^{-\beta}(2)^4$ is $\sigma^2\chi^2_{r-q}$ and this is distributed independently of s^2 . (The latter follows because the full random vector $\hat{\beta}$ is distributed independently of s^2). The result follows from the definition of a F random variable as the ratio of two independent χ^2 random variables divided by their degrees of freedom. 7.8 (a) $$H^2 = Z(Z'Z)^{-1}Z'Z(Z'Z)^{-1}Z' = Z(Z'Z)^{-1}Z' = H$$. (b) Since I-H is an idempotent matrix, it is positive semidefinite. Let a be an $n \times 1$ unit vector with j th element 1. Then $0 \le a'(I-H)a = (1-h_{jj})$. That is, $h_{jj} \le 1$. On the other hand, $(Z'Z)^{-1}$ is positive definite. Hence $h_{jj} = b'_j(Z'Z)^{-1}b_j > 0$ where b_j is the j th row of Z. $\sum_{i=1}^{r+1} h_{jj} = tr(Z(Z'Z)^{-1}Z') = tr((Z'Z)^{-1}Z'Z) = tr(I_{r+1}) = r+1.$ (c) Using $$(Z'Z)^{-1} = \frac{1}{n \sum_{i=1}^{n} (z_i - \overline{z})^2} \begin{bmatrix} \sum_{i=1}^{n} z_i^2 & -\sum_{i=1}^{n} z_i \\ -\sum_{i=1}^{n} z_i & n \end{bmatrix},$$ we obtain $$h_{jj} = (1 \ z_j)(Z'Z)^{-1} \begin{pmatrix} 1 \\ z_j \end{pmatrix}$$ $$= \frac{1}{n \sum_{i=1}^n (z_j - \overline{z})^2} \left(\sum_{i=1}^n z_i^2 - 2z_j \sum_{i=1}^n z_i + nz_j^2 \right)$$ $$= \frac{1}{n} + \frac{(z_j - \overline{z})^2}{\sum_{i=1}^n (z_j - \overline{z})^2}$$ 7.9 $$Z' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -2 & -1 & 0 & 1 & 2 \end{bmatrix}; \quad (Z'Z)^{-1} = \begin{bmatrix} 1/5 & 0 \\ 0 & 1/10 \end{bmatrix}$$ $$\hat{\beta}_{(1)} = (Z'Z)^{-1}Z'y_{(1)} = \begin{bmatrix} 3 \\ -.9 \end{bmatrix}; \quad \hat{\beta}_{(2)} = (Z'Z)^{-1}Z'y_{(2)} = \begin{bmatrix} 0 \\ 1.5 \end{bmatrix}$$ $$\hat{\mathbf{g}} = \begin{bmatrix} \hat{\mathbf{g}}_{(1)} & \hat{\mathbf{g}}_{(2)} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -.9 & 1.5 \end{bmatrix}$$ Hence $$\hat{\Upsilon} = Z\hat{\beta} = \begin{bmatrix} 4.8 & -3.0 \\ 3.9 & -1.5 \\ 3.0 & 0 \\ 2.1 & 1.5 \\ 1.2 & 3.0 \end{bmatrix};$$ $$\hat{\mathbf{E}} = \mathbf{Y} - \hat{\mathbf{Y}} = \begin{bmatrix} 5 & -3 \\ 3 & -1 \\ 4 & -1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix} - \begin{bmatrix} 4.8 & -3.0 \\ 3.9 & -1.5 \\ 3.0 & 0 \\ 2.1 & 1.5 \\ 1.2 & 3.0 \end{bmatrix} = \begin{bmatrix} .2 & 0 \\ -.9 & .5 \\ 1.0 & 1.0 \\ -.1 & .5 \\ -.2 & 0 \end{bmatrix}$$ $$\Upsilon'\Upsilon = \hat{\Upsilon}'\hat{\Upsilon} + \hat{\epsilon}'\hat{\epsilon}$$ $$\begin{bmatrix} 55 & -15 \\ -15 & 24 \end{bmatrix} = \begin{bmatrix} 53.1 & -13.5 \\ -13.5 & 22.5 \end{bmatrix} + \begin{bmatrix} 1.9 & -1.5 \\ -1.5 & 1.5 \end{bmatrix}$$ 7.10 a) Using Result 7.7, the 95% confidence interval for the mean reponse is given by $$\begin{bmatrix} 1, .5 \end{bmatrix} \begin{bmatrix} 3.0 \\ -.9 \end{bmatrix} \pm 3.18 \sqrt{\begin{bmatrix} 1, .5 \end{bmatrix} \begin{bmatrix} .2 & 0 \\ 0 & .1 \end{bmatrix} \begin{bmatrix} 1 \\ .5 \end{bmatrix} \left(\frac{1.9}{3} \right)} \quad \text{or}$$ (1.35, 3.75). b) Using Result 7.8, the 95% prediction interval for the actual Y is given by $$[1, -.5]$$ $\begin{bmatrix} 3.0 \\ -.9 \end{bmatrix}$ ± 3.18 $\sqrt{\left\{1 + [1, .5] \begin{bmatrix} .2 & 0 \\ 0 & .1 \end{bmatrix} \begin{bmatrix} 1 \\ .5 \end{bmatrix} \right\} \left(\frac{1.9}{3}\right)}$ or $(-.25, 5.35)$. c) Using (7-42) a 95% prediction ellipse for the actual Y's is given by $$\begin{bmatrix} y_{01} - 2.55, \ y_{02} - .75 \end{bmatrix} \begin{bmatrix} 7.5 & 7.5 \\ 7.5 & 9.5 \end{bmatrix} \begin{bmatrix} y_{01} - 2.55 \\ y_{02} - .75 \end{bmatrix}$$ $$\leq (1 + .225) \left(\frac{(2)(3)}{2} \right) (19) = 69.825$$ 7.11 The proof follows the proof of Result 7.10 with Σ^{-1} replaced by A. $$(\Upsilon - ZB)'(\Upsilon - Z'B) = \sum_{j=1}^{n} (\Upsilon_{j} - BZ_{j})(\Upsilon_{j} - BZ_{j})'$$ and $$\Sigma_{j=1}^{n} d_{j}^{2}(B) = tr[A^{-1}(Y-ZB)^{*}(Y-ZB)]$$. Next, SO $$(Y-ZB)'(Y-ZB) = (Y-Z\hat{\beta}+Z\hat{\beta}-ZB)'(Y-Z\hat{\beta}+Z\hat{\beta}-ZB) = \hat{\epsilon}'\hat{\epsilon} + (\hat{\beta}-B)'Z'Z(\hat{\beta}-B)]$$ $$\Sigma_{j=1}^{n} d_{j}^{2}(B) = tr[A^{-1}\hat{\epsilon}'\hat{\epsilon}] + tr[A^{-1}(\hat{\beta}-B)'Z'Z(\hat{\beta}-B)]$$ The first term does not depend on the choice of B. Using Result 2A.12(c) $$tr[A^{-1}(\hat{\beta}-B)'Z'Z(\hat{\beta}-B) = tr[(\hat{\beta}-B)'Z'Z(\hat{\beta}-B)A]$$ $$= tr[Z'Z(\hat{\beta}-B)A(\hat{\beta}-B)']$$ $$= tr[Z(\hat{\beta}-B)A(\hat{\beta}-B)'Z']$$ $$\geq \underline{c}'A\underline{c} > 0$$ where c is any non-zero row of $Z(\hat{\beta}-B)$. Unless $B=\hat{\beta}$, $Z(\hat{\beta}-B)$ will have a non-zero row. Thus $\hat{\beta}$ is the best choice for any positive definite A. 7.12 (a) best linear predictor = $$-4 + 2Z_1 - Z_2$$ (b) mean square error = $$\sigma_{yy} - \sigma_{zy}^1 + \tau_{zz}^{-1} \sigma_{zy}^{-1} = 4$$ (c) $$\rho_{Y(x)} = \sqrt{\frac{\sigma_{zy}^1 + \frac{1}{2z} \sigma_{zy}}{\sigma_{yy}}} = \sqrt{\frac{5}{3}} = .745$$ (d) Following equation (7-56), we partition ‡ as $$\ddagger = \begin{bmatrix} 9 & 3 & | & 1 \\ 3 & 2 & | & 1 \\ \hline 1 & 1 & | & 1 \end{bmatrix}$$ and determine covariance of $\begin{bmatrix} Y \\ Z_1 \end{bmatrix}$
given Z_2 to be $$\begin{bmatrix} 9 & 3 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} (1)^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 & 2 \\ 2 & 1 \end{bmatrix}.$$ Therefore $$\rho_{YZ_1} \cdot Z_2 = \frac{2}{\sqrt{8} \sqrt{1}} = \frac{\sqrt{2}}{2} = .707$$ 7.13 (a) By Result 7.13, $$\hat{\beta} = S_{zz}^{-1} S_{zy} = \begin{bmatrix} 3.73 \\ 5.57 \end{bmatrix}$$ (b) Let $$Z'_{(2)} = [Z_2, Z_3]$$ $R_{z_1}(z_2z_3) = \sqrt{\frac{s_{z_2(2)}^2 s_{z_1}}{s_{z_1}^2 s_1}}$ $$= \sqrt{\frac{3452.33}{5691.34}} = .78$$ (c) Partition $$Z = \begin{bmatrix} \frac{Z_{(1)}}{Z_3} \end{bmatrix}$$ so $$S = \begin{bmatrix} 5691.34 & & & & & \\ 600.51 & 126.05 & & & & \\ \hline -217.25 & 23.37 & 23.11 \end{bmatrix} = \begin{bmatrix} S_{z(1)}^{z(1)} & S_{z3}^{z(1)} & \\ S_{z3}^{z(1)} & S_{z3}^{z(1)} & S_{z3}^{z(1)} & \\ \end{array}$$ and $$S_{z_{(1)}z_{(1)}} - S_{z_{3}z_{(1)}} - S_{z_{3}z_{(1)}} = \begin{bmatrix} 3649.04 & 380.82 \\ 380.82 & 102.42 \end{bmatrix}$$ Thus $$r_{z_1 z_2 \cdot z_3} = \frac{380.82}{\sqrt{3649.04} \sqrt{102.42}} = .62$$ - 7.14 (a) The large positive correlation between a manager's experience and achieved rate of return on portfolio indicates an apparent advantage for managers with experience. The negative correlation between attitude toward risk and achieved rate of return indicates an apparent advantage for conservative managers. - (b) From (7-57) $$r_{yz_{1} \cdot z_{2}} = \frac{s_{yz_{1} \cdot z_{2}}}{\sqrt{s_{yy \cdot z_{2}}} \sqrt{s_{z_{1}z_{1} \cdot z_{2}}}} = \sqrt{s_{yy} - \frac{s_{yz_{2}}^{2} s_{z_{1}z_{2}}}{s_{z_{2}z_{2}}}} \sqrt{s_{z_{1}z_{1}} - \frac{s_{z_{1}z_{2}}^{2}}{s_{z_{2}z_{2}}}}$$ $$= \frac{r_{yz_1} - r_{yz_2} r_{z_1 z_2}}{\sqrt{1 - r_{yz_2}^2} \sqrt{1 - r_{z_1 z_2}^2}} = .31$$ Removing "years of experience" from consideration, we now have a positive correlation between "attitude toward risk" and "achieved return". After adjusting for years of experience, there is an apparent advantage to managers who take risks. - 7.15 (a) MINITAB computer output gives: $\hat{y} = 11,870 + 2634z_1 + 45.2z_2$; residual sum of squares = 204995012 with 17 degrees of freedom. Thus s = 3473. Now for example, the estimated standard deviation of $\hat{\beta}_0$ is $\sqrt{1.9961s^2} = 4906$. Similar calculations give the estimated standard deviations of $\hat{\beta}_1$ and $\hat{\beta}_2$. - (b) An analysis of the residuals indicate there are no apparent model inadequacies. - (c) The 95% prediction interval is (\$51,228; \$66,239) - (d) Using (7-14), $F = \frac{(45.2)(.0067)^{-1}(45.2)}{12058533} = .025$ Since $F_{1,17}(.05) = 4.45$ we cannot reject $H_0:\beta_2 = 0$. It appears as if Z_2 is not needed in the model provided Z_1 is included in the model. 7.16 | Predictors | p=r+1 | C _p | |---------------------------------|-------|----------------| | | 2 | 1.025 | | z ₂ | 2 | 12.24 | | z ₁ , z ₂ | 3 | 3 | | | | | 7.17 (a) Minitab output for the regression of profits on sales and assets follows. Profits = 0.01 + 0.0681 Sales + 0.00577 Assets $$S = 3.86282$$ $R-Sq = 55.7$ % $R-Sq(adj) = 43.0$ % ### Analysis of Variance ``` SS Source 4.40 0.058 65.63 131.26 Regression 2 7 104.45 Residual Error 235.71 Total ``` (b) Given the small sample size, the residual plots below are consistent with the usual regression assumptions. The leverages do not indicate any unusual observations. All leverages are less than 3p/n=3(3)/10=.9. | | | | | | - | | | | | | | |-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | · 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 10 |)bs_ | 1 | | | | | 25.46 | 0705 | 2642 | .2029 | .4362 | | T | ev | .6257 | .1011 | .2433 | .2222 | .2513 | .2746 | .2785 | .3642 | .2029 | .4302 | | 1 - | ~ 1 | .020. | | | | | | | | | | - (c) With sales = 100 and assets = 500, a 95% prediction interval for profits is: (-1.55, 20.95). - (d) The t-value for testing $H_0: \beta_2 = 0$ is t = 1.17 with a p value of .282. We cannot reject H_0 at any reasonable significance level. The model should be refit after dropping assets as a predictor variable. That is, consider the simple linear regression model relating profits to sales. 7.18 (a) The calculations for the C_p plot are given below. Note that p is the number of model parameters including the intercept. | p (predictor) | 2 (sales) | 2 (assets) | 3 (sales, assets) | |---------------|-----------|------------|-------------------| | C_p | 2.4 | 7.0 | 3.0 | (b) The AIC values are shown below. | 7 | (predictor) | 2 (sales) | 2 (assets) | 3 (sales, assets) | |---|-------------|-----------|------------|-------------------| | + | AIC | 29.24 | 33.63 | 29.46 | | | | | | | 7.19 (a) The "best" regression equation involving ln(y) and $z_1, z_2,...,z_5$ is $$l\hat{\mathbf{n}}(y) = 2.756 - .322z_2 + .114z_4$$ with s = 1.058 and $R^2 = .60$. It may be possible to find a better model using first and second order predictor variable terms. (b) A plot of the residuals versus the predicted values indicates no apparent problems. A Q-Q plot of the residuals is a bit wavy but the sample size is not large. Perhaps a transformation other than the logarithmic transformation would produce a better model. Eigenvalues of the correlation matrix of the predictor variables z_1 , z_2, \ldots, z_5 are 1.4465, 1.1435, .8940, .8545, .6615. The corresponding eigenvectors give the coefficients of z_1 , z_2, \ldots, z_5 in the principle component. For example, the first principal component, written in terms of standardized predictor variables, is $$\hat{x}_1 = .6064z_1^* - .3901z_2^* - .6357z_3^* - .2755z_4^* - .0045z_5^*$$ A regression of ln(y) on the first principle component gives $$\hat{ln}(y) = 1.7371 - .0701\hat{x}_1$$ with s = .701 and $R^2 = .015$. 7.21 A regression of $\ln(y)$ on the fourth principle component produces the best of the one principle component predictor variable regressions. In this case $\ln(y) = 1.7371 + .3604\hat{x}_4$ and s = .618 and $R^2 = .235$. This data set doesn't appear to yield a regression relationship which explains a large proportion of the variation in the responses. (a) (i) One reader, starting with a full quadratic model in the predictors z_1 and z_2 , suggested the fitted regression equation: $$\hat{y}_1 = -7.3808 + .5281z_2 - .0038z_2^2$$ with s = 3.05 and $R^2 = .22$. (Can you do better than this?) (ii) A plot of the residuals versus the fitted values suggests the response may not have constant variance. Also a Q-Q plot of the residuals has the following general appearance: Therefore the normality assumption may also be suspect. Perhaps a better regression can be obtained after the responses have been transformed or re-expressed in a different metric. (iii) Using the results in (a)(i), a 95% prediction interval of $z_1 = 10$ (not needed) and $z_2 = 80$ is $10.84 \pm 2.02\sqrt{7.47} \text{ or } (5.32,16.37).$ - 7.22 (a) The full regression model relating the dominant radius bone to the four predictor variables is shown below along with the "best" model after eliminating non-significant predictors. A residual analysis for the best model indicates there is no reason to doubt the standard regression assumptions although observations 19 and 23 have large standardized residuals. - (i) The regression equation is DomRadius = 0.103 + 0.276 DomHumerus 0.165 Humerus + 0.357 DomUlna + 0.407 Ulna ``` SE Coef T Coef Predictor 0.97 0.346 0.1064 Constant 0.1027 0.026 2.40 0.1147 0.2756 DomHumerus -1.20 0.246 0.1381 -0.1652 Humerus 0.1985 1.80 0.088 0.3566 DomUlna 0.076 1.87 0.2174 0.4068 Ulna ``` S = 0.0663502 R-Sq = 71.8% R-Sq(adj) = 66.1% The regression equation is DomRadius = 0.164 + 0.162 DomHumerus + 0.552 DomUlna Т Coef SE Coef Predictor 0.1035 1.58 0.128 0.1637 Constant 0.012 2.74 0.16249 0.05940 DomHumerus 0.002 0.1566 3.53 0.5519 DomUlna S = 0.0687763 R-Sq = 66.7% R-Sq(adj) = 63.6% Analysis of Variance Source DF SS MS Regression 0.20797 0.10399 21.98 0.000 2 Residual Error 22 0.10406 0.00473 24 0.31204 (b) The full regression model relating the radius bone to the four predictor variables is shown below. This fitted model along with the fitted model for the dominant radius bone using four predictors shown in part (a) (i) and the error sum of squares and cross products matrix constitute the multivariate multiple regression model. It appears as if a multivariate regression model with only one or two predictors will represent the data well. Using Result 7.11, a multivariate regression model with predictors dominant ulna and ulna may be reasonable. The results for these predictors follow. The regression equation is Radius = 0.114 - 0.0110 DomHumerus + 0.152 Humerus + 0.198 DomUlna + 0.462 Ulna ``` Coef SE Coef Т Predictor 1.27 0.11423 0.08971 0.217 Constant -0.01103 0.09676 -0.11 0.910 DomHumerus 0.207 0.1165 1.31 0.1520 Humerus 1.18 0.252 0.1976 0.1674 DomUlna 2.52 0.020 0.4625 0.1833 Ulna ``` S = 0.0559501 R-Sq = 77.2% R-Sq(adj) = 72.6% Error sum of squares and cross products matrix: [.088047 .050120] .050120 .062608 ``` The regression equation is DomRadius = 0.223 + 0.564 DomUlna + 0.321 Ulna ``` ``` Coef SE Coef Т Predictor 2.00 0.059 0.1120 0.2235 Constant 0.2108 2.68 0.014 0.5645 DomUlna 1.46 0.159 0.2202 0.3209 Ulna ``` S = 0.0760309 R-Sq = 59.2% R-Sq(adj) = 55.5% ### Analysis of Variance | Source
Regression
Residual Error
Total | 22 | SS
0.184863
0.127175
0.312038 | | F
15.99 | 0.000 | |---|----|--|--|------------|-------| |---|----|--|--|------------|-------| The regression equation is Radius = 0.178 + 0.322 DomUlna + 0.595 Ulna | Predictor | Coef | SE Coef | T | P | VIF | |-----------|---------|---------|------|-------|-----| | Constant | 0.17846 | 0.08931 | 2.00 | 0.058 | | | DomUlna | 0.3220 | 0.1680 | 1.92 | 0.068 | 2.1 | | Ulna | 0.5953 | 0.1755 | 3.39 | 0.003 |
2.1 | S = 0.0606160 R-Sq = 70.5% R-Sq(adj) = 67.8% #### Analysis of Variance | Source | DF | SS | MS | F | I | |----------------|----|----------|----------|-------|-------| | Regression | 2 | 0.193195 | 0.096597 | 26.29 | 0.000 | | Residual Error | 22 | 0.080835 | 0.003674 | | | | Total | 24 | 0.274029 | | | | | | | | | | | Error sum of squares and cross products matrix: [.127175 .064903] .064903 .080835 ## 7.23. (a) Regression analysis using the response $Y_1 = \text{SalePr}$. Summary of Backward Elimination Procedure for Dependent Variable X2 | | Variable | Number | Partial | Model | | | | |------|-----------|--------|---------|--------|--------|--------|--------| | Step | Removed | In | R**2 | R**2 | C(p) | F | Prob>F | | i | X9 | 7 | 0.0041 | 0.5826 | 7.6697 | 0.6697 | 0.4161 | | 2 | XЗ | 6 | 0.0043 | 0.5782 | 6.3735 | 0.7073 | 0.4033 | | 3 | X5 | 5 | 0.0127 | 0.5655 | 6.4341 | 2.0795 | 0.1538 | Dependent Variable: X2 SalePr Analysis of Variance | | | Sum of | Mean | | | |---------|----|--------------|--|---------|--------| | Source | DF | Squares | Square | F Value | Prob>F | | Model | 5 | 16462859.832 | 3292571.9663 | 18.224 | 0.0001 | | Error | 70 | 12647164.839 | 180673.78342 | | | | C Total | 75 | 29110024.671 | The State of S | | | Root MSE 425.05739 R-square 0.5655 Parameter Estimates | > T | |-------| | .0049 | | .0009 | | .0029 | | .0001 | | .0150 | | .0057 | | | The 95% prediction interval for SalePr for z_0 is $$z'_0 \hat{\beta} \pm t_{70}(0.025) \sqrt{(425.06)^2(1+z'_0(\mathbf{Z'Z})^{-1}z_0)}.$$ # SalePra (Breed , FtFrBody , Frame , BkFat , SaleHt) ### (b) Regression analysis using the response $Y_1 = \ln(\text{SalePr})$. Summary of Backward Elimination Procedure for Dependent Variable LOGX2 | | Variable | Number | Partial | Model | | | | |------|----------|--------|---------|--------|--------|----------|--------| | Step | Removed | In | R**2 | R**2 | C(p) | F | Prob>F | | 1 | ХЗ | 7 | 0.0033 | 0.6368 | 7.6121 | 0.6121 | 0.4368 | | 2 | X7 | 6 | 0.0057 | 0.6311 | 6.6655 | 1.0594 | 0.3070 | | 3 | X9 | 5 | 0.0122 | 0.6189 | 6.9445 | 2.2902 | 0.1348 | | 4 | X4 | 4 | 0.0081 | 0.6108 | 6.4537 | 1.4890 | 0.2265 | Dependent Variable: LOGX2 Analysis of Variance | | | Sum of | Mean | | | |---------|----|---------|---------|---------|--------| | Source | DF | Squares | Square | F Value | Prob>F | | Model | 4 | 4.02968 | 1.00742 | 27.854 | 0.0001 | | Error | 71 | 2.56794 | 0.03617 | | | | C Total | 75 | 6.59762 | | | | | Root MSE | 0.19018 | R-square | 0.6108 | |----------|---------|----------|--------| | D | | | | Parameter Estimates | I all ame oca | | mavos | | | | |---------------|----|-----------|------------|-------------|-----------| | | | Parameter | Standard | T for HO: | | | Variable | DF | Estimate | Error | Parameter=0 | Prob > T | | INTERCEP | 1 | 5.235773 | 0.91286786 | 5.736 | 0.0001 | | X1 | 1 | -0.049418 | 0.00846029 | -5.841 | 0.0001 | | X5 | 1 | -0.027613 | 0.00827438 | -3.337 | 0.0013 | | X6 | 1 | 0.183611 | 0.03992448 | 4.599 | 0.0001 | | X8 | 1 | 0.058996 | 0.01927655 | 3.060 | 0.0031 | | | | | | | | The 95% prediction interval for $\ln(\text{SalePr})$ for z_0 is $$z'_0 \hat{\beta} \pm t_{70}(0.025) \sqrt{(0.1902)^2(1+z'_0(\mathbf{Z}'\mathbf{Z})^{-1}z_0)}.$$ The few outliers among these latter residuals are not so pronounced. # In(SalePr)={Breed , PrctFFB, Frame , SaleHt) 0.0003 3.821 7.24. (a) Regression analysis using the response $Y_1 = \text{SaleHt}$ and the predictors $Z_1 = \text{YrHgt}$ and $Z_2 = \text{FtFrBody}$. SaleHt Dependent Variable: X8 Analysis of Variance Sum of Mean F Value Prob>F Square DF Squares Source 131.165 0.0001 117.87267 Model 2 235.74533 0.89866 73 65.60204 Error C Total 75 301.34737 0.7823 Root MSE 0.94798 R-square Parameter Estimates T for HO: Parameter Standard Parameter=0 Prob > |T| Error Variable DF Estimate 0.0224 2.334 INTERCEP 7.846281 3.36221288 1 0.0001 9.918 ХЗ 1 0.802235 0.08088562 0.00151072 The 95% prediction interval for SaleHt for $z_0' = (1, 50.5, 970)$ is 0.005773 1 X4 $$53.96 \pm t_{73}(0.025)\sqrt{0.8987(1.0148)} = (52.06, 55.86).$$ (b) Regression analysis using the response $Y_1 = \text{SaleWt}$ and the predictors $Z_1 = \text{YrHgt}$ and $Z_2 = \text{FtFrBody}$. SaleWt Dependent Variable: X9 Analysis of Variance Mean Sum of F Value Prob>F Square Squares Source 16.319 0.0001 2 390456.63614 195228.31807 Model 11963.60268 73 873342.99544 Error 75 1263799.6316 C Total 0.3090 109.37826 R-square Root MSE Parameter Estimates T for HO: Standard Parameter Prob > |T| Parameter=0 Error Estimate DF Variable 0.0859 1.741 387.93499836 INTERCEP 675.316794 1 0.7716 0.291 9.33265244 1 2.719286 ХЗ 4.278 0.0001 0.17430765 0.745610 1 X4 The 95% prediction interval for SaleWt for $z_0^\prime=(1,50.5,970)$ is $$1535.9 \pm t_{73}(0.025)\sqrt{11963.6(1.0148)} = (1316.3, 1755.5).$$ Multivariate regression analysis using the responses $Y_1 = \text{SaleHt}$ and $Y_2 = \text{SaleWt}$ and the predictors $Z_1 = \text{YrHgt}$ and $Z_2 = \text{FtFrBody}$. Multivariate Test: HO: YrHgt = 0 Multivariate Statistics and Exact F Statistics S=1 M=0 N=35 | Statistic | Value | F | Num DF | Den | DF | Pr > F | |------------------------|------------|---------|--------|-----|----|--------| | Wilks' Lambda | 0.38524567 | 57.4469 | 2 | | 72 | 0.0001 | | Pillai's Trace | 0.61475433 | 57.4469 | 2 | | 72 | 0.0001 | | Hotelling-Lawley Trace | 1.59574625 | 57.4469 | 2 | | 72 | 0.0001 | | Rov's Greatest Root | 1.59574625 | 57.4469 | 2 | | 72 | 0.0001 | Multivariate Test: HO: FtFrBody = 0 Multivariate Statistics and Exact F Statistics S=1 M=0 N=35 | Statistic | Value | F | Num DF | Den DF | Pr > F | |------------------------|------------|---------|--------|--------|--------| | Wilks' Lambda | 0.75813396 | 11.4850 | 2 | 72 | 0.0001 | | Pillai's Trace | 0.24186604 | 11.4850 | 2 | 72 | 0.0001 | | Hotelling-Lawley Trace | 0.31902811 | 11.4850 | 2 | 72 | 0.0001 | | Roy's Greatest Root | 0.31902811 | 11.4850 | 2 | 72 | 0.0001 | The theory requires using x_3 (YrHgt) to predict both SaleHt and SaleWt, even though this term could be dropped in the prediction equation for SaleWt. The 95% prediction ellipse for both SaleHt and SaleWt for $z_0' = (1, 50.5, 970)$ is $$1.3498(Y_{01} - 53.96)^{2} + 0.0001(Y_{02} - 1535.9)^{2} - 0.0098(Y_{01} - 53.96)(Y_{02} - 1535.9)$$ $$= 1.0148 \frac{2(73)}{72} F_{2,72}(0.05) = 6.4282.$$ 7.25. (a) Regression analysis using the first response Y_1 . The backward elimination procedure gives $Y_1 = \beta_{01} + \beta_{11}Z_1 + \beta_{21}Z_2$. All variables left in the model are significant at the 0.05 level. (It is possible to drop the intercept but we retain it.) Dependent Variable: Y1 TOT Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 2 5905583.8728 2952791.9364 22.962 0.0001 Error 14 1800356.3625 128596.88303 C Total 16 7705940.2353 Root MSE 358.60408 0.7664 R-square Parameter Estimates Parameter Standard T for HO: Variable DF **Estimate** Error Parameter=0 Prob > |T| INTERCEP 56.720053 206.70336862 0.274 0.7878 **Z1** 1 507.073084 193.79082471 2.617 0.0203 **Z**2 1 0.328962 0.04977501 6.609 0.0001 The 95% prediction interval for $Y_1 = \text{TOT for } \boldsymbol{z}_0' = (1, 1, 1200)$ is $$958.5 \pm t_{14}(0.025)\sqrt{128596.9(1.0941)} = (154.0, 1763.1).$$ (b) Regression analysis using the second response Y_2 . The backward elimination procedure gives $Y_2 = \beta_{02} + \beta_{12}Z_1 + \beta_{22}Z_2$. All variables left in the model are significant at the 0.05 level. Mean F Value 25.871 Prob>F 0.0001 Square AMI Dependent Variable: Y2 Analysis of Variance Sum of DF Squares Source 2 5989720.5384 2994860.2692 Model 1620657.344 115761.23886 Error C Total 16 7610377.8824 340.23703 0.7870 Root MSE R-square Parameter Estimates T for HO: Parameter Standard **Estimate** Error Parameter=0 Prob > |T| Variable DF 0.2387 -1.231 -241.347910 196.11640164 INTERCEP 1 606.309666 3.298 0.0053 **Z1** 1 183.86521452
0.0001 **Z2** 1 0.324255 0.04722563 6.866 The 95% prediction interval for $Y_2 = AMI$ for $z'_0 = (1, 1, 1200)$ is $$754.1 \pm t_{14}(0.025)\sqrt{115761.2(1.0941)} = (-9.234, 1517.4).$$ ### AMF#GEN, AMT) ### (c) Multivariate regression analysis using Y_1 and Y_2 . Multivariate Test: HO: PR=0, DIAP=0, QRS=0 Multivariate Statistics and F Approximations S=2 M=0 N=4 | Statistic | Value | F | Num DF | Den DF | Pr > F | |------------------------|------------|--------|--------|--------|--------| | Wilks' Lambda | 0.44050214 | 1.6890 | 6 | 20 | 0.1755 | | Pillai's Trace | 0.60385990 | 1.5859 | 6 | 22 | 0.1983 | | Hotelling-Lawley Trace | 1.16942861 | 1.7541 | 6 | 18 | 0.1657 | | Roy's Greatest Root | 1.07581808 | 3.9447 | 3 | 11 | 0.0391 | Based on Wilks' Lambda, the three variables Z_3 , Z_4 and Z_5 are not significant. The 95% prediction ellipse for both TOT and AMI for $z_0' = (1, 1, 1200)$ is $$4.305 \times 10^{-5} (Y_{01} - 958.5)^2 + 4.782 \times 10^{-5} (Y_{02} - 754.1)^2 - 8.214 \times 10^{-5} (Y_{01} - 958.5)(Y_{02} - 754.1) = 1.0941 \frac{2(14)}{13} F_{2,13}(0.05) = 8.968.$$ | 7.26 (a) (i) The table below summarizes the results of the "best" individual re | gressions. | |---|------------| | Each predictor variable is significant at the 5% level. | | | Fitted model | R^2 | S | |--|----------------|----------------| | $\hat{y}_1 = -70.1 + .0593z_2 + .0555z_3 + 82.53z_4$ | 73.6% | 1.5192 | | $\hat{y}_2 = -21.69640z_1 + 27.04z_4$ $\hat{y}_2 = -20.92 + .0117z_3 + 26.12z_4$ | 76.5%
75.4% | .3530
.3616 | | $\hat{y}_3 = -43.8 + .0288z_2 + .0282z_3 + 44.59z_4$ | 80.7% | .6595 | | $\hat{y}_4 = -17.0 + .0224z_2 + .0120z_3 + 15.77z_4$ | 75.7% | .3504 | - (ii) Observations with large standardized residuals (outliers) include #51, #52 and #56. Observations with high leverage include #57, #58, #60 and #61. Apart from the outliers, the residuals plots look good. - (iii) 95% prediction interval for Y_3 is: (1.077, 4.239) - (b) (i) Using all four predictor variables, the estimated coefficient matrix and estimated error covariance matrix are $$B = \begin{bmatrix} -74.232 & -24.015 & -45.763 & -17.727 \\ -3.120 & -1.185 & -1.486 & -.550 \\ .098 & .009 & .047 & .029 \\ .049 & .008 & .025 & .011 \\ 85.076 & 28.755 & 45.798 & 16.220 \end{bmatrix}$$ $$\hat{\Sigma} = \begin{bmatrix} 2.244 & .398 & .914 & .511 \\ .398 & .118 & .193 & .089 \\ .914 & .193 & .419 & .210 \\ .511 & .089 & .210 & .122 \end{bmatrix}$$ A multivariate regression model using only the three predictors z_2 , z_3 and z_4 will adequately represent the data. - (ii) The same outliers and leverage points indicated in (a) (ii) are present. Otherwise the residual analysis suggests the usual regression assumptions are reasonable. - (iii) The simultaneous prediction interval for Y₃ will be wider than the individual interval in (a) (iii). 7.27 The table below summarizes the results of the "best" individual regressions. Each predictor variable is significant at the 5% level. (The levels of Severity are coded: Low=1, High=2; the levels of Complexity are coded: Simple=1, Complex=2; the levels of Exper are coded: Novice=1, Guru=2, Experienced=3.) There are no significant interaction terms in either model. | Fitted model | R^2 | S | |--|-------|--------| | $Assessmen \hat{t} = -1.834 + 1.270 Severity + 3.003 Complexity$ | 74.1% | .9853 | | Implementation = $-4.919 + 3.477$ Severity + 5.827 Complexity | 71.9% | 2.1364 | For the multivariate regression with the two predictor variables Severity and Complexity, the estimated coefficient matrix and estimated error covariance matrix are $$\mathbf{B} = \begin{bmatrix} -1.834 & -4.919 \\ 1.270 & 3.477 \\ 3.003 & 5.827 \end{bmatrix}$$ $$\hat{\Sigma} = \begin{bmatrix} .9707 & 1.9162 \\ 1.9162 & 4.5643 \end{bmatrix}$$ A residual analysis suggests there is no reason to doubt the standard regression assumptions. # Chapter 8 **8.1** Eigenvalues of $\frac{1}{4}$ are $\lambda_1 = 6$, $\lambda_2 = 1$. The principal components are $$Y_1 = .894X_1 + .447X_2$$ $Y_2 = .447X_1 - .894X_2$ $Var(Y_1) = \lambda_1 = 6$. Therefore, proportion of total population variance explained by Y_1 is 6/(6+1) = .86. 8.2 $$\rho = \begin{bmatrix} 1 & .6325 \\ .6325 & 1 \end{bmatrix}$$ (a) $$Y_1 = .707Z_1 + .707Z_2$$ $$Var(Y_1) = \lambda_1 = 1.6325$$ $$Y_2 = .707Z_1 - .707Z_2$$ Proportion of total population variance explained by Y_1 is 1.6325/(1+1) = .816 - (b) No. The two (standardized) variables contribute equally to the principal components in 8.2(a). The two variables contribute unequally to the principal components in 8.1 because of their unequal variances. - (c) $\rho_{Y_1Z_1} = .903$; $\rho_{Y_1Z_2} = .903$; $\rho_{Y_2Z_1} = .429$ - Eigenvalues of \ddagger are 2, 4, 4. Eigenvectors associated with the eigenvalues 4, 4 are not unique. One choice is $e_2' = [0 \ 1 \ 0]$ and $e_3' = [0 \ 0 \ 1]$. With these assignments the principal components are $Y_1 = X_1$, $Y_2 = X_2$ and $Y_3 = X_3$. - Eigenvalues of ‡ are solutions of $|\ddagger -\lambda I| = (\sigma^2 \lambda)^3 2(\sigma^2 \lambda)(\sigma^2 \rho)^2 = 0$ Thus $\{\sigma^2 - \lambda\}[\{\sigma^2 - \lambda\}^2 - 2\sigma^4 \rho^2] = 0$ so $\lambda = \sigma^2$ or $\lambda = \sigma^2 \{1 \pm \rho \sqrt{2}\}$. For $\lambda_1 = \sigma^2, e_1^{\dagger} = [1/\sqrt{2}, 0, -1/\sqrt{2}]$. For $\lambda_2 = \sigma^2(1 + \rho \sqrt{2})$; $e_2^{\dagger} = [1/2, 1/2]$. For $\lambda_3 = \sigma^2(1 - \rho \sqrt{2})$, $e_3^{\dagger} = [1/2, -1/\sqrt{2}, 1/\sqrt{2}]$ | Principal
Component | | Variance | Proportion of Total
Variance Explained | | | |---------------------------------|--|-----------|---|--|--| | $\frac{1}{Y_1} = \frac{1}{Y_1}$ | $\frac{1}{\sqrt{2}} x_1 - \frac{1}{\sqrt{2}} x_3$ | σ² | 1/3 | | | | $Y_2 = \frac{1}{2}$ | $\frac{1}{2} x_1 + \frac{1}{\sqrt{2}} x_2 + \frac{1}{2} x_3$ | σ²(1+ρ√2) | $\frac{1}{3} (1+\rho\sqrt{2})$ | | | | $Y_3 = \frac{1}{2}$ | $\frac{1}{2} x_1 - \frac{1}{\sqrt{2}} x_2 + \frac{1}{2} x_3$ | σ²(1-ρ√2) | $\frac{1}{3} (1-\rho\sqrt{2})$ | | | # 8.5 (a) Eigenvalues of $oldsymbol{arrho}$ satisfy $$|\rho-\lambda I| = (1-\lambda)^3 + 2\rho^3 - 3(1-\lambda)\rho^2 = 0$$ or $(1+2\rho-\lambda)(1-\rho-\lambda)^2 = 0$. Hence $\lambda_1 = 1+2\rho$; $\lambda_2 = \lambda_3 = 1-\rho$ and results are consistent with (8-16) for $\rho=3$. (b) By direct multiplication $$P(\frac{1}{\sqrt{p}}, \frac{1}{2}) = (1 + (p-1)p)(\frac{1}{\sqrt{p}}, \frac{1}{2})$$ thus varifying the first eigenvalue-eigenvector pair. Further $\mathbf{p} = (1-\rho)\mathbf{e}_{i}$, i = 2,3,...,p. **8.6 (a)** $$\hat{y}_1 = .999x_1 + .041x_2$$ Sample variance of $\hat{y}_1 = \hat{\lambda}_1 = 7488.8$ $\hat{y}_2 = -.041x_1 + .999x_2$ Sample variance of $\hat{y}_2 = \hat{\lambda}_2 = 13.8$ - (b) Proportion of total sample variance explained by \hat{y}_1 is $\hat{\lambda}_1/(\hat{\lambda}_1 + \hat{\lambda}_2) = .9982$ - (c) Center of constant density ellipse is (155.60, 14.70). Half length of major axis is 102.4 in direction of \hat{y}_1 . Half length of perpendicular minor axis is 4.4 in direction of \hat{y}_2 . - (d) $r_{\hat{y}_1,x_1} = 1.000$, $r_{\hat{y}_1,x_2} = .687$ The first component is almost completely determined by $x_1 =$ sales since its variance is approximately 285 times that of $x_2 =$ profits. This is confirmed by the correlation coefficient $r_{\hat{y}_1,x_1} = 1.000$. **8.7 (a)** $$\hat{y}_1 = .707z_1 + .707z_2$$ Sample variance of $\hat{y}_1 = \hat{\lambda}_1 = 1.6861$ $\hat{y}_2 = .707z_1 - .707z_2$ Sample variance of $\hat{y}_2 = \hat{\lambda}_2 = .3139$ - (b) Proportion of total sample variance explained by \hat{y}_1 is $\hat{\lambda}_1/(\hat{\lambda}_1 + \hat{\lambda}_2) = .8431$ - (c) $r_{\hat{y}_1,z_1} = .918$, $r_{\hat{y}_1,z_2} = .918$ The standardized "sales" and "profits" contribute equally to the first sample principal component. - (d) The sales numbers are much larger than the profits numbers and consequently, sales, with the larger variance, will dominate the first principal component obtained from the sample covariance matrix. Obtaining the principal components from the sample correlation matrix (the covariance matrix of the standardized variables) typically produces components where the importance of the variables, as measured by correlation coefficients, is more nearly equal. It is usually best to use the correlation matrix or equivalently, to put the all the variables on similar numerical scales. **8.8 (a)** $$r_{\hat{y}_i,z_k} = \hat{e}_{ik} \sqrt{\hat{\lambda}_i}$$ $i = 1,2$ $k = 1,2,...,5$ Correlations: | i\k | 1 | 2 | 3 | 4 | 5 | |-----|------|------|------|------|------| | 1 | .732 | .831 | .726 | .604 | .564 | | 2 | 437 | 280 | 374 | .694 | .719 | The correlations seem to reinforce the interpretations given in Example 8.5. # (b) Using (8-34) and (8-35) we have | k | \overline{r}_{k} | | |---|--------------------|---| | 1 | .353 | $\bar{r} = .353 \qquad \qquad \hat{\gamma} = 2.485$ | | 2 | .435 | | | 3 | .354 | | | 4 | .326 | | | 5 | .299 | $T = 103.1 > \chi_9^2(.01) = 21.67$ so would reject | | | | level. This test assumes a large random sar | $T = 103.1 > \chi_9^2(.01) = 21.67$ so would reject H_0 at the 1% level. This test assumes a large random sample and a multivariate normal parent population. 8.9 (a) By (5-10) $$\max_{\mu, \frac{1}{2}} L\{\mu, \frac{1}{2}\} = \frac{e^{\frac{np}{2}}}{(2\pi)^{\frac{pn}{2}} (\frac{n-1}{n})^{\frac{pn}{2}} |s|^{\frac{n}{2}}}$$ The same result applied to each variable independently gives $$\max_{\mu_{i},\sigma_{ii}} L(\mu_{i},\sigma_{ii}) = \frac{e^{-\frac{n}{2}}}{(2\pi)^{\frac{n}{2}} (\frac{n-1}{n})^{\frac{n}{2}}
s_{ii}^{\frac{n}{2}}}$$ Under $$H_0$$, $\max_{\mu, t_0} L(\mu, t_0) = \prod_{i=1}^{p} L(\mu_i, \sigma_{ii})$ and the likelihood ratio statistic becomes $$\Lambda = \frac{\underset{\mu, \uparrow}{\text{max}} L(\mu, \uparrow_0)}{\underset{\mu, \uparrow}{\text{max}} L(\mu, \downarrow)} = \frac{1s^{\frac{n}{2}}}{\underset{i=1}{\text{p}} \frac{n}{2}}$$ (b) When $\ddagger = \sigma^2 I$, using (4-16) and (4-17) we get $$\max_{\underline{\mu}} L(\underline{\mu}, \sigma^{2}I) = \frac{1}{\frac{np}{(2\pi)^{\frac{np}{2}}(\sigma^{2})^{\frac{np}{2}}}} e^{-\frac{1}{2\sigma^{2}} \{tr[(n-1)S]\}}$$ 8.9 (Continued) 50 $$\max_{\mu,\sigma^2} L(\mu,\sigma^2I) = \frac{(np)^{np/2} e^{-np/2}}{(2\pi)^{np/2} (n-1)^{np/2} (tr[S])^{np/2}}$$ $$= \frac{e^{-np/2}}{(2\pi)^{np/2} (\frac{n-1}{n})^{np/2} (\frac{1}{p} tr(S))^{np/2}}$$ and the result follows. Under H_0 there are $p \mu_i$'s and one variance so the dimension of the parameter space is $\gamma_0 = p + 1$. The unrestricted case has dimension p + p(p+1)/2 so the χ^2 has p(p+1)/2 - 1 = (p+2)(p-1)/2 d.f. ### 8.10 (a) Covariances: JPMorgan, CitiBank, WellsFargo, RoyDutShell, ExxonMobil | | JPMorgan | CitiBank | WellsFargo | RoyDutShell | ExxonMobil | |-------------|------------|------------|------------|-------------|------------| | JPMorgan | 0.00043327 | | | | | | CitiBank | 0.00027566 | 0.00043872 | | | | | WellsFargo | 0.00015903 | 0.00017999 | 0.00022398 | | | | RoyDutShell | 0.00006410 | 0.00018144 | 0.00007341 | 0.00072251 | | | ExxonMobil | 0.00008897 | 0.00012325 | 0.00006055 | 0.00050828 | 0.00076568 | ### Principal Component Analysis: JPMorgan, CitiBank, WellsFargo, RoyDutShell, Exxon Eigenanalysis of the Covariance Matrix 103 cases used ExxonMobil | Eigenvalue
Proportion | 0.00136 | 29 | 0.271 | 0.0002538
0.098
0.899 | 0.055 | 0.0001189
0.046
1.000 | |--------------------------|---------|--------|--------|-----------------------------|--------|-----------------------------| | Cumulative | 0.5 | 129 | 0.801 | 0.899 | 0.354 | 1.000 | | | | | | | | | | Variable | PC1 | PC2 | PC3 | PC4 | PC5 | | | JPMorgan | 0.223 | -0.625 | -0.326 | 0.663 | -0.118 | | | CitiBank | 0.307 | -0.570 | 0.250 | -0.414 | 0.589 | | | WellsFargo | 0.155 | -0.345 | 0.038 | -0.497 | -0.780 | | | RoyDutShell | 0.639 | 0.248 | 0.642 | 0.309 | -0.149 | | 0.651 0.322 -0.646 -0.216 0.094 (b) From part (a), $$\hat{\lambda}_1 = .00137$$ $\hat{\lambda}_2 = .00070$ $\hat{\lambda}_3 = .00025$ $\hat{\lambda}_4 = .00014$ $\hat{\lambda}_5 = .00012$, so the total sample variance is $\sum_{i=1}^{5} \hat{\lambda}_i = .00258$ and the proportion of total variance explained by the first three components is $\sum_{i=1}^{3} \hat{\lambda}_{i} / \sum_{i=1}^{5} \hat{\lambda}_{i} = .899$. As in Example 8.5, the first component might be interpreted as a market component, the second component as an industry component, and the third component is difficult to interpret. (c) Using (8-33), Bonferroni 90% simultaneous confidence intervals for λ_1 λ_2 λ_3 are λ_1 : (.00106, .00195) λ_2 : (.00054, .00100) λ_3 : (.00019, .00036) (d) Stock returns are probably best summarized in two dimensions with 80% of the total variation accounted for by a "market" component and an "industry" component. $$\mathbf{S} = \begin{bmatrix} 3.397 & -1.102 & 4.306 & -2.078 & .270 \\ 9.673 & -1.513 & 10.953 & 12.030 \\ 55.626 & -28.937 & -.440 \\ 89.067 & 9.570 \\ (Symmetric) & 31.900 \end{bmatrix}$$ $$\hat{y}_1 = -.038x_1 + .119x_2 - .480x_3 + .859x_4 + .129x_5$$ $$\hat{y}_2 = -.062x_1 - .249x_2 - .759x_3 - .316x_4 - .508x_5$$ ### (c) Correlations between variables and components: | Г | | x_1 | x_2 | <i>x</i> ₃ | <i>x</i> ₄ | <i>x</i> ₅ | |---|---------------------|-------|-------|-----------------------|-----------------------|-----------------------| | | $r_{\hat{y}_1,x_i}$ | 212 | .398 | 669 | .947 | .238 | | | $r_{\hat{y}_2,x_i}$ | 222 | 527 | 669 | 220 | 590 | The proportion of total sample variance explained by the first two principal Components is (108.27+43.15)/(108.27+43.15+31/29+4.60+2.35)=.80. The first component appears to be a weighted difference between percent total employment and percent employed by government. We might call this component an employment contrast. The second component appears to be influenced most by roughly equal contributions from percent with professional degree (x_2) , percent employment (x_3) and median home value (x_5) . We might call this an achievement component. The change in scale for x_5 did not appear to have much affect on the first sample principal component (see Example 8.3) but did change the nature of the second component. Variable x_5 now has much more influence in the second principal component. Using S: $$\hat{\lambda}_1 = 304.26$$; $\hat{\lambda}_2 = 28.28$; $\hat{\lambda}_3 = 11.46$; $\hat{\lambda}_4 = 2.52$; $\hat{\lambda}_5 = 1.28$; $\hat{\lambda}_6 = .53$; $\hat{\lambda}_7 = .21$ The first sample principal component $\hat{y}_1 = -.010x_1 + .993x_2 + .014x_3 - .005x_4 + .024x_5 + .112x_6 + .002x_7$ accounts for 87% of the total sample variance. The first component is essentially "solar radiation". (Note the large sample variance for x_2 in S). Using R: $$\hat{\lambda}_1 = 2.34; \quad \hat{\lambda}_2 = 1.39; \quad \hat{\lambda}_3 = 1.20; \quad \hat{\lambda}_4 = .73; \quad \hat{\lambda}_5 = .65;$$ $\hat{\lambda}_6 = .54; \quad \hat{\lambda}_7 = .16$ The first three sample principle components are $$\hat{y}_1 = .237z_1 - .205z_2 - .551z_3 - .378z_4 - .498z_5 - .324z_6 - .319z_7$$ $$\hat{y}_2 = -.278z_1 + .527z_2 + .007z_3 - .435z_4 - .199z_5 + .567z_6 - .308z_7$$ $$\hat{y}_3 = .644z_1 + .225z_2 - .113z_3 - .407z_4 + .197z_5 + .159z_6 + .541z_7$$ These components account for 70% of the total sample variance. The first component contrasts "wind" with the remaining variables. It might be some general measure of the pollution level. The second component is largely composed of "solar radiation" and the pollutants "NO" and "O3". It might represent the effects of solar radiation since solar radiation is involved in the production of NO and O3 from the other pollutants. The third component is composed largely of "wind" and certain pollutants (e.g. "NO" and "HC"). It might represent a wind transport effect. A "better" interpretation of the components would depend on more extensive subject matter knowledge. The data can be effectively summarized in three or fewer dimensions. The choice of S or R makes a difference. ### 8.13 | (a) | Cova | riance Mat | rix | | | en e | | |-----|------|-------------|-----------|--------------|--------------|--|---------------------------------------| | ` ' | | | X1 | X2 | | ХЗ | | | | X1 | 4.654 | 750889 | 0.931345370 | 0.5896 | 599088 | | | | X2 | 0.931 | 345370 | 0.612821160 | 0.1109 | 933412 | | | | Х3 | | 699088 | 0.110933412 | 0.5714 | 128861 | | | | X4 | | 915309 | 0.118469052 | 0.087 | 004959 | | | | X5 | 1.074 | 885659 | 0.388886434 | 0.347 | 989910 | | | | X6 | 0.158 | 150852 | -0.024851988 | 0.110 | 131391 | | | | 3.0 | | X4 | X5 | | Х6 | | | | X1 | 0.276 | 915309 | 1.074885659 | 0.158 | 150852 | | | | X2 | | 469052 | 0.388886434 | -0.024 | 851988 | | | | XЗ | | 004959 | 0.347989910 | 0.110 | 131391 | | | | X4 | | 409072 | 0.217405649 | 0.021 | 814433 | | | | X5 | | 405649 | 0.862172372 | -0.008817694 | | | | | X6 | | 814433 | -0.008817694 | 0.861 | 455923 | • • • • • • • • • • • • • • • • • • • | | | | relation Ma | | | | | | | | 001 | X1 | X2 | ХЗ | X4 | X5 | X6 | | | X1 | 1.0000 | 0.5514 | 0.3616 | 0.3863 | 0.5366 | 0.0790 | | | X2 | 0.5514 | 1.0000 | 0.1875 | 0.4554 | 0.5350 | 0342 | | | XЗ | 0.3616 | 0.1875 | 1.0000 | 0.3464 | 0.4958 | 0.1570 | | | X4 | 0.3863 | 0.4554 | 0.3464 | 1.0000 | 0.7046 | 0.0707 | | | X5 | 0.5366 | 0.5350 | 0.4958 | 0.7046 | 1.0000 | 0102 | | | X6 | 0.0790 | 0342 | 0.1570 | 0.0707 | 0102 | 1.0000 | (b) We will work with R since the sample variance of x1 is approximately 40 times larger than that of x4. | Eigenval | ues of the Corre | lation Matrix | | | |----------|------------------|---------------|------------|------------| | | Eigenvalue | Difference | Proportion | Cumulative | | PRIN1 | 2.86431 | 1.78786 | 0.477385 | 0.47738 | | PRIN2 | 1.07645 | 0.29881 | 0.179408 | 0.65679 | | PRIN3 | 0.77764 | 0.12733 | 0.129607 | 0.78640 | | PRIN4 | 0.65031 | 0.26228 | 0.108386 | 0.89479 | | PRIN5 | 0.38803 | 0.14478 | 0.064672 | 0.95946 | | PRING | 0.24326 | • | 0.040543 | 1.00000 | | | | | | | | Eig | envectors | | | | | | |-----|-----------|----------|----------|----------|----------|----------| | 6 | PRIN1 | PRIN2 | PRIN3 | PRIN4 | PRIN5 | PRIN6 | | X1 | 0.444858 | 026660 | 0.339330 | 551149 | 600851 | 0.146492 | | X2 | 0.429300 | 291738 | 0.498607 | 061367 | 0.687297 | 0.076408 | | ХЗ | 0.358773 | 0.380135 | 628157 | 421060 | 0.331839 | 0.211635 | | X4 | 0.462854 | 020959 | 124585 | 0.665604 | 207413 | 0.532689 | | X5 | 0.521276 | 073690 | 203339 | 0.200526 | 103175 | 794127 | | X6 | 0.055877 | 0.873960 | 0.429880 | 0.178715 | 0.053090 | 116262 | - (c) It is not possible to summarize the radiotherapy data with a single component. We need the first four components to summarize the data. - (d) Correlations between principal components and X1 X6 are | | PRIN1 | PRIN2 | PRIN3 | PRIN4 | |----|---------|----------|----------|----------| | X1 | 0.75289 | -0.02766 | 0.29923 | -0.44446 | | X2 | 0.72656 | -0.30268 | 0.43969 | -0.04949 | | Х3 | 0.60720 | 0.39440 | -0.55393 | -0.33955 | | X4 | 0.78335 | -0.02175 | -0.10986 | 0.53676 | | X5 | 0.88222 | -0.07646 | -0.17931 | 0.16171 | | X6 | 0.09457 | 0.90675 | 0.37909 | 0.14412 | 8.14 S is given in Example 5.2. $$\hat{\lambda}_1 = 200.5, \quad \hat{\lambda}_2 = 4.5, \quad \hat{\lambda}_3 = 1.3$$ The first sample principal component explains a proportion 200.5/(200.5 + 4.5 + 1.3) = .97 of the total sample variance. Also, $$\hat{\mathbf{e}}_{1}^{i} = [-.051, -.998, .029]$$
Hence $\hat{y}_1 = -.051x_1 -.998x_2 +.029x_3$ The first principal component is essentially X_2 = sodium content. (Note the (relatively) large sample variance for sodium in S). A Q-Q plot of the \hat{y}_1 values is shown below. These data appear to be approximately normal with no suspect observations. $$\hat{\lambda}_1 = 3779.01; \quad \hat{\lambda}_2 = 468.25; \quad \hat{\lambda}_3 = 452.13; \quad \hat{\lambda}_4 = 248.72$$ Consequently, the first sample principal component accounts for a proportion 3779.01/4948.11 = .76 of the total sample variance. Also, $$\hat{e}_{1}^{1} = [.45, .49, .51, .53]$$ Consequently, $$\hat{y}_1 = .45x_1 + .49x_2 + .51x_3 + .53x_4$$ The interpretation of the first component is the same as the interpretation of the first component, obtained from R, in Example 8.6. (Note the sample variances in S are nearly equal). - 8.16. Principal component analysis of Wisconsin fish data - (a) All are positively correlated. - (b) Principal component analysis using x1 x4 Eigenvalues of R 2.1539 0.7875 0.6157 0.4429 Eigenvectors of R 0.7032 0.4295 0.1886 -0.7071 0.6722 0.3871 -0.4652 0.4702 0.5914 -0.7126 -0.2787 -0.3216 0.6983 -0.2016 0.4938 0.5318 pc1 pc2 pc3 pc4 St. Dev. 1.4676 0.8874 0.7846 0.6655 Prop. of Var. 0.5385 0.1969 0.1539 0.1107 Cumulative Prop. 0.5385 0.7354 0.8893 1.0000 The first principal component is essentially a total of all four. The second contrasts the Bluegill and Crappie with the two bass. (c) Principal component analysis using x1 - x6 Eigenvalues of R 2.3549 1.0719 0.9842 0.6644 0.5004 0.4242 Eigenvectors of R -0.6716 0.0114 0.5284 -0.0471 0.3765 -0.7293 -0.6668 -0.0100 0.2302 -0.7249 -0.1863 0.5172 -0.5555 -0.2927 -0.2911 0.1810 -0.6284 -0.3081 -0.7013 -0.0403 0.0355 0.6231 0.3407 0.5972 0.3621 -0.4203 0.0143 -0.2250 0.5074 0.0872 -0.4111 0.0917 -0.8911 -0.2530 0.4021 -0.1731 pc1 pc2 pc3 pc4 pc5 pc6 St. Dev. 1.5346 1.0353 0.9921 0.8151 0.7074 0.6513 Prop. of Var. 0.3925 0.1786 0.1640 0.1107 0.0834 0.0707 Cumulative Prop. 0.3925 0.5711 0.7352 0.8459 0.9293 1.0000 The Walleye is contrasted with all the others in the first principal component (look at the covariance pattern). The second principal component is essentially the Walleye and somewhat the largemouth bass. The third principal component is nearly a contrast between Northern pike and Bluegill. #### 8.17 ### COVARIANCE MATRIX ``` x1 .0130016 .0103784 x2 .0114179 xЗ .0223500 .0185352 .0803572 ×4 .0200857 .0210995 .0667762 .0694845 x5 .0912071 .0085298 .0168369 .0177355 .0115684 x6 .0079578 .0089085 .0128470 .0167936 .0080712 .0105991 ``` ### The eigenvalues are 0.164 0.018 0.008 0.003 0.002 0.001 and the first two principal components are [.218 , .204 , .673 , .633 , .181 , .159] X [.337 , .432 , -.500 , .024 , .430 , .514] X 8.18 (a) & (b) Principal component analysis of the correlation matrix follows. ## Correlations: 100m(s), 200m(s), 400m(s), 800m, 1500m, 3000m, Marathon | 200m(s) 0.941 400m(s) 0.871 0.909 800m 0.809 0.820 0.806 1500m 0.782 0.801 0.720 0.905 1500m 0.728 0.732 0.674 0.867 0.973 3000m 0.669 0.680 0.677 0.854 0.791 0.799 Marathon 0.669 0.680 0.677 0.854 0.791 0.799 Eigenanalysis of the Correlation Matrix Eigenvalue 5.8076 0.6287 0.2793 0.1246 0.0910 0.0545 0.0143 Proportion 0.830 0.090 0.040 0.018 0.013 0.008 0.002 Proportion 0.830 0.919 0.959 0.977 0.990 0.998 1.000 Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 100m(s) 0.378 -0.407 0.141 -0.587 0.167 -0.540 0.089 100m(s) 0.383 -0.414 0.101 -0.194 -0.094 0.745 -0.266 200m(s) 0.383 -0.414 0.101 -0.194 -0.094 0.745 -0.266 200m(s) 0.368 -0.459 -0.237 0.645 -0.327 -0.240 0.127 400m(s) 0.368 -0.459 -0.237 0.645 -0.327 -0.240 0.127 400m(s) 0.368 -0.459 0.237 0.645 -0.327 -0.240 0.127 3000m 0.395 0.161 -0.148 0.295 0.819 0.017 -0.195 1500m 0.389 0.309 0.422 0.067 -0.026 0.189 0.731 1500m 0.389 0.309 0.422 0.067 -0.026 0.189 0.731 3000m 0.376 0.423 0.406 0.080 -0.352 -0.240 -0.572 3000m 0.375 0.389 -0.741 -0.321 -0.247 0.048 0.082 | Correlation | 100m(s) | 200m(s) | 400m(s) | 800m | 1500m | 3000m | |---|---|--|--|--|--|---|---| | Eigenvalue 5.8076 0.6287 0.2793 0.1246 0.0910 0.0545 0.0143 Proportion 0.830 0.090 0.040 0.018 0.013 0.008 0.002 0.001 0.830 0.919 0.959 0.977 0.990 0.998 1.000 Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 0.006(s) 0.378 -0.407 0.141 -0.587 0.167 -0.540 0.089 0.000(s) 0.383 -0.414 0.101 -0.194 -0.094 0.745 -0.266 0.000(s) 0.368 -0.459 -0.237 0.645 -0.327 -0.240 0.127 0.000(s) 0.368 -0.459 0.0148 0.295 0.819 0.017 -0.195 0.000 0.395 0.161 -0.148 0.295 0.819 0.017 -0.195 0.000 0.389 0.309 0.422 0.067 -0.026 0.189 0.731 0.000 0.376 0.423 0.406 0.080 -0.352 -0.240 -0.572 0.000 0.376 0.423 0.406 0.080 -0.352 -0.240 -0.572 0.000 0.376 0.423 0.406 0.080 -0.352 -0.247 0.048 0.082 | 400m(s)
800m
1500m
3000m | 0.871
0.809
0.782
0.728 | 0.820
0.801
0.732 | 0.720
0.674 | 0.867 | | 0.799 | | Eigenvalue 5.8076 0.6287 0.2793 0.1246 0.0910 0.0545 0.0143 Proportion 0.830 0.090 0.040 0.018 0.013 0.008 0.002 0.001 0.830 0.919 0.959 0.977 0.990 0.998 1.000 Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 0.00m(s) 0.378 -0.407 0.141 -0.587 0.167 -0.540 0.089 0.00m(s) 0.383 -0.414 0.101 -0.194 -0.094 0.745 -0.266 0.00m(s) 0.368 -0.459 -0.237 0.645 -0.327 -0.240 0.127 0.00m(s) 0.368 -0.459 0.0161 -0.148 0.295 0.819 0.017 -0.195 0.000 0.395 0.161 -0.148 0.295 0.819 0.017 -0.195 0.000 0.389 0.309 0.422 0.067 -0.026 0.189 0.731 0.000 0.376 0.423 0.406 0.080 -0.352 -0.240 -0.572 0.0000 0.376 0.423 0.406 0.080 -0.352 -0.240 -0.572 0.0000 0.376 0.423 0.406 0.080 -0.352 -0.247 0.048 0.082 | FigenanalV | sis of th | e Correlat | ion Matrix | | | | | Variable PC1 PC2 PC3 PC4 PC4 PC5 PC4 PC5 PC4 PC5 PC4 PC5 PC5 PC5 PC4 PC5 | Eigenvalue
Proportion | 5.8076
0.830 | 0.6287 0
0.090 | .2793 0.12
0.040 0.0 | 18 0.01 | 3 0.008 | 0.002 | | | 100m(s)
200m(s)
400m(s)
800m
1500m
3000m | 0.378 -0
0.383 -0
0.368 -0
0.395 0
0.389 0 | .407 0.1
.414 0.1
.459 -0.2
.161 -0.1
.309 0.4 | 41 -0.587
01 -0.194
37 0.645
48 0.295
22 0.067
06 0.080 | 0.167
-0.094
-0.327
0.819
-0.026
-0.352 | -0.540 (
0.745 -0
-0.240 (
0.017 -(
0.189 (| 0.089
0.266
0.127
0.195
0.731 | | $\hat{y}_1 = .378z_1 + .383z_2 + .368z_3 + .395z_4 + .389z_5 + .376z_6 + .355z_7$ | <i>J</i> 1 | | - | | | | ~~ | | $\hat{y}_1 = .378z_1 + .383z_2 + .368z_3 + .395z_4 + .389z_5 + .376z_6 + .353z_7$ | |---| | $\hat{y}_2 =407z_1414z_2459z_3 + .161z_4 + .309z_5 + .423z_6 + .389z_7$ | | $y_2 = \dots = z_1$ | | $r_{\hat{y}_2,z_i}$ 323328364 .128 .245 .335 .308 | $r_{\hat{\mathbf{r}}_{i},z}$ | z ₁
.911 | .923 | .887 | .952 | .937 | .906 | .856 | |---|------------------------------|------------------------|------|------|------|------|------|------| | | $r_{\hat{y}_1,z_i}$ | 323 | 328 | 364 | .128 | .245 | .335 | .308 | Cumulative proportion of total sample variance explained by the first two components is .919. - (c) All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts the times for the shorter distances (100m, 200m 400m) with the times for the longer distances (800m, 1500m, 3000m, marathon) and might be called a distance component. - (d) The "track excellence" rankings for the first 10 and very last countries follow. These rankings appear to be consistent with intuitive notions of athletic excellence. - 1. USA 2. Germany 3. Russia 4. China 5. France 6. Great Britain - 7. Czech Republic 8. Poland 9. Romania 10. Australia 54. Somoa ## 8.19 Principal component analysis of the covariance matrix follows. ## Covariances: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 3000m/s, Marm/s | | 100m/s | 200m/s | 400m/s | 800m/s | 1500m/s | 3000m/s | |--|---|--|---|--|-------------------------------------|------------------------| | 100m/s
200m/s
400m/s
800m/s
1500m/s
3000m/s
Marm/s | 0.0905383
0.0956063
0.0966724
0.0650640
0.0822198
0.0921422
0.0810999 | 0.1146714
0.1138699
0.0749249
0.0960189
0.1054364
0.0933103 |
0.1377889
0.0809409
0.0954430
0.1083164
0.1018807 | 0.0735228
0.0864542
0.0997547
0.0943056 | 0.1238405
0.1437148
0.1184578 | 0.1765843
0.1465604 | | Marm/s | Marm/s
0.1667141 | | | | | | #### Eigenanalysis of the Covariance Matrix | Eigenvalue
Proportion
Cumulative | 0.829 | 0.097 | 0.038 | 0.017 | 0.010 | 0.007 | 0.002 | |--|-------|-------|-------|-------|-------|-------|-------| | California | | | | | | | | | Variable | PC1 | ₽C2 | PC3 | PC4 | PC5 | PC6 | PC7 | |----------|-------|--------|--------|--------|--------|--------|--------| | | 0.310 | -0.376 | 0.098 | -0.585 | -0.046 | -0.624 | 0.138 | | 100m/s | 0.357 | -0.434 | 0.089 | -0.323 | -0.030 | 0.689 | -0.311 | | 200m/s | 0.379 | -0.519 | -0.274 | 0.667 | -0.187 | -0.124 | 0.132 | | 400m/s | 0.299 | 0.053 | -0.053 | 0.128 | 0.894 | -0.136 | -0.265 | | 800m/s | 0.391 | 0.033 | 0.435 | 0.055 | 0.127 | 0.236 | 0.734 | | 1500m/s | 0.391 | 0.396 | 0.427 | 0.184 | -0.357 | -0.199 | -0.499 | | 3000m/s | | 0.336 | -0.730 | -0.237 | -0.136 | 0.081 | 0.095 | | Marm/s | 0.423 | 0.445 | -0.730 | -0.237 | 0.150 | | | $$\hat{y}_1 = .310x_1 + .357x_2 + .379x_3 + .299x_4 + .391x_5 + .460x_6 + .423x_7$$ $$\hat{y}_2 = -.376x_1 - .434x_2 - .519x_3 + .053x_4 + .211x_5 + .396x_6 + .445x_7$$ | | <i>x</i> ₁ | x ₂ | <i>x</i> ₃ | X4 | <i>x</i> ₅ .951 | .937 | .886 | |---------------------|-----------------------|----------------|-----------------------|------|----------------------------|------|------| | $r_{\hat{y}_1,x_i}$ | .882 | .902 | .874 | .944 | | | | | $r_{\hat{y}_2,x_i}$ | 367 | 376 | 410 | .057 | .176 | .276 | .320 | Cumulative proportion of total sample variance explained by the first two components is .926. The interpretation of the sample component is similar to the interpretation in Exercise 8.18. All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts times in m/s for the shorter distances (100m, 200m 400m) with the times for the longer distances (800m, 1500m, 3000m, marathon) and might be called a distance component. The "track excellence" rankings for the countries are very similar to the rankings for the countries obtained in Exercise 8.18. ## 8.20 (a) & (b) Principal component analysis of the correlation matrix follows. Eigenanalysis of the Correlation Matrix | Ergenan | | | | | | | | | | |---|---|--|---|--|---|---|---|---|---------------------------------| | Eigenvalu
Proportio | on 0.83 | 8 0.0 | BO 0.0 | 28 0.0 | 26 0.0 | 12 0.0 | 0.0 | 06 0 | 0097
.001
.000 | | Variable
100m
200m
400m
800m
1500m
5000m
10,000m
Marathon | 0.332
0.346
0.339
0.353
0.366
0.370
0.366 | PC2
0.529
0.470
0.345
-0.089
-0.154
-0.295
-0.334
-0.387 | PC3
0.344
-0.004
-0.067
-0.783
-0.244
0.183
0.244
0.335 | PC4 -0.381 -0.217 0.851 -0.134 -0.233 0.055 0.087 -0.018 | PC5
0.300
-0.541
0.133
-0.227
0.652
0.072
-0.061
-0.338 | PC6 -0.362 0.349 0.077 -0.341 0.530 -0.359 -0.273 0.375 | PC7
0.348
-0.440
0.114
0.259
-0.147
-0.328
-0.351
0.594 | PC:
-0.061
0.06
-0.00
-0.03
-0.04
0.70
-0.69
0.06 | 6
1
3
9
0
6
7 | $$\hat{y}_1 = .332z_1 + .346z_2 + .339z_3 + .353z_4 + .366z_5 + .370z_6 + .366z_7 + .354z_8$$ $$\hat{y}_2 = .529z_1 + .470z_2 + .345z_3 - .089z_4 - .154z_5 - .295z_6 - .334z_7 - .387z_8$$ | | | | | | | | - | | |---|------|------------|------------|------------|------------|------|------|------| | | 71 | Z 2 | Z 3 | Z 4 | Z 5 | Z6 | 27 | Z8 | | r. | .860 | .896 | .878 | .914 | .948 | .958 | .948 | .917 | | $\frac{r_{\hat{y}_1,z_i}}{r_{\hat{y}_2,z_i}}$ | .423 | .376 | .276 | 071 | 123 | 236 | 267 | 309 | Cumulative proportion of total sample variance explained by the first two components is .918. - (c) All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts the times for the shorter distances (100m, 200m 400m) with the times for the longer distances (800m, 1500m, 5000m, 10,000m, marathon) and might be called a distance component. - (d) The male "track excellence" rankings for the first 10 and very last countries follow. These rankings appear to be consistent with intuitive notions of athletic excellence. - 1. USA 2. Great Britain 3. Kenya 4. France 5. Australia 6. Italy - 7. Brazil 8. Germany 9. Portugal 10. Canada 54. Cook Islands The principal component analysis of the men's track data is consistent with that for the women. 1500m/s 800m/s ## 8.21 Principal component analysis of the covariance matrix follows. 200m/s Covariances: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 5000m/s, 10,000m/s, Marathonn/s 400m/s | | 100 | N/S | 200111/5 | 40011 | - | | | | | |----------------------|-------------|-----------|-----------|-----------------|---------|---------|-----------|---------|--| | 100m/s | 0.04349 | | | | | | | | | | 200m/s | 0.04827 | | 0648452 | | | | * | | | | 400m/s | 0.04346 | 32 0. | 0558678 | 0.068821 | | | | | | | | 0.03149 | | 0432334 | 0.042822 | | 168840 | | | | | 800m/s | 0.04250 | | 0535265 | 0.053720 | | 23058 | 0.0729140 | | | | 1500m/s | 0.04692 | | 0587731 | 0.061766 | 4 0.05 | 71560 | 0.0766388 | | | | 5000m/s | 0.04483 | | 0572512 | 0.059935 | 4 0.05 | 53945 | 0.0745719 | | | | 10,000m/s | | | 0562945 | 0.056734 | | 41911 | 0.0736518 | | | | Marathonm/ | s 0.04312 | :50 0. | 0502545 | 0.050.50 | • | | | | | | | 5000- | 10 | .000m/s | Marathonm/ | s | | | | | | Sec Signal Section 1 | 5000a | | , 000,000 | Mar a Citorian, | 1000 | | | | | | 5000m/s | 0.09593 | | 0040004 | | | | | | | | 10,000m/s | 0.09373 | | 0942894 | 0.097927 | • | | | | | | Marathonm/ | s 0.09058 | 319 0. | 0909952 | 0.09/92/ | • | | | | | | | | | SEAT ON | 6 Ta - 2 | | | | | Eigenanalys | is of the | e Covaria | ance Matrix | | | | | | | | | | 1,4 | | | 0.00752 | 0.00575 | 0.00322 | | | | Eigenvalue | 0.49405 | | | 0.01332 | 0.00752 | 0.010 | 0.006 | | | | Proportion | 0.844 | 0.07 | | 0.023 | | 0.993 | 0.998 | | | | Cumulative | 0.844 | 0.92 | 3 0.947 | 0.970 | 0.983 | 0.993 | 0.550 | | | | Camazassi | | | • | | | | | | | | Eigenvalue | 0.00112 | | | | | | | | | | Proportion | 0.002 | | | | | | | | | | Cumulative | 1.000 | | 100 | | | | | | | | CHIMITACIAE | $$\hat{y}_1 = .244x_1 + .311x_2 + .317x_3 + .278x_4 + .364x_5 + .428x_6 + .421x_7 + .416x_8$$ $$\hat{y}_2 = -.432x_1 - .523x_2 - .469x_3 - .033x_4 + .063x_5 + .261x_6 + .310x_7 + .387x_8$$ | | | | | | | | | 1 | |------------------|------------|-------|-------|------|-------|-------|------------|-----------------------| | | X 1 | x_2 | x_3 | X4 | x_5 | x_6 | <i>X</i> 7 | <i>x</i> ₈ | | r. | .822 | .858 | .849 | .902 | .948 | .971 | .964 | .934 | | r_{\circ} | 445 | 442 | 384 | 033 | .050 | .181 | .217 | .266 | | \hat{y}_2, x_i | | | | | | | | | Cumulative proportion of total sample variance explained by the first two components is .923. The interpretation of the sample component is similar to the interpretation in Exercise 8.20. All track events contribute about equally to the first component. This component might be called a track index or track excellence component. The second component contrasts times in m/s for the shorter distances (100m, 200m 400m, 800m) with the times for the longer distances (1500m, 5000m, 10,000m, marathon) and might be called a distance component. The "track excellence" rankings for the countries are very similar to the rankings for the countries obtained in Exercise 8.20. #### **8.22** Using *S* #### Eigenvalues of the Covariance Matrix | | Eigenvalue | Difference | Proportion | Cumulative | |----------------|---------------|------------|----------------------|--------------------| | PRIN1 | 20579.6 | 15704.9 | 0.808198 | 0.80820 | | PRIN2
PRIN3 | 4874.7
5.4 | 4869.2 | 0.191437
0.000213 | 0.99985 | | PRIN4 | 3.3
0.5 | 2.8
0.4 | 0.000130
0.000018 | 0.99998
1.00000 | | PRINS
PRIN6 | 0.1
0.0 | 0.1 | 0.000003
0.000000 | 1.00000
1.00000 | | PRIN7 | . 0.0 | | | | #### Eigenvectors | | PRIN1 | PRIN2 | PRIN3 | PRIN4 | PRIN5 | PRIN6 | PRIN7 | | |----------------------------|---|--|--|--|--|--|--|--| | x3
x4
x5
x6
x7 | 0.005887
0.487047
0.008526
0.003112
0.00069
0.009330 | 0.009680
0.872697
0.029196
0.004886
000493
0.008577
487193 | 0.286337
034277
0.904389
0.133267
018864
0.284215 |
0.608787
003227
425175
0.311194
005278
0.593037 | 0.535569
0.000444
0.008388
0.390573
0.011906
748598
0.002665 | 509727
000457
0.010389
0.855204
0.043786
0.082331 | 0.024592
000253
0.014293
037984
0.998778
0.013820
000256 | yrhgt
ftfrbody
prctffb
frame
bkfat
saleht
salewt | | ~~ | 0 873259 | 4.401100 | 0.00.0. | | | | | | ## 8.22 (Continued) #### Using R Eigenvalues of the Correlation Matrix | | | Eigenvalue | Difference | Proportion | Cumulat | ive | | | |----|------------------|----------------|------------------|--------------|----------|-----------------|----------|----------| | | PRIN1 | 4,12070 | 2.78357 | 0.588671 | 0.58 | 867 | | | | | PRIN2 | 1,33713 | 0.59575 | 0.191018 | 0.77 | 969 | | | | | PRIN3 | 0.74138 | 0.31996 | 0.105912 | 0.88 | 560 | | | | | PRIN4 | 0.42143 | 0.23562 | 0.060204 | 0.94 | 580 | | | | | PRIN5 | 0.18581 | 0.03930 | 0.026544 | 0.97 | 235 | | | | | PRIN6 | 0.14650 | 0.09945 | 0.020929 | 0.99 | 328 | | | | | PRIN7 | 0.04706 | | 0.006722 | 1.00 | 000 | | | | | | | | Eigenvectors | | | | | | | PRIN1 | PRIN2 | PRIN3 | PRIN4 | PRIN5 | PRIN6 | PRIN7 | | | хз | 0.449931 | 042790 | → .415709 | 0.113356 | 0.065871 | 072234 | 0.774926 | yrhgt | | X4 | 0.412326 | 0.129837 | 0.450292 | 0.247479 | 719343 | →.177061 | 0.017768 | ftfrbody | | X5 | 0.355562 | ●.315508 | 0.568273 | 0.314787 | 0.579367 | 0.127800 | 002397 | pretffb | | X6 | 0.433957 | 0.007728 | 452345 | 0.242818 | 0.142995 | 434144 | 582337 | frame | | X7 | ◆. 186705 | 0.714719 | ⊶.038732 | 0.618117 | 0.160238 | 0.208017 | 0.042442 | bkfat | | X8 | 0.452854 | 0.101315 | 176650 | 215769 | ~.109535 | 0.799288 | 236723 | saleht | | X9 | 0.269947 | 0.600515 | 0.253312 | 582433 | 0.290547 | 276561 | 0.047036 | salewt | #### 8.23 a) Using S #### Eigenvalues of S 4478.87 152.47 32.32 8.12 1.52 0.54 Eigenvectors of S (in columns) The first component might be identified as a "size" component. It is dominated by Weight, Body length and Girth, those variables with the largest sample variances. The first component explains 4478.87/4673.84 = .958 or 95.8% of the total sample variance. The second component essentially contrasts Weight with the remaining body size variables, Body length, Neck, Girth, Head length, and Head width, although the sample correlation between the second component and Neck is small (-.05). The first two components explain 99.1% of the total sample variance. These body measurement data can be effectively summarized in one dimension. #### b) Using R ``` R 1.0000 0.8752 0.9559 0.9437 0.9025 0.9045 0.8752 1.0000 0.9013 0.9177 0.9461 0.9503 0.9559 0.9013 1.0000 0.9635 0.9270 0.9200 0.9437 0.9177 0.9635 1.0000 0.9271 0.9439 0.9025 0.9461 0.9270 1.0000 0.9271 0.9544 0.9045 0.9503 0.9200 0.9439 0.9544 1.0000 ``` #### Eigenvalues of R 5.6447 0.1758 0.0565 0.0492 0.0473 0.0266 #### Eigenvectors of R (in columns) #### 8.23 (Continued) Again, the first principal component is a "size" component. All variables contribute equally to the first component. This component explains 5.6447/6 = .941 or 94.1% of the total sample variance. The second principal component contrasts Weight, Neck and Girth with Body length, Head length and Head width. The first two components explain 97% of the total sample variance. These data can be effectively summarized in one dimension. c) The results are similar for both the covariance matrix S and the correlation matrix R. The first component in each analysis is a "size" component and almost all of the variation in the data. The analyses differ a bit with respect to the second and remaining components, but these latter components explain very little of the total sample variance. 8.24 An ellipse format chart based on the first two principal components of the Madison, Wisconsin, Police Department data ``` XBAR 3557.8 1478.4 2676.9 13563.6 800 7141 ``` ``` 367884.7 -72093.8 85714.8 222491.4 -44908.3 101312.9 -72093.8 1399053.1 43399.9 139692.2 110517.1 1161018.3 85714.8 43399.9 1458543.0 -1113809.8 330923.8 1079573.3 139692.2 -1113809.8 1698324.4 -244785.9 222491.4 -462615.6 -44908.3 110517.1 330923.8 -244785.9 224718.0 427767.5 101312.9 1161018.3 1079573.3 -462615.6 427767.5 2488728.4 ``` Eigenvalues of S 4045921.9 2265078.9 761592.1 288919.3 181437.0 94302.6 #### Eigenvectors of S #### Principal components ``` y1 y2 у3 y4 у5 y6 1 1745.4 -1479.3 618.7 222.6 7.2 178.1 2 -1096.6 2011.8 652.5 -69.5 636.9 560.2 210.6 490.6 365.8 -899.8 -293.5 4 -1360.1 1448.1 420.1 523.5 -972.2 88.5 5 -1255.9 502.1 -422.4 -893.8 359.9 -273.7 971.6 284.7 -316.9 -942.8 -83.5 -70.1 1118.5 123.7 572.9 319.9 -60.8 -598.5 8 -1151.6 1752.0 -1322.1 700.2 -242.2 -158.8 -497.3 -593.0 209.5 -149.2 101.6 -586.2 10 -2397.1 1819.6 -9.5 -147.6 -109.9 207.8 11 -3931.9 -3715.7 924.1 35.1 -274.2 152.9 12 -1392.4 -1688.0 -2285.1 372.1 444.0 85.2 13 326.8 650.8 1251.6 728.8 809.5 -140.0 14 3371.4 -379.1 -499.9 -114.6 -324.3 286.9 3076.6 -199.1 -105.7 419.8 -122.3 3.4 2261.9 -1029.3 -53.7 -104.5 123.8 279.6 ``` $$2.5 \times 10^{-7} y_1^2 + 4.4 \times 10^{-7} y_2^2 = 5.99$$ The 95% control ellipse based on the first two principal components of overtime hours 8.25 A control chart based on the sum of squares d_{Uj}^2 . Period 12 looks unusual. #### 8.26 (a)-(c) Principal component analysis of the correlation matrix R. Correlations: Indep, Supp, Benev, Conform, Leader | | Indep | Supp | Benev | Conform | |---------|--------|--------|--------|---------| | Supp | -0.173 | | | | | Benev | -0.561 | 0.018 | | | | Conform | -0.471 | -0.327 | 0.298 | | | Leader | 0.187 | -0.401 | -0.492 | -0.333 | Cell Contents: Pearson correlation #### Principal Component Analysis: Indep, Supp, Benev, Conform, Leader Eigenvalue 2.1966 1.3682 0.7559 0.5888 0.0905 Proportion 0.439 0.274 0.151 0.118 0.018 Cumulative 0.439 0.713 0.864 0.982 1.000 Eigenanalysis of the Correlation Matrix | Variable
Indep
Supp
Benev | PC1
-0.521
0.121
0.548
0.439 | PC2
0.087
0.788
-0.008
-0.491 | PC3 -0.667 0.187 0.115 -0.295 | PC4
-0.253
0.351
-0.733 | PC5
-0.460
-0.454
-0.386
-0.451 | |------------------------------------|--|---|-------------------------------|----------------------------------|---| | Conform
Leader | -0.469 | -0.361 | 0.648 | 0.007 | -0.480 | Using the scree plot and the proportion of variance explained, it appears as if 4 components should be retained. These components explain almost all (98%) of the variability. It is difficult to provide an interpretation of the components without knowing more about the subject matter. All four of the components represent contrasts of some form. The first component contrasts independence and leadership with benevolence and conformity. The second component contrasts support with conformity and leadership and so on. The two dimensional plot of the scores on the first two components suggests that the two socioeconomic levels cannot be distinguished from one another nor can the two genders be distinguished. Observation #111 is a bit removed from the rest and might be called an outlier. #### (a)-(d) Principal component analysis of the covariance matrix S. Covariances: Indep, Supp, Benev, Conform, Leader | | Indep | Supp | Benev | Conform | Leader | |---------|----------|---------|----------|---------|---------| | Indep | 34.7502 | 14 74 5 | | 1.0 | | | Supp | -4.2767 | 17.5134 | | | | | Benev | -18.0718 | 0.4198 | 29.8447 | | | | Conform | -15.9729 | -7.8682 | 9.3488 | 33.0426 | | | Leader | 5.7165 | -8.7233 | -13.9422 | -9.9419 | 26.9580 | #### Principal Component Analysis: Indep, Supp, Benev, Conform, Leader Eigenanalysis of the Covariance Matrix | | | | | | and the second second | | |---|--|--|-------------------------------------|--|--|--| | Eigenvalue
Proportion | 0.484 | 0.222 | 0.163 | 0.115 | 0.017 | | | Cumulative | 0.484 | 0.700 | 0.800 | 0.505 | 1.000 | | | Variable
Indep
Supp
Benev
Conform
Leader | PC1
-0.579
0.042
0.524
0.493
-0.380 | PC2
0.079
0.612
0.219
-0.572
-0.494 | PC3 -0.643 0.140 0.119 -0.422 0.612 | PC4
0.309
-0.515
0.734
-0.304
0.090 | PC5
0.386
0.583
0.352
0.398
0.478 | | Using the scree plot and the proportion of variance explained, it appears as if 4 components should be retained. These components explain almost all (98%) of the variability. The components are very similar to those obtained from the correlation matrix **R**. All four of the components represent contrasts of some form. The first component contrasts independence and leadership with benevolence and conformity. The second component contrasts support with conformity and leadership and so on. In this case, it makes little difference whether the components are obtained from the sample correlation matrix or the sample covariance matrix. The two dimensional plot of the scores on the first two components suggests that the two socioeconomic levels cannot be distinguished from one another nor can the two genders be distinguished. Observations #111 and #104 are a bit removed from the rest and might be labeled outliers. Large sample 95% confidence interval for λ_1 : $$\left(\frac{68.752}{(1+1.96\sqrt{2/130})}, \frac{68.752}{(1-1.96\sqrt{2/130})}\right) = (55.31, 90.83)$$ ## 8.27 (a)-(d) Principal component analysis of the correlation matrix R. #### Correlations: BL, EM, SF, BS | | BL | EM | SF | |----|-------|-------|-------| | EM | 0.914 | | | | SF | 0.984 | 0.942 | | | BS | 0.988 | 0.875 | 0.975 | Cell Contents: Pearson
correlation #### Principal Component Analysis: BL, EM, SF, BS Eigenanalysis of the Correlation Matrix | Eigenvalue | 3.8395 | 0.1403 | 0.0126 | 0.0076 | |------------|--------|--------|--------|--------| | Proportion | 0.960 | 0.035 | 0.003 | 0.002 | | Cumulative | 0.960 | 0.995 | 0.998 | 1.000 | | Variable | PC1 | PC2 | PC3 | PC4 | |----------|-------|--------|--------|--------| | BL | 0.506 | -0.261 | -0.565 | 0.597 | | EM | 0.485 | 0.819 | -0.194 | -0.237 | | SF | 0.508 | -0.020 | 0.800 | 0.318 | | BS | 0.500 | -0.510 | -0.053 | -0.698 | The proportion of variance explained and the scree plot below suggest that one principal component effectively summarizes the paper properties data. All the variables load about equally on this component so it might be labeled an index of paper strength. The plot below of the scores on the first two sample principal components does not indicate any obvious outliers. ## (a)-(d) Principal component analysis of the covariance matrix S. ## Covariances: BL, EM, SF, BS | | BL | EM | SF | BS | |----|----------|----------|----------|----------| | ВL | 8.302871 | | | | | EM | 1.886636 | 0.513359 | | | | SF | 4.147318 | 0.987585 | 2.140046 | 0 400077 | | BS | 1.972056 | 0.434307 | 0.987966 | 0.480272 | ## Principal Component Analysis: BL, EM, SF, BS Eigenanalysis of the Covariance Matrix | Eigenvalu
Proportio
Cumulativ | n 0.9 | 88 0.00 | 9 0.003 | 0.006 | |-------------------------------------|---|-------------------------------|-------------------------------|---| | Variable
BL
EM
SF
BS | PC1
0.856
0.198
0.431
0.204 | PC2 -0.364 0.786 0.458 -0.201 | PC3 -0.332 -0.497 0.733 0.325 | PC4
0.155
-0.310
0.259
-0.901 | The proportion of variance explained and the scree plot that follows suggest that one principal component effectively summarizes the paper properties data. The loadings of the variables on the first component are all positive, but there are some differences in magnitudes. However, the correlations of the variables with the first component are .998, .928, .990 and .989 for BL, EM, SF and BS respectively. Again, this component might be labeled an index of paper strength. The plot below of the scores on the first two sample principal components does not indicate any obvious outliers. ## 8.28 (a) See scatter plots below. Observations 25, 34, 69 and 72 are outliers. (b) Principal component analysis of R follows. Removing the outliers has some but relatively little effect on the analysis. Five components explain about 90% of the total variability in the data set and seems a reasonable number given the scree plot. # Principal Component Analysis: AdjFam, AdjDistRd, AdjCotton, AdjMaize, AdjSorg, (Outliers 25,34,69,72 removed) Eigenanalysis of the Correlation Matrix | Eigenvalue
Proportion
Cumulative | 0.465 | 0.160 | 0.121 | 0.7918
0.088
0.833 | 0.6043
0.067
0.900 | 0.041 | 0.027 | 0.019 | 9 | |---|---|--|--|------------------------------------|--------------------------|--|--|--|--| | Eigenvalue
Proportion
Cumulative | 0.013 | | | | | | | | | | Variable AdjFam AdjDistRd AdjCotton AdjMaize AdjSorg AdjMillet AdjBull AdjCattle AdjGoats | 0.446
0.352
0.204
0.240
0.445 | -0.009
-0.353
0.604
0.415
-0.068
-0.284 | 0.388
-0.111
-0.116
-0.030
0.014 | -0.027
0.240
-0.059
0.616 | -0.378
-0.219 | PC6 -0.040 0.187 -0.200 -0.273 0.246 0.181 -0.134 0.759 -0.402 | PC7 -0.797 0.021 0.361 -0.024 -0.021 0.241 0.396 -0.011 -0.131 | PC8 -0.263 -0.048 0.329 0.363 0.126 0.077 -0.751 0.169 0.274 | PC9 -0.249 -0.065 -0.675 0.574 0.293 0.048 0.190 0.038 0.149 | ## Principal Component Analysis: Family, DistRd, Cotton, Maze, Sorg, Millet, Buil, ... | Eigenanalys | sis of t | he Corre | lation Ma | trix | | | | | | |--|---|---|-------------------------------------|--|---------------------------|---|--|--|--| | Eigenvalue
Proportion
Cumulative | 4.1443
0.460
0.460 | 1.2364 | | 0.9205
0.102
0.818 | 0.6058
0.067
0.885 | 0.056 | 0.030 | 0.016 | ; | | Eigenvalue
Proportion
Cumulative | 0.1114
0.012
1.000 | | | | | | | | | | Variable Family DistRd - Cotton Maze Sorg Millet Bull Cattle Gosts | 0.033
0.411
0.337
0.311
0.269 | -0.072
-0.342
-0.554
0.452
0.043
-0.029
0.458 | -0.831
-0.068
0.170
-0.069 | 0.502
0.030
0.164
-0.229
-0.606
0.197 | -0.194
0.100
-0.134 | PC6 -0.127 -0.051 -0.216 0.053 -0.632 0.594 0.110 0.407 0.043 | PC7 -0.579 -0.045 0.509 -0.352 0.055 0.089 0.458 -0.012 -0.242 | PC8
0.454
0.082
-0.372
-0.360
-0.139
-0.097
0.621
-0.215
-0.242 | PC9 -0.461 0.041 -0.504 0.499 0.300 0.077 0.357 -0.225 0.095 | - (c) All the variables (all crops, all livestock, family) except for distance to road (DistRd) load about equally on the first component. This component might be called a farm size component. Millet and sorghum load positively and distance to road and maize load negatively on the second component. Without additional subject matter knowledge, this component is difficult to interpret. The third component is essentially a distance to the road and goats component. This component might represent subsistence farms. The fourth component appears to be a contrast between distance to road and millet versus cattle and goats. Again, this component is difficult to interpret. The fifth component appears to contrast sorghum with millet. - **8.29** (a) The 95% ellipse format chart using the first two principal components from the covariance matrix S (for the first 30 cases of the car body assembly data) is shown below. The ellipse consists of all \hat{y}_1 , \hat{y}_2 such that $\frac{\hat{y}_1^2}{\hat{\lambda}_1} + \frac{\hat{y}_2^2}{\hat{\lambda}_2} \le \chi_2^2(.05) = 5.99$ where $\hat{\lambda}_1 = .354$, $\hat{\lambda}_2 = .186$. Observations 3 and 11 lie outside the ellipse. (b) To construct the alternative control chart based upon unexplained components of the observations we note that $\overline{d}_U^2 = .4137$, $s_{d^2}^2 = .0782$ so $$c = \frac{.0782}{2(.4137)} = .0946$$, $v = 2\frac{(.4137)^2}{.0782} = 4.4$. Conservatively, we set the chi-squared degrees of freedom to $v = 5$ and the UCL becomes $c\chi_5^2(.05) = .0946(11.07) = 1.05$ or approximately 1.0. The alternative control chart is plotted on the next page and it appears as if multivariate observation 18 is out of control. For observation 18, \hat{y}_4^2 makes the largest contribution to d_{U18}^2 and the variables getting the most weight in \hat{y}_4 are the thickness measurements x_1 and x_2 . Car body #18 could be examined at locations 1 and 2 to determine the cause of the unusual deviations in thickness from the nominal levels. ## Chapter 9 9.2 a) For $$m = 1$$ $h_1^2 = \ell_{11}^2 = .81$ $h_2^2 = \ell_{21}^2 = .49$ $h_3^2 = \ell_{31}^2 = .25$ The communalities are those parts of the variances of the variables explained by the single factor. b) $Corr(Z_i, F_i) = Cov(Z_i, F_i)$, i = 1,2,3. By (9-5) $Cov(Z_i, F_i) = L_{ii}$. Thus $Corr(Z_i, F_i) = L_{ii} = .9$; $Corr(Z_2, F_i) = L_{2i} = .7$; $Corr(Z_3, F_i) = L_{3i} = .5$. The first variable, Z_i , has the largest correlation with the factor and therefore will probably carry the most weight in naming the factor. 9.3 a) $$L = \sqrt{\lambda_1} \frac{e_1}{e_1} = \sqrt{1.96} \begin{bmatrix} .625 \\ .593 \\ .507 \end{bmatrix} = \begin{bmatrix} .876 \\ .831 \\ .711 \end{bmatrix}$$. Slightly different from result in Exercise 9.1. b) Proportion of total variance explained = $\frac{\lambda_1}{p} = \frac{1.96}{3} = .65$ $$L = \sqrt{\lambda_1} e_1 = \sqrt{1.55} \begin{bmatrix} .7229 \\ .5623 \\ .4016 \end{bmatrix} = \begin{bmatrix} .9 \\ .7 \\ .5 \end{bmatrix}$$ Result is consistent with results in Exercise 9.1. It should be since m=1 common factor completely determines $\mathbf{p}=\mathbf{p}-\mathbf{\Psi}$. Since Ψ is diagonal and $S - LL' - \Psi$ has zeros on the diagonal, (sum of squared entries of $S - LL' - \Psi$) \leq (sum of squared entries of S - LL). By the hint, $S - \widehat{LL} = \widehat{P}_{(2)}\widehat{\Lambda}_{(2)}\widehat{P}_{(3)}^{\dagger}$ which has sum of squared entries $$tr[\hat{P}_{(2)}\hat{\Lambda}_{(2)}\hat{P}_{(2)}^{\dagger}(\hat{P}_{(2)}\hat{\Lambda}_{(2)}\hat{P}_{(2)}^{\dagger})^{*}] = tr[\hat{P}_{(2)}\hat{\Lambda}_{(2)}\hat{\Lambda}_{(2)}\hat{P}_{(2)}^{\dagger}]$$ $$= tr[\hat{\Lambda}_{(2)}\hat{\Lambda}_{(2)}^{\dagger}\hat{P}_{(2)}^{\dagger}\hat{P}_{(2)}^{\dagger}] = tr[\hat{\Lambda}_{(2)}\hat{\Lambda}_{(2)}^{\dagger}]$$ $$= \hat{\lambda}_{m+1}^{2} + \hat{\lambda}_{m+2}^{2} + \cdots + \hat{\lambda}_{p}^{2}$$ Therefore, (sum of squared entries of $S - LL' - \Psi$) $\leq \hat{\lambda}_{m+1}^2 + \hat{\lambda}_{m+2}^2 + \cdots + \hat{\lambda}_p^2$ 9.6 - a) Follows directly from hint. - b) Using the hint, we post multiply by (LL' $+\Psi$) to get $$I = (\Psi^{-1} - \Psi^{-1}L(I +
L^{1}\Psi^{-1}L)^{-1}L^{1} + I^{-1}L(I + L^{1}\Psi^{-1}L)^{-1}L^{1}\Psi^{-1}(LL^{1} + \Psi)$$ $$= \Psi^{-1}(LL^{1} + \Psi) - \Psi^{-1}L(I - (I + L^{1}\Psi^{-1}L)^{-1}L^{1}\Psi^{-1}(LL^{1} + \Psi)$$ $$= \Psi^{-1}L(I + L^{1}\Psi^{-1}L)^{-1}L^{1}$$ $$= \Psi^{-1}LL^{1} + I - \Psi^{-1}LL^{1} + \Psi^{-1}L(I + L^{1}\Psi^{-1}L)^{-1}L^{1}$$ $$= \Psi^{-1}L(I + L^{1}\Psi^{-1}L)^{-1}L^{1} = I$$ Note all these multiplication steps are reversible. c) Multiplying the result in (b) by L we get $$(LL' + \Psi)^{-1}L = \Psi^{-1}L - \Psi^{-1}L \underbrace{(I + L'\Psi^{-1}L)^{-1}L'\Psi^{-1}L}_{\text{(use part (a))}}$$ $$= \Psi^{-1}L - \Psi^{-1}L(I - (I + L'\Psi^{-1}L)^{-1}) = \Psi^{-1}L(I + L'\Psi^{-1}L)^{-1}$$ Result follows by taking the transpose of both sides of the final equality. 9.7 From the equation $\Sigma = LL^1 + \Psi$, m = 1, we have $$\begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix} = \begin{bmatrix} \ell_{11}^2 + \psi_1 & \ell_{11} & \ell_{21} \\ \ell_{11}\ell_{21} & \ell_{21}^2 + \psi_2 \end{bmatrix}$$ so $\sigma_{11}=\ell_{11}^2+\psi_1$, $\sigma_{22}=\ell_{21}^2+\psi_2$ and $\sigma_{12}=\ell_{11}\ell_{21}$. Let $\rho=\sigma_{12}/\sqrt{\sigma_{11}}$ $\sqrt{\sigma_{22}}$. Then, for any choice $|\rho|/\sigma_{22}\leq \ell_{21}\leq \sqrt{\sigma_{22}}$, set $\ell_{11}=\sigma_{12}/\ell_{21}$ and check $\sigma_{12}=\ell_{11}\ell_{21}$. We obtain $\psi_1=\sigma_{11}-\ell_{11}^2=\sigma_{11}-\frac{\sigma_{12}}{\ell_{21}}\geq \sigma_{11}-\frac{\sigma_{12}^2}{\rho^2\sigma_{22}}=\sigma_{11}-\sigma_{11}=0$ and $\psi_2=\sigma_{22}-\ell_{21}^2\geq \sigma_{22}-\sigma_{22}=0$. Since ℓ_{21} was arbitrary within a suitable interval, there are an infinite number of solutions to the factorization. 9.8 $\Sigma = LL^1 + \Psi$ for m = 1 implies $$\begin{pmatrix} 1 = \ell_{11}^2 + \psi_1 & .4 = \ell_{11}\ell_{21} & .9 = \ell_{11}\ell_{31} \\ 1 = \ell_{21}^2 + \psi_2 & .1 = \ell_{21}\ell_{31} \\ 1 = \ell_{31}^2 + \psi_3 \end{pmatrix}$$ Now $\frac{\ell_{11}}{\ell_{21}} = \frac{.9}{.7}$ and $\ell_{11}\ell_{21} = .4$, so $\ell_{11}^2 = (\frac{.9}{.7})(.4)$ and $\ell_{11} = \pm .717$. Thus $\ell_{21} = \pm .558$. Finally, from $.9 = \ell_{11}\ell_{31}$, we have $\ell_{31} = \pm .9/.717 = \pm 1.255$. Note all the loadings must be of the same sign because all the covariances are positive. He have $$LL' = \begin{bmatrix} .717 \\ .558 \\ 1.255 \end{bmatrix} \begin{bmatrix} .717 .558 \ 1.255 \end{bmatrix} = \begin{bmatrix} .514 \ .4 \ .9 \\ .4 \ .3111 \ .7 \\ .9 \ .7 \ 1.575 \end{bmatrix}$$ so $\psi_3 = 1 - 1.575 = -.575$, which is inadmissible as a variance. - 9.9(a) Stoetzel's interpretation seems reasonable. The first factor seems to contrast sweet with strong liquors. - (b) | | Factor | 2 | | | |--|-----------------------|----------|-----------------|----------| | | 1.0 | | | | | | | | | | | | Mare | Rum | | | | | ٥ | • | | | | Constitution of the consti | .5 | ,, | | | | | | | | • | | | Calvados | | | • | | | | E 12 | | -
- | | Compa | | 5 Li | quors - Factor1 | - | | 1.0 cognac | <u>.</u> 5 · . | Kirsch | 1.0 | <u>-</u> | | - Arma | groc Whiskey | > Mirabe | 11e | | | | | | | | | | 5 | | | _ | | | | | | | | | | | | | It doesn't appear as if rotation of the factor axes is necessary. #### (a) & (b) The specific variances and communalities based on the unrotated factors, are given in the following table: | Variable | Specific Var | iance | Communality | |----------------|--------------|-------|-------------| | Skull length | .5976 | | .4024 | | Skull breadth | .7582 | | .2418 | | Femur length | .1221 | | .8779 | | Tibia length | .0000 | | 1.0000 | | Humerus length | .0095 | | .9905 | | Ulna length | .0938 | | .9062 | ## (c) The proportion of variance explained by each factor is: Factor 1: $$\frac{1}{6} \sum_{i=1}^{p} 2_{1i}^2 = \frac{4.0001}{6}$$ or 66.7% Factor 2: $$\frac{1}{6}\sum_{i=1}^{p} \ell_{2i}^2 = \frac{.4177}{6}$$ or 6.7% (d) $$R - \hat{L}_z \hat{L}_z^i - \hat{\Psi} =$$ # 9.11 Substituting the factor loadings given in the table (Exercise 9.10) into equation (9-45) gives. $$V (unrotated) = .01087$$ $$V \text{ (rotated)} = .04692$$ Although the rotated loadings are to be preferred by the varimax ("simple structure") criterion, interpretation of the factors seems clearer with the unrotated loadings. #### 9.12 The covariance matrix for the logarithms of turtle measurements is: $$\mathbf{S} = 10^{-3} \times \begin{bmatrix} 11.0720040 & 8.0191419 & 8.1596480 \\ 8.0191419 & 6.4167255 & 6.0052707 \\ 8.1596480 & 6.0052707 & 6.7727585 \end{bmatrix}$$ The maximum likelihood estimates of the factor loadings for an m=1 model are | | Estimated factor | | |---------------|------------------|--| | | loadings | | | Variable | F_1 | | | 1. ln(length) | 0.1021632 | | | 2. ln(width) | 0.0752017 | | | 3. ln(height) | 0.0765267 | | Therefore, $$\hat{L} = \begin{bmatrix} 0.1021632 \\ 0.0752017 \\ 0.0765267 \end{bmatrix}, \quad \hat{L}\hat{L}' = 10^{-3} \times \begin{bmatrix} 10.4373 & 7.6828 & 7.8182 \\ 7.6828 & 5.6553 & 5.7549 \\ 7.8182 & 5.7549 & 5.8563 \end{bmatrix}$$ - (b) Since $\hat{h}_i^2 = \hat{l}_{i1}^2$ for an m=1 model, the communalities are $\hat{h}_1^2 = 0.0104373, \quad \hat{h}_2^2 = 0.0056553, \quad \hat{h}_3^2 = 0.0058563$ - (a) To find specific variances ψ_i 's, we use the equation $$\hat{\psi}_i = s_{ii} - \hat{h}_i^2$$ Note that in this case, we should use S_n to get s_{ii} , not S because the maximum likelihood estimation method is used. $$S_n = \frac{n-1}{n}S = \frac{23}{24}S = 10^{-3} \times \begin{bmatrix} 10.6107 & 7.685 & 7.8197 \\ 7.685 & 6.1494 & 5.7551 \\ 7.8197 & 5.7551 & 6.4906 \end{bmatrix}$$ Thus we get $$\hat{\psi}_1 = 0.0001734, \quad \hat{\psi}_2 = 0.0004941, \quad \hat{\psi}_3 = 0.0006342$$ (c) The proportion explained by the factor is $$\frac{\hat{h}_1^2 + \hat{h}_2^2 + \hat{h}_3^2}{s_{11} + s_{22} + s_{33}} = \frac{0.0219489}{0.0232507} = .9440$$ (d) From (a)-(c), the residual matrix is: $$S_n - \hat{L}\hat{L}' - \hat{\Psi} = 10^{-6} \times \begin{bmatrix} 0 & 2.1673 & 1.4474 \\ 2.1673 & 0 & 0.112497 \\ 1.4474 & 0.112497 & 0 \end{bmatrix}.$$ 9.13 Equation (9-40) requires $m < \frac{1}{2}(2p+1 - \sqrt{8p+1})$. Here we have m = 1, p = 3 and the strict inequality does not hold. #### 9.14 Since $$\hat{\Psi}^{1_2} \hat{\Psi}^{-1} \hat{\Psi}^{1_2} = I, \quad \hat{\Delta}^{1_2} \hat{\Delta}^{1_2} = \hat{\Delta} \quad \text{and} \quad \hat{E}^{\dagger} \hat{E} = I,$$ $$\hat{L}^{\dagger} \hat{\Psi}^{-1} \hat{L} = \hat{\Delta}^{1_2} \hat{E}^{\dagger} \hat{\Psi}^{1_2} \hat{\Psi}^{-1} \hat{\Psi}^{1_2} \hat{E} \hat{\Delta}^{1_2} = \hat{\Delta}^{1_2} \hat{E}^{\dagger} \hat{E} \hat{\Delta}^{1_2} = \hat{\Delta}^{1_2} \hat{\Delta}^{1_2} = \hat{\Delta}.$$ 9.15 (a) | variable | variance | communality | |----------|----------|-------------| | HRA | 0.188966 | 0.811034 | | HRE | 0.133955 | 0.866045 | | HRS | 0.068971 | 0.931029 | | RRA | 0.100611 | 0.899389 | | RRE | 0.079682 | 0.920318 | | RRS | 0.096522 | 0.903478 | | Q | 0.02678 | 0.97322 | | REV | 0.039634 | 0.960366 | (b) Residual Matrix ``` 0 0.021205 0.014563 -0.022111 -0.093691 -0.078402 -0.02145 -0.015523 0 0.063146 -0.107308 -0.058312 -0.052289 -0.005516 0.035712 0.014563 0.063146 0 -0.065101 -0.009639 -0.070351 0.005454 0.013953 -0.022111 -0.107308 -0.065101 0.036263 0.058415 0.00695 -0.033857 -0.093691 -0.058312 -0.009639 0.036263 0 0.032645 0.008854 -0.078402 -0.052289 -0.070351 0.058415 0.032645 0 0.002626 -0.004011 -0.02145 -0.005516 0.005454 0.00695 0.008854 0.002626 0 -0.02449 -0.015523 0.035712 0.013953 -0.033857 0.00065 -0.004011 -0.02449 ``` The m=3 factor model appears appropriate. (c) The first factor is related to market-value measures (Q, REV). The second factor is related to accounting historical measures on equity (HRE, RRE). The third factor is related to accounting historical measures on sales (HRS, RRS). Accounting historical measures on assets (HRA,RRA) are weakly related to all
factors. Therefore, market-value measures provide evidence of profitability distinct from that provided by the accounting measures. However, we cannot separate accounting historical measures of profitability from accounting replacement measures. #### PROBLEM 9.15 9.16 From (9-50) $$\hat{f}_{j} = \hat{\Delta}^{-1}\hat{L}^{\dagger}\hat{\Psi}^{-1}(\underline{x}_{j}-\overline{\underline{x}}) \text{ and}$$ $$\sum_{j=1}^{n} f_{j} = \hat{\Delta}^{-1}\hat{L}^{\dagger}\hat{\Psi}^{-1} \sum_{j=1}^{n} (\underline{x}_{j}-\overline{\underline{x}}) = \underline{0}.$$ Since $$\hat{f}_{j}\hat{f}_{j}^{\dagger} = \hat{\Delta}^{-1}\hat{L}^{\dagger}\hat{\Psi}^{-1}(\underline{x}_{j}-\overline{\underline{x}})(\underline{x}_{j}-\overline{\underline{x}})^{\dagger}\hat{\Psi}^{-1}\hat{L}\hat{\Delta}^{-1},$$ $$\sum_{j=1}^{n} \hat{f}_{j}\hat{f}_{j}^{\dagger} = \hat{\Delta}^{-1}\hat{L}^{\dagger}\hat{\Psi}^{-1} \sum_{j=1}^{n} (\underline{x}_{j}-\overline{\underline{x}})(\underline{x}_{j}-\overline{\underline{x}})^{\dagger}\hat{\Psi}^{-1}\hat{L}\hat{\Delta}^{-1}$$ $$= n \hat{\Delta}^{-1}\hat{L}^{\dagger}\hat{\Psi}^{-1}S_{n}\hat{\Psi}^{-1}\hat{L}\hat{\Delta}^{-1}.$$ Using (9A-1), $$\sum_{j=1}^{n} f_{j}f_{j}' = n \hat{\Delta}^{-1}\hat{L}^{\dagger}\hat{\Psi}^{-\frac{1}{2}}\hat{\Psi}^{-\frac{1}{2}}\hat{L}(I+\hat{\Delta})\hat{\Delta}^{-1}$$ $$= n \hat{\Delta}^{-1}\hat{\Delta}(I+\hat{\Delta})\hat{\Delta}^{-1} = n(I+\hat{\Delta}^{-1}),$$ a diagonal matrix. Consequently, the factor scores have sample mean vector <u>O</u> and zero sample covariances. 9.17 Using the information in Example 9.12, we have $$(\hat{\mathbf{L}}_{\mathbf{z}}'\hat{\Psi}_{\mathbf{z}}^{-1}\hat{\mathbf{L}}_{\mathbf{z}})^{-1} = \begin{pmatrix} .2220 & -.0283 \\ -.0283 & .0137 \end{pmatrix}$$ which, apart from rounding error, is a diagonal matrix. Since the number in the (1,1) position, .2220, is appreciably different from 0, and the observations have been standardized, equation (9-57) suggests the regression and generalized least squares methods for computing factor scores could give somewhat different results. #### 9.18. Factor analysis of Wisconsin fish data (a) Principal component solution using $x_1 - x_4$ Initial Factor Method: Principal Components Eigenvalue 2.1539 0.7876 0.6157 0.4429 1.3663 0.1719 Difference 0.1728 Proportion 0.5385 0.1969 0.1539 0.1107 Cumulative 0.5385 0.7354 0.8893 1.0000 Factor Pattern (m = 1) Factor Pattern (m = 2)FACTOR1 FACTOR1 FACTOR2 BLUEGILL 0.77273 0.77273 BLUEGILL -0.40581 **BCRAPPIE** 0.73867 **BCRAPPIE** 0.73867 -0.36549 SBASS 0.64983 SBASS 0.64983 0.67309 LBASS 0.76738 LBASS 0.76738 0.19047 (b) Maximum likelihood solution using $x_1 - x_4$ Initial Factor Method: Maximum Likelihood | Factor Pa | ttern $(m = 1)$ | Factor Par | Factor Pattern (m = 2) | | | | |-----------|-----------------|------------|------------------------|----------|--|--| | | FACTOR1 | | FACTOR1 | FACTOR2 | | | | BLUEGILL | 0.70812 | BLUEGILL | 0.98748 | -0.02251 | | | | BCRAPPIE | 0.63002 | BCRAPPIE | 0.50404 | 0.25907 | | | | SBASS | 0.48544 | SBASS | 0.28186 | 0.65863 | | | | LBASS | 0.65312 | LBASS | 0.48073 | 0.41799 | | | (c) Varimax rotation. Note that rotation is not possible with 1 factor. | Principal | Component | 5 | Maximum L: | ikelihood | | |------------|-------------|-------------|------------|-------------|-------------| | Varimax Ro | otated Fact | tor Pattern | Varimax Ro | otated Fact | tor Pattern | | | FACTOR1 | FACTOR2 | | FACTOR1 | FACTOR2 | | BLUEGILL | 0.85703 | 0.16518 | BLUEGILL | 0.96841 | 0.19445 | | BCRAPPIE | 0.80526 | 0.17543 | BCRAPPIE | 0.43501 | 0.36324 | | SBASS | 0.08767 | 0.93147 | SBASS | 0.13066 | 0.70439 | | LBASS | 0.48072 | 0.62774 | LBASS | 0.37743 | 0.51319 | For both solutions, Bluegill and Crappie load heavily on the first factor, while large-mouth and smallmouth bass load heavily on the second factor. #### (d) Factor analysis using $x_1 - x_6$ ``` Initial Factor Method: Principal Components 2 0.9843 2.3549 1.0719 0.6644 Eigenvalue 0.3199 Difference 1.2830 0.0876 0.1640 Proportion 0.3925 0.1786 0.1640 0.1107 Cumulative 0.3925 0.5711 0.7352 0.8459 Factor Pattern (m = 3) FACTOR1 FACTOR2 FACTOR3 BLUEGILL 0.72944 -0.02285 -0.47611 0.72422 BCRAPPIE -0.20739 0.01989 0.60333 SBASS 0.58051 0.26232 LBASS 0.76170 0.07998 -0.03199 -0.39334 WALLEYE 0.83342 -0.01286 NPIKE 0.44657 -0.18156 0.80285 Varimax Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 BLUEGILL 0.85090 -0.12720 -0.13806 BCRAPPIE 0.74189 0.11256 -0.06957 SBASS 0.51192 0.46222 0.54231 LBASS 0.28458 0.71176 0.00311 WALLEYE -0.24459 -0.21480 0.86227 NPIKE 0.05282 0.92348 -0.14613 Initial Factor Method: Maximum Likelihood Factor Pattern FACTOR1 FACTOR2 FACTOR3 0.00000 BLUEGILL 1.00000 0.00000 BCRAPPIE 0.18979 0.49190 0.23481 SBASS 0.96466 0.26350 0.00000 LBASS 0.29875 0.46530 0.29435 WALLEYE 0.12927 -0.22770 -0.49746 0.24062 NPIKE 0.06520 0.46665 Varimax Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 BLUEGILL 0.99637 0.06257 0.05767 BCRAPPIE 0.46485 0.21097 0.26931 SBASS 0.20017 0.97853 0.04905 LBASS 0.42801 0.31567 0.33099 WALLEYE -0.20771 0.13392 -0.50492 NPIKE 0.02359 0.22600 0.47779 ``` The first principal component factor influences the Bluegill, Crappie and the Bass. The Northern Pike alone loads heavily on the second factor, and the Walleye and smallmouth bass on the third factor. The MLE solution is different. 5 0.5004 0.0762 0.0834 0.9293 6 0.4242 0.0707 1.0000 ## **9.19** (a), (b) and (c) Maximum Likelihood (m = 3) # UNROTATED FACTOR LOADINGS (PATTERN) FOR MAXIMUM LIKELIHOOD CANONICAL FACTORS | | | Factor
1 | Factor
2 | Factor
3 | |----------------|----|-------------|-------------|-------------| | Growth | 1 | 0.772 | 0.295 | 0.527 | | Profits | 2 | 0.570 | 0.347 | 0.721 | | Newaccts | 3 | 0.774 | 0.433 | 0.355 | | Creative | 4 | 0.389 | 0.921 | 0.000 | | Mechanic | 5 | 0.509 | 0.426 | 0.334 | | Abstract | 6 | 0.968 | -0.250 | 0.000 | | Math | 7 | 0.632 | 0.181 | 0.729 | | | ΥP | 3.267 | 1.520 | 1.566 | ## ROTATED FACTOR LOADINGS (PATTERN) | | | Factor
1 | Factor
2 | Factor
3 | |----------|----|-------------|-------------|-------------| | Growth | 1 | 0.794 | 0.374 | 0.437 | | Profits | 2 | 0.912 | 0.316 | 0.184 | | Newaccts | 3 | 0.653 | 0.544 | 0.437 | | Creative | 4 | 0.255 | 0.967 | 0.019 | | Mechanic | 5 | 0.541 | 0.464 | 0.208 | | Abstract | 6 | 0.390 | 0.054 | 0.953 | | Math | 7 | 0.919 | 0.179 | 0.295 | | | γР | 3,180 | 1.720 | 1.454 | | | Communalities | Specific Variances | |---|------------------|--| | 1 Growth 2 Profits 3 Newaccts 4 Creative 5 Mechanic 6 Abstract 7 Math | 1.0000
0.5519 | .0385
.0352
.0876
.0000
.4481
.0000 | $$\widehat{LL}^{1} + \widehat{\Psi} = \begin{bmatrix} 1.0 & .923 & .912 & .572 & .694 & .674 & .925 \\ 1.0 & .848 & .542 & .679 & .465 & .948 \\ 1.0 & .700 & .696 & .641 & .826 \\ 1.0 & .591 & .147 & .413 \\ 1.0 & .386 & .646 \\ 1.0 & .566 \\ 1.0 & .566 \end{bmatrix}$$ (Symmetric) It is clear from an examination of the residual matrix $R-(\widehat{LL}'+\widehat{\Psi})$ that an m=3 factor solution represents the observed correlations quite well. However, it is difficult to provide interpretations for the factors. If we consider the rotated loadings, we see that the last two factors are dominated by the single variables "creative" and "abstract" respectively. The first factor links the salespeople performance variables with math ability. (d) Using (9-39) with n = 50, p = 7, m = 3 we have 43.833 ln $$\left(\frac{.000075933}{.000018427}\right)$$ = 62.1 > χ_3^2 (.01) = 11.3 so we reject $H_0: \overset{?}{\downarrow} = LL' + \Psi$ for m = 3. Neither of the m = 2, m = 3 factor models appear to fit by the χ^2 criterion. We note that the matrices R, $LL' + \Psi$ have small determinants and rounding error could affect the calculation of the test statistic. Again, the residual matrix above indicates a good fit for m = 3. (e) z' = [1.522, -.852, .465, .957, 1.129, .673, .497]Using the regression method for computing factor scores, we have; with $f = \hat{L}_z R_z^{-1}$: Principal components $$(m = 3)$$ Maximum likelihood $(m = 3)$ $f' = [.686, .271, 1.395]$ $f' = [-.702, .679, -.751]$ Factor scores using weighted least squares can only be computed for the principal component solutions since $\hat{\Psi}^{-1}$ cannot be computed for the maximum likelihood solutions. ($\hat{\Psi}$ has zeros on the main diagonal for the maximum likelihood solutions). Using (9-50), ## Principal components (m = 3) $$f^* = [.344, .233, 1.805]$$ 9.20 $$S = \begin{bmatrix} X_1 & X_2 & X_5 & X_6 \\ 2.50 & -2.77 & -.59 & -2.23 \\ & 300.52 & 6.78 & 30.78 \\ & & 11.36 & 3.13 \\ (\text{symmetric}) & & 31.98 \end{bmatrix}$$ ## (a) Principal components (m = 2) | | Factor 1
loadings | Factor 2
loadings | |-----------------------------------|----------------------|----------------------| | X ₁ (wind) | 17 | 37 | | X ₂ (solar rad.) | 17.32 | 61 | | x ₅ (NO ₂) | .42 | .74 | | x ₆ (0 ₃) | 1.96 | 5.19 | - (b) Maximum likelihood estimates of the loadings are obtained from $\hat{L} = \hat{V}^2\hat{L}_Z$ where \hat{L}_Z are the loadings obtained from the sample correlation matrix R. (For \hat{L}_Z see problem 9.23). Note: Maximum likelihood estimates of the loadings for m = 2 may be difficult to obtain for some computer packages without good estimates of the communalities. One choice for initial estimates of the communalities are the communalities from the m = 2 principal components solution. - (c) Maximum likelihood estimation (with m=2) does a better job of accounting for the covariances in S than the m=2 principal component solution. On the other hand, the principal component solution generally produces uniformly smaller estimates of the specific variances. For the unrotated m=2 solution, the first factor is dominated by $X_2 = \text{solar}$ radiation and $X_6 = 0$ 3. The second factor seems to be a
contrast between the pair $X_1 = \text{wind}$; $X_2 = \text{solar}$ radiation and the pair $X_5 = \text{NO}_2$ and $X_6 = 0$ 3. | | Rotated Factor 1 | loadings
Factor 2 | | |-----------------------------------|------------------|----------------------|--| | X ₁ (wind) | .10 | 46 | | | X ₂ (solar rad.) | 2.00 | .05 | | | X ₅ (NO ₂) | .05 | .87 | | | x ₆ (0 ₃) | .71 | 5.49 | | Again the first factor is dominated by solar radiation and, to some extent, ozone. The second factor might be interpreted as a contrast between wind and the pair of pollutants NO_2 and O_3 . Recall solar radiation and ozone have the largest sample variances. This will affect the estimated loadings obtained by the principal component method. 9.22 (a) Since, for maximum likelihood estimates, $\hat{L} = D^{\frac{1}{2}}\hat{L}_Z$ and $S = D^{\frac{1}{2}}RD^{\frac{1}{2}}$, the factor scores generated by the equations for f_j in (9-58) will be identical. Similarly, the factor scores generated by the weighted least squares formulas in (9-50) will be identical. The factor scores generated by the regression method with maximum likelihood estimates (m = 2; see problem 9.23.) are given below for the first 10 cases. | Case | f, | f. | |--------------|----------------|------------------| | - | 0.316 | 2 544 | | 2 | 0.252 | -0.544
-0.546 | | 3 | 0.129 | -0.509 | | 4 | 0.332 | -0.790 | | 5
6 | 0.492
0.515 | -0.012 | | 7 | 0.515 | -0.370
-0.456 | | 8 | 7.070 | 0.724 | | 9 | 0.384 | -0.023 | | 10 | -0.179 | 0.105 | (b) Factor scores using principal component estimates (m = 2) and (9-51) for the first 10 cases are given below: | Case | <u>f</u> 1 | $\frac{\hat{f}_2}{f_2}$ | |------|------------|-------------------------| | 1 | 1.203 | -0.368 | | 2 | 7.646 | -1.029 | | 3 | 1.447 | -0.937 | | 4 | 0.717 | 0.795 | | 5 | 0.856 | -0.049 | | 6 | 0.811 | 0.394 | | 7 | 0.518 | 0.950 | | 8 | -0.083 | 1.168 | | 9 | 0.410 | 0.259 | | 10 | -0.492 | 0.072 | (c) The sets of factor scores are quite different. Factor scores depend heavily on the method used to estimate loadings and specific variances as well as the method used to generate them. 9.23 Principal components (m = 2) | | Factor 1 'loadings | Factor 2
loadings | Rotated loadings
Factor 1 Factor 2 | |-----------------------------------|--------------------|----------------------|---------------------------------------| | X ₁ (wind) | 56 | 24 | 3153 | | X ₂ (solar rad.) | .65 | 52 | .8304 | | x ₅ (NO ₂) | .48 | .74 | 05 | | x ₆ (0 ₃) | .77 | 20 | .74 .30 | Maximum likelihood (m = 2) | | Factor 1
loadings | Factor 2
loadings | Rotated
Factor 1 | loadings
Factor 2 | |-----------------------------------|----------------------|----------------------|---------------------|----------------------| | X ₁ (wind) | 38 | .32 | 09 | .49 | | X ₂ (solar rad.) | .50 | .27 | .56 | 10 | | x ₅ (NO ₂) | .25 | 04 | .17 | 19 | | x ₆ (0 ₃) | .65 | 03 | .49 | 43 | | | | | | | Examining the rotated loadings, we see that both solution methods yield similar estimated loadings for the first factor. It might be called a "ozone pollution factor". There are some differences for the second factor. However, the second factor appears to compare one of the pollutants with wind. It might be called a "pollutant transport" factor. We note that the interpretations of the factors might differ depending upon the choice of R or S (see problems 9.20 and 9.21) for analysis. Also the two solution methods give somewhat different results indicating the solution is not very stable. Some of the observed correlations between the variables are very small implying that a m = 1 or m = 2 factor model for these four variables will not be a completely satisfactory description of the underlying structure. We may need about as many factors as variables. If this is the case, there is nothing to be gained by proposing a factor model. $$\mathbf{R} = \begin{pmatrix} 1.0 & -.192 & .313 & -.119 & .026 \\ -.192 & 1.0 & -.065 & .373 & .685 \\ .313 & -.065 & 1.0 & -.411 & -.010 \\ -.119 & .373 & -.411 & 1.0 & .180 \\ .026 & .685 & -.010 & .180 & 1.0 \end{pmatrix}$$ The correlations are relatively small with the possible exception of .685, the correlation between Percent Professional Degree and Median Home Value. Consequently, a factor analysis with fewer than 4 or 5 factors may be problematic. The scree plot, shown below, reinforces this conjecture. The scree plot falls off almost linearly, there is no sharp elbow. However, we present a factor analysis with m = 3 factors for both the principal components and maximum likelihood solutions. #### Principal Component Factor Analysis (m = 3) | Variable | Factor1 | Factor2 | Factor3 | Communality | |---------------|---------|---------|---------|-------------| | Population | -0.371 | -0.541 | -0.729 | 0.962 | | PerCentProDeg | 0.837 | -0.381 | 0.153 | 0.870 | | PerCentEmp>16 | -0.460 | -0.708 | 0.209 | 0.756 | | PerCentGovEmp | 0.676 | 0.295 | -0.512 | 0.807 | | MedianHome | 0.696 | -0.584 | 0.064 | 0.830 | | Variance | 1.9919 | 1.3675 | 0.8642 | 4.2236 | | % Var | 0.398 | 0.274 | 0.173 | 0.845 | | | | | | | # Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Factor3 | Communality | |---------------|---------|---------|----------|-------------| | Population | -0.059 | -0.118 | (-0.972) | 0.962 | | PerCentProDeg | (0.907) | 0.160 | 0.147 | 0.870 | | PerCentEmp>16 | 0.102 | -0.801 | -0.321 | 0.756 | | PerCentGovEmp | 0.277 | 0.850 | -0.082 | 0.807 | | MedianHome | (0.908) | 0.009 | -0.068 | 0.830 | | •• | 1 7200 | 1.4050 | 1.0803 | 4.2236 | | Variance | 1.7382 | | | | | % Var | 0.348 | 0.281 | 0.216 | 0.845 | ### Factor Score Coefficients | Variable | Factor1 | Factor2 | Factor3 | |---------------|---------|---------|---------| | Population | -0.019 | 0.138 | -0.940 | | PerCentProDeg | 0.522 | -0.028 | 0.109 | | PerCentEmp>16 | 0.169 | -0.577 | -0.135 | | PerCentGovEmp | 0.052 | 0.658 | -0.278 | | MedianHome | 0.544 | -0.099 | -0.070 | ## Maximum Likelihood Factor Analysis (m = 3) #### * NOTE * Heywood case | Variable | Factor1 | Factor2 | Factor3 | Communality | |---------------|---------|---------|---------|-------------| | Population | -0.047 | -0.999 | -0.000 | 1.000 | | PerCentProDeg | 0.989 | 0.146 | -0.000 | 1.000 | | PerCentEmp>16 | -0.020 | -0.313 | 0.941 | 0.984 | | PerCentGovEmp | 0.362 | 0.103 | -0.395 | 0.298 | | MedianHome | 0.701 | -0.059 | -0.015 | 0.496 | | Variance | 1.6043 | 1.1310 | 1.0419 | 3.7772 | | % Var | 0.321 | 0.226 | 0.208 | 0.755 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Factor3 | Communality | |---------------|---------|----------|----------|-------------| | Population | -0.036 | 0.155 | (-0.987) | 1.000 | | PerCentProDeg | (0.985) | -0.090 | 0.145 | 1.000 | | PerCentEmp>16 | 0.047 | 0.977 | -0.165 | 0.984 | | PerCentGovEmp | 0.333 | (-0.430) | 0.041 | 0.298 | | MedianHome | 0.699 | -0.054 | -0.061 | 0.496 | | Variance | 1.5750 | 1.1740 | 1.0282 | 3.7772 | | % Var | 0.315 | 0.235 | 0.206 | 0.755 | #### Factor Score Coefficients | Variable Population PerCentProDeg PerCentEmp>16 | Factor1 | Factor2 | Factor3 | |---|---------|---------|---------| | | 0.137 | -0.177 | -1.046 | | | 1.017 | -0.053 | -0.046 | | | 0.070 | 1.025 | 0.159 | | PerCentEmp>16 PerCentGovEmp MedianHome | -0.001 | -0.010 | -0.002 | | | -0.000 | -0.001 | -0.000 | A m=3 factor solution explains from 75% to 85% of the variance depending on the solution method. Using the rotated loadings, the first factor in both methods has large loadings on Percent Professional Degree and Median Home Value. It is difficult to label this factor but since income is probably somewhere in this mix, it might be labeled an "affluence" or "white collar" factor. The second and third factors from the two solutions are similar as well. The second factor is a bipolar factor with large loadings (in absolute value) on Percent Employed over 16 and Percent Government Employment. We call this factor an "employment" factor. The third factor is clearly a "population" factor. Factor scores for the first two factors from the two solutions methods are similar. 9.25 A m = 1 factor model appears to represent these data quite well. | | Principal Components | Maximum Likelihood | | | |-------------------------------------|-----------------------|----------------------|--|--| | | Factor 1.
loadings | Factor 1
loadings | | | | Shock wave | 317. | 320. | | | | Vibration | 293. | 291. | | | | Static test 1 | 287. | 275. | | | | Static test 2 | 307. | 297. | | | | Proportion
Variance
Explained | 90.1% | 86.9% | | | Factor scores (m = 1) using the regression method for the first few cases are: | Principal Components | Maximum Likelihood | |----------------------|--------------------| | 009 | 033 | | 1.530 | 1.524 | | .808 | .719 | | 804 | 802 | The factor scores produced from the two solution methods are very similar. The correlation between the two sets of scores is .992. The outliers, specimens 9 and 16, were identified in Example 4.15. ### Principal Components | | [m = | | | m = 2 | | |-------------------------------------|----------------------|-------|-----------------------|----------------------|-------| | | Factor 1
loadings | Ψį | Factor
 loadings | Factor 2
loadings | Ψį | | Litter 1 | 27.9 | 309.0 | 27.9 | -6.2 | 271.2 | | Litter 2 | 30.4 | 205.7 | 30.4 | -4.9 | 182.2 | | Litter 3 | 31.5 | 344.3 | 31.5 | 18.5 | 1.7 | | Litter 4 | 32.9 | 310.0 | 32.9 | -8.0 | 245.8 | | Percentage
Variance
Explained | 76.4% | | 76.4% | 9.4% | | | b) | | Maximum Li | | |----|-------------------------------------|-----------------|-------| | | | Factor loadings | Ŷ | | | Litter 1 | 26.8 | 370.2 | | | Litter 2 | 30.5 | 198.2 | | | Litter 3 | 28.4 | 529.6 | | · | Litter 4 | 30.4 | 471.0 | | | Percentage
Variance
Explained | 68.8% | | The maximum likelihood estimates of the
factor loadings for m = 2 were not obtained due to convergence difficulties in the computer program. c) It is only necessary to rotate the m = 2 solution. # Principal Components (m = 2) | | Rotated
Factor 1 | loadings
Factor 2 | |-------------------------------------|---------------------|----------------------| | Litter 1 | 26.2 | 11.4 | | Litter 2 | 27.5 | 13.8 | | Litter 3 | 14.7 | 33.4 | | Litter 4 | 31.4 | 12.8 | | Percentage
Variance
Explained | 53.5% | 32.4% | ### 9.27 # Principal Components (m = 2) | | Factor 1
loadings | Factor 2
loadings | Ψį | Rotated
Factor 1 | loadings
 Factor 2 | |-------------------------------------|----------------------|----------------------|-----|---------------------|------------------------| | Litter 1 | .86 | .44 | .06 | .33 | .91 | | Litter 2 | .91 | .12 | .15 | .59 | .71 | | Litter 3 | .85 | 36 | .14 | .87 | .32 | | Litter 4 | .87 | 21 | .20 | .78 | .44 | | Percentage
Variance
Explained | 76.5% | 9.5% | | 45.4% | 40.6% | # Maximum Likelihood (m = 1) | | Factor 1
loadings | Ŷ | |-------------------------------------|----------------------|-----| | Litter 1 | .81 | .34 | | Litter 2 | .91 | .17 | | Litter 3 | .78 | .39 | | Litter 4 | .81 | .34 | | Percentage
Variance
Explained | 68.8% | | $$\hat{f} = \hat{L}_z R^{-1} z = .297$$ 9.28 The covariance matrix S (see below) is dominated by the marathon since the marathon times are given in minutes. It is unlikely that a factor analysis will be useful; however, the principal component solution with m = 2 is given below. Using the unrotated loadings, the first factor explains about 98% of the variance and the largest factor loading is associated with the marathon. Using the rotated loadings, the first factor explains about 87% of the variance and again the largest loading is associated with the marathon. The second factor, with either unrotated or rotated loadings, explains relatively little of the remaining variance and can be ignored. The first factor might be labeled a "running endurance" factor but this factor provides us with little insight into the nature of the running events. It is better to factor analyze the correlation matrix R in this case. ### Covariances: 100m(s), 200m(s), 400m(s), 800m, 1500m, 3000m, Marathon | | 100m(s) | 200m(s) | 400m(s) | 800m | 1500m | 3000m | |----------|---------|----------|----------|---------|---------|----------| | 100m(s) | 0.15532 | | | | | | | 200m(s) | 0.34456 | 0.86309 | | | | | | 400m(s) | 0.89130 | 2.19284 | 6.74546 | | | | | 800m | 0.02770 | 0.06617 | 0.18181 | 0.00755 | | | | 1500m | 0.08389 | 0.20276 | 0.50918 | 0.02141 | 0.07418 | | | 3000m | 0.23388 | 0.55435 | 1.42682 | 0.06138 | 0.21616 | 0.66476 | | Marathon | 4.33418 | 10.38499 | 28.90373 | 1.21965 | 3.53984 | 10.70609 | Marathon 270.27015 ### Principal Component Factor Analysis of S (m = 2) ### Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|----------|---------|-------------| | 100m(s) | 0.267 | -0.230 | 0.124 | | 200m(s) | 0.640 | -0.582 | 0.749 | | 400m(s) | 1.785 | -1.881 | 6.725 | | 800m | 0.075 | -0.027 | 0.006 | | 1500m | 0.217 | -0.073 | 0.052 | | 3000m | 0.654 | -0.158 | 0.453 | | Marathon | (16.438) | 0.238 | 270.270 | | | 054.36 | 4 02 | 278.38 | | Variance | 274.36 | 4.02 | | | % Var | 0.984 | 0.014 | 0.999 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | 100m(s) | 0.172 | -0.308 | 0.124 | | 200m(s) | 0.401 | -0.767 | 0.749 | | 400m(s) | 1.030 | -2.380 | 6.725 | | 800m | 0.061 | -0.051 | 0.006 | | 1500m | 0.178 | -0.143 | 0.052 | | 3000m | 0.560 | -0.373 | 0.453 | | Marathon | 15.517 | -5.431 | 270.270 | | Variance | 242.38 | 36.00 | 278.38 | | % Var | 0.869 | 0.129 | 0.999 | | | | | | The correlation matrix \mathbf{R} for the women's track records follows. Correlations: 100m(s), 200m(s), 400m(s), 800m, 1500m, 3000m, Marathon | | 100m(s) | 200m(s) | 400m(s) | 800m | 1500m | 3000m | |----------|---------|---------|---------|-------|-------|-------| | 200m(s) | 0.941 | | | | | | | 400m(s) | 0.871 | 0.909 | | | | | | 800m | 0.809 | 0.820 | 0.806 | | | | | 1500m | 0.782 | 0.801 | 0.720 | 0.905 | | | | 3000m | 0.728 | 0.732 | 0.674 | 0.867 | 0.973 | | | Marathon | 0.669 | 0.680 | 0.677 | 0.854 | 0.791 | 0.799 | The scree plot below suggests at most a m = 2 factor solution. Principal Component Factor Analysis of \mathbf{R} (m=2) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |-------------------|---------|---------|-------------| | 100m(s) | 0.910 | -0.323 | 0.933 | | 200m(s) | 0.923 | -0.328 | 0.960 | | 400m(s) | 0.887 | -0.364 | 0.919 | | 800m | 0.951 | 0.128 | 0.921 | | 1500m | 0.938 | 0.245 | 0.940 | | 3000m
Marathon | 0.906 | 0.336 | 0.828 | | Variance | 5.8076 | 0.6287 | 6.4363 | | % Var | 0.830 | 0.090 | 0.919 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|----------|-------------| | 100m(s) | 0.438 | (-0.861) | 0.933 | | 200m(s) | 0.444 | -0.874 | 0.960 | | 400m(s) | 0.393 | (-0.875) | 0.919 | | 800m | (0.778) | -0.562 | 0.921 | | 1500m | 0.849 | -0.468 | 0.940 | | 3000m | 0.888 | -0.381 | 0.934 | | Marathon | 0.833 | -0.365 | 0.828 | | Variance | 3.3530 | 3.0833 | 6.4363 | | % Var | 0.479 | 0.440 | 0.919 | #### Factor Score Coefficients | r2 | |-----| | 80 | | 88 | | 25 | | 35 | | .72 | | 80 | | 55 | | ֡ | ### Maximum Likelihood Factor Analysis of \mathbf{R} (m = 2) | Variable | Factor1 | Factor2 | Communality | |----------|---------|----------|-------------| | 100m(s) | (0.876) | 0.371 | 0.906 | | 200m(s) | 0.899 | 0.410 | 0.976 | | 400m(s) | 0.827 | 0.405 | 0.848 | | 800m | 0.925 | (-0.006) | 0.856 | | 1500m | 0.974 | -0.187 | 0.984 | | 3000m | 0.945 | -0.282 | 0.972 | | Marathon | 0.809 | -0.091 | 0.662 | | Variance | 5.6104 | 0.5927 | 6.2032 | | % Var | 0.801 | 0.085 | 0.886 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | 100m(s) | 0.455 | 0.836 | 0.906 | | 200m(s) | 0.449 | 0.880 | 0.976 | | 400m(s) | 0.395 | 0.832/ | 0.848 | | 800m | 0.728 | 0.571 | 0.856 | | 1500m | 0.879 | 0.460 | 0.984 | | 3000m | 0.915 | 0.367 | 0.972 | | Marathon | (0.690) | 0.432 | 0.662 | | Variance | 3.1806 | 3.0225 | 6.2032 | | % Var | 0.454 | 0.432 | 0.886 | ### Factor Score Coefficients | Variable | Factor1 | Factor2 | |----------|---------|---------| | 100m(s) | -0.107 | 0.237 | | 200m(s) | -0.481 | 1.019 | | 400m(s) | -0.077 | 0.157 | | 800m | 0.036 | 0.025 | | 1500m | 0.772 | -0.317 | | 3000m | 0.595 | -0.369 | | Marathon | 0.024 | -0.003 | The results from the two solution methods are very similar. Using the unrotated loadings, the first factor might be identified as a "running excellence" factor. All the running events load highly on this factor. The second factor appears to contrast the shorter running events (100m, 200m, 400m) with the longer events (800m, 1500m, 3000m, marathon). This bipolar factor might be called a "running speed-running endurance" factor. After rotation the overall excellence factor disappears and the first factor appears to represent "running endurance" since the running events 800m through the marathon load highly on this factor. The second factor might be classified as a "running speed" factor. Note, for both factors, the remaining running events in each case have moderately large loadings on the factor. The two factor solution accounts for 89%-92% (depending on solution method) of the total variance. The plots of the factor scores indicate that observations #46 (Samoa), #11 (Cook Islands) and #31 (North Korea) are outliers. 9.29 The covariance matrix S for the running events measured in meters/second is given below. Since all the running event variables are now on a commensurate measurement scale, it is likely a factor analysis of S will produce nearly the same results as a factor analysis of the correlation matrix \mathbf{R} . The results for a m = 2 factor analysis of S using the principal component method are shown below. A factor analysis of \mathbf{R} follows. # Covariances: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 3000m/s, Marm/s | | 100m/s | 200m/s | 400m/s | 800m/s | 1500m/s | 3000m/s | |--|---|--|---|--|-------------------------------------|------------------------| | 100m/s
200m/s
400m/s
800m/s
1500m/s
3000m/s
Marm/s | 0.0905383
0.0956063
0.0966724
0.0650640
0.0822198
0.0921422
0.0810999 | 0.1146714
0.1138699
0.0749249
0.0960189
0.1054364
0.0933103 | 0.1377889
0.0809409
0.0954430
0.1083164
0.1018807 | 0.0735228
0.0864542
0.0997547
0.0943056 | 0.1238405
0.1437148
0.1184578 | 0.1765843
0.1465604 | | Marm/s | Marm/s
0.1667141 | | | | | | # Principal Component Factor Analysis of S (m = 2) # Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | 100m/s | 0.265 | -0.110 | 0.083 | | 200m/s | 0.306 | -0.127 | 0.110 | | 400m/s | 0.324 | -0.152 | 0.128 | | 800m/s | 0.256 | 0.016 | 0.066 | | 1500m/s | 0.335 | 0.062 | 0.116 | | 3000m/s | 0.393 | 0.116 | 0.168 | | Marm/s | 0.362 | 0.130 | 0.148 | | Variance | 0.73215 | 0.08607 | 0.81822 | | % Var | 0.829 | 0.097 | 0.926 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality 0.083 0.110 0.128 0.066 0.116 0.168 0.148 | |----------|---------|---------
---| | 100m/s | 0.128 | -0.257 | | | 200m/s | 0.147 | -0.297 | | | 400m/s | 0.145 | -0.327 | | | 800m/s | 0.204 | -0.156 | | | 1500m/s | 0.293 | -0.173 | | | 3000m/s | 0.373 | -0.170 | | | Marm/s | 0.359 | -0.139 | | | Variance | 0.45423 | 0.36399 | 0.81822 | | % Var | 0.514 | 0.412 | 0.926 | ### Factor Score Coefficients | Variable
100m/s
200m/s
400m/s
800m/s
1500m/s
3000m/s | Factor1 -0.171 -0.222 -0.306 0.104 0.287 0.542 | Factor2 -0.363 -0.471 -0.603 -0.025 0.085 0.280 | |--|--|---| | 3000m/s
Marm/s | | | Using the unrotated loadings, the first factor might be identified as a "running excellence" factor. All the running events have roughly the same size loadings on this factor. The second factor appears to contrast the shorter running events (100m, 200m, 400m) with the longer events (800m, 1500m, 3000m, marathon). This bipolar factor might be called a "running speed-running endurance" factor. After rotation the overall excellence factor disappears and the first factor appears to represent "running endurance" since the running events 800m through the marathon have higher loadings on this factor. The second factor might be classified as a "running speed" factor. Note, for both factors, the remaining running events in each case have moderate and roughly equal loadings on the factor. The two factor solution accounts for 93% of the variance. The correlation matrix ${\bf R}$ is shown below along with the scree plot. A two factor solution seems warranted. # Correlations: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 3000m/s, Marm/s | | 100m/s | 200m/s | 400m/s | 800m/s | 1500m/s | 3000m/s | |--|--|---|----------------------------------|-------------------------|----------------|---------| | 200m/s
400m/s
800m/s
1500m/s
3000m/s
Marm/s | 0.938
0.866
0.797
0.776
0.729
0.660 | 0.906
0.816
0.806
0.741
0.675 | 0.804
0.731
0.694
0.672 | 0.906
0.875
0.852 | 0.972
0.824 | 0.854 | ## Principal Component Factor Analysis of \mathbf{R} (m=2) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|---------|-----------|-------------| | 100m/s | 0.903 | (-0.342) | 0.932 | | 200m/s | (0.921) |)-0.335 | 0.960 | | 400m/s | 0.887 | (-0.352) | 0.911 | | 800m/s | 0.948 | 70:123 | 0.914 | | 1500m/s | 0.943/ | 0.227 | 0.941 | | 3000m/s | (0.919) | [0.320] | 0.947 | | Marm/s | 0.866 | 0.354 | 0.875 | | Variance | 5.8323 | 0.6477 | 6.4799 | | % Var | 0.833 | 0.093 | 0.926 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable
100m/s
200m/s
400m/s
800m/s
1500m/s
3000m/s | Factor1
0.418
0.436
0.400
0.771
0.839
0.886 | Factor2
-0.870
-0.878
-0.867
-0.565
-0.486
-0.402 | Communality
0.932
0.960
0.911
0.914
0.941 | |--|---|---|--| | Marm/s | 0.871 | -0.341 | 0.875 | | Variance | 3.3675 | 3.1125 | 6.4799 | | % Var | 0.481 | 0.445 | 0.926 | ### Factor Score Coefficients | variable | Factor1 | Factor2 | |----------|---------|---------| | 100m/s | -0.252 | -0.489 | | 200m/s | -0.243 | -0.484 | | 400m/s | -0.265 | -0.499 | | 800m/s | 0.248 | 0.025 | | 1500m/s | 0.358 | 0.142 | | 3000m/s | 0.455 | 0.249 | | Marm/s | 0.484 | 0.293 | | | | | # Maximum Likelihood Factor Analysis of \mathbf{R} (m = 2) Unrotated Factor Loadings and Communalities | Variable
100m/s | Factor1 | Factor2
-0.349 | Communality
0.896
0.983 | |------------------------------|-----------------|--|-------------------------------| | 200m/s
400m/s | 0.910 | $\begin{bmatrix} -0.393 \\ -0.352 \\ \hline 0.042 \end{bmatrix}$ | 0.836
0.850 | | 800m/s
1500m/s
3000m/s | 0.966 | 0.193 | 0.971
0.984 | | Marm/s | 0.834 | 0.203 | 0.737 | | Variance
% Var | 5.6844
0.812 | 0.5716
0.082 | 6.2560
0.894 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable
100m/s
200m/s
400m/s
800m/s
1500m/s
3000m/s | Factor1
0.441
0.435
0.412
0.726
0.859
0.914 | Factor2
-0.838
-0.891
-0.816
-0.568
-0.482
-0.386
-0.389 | Communality
0.896
0.983
0.836
0.850
0.971
0.984
0.737 | |--|---|---|--| | Marm/s Variance % Var | 0.765
3.2395
0.463 | 3.0165
0.431 | 6.2560
0.894 | | | | | | ## Factor Score Coefficients | • | | | |----------|---------|---------| | Variable | Factor1 | Factor2 | | 100m/s | -0.073 | -0.167 | | 200m/s | -0.521 | -1.122 | | 400m/s | -0.048 | -0.106 | | 800m/s | 0.039 | -0.014 | | 1500m/s | 0.379 | 0.124 | | 3000m/s | 0.949 | 0.518 | | Marm/s | 0.041 | 0.017 | | | | | The results from the two solution methods are very similar and very similar to the principal component factor analysis of the covariance matrix S. Using the unrotated loadings, the first factor might be identified as a "running excellence" factor. All the running events load highly on this factor. The second factor appears to contrast the shorter running events (100m, 200m, 400m) with the longer events (800m, 1500m, 3000m, marathon). This bipolar factor might be called a "running speed-running endurance" factor. After rotation the overall excellence factor disappears and the first factor appears to represent "running endurance" since the running events 800m through the marathon load highly on this factor. The second factor might be classified as a "running speed" factor. Note, for both factors, the remaining running events in each case have moderately large loadings on the factor. The two factor solution accounts for 89%-93% (depending on solution method) of the total variance. The plots of the factor scores indicate that observations #46 (Samoa), #11 (Cook Islands) and #31 (North Korea) are outliers. The results of the m=2 factor analysis of women's track records when time is measured in meters per second are very much the same as the results for the m=2 factor analysis of \mathbf{R} presented in Exercise 9.28. If the correlation matrix \mathbf{R} is factor analyzed, it makes little difference whether running event time is measured in seconds (or minutes) as in Exercise 9.28 or in meters per second. It does make a difference if the covariance matrix \mathbf{S} is factor analyzed, since the measurement scales in Exercise 9.28 are quite different from the meters/second scale. 9.30 The covariance matrix S (see below) is dominated by the marathon since the marathon times are given in minutes. It is unlikely that a factor analysis will be useful; however, the principal component solution with m = 2 is given below. Using the unrotated loadings, the first factor explains about 98% of the variance and the largest factor loading is associated with the marathon. Using the rotated loadings, the first factor explains about 83% of the variance and again the largest loading is associated with the marathon. The second factor, with either unrotated or rotated loadings, explains relatively little of the remaining variance and can be ignored. The first factor might be labeled a "running endurance" factor but this factor provides us with little insight into the nature of the running events. It is better to factor analyze the correlation matrix R in this case. # Covariances: 100m, 200m, 400m, 800m, 1500m, 5000m, 10,000m, Marathon | | 100m | 200m | 400m | 800m | 1500m | 5000m | |---|--|--|--|--|--|----------------------------------| | 100m
200m
400m
800m
1500m
5000m
10,000m
Marathon | 0.048973
0.111044
0.256022
0.008264
0.025720
0.124575
0.265613
1.340139 | 0.300903
0.666818
0.022929
0.066193
0.317734
0.688936
3.541038 | 2.069956
0.057938
0.168473
0.853486
1.849941
9.178857 | 0.002751
0.007131
0.034348
0.074257
0.378905 | 0.023034
0.105833
0.229701
1.192564 | 0.578875
1.262533
6.430489 | | 10,000m | 10,000m
2.819569 | Marathon | | | | | | Marathon | 14.342538 | 80.135356 | | | | | ### Principal Component Factor Analysis of S (m = 2) ### Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | 100m | 0.152 | -0.107 | 0.034 | | 200m | 0.401 | -0.270 | 0.234 | | 400m | 1.044 | -0.979 | 2.049 | | 400m | 0.043 | -0.015 | 0.002 | | | 0.134 | -0.033 | 0.019 | | 1500m | 0.722 | -0.125 | 0.537 | | 5000m | 1.610 | -0.223 | 2.643 | | 10,000m | (8.950) | 0.179 | 80.130 | | Marathon | 8.950 | 0.173 | 00.233 | | | 04 507 | 1.141 | 85.649 | | Variance | 84.507 | | 0.996 | | % Var | 0.983 | 0.013 | 0.990 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 |
Factor2 | Communality 0.034 | |----------|---------|---------|-------------------| | 100m | 0.097 | -0.158 | 0.234 | | 200m | 0.262 | -0.406 | | | 400m | 0.573 | -1.312 | 2.049 | | 800m | 0.033 | -0.031 | 0.002 | | 1500m | 0.110 | -0.083 | 0.019 | | | 0.615 | -0.399 | 0.537 | | 5000m | 1.392 | -0.841 | 2.643 | | 10,000m | | -3.367 | 80.130 | | Marathon | 8.294 | | | | Variance | 71.529 | 14.119 | 85.649 | | % Var | 0.832 | 0.164 | 0.996 | The correlation matrix R for the men's track records follows. ## Correlations: 100m, 200m, 400m, 800m, 1500m, 5000m, 10,000m, Marathon | | 100m | 200m | 400m | 800m | 1500m | 5000m | 10,000m | |----------|-------|-------|-------|-------|-------|-------|---------| | 200m | 0.915 | | | | | | | | 400m | 0.804 | 0.845 | | | | | | | 800m | 0.712 | 0.797 | 0.768 | | | | | | 1500m | 0.766 | 0.795 | 0.772 | 0.896 | | | | | 5000m | 0.740 | 0.761 | 0.780 | 0.861 | 0.917 | | | | 10,000m | 0.715 | 0.748 | 0.766 | 0.843 | 0.901 | 0.988 | | | Marathon | 0.676 | 0.721 | 0.713 | 0.807 | 0.878 | 0.944 | 0.954 | The scree plot below suggests at most a m = 2 factor solution. Principal Component Factor Analysis of \mathbb{R} (m=2) | Variable | Factor1 | Factor2 | Communality | |----------|---------|------------------|-------------| | 100m | (0.861) | (0.423) | 0.920 | | 200m | 0.896 | 0.376 | 0.944 | | 400m | 0.878 | (0.276 | 0.847 | | 800m | 0.914 | -0.071 | 0.840 | | 1500m | 0.948 | -0.123 | 0.913 | | 5000m | 0.957 | -0.236 | 0.972 | | 10,000m | 0.947 | -0.267 | 0.969 | | Marathon | 0.917 | \ -0.309∤ | 0.937 | | | | | | | Variance | 6.7033 | 0.6384 | 7.3417 | | % Var | 0.838 | 0.080 | 0.918 | Rotated Factor Loadings and Communalities Varimax Rotation | | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | Variable | | (0.882) | 0.920 | | 100m | 0.375 | | 0.944 | | 200m | 0.433 | 0.870 | | | | 0.485 | (0.782) | 0.847 | | 400m | | 0.543 | 0.840 | | 800m | (0.739) | | 0.913 | | 1500m | (0.798) | 0.526 | | | 5000m | 10.879 | 0.447 | 0.972 | | | 0.892 | 0.417 | 0.969 | | 10,000m | | | 0.937 | | Marathon | 0.896 | 0.365 | 0.557 | | | 4 1160 | 3.2249 | 7.3417 | | Variance | 4.1168 | | 0.918 | | & Var | 0.515 | 0.403 | 0.910 | ### Factor Score Coefficients | Variable | Factor1 | Factor2 | |----------|---------|---------| | 100m | -0.335 | 0.586 | | 200m | -0.283 | 0.533 | | 400m | -0.183 | 0.413 | | 800m | 0.176 | 0.004 | | 1500m | 0.233 | -0.053 | | 5000m | 0.349 | -0.186 | | 10,000m | 0.380 | -0.224 | | Marathon | 0.420 | -0.277 | # Maximum Likelihood Factor Analysis of \mathbf{R} (m = 2) | Variable | Factor1 | Factor2 | Communality | |----------|---------|----------|-------------| | 100m | (0.780) | (0.507) | 0.866 | | 200m | 0.814 | 0.548/ | 0.963 | | 400m | 0.810 | 0.339 | 0.772 | | | 0.875 | 0.147 | 0.788 | | 800m | 0.927 | 0.083 | 0.866 | | 1500m | | (-0.077) | 0.988 | | 5000m | 0.991 | -0.106 | 0.989 | | 10,000m | 0.989 | () : | 0.912 | | Marathon | (0.949 | -0.104 | 0.912 | | | | | 7.1432 | | Variance | 6.4134 | 0.7299 | | | & Var | 0.802 | 0.091 | 0.893 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | 100m | 0.401 | (0.839) | 0.866 | | 200m | 0.409 | 0.892 | 0.963 | | 400m | 0.515 | (0.712) | 0.772 | | 800m | 0.671 | 0.581 | 0.788 | | 1500m | 0.748 | 0.554 | 0.866 | | 5000m | 0.886 | 0.450 | 0.988 | | 10,000m | (0.900) | 0.424 | 0.989 | | Marathon | 0.865 | 0.405 | 0.912 | | Variance | 3.9446 | 3.1986 | 7.1432 | | % Var | 0.493 | 0.400 | 0.893 | #### Factor Score Coefficients | Factor1 | Factor2 | |---------|-----------------------------------| | | 0.256 | | | | | -0.490 | 0.994 | | -0.044 | 0.104 | | -0.011 | 0.054 | | 0.003 | 0.056 | | 0.558 | -0.209 | | 0.761 | -0.423 | | 0.089 | -0.051 | | | -0.011
0.003
0.558
0.761 | The results from the two solution methods are very similar. Using the unrotated loadings, the first factor might be identified as a "running excellence" factor. All the running events load highly on this factor. The second factor appears to contrast the shorter running events with the longer events although the nature of the contrast is a bit different for the two methods. For the principal component method, the 100m, 200m and 400m events have positive loadings and the 800m, 1500m, 5000m, 10,000m and marathon events have negative loadings. For the maximum likelihood method, the 100m, 200m, 400m, 800m and 1500m events are in one group (positive loadings) and the 5000, 10,000m and marathon are in the other group (negative loadings). Nevertheless, this bipolar factor might be called a "running speed-running endurance" factor. After rotation the overall excellence factor disappears and the first factor appears to represent "running endurance" since the running events 800m through the marathon load highly on this factor. The second factor might be classified as a "running speed" factor. Note, for both factors, the remaining running events in each case have moderately large loadings on the factor. The two factor solution accounts for 89%-92% (depending on solution method) of the total variance. The plots of the factor scores indicate that observations #46 (Samoa) and #11 (Cook Islands) are outliers. The factor analysis of the men's track records is very much the same as that for the women's track records in Exercise 9.28. 9.31 The covariance matrix S for the running events measured in meters/second is given below. Since all the running event variables are now on a commensurate measurement scale, it is likely a factor analysis of S will produce nearly the same results as a factor analysis of the correlation matrix R. The results for a m = 2 factor analysis of S using the principal component method are shown below. A factor analysis of R follows. Covariances: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 5000m/s, 10,000m/s, ... | 100 | 100m/s | 200m/s | 400m/s | 800m/s | 1500m/s | |-------------|-----------|-----------|------------------|-----------|-----------| | 100m/s | 0.0434979 | | | | | | 200m/s | 0.0482772 | 0.0648452 | | | | | 400m/s | 0.0434632 | 0.0558678 | 0.0688217 | | | | 800m/s | 0.0314951 | 0.0432334 | 0.0428221 | 0.0468840 | | | 1500m/s | 0.0425034 | 0.0535265 | 0.0537207 | 0.0523058 | 0.0729140 | | 5000m/s | 0.0469252 | 0.0587731 | 0.0617664 | 0.0571560 | 0.0766388 | | 10,000m/s | 0.0448325 | 0.0572512 | 0.0599354 | 0.0553945 | 0.0745719 | | Marathonm/s | 0.0431256 | 0.0562945 | 0.0567342 | 0.0541911 | 0.0736518 | | | 5000m/s | 10,000m/s | Marathonm/s | | | | 5000m/s | 0.0959398 | | iididciioimii, B | | | | 10,000m/s | 0.0937357 | 0.0942894 | | | | | Marathonm/s | 0.0905819 | 0.0909952 | 0.0979276 | | | | | | | | | | Principal Component Factor Analysis of S (m = 2) | Variable | Factor1 | Factor2 | Communality | |-------------|---------|----------|-------------| | 100m/s | (0.171) | (-0.093) | 0.038 | | 200m/s | 0.219 | -0.113 | 0.061 | | 400m/s | 0.223 | -0.101 | 0.060 | | 800m/s | 0.195 | -0.007 | 0.038 | | 1500m/s | 0.256 | (0.014) | 0.066 | | 5000m/s | 0.301 | 0.056 | 0.094 | | 10,000m/s | 0.296 | 0.067 | 0.092 | | Marathonm/s | 0.293 | 0.083 | 0.093 | | Variance | 0.49405 | 0.04622 | 0.54027 | | % Var | 0.844 | 0.079 | 0.923 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |-------------|---------|----------|-------------| | 100m/s | 0.080 | (-0.178) | 0.038 | | 200m/s | 0.105 | -0.222 | 0.061 | | 400m/s | 0.116 | -0.215 | 0.060 | | 800m/s | 0.151 | -0.124 | 0.038 | | 1500m/s | (0.212) | -0.145 | 0.066 | | 5000m/s | 0.273 | -0.138 | 0.094 | | 10,000m/s | 0.275 | -0.127 | 0.092 | | Marathonm/s | 0.283 | -0.112 | 0.093 | | Variance | 0.32860 | 0.21168 | 0.54027 | | % Var | 0.562 | 0.362 | 0.923 | #### Factor Score Coefficients | Variable | Factor1 | Factor2 | |-------------|---------|---------| | 100m/s | -0.197 | -0.377 | | 200m/s | -0.287 | -0.561 | | 400m/s | -0.254 | -0.526 | | 800m/s | 0.048 | -0.078 | | 1500m/s | 0.159 | -0.022 | | 5000m/s | 0.379 | 0.184 | | 10,000m/s | 0.415 | 0.240 | | Marathonm/s | 0.489 | 0.334 | Using the unrotated loadings, the first factor might be identified as a "running excellence" factor. All the running events have roughly the same size loadings on this factor. The second factor appears to contrast the shorter running events (100m, 200m, 400m, 800m) with the longer events (1500m, 5000m, 10,000, marathon). This bipolar factor might be called a "running speed-running endurance" factor. After rotation the overall excellence factor disappears and the first factor appears to represent "running endurance" since the running events 1500m through the marathon have higher loadings on this factor. The second factor might be classified as a "running speed" factor. Note, the 800m run has about equal (in absolute value) loadings on both factors and the remaining running events in each case have moderate and roughly equal loadings on the factor. The two factor solution accounts for 92% of the variance. The correlation matrix \mathbf{R} is shown next along with the scree plot. A two factor solution seems warranted. # Correlations: 100m/s, 200m/s, 400m/s, 800m/s, 1500m/s, 5000m/s, 10,000m/s, ... | | 100m/s | 200m/s | 400m/s | 800m/s | 1500m/s | |-------------|---------|-----------|--------
--|---------| | 200m/s | 0.909 | | | | | | 400m/s | 0.794 | 0.836 | | | | | 800m/s | 0.697 | 0.784 | 0.754 | | | | 1500m/s | 0.755 | 0.778 | 0.758 | 0.895 | | | 5000m/s | 0.726 | 0.745 | 0.760 | 0.852 | 0.916 | | 10.000m/s | 0.700 | 0.732 | 0.744 | 0.833 | 0.899 | | Marathonm/s | 0.661 | 0.706 | 0.691 | 0.800 | 0.872 | | | | 10.000 / | | | | | | 5000m/s | 10,000m/s | | | | | 10,000m/s | 0.986 | | | 200 | | | Marathonm/s | 0.935 | 0.947 | | | | | | | | | the second secon | | ### Principal Component Factor Analysis of \mathbb{R} (m=2) | Variable
100m/s
200m/s
400m/s
800m/s
1500m/s | Factor1
0.854
0.888
0.868
0.910
0.947
0.954 | Factor2
-0.430
-0.387
-0.297
0.076
0.133
0.242 | Communality
0.913
0.939
0.841
0.834
0.914 | |---|---|--|--| | 10,000m/s
Marathonm/s | 0.943 | 0.274 | 0.965
0.929 | | Variance
% Var | 6.6258
0.828 | 0.6765
0.085 | 7.3023
0.913 | # Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |-------------|---------|-----------|-------------| | 100m/s | 0.369 | [-0.881] | 0.913 | | 200m/s | 0.423 | -0.872 | 0.939 | | 400m/s | 0.466 | L-0.790 J | 0.841 | | 800m/s | (0.741) | -0.534 | 0.834 | | 1500m/s | 0.805 | -0.515 | 0.914 | | 5000m/s | 0.882 | -0.437 | 0.968 | | 10,000m/s | 0.895 | -0.405 | 0.965 | | Marathonm/s | 0.896 | -0.355 | 0.929 | | Variance | 4.1116 | 3.1907 | 7.3023 | | % Var | 0.514 | 0.399 | 0.913 | #### Factor Score Coefficients | Factor1 | Factor2 | |---------|--| | -0.315 | -0.566 | | -0.270 | -0.522 | | -0.186 | -0.418 | | 0.178 | -0.004 | | 0.236 | 0.056 | | 0.341 | 0.178 | | 0.371 | 0.215 | | 0.405 | 0.261 | | | -0.315
-0.270
-0.186
0.178
0.236
0.341
0.371 | ## Maximum Likelihood Factor Analysis of \mathbb{R} (m=2) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |-------------|---------|----------|-------------| | 100m/s | (0.773) | 0.511 | 0.859 | | 200m/s | 0.806 | 0.554 | 0.957 | | 400m/s | 0.797 | 0.351 | 0.758 | | 800m/s | 0.870 | 0.140 | 0.777 | | 1500m/s | 0.928 | 0.067 | 0.865 | | 5000m/s | 0.989 | -0.088 | 0.985 | | 10,000m/s | 0.986 | -0.117 | 0.986 | | Marathonm/s | 0.942 | (-0.108) | 0.899 | | | | | | | Variance | 6.3380 | 0.7485 | 7.0865 | | % Var | 0.792 | 0.094 | 0.886 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable
100m/s
200m/s
400m/s
800m/s
1500m/s
5000m/s | Factor1
0.394
0.400
0.497
0.670
0.757
0.890
0.903 | 0.839
0.893
0.715
0.573
0.540
0.440
0.413 | Communality
0.859
0.957
0.758
0.777
0.865
0.985 | |--|--|---|---| | Marathonm/s | 0.860 | 0.398 | 0.899 | | Variance
% Var | 3.9325
0.492 | 3.1540
0.394 | 7.0865
0.886 | #### Factor Score Coefficients | Variable | Factor1 | Factor2 | |-------------|---------|---------| | 100m/s | -0.128 | 0.268 | | 200m/s | -0.457 | 0.951 | | 400m/s | -0.046 | 0.111 | | 800m/s | -0.008 | 0.055 | | 1500m/s | 0.012 | 0.055 | | 5000m/s | 0.570 | -0.219 | | 10.000m/s | 0.711 | -0.388 | | Marathonm/s | 0.089 | -0.047 | | | | | The results from the two solution methods are very similar and very similar to the principal component factor analysis of the covariance matrix S. Using the unrotated loadings, the first factor might be identified as a "running excellence" factor. All the running events load highly on this factor. The second factor appears to contrast the shorter running events with the longer events although there is some difference in the groupings depending on the solution method. The 800m and 1500m runs are in the longer group for the principal component method and in the shorter group for the maximum likelihood method. Nevertheless, this bipolar factor might be called a "running speed-running endurance" factor. After rotation the overall excellence factor disappears and the first factor appears to represent "running endurance" since the running events 800m through the marathon load highly on this factor. The second factor might be classified as a "running speed" factor. Note, for both factors, the remaining running events in each case have moderately large loadings on the factor. The two factor solution accounts for 89%-91% (depending on solution method) of the total variance. The plots of the factor scores indicate that observations #46 (Samoa) and #11 (Cook Islands) are outliers. The results of the m=2 factor analysis of men's track records when time is measured in meters per second are very much the same as the results for the m=2 factor analysis of **R** presented in Exercise 9.30. If the correlation matrix **R** is factor analyzed, it makes little difference whether running event time is measured in seconds (or minutes) as in Exercise 9.30 or in meters per second. It does make a difference if the covariance matrix **S** is factor analyzed, since the measurement scales in Exercise 9.30 are quite different from the meters/second scale. ### 9.32. Factor analysis of data on bulls ### Factor analysis using sample covariance matrix S | Initial Factor Met | hod: <u>Princi</u> | pal Component | s | | |---------------------|--|---------------|----------|----------| | | 1 | 2 3 | 4 | 5 | | Eigenvalue 20579. | 6126 4874. | 6748 5.4292 | 3.3163 | 0.4688 | |
Difference 15704. | | | | 0.3948 | | | | | | 0.0000 | | | | • | | | | Cumulative 0.8 | 8082 0. | 9996 0.9998 | 1.0000 | 1.0000 | | | | | | • • | | Factor Pattern | | | | | | FACTOR1 | FACTOR2 | FACTOR3 | | • | | X3 0.48777 | 0.39033 | 0.38532 | YrHgt | | | X4 0.75367 | | -0.00086 | FtFrBody | | | 77 T | | | PrctFFB | | | X5 0.37408 | | 0.64446 | | | | X6 0.48170 | | 0.33505 | Frame | | | X7 0.11083 | | -0.49074 | BkFat | | | X8 0.66769 | 0.29875 | 0.33038 | SaleHt | | | X9 0.96506 | -0.26204 | 0.00009 | SaleWt | 240 | | | | | | SAS | | Varimax Rotated Fac | tor Patter | n | | from | | FACTOR1 | FACTOR2 | FACTOR3 | | rotate | | | | | V-U-t | 1 | | X3 0.50195 | 0.42460 | 0.32637 | YrHgt | The s | | X4 0.25853 | 0.90600 | 0.33514 | FtFrBody | <i>!</i> | | X5 0.83816 | 0.45576 | 0.18354 | PrctFFB | | | X6 0.44716 | 0.42166 | 0.31943 | Frame | | | X7 -0.60974 | -0.06913 | 0.15478 | BkFat | | | X8 0.40890 | 0.46689 | 0.50894 | SaleHt | | | x9 -0.13508 | 0.30219 | 0.94363 | SaleWt | | | A9 -0.13508 | 0.30219 | 0.34303 | Datenc | | | | | | | | | Initial Factor Meth | od: Maximu | m Likelihood | - | | | Factor Pattern | | | | | | FACTOR1 | FACTOR2 | FACTOR3 | | | | 0.00000 | 1.00000 | 0.00000 | YrHgt | | | X4 0.42819 | | 0.39838 | FtFrBody | | | X5 0.85244 | | 0.00000 | PrctFFB | | | | | | Frame | | | | | | | | | X7 -0.36162 | -0.34428 | 0.39308 | BkFat | | | X8 0.08393 | 0.85951 | 0.28992 | SaleHt | | | X9 0.00598 | 0.36843 | 0.83599 | SaleWt | | | | | | | | | Varimax Rotated Fac | tor Patter | n . | | | | FACTOR1 | FACTOR2 | FACTOR3 | | | | | 0.28442 | 0.16509 | YrHgt | | | | and the second s | | _ | | | X4 0.41219 | 0.50159 | 0.55648 | FtFrBody | | | X5 0.23003 | 0.94883 | 0.21635 | PrctFFB | | | X6 0.88812 | 0.25026 | 0.18382 | Frame | | | X7 -0.25711 | -0.51405 | 0.27102 | BkFat | | | X8 0.75340 | 0.26667 | 0.43720 | SaleHt | | | x9 0.25282 | -0.05273 | 0.87634 | SaleWt | | | A9 0.20202 | 0.00210 | 3.3.301 | | | SAS scales the loadings obtained from a covariance matrix and then rotates the scaled loadings. The scaling is $\hat{l}_{ij} / \sqrt{s_{ii}}$. 0.0045 0.0000 1.0000 0.0741 0.0695 0.0000 1.0000 ### Factor analysis using sample correlation matrix R | Initial Fac | tor Meth | od: Princ: | ipal Compo | nents | | | |--------------|----------|------------------|------------|---------------------------------------|--------|--------| | | 1 | 2 | 3 | 4 5 | 6 | 7 | | Eigenvalue | 4.1207 | 1.3371 (| 0.7414 0. | 4214 0.1858 | 0.1465 | 0.0471 | | Difference | 2.7836 | 0.5957 | 0.3200 0. | 2356 0.0393 | 0.0994 | | | Proportion | 0.5887 | | | 0602 0.0265 | 0.0209 | 0.0067 | | Cumulative | 0.5887 | | | 9458 0.9723 | 0.9933 | 1.0000 | | Oumurativ | 0.000. | | | | | | | Factor Patt | ern | | | | | | | | FACTOR1 | FACTOR2 | FACTOR3 | | | | | | 0.91334 | -0.04948 | -0.35794 | YrHgt | | | | | 0.83700 | 0.15014 | 0.38772 | FtFrBody | | | | | 0.72177 | -0.36484 | | PrctFFB | | | | | 0.88091 | 0.00894 | | | | | | | 0.37900 | 0.82646 | | BkFat | | | | | | | | | | | | | 0.91927 | 0.11715 | | | | | | Х9 | 0.54798 | 0.69440 | 0.21811 | SaleWt | | | | | | | | | | | | Varimax Rot | | | | | | | | | FACTOR1 | FACTOR2 | FACTOR3 | 77. 97. 4 | | | | | 0.94188 | 0.27085 | | YrHgt | | | | | 0.44792 | 0.78354 | 0.24262 | • | | | | | 0.26505 | 0.87071 | -0.25513 | PrctFFB | | | | | 0.93812 | 0.21799 | -0,01382 | | | | | | 0.23541 | -0.37460 | 0.79502 | BkFat | | | | X8 | 0.83365 | 0.41206 | 0.13094 | | | | | X9 | 0.34932 | 0.39692 | 0.74194 | SaleWt | | | | | | | | | | | | Initial Fac | tor Meth | od: <u>Maxim</u> | m Likelih | ood | | | | Factor Patt | ern | | | | | | | | FACTOR1 | FACTOR2 | FACTOR3 | | | | | ХЗ | 0.00000 | 1.00000 | 0.00000 | YrHgt | | | | X4 | 0.42819 | 0.62380 | 0.39838 | FtFrBody | | | | X5 | 0.85244 | 0.52282 | 0.00000 | PrctFFB | | | | | 0.01180 | 0.94025 | 0.03120 | Frame | | | | | 0.36162 | -0.34428 | 0.39308 | BkFat | | | | | 0.08393 | 0.85951 | 0.28992 | SaleHt | | | | | 0.00598 | 0.36843 | 0.83599 | SaleWt | | | | | | | • | | | | | Varimax Rota | ated Fac | tor Patter | m | | | | | • | FACTOR1 | FACTOR2 | FACTORS | | | | | | 0.94438 | 0.28442 | 0.16509 | | | | | | 0.41219 | 0.50159 | 0.55648 | | | | | | 0.23003 | 0.94883 | 0.21635 | • | | | | | 0.88812 | 0.25026 | 0.18382 | | | | | | 0.25711 | -0.51405 | 0.27102 | · · · · · · · · · · · · · · · · · · · | | | | | 0.75340 | 0.26667 | 0.43720 | | | | | | 0.75340 | -0.05273 | 0.43720 | | | | | х9 (| J. 25262 | -0.05213 | 0.0/034 | Datemo | | | | | | | | | | | The interpretation of factors from R is different of the interpretation of factors from S. Factor scores for the first two factors using S and varimax rotated PC estimates of factor loadings Factor scores for the first two factors using R and varimax rotated PC estimates of factor loadings 9.33 The correlation matrix \mathbf{R} and the scree plot follow. The correlations are relatively modest. These correlations and the scree plot suggest m=2 factors is probably too few. An initial factor analysis with m=2 confirms this conjecture. Consequently, we give a m=3 factor solution. ## Correlations: indep, supp, benev, conform, leader | | indep | supp | benev | conform | |---------|--------|--------|--------|---------| | supp | -0.173 | | | | | benev | -0.561 | 0.018 | | | | conform | -0.471 | -0.327 | 0.298 | | | leader | 0.187 | -0.401 | -0.492 | -0.333 | ### Principal Component Factor Analysis of \mathbb{R} (m = 3) | Variable | Factor1 | Factor2 | Factor3 | Communality | |----------|----------|--------------|---------|-------------| | indep | (-0.772) | 0,101 | -0.580 | 0.943 | | supp | 0.180 | (0.922) | 0.163 | 0.909 | | benev | 0.813 | -0,009 | 0.100 | 0.670 | | conform | 0.651 | (-0.574 | -0.256 | 0.819 | | leader | (-0.696) | -0.422) | 0.563 | 0.979 | | Variance | 2.1966 | 1.3682 0.274 | 0.7559 | 4.3207 | | % Var | 0.439 | | 0.151 | 0.864 | # Rotated Factor Loadings and Communalities Varimax Rotation | Variable indep supp benev conform leader | Factor1
(-0.971)
0.136
(0.700)
0.419
-0.155 | Factor2
0.018
-0.312
-0.418
-0.379
0.971 | Factor3 -0.003 (0.890) -0.081 (-0.707) -0.111 | Communality
0.943
0.909
0.670
0.819
0.979 | |--|--|---|---|--| | Variance | 1.6506 | 1.3587 | 1.3114 | 4.3207 | | % Var | 0.330 | 0.272 | 0.262 | 0.864 | #### Factor Score Coefficients | Variable | Factor1 | Factor2 | Factor3 | |----------|---------|---------|---------| | indep | -0.752 | -0.362 | -0.147 | | supp | 0.119 | -0.129 | 0.690 | | benev | 0.372 | -0.127 | -0.010 | | conform | 0.073 | -0.277 | -0.545 | | leader | 0.240 | 0.832 | 0.008 | ## Maximum Likelihood Factor Analysis of \mathbb{R} (m=3) #### * NOTE * Heywood case | Variable indep supp benev conform leader | Factor1 | Factor2 | Factor3 | Communality | |--|----------|---------|---------|-------------| | | (-0.788) | 0.187 | 0.587 | 1.000 | | | -0.464) | -0.491 | -0.790 | 1.000 | | | (0.532) | -0.492 | -0.086 | 0.532 | | | (0.664) | -0.333 | 0.194 | 0.589 | | | (0.000) | (1.000) | 0.000 | 1.000 | | Variance | 1.5591 | 1.5486 | 1.0133 | 4.1211 | | % Var | 0.312 | 0.310 | | 0.824 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Factor3 | Communality | |----------|----------|---------|---------|-------------| | indep | (-0.992) | 0.034 | 0.122 | 1.000 | | supp | 0.048 | -0.192 | -0.980 | 1.000 | | benev | (0.562) | -0.454 | 0.098 | 0.532 | | conform | 0.515 | -0.371 | 0.432 | 0.589 | | leader | -0.129 | 0.968 | 0.213 | 1.000 | | Variance | 1.5842 | 1.3199 | 1.2170 | 4.1211 | | % Var | 0.317 | 0.264 | 0.243 | 0.824 | #### Factor Score Coefficients | Variable | Factor1 | Factor2 | Factor3 | |----------|---------|---------|---------| | indep | -1.016 | -0.130 | -0.024 | | supp | -0.123 | 0.219 | -1.069 | | benev | -0.000 | 0.000 | 0.000 | | conform | -0.000 | 0.000 | -0.000 | | leader | 0.011 | 1.081 | -0.211 | Using the unrotated loadings and including moderate loadings of magnitudes .4—.5, the factors are all bipolar and appear to be difficult to interpret. Moreover, the arrangement of relatively large loadings on each factor is quite different for the two solution methods. The rotated loadings are consistent with one another for the two solution methods and, although all the factors are bipolar, may be easier to interpret. The first factor is a contrast between Independence and the pair Benevolence and Conformity. Perhaps this factor could be classified as a "conforming—not conforming" factor. The second factor is essentially a "leadership" factor although if moderate loadings are included, this factor is a contrast between Leadership and Benevolence. Teenagers with above average scores on Leadership tend to be above average on this factor, while those with above average scores on Benevolence tend to be below average on this factor. Perhaps we could label this factor a "lead—follow" factor. The third factor is essentially a "support" factor although, again, if moderate loadings are used, this factor is a contrast between Support and Conformity. To our minds however, the latter is difficult to interpret. The factor scores for the first two factors are similar for the two solutions methods. No outliers are immediately evident. 9.34 A factor analysis of the paper property variables with either S or R suggests a m = 1 factor solution is reasonable. All variables load highly on a single factor. The covariance matrix S and correlation matrix R follow along with a scree plot using R. For completeness, the results for a m = 2 factor solution using both solution methods is also given. Plots of factor scores from the two factor model suggest that observations 58, 59, 60 and 61 may be outliers. ####
Covariances: BL, EM, SF, BS | | BL | EM | SF | BS | |----|----------|----------|----------|----------| | BL | 8.302871 | | | | | EM | 1.886636 | 0.513359 | | | | SF | 4.147318 | 0.987585 | 2.140046 | | | BS | 1.972056 | 0.434307 | 0.987966 | 0.480272 | ### Correlations: BL, EM, SF, BS ``` BL EM SF EM 0.914 SF 0.984 0.942 BS 0.988 0.875 0.975 ``` ## Principal Component Factor Analysis of S (m = 1) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Communality | |----------|---------|-------------| | BL | 2.878 | 8.285 | | EM | 0.664 | 0.441 | | SF | 1.449 | 2.101 | | BS | 0.684 | 0.468 | | | | | | Variance | 11.295 | 11.295 | | % Var | 0.988 | 0.988 | ## Factor Score Coefficients | Variable | Factorl | |----------|---------| | BL | 0.734 | | EM | 0.042 | | SF | 0.188 | | BS | 0.042 | The first factor explains 99% of the total variance. All variables, given their measurement scales, load highly on this factor. Note: There is no factor rotation with one factor. ## Principal Component Factor Analysis of \mathbb{R} (m=1) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Communality | |----------|---------|-------------| | BL | 0.992 | 0.984 | | EM | 0.951 | 0.905 | | SF | 0.996 | 0.991 | | BS | 0.980 | 0.960 | | | مسيا | | | Variance | 3.8395 | 3.8395 | | % Var | 0.960 | 0.960 | #### Factor Score Coefficients | Variable | Factor1 | |----------|---------| | BL | 0.258 | | EM | 0.248 | | SF | 0.259 | | BS | 0.255 | The first factor explains 96% of the variance. All variables load highly and about equally on this factor. This factor might be called a "paper properties index." ## Maximum Likelihood Factor Analysis of \mathbf{R} (m=1) #### * NOTE * Heywood case Unrotated Factor Loadings and Communalities | Variable | Factor1 | Communality | |----------|---------|-------------| | BL | (1.000) | 1.000 | | EM | 0.914 | 0.835 | | SF | 0.984 | 0.968 | | BS | (0.988 | 0.975 | | | | | | Variance | 3.7784 | 3.7784 | | % Var | 0.945 | 0.945 | ## Factor Score Coefficients | Variable | Factor1 | |----------|---------| | BL | 1.000 | | EM | 0.000 | | SF | 0.000 | | BS | 0.000 | The results are similar to the results for the principal component method. The first factor explains about 95% of the variance and all variables load highly and about equally on this factor. Again, the factor might be called a "paper properties index." ## Principal Component Factor Analysis of \mathbb{R} (m = 2) #### Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | BL | 0.992 | -0.098 | 0.993 | | EM | (0.951) | 0.307 | 0.999 | | SF | 0.996 | -0.008 | 0.991 | | BS | 0.980 | -0.191 | 0.996 | | Variance | 3.8395 | 0.1403 | 3.9798 | | % Var | 0.960 | 0.035 | 0.995 | ## Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | BL | 0.817 | 0.571 | 0.993 | | EM | 0.522 | 0.852 | 0.999 | | SF | 0.761 | 0.642 | 0.991 | | BS | 0.868 | 0.493 | 0.996 | | Variance | 2.2717 | 1.7082 | 3.9798 | | % Var | 0.568 | 0.427 | 0.995 | ## Factor Score Coefficients | Variable | Factor1 | Factor2 | |----------|---------|---------| | BL | 0.650 | -0.361 | | EM | -1.235 | 1.821 | | SF | 0.232 | 0.128 | | BS | 1.081 | -0.868 | Using the unrotated loadings, the second factor explains very little of the variance beyond that of the first factor and is not needed. Since the unrotated loadings provide a clear interpretation of the first factor there is no need to consider the rotated loadings. The potential outliers are evident in the plot of factor scores. ## Maximum Likelihood Factor Analysis of \mathbb{R} (m=2) ## * NOTE * Heywood case Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | BL | 0.988 | 0.103 | 0.986 | | EM | 0.875 | 0.485 | 1.000 | | SF | 0.975 | 0.185 | 0.984 | | BS | 1.000 | 0.000 | 1.000 | | | | | | | Variance | 3.6900 | 0.2800 | 3.9700 | | % Var | 0.922 | 0.070 | 0.992 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | BL | 0.809 | 0.576 | 0.986 | | EM | 0.523 | 0.853 | 1.000 | | SF | 0.757 | 0.641 | 0.984 | | BS | 0.870 | 0.492 | 1.000 | | Variance | 2.2572 | 1.7128 | 3.9700 | | % Var | 0.564 | 0.428 | 0.992 | #### Factor Score Coefficients | Variable | Factor1 | Factor2 | |----------|---------|---------| | BL | -0.000 | -0.000 | | EM | -1.016 | 1.795 | | SF | -0.000 | -0.000 | | BS | 1.759 | -1.078 | The results are similar to the results for the principal component method. Using the unrotated loadings, the first factor explains 92% of the total variance and the second factor explains very little of the remaining variance. Since the unrotated loadings provide a clear interpretation of the first factor (paper properties index) there is no need to consider the rotated loadings. The same potential outliers are evident in the plot of factor scores. 9.35 A factor analysis of the pulp fiber characteristic variables with S and R for m = 1 and m = 2 factors is summarized below. The covariance matrix S and correlation matrix R follow along with a scree plot using R. Plots of factor scores from the two factor model suggest that observations 60 and 61 and possibly observations 57, 58 and 59 may be outliers. A m = 1 factor solution using R appears to be the best choice. ## Covariances: AFL, LFF, FFF, ZST | | AFL | LFF | FFF | ZST | |-------|----------|------------|-----------|---------| | AFL | 0.06227 | | | | | LFF | 3.35980 | 221.05161 | | | | FFF | -3.21404 | -185.63707 | 308.39989 | | | ZST · | 0.00577 | 0.34760 | -0.40633 | 0.00087 | ## Correlations: AFL, LFF, FFF, ZST ## Principal Component Factor Analysis of S (m = 1) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Communality | |----------|----------|-------------| | AFL | 0.216 | 0.047 | | LFF | 13.250 | 175.573 | | FFF | (-16.729 | 279.858 | | ZST | (0.025) | 0.001 | | Variance | 455.48 | 455.48 | | % Var | 0.860 | 0.860 | #### Factor Score Coefficients | Variable | Factor1 | |----------|---------| | AFL | 0.000 | | LFF | 0.433 | | FFF | -0.645 | | ZST | 0.000 | The first factor explains 86% of the total variance and represents a contrast between FFF (with a negative loading) and the AFL, LFF and ZST group, all with positive loadings. AFL (average fiber length), LFF (long fiber fraction) and ZST (zero span tensile strength) may all have to do with paper strength while FFF (fine fiber fraction) may have something to do with paper quality. Perhaps we could label this factor a "strength—quality" factor. ## Principal Component Factor Analysis of \mathbf{R} (m = 1) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Communality | |----------|----------|-------------| | AFL | (0.936) | 0.877 | | LFF | 0.933 | 0.870 | | FFF | (-0.878) | 0.770 | | ZST | 0.917 | 0.841 | | Variance | 3.3577 | 3.3577 | | % Var | 0.839 | 0.839 | #### Factor Score Coefficients | Variable | Factor1 | |----------|---------| | AFL | 0.279 | | LFF | 0.278 | | FFF | -0.261 | | ZST | 0.273 | The first factor explains 84% of the variance and the pattern of loadings is consistent with that of the m = 1 factor analysis of the covariance matrix S. Again, we might label this bi polar factor a "strength—quality" factor. ## Maximum Likelihood Factor Analysis of \mathbf{R} (m = 1) ## Unrotated Factor Loadings and Communalities | Variable | Factor1 | Communality | |----------|----------|-------------| | AFL | (0.949) | 0.900 | | LFF | (0.945) | 0.894 | | FFF | (-0.784) | 0.614 | | ZST | (0.846) | 0.717 | | Variance | 3.1245 | 3.1245 | | % Var | 0.781 | 0.781 | #### Factor Score Coefficients | Variable | Factor1 | |----------|---------| | AFL | 0.422 | | LFF | 0.394 | | FFF | -0.090 | | ZST | 0.132 | The first factor explains 78% of the variance and the pattern of loadings is consistent with that of the m = 1 factor analysis of the covariance matrix \mathbf{R} using the principal component method. Again, we might label this bi polar factor a "strength—quality" factor. Because the different measurement scales make the factor loadings obtained from the covariance matrix difficult to interpret, we continue with a factor analysis of the correlation matrix \mathbf{R} with m=2. ## Principal Component Factor Analysis of \mathbb{R} (m=2) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|----------|---------|-------------| | AFL | (0.936) | 0.256 | 0.942 | | LFF | (0.933) | 0.288 | 0.953 | | FFF | (-0.878) | 0.423 | 0.949 | | ZST | (0.917) | -0.150 | 0.863 | | Variance | 3.3577 | 0.3493 | 3.7070 | | % Var | 0.839 | | 0.927 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|---------|---------|-------------| | AFL | 0.868 | -0.434 | 0.942 | | LFF | 0.887 | -0.408 | 0.953 | | FFF | -0.372 | 0.900 | 0.949 | | ZST | 0.583 | -0.723 | 0.863 | | Variance | 2.0176 | 1.6893 | 3.7070 | | % Var | 0.504 | 0.422 | 0.927 | ## Factor Score Coefficients | Variable | Factor1 | Factor2 | |----------|---------|---------| | AFL | 0.696 | 0.359 | | LFF | 0.757 | 0.429 | | FFF | 0.613 | 1.075 | | ZST | -0.082 | -0.501 | | | | | ## Maximum Likelihood Factor Analysis of \mathbf{R} (m=2) Unrotated Factor Loadings and Communalities | Variable | Factor1 | Factor2 | Communality | |----------|----------|----------|-------------| | AFL | (0.913) | -0.205 | 0.876 | | LFF | 0.926 | -0.292 | 0.943 | | FFF | (-0.890) | (-0.388) | 0.944 | | ZST | 0.866 | 0.033 | 0.752 | | Variance | 3.2351 | 0.2796 | 3.5146 | | % Var | 0.809 | 0.070 | 0.879 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable | Factor1 | Factor2 | Communality | |----------|----------|---------|-------------| | AFL | (0.819) | (0.454 | 0.876
| | LFF | (0.886) | 0.397 | 0.943 | | FFF | (-0.407) | -0.882 | 0.944 | | ZST | (0.625) | (0.601) | 0.752 | | Variance | 2.0124 | 1.5023 | 3.5146 | | % Var | 0.503 | 0.376 | 0.879 | Factor Score Coefficients | Variable | Factor1 | Factor2 | |----------|---------|---------| | AFL | 0.336 | -0.101 | | LFF | 0.922 | -0.423 | | FFF | 0.534 | -1.197 | | ZST | 0.049 | 0.076 | Examining the unrotated loadings for both solution methods, we see that the second factor explains little (about 7%-8%) of the remaining variance. Also, this factor has moderate to very small loadings on all the variables with the possible exception of variable FFF. If retained, this factor might be called a "fine fiber" of "quality" factor. Using the rotated loadings, the second factor looks much like the first factor for both solution methods. That is, this factor appears to be a contrast between variable FFF and the group of variables AFL, LFF and ZST. To summarize, there seems to be no gain in understanding from adding a second factor to the model. A one factor model appears be sufficient in this case. However, plots of the factor scores for m = 2 suggest observations 60, 61 and, perhaps, observations 57, 58 and 59 may be outliers. 9.36 The correlation matrix \mathbf{R} and the scree plot is shown below. After m=2 there is no sharp elbow in the scree plot and the plot falls off almost linearly. Potential choices for m are 2, 3, 4 and 5. We give the results for m=4 but, to our minds, here is a case where a factor model is not particularly well defined. ## Correlations: Family, DistRd, Cotton, Maze, Sorg, Millet, Bull, Cattle, Goats | Family | DistRd | Cotton | Maze | Sorg | Millet | Bull | Cattle | |--------|--|--|-----------------|---|--|--|---| | -0.084 | | | * | | | | | | 0.724 | 0.028 | | | | | | | | 0.679 | -0.054 | 0.730 | | | | | | | 0.568 | -0.071 | 0.383 | 0.109 | | | | | | 0.506 | 0.022 | 0.389 | 0.217 | 0.382 | | | | | 0.727 | -0.088 | 0.765 | 0.623 | 0.443 | 0.353 | | | | 0.336 | -0.063 | 0.175 | 0.197 | 0.404 | 0.081 | 0.520 | | | 0.484 | 0.031 | 0.399 | 0.136 | 0.424 | 0.305 | 0.560 | 0.357 | | | -0.084
0.724
0.679
0.568
0.506
0.727
0.336 | -0.084
0.724 0.028
0.679 -0.054
0.568 -0.071
0.506 0.022
0.727 -0.088
0.336 -0.063 | -0.084
0.724 | -0.084
0.724 0.028
0.679 -0.054 0.730
0.568 -0.071 0.383 0.109
0.506 0.022 0.389 0.217
0.727 -0.088 0.765 0.623
0.336 -0.063 0.175 0.197 | -0.084
0.724 0.028
0.679 -0.054 0.730
0.568 -0.071 0.383 0.109
0.506 0.022 0.389 0.217 0.382
0.727 -0.088 0.765 0.623 0.443
0.336 -0.063 0.175 0.197 0.404 | -0.084
0.724 0.028
0.679 -0.054 0.730
0.568 -0.071 0.383 0.109
0.506 0.022 0.389 0.217 0.382
0.727 -0.088 0.765 0.623 0.443 0.353
0.336 -0.063 0.175 0.197 0.404 0.081 | -0.084
0.724 0.028
0.679 -0.054 0.730
0.568 -0.071 0.383 0.109
0.506 0.022 0.389 0.217 0.382
0.727 -0.088 0.765 0.623 0.443 0.353
0.336 -0.063 0.175 0.197 0.404 0.081 0.520 | # Principal Component Factor Analysis of \mathbf{R} (m=4) Unrotated Factor Loadings and Communalities | -1-1-1 | Factor1 | Factor2 | Factor3 | Factor4 | Communality | |----------|---------|----------|----------|--|-------------| | Variable | | -0.111 | -0002 | -0.118 | 0.842 | | Family | (0.903) | | (-0.855) | 0.482 | 0.974 | | DistRd | -0.068 | -0.080 | | 15.55 | 0.851 | | Cotton | (0.837) | -0.380 | -0.070 | 0.028 | | | Maze | 0.687 | (-0.616) | 0.175 | 0.158 | 0.907 | | | 0.633 | 0.503 | -0.070 | -0.219 | 0.706 | | Sorg | | 0.048 | -0.396 | (-0.582) | 0.798 | | Millet | 0.547 | | - | 0.189 | 0.856 | | Bull | [0.896] | -0.033 | 0.125 | The same of sa | 0.811 | | Cattle | 0.502 | (0.510) | 0.286 | (0.466) | | | | (0.629) | 0.421/ | -0.178 | 0.096 | 0.614 | | Goats | وتنقين | | | | | | | | 4 0364 | 1.0581 | 0.9205 | 7.3593 | | Variance | 4.1443 | 1.2364 | | | 0.818 | | % Var | 0.460 | 0.137 | 0.118 | 0.102 | 0.010 | | | | | | | | Rotated Factor Loadings and Communalities Varimax Rotation | ** | Factor1 | Factor2 | Factor3 | Factor4 | Communality | |----------|---------|-------------------------|----------|----------|-------------| | Variable | (0.714) | 0.320 | (-0.473) | 0.080 | 0.842 | | Family | | -0.022 | 0.006 | (-0.986) | 0.974 | | DistRd | -0.026 | 0.150 | -0.301 | -0.076 | 0.851 | | Cotton | (0.856) | 0.130 | 0.032 | 0.047 | 0.907 | | Maze | 10.951 | The same of the same of | (-0.606) | 0.112 | 0.706 | | Sorg | 0.092 | 0.564 | -0.863 | -0.029 | 0.798 | | Millet | 0.226 | -0.026 | -0.210 | 0.043 | 0.856 | | Bull | [0.724] | 0.535 | | 0.043 | 0.811 | | Cattle | 0.148 | 0.879 | 0.108 | | 0.614 | | Goats | 0.180 | (0.629) | (-0.406) | -0.145 | 0.011 | | | | | | 1 0201 | 7.3593 | | Variance | 2.7840 | 1.8985 | 1.6476 | 1.0291 | 0.818 | | % Var | 0.309 | 0.211 | 0.183 | 0.114 | 0.616 | ## Factor Score Coefficients | Variable | Factor1 | Factor2 | Factor3 | Factor4 | |----------------|---------|---------|---------|---------| | Family | 0.197 | -0.013 | -0.171 | 0.063 | | | 0.014 | 0.042 | 0.030 | -0.963 | | DistRd | 0.344 | -0.115 | -0.024 | -0.090 | | Cotton
Maze | 0.494 | -0.165 | 0.247 | 0.023 | | | -0.199 | 0.246 | -0.374 | 0.100 | | Sorg
Millet | -0.078 | -0.260 | -0.697 | -0.001 | | Bull | 0.224 | 0.204 | 0.110 | 0.005 | | | -0.063 | 0.633 | 0.329 | 0.019 | | Cattle | -0.114 | 0.338 | -0.156 | -0.164 | | Goats | -0.114 | 0.550 | | | # Maximum Likelihood Factor Analysis of \mathbb{R} (m = 4) Unrotated Factor Loadings and Communalities | Variable Family DistRd Cotton Maze Sorg Millet Bull Cattle | Factor1
(0.752)
-0.064
(0.794)
(0.980)
0.211
(0.276)
(0.746)
0.290
(0.249) | Factor2 -0.324 0.056 -0.238 0.170 -0.567 -0.269 -0.616 -0.608 -0.607 | Factor3 -0.162 -0.044 -0.307 0.025 -0.071 -0.301 -0.096 0.640 -0.151 | Factor4 -0.374 -0.003 -0.044 -0.002 -0.527 -0.361 0.131 -0.074 -0.109 | Communality
0.837
0.009
0.782
0.990
0.649
0.369
0.962
0.869
0.465 | |--|---|--|--|---|--| | Goats Variance | 2.9824 | 1.7047 | 0.6610
0.073 | 0.58 41
0.065 | 5.9322
0.659 | Rotated Factor Loadings and Communalities Varimax Rotation | Variable Family DistRd Cotton Maze Sorg Millet Bull Cattle Goats | Factor1
0.630
-0.040
0.713
0.980
0.034
0.206
0.540
0.039
0.072 | Factor2
(-0.605)
0.017
-0.362
-0.034
(-0.740)
-0.558
-0.324
-0.154
(-0.466) | Factor3
0.229
-0.081
0.075
0.166
0.303
-0.028
0.437
0.915
0.268 | Factor4 -0.148 0.025 -0.370 -0.016 -0.089
-0.120 -0.612 -0.079 -0.414 | Ommunality 0.837 0.009 0.782 0.990 0.649 0.369 0.962 0.869 0.465 | |--|---|--|--|---|--| | Variance | 2.2098 | 1.7035 | 1.2850 | 0.7340 | 5.9322 | | % Var | 0.246 | 0.189 | 0.143 | 0.082 | 0.659 | ## Factor Score Coefficients | Variable Family DistRd Cotton Maze Sorg Millet Bull | Factor1 0.013 0.001 0.033 0.995 -0.023 0.003 -0.026 | Factor2 -0.606 -0.002 -0.161 0.440 -0.404 -0.185 0.215 | Factor3 -0.078 -0.009 -0.162 0.109 0.017 -0.062 0.103 | Factor4
0.247
-0.002
-0.113
0.681
0.206
0.052
-1.426
0.385 | |---|---|--|---|--| | Bull
Cattle
Goats | -0.026
-0.141
-0.009 | 0.215
0.091
-0.093 | 0.103
0.896
-0.010 | | The two solution methods for m = 4 factors produce somewhat different results. The patterns for unrotated loadings on the first two factors are similar but not identical. The patterns of loadings for the two solution methods on the third and fourth factors are quite different. Notice that DistRd does not load on any factor in the maximum likelihood solution. The factor loading patterns are more alike for the two solution methods using the rotated loadings, although factors 2 & 3 in the principal component solution appear to be reversed in the maximum likelihood solution. The rotated loadings on factor 4 for the two methods are quite different. Again, DistRd does not load on any factor in the maximum likelihood solution, it appears to define factor 4 in the principal component solution. (From R we see that DistRd is not correlated with any of the other variables.) Variables Family, Cotton, Maze, and Bullocks load highly on the first factor. The variables Family, Sorghum, Millet and Goats load highly on the second factor (maximum likelihood solution) or the third factor (principal component solution). Growing cotton and maze is labor intensive and bullocks are helpful. The first factor might be called a "family farm-row crop" factor. Millet and sorghum are grasses and may provide feed for goats. Consequently, the second (or third in the case of the principal component solution) factor might be called a "family farm-grass crop" factor. The third factor in the maximum likelihood solution (second factor in the principal component solution) may have different interpretations depending on the solution method but in both cases, Bullocks and Cattle load highly on this factor. Perhaps this factor could be called a "livestock" factor. The rotated loadings are considerably different on the fourth factor. This factor is clearly a "distance to the road" factor in the principal component solution. The interpretation is not clear in the maximum likelihood solution. The fact that the two solution methods produce somewhat different results and explain quite different proportions of the total variation (82% for principal components, 66% for maximum likelihood) reinforces the notion that a linear factor model is not particularly well defined for this problem. Plots of factor scores for the first two factors indicated there are several potential outliers. If these observations are removed, the results could change. 10.1. $$\sharp_{11}^{-1/2} \sharp_{12} \sharp_{22}^{-1} \sharp_{21} \sharp_{11}^{-1/2} = \begin{bmatrix} 0 & 0 \\ 0 & (.95)^2 \end{bmatrix}$$ which has eigenvalues $\rho_1^{\star 2} = (.95)^2$ and $\rho_2^{\star 2} = 0$. The normalized eigenvectors are $e_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Thus $$U_{1} = e_{1}^{1} t_{11}^{1/2} \underline{x}^{(1)} = [0 \ 1] \begin{bmatrix} .1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1}^{(1)} \\ x_{2}^{(1)} \end{bmatrix} = x_{2}^{(1)}$$ Since $$f_1^i$$ $f_{22}^{-1/2} = [1 \ 0]$, $V_1 = X_1^{(2)}$. Thus $$U_1 = X_2^{(1)}$$, $V_1 = X_1^{(2)}$ and $\rho_1^* = .95$. 10.2 a) $$\rho_1^* = .55, \quad \rho_2^* = .49$$ b) $$U_1 = .32X_1^{(1)} - .36X_2^{(1)}$$ $$V_1 = .36X_1^{(2)} - .10X_2^{(2)}$$ $$U_2 = .20X_1^{(1)} + .30X_2^{(1)}$$ $$V_2 = .23X_1^{(2)} + .30X_2^{(1)}$$ c) $$E \begin{bmatrix} v_1 \\ v_2 \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -1.675 \\ .015 \\ -.095 \\ .386 \end{bmatrix}$$ $$\begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} 1 & 0 & .55 & 0 \\ 0 & 1 & 0 & .49 \\ .55 & 0 & 1 & 0 \\ 0 & .49 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \rho_1^* & 0 \\ 0 & 1 & 0 & \rho_2^* \\ \rho_1^* & 0 & 1 & 0 \\ 0 & \rho_2^* & 0 & 1 \end{bmatrix}$$ 10.5 a) $$t_{11}^{-1}t_{12}t_{21}^{-1}t_{21} = \Omega_{11}^{-1}\Omega_{12}^{-1}\Omega_{22}^{-1}\Omega_{21} = \begin{bmatrix} .45189 & .28919 \\ .14633 & .17361 \end{bmatrix}$$ $$\begin{vmatrix} .45189 - \lambda & .28919 \\ .14633 & .17361 - \lambda \end{vmatrix} = \lambda^2 - .5467 \lambda + .0005$$ $$= (\lambda - .5457)(\lambda - .0009)$$ The characteristic equation is the same as that of -1/2 -1 -1/2 (see Example 10.1) and consequently the eigenvalues are the same. b) $$U_2 = -.677Z_1^{(1)} + 1.055Z_2^{(1)}$$ $V_2 = -.863Z_1 + .706Z_2$ $Var(U_2) = (-0.677)^2 + (1.055)^2 - 2(.677)(1.055)(.4) = 1.0$ $Var(V_2) = 1.0$ $Corr(U_2, V_2) = (-.677)(-.863)(.5) + (-.863)(1.055)(.3)$ $+ (.706)(-.677)(.6) + (.706)(1.055)(.4) = .03 = \rho_2^*$ 10.7 a) $$\rho_1^* = \frac{2\rho}{1+\rho}$$ $0 < \rho < 1$ $$U_1 = \frac{1}{\sqrt{2(1+\rho)}} (X_1^{(1)} + X_2^{(1)})$$ $$V_1 = \frac{1}{\sqrt{2(1+\rho)}} (X_1^{(2)} + X_2^{(2)})$$ 10.8 c) $$\hat{\rho}_{1}^{\star} = .72$$ $$\hat{V}_{1} = .20X_{1}^{(2)} + .70X_{2}^{(2)}$$ $$\hat{\beta} = 45^{\circ} \equiv \frac{\pi}{4} \text{ radians}$$ d) $$\hat{\rho}_{1}^{*} = .57$$. $\hat{U}_{1} = 1.03 \cos \theta_{1} + .46 \sin \theta_{1}$ $V_{1} = .49 \cos \theta_{2} + .78 \sin \theta_{2}$ 10.9 a) $$\hat{\rho}_{1}^{*} = .39$$; $\hat{\rho}_{2}^{*} = .07$ $$\hat{U}_{1} = 1.26Z_{1}^{(1)} - 1.03Z_{2}^{(1)}$$; $\hat{U}_{2} = .30Z_{1}^{(1)} + .79Z_{2}^{(1)}$ $$\hat{V}_{1} = 1.10Z_{1}^{(2)} - .45Z_{2}^{(2)}$$; $V_{2} = -.02Z_{1}^{(2)} + 1.01Z_{2}^{(2)}$ b) $$n = 140$$, $p=2$, $q=2$, $n-1-\frac{1}{2}(p+q+1) = 136.5$ Value of Degrees of point of χ^2 Null hypothesis test statistic Freedom distribution H₀: $\bar{\tau}_{12} = Q_{12} = 0$ -136.5 \(\text{ln}(.8444)(.9953)\) = 23.74 $$H_0^{(1)}: \rho_1^{\star} \neq 0, \rho_2^{\star} = 0 \quad -136.5 \ln(.9953)$$ $$= .65$$ Therefore, reject H_0 but do not reject $H_0^{(1)}$. Reading ability (summarized by $\hat{V_1}$) does correlate with arithmetic ability (summarized by $\hat{V_1}$) but the correlation (represented by ρ_1 = .39) is not particularly strong. 10.10 a) $$\hat{\rho}_1^* = .33, \hat{\rho}_2^* = .17$$ b) $$\hat{V}_1 = 1.002Z_1^{(1)} - .003Z_2^{(1)}$$ $$\hat{V}_1 = -.602Z_1^{(2)} - .977Z_2^{(2)}$$ $$\hat{V}_1 \doteq Z_1^{(1)} = 1973 \text{ nonprimary homicides (standardized)}$$ $$\hat{V}_1 \doteq \frac{3}{5} Z_1^{(2)} + Z_2^{(2)} = a \text{ "punishment index"}$$ Punishment appears to be correlated with nonprimary homicides but not primary homicides. 10.11 Using the correlation matrix R and standardized variables, the canonical correlations and canonical variables follow. The $Z^{(1)}$'s are the banks, the $Z^{(2)}$'s are the oil companies. $$\hat{\rho}_1^* = .348, \quad \hat{\rho}_2^* = .130$$ $$\begin{split} \hat{U}_1 &= -.539z_1^{(1)} + 1.209z_2^{(1)} + .079z_3^{(1)} \\ \hat{V}_1 &= 1.160z_1^{(2)} - .261z_2^{(2)} \end{split}, \quad \hat{U}_2 &= 1.142z_1^{(1)} - .410z_2^{(1)} + .142z_3^{(1)} \\ \hat{V}_2 &= -.728z_1^{(2)} + 1.345z_2^{(2)} \end{split}$$ Additional correlations: $$R_{U_1,Z^{(1)}} = (.266 .913 .498), R_{V_1,Z^{(2)}} = (.982 .532)$$ $R_{U_1,Z^{(2)}} = (.342 .185), R_{V_1,Z^{(1)}} = (.093 .318 .174)$ Here $H_0: \Sigma_{12}(\rho_{12}) = 0$ is rejected at the 5% level and $H_0^{(1)}: \rho_1^* \neq 0, \rho_2^* = 0$ is not rejected at the 5% level. The first canonical correlation, although relatively small, is significant. The second canonical correlation is not significant. Focusing attention on the first pair of canonical variables, \hat{U}_1 is dominated by Citibank, \hat{V}_1 is dominated by Royal Dutch Shell. The canonical correlation (.348) between \hat{U}_1 and \hat{V}_1 suggests there is not much co-movement between the rates of return for the banks on one hand and the oil companies on the other. Moreover, \hat{U}_1 is not highly correlated with any of the $Z^{(2)}$'s (oil companies) and \hat{V}_1 is not highly correlated with any of the $Z^{(1)}$'s (banks). The first canonical variables differentiate stocks in different industries with some, but not much, overlap. 10.12 a) $$\hat{\rho}_{1}^{\star} = .69$$, $\hat{\rho}_{2}^{\star} = .19$ Reject H₀: $\rho_{12} = 0$ at the 5% level but do not reject H₀⁽¹⁾ = $\rho_{1}^{\star} \neq 0$, $\rho_{2}^{\star} = 0$ at the 5% level. b) $$\hat{U}_1 = .77Z_1^{(1)} + .27Z_2^{(1)}$$ $\hat{V}_1 = .05Z_1^{(2)} + .90Z_2^{(2)} + .19Z_3^{(2)}$ c) Sample Correlations Between Original Variables and Canonical Variables | x ⁽¹⁾ Variables | $\hat{u_1}$ $\hat{v_1}$ | X ⁽²⁾ Variables | $\hat{\mathbf{u}_1}$ $\hat{\mathbf{v}_1}$ | |--|-------------------------|---|---| | 1. annual frequency of restaurant dining | .99 .68 | 1. age of
head of household | .29 .42 | | 2. annual frequency of attending movies | .89 .61 | 2. annual family income3. educational level of head of household | .68 .98
.35 .51 | d) $\hat{V_1}$ is a measure of family entertainment outside the home. $\hat{V_1}$ may be considered a measure of family "status" which is dominated by family income. Essentially, family entertainment outside the home is positively associated with family income. 10.13 a) $$\hat{\rho}_1^{\star} = .909$$, $\hat{\rho}_2^{\star} = .636$, $\hat{\rho}_3^{\star} = .256$, $\hat{\rho}_4^{\star} = .094$ | | Null hypothesis | Value of test statistic | Degrees
of freedom | Conclusion at 1% level | |----|---|-------------------------|-----------------------|-------------------------------------| | 1. | $H_0: \Sigma_{12} = \rho_{12} = 0$ | 309.98 | 20 | Reject Ho | | 2 | $H_0: \rho_1 \neq 0, \rho_2 = \dots = \rho_4 = 0$ | 78.63 | 12 | Reject H _o | | 3. | $H_0: \rho_1 \neq 0, \rho_2 \neq 0, \rho_3 = 0,$ $\rho_4 = 0$ | 16.81 | 6 | Do not re-
ject H _o . | $$\begin{bmatrix} \hat{U}_1 \\ \hat{U}_2 \end{bmatrix} = \begin{bmatrix} .21 & .17 & -.33 & -.26 & .30 \\ .92 & -.58 & .65 & .34 & .55 \end{bmatrix} \begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \\ z_4^{(1)} \\ z_5^{(1)} \end{bmatrix}$$ $$\begin{bmatrix} \hat{V}_1 \\ \hat{V}_2 \end{bmatrix} = \begin{bmatrix} -.54 & -.29 & .46 & .03 \\ 1.01 & .03 & .98 & -.18 \end{bmatrix} \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$ b) $\hat{U_1}$ appears to measure quality of wheat as a "contrast" between "good" aspects $(Z_1^{(1)}, Z_2^{(1)})$ and $(Z_3^{(1)}, Z_4^{(1)})$. V_1 is harder to interpret. It appears to measure the quality of the flour as represented by $Z_1^{(2)}$, $Z_2^{(2)}$ and $Z_3^{(2)}$. #### 10.14 a) $\hat{\rho}_1^* = 0.7520$, $\hat{\rho}_2^* = 0.5395$. And the sample canonical variates are Raw Canonical Coefficients for the Accounting measures of profitability | | U1 | U2 | |-----|--------------|--------------| | HRA | -0.494697741 | 1.9655018549 | | HRE | 0.2133051339 | -0.794353012 | | HRS | 0.7228315515 | -0.538822808 | | RRA | 2.7749354333 | -4.38345956 | | RRE | -1.383659039 | 1.6471230054 | | RRS | -1.032933813 | 2.5190103052 | Raw Canonical Coefficients for the Market measures of profitability | | V1 | V2 | |-----|--------------|--------------| | Q | 1.3930601511 | -2.500804367 | | REV | -0.431692979 | 2.8298904995 | U_1 is most highly correlated with RRA and HRA and also HRS and RRS. V_1 is highly correlated with both of its components. The second pair does not correlate well with their respective components. # b) Standardized Variance of the Accounting measures of profitability Explained by | | Their Own | | | The Opposite | | | |---------------------|------------|------------|-----------|---------------------|------------|--| | Canonical Variables | | | | Canonical Variables | | | | | | Cumulative | Canonical | | Cumulative | | | | Proportion | Proportion | R-Squared | Proportion | Proportion | | | 1 | 0.5041 | 0.5041 | 0.5655 | 0.2851 | 0.2851 | | | 2 | 0.0905 | 0.5946 | 0.2910 | 0.0263 | 0.3114 | | # Standardized Variance of the Market measures of profitability Explained by | | Their Own | | | The Opposite | | | |---|------------|------------|-----------|--------------|------------|--| | | Canonical | Variables | | Canonical | Variables | | | | | Cumulative | Canonical | | Cumulative | | | | Proportion | Proportion | R-Squared | Proportion | Proportion | | | 1 | 0.8702 | 0.8702 | 0.5655 | 0.4921 | 0.4921 | | | 2 | 0.1298 | 1.0000 | 0.2910 | 0.0378 | 0.5299 | | Market measures can be well explained by its canonical variate \hat{V}_1 . However, accounting measures cannot be well explained. In fact, from the correlation between measures and canonical variates, accounting measures on equity have weak correlation with \hat{U}_1 . # Correlations Between the Accounting measures of profitability and Their Canonical Variables | | U1 | U2 | |-----|--------|-----------| | HRA | 0.8110 | 0.2711 | | HRE | 0.4225 | 0.0968 | | HRS | 0.7184 | 0.5526 | | RRA | 0.8605 | -0.0089 | RRE 0.5741 -0.0959 RRS 0.7761 0.3814 Correlations Between the Market measures of profitability and Their Canonical Variables V1 V2 Q 0.9886 0.1508 REV 0.8736 0.4866 #### 10.15 $\hat{\rho}_1^* = 0.9129, \ \hat{\rho}_2^* = 0.0681$. And the sample canonical variates are Raw Canonical Coefficients for the dynamic measure U1 U2 X1 0.0036015621 -0.006663216 X2 -0.000595735 0.0077029513 Raw Canonical Coefficients for the static measures V1 V2 X3 0.0013448038 0.008471035 X4 0.0018933921 -0.007828962 ## Standardized Variance of the dynamic measure Explained by Their Own The Opposite Canonical Variables Canonical Variables Cumulative Canonical Cumulative Proportion Proportion R-Squared Proportion Proportion 0.8840 0.8840 0.8334 0.7367 0.7367 0.1160 1.0000 0.0046 0.0005 2 0.7373 Standardized Variance of the static measures Explained by | | Their Own | | | The Opposite | | | |---|------------|------------|-----------|--------------|-------------|--| | | Canonical | Variables | | Canonical | . Variables | | | | | Cumulative | Canonical | | Cumulative | | | | Proportion | Proportion | R-Squared | Proportion | Proportion | | | 1 | 0.9601 | 0.9601 | 0.8334 | 0.8002 | 0.8002 | | | 2 | 0.0399 | 1.0000 | 0.0046 | 0.0002 | 0.8003 | | Static measures can be well explained by its canonical variate \hat{U}_1 . Also, dynamic measures can be well explained by its canonical variate \hat{V}_1 . 10.16 From the computer output below, the first two canonical correlations are $\hat{\rho}_1^* = 0.517345$ and $\hat{\rho}_2^* = 0.125508$. The large sample tests $$-(n-1-\frac{1}{2}(p+q-1))\ln[(1-\hat{\rho*}_1^2)(1-\hat{\rho*}_1^2)] \geq \chi_{pq}^2(.05)$$ or $$-(46-1-\frac{1}{2}(3+2-1))\ln[(1-(.517345)^2)(1-(.125508)^2)] = 13.50 \ge \chi_6^2(.05) = 12.59$$ and $$-(n-1-\frac{1}{2}(p+q-1))\ln[(1-\hat{\rho}*_1^2)] \geq \chi^2_{(p-1)(q-1)}(.05)$$ or $$-(46-1-\frac{1}{2}(3+2-1))\ln[(1-(.125508)^2)] = 0.667 \ge \chi_2^2(.05) = 5.99$$ suggest that only the first pair of canonical variables are important. Even if the variables means were given, we prefer to interpret the canonical variables obtained from S in terms of coefficients of standardized variables. $$\hat{U}_1 = .4357z_1^{(1)} - .7047z_2^{(1)} + 1.0815z_3^{(1)} \hat{V}_1 = 1.020z_1^{(2)} - .1609z_2^{(2)}$$ The two insulin responses dominate \hat{U}_1 while \hat{V}_1 consists primarily of the relative weight variable. | Canon | | • | Squared | |-------------|--------------------------------------|---|---| | Canonical | Canonical | Standard | Canonical | | Correlation | Correlation | Error | Correlation | | 0.517345 | 0.517145 | 0.007324 | 0.267646 | | 0.125508 | 0.125158 | 0.009843 | 0.015752 | | | Canonical
Correlation
0.517345 | Canonical Canonical Correlation Correlation 0.517345 0.517145 | Canonical Canonical Standard Correlation Correlation Error 0.517345 0.517145 0.007324 | # Canonical Correlation Analysis | naw | canonicar | Coefficients | Tor the | GIUCOSE | and : | ruzattu | |-----|-----------|--------------|---------|---------|--------|---------| | | GLUCOSE | 0.013100 | 06541 | 0.024 | 752481 | 11 | | | INSULIN | -0.01443 | 38254 | -0.009 | 931753 | 25 | | | INSULRES | 0.02339 | 9723 | -0.00 | 86672 | 16 | | Ra | w Canonical | Coefficients | for | the | Weight | and | Fasting | | |----|-------------|--------------|-----|-----|--------|-------|---------|--| | | WEIGHT | 8.0655750 | 801 | | -0.37 | 51678 | 314 | | | | FASTING | -0.019159 | 052 | | 0 1200 | 6751 | 138 | | Standardized Canonical Coefficients for the Glucose and Insulin GLUCOSE 0.4357 0.8232 INSULIN -0.7047 -0.4547 INSULRES 1.0815 -0.4006 Standardized Canonical Coefficients for the Weight and Fasting | | SECONDA1 | SECONDA2 | |---------|----------|----------| | WEIGHT | 1.0202 | -0.0475 | | FASTING | -0.1609 | 1.0086 | Correlations Between the Glucose and Insulin and Their Canonical Variables | | PRIMARY1 | PRIMARY2 | |----------|----------|----------| | GLUCOSE | 0.3397 | 0.6838 | | INSULIN | -0.0502 | -0.4565 | | INSULRES | 0.7551 | -0.5729 | Correlations Between the Weight and Fasting and Their Canonical Variables | | SECONDA1 | SECONDA2 | |---------|----------|----------| | WEIGHT | 0.9875 | 0.1576 | | FASTING | 0.0465 | 0.9989 | 10.17 The computer output below suggests maybe two canonical pairs of variables. the canonical correlations are 0.521594, 0.375256, 0.242181 and 0.136568. \hat{U}_1 ignores the first smoking question and \hat{U}_2 ignores the third. \hat{V}_1 depends heavily on the difference of annoyance and tenseness. Even the second pairs do not explain their own variances very well. $R_{z^{(1)}|\hat{U}_2}^2 = .1249$ and $R_{z^{(1)}|\hat{V}_2}^2 = 0.0879$ | Canonical | Correlat | ion Analysis | |-----------|----------|--------------| | | | Adjusted | Approx | Squared | |---|-------------|-------------|----------|-------------| | | Canonical | Canonical | Standard | Canonical | | | Correlation | Correlation | Error | Correlation | | 1 | 0.521594 | 0.520771 | 0.007280 | 0.272060 | | 2 | 0.375256 | 0.374364 | 0.008592 | 0.140817 | | 3 | 0.242181 | 0.241172 | 0.009414 | 0.058652 | | 4 | 0.136568 | 0.135586 | 0.009814 | 0.018651 | #### Standardized Canonical Coefficients for the Smoking | | SMOKING1 | SMOKING2 | SMOKING3 | SMOKING4 | |-------|----------|----------|----------|----------| | SMOK1 | -0.0430 | 1.0898 | 1.1161 | -1.0092 | | SMOK2 | 1.1622 | 0.6988 | -1.4170 | 0.1732 | | SMOK3 | -1.3753 | 0.2081 | 0.0156 | 1.6899 | | SMOK4 | 0.8909 | -1.6506 | 0.8325 | -0.2630 | Standardized Canonical Coefficients for the Psych and Physical State | | STATE1 | STATE2 | STATES | STATE4 | |---------|---------|---------
---------|---------| | CONCEN | 0.4733 | -0.8141 | 0.4946 | -0.1604 | | ANNOY | -0.7806 | -0.4510 | 0.5909 | -0.7193 | | SLEEP | 0.2567 | -0.6052 | 0.6981 | 0.6246 | | TENSE | 0.6919 | 0.3800 | -0.4190 | 0.4376 | | ALERT | -0.1451 | -0.1840 | -1.5191 | -0.7253 | | IRRITAB | -0.0704 | 0.6255 | -0.3343 | 0.8760 | | TIRED | 0.3127 | 0.5898 | 0.2276 | 0.1861 | | CONTENT | 0.3364 | 0.4869 | 0.8334 | -0.6557 | ## Canonical Structure | Correlati | ons Between | the Smoking and | Their Canonical | Variables | |-----------|-------------|-----------------|-----------------|-----------| | | SMOKING1 | SMOKING2 | SMOKING3 | SMOKING4 | | SMOK1 | 0.4458 | 0.5278 | 0.6615 | 0.2917 | | SMOK2 | 0.7305 | 0.3822 | 0.1487 | 0.5461 | | SMOK3 | 0.2910 | 0.2664 | 0.4668 | 0.7915 | | SMOK4 | 0.6403 | -0.0620 | 0.5586 | 0.5236 | # Correlations Between the Psychological and Physical State and Their Canonical Variables | : | STATE1 | STATE2 | STATE3 | STATE4 | |---------|--------|---------|---------|---------| | CONCEN | 0.7199 | -0.3579 | 0.0125 | -0.3137 | | ANNOY | 0.3035 | 0.1365 | 0.3906 | -0.4058 | | SLEEP | 0.5995 | -0.3490 | 0.3709 | 0.2586 | | TENSE | 0.7015 | 0.3305 | 0.0053 | -0.1861 | | ALERT | 0.7290 | -0.1539 | -0.1459 | -0.3681 | | IRRITAB | 0.4585 | 0.3342 | 0.1211 | -0.0805 | | TIRED | 0.6905 | -0.0267 | 0.2544 | 0.0749 | | CONTENT | 0.5323 | 0.4350 | 0.3207 | -0.5601 | # Canonical Redundancy Analysis Raw Variance of the Smoking Explained by | | Their | r Own | The Opposite | | | |---|------------|------------|--------------|------------|--------------| | | Canonical | Variables | | Canonio | al Variables | | | | Cumulative | Canonical | | Cumulative | | | Proportion | Proportion | R-Squared | Proportion | Proportion | | 1 | 0.3068 | 0.3068 | 0.2721 | 0.0835 | 0.0835 | | 2 | 0.1249 | 0.4316 | 0.1408 | 0.0176 | 0.1010 | | 3 | 0.2474 | 0.6790 | 0.0587 | 0.0145 | 0.1155 | | 4 | 0.3210 | 1.0000 | 0.0187 | 0.0060 | 0.1215 | # Raw Variance of the Psychological and Physical State Explained by | | Thei | r Own | | The Oppo | site | |---|------------|------------|-----------|------------|-------------| | | Canonical | Variables | | Canonica | l Variables | | | | Cumulative | Canonical | | Cumulative | | | Proportion | Proportion | R-Squared | Proportion | Proportion | | 1 | 0.3705 | 0.3705 | 0.2721 | 0.1008 | 0.1008 | | 2 | 0.0879 | 0.4583 | 0.1408 | 0.0124 | 0.1132 | | 3 | 0.0617 | 0.5201 | 0.0587 | 0.0036 | 0.1168 | | 4 | 0.1032 | 0.6233 | 0.0187 | 0.0019 | 0.1187 | 10.18 The canonical correlation analysis expressed in terms of standardized variables follows. The $Z^{(1)}$'s are the paper characteristic variables, the $Z^{(2)}$'s are the pulp fiber characteristic variables. Canonical correlations: $$\hat{\rho}_1^* = .917, \quad \hat{\rho}_2^* = .817, \quad \hat{\rho}_3^* = .265, \quad \hat{\rho}_4^* = .092$$ First three canonical variate pairs: $$\begin{split} \hat{\mathbf{U}}_1 &= -1.505\mathbf{z}_1^{(1)} - .212\mathbf{z}_2^{(1)} + 1.998\mathbf{z}_3^{(1)} + .676\mathbf{z}_4^{(1)} \\ \hat{\mathbf{V}}_1 &= -.159\mathbf{z}_1^{(2)} + .633\mathbf{z}_2^{(2)} + .325\mathbf{z}_3^{(2)} + .818\mathbf{z}_4^{(2)} \\ \hat{\mathbf{U}}_2 &= -3.496\mathbf{z}_1^{(1)} - 1.543\mathbf{z}_2^{(1)} + 1.076\mathbf{z}_3^{(1)} + 3.768\mathbf{z}_4^{(1)} \\ \hat{\mathbf{V}}_2 &= .689\mathbf{z}_1^{(2)} + 1.003\mathbf{z}_2^{(2)} + .005\mathbf{z}_3^{(2)} - 1.562\mathbf{z}_4^{(2)} \\ \hat{\mathbf{U}}_3 &= -5.702\mathbf{z}_1^{(1)} + 3.525\mathbf{z}_2^{(1)} - 4.714\mathbf{z}_3^{(1)} + 7.153\mathbf{z}_4^{(1)} \\ \hat{\mathbf{V}}_3 &= -.513\mathbf{z}_1^{(2)} + .077\mathbf{z}_2^{(2)} - 1.663\mathbf{z}_3^{(2)} - .779\mathbf{z}_4^{(2)} \end{split}$$ Additional correlations: $$R_{U_1,Z^{(1)}} = (.935 .887 .977 .952), R_{V_1,Z^{(2)}} = (.817 .906 - .650 .940)$$ $R_{U_1,Z^{(2)}} = (.749 .831 - .596 .862), R_{V_1,Z^{(1)}} = (.858 .814 .896 .873)$ Here $H_0: \Sigma_{12}(\rho_{12}) = 0$ is rejected at the 5% level and $H_0^{(1)}: \rho_1^* \neq 0, \rho_2^* = 0$ is rejected at the 5% level. $H_0^{(2)}: \rho_1^* \neq 0, \rho_2^* \neq 0, \rho_3^* = \rho_4^* = 0$ is not rejected at the 5% level. The first two canonical correlations are significantly different from 0. The last two canonical correlations are not significant. The first canonical variable \hat{U}_1 explains 88% of the total standardized variance of it's set, the $Z^{(1)}$'s. The first canonical variable \hat{V}_1 explains 70% of the total standardized variance of it's set, the $Z^{(2)}$'s. The first canonical variates are good summary measures of their respective sets of variables. Moreover, the first canonical variates, which might be labeled a "paper characteristic index" and "a pulp fiber strength—quality index", are highly correlated. There is a strong association between an index of pulp fiber characteristics and an index of the characteristics of paper made from them. The second canonical variable \hat{U}_2 appears to be a contrast between the first two variables, breaking length and elastic modulus, and the last two variables, stress at failure and burst strength. However, the only moderately large (in absolute value) correlation between the canonical variate and it's component variables is the correlation (-.428) between \hat{U}_2 and $Z_2^{(1)}$, elastic modulus. The remaining correlations are small. This canonical variable might be a "paper stretch" measure. The canonical variable \hat{V}_2 appears to be determined by all variables except $Z_3^{(2)}$, fine fiber fraction. This canonical variable might be a "fiber length/strength" measure. The second pair of canonical variates is also highly correlated. 10.19 The correlation matrix **R** and the canonical analysis for the standardized variables follows. The $Z^{(1)}$'s are the running speed events (100m, 400m, long jump), the $Z^{(2)}$'s are the arm strength events (discus, javelin, shot put). $$\mathbf{R}_{11} = \begin{pmatrix} 1.0 & .5520 & .6386 \\ .5520 & 1.0 & .4706 \\ .6386 & .4706 & 1.0 \end{pmatrix} \qquad \mathbf{R}_{22} = \begin{pmatrix} 1.0 & .4179 & .7926 \\ .4179 & 1.0 & .4682 \\ .7926 & .4682 & 1.0 \end{pmatrix}$$ $$\mathbf{R}_{12} = \mathbf{R}_{21}' = \begin{pmatrix} .3509 & .1821 & .4752 \\ .2100 & .2116 & .2539 \\ .3998 & .3102 & .4953 \end{pmatrix}$$ Canonical correlations: $$\hat{\rho}_{1}^{*} = .540, \quad \hat{\rho}_{2}^{*} = .212, \quad \hat{\rho}_{3}^{*} = .014$$ Canonical variables: $$\hat{\mathbf{U}}_{1} = .540\mathbf{z}_{1}^{(1)} - .120\mathbf{z}_{2}^{(1)} + .633\mathbf{z}_{3}^{(1)}$$ $$\hat{\mathbf{U}}_{2} = 1.277\mathbf{z}_{1}^{(1)} - .768\mathbf{z}_{2}^{(1)} - .773\mathbf{z}_{3}^{(1)}$$ $$\hat{\mathbf{V}}_{1} = -.057\mathbf{z}_{1}^{(2)} + .043\mathbf{z}_{2}^{(2)} + 1.024\mathbf{z}_{3}^{(2)}$$ $$\hat{\mathbf{V}}_{2} = -.422\mathbf{z}_{1}^{(2)} - 1.0685\mathbf{z}_{2}^{(2)} + .859\mathbf{z}_{3}^{(2)}$$ $$\hat{\mathbf{U}}_{3} = .399\mathbf{z}_{1}^{(1)} + .940\mathbf{z}_{2}^{(1)} - .866\mathbf{z}_{3}^{(1)}$$ $$\hat{\mathbf{V}}_{3} = 1.590\mathbf{z}_{1}^{(2)} - .384\mathbf{z}_{2}^{(2)} - 1.038\mathbf{z}_{3}^{(2)}$$ Additional correlations: $$R_{U,Z^{(1)}} = (.662 .160 .732), R_{V,Z^{(2)}} = (.772 .498 .999)$$ Here $H_0: \Sigma_{12}(\rho_{12}) = 0$ is rejected at the 5% level and $H_0^{(1)}: \rho_1^* \neq 0, \rho_2^* = \rho_3^* = 0$ is rejected at the 5% level. $H_0^{(2)}: \rho_1^* \neq 0, \rho_2^* \neq 0, \rho_3^* = 0$ is not rejected at the 5% level. The first and second canonical correlations are significant. The third canonical correlation is not significant. We might identify \hat{U}_1 as a "running speed" measure since the 100m run and the long jump receive the greatest weight in this canonical variate and also are each highly correlated with \hat{U}_1 . We might call \hat{V}_1 a "strength" or "arm strength" measure since the shot put has a large coefficient in this canonical variate and the discuss, javelin and shot put are each highly correlated with \hat{V}_1 . ## Chapter 11 11.1 (a) The linear discriminant function given in (11-19) is $$\hat{y} = (\overline{x}_1 - \overline{x}_2)' S_{\text{pooled}}^{-1} x = \hat{a}' x$$ where $$\boldsymbol{S}_{\text{pooled}}^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$ so the the linear discriminant function is $$\left(\begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} 5 \\ 8 \end{bmatrix} \right)' \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} -2 & 0 \end{bmatrix} \boldsymbol{x} = -2x_1$$ (b) $$\hat{m} = \frac{1}{2}(\hat{y}_1 + \hat{y}_2) = \frac{1}{2}(\hat{a}'\overline{x}_1 + \hat{a}'\overline{x}_2) = -8$$ Assign x_0' to π_1 if $$\hat{y}_0 = [2 \quad 7] \boldsymbol{x}_0 \ge \hat{m} = -8$$ and assign x_0 to π_2 otherwise. Since $[-2 0]x_0 = -4$ is greater than $\hat{m} = -8$, assign x'_0 to population π_1 . ## 11.2 (a) $\pi_1 \equiv \text{Riding-mower owners}; \boldsymbol{\pi_2} \equiv \text{Nonowners}$ Here are some summary statistics for the data in Example 11.1: $$\overline{x}_1 = \begin{bmatrix} 109.475 \\ 20.267 \end{bmatrix}, \quad \overline{x}_2 = \begin{bmatrix} 87.400 \\ 17.633 \end{bmatrix}$$ $S_1 = \begin{bmatrix} 352.644 & -11.818 \\ -11.818 & 4.082 \end{bmatrix}, \quad S_2 = \begin{bmatrix} 200.705 & -2.589 \\ -2.589 & 4.464 \end{bmatrix}$ $S_{\text{pooled}} = \begin{bmatrix} 276.675 & -7.204 \\ -7.204 & 4.273 \end{bmatrix}, \quad S_{\text{pooled}}^{-1} = \begin{bmatrix} .00378 & .00637 \\ .00637 & .24475 \end{bmatrix}$ The linear classification function for the data in Example 11.1 using (11-19) is $$\left(\begin{bmatrix} 109.475 \\ 20.267 \end{bmatrix} - \begin{bmatrix} 87.400 \\ 17.633 \end{bmatrix} \right)' \begin{bmatrix} .00378 & .00637 \\ .00637 & .24475 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} .100 & .785 \end{bmatrix} \boldsymbol{x}$$ where $$\hat{m} = \frac{1}{2}(\overline{y}_1 + \overline{y}_2) = \frac{1}{2}(\hat{a}'\overline{x}_1 + \hat{a}'\overline{x}_2) = 24.719$$ (b) Assign an observation x to π_1 if $$0.100x_1 + 0.785x_2 \ge 24.72$$ Otherwise, assign x
to π_2 Here are the observations and their classifications: | | Owners | | | Nonowne | rs | |-------------|---------|----------------|-------------|---------|----------------| | Observation | $a'x_0$ | Classification | Observation | $a'x_0$ | Classification | | 1 | 23.444 | nonowner | 1 | 25.886 | owner | | 2 2 | 24.738 | owner | 2 | 24.608 | nonowner | | 3 | 26.436 | owner | 3 | 22.982 | nonowner | | 4 | 25.478 | owner | 4 | 23.334 | nonowner | | 5 | 30.226 | owner | 5 | 25.216 | owner | | 6 | 29.082 | owner | 6 | 21.736 | nonowner | | 7 | 27.616 | owner | 7 | 21.500 | nonowner | | 8 | 28.864 | owner | 8 | 24.044 | nonowner | | 9 | 25.600 | owner | 9 | 20.614 | nonowner | | 10 | 28.628 | owner | 10 | 21.058 | nonowner | | 11 | 25.370 | owner | 11 | 19.090 | nonowner | | 12 | 26.800 | owner | 12 | 20.918 | nonowner | From this, we can construct the confusion matrix: | | | Pre
Mem | dicted
bership | | |-------------------|---------|------------|-------------------|-------| | | | π_1 | π_2 | Total | | Actual membership | π_1 | 11 | 1 | 12 | | membership | π_2 | 2 | 10 | 12 | - (c) The apparent error rate is $\frac{1+2}{12+12} = 0.125$ - (d) The assumptions are that the observations from π_1 and π_2 are from multivariate normal distributions with equal covariance matrices, $\Sigma_1 = \Sigma_2 = \Sigma$. - 11.3 We need to show that the regions R_1 and R_2 that minimize the ECM are defined by the values x for which the following inequalities hold: $$R_1: rac{f_1(oldsymbol{x})}{f_2(oldsymbol{x})} \geq \left(rac{c(1|2)}{c(2|1)} ight) \left(rac{p_2}{p_1} ight)$$ $$R_2: \frac{f_1(x)}{f_2(x)} < \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right)$$ Substituting the expressions for P(2|1) and P(1|2) into (11-5) gives $$ECM = c(2|1)p_1 \int_{R_2} f_1(\boldsymbol{x}) d\boldsymbol{x} + c(1|2)p_2 \int_{R_1} f_2(\boldsymbol{x}) d\boldsymbol{x}$$ And since $\Omega = R_1 \cup R_2$, $$1 = \int_{R_1} f_1(\boldsymbol{x}) d\boldsymbol{x} + \int_{R_2} f_1(\boldsymbol{x}) d\boldsymbol{x}$$ and thus, $$ECM = c(2|1)p_1 \left[1 - \int_{R_1} f_1(\boldsymbol{x}) d\boldsymbol{x} \right] + c(1|2)p_2 \int_{R_1} f_2(\boldsymbol{x}) d\boldsymbol{x}$$ Since both of the integrals above are over the same region, we have $$ECM = \int_{R_1} [c(1|2)p_2 f_2(\mathbf{x}) d\mathbf{x} - c(2|1)p_1 f_1(\mathbf{x})] d\mathbf{x} + c(2|1)p_1$$ The minimum is obtained when R_1 is chosen to be the region where the term in brackets is less than or equal to 0. So choose R_1 so that $$c(2|1)p_1f_1(x) \ge c(1|2)p_2f_2(x)$$ or $$\frac{f_1(\boldsymbol{x})}{f_2(\boldsymbol{x})} \ge \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right)$$ 11.4 (a) The minimum ECM rule is given by assigning an observation x to π_1 if $$\frac{f_1(x)}{f_2(x)} \ge \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right) = \left(\frac{100}{50}\right) \left(\frac{.2}{.8}\right) = .5$$ and assigning x to π_2 if $$\frac{f_1(x)}{f_2(x)} < \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right) = \left(\frac{100}{50}\right) \left(\frac{.2}{.8}\right) = .5$$ (b) Since $f_1(x) = .3$ and $f_2(x) = .5$, $$\frac{f_1(\boldsymbol{x})}{f_2(\boldsymbol{x})} = .6 \ge .5$$ and assign x to π_1 . 11.5 $$-\frac{1}{2} (\underline{x} - \underline{\mu}_{1})^{1} + \frac{1}{2} (\underline{x} - \underline{\mu}_{2})^{1} + \frac{1}{2} (\underline{x} - \underline{\mu}_{2})^{1} + \frac{1}{2} (\underline{x} - \underline{\mu}_{2})^{2} =$$ $$-\frac{1}{2} [\underline{x}^{1} + \underline{x}^{1} + \underline{x}^{2} + \underline{\mu}_{1}^{1} + \underline{x}^{2} + \underline{\mu}_{1}^{2} + \underline{x}^{2} + \underline{\mu}_{2}^{2} + \underline{x}^{2} + \underline{\mu}_{2}^{2} + \underline{x}^{2} + \underline{\mu}_{2}^{2} \underline{\mu$$ 11.6 a) $$E(\frac{a}{2}, \frac{x}{2}|\pi_1) - m = \frac{a}{2}, \frac{\mu_1}{2} - m = \frac{a}{2}, \frac{\mu_1}{2} - \frac{1}{2}, \frac{a}{2}, (\frac{\mu_1}{2} + \frac{\mu_2}{2})$$ $$= \frac{1}{2}, \frac{a}{2}, (\frac{\mu_1}{2} - \frac{\mu_2}{2}) = \frac{1}{2}, (\frac{\mu_1}{2} - \frac{\mu_2}{2}), \frac{1}{2}, \frac{1}{2},$$ b) $$E(\underline{a}, \underline{x}|\pi_2) - m = \underline{a}, \underline{\mu}_2 - m = \frac{1}{2}, \underline{a}, (\underline{\mu}_2 - \underline{\mu}_1)$$ = $-\frac{1}{2}(\underline{\mu}_1 - \underline{\mu}_2), \underline{t}^{-1}(\underline{\mu}_1 - \underline{\mu}_2) < 0$. ## 11.7 (a) Here are the densities: (b) When $p_1 = p_2$ and c(1|2) = c(2|1), the classification regions are $$R_1: \frac{f_1(x)}{f_2(x)} \ge 1$$ $R_2: \frac{f_1(x)}{f_2(x)} < 1$ These regions are given by $R_1: -1 \le x \le .25$ and $R_2: .25 < x \le 1.5$. (c) When $p_1 = .2$, $p_2 = .8$, and c(1|2) = c(2|1), the classification regions are $$R_1: \frac{f_1(x)}{f_2(x)} \ge \frac{p_2}{p_1} = .4$$ $R_2: \frac{f_1(x)}{f_2(x)} < .4$ These regions are given by $R_1: -1 \le x \le -1/3$ and $R_2: -1/3 < x \le 1.5$. ## 11.8 (a) Here are the densities: (b) When $p_1 = p_2$ and c(1|2) = c(2|1), the classification regions are $$R_1: \frac{f_1(x)}{f_2(x)} \ge 1$$ $R_2: \frac{f_1(x)}{f_2(x)} < 1$ These regions are given by $$R_1: -1/2 \le x < 1/6$$ and $R_2 = -1.5 \le x < -1/2$, $1/6 \le x \le 2.5$ 11.9 $$\frac{\mathbf{a}'\mathbf{B}_{\mu}\mathbf{a}}{\mathbf{a}'\mathbf{\Sigma}\mathbf{a}} = \underbrace{\frac{\mathbf{a}'[(\underline{\mu}_{1} - \underline{\bar{\mu}})(\underline{\mu}_{1} - \underline{\bar{\mu}})' + (\underline{\mu}_{2} - \underline{\bar{\mu}})(\underline{\mu}_{2} - \underline{\bar{\mu}})']\underline{\mathbf{a}}}_{\underline{\mathbf{a}'}^{\dagger}^{\dagger}\underline{\mathbf{a}}}$$ where $$\bar{\mu} = \frac{1}{2}(\mu_1 + \mu_2)$$. Thus $\mu_1 - \bar{\mu} = \frac{1}{2}(\mu_1 - \mu_2)$ and $\mu_2 - \bar{\mu} = \frac{1}{2}(\mu_2 - \mu_1)$ so $$\frac{\mathbf{a'B}_{\mu}\mathbf{a}}{\mathbf{a'}\Sigma\mathbf{a}} = \frac{\frac{1}{2} \frac{\mathbf{a'}(\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})'\mathbf{a}}{\frac{\mathbf{a'} + \mathbf{a}}{2}}.$$ 11.10 (a) Hotelling's two-sample T^2 -statistic is $$T^{2} = (\overline{x}_{1} - \overline{x}_{2})' \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) S_{\text{pooled}} \right]^{-1} (\overline{x}_{1} - \overline{x}_{2})$$ $$= [-3 - 2] \left[\left(\frac{1}{11} + \frac{1}{12} \right) \begin{bmatrix} 7.3 - 1.1 \\ -1.1 & 4.8 \end{bmatrix} \right]^{-1} \begin{bmatrix} -3 \\ -2 \end{bmatrix} = 14.52$$ Under $H_0: \underline{\mu}_1 = \underline{\mu}_2$, $$T^2 \sim \frac{(n_1 + n_2 - 2)p}{n_1 + n_2 - p - 1} F_{p,n_1 + n_2 - p - 1}$$ Since $T^2 = 14.52 \ge \frac{(11+12-2)2}{11+12-2-1} F_{2,20}(.1) = 5.44$, we reject the null hypothesis $H_0: \mu_1 = \mu_2$ at the $\alpha = 0.1$ level of significance. (b) Fisher's linear discriminant function is $$\hat{y}_0 = \hat{a}' x_0 = -.49 x_1 - .53 x_2$$ (c) Here, $\hat{m}=-.25$. Assign x_0' to π_1 if $-.49x_1-.53x_2+.25\geq 0$. Otherwise assign x_0' to π_2 . For $x_0' = [0 \ 1]$, $\hat{y}_0 = -.53(1) = -.53$ and $\hat{y}_0 - \hat{m} = -.28 < 0$. Thus, assign x_0 to π_2 . 11.11 Assuming equal prior probabilities $p_1 = p_2 = \frac{1}{2}$, and equal misclassification costs c(2|1) = c(1|2) = \$10: | | | | | | | Expected | |----|----------|----------|----------------|----------------|----------|----------| | С | P(B1 A2) | P(B2 A1) | P(A2 and B1) | P(A1 and B2) | P(error) | cost | | 9 | .006 | .691 | .346 | .003 | .349 | 3.49 | | 10 | .023 | .500 | .250 | .011 | .261 | 2.61 | | 11 | .067 | .309 | .154 | .033 | .188 | 1.88 | | 12 | .159 | .159 | .079 | .079 | .159 | 1.59 | | 13 | .309 | .067 | .033 | .154 | .188 | 1.88 | | 14 | .500 | .023 | .011 | .250 | .261 | 2.61 | Using (11-5) , the expected cost is minimized for c=12 and the minimum expected cost is \$1.59. 11.12 Assuming equal prior probabilities $p_1=p_2=\frac{1}{2}$, and misclassification costs c(2|1)= \$5 and c(1|2)=\$10, expected cost = \$5P(A1 and B2)+\$15P(A2 and B1). | | | | | | | Expected | |----|----------|----------|----------------|----------------|----------|----------| | С | P(B1 A2) | P(B2 A1) | P(A2 and B1) | P(A1 and B2) | P(error) | cost | | 9 | 0.006 | 0.691 | 0.346 | 0.003 | 0.349 | 1.78 | | 10 | 0.023 | 0.500 | 0.250 | 0.011 | 0.261 | 1.42 | | 11 | 0.067 | 0.309 | 0.154 | 0.033 | 0.188 | 1.27 | | 12 | 0.159 | 0.159 | 0.079 | 0.079 | 0.159 | 1.59 | | 13 | 0.309 | 0.067 | 0.033 | 0.154 | 0.188 | 2.48 | | 14 | 0.500 | 0.023 | 0.011 | 0.250 | 0.261 | 3.81 | Using (11-5), the expected cost is minimized for c=10.90 and the minimum expected cost is \$1.27. 11.13 Assuming prior probabilities P(A1) = 0.25 and P(A2) = 0.75, and misclassification costs c(2|1) = \$5 and c(1|2) = \$10, expected cost = \$5P(B2|A1)(.25) + \$15P(B1|A2)(.75). | | T | | | | | | |----|----------|----------|----------------|----------------|----------|----------| | 1 | | | | | | Expected | | C | P(B1 A2) | P(B2 A1) | P(A2 and B1) | P(A1 and B2) | P(error) | cost | | 9 | 0.006 | 0.691 | 0.173 | 0.005 | 0.178 | 0.93 | | 10 | 0.023 | 0.500 | 0.125 | 0.017 | 0.142 | 0.88 | | 11 | 0.067 | 0.309 | 0.077 | 0.050 | 0.127 | 1.14 | | 12 | 0.159 | 0.159 | 0.040 | 0.119 | 0.159 | 1.98 | | 13 | 0.309 | 0.067 | 0.017 | 0.231 | 0.248 | 3.56 | | 14 | 0.500 | 0.023 | 0.006 | 0.375 | 0.381 | 5.65 | Using (11-5), the expected cost is minimized for c = 9.80 and the minimum expected cost is \$0.88. ### 11.14 Using (11-21), $$\hat{a}_{1}^{*} = \frac{\hat{a}}{\sqrt{\hat{a}'\hat{a}}} = \begin{bmatrix} .79\\ -.61 \end{bmatrix}$$ and $\hat{m}_{1}^{*} = -0.10$ Since $\hat{a}_1^* x_0 = -0.14 < \hat{m}_1^* = -0.1$, classify x_0 as π_2 . Using (11-22), $$\hat{a}_{2}^{*} = \frac{\hat{a}}{\hat{a}_{1}} = \begin{bmatrix} 1.00 \\ -.77 \end{bmatrix}$$ and $\hat{m}_{2}^{*} = -0.12$ Since $\hat{a}_2^* x_0 = -0.18 < \hat{m}_2^* = -0.12$, classify x_0 as π_2 . These results are consistent with the classification obtained for the case of equal prior probabilities in Example 11.3. These two classification results should be identical to those of Example 11.3. $$\frac{f_1(x)}{f_2(x)} \ge \left[
\frac{c(1|2)}{c(2|1)} \frac{p_2}{p_1} \right]$$ defines the same region as In $f_1(x) - \ln f_2(x) \ge \ln \left[\frac{c(1|2)}{c(2|1)} \frac{p_2}{p_1} \right]$. For a multivariate normal distribution $$\ln f_{i}(x) = -\frac{1}{2} \ln |x_{i}| - \frac{p}{2} \ln 2\pi - \frac{1}{2}(x-\mu_{i})^{i}x_{i}^{-1}(x-\mu_{i}), i = 1,2$$ SO $$\ln f_{1}(\underline{x}) - \ln f_{2}(\underline{x}) = -\frac{1}{2} (\underline{x} - \underline{\mu}_{1})^{1} \ddagger_{1}^{-1} (\underline{x} - \underline{\mu}_{1})$$ $$+ \frac{1}{2} (\underline{x} - \underline{\mu}_{2})^{1} \ddagger_{2}^{-1} (\underline{x} - \underline{\mu}_{2}) - \frac{1}{2} \ln \left(\frac{|\mathbf{1}_{1}|}{|\mathbf{1}_{2}|}\right)$$ $$= -\frac{1}{2} [\underline{x}^{1} \ddagger_{1}^{-1} \underline{x} - 2\underline{\mu}_{1}^{1} \ddagger_{1}^{-1} \underline{x} + \underline{\mu}_{1}^{1} \ddagger_{1}^{-1} \underline{\mu}_{1}$$ $$- \underline{x}^{1} \ddagger_{2}^{-1} \underline{x} + 2\underline{\mu}_{2}^{1} \ddagger_{2}^{-1} \underline{x} - \underline{\mu}_{2}^{1} \ddagger_{2}^{-1} \underline{\mu}_{2}] - \frac{1}{2} \ln \left(\frac{|\mathbf{1}_{1}|}{|\mathbf{1}_{2}|}\right)$$ $$= -\frac{1}{2} \underline{x}^{1} (\ddagger_{1}^{-1} - \ddagger_{2}^{-1}) \underline{x} + (\underline{\mu}_{1}^{1} \ddagger_{1}^{-1} - \underline{\mu}_{2}^{1} \ddagger_{2}^{-1}) \underline{x} - k$$ $$\text{where } k = \frac{1}{2} \ln \left(\frac{|\mathbf{1}_{1}|}{|\mathbf{1}_{2}|}\right) + \frac{1}{2} (\underline{\mu}_{1}^{1} \ddagger_{1}^{-1} \underline{\mu}_{1} - \underline{\mu}_{2}^{1} \ddagger_{2}^{-1} \underline{\mu}_{2}) .$$ 11.16 $$Q = \ln \left[\frac{f_1(x)}{f_2(x)} \right] = -\frac{1}{2} \ln |t_1| - \frac{1}{2} (x - \mu_1)' t_1^{-1} (x - \mu_1)$$ $$+ \frac{1}{2} \ln |t_2| + \frac{1}{2} (x - \mu_2)' t_1^{-1} (x - \mu_2)$$ $$= -\frac{1}{2} x' (t_1^{-1} - t_2^{-1}) x + x' t_1^{-1} \mu_1 - x' t_2^{-1} \mu_2 - k$$ where $$k = \frac{1}{2} \left[\ln \left(\frac{| t_1 |}{| t_2 |} \right) + \underbrace{\mu_1} t_1^{-1} \underline{\mu}_1 - \underbrace{\mu_2} t_2^{-1} \underline{\mu}_2 \right]$$. When $$\sharp_1 = \sharp_2 = \sharp$$, $$Q = \chi' \sharp^{-1} \underline{\mu}_1 - \chi' \sharp \underline{\mu}_2 - \frac{1}{2} (\underline{\mu}_1' \sharp^{-1} \underline{\mu}_1 - \underline{\mu}_2' \sharp^{-1} \underline{\mu}_2)$$ $$= \chi' \sharp^{-1} (\underline{\mu}_1 - \underline{\mu}_2) - \frac{1}{2} (\underline{\mu}_1 - \underline{\mu}_2)' \sharp^{-1} (\underline{\mu}_1 + \underline{\mu}_2)$$ 11.17 Assuming equal prior probabilities and misclassification costs c(2|1) = \$10 and c(1|2) = \$73.89. In the table below, $$Q = -\frac{1}{2}x_0'(\Sigma_1^{-1} - \Sigma_2^{-1})x_0 + (\mu_1'\Sigma_1^{-1} - \mu_2'\Sigma_2^{-1})x_0$$ $$-\frac{1}{2}\ln\left(\frac{|\Sigma_1|}{|\Sigma_2|}\right) - \frac{1}{2}(\mu_1'\Sigma_1^{-1}\mu_1 - \mu_2'\Sigma_2^{-1}\mu_2)$$ | | | D(- 1) | D/- 1-1 | | Ol: C +! | |------|------|---------------------------|---------------------------|-------|----------------| | a | C | $P(\pi_1 \boldsymbol{x})$ | $P(\pi_2 \boldsymbol{x})$ | Q | Classification | | [10, | 15]′ | 1.00000 | 0 | 18.54 | π_1 | | [12, | 17]′ | 0.99991 | 0.00009 | 9.36 | π_1 | | [14, | 19]′ | 0.95254 | 0.04745 | 3.00 | π_1 | | [16, | 21]′ | 0.36731 | 0.63269 | -0.54 | π_2 | | [18, | 23]′ | 0.21947 | 0.78053 | -1.27 | π_2 | | [20, | 25]' | 0.69517 | 0.30483 | 0.87 | π_2 | | [22, | 27]' | 0.99678 | 0.00322 | 5.74 | π_1 | | [24, | 29]′ | 1.00000 | 0.00000 | 13.46 | π_1 | | [26, | 31]′ | 1.00000 | 0.00000 | 24.01 | π_1 | | [28, | 33]′ | 1.00000 | 0.00000 | 37.38 | π_1 | | [30, | 35]′ | 1.00000 | 0.00000 | 53.56 | π_1 | The quadratic discriminator was used to classify the observations in the above table. An observation x is classified as π_1 if $$Q \ge \ln \left[\left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_2}{p_1} \right) \right] = \ln \left(\frac{73.89}{10} \right) = 2.0$$ Otherwise, classify x as π_2 . For (a), (b), (c) and (d), see the following plot. 11.18 The vector e is an (unscaled) eigenvector of ‡ B since - 11.19 (a) The calculated values agree with those in Example 11.7. - (b) Fisher's linear discriminant function is $$\hat{y}_0 = \hat{a}' x_0 = -\frac{1}{3} x_1 + \frac{2}{3} x_2$$ where $$\overline{y}_1 = \frac{17}{3}$$; $\overline{y}_2 = \frac{10}{3}$; $\hat{m} = \frac{27}{6} = 4.5$ Assign x_0' to π_1 if $-\frac{1}{3}x_1 + \frac{2}{3}x_2 - 4.5 \ge 0$ Otherwise assign x_0' to π_2 . | | π_1 | | | π_2 | | |-------------|--|----------------|-------------|---|--------------------| | Observation | $\hat{\boldsymbol{a}}' \boldsymbol{x}_0 - \hat{m}$ | Classification | Observation | $\hat{\boldsymbol{a}}'\boldsymbol{x}_0-\hat{m}$ | Classification | | 1 | 2.83 | π_1 | 1 | -1.50 | π_2 | | 2 | 0.83 | π_1 | 2 | 0.50 | π_1^- | | 3 | -0.17 | π_2 | 3 | -2.50 | $oldsymbol{ au_2}$ | | | | | | | | The results from this table verify the confusion matrix given in Example 11.7. (c) This is the table of squared distances $\hat{D}_i^2(x)$ for the observations, where $$D_i^2(\boldsymbol{x}) = (\boldsymbol{x} - \overline{\boldsymbol{x}}_i)' \boldsymbol{S}_{\text{pooled}}^{-1}(\boldsymbol{x} - \overline{\boldsymbol{x}}_i)$$ | | | π_1 | | | | | | |------|---------------------|---------------------|----------------|------|-----------------------------|---------------------|----------------| | Obs. | $\hat{D}_1^2(m{x})$ | $\hat{D}_2^2(m{x})$ | Classification | Obs. | $\hat{D}_1^2(oldsymbol{x})$ | $\hat{D}_2^2(m{x})$ | Classification | | 1 | <u>4</u>
3 | $\frac{21}{3}$ | π_1 | 1 | 13
3 | <u>4</u>
3 | π_2 | | 2 | <u>4</u>
3 | <u>9</u>
3 | π_1 | 2 | <u>1</u> | <u>4</u>
3 | π_1 | | 3 | <u>4</u>
3 | <u>3</u> | π_2 | 3 | <u>19</u>
3 | $\frac{4}{3}$ | π_2 | The classification results are identical to those obtained in (b) 11.20 The result obtained from this matrix identity is identical to the result of Example 11.7. 11.23 (a) Here are the normal probability plots for each of the variables x_1, x_2, x_3, x_4, x_5 Standard Normal Quantiles Standard Normal Quantiles Variables x_1, x_3 , and x_5 appear to be nonnormal. The transformations $\ln(x_1), \ln(x_3 + 1)$, and $\ln(x_5 + 1)$ appear to slightly improve normality. (b) Using the original data, the linear discriminant function is: $$\hat{y} = \hat{a}'x = 0.023x_1 - 0.034x_2 + 0.21x_3 - 0.08x_4 - 0.25x_5$$ where $$\hat{m} = -23.23$$ Thus, we allocate x_0 to π_1 (NMS group) if $$\hat{\boldsymbol{a}}\boldsymbol{x}_0 - \hat{\boldsymbol{m}} = 0.023x_1 - 0.034x_2 + 0.21x_3 - 0.08x_4 - 0.25x_5 + 23.23 \ge 0$$ Otherwise, allocate x_0 to π_2 (MS group). ### (c) Confusion matrix: | | | Pred
Mem | | | |----------------------|---------|-------------|---------|-----------| | | | π_1 | π_2 | Total | | Actual
membership | π_1 | 66 | 3 | 69 | | membership | π_2 | 7 | 22 | 29 | $$APER = \frac{3+7}{69+29} = .102$$ This is the holdout confusion matrix: $$\hat{E}(AER) = \frac{5+8}{69+29} = .133$$ 11.24 (a) Here are the scatterplots for the pairs of observations $(x_1, x_2), (x_1, x_3)$, and (x_1, x_4) : The data in the above plot appear to form fairly elliptical shapes, so bivariate normality does not seem like an unreasonable assumption. (b) $\pi_1 \equiv \text{bankrupt firms}, \pi_2 \equiv \text{nonbankrupt firms}$. For (x_1, x_2) : $$\overline{x}_1 = \begin{bmatrix} -0.0688 \\ -0.0819 \end{bmatrix}, S_1 = \begin{bmatrix} 0.04424 & 0.02847 \\ 0.02847 & 0.02092 \end{bmatrix}$$ $\overline{x}_2 = \begin{bmatrix} 0.2354 \\ 0.0551 \end{bmatrix}, S_2 = \begin{bmatrix} 0.04735 & 0.00837 \\ 0.00837 & 0.00231 \end{bmatrix}$ (c), (d), (e) See the tables of part (g) (f) $$m{S}_{\text{pooled}} = \left[egin{array}{ccc} 0.04594 & 0.01751 \\ 0.01751 & 0.01077 \end{array} ight]$$ Fisher's linear discriminant function is $$\hat{y} = \hat{a}'x = -4.67x_1 - 5.12x_2$$ where $$\hat{m} = -.32$$ Thus, we allocate x_0 to π_1 (Bankrupt group) if $$\hat{\boldsymbol{a}}\boldsymbol{x}_0 - \hat{\boldsymbol{m}} = -4.67x_1 - 5.12x_2 + .32 \ge 0$$ Otherwise, allocate x_0 to π_2 (Nonbankrupt group). APER= $$\frac{9}{46}$$ = .196. Since S_1 and S_2 look quite different, Fisher's linear discriminant function may not be appropriate. However the performance of this linear discriminant function is as good as that of the quadratic discriminant function, based on the APER criterion. ## (g) For (x_1, x_3) , $$\overline{x}_1 = \begin{bmatrix} -0.0688 \\ 1.3675 \end{bmatrix}, S_1 = \begin{bmatrix} 0.04424 & 0.03428 \\ 0.03428 & 0.16455 \end{bmatrix}$$ $\overline{x}_2 = \begin{bmatrix} 0.2354 \\ 2.5939 \end{bmatrix}, S_2 = \begin{bmatrix} 0.04735 & 0.07543 \\ 0.07543 & 1.04596 \end{bmatrix}$ For (x_1, x_4) , $$\overline{x}_1 = \begin{bmatrix} -0.0688 \\ 0.4368 \end{bmatrix}, S_1 = \begin{bmatrix} 0.04424 & 0.00431 \\ 0.00431 & 0.04441 \end{bmatrix}$$ $\overline{x}_2 = \begin{bmatrix} 0.2354 \\ 0.4264 \end{bmatrix}, S_2 = \begin{bmatrix} 0.04735 & -0.00662 \\ -0.00662 & 0.02618 \end{bmatrix}$ For the various classification rules and error rates for these variable pairs, see the following tables. This is the table of quadratic functions for the variable pairs $(x_1, x_2), (x_1, x_3)$, and (x_1, x_5) , both with $p_1 = 0.5$ and $p_1 = 0.05$. The classification rule for any of these functions is to classify a new observation into π_1 (bankrupt firms) if the quadratic function is ≥ 0 , and to classify the new observation into π_2 (nonbankrupt firms) otherwise. Notice in the table below that only the constant term changes when the prior probabilities change. | Variables | Prior | Quadratic function | | | |-------------|--------------|--|---|------| | () | $p_1 = 0.5$ | $-61.77x_1^2 + 35.84x_1x_2 + 407.20x_2^2 + 5.64x_1 - 30.60x_2$ | _ | 0.17 | |
(x_1,x_2) | $p_1 = 0.05$ | | | 3.11 | | () | $p_1 = 0.5$ | $-1.55x_1^2 + 3.89x_1x_3 - 3.08x_3^2 - 10.69x_1 + 7.90x_3$ | _ | 3.14 | | (x_1,x_3) | $p_1 = 0.05$ | | | 6.08 | | () | $p_1 = 0.5$ | $-0.46x_1^2 + 7.75x_1x_4 + 8.43x_4^2 - 10.05x_1 - 8.11x_4$ | + | 2.23 | | (x_1,x_4) | $p_1 = 0.05$ | | | 0.71 | Here is a table of the APER and $\hat{E}(AER)$ for the various variable pairs and prior probabilities. | | AI | PER | $\hat{E}(ext{APR})$ | | | |-------------|-------------|--------------|----------------------|--------------|--| | Variables | $p_1 = 0.5$ | $p_1 = 0.05$ | $p_1 = 0.5$ | $p_1 = 0.05$ | | | (x_1,x_2) | 0.20 | 0.26 | 0.22 | 0.26 | | | (x_1,x_3) | 0.11 | 0.37 | 0.13 | 0.39 | | | (x_1,x_4) | 0.17 | 0.39 | 0.22 | 0.46 | | For equal priors, it appears that the (x_1, x_3) variable pair is the best classifier, as it has the lowest APER. For unequal priors, $p_1 = 0.05$ and $p_2 = 0.95$, the variable pair (x_1, x_2) has the lowest APER. (h) When using all four variables (X_1, X_2, X_3, X_4) , $$\overline{x}_1 = \begin{bmatrix} -0.0688 \\ -0.0819 \\ 1.3675 \\ 0.4368 \end{bmatrix}, S_1 = \begin{bmatrix} 0.04424 & 0.02847 & 0.03428 & 0.00431 \\ 0.02847 & 0.02092 & 0.02580 & 0.00362 \\ 0.03428 & 0.02580 & 0.16455 & 0.03300 \\ 0.00431 & 0.00362 & 0.03300 & 0.04441 \end{bmatrix}$$ $$\overline{x}_2 = \begin{bmatrix} 0.2354 \\ 0.0551 \\ 2.5939 \\ 0.4264 \end{bmatrix}, S_2 = \begin{bmatrix} 0.04735 & 0.00837 & 0.07543 & -0.00662 \\ 0.00837 & 0.00231 & 0.00873 & 0.00031 \\ 0.07543 & 0.00873 & 1.04596 & 0.03177 \\ -0.00662 & 0.00031 & 0.03177 & 0.02618 \end{bmatrix}$$ Assign a new observation x_0 to π_1 if its quadratic function given below is less than 0: | Prior | | Quadratic function | | | | | | | |--------------|--------|--------------------|---------|--------|---------|------------|--------|--------------| | | | -49.232 | -20.657 | -2.623 | 14.050 | | 4.91 | | | O F | m' | -20.657 | 526.336 | 11.412 | -52.493 | $ x_0+ $ | -28.42 | $x_0 - 2.69$ | | $p_1 = 0.5$ | x_0' | -2.623 | 11.412 | -3.748 | 1.4337 | 20 1 | 8.65 | 2.00 | | | | 14.050 | -52.493 | 1.434 | 11.974 | | -11.80 | | | $p_1 = 0.05$ | | | | | | | | - 5.64 | For $$p_1 = 0.5$$: APER = $\frac{3}{46} = .07$, $\hat{E}(AER) = \frac{5}{46} = .11$ For $$p_1 = 0.05$$: APER = $\frac{9}{46} = .20$, $\hat{E}(AER) = \frac{11}{46} = .24$ ## 11.25 (a) Fisher's linear discriminant function is $$\hat{y}_0 = a'x_0 - \hat{m} = -4.80x_1 - 1.48x_3 + 3.33$$ Classify x_0 to π_1 (bankrupt firms) if $$a'x_0 - \hat{m} \geq 0$$ Otherwise classify x_0 to π_2 (nonbankrupt firms). The APER is $\frac{2+4}{46} = .13$. This is the scatterplot of the data in the (x_1, x_3) coordinate system, along with the discriminant line. function is given by $$\hat{y}_0 = a'x_0 - \hat{m} = -5.93x_1 - 1.46x_3 + 3.31$$ Classify x_0 to π_1 (bankrupt firms) if $$a'x_0 - \hat{m} > 0$$ Otherwise classify $\boldsymbol{x_0}$ to π_2 (nonbankrupt firms). The APER is $\frac{1+4}{45} = .11$. With data point 13 for the nonbankrupt firms deleted, Fisher's linear discriminant function is given by $$\hat{y}_0 = a'x_0 - \hat{m} = -4.35x_1 - 1.97x_3 + 4.36$$ Classify x_0 to π_1 (bankrupt firms) if $$\boldsymbol{a}'\boldsymbol{x}_0 - \hat{m} \geq 0$$ Otherwise classify x_0 to π_2 (nonbankrupt firms). The APER is $\frac{1+3}{45} = .089$. This is the scatterplot of the observations in the (x_1, x_3) , coordinate system with the discriminant lines for the three linear discriminant functions given above. Also labelled are observation 16 for bankrupt firms and observation 13 for nonbankrupt firms. It appears that deleting these observations has changed the line significantly. ## 11.26 (a) The least squares regression results for the X, Z data are: #### Parameter Estimates | | | Parameter | Standard | T for HO: | | |----------|----|-----------|------------|-------------|-----------| | Variable | DF | Estimate | Error | Parameter=0 | Prob > T | | INTERCEP | 1 | -0.081412 | 0.13488497 | -0.604 | 0.5492 | | ХЗ | 1 | 0.307221 | 0.05956685 | 5.158 | 0.0001 | Here are the dot diagrams of the fitted values for the bankrupt firms and for the nonbankrupt firms: This table summarizes the classification results using the fitted values: | OBS | GROUP | FITTED | CLASSIFICATION | |-----|----------|---------|----------------| | 13 | bankrupt | 0.57896 | misclassify | | 16 | bankrupt | 0.53122 | misclassify | | 31 | nonbankr | 0.47076 | misclassify | | 34 | nonbankr | 0.06025 | misclassify | | 38 | nonbankr | 0.48329 | misclassify | | 41 | nonbankr | 0.30089 | misclassify | The confusion matrix is: | | | Pre
Mem | dicted
bership | | | | |----------------------|---------|------------|-------------------|-------------|--|--| | | | π_1 | π_2 | Total | | | | Actual
membership | π_1 | 19 | 2 | T 21 | | | | membership | π_2 | 4 | 21 | 25 | | | Thus, the APER is $\frac{2+4}{46} = .13$. (b) The least squares regression results using all four variables X_1, X_2, X_3, X_4 are: #### Parameter Estimates | | | Parameter | Standard | T for HO: | | |----------|----|-----------|------------|-------------|-----------| | Variable | DF | Estimate | Error | Parameter=0 | Prob > T | | INTERCEP | 1 | 0.208915 | 0.18615284 | 1.122 | 0.2683 | | X1 | 1 | 0.156317 | 0.46653100 | 0.335 | 0.7393 | | X2 | 1 | 1.149093 | 0.90606395 | 1.268 | 0.2119 | | ХЗ | 1 | 0.225972 | 0.07030479 | 3.214 | 0.0026 | | X4 | 1 | -0.305175 | 0.32336357 | -0.944 | 0.3508 | Here are the dot diagrams of the fitted values for the bankrupt firms and for the nonbankrupt firms: This table summarizes the classification results using the fitted values: | OBS | GROUP | FITTED | CLASSIFICATION | |-----|----------|---------|----------------| | 15 | bankrupt | 0.62997 | misclassify | | 16 | bankrupt | 0.72676 | misclassify | | 20 | bankrupt | 0.55719 | misclassify | | 34 | nonbankr | 0.21845 | misclassify | The confusion matrix is: | | | Predicted
Membership | | | |------------|---------|-------------------------|---------|-------| | | | π_1 | π_2 | Total | | Actual | π_1 | 18 | 3 | 21 | | membership | π_2 | 1 | 24 | 25 | Thus, the APER is $\frac{3+1}{46} = .087$. Here is a scatterplot of the residuals against the fitted values, with points 16 of the bankrupt firms and 13 of the non-bankrupt firms labelled. It appears that point 16 of the bankrupt firms is an outlier. 11.27 (a) Plot of the data in the (x_2, x_4) variable space: The points from all three groups appear to form an elliptical shape. However, it appears that the points of π_1 (Iris setosa) form an ellipse with a different orientation than those of π_2 (Iris versicolor) and π_3 (Iris virginica). This indicates that the observations from π_1 may have a different covariance matrix from the observations from π_2 and π_3 . (b) Here are the results of a test of the null hypothesis $H_0: \mu_1 = \mu_2 = \mu_3$ versus $H_1:$ at least one of the μ_i 's is different from the others at the $\alpha=0.05$ level of significance: | Statistic | Value | F | Num DF | Den DF | Pr > F | |---------------|------------|---------|--------|--------|--------| | | | | | | | | Wilks' Lambda | 0.02343863 | 199.145 | 8 | 288 | 0.0001 | Thus, the null hypothesis $H_0: \mu_1 = \mu_2 = \mu_3$ is rejected at the $\alpha = 0.05$ level of significance. As discussed earlier, the plots give us reason to doubt the assumption of equal covariance matrices for the three groups. (c) $\pi_1 \equiv Iris\ setosa; \ \pi_2 \equiv Iris\ versicolor\ \pi_3 \equiv Iris\ virginica$ The quadratic discriminant scores $\hat{d}_i^Q(x)$ given by (11-47) with $p_1=p_2=p_3=\frac{1}{3}$ are: To classify the observation $x_0' = [3.5 \quad 1.75]$, compute $\hat{d}_i^Q(x_0)$ for i = 1, 2, 3, and classify x_0 to the population for which $\hat{d}_i^Q(x_0)$ is the largest. $$\hat{d}_{1}^{Q}(x_{0}) = -103.77$$ $\hat{d}_{2}^{Q}(x_{0}) = 0.043$ $\hat{d}_{3}^{Q}(x_{0}) = -1.23$ So classify x_0 to π_2 (Iris versicolor). (d) The linear discriminant scores $\hat{d}_i(x)$ are: | population | $\hat{d}_{i}(m{x}) = m{\overline{x}}_{i}' m{S}_{ ext{pooled}} m{x} - rac{1}{2} m{\overline{x}}_{i}' m{S}_{ ext{pooled}} m{\overline{x}}_{i}$ | $\hat{d}_i(oldsymbol{x}_0)$ | |------------|---|-----------------------------| | π_1 | $36.02x_2 - 22.26x_4 - 59.00$ | 28.12 | | π_2 | $19.31x_2 + 16.58x_4 - 37.73$ | 58.86 | | π_3 | $15.49x_2 + 36.28x_4 - 59.78$ | 57.92 | Since $\hat{d}_i(x_0)$ is the largest for i=2, we classify the new observation $x_0'=[3.5 \quad 1.75]$ to π_1 according to (11-52). The results are the same for (c) and (d). (e) To use rule (11-56), construct $\hat{d}_{ki}(x) = \hat{d}_k(x) - \hat{d}_i(x)$ for all $i \neq k$. Then classify x to π_k if $\hat{d}_{ki}(x) \geq 0$ for all i = 1, 2, 3. Here is a table of $\hat{d}_{ki}(x_0)$ for i, k = 1, 2, 3: | | | | $m{i}$ | | | |---|-----|-------|--------|--------|---| | | | 1 | 2 | 3 | | | | 1 | 0 | -30.74 | -29.80 | Π | | j | 2 | 30.74 | 0 | 0.94 | T | | | 1 - | 29.80 | -0.94 | 0 | T | Since $\hat{d}_{ki}(\boldsymbol{x}_0) \geq 0$ for all $i \neq 2$, we allocate \boldsymbol{x}_0 to π_2 , using (11-52) Here is the scatterplot of the data in the (x_2, x_4) variable space, with the classification regions \hat{R}_1, \hat{R}_2 , and \hat{R}_3 delineated. CHAPTER 11. DISCRIMINATION AND CLASSIFICATION (f) The APER = $$\frac{1+4}{150}$$ = .033. $\hat{E}(AER) = \frac{4+2}{150} = .04$ 11.28 (a) This is the plot of the data in the $(\log Y_1, \log Y_2)$ variable space: The points of all three groups appear to follow roughly an ellipse-like pattern. However, the orientation of the ellipse appears to be different for the observations from π_1 (*Iris setosa*), from the observations from π_2 and π_3 . In π_1 , there also
appears to be an outlier, labelled with a "*". (b), (c) Assuming equal covariance matrices and ivariate normal populations, these are the linear discriminant scores $\hat{d}_i(x)$ for i=1,2,3. For both variables $\log Y_1$, and $\log Y_2$: $$\begin{array}{c|c} \text{population} & \hat{d}_i(\boldsymbol{x}) = \overline{\boldsymbol{x}}_i' \boldsymbol{S}_{\text{pooled}} \boldsymbol{x} - \frac{1}{2} \overline{\boldsymbol{x}}_i' \boldsymbol{S}_{\text{pooled}} \overline{\boldsymbol{x}}_i \\ \hline \pi_1 & 26.81 \log Y_1 + 28.90 \log Y_2 - 31.97 \\ \pi_2 & 75.10 \log Y_1 + 13.82 \log Y_2 - 36.83 \\ \pi_3 & 79.94 \log Y_1 + 10.80 \log Y_2 - 37.30 \\ \hline \end{array}$$ For variable $\log Y_1$ only: | popula | tion $\mid \hat{d}_i(m{x}) = \overline{m{x}}_i' m{S}_{ exttt{pooled}} m{x} - rac{1}{2} \overline{m{x}}_i' m{S}_{ exttt{pooled}} \overline{m{x}}_i$ | | |--------------------|---|---| | $\overline{\pi_1}$ | $40.90 \log Y_1 - 7.82$ | _ | | π_2 | $81.84 \log Y_1 - 31.30$ | | | π_3 | $85.20 \log Y_1 - 33.93$ | | For variable $log Y_2$ only: | population | $igg \hat{d}_i(oldsymbol{x}) = \overline{oldsymbol{x}}_i' oldsymbol{S}_{ ext{pooled}} oldsymbol{x} - rac{1}{2} \overline{oldsymbol{x}}_i' oldsymbol{S}_{ ext{pooled}} \overline{oldsymbol{x}}_i$ | |------------|--| | π_1 | $30.93 \log Y_2 - 28.73$ | | π_2 | $19.52 \log Y_2 - 11.44$ | | π_3 | $16.87 \log Y_2 + 8.54$ | | Variables | APER | E(AER) | |----------------------|------------------------|------------------------| | $\log Y_1, \log Y_2$ | $\frac{26}{150} = .17$ | $\frac{27}{150} = .18$ | | $\log Y_1$ | $\frac{49}{150} = .33$ | $\frac{49}{150} = .33$ | | $\log Y_2$, | $\frac{34}{150} = .23$ | $\frac{34}{150} = .23$ | The preceeding misclassification rates are not nearly as good as those in Example 11.12. Using "shape" is effective in discriminating π_1 (iris versicolor) from π_2 and π_3 . It is not as good at discriminating π_2 from π_3 , because of the overlap of π_1 and π_2 in both shape variables. Therefore, shape is not an effective discriminator of all three species of iris. (d) Given the bivariate normal-like scatter and the relatively large samples, we do not expect the error rates in parts (b) and (c) to differ much. 11.29 (a) The calculated values of $\overline{x}_1, \overline{x}_1, \overline{x}_3, \overline{x}$, and S_{pooled} agree with the results for these quantities given in Example 11.11 (b) $$W^{-1} = \begin{bmatrix} 0.348899 & 0.000193 \\ 0.000193 & .000003 \end{bmatrix}, B = \begin{bmatrix} 12.50 & 1518.74 \\ 1518.74 & 258471.12 \end{bmatrix}$$ The eigenvalues and scaled eigenvectors of $W^{-1}B$ are $$\hat{\lambda}_1 = 5.646, \ \hat{a}'_1 = \begin{bmatrix} 5.009 \\ 0.009 \end{bmatrix}$$ $\hat{\lambda}_2 = 0.191, \ \hat{a}'_2 = \begin{bmatrix} 0.207 \\ -0.014 \end{bmatrix}$ To classify $x'_0 = [3.21 497]$, use (11-67) and compute $$\Sigma_{j=1}^2[\hat{a}_j'(x-\overline{x}_i)]^2 \qquad i=1,2,3$$ Allocate x'_0 to π_k if $$\sum_{j=1}^{2} [\hat{a}'_{j}(x - \overline{x}_{k})]^{2} \leq \sum_{j=1}^{2} [\hat{a}'_{j}(x - \overline{x}_{i})]^{2} \qquad \text{for all } i \neq k$$ For x_0 , $$egin{array}{c|c|c} \mathbf{k} & \Sigma_{j=1}^2 [\hat{m{a}}_j'(m{x} - \overline{m{x}}_k)]^2 \\ \hline 1 & 2.63 \\ 2 & 16.99 \\ 3 & 2.43 \\ \hline \end{array}$$ Thus, classify x_0 to π_3 This result agrees with the classification given in Example 11.11. Any time there are three populations with only two discrim- inants, classification results using Fisher's Discriminants will be identical to those using the sample distance method of Example 11.11. 11.30 (a) Assuming normality and equal covariance matrices for the three populations π_1, π_2 , and π_3 , the minimum TPM rule is given by: Allocate x to π_k if the linear discriminant score $\hat{d}_k(x)$ = the largest of $\hat{d}_1(x)$, $\hat{d}_2(x)$, $\hat{d}_3(x)$ where $\hat{d}_i(x)$ is given in the following table for i = 1, 2, 3. $$\begin{array}{c|c} \text{population} & \hat{d_i}(x) = \overline{x}_i' S_{\text{pooled}} x - \frac{1}{2} \overline{x}_i' S_{\text{pooled}} \overline{x}_i \\ \hline \pi_1 & 0.70x_1 + 0.58x_2 - 13.52x_3 + 6.93x_4 + 1.44x_5 - 44.78 \\ \pi_2 & 1.85x_1 + 0.32x_2 - 12.78x_3 + 8.33x_4 - 0.14x_5 - 35.20 \\ \pi_3 & 2.64x_1 + 0.20x_2 - 2.16x_3 + 5.39x_4 - 0.08x_5 - 23.61 \\ \hline \end{array}$$ (b) Confusion matrix is: | | Predicted
Membership | | | | | | |----------------------|-------------------------|---------|---------|---------|-------|--| | | | π_1 | π_2 | π_3 | Total | | | Actual | π_1 | 7 | 0 | 0 | 7 | | | Actual
membership | π_2 | 1 | 10 | 0 | 11 | | | | π_3 | 0 | 3 | 35 | 38 | | And the APER $\frac{0+1+3}{56} = .071$ The holdout confusion matrix is: $$E(AER) = \frac{2+2+3}{56} = .125$$ (c) One choice of transformations, x_1 , $\log x_2$, $\sqrt{x_3}$, $\log x_4$, $\sqrt{x_5}$ appears to improve the normality of the data but the classification rule from these data has slightly higher error rates than the rule derived from the original data. The error rates (APER, $\hat{E}(AER)$) for the linear discriminants in Example 11.14 are also slightly higher than those for the original data. # 11.31 (a) The data look fairly normal. Although the covariances have different signs for the two groups, the correlations are small. Thus the assumption of bivariate normal distributions with equal covariance matrices does not seem unreasonable. (b) The linear discriminant function is $$\hat{\boldsymbol{a}}'\boldsymbol{x} - \hat{\boldsymbol{m}} = -0.13x_1 + 0.052x_2 - 5.54$$ Classify an observation x_0 to π_1 (Alaskan salmon) if $\hat{a}'x_0 - \hat{m} \ge 0$ and classify x_0 to π_2 (Canadian salmon) otherwise. Dot diagrams of the discriminant scores: It does appear that growth ring diameters separate the two groups reasonably well, as APER= $\frac{6+1}{100}$ = .07 and $E(AER) = \frac{6+1}{100}$ = .07 (c) Here are the bivariate plots of the data for male and female salmon separately. For the male salmon, these are some summary statistics $$\overline{x}_1 = \begin{bmatrix} 100.3333 \\ 436.1667 \end{bmatrix}, S_1 = \begin{bmatrix} 181.97101 & -197.71015 \\ -197.71015 & 1702.31884 \end{bmatrix}$$ $\overline{x}_2 = \begin{bmatrix} 135.2083 \\ 364.0417 \end{bmatrix}, S_2 = \begin{bmatrix} 370.17210 & 141.64312 \\ 141.64312 & 760.65036 \end{bmatrix}$ The linear discriminant function for the male salmon only is $$\hat{\boldsymbol{a}}'\boldsymbol{x} - \hat{\boldsymbol{m}} = -0.12x_1 + 0.056x_2 - 8.12$$ Classify an observation x_0 to π_1 (Alaskan salmon) if $\hat{a}'x_0 - \hat{m} \ge 0$ and classify x_0 to π_2 (Canadian salmon) otherwise. Using this classification rule, APER= $\frac{3+1}{48}$ = .08 and E(AER)= $\frac{3+2}{48}$ = .10. For the female salmon, these are some summary statistics $$\overline{x}_1 = \begin{bmatrix} 96.5769 \\ 423.6539 \end{bmatrix}, S_1 = \begin{bmatrix} 336.33385 -210.23231 \\ -210.23231 & 1097.91539 \end{bmatrix}$$ $\overline{x}_2 = \begin{bmatrix} 139.5385 \\ 369.0000 \end{bmatrix}, S_2 = \begin{bmatrix} 289.21846 & 120.64000 \\ 120.64000 & 1038.72000 \end{bmatrix}$ The linear discriminant function for the female salmon only is $$\hat{a}'x - \hat{m} = -0.13x_1 + 0.05x_2 - 2.66$$ Classify an observation x_0 to π_1 (Alaskan salmon) if $\hat{a}'x_0 - \hat{m} \ge 0$ and classify x_0 to π_2 (Canadian salmon) otherwise. Using this classification rule, APER= $\frac{3+0}{52}$ = .06 and $E(AER) = \frac{3+0}{52} = .06$. It is unlikely that gender is a useful discriminatory variable, as splitting the data into female and male salmon did not improve the classification results greatly. ## 11.32 (a) Here is the bivariate plot of the data for the two groups: Because the points for both groups form fairly elliptical shapes, the bivariate normal assumption appears to be a reasonable one. Normal score plots for each group confirm this. (b) Assuming equal prior probabilities, the sample linear discriminant function is $$\hat{\boldsymbol{a}}'\boldsymbol{x} - \hat{m} = 19.32x_1 - 17.12x_2 + 3.56$$ Classify an observation x_0 to π_1 (Noncarriers) if $\hat{a}'x_0 - \hat{m} \geq 0$ and classify x_0 to π_2 (Obligatory carriers) otherwise. The holdout confusion matrix is $$\hat{E}(AER) = \frac{4+8}{75} = .16$$ (c) The classification results for the 10 new cases using the discriminant function in part (b): | Case | x_1 | x_2 | $\hat{a}'x - \hat{m}$ | Classification | |------|--------|--------|-----------------------|--------------------| | 1 | -0.112 | -0.279 | 6.17 | $\overline{\pi_1}$ | | 2 | -0.059 | -0.068 | 3.58 | π_1 | | 3 | 0.064 | 0.012 | 4.59 | π_1 | | 4 | -0.043 | -0.052 | 3.62 | π_1 | | 5 | -0.050 | -0.098 | 4.27 | π_1 | | 6 | -0.094 | -0.113 | 3.68 | π_1 | | 7 | -0.123 | -0.143 | 3.63 | π_1 | | 8 | -0.011 | -0.037 | 3.98 | π_1 | | 9 | -0.210 | -0.090 | 1.04 | π_1 | | 10 | -0.126 | -0.019 | 1.45 | π_1 | (d) Assuming that the prior probability of obligatory carriers is $\frac{1}{4}$ and that of noncarriers is $\frac{3}{4}$, the sample linear discriminant function is $$\hat{\boldsymbol{a}}'\boldsymbol{x} - \hat{\boldsymbol{m}} = 19.32x_1 - 17.12x_2 + 4.66$$ Classify an observation x_0 to π_1 (Noncarriers) if $\hat{a}'x_0 - \hat{m} \ge 0$ and classify x_0 to π_2 (Obligatory carriers) otherwise. The holdout confusion matrix is $$\hat{E}(AER) = \frac{18+0}{75} = 0.24$$ The classification results for the 10 new cases using the discriminant function in part (b): | Case | x_1 | x_2 | $\hat{a}'x - \hat{m}$ | Classification | |------|--------|--------
-----------------------|----------------| | 1 | -0.112 | -0.279 | 7.27 | π_1 | | 2 | -0.059 | -0.068 | 4.68 | π_1 | | 3 | 0.064 | 0.012 | 5.69 | π_1 | | 4 | -0.043 | -0.052 | 4.72 | π_1 | | 5 | -0.050 | -0.098 | 5.37 | π_1 | | 6 | -0.094 | -0.113 | 4.78 | π_1 | | 7 | -0.123 | -0.143 | 4.73 | π_1 | | 8 | -0.011 | -0.037 | 5.08 | π_1^- | | 9 | -0.210 | -0.090 | 2.14 | π_1 | | 10 | -0.126 | -0.019 | 2.55 | π_1 | - 11.33 Let $x_3 \equiv \text{YrHgt}$, $x_4 \equiv \text{FtFrBody}$, $x_6 \equiv \text{Frame}$, $x_7 \equiv \text{BkFat}$, $x_8 \equiv \text{SaleHt}$, and $x_9 \equiv \text{SaleWt}$. - (a) For $\pi_1 \equiv \text{Angus}$, $\pi_2 \equiv \text{Hereford}$, and $\pi_3 \equiv \text{Simental}$, here are Fisher's linear discriminants $$\begin{array}{lll} \hat{d}_1 & = & -3737 + 126.88x_3 - 0.48x_4 + 19.08x_5 - 205.22x_6 \\ & & +275.84x_7 + 28.15x_8 - 0.03x_9 \\ \hat{d}_2 & = & -3686 + 127.70x_3 - 0.47x_4 + 18.65x_5 - 206.18x_6 \\ & & +265.33x_7 + 26.80x_8 - 0.03x_9 \\ \hat{d}_1 & = & -3881 + 128.08x_3 - 0.48x_4 + 19.39x_5 - 206.36x_6 \\ & & +245.50x_7 + 29.47x_8 - 0.03x_9 \end{array}$$ When $x_0' = [50, 1000, 73, 7, .17, 54, 1525]$ we obtain $\hat{d}_1 = 3596.31$, $\hat{d}_2 = 3593.32$, and $\hat{d}_3 = 3594.13$, so assign the new observation to π_2 , Hereford. This is the plot of the discriminant scores in the two-dimensional discriminant space: (b) Here is the APER and $\hat{E}(AER)$ for different subsets of the variables: | Subset | APER | $\hat{E}(ext{AER})$ | |--|------|----------------------| | $\overline{x_3, x_4, x_5, x_6, x_7, x_8, x_9}$ | .13 | .25 | | x_4, x_5, x_7, x_8 | .14 | .20 | | x_5, x_7, x_8 | .21 | .24 | | x_4, x_5 | .43 | .46 | | x_4, x_7 | .36 | .39 | | x_4, x_8 | .32 | .36 | | x_7, x_8 | .22 | .22 | | x_5, x_7 | .25 | .29 | | x_5, x_8 | .28 | .32 | 11.34 For $\pi_1 \equiv$ General Mills, $\pi_2 \equiv$ Kellogg, and $\pi_3 \equiv$ Quaker and assuming multivariate normal data with a common covariance matrix, equal costs, and equal priors, these are Fisher's linear discriminant functions: $$\begin{array}{rcl} \hat{d}_1 & = & .23x_3 + 3.79x_4 - 1.69x_5 - .01x_65.53x_7 \\ & & 1.90x_8 + 1.36x_9 - 0.12x_{10} - 33.14 \\ \hat{d}_2 & = & .32x_3 + 4.15x_4 - 3.62x_5 - .02x_69.20x_7 \\ & & 2.07x_8 + 1.50x_9 - 0.20x_{10} - 43.07 \\ \hat{d}_3 & = & .29x_3 + 2.64x_4 - 1.20x_5 - .02x_65.43x_7 \\ & & 1.22x_8 + .65x_9 - 0.13x_{10} \end{array}$$ The Kellogg cereals appear to have high protein, fiber, and carbohydrates, and low fat. However, they also have high sugar. The Quaker cereals appear to have low sugar, but also have low protein and carbohydrates. Here is a plot of the cereal data in two-dimension discriminant space: 11.35 (a) Scatter plot of tail length and snout to vent length follows. It appears as if these variables will effectively discriminate gender but will be less successful in discriminating the age of the snakes. (b) Linear Discriminant Function for Groups | | Female | Male | |--------------|---------|---------| | Constant | -36.429 | -41.501 | | SntoVnLength | 0.039 | 0.163 | | TailLength | 0.310 | -0.046 | Summary of Classification with Cross-validation | True Group Put into Group Female Male Female 34 2 | | |---|-------------------------------| | Female 34 2 | | | Female 34 2 | | | 2 27 | | | Male 3 27 | | | Total N 37 29 | | | N correct 34 27 | | | Proportion 0.919 0.931 | | | N = 66 N Correct = 0 | 61 Proportion Correct = 0.924 | | $E(AER) = 1924 = .076 \rightarrow 7.6\%$ | | (c) Linear Discriminant Function for Groups | | 2 | . 3 | 4 | |--------------|---------|---------|---------| | Constant | -112.44 | -145.76 | -193.14 | | SntoVnLength | 0.33 | 0.38 | 0.45 | | TailLength | 0.53 | 0.60 | 0.65 | Summary of Classification with Cross-validation | | T | rue Gro | up . | |----------------|-------|---------|-------| | Put into Group | 2 | 3 | 4 | | 2 | 13 | . 2 | 0 | | 3 | 4 | 21 | . 2 | | 4 | . 0 | . 3 | 21 | | Total N | 17 | 26 | 23 | | N correct | 13 | 21 | 21 | | Proportion | 0.765 | 0.808 | 0.913 | N = 66 N Correct = 55 Proportion Correct = 0.833 $E(AER) = 1 - .833 = .167 \rightarrow 16.7\%$ (d) Linear Discriminant Function for Groups Summary of Classification with Cross-validation | | T: | rue Grou | ıp . | |------------|--------------------|---------------|-------| | into Group | 2 | 3 | 4 | | | 14 | 1 | 0 | | | 3 | 21 | 4 | | | 0 | 4 | 19 | | al N | 17 | 26 | 23 | | orrect | 14 | 21 | 19 | | portion | 0.824 | 0.808 | 0.826 | | correct | 3
0
17
14 | 4
26
21 | 2 | N = 66 N Correct = 54 Proportion Correct = 0.818 $$E(AER) = 1 - .818 = .182 \rightarrow 18.2\%$$ Using only snout to vent length to discriminate the ages of the snakes is about as effective as using both tail length and snout to vent length. Although in both cases, there is a reasonably high proportion of misclassifications. #### 11.36 Logistic Regression Table | | | | | | Odds | 95% | CI | |------------|------------|-----------|-------|-------|-------|-------|-------| | Predictor | Coef | SE Coef | Z | P | Ratio | Lower | Upper | | Constant | 3.92484 | 6.31500 | 0.62 | 0.534 | | | | | Freshwater | 0.126051 | 0.0358536 | 3.52 | 0.000 | 1.13 | 1.06 | 1.22 | | Marine | -0.0485441 | 0.0145240 | -3.34 | 0.001 | 0.95 | 0.93 | 0.98 | Log-Likelihood = -19.394Test that all slopes are zero: G = 99.841, DF = 2, P-Value = 0.000 The regression is significant (p-value = 0.000) and retaining the constant term the fitted function is $$\ln\left(\frac{\hat{p}(z)}{1-\hat{p}(z)}\right) = 3.925 + .126 (freshwater growth) - .049 (marine growth)$$ #### Consequently: Assign z to population 2 (Canadian) if $\ln \left(\frac{\hat{p}(z)}{1 - \hat{p}(z)} \right) \ge 0$; otherwise assign z to population 1 (Alaskan). The confusion matrix follows. APER = $\frac{7}{100}$ = .07 \rightarrow 7% This is the same APER produced by the linear classification function in Example 11.8. # Chapter 12 12.1 a) Codes: 1 + South Yes Democrat Yes Yes 0 + non-South No Republican No No e.g. Reagan - Carter: | Pair | <u>Coeffi</u> | icient (a+d)/p | |------|---------------|----------------| | R-C | | .6 | | R-F | | .4 | | R-N | | .6 | | R-J | | 0 | | R-K | | .6 | | C-F | | 0 | | C-N | | .2 | | C-J | | .4 | | C-K | | .6 | | F-N | | .8 | | F-J | | .6 | | F-K | | .4 | | N-J | | .4 | | N-K | | .6 | | J-K | | .4 | | 12.1 b) | | Co | efficie | nt | Ra | nk Order | ^ | |---------|--|--|---|---|--|--|--| | | Pair | 1 | 2 | 3 | 1 | 2 | 3_ | | | R-C
R-F
R-N
R-K
C-F
C-N
C-J
C-K
F-N
F-K
N-J | .6
.6
.6
.0
.2
.4
.6
.8
.6 | .75
.571
.75
0
.75
0
.333
.571
.75
.889
.75
.571
.571 | .429
.25
.429
0
.429
0
.111
.25
.429
.667
.429
.25
.429 | 4.5
10
4.5
14.5
14.5
13
10
4.5
1
4.5
10
10
4.5 | 4.5
10
4.5
14.5
14.5
10
4.5
10
4.5
10
4.5 | 4.5
10
4.5
14.5
14.5
14.5
10
4.5
10
4.5 | | 12.2 | | r | efficie | ent | R | ank Orde | | | | Dais | 5 | 6 | 7 | 5 | 6 | 7 | | | Pair
R-C
R-F
R-N
R-J
R-K
C-F
C-N
C-J
C-K
F-J
F-K
N-J | .333
0
.333
0
.333
0
.2
.4
.5
.667
.5
.25 | .5
0
.5
0
.333
.571
.667
.8
.667
.4
.571 | .2
0
.2
0
.111
.25
.333
.5
.333
.143
.25 | 9
14
9
14
9
14
12
6
3
1
1
6
3 | 9
14
9
14
19
14
12
6
3
1
3
16
3
6 | 9
14
9
14
12
6
3
1
1
6
3
6 | $$\bar{x} = (a+b)/p; \quad \bar{y} = (a+c)/p$$ $$\Sigma(x_i - \bar{x})^2 = (a+b)(1 - (a+b)/p)^2 + (c+d)(0 - (a+b)/p)^2 = \frac{(c+d)(a+b)}{p}$$ $$\Sigma(y_i - \bar{y})^2 = (a+c)(1 - (a+c)/p)^2 + (b+d)(0 - (a+c)/p)^2 = \frac{(a+c)(b+d)}{p}$$ $$\Sigma(x_i - \bar{x})(y_i - \bar{y}) = \Sigma(x_i y_i - y_i \bar{x} - x_i \bar{y} + \bar{x} \bar{y})$$ $$= a - \frac{(a+c)(a+b)}{p} - \frac{(a+b)(a+c)}{p} + p \cdot \frac{(a+b)(a+c)}{p^2}$$ $$= \frac{a(a+b+c+d) - (a+c)(a+b)}{p} = \frac{ad-bc}{p}$$ Therefore $$r = \frac{(ad-bc)/p}{\left[\frac{(c+d)(a+b)(a+c)(b+d)}{p^2}\right]^{\frac{1}{2}}} = \frac{ad-bc}{\left[(a+b)(c+d)(a+c)(b+d)\right]^{\frac{1}{2}}}$$ Let $$c_1 = \frac{a+d}{p}$$, $c_2 = \frac{2(a+d)}{2(a+d)+(b+c)}$ and $c_3 = \frac{a+d}{(a+d)+2(b+c)}$ then $c_3 = \frac{1}{1+2(c_1^{-1}-1)}$ so c_3 increases as c_1 increases Also, $c_2 = \frac{2}{c_1^{-1}+1}$ so c_2 increases as c_1 increases Finally, $c_2 = \frac{4}{c_3^{-1}+3}$ so c_2 increases as c_3 increases 12.5 a) Single linkage Dendogram - 12.5 b) - Complete Linkage c) Average Linkage #### Dendogram #### Dendogram ### 12.6 Dendograms All three methods produce the same hierarchical arrangements. Item 3 is somewhat different from the other items. ### 12.7 Treating correlations as similarity coefficients we have: ### Single linkage $$S_{45} = .68$$ $$S_{(45)1} = \max(S_{41}, S_{51}) = .16$$ $$S_{(45)2} = .32$$, $S_{(45)3} = .18$, and so forth. #### Complete linkage $$S_{45} = .68$$ $$S_{(45)1} = \min(S_{41}, S_{51}) = .12$$ $$S_{(45)2} = .21$$, $S_{(45)3} = .15$, and so forth. Both methods arrive at nearly the same clustering. 12.8 1 Average linkage produces results similar to single linkage. ### 12.9 Dendograms
Although the vertical scales are different, all three linkage methods produce the same groupings. (Note different vertical scales.) 12.10 (a) $$ESS_1 = (2-2)^2 = 0$$, $ESS_2 = (1-1)^2 = 0$, $ESS_3 = (5-5)^2 = 0$, and $ESS_4 = (8-8)^2 = 0$. (b) At step 2 | | Clusters | | Increase in ESS | |----------|----------|-------------|-----------------| | { 12} | {3} | {4} | .5 | | { 13} | $\{2\}$ | {4} | 4.5 | | $\{14\}$ | {2} | {3} | 18.0 | | { 1} | $\{23\}$ | {4 } | 8.0 | | { 1} | $\{24\}$ | {3} | 24.5 | | { 1} | {2} | {34} | 4.5 | (c) At step 3 | | Clusters | Increase
in ESS | |--------|----------|--------------------| | { 12} | {34} | 5.0 | | { 123} | {4} | 8.7 | Finally all four together have ESS = $$(2-4)^2 + (1-4)^2 + (5-4)^2 + (8-4)^2 = 30$$ # 12.11 K = 2 initial clusters (AB) and (CD) $$(AB) \begin{vmatrix} \overline{x}_1 & \overline{x}_2 \\ (AB) & 3 & 1 \\ (CD) & 1 & 1 \end{vmatrix}$$ Final clusters (AD) and (BC) | $ \begin{array}{c cccc} & \overline{x}_1 & \overline{x}_2 \\ \hline (AD) & 4 & 2.5 \\ \hline (BC) & 0 &5 \end{array} $ | | Squa | ered dis | tance to | group | |---|---------|-------|----------|----------|-------| | $(BC) \mid 05$ | Cluster | Α | 8 | C | D | | | (AD) | 3.25 | 29.25 | 27.25 | 3.25 | | | (BC) | 45.25 | 3.25 | 3.25 | 11.25 | #### 12.12 K = 2 initial clusters (AC) and (BD) $$\begin{array}{c|cc} & \overline{x}_1 & \overline{x}_2 \\ \hline (AC) & 3 & .5 \\ (BD) & -2 & -.5 \end{array}$$ Final clusters (A) and (BCD) $\begin{array}{c|cccc} & \overline{x}_1 & \overline{x}_2 \\ \hline (A) & 5 & 3 \\ (BCD) & -1 & -1 \end{array}$ | | Squa | red dis
cent | tance to
roids | group | |---------|------|-----------------|-------------------|-------| | Cluster | A | В | С | D | | (A) | 0 | 40 | 41 | 89 | | (BCD) | 52 | 4 | 5 | 5 | As expected, this result is the same as the result in Example 12.11. A graph of the items supports the (A) and (BCD) groupings. #### 12.13 K = 2 initial clusters (AB) and (CD) $$\begin{array}{c|cccc} & \overline{x}_1 & \overline{x}_2 \\ \hline & (AB) & 2 & 2 \\ & (CD) & -1 & -2 \\ \end{array}$$ Final clusters (A) and (BCD) $\begin{array}{c|cccc} & \overline{x}_1 & \overline{x}_2 \\ \hline (A) & 5 & 3 \\ (BCD) & -1 & -1 \end{array}$ | | Squar | tance to | group | | |---------|-------|----------|-------|----| | Cluster | Α | В | С | D | | A | 0 🗸 | 40 | 47 | 89 | | (BCD) | 52 | 4√ | 5√ | 5/ | The final clusters (A) and (BCD) are the same as they are in Example 12.11. In this case we start with the same initial groups and the first, and only, reassignment is the same. It makes no difference if you start at the top or bottom of the list of items. 12.14. (a) The Euclidean distances between pairs of cereal brands ``` C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 0.0 C1 0.0 C2 116.0 15.5 121.7 0.0 6.4 117.9 10.0 0.0 C5 103.2 61.6 100.6 102.1 0.0 72.8 44.1 78.4 74.4 54.3 0.0 86.4 71.9 82.5 84.9 22.3 52.4 C7 0.0 15.3 121.5 10.1 100.6 1.4 78.3 82.4 46.2 72.6 54.7 48.9 75.8 32.1 65.2 54.5 54.9 123.0 68.9 59.5 134.7 87.8 122.5 68.8 65.7 94.7 85.8 169.6 121.3 157.0 94.6 94.5 81.3 154.7 47.1 C12 42.3 114.2 31.3 38.5 81.1 75.3 60.2 31.0 59.8 92.9 121.9 C13 163.2 163.4 177.9 168.1 208.0 155.4 205.1 177.9 148.9 112.4 110.7 198.0 44.3 67.5 C14 46.7 90.8 60.4 51.5 103.8 55.4 92.9 60.3 28.5 C15 60.3 170.5 50.0 56.6 141.5 127.8 121.5 50.0 103.8 101.7 115.6 46.9 90.8 60.5 51.6 103.8 55.5 92.9 60.3 28.5 44.3 67.6 23.1 101.0 21.6 21.6 81.4 58.5 63.6 70.1 100.7 21.4 37.5 C18 265.7 221.1 280.0 270.6 278.9 233.9 283.3 280.0 235.6 227.7 218.6 294.5 60.5 65.2 155.9 138.7 136.2 60.5 113.2 102.7 111.7 68.2 181.9 C20 116.6 71.0 113.2 115.3 19.7 69.9 32.1 113.1 89.3 150.5 183.5 C21 103.0 217.7 96.6 100.6 191.7 174.7 171.6 96.6 148.1 129.7 130.5 111.7 98.6 160.1 112.6 103.4 181.3 130.5 170.2 112.6 106.9 54.1 22.5 139.2 48.9 61.2 105.4 136.9 20.7 C23 58.0 102.8 49.1 54.9 62.4 68.1 41.3 C24 68.1 181.8 60.4 65.2 155.8 138.7 136.1 60.4 113.1 102.7 111.6 76.5 36.2 44.8 82.5 82.1 62.8 36.2 68.9 101.7 130.2 49.4 121.0 C26 182.8 290.3 186.0 183.8 285.6 250.4 267.2 185.9 220.2 173.8 145.7 210.7 99.6 113.7 160.9 C27 134.7 99.9 148.2 139.1 150.9 101.1 152.2 148.2 104.2 16.1 128.3 14.2 14.2 111.1 85.7 92.3 13.7 59.2 63.5 86.3 C29 107.5 159.0 120.3 111.6 180.7 132.1 170.7 120.3 116.0 54.1 64.6 144.1 C30 33.5 120.1 21.2 29.2 90.7 78.8 71.2 21.0 61.7 83.1 113.7 78.9 80.5 90.9 82.8 108.5 59.2 103.1 90.8 56.9 52.6 90.6 101.7 C32 32.1 122.6 43.5 36.0 120.8 83.1 105.0 43.3 51.3 50.9 60.0 65.9 C33 143.1 68.0 141.3 142.4 42.0 84.5 61.1 141.2 109.8 170.6 203.8 120.8 C34 173.0 157.7 187.8 177.9 207.5 155.6 206.8 187.8 151.8 127.0 123.8 205.9 C35 116.2 70.4 112.7 114.9 16.9 69.2 30.4 112.6 89.9 148.8 183.8 C36 114.1 230.0 111.1 112.9 210.2 186.9 190.8 111.1 158.8 129.8 122.7 131.2 34.2 38.1 91.1 124.5 C37 53.1 78.2 51.4 52.4 51.6 41.3 51.1 C38 54.2 100.4 45.8 51.0 61.8 63.5 43.5 45.8 59.0 99.2 133.6 C39 48.3 93.5 42.5 45.9 61.0 55.1 43.3 42.5 49.6 90.7 125.9 C40 40.6 140.9 51.6 44.3 139.8 100.7 123.8 51.4 70.3 44.1 46.2 C41 197.8 309.6 194.3 196.6 288.1 268.0 268.1 194.3 237.8 215.5 194.4 209.9 C42 191.1 301.3 190.3 190.8 286.6 260.4 267.3 190.2 229.3 200.8 174.0 209.7 C43 185.2 290.7 189.2 186.6 288.1 251.4 270.2 189.2 221.4 173.6 143.7 214.8 C23 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C24 C13 0.0 C14 127.4 0.0 C15 213.2 105.0 0.0 1.0 105.0 C16 127.4 0.0 69.7 51.3 C17 173.1 51.3 0.0 C18 134.4 220.7 321.2 220.8 270.1 C19 212.5 110.8 16.2 110.9 81.2 322.6 ``` ``` C20 223.2 117.3 151.2 117.3 94.3 288.6 166.1 0.0 C21 234.6 142.8 50.3 142.8 117.2 347.4 36.5 201.2 79.1 135.2 79.2 116.8 204.1 131.1 195.9 148.8 0.0 C22 91.5 83.3 81.1 83.2 36.8 295.9 96.2 70.9 130.9 153.2 0.0 C23 204.9 1.4 166.0 36.5 131.1 C24 212.5 110.7 16.0 110.8 81.1 322.6 86.0 60.0 86.1 35.2 303.9 75.3 91.8 110.1 147.9 23.2 75.3 C25 207.5 C26 233.8 200.3 159.3 200.3 204.2 342.0 143.8 297.3 121.0 152.7 231.2 143.8 C27 67.1 92.1 193.3 92.2 136.5 141.1 197.4 164.6 227.0 105.1 162.0 197.4 59.3 30.1 278.3 55.0 123.1 89.7 104.7 58.5 54.9 C28 174.0 59.3 46.7 93.3 144.4 93.3 122.6 214.5 141.7 197.4 160.4 51.8 156.3 141.7 C29 83.1 73.8 24.6 293.2 66.8 102.5 102.5 130.6 34.3 66.8 73.8 53.3 C30 191.2 78.9 207.0 141.7 124.7 173.2 91.2 104.5 141.7 C31 104.8 49.4 135.7 49.3 37.5 75.3 37.5 47.4 248.1 78.9 132.4 108.8 79.4 80.7 78.7 C32 150.5 C33 230.0 136.6 181.8 136.5 121.5 283.5 196.3 31.7 231.9 214.1 101.6 196.3 C34 30.1 132.2 226.4 132.3 180.7 107.3 226.8 221.3 250.8 107.0 210.8 226.8 C35 221.6 117.8 150.9 117.7 93.7 289.9 165.8 10.1 201.0 195.7 70.2 165.7 C36 226.8 148.7 71.8 148.7 131.9 341.0 56.0 221.0 28.8 139.2 151.3 56.0 C37 182.4 63.6 95.5 63.6 31.1 270.0 108.7 64.4 144.7 138.6 27.7 108.6 34.1 292.4 95.7 74.1 131.3 148.9 17.1 95.7 C38 198.4 80.8 81.3 80.9 71.6 27.4 282.6 96.8 74.6 132.8 140.6 21.8 96.7 71.5 83.1 C39 188.6 52.5 71.8 52.6 62.1 252.4 70.9 152.7 96.8 66.6 96.6 70.8 C40 146.6 C41 301.1 227.1 153.1 227.1 213.8 401.5 140.2 295.1 108.9 210.5 228.7 140.1 C42 277.2 214.8 154.9 214.9 209.3 375.5 140.8 294.9 112.9 188.1 229.2 140.7 C43 229.1 200.6 165.0 200.7 207.1 335.7 149.7 300.2 128.8 149.4 235.2 149.6 C33 C34 C35 C36 C26 C28 C29 C30 C31 C32 C25 C27 C25 0.0 C26 213.9 0.0 C27 170.1 257.2 0.0 C28 46.5 175.0 148.2 C29 152.5 172.5 103.0 113.8 0.0 20.8 200.3 158.2 30.2 132.8 0.0 C31 111.4 225.7 66.9 91.2 79.1 97.2 0.0 C32 75.0 170.7 126.2 36.4 101.6 62.2 81.5 0.0 C33 122.5 324.8 167.2 151.1 214.1 131.9 137.3 157.0 0.0 C34 215.5 253.2 58.3 184.8 107.8 201.1 112.6 158.5 225.1 C35 91.3 297.5 163.7 122.7 194.6 101.0 121.9 133.6 33.3 220.7 0.0 C36 131.0 93.2 227.1 102.7 152.9 120.7 178.1 114.7 250.8 244.4 220.8 72.4 91.2 186.6 63.7 161.4 43.5 234.6 136.1 60.4 141.6 44.5 81.7 C37 81.1 103.2 205.3 72.0 150.5 24.7 230.4 156.4 57.3 148.9 30.7 97.7 C38 74.5 102.6 195.3 72.6 150.5 30.7 87.9 30.1 227.7 146.5 53.6 140.6 C39 71.1 88.4 24.1 177.4 158.4 153.0 98.1 C40 86.9 150.1 132.6 41.9 88.9 98.9 305.4 186.0 236.3 204.2 264.3 190.2 325.4 315.9 297.0 96.8 C41 209.3 71.2 286.8 180.8 216.6 203.0 251.2 179.4 324.1 292.0 296.8 94.0 C42 210.6 17.7 254.4 178.3 170.3 204.2 225.5 172.3 327.1 248.4 300.5 100.9 C43 218.2 C38 C39 C40 C41 C42 C43 C37 C37 0.0 C38 27.0 0.0 10.1 C39 20.2 0.0 C40 90.2 94.6 88.5 0.0 C41 241.1 232.1 233.1 177.4 0.0 C42 237.9 231.7 231.2 164.5 35.2 0.0 C43 237.2 233.9 230.8 151.2 108.2 78.7 ``` (b) Complete linkage produces results similar to single linkage. 12.15. In K-means method, we use the means of the clusters identified by average linkage as the initial cluster centers. | Final cluster centers for K = 4 | Distances between centers | |---|---------------------------| | | 1 2 3 4 | | 1 110.0 2.1 0.9 215.0 0.7 15.3 7.9 50.0 | 1 0.0 | | 2 114.4 3.1 1.7 171.1 2.8 15.0 6.6 123.9 | 2 86.1 0.0 | | 3 86.7 2.3 0.5 26.7 1.4 10.0 5.8 55.8 | 3 190.0 162.2 0.0 | | 4 112.5 3.2 0.8 225.0 5.8 12.5 10.8 245.0 | 4 195.4 132.7 275.4 0.0 | | | | | K-me | ans | | | 4 | clus | ters | | |----|-----|-----|-------|-----|--------------|-----|-----|------|-------|-----| | | K | = 2 | K | = 3 | K | = 4 | | ngle | Compl | ete | | 1 | C1 | 1 | | 2 | C2 | 1 | C2 | 1 | C2 | 1 | C2 | .1 | C2 | 1 | | 3 | C3 | 1 | C3 | 1 | C3 | 1 | C3 | 1 | C3 | | | 4 | C4 | 1 | C4 | ī | C4 | 1 | C4 | | | 1 | | 5 | C5 | 1 | C5 | 1 | C5 | 1 | | 1 | C4 | 1 | | 6 | C6 | 1 | C6 | | | | C5 | 1 | C5 | 1 | | 7 | C7 | 1 | | 1 | C6 | 1 | C6 | 1 | C6 | 1 | | 8 | C8 | | C7 | 1 | C7 | 1 | C7 | 1 | C7 | 1 | | 9 | C9 | 1 | C8 | 1 | C8 | 1 | C8 | 1 | C8 | 1 | | | | 1 | C9 | 1 | C9 | 1 | C9 | 1 | C9 | 1 | | 10 | C10 | 1 | C10 | 1 | C12 | 1 | C10 | 1. | C10 | 1 | | 11 | C12 | 1 | C12 | 1 | C15 | 1 | C11 | 1 | C12 | 1 | | 12 | C14 | 1 | C14 | 1 | C17 | 1 | C12 | 1 | C14 | 1 | | 13 | C15 | 1 | C15 | 1 | C19 | 1 | C13 | 1 | C16 | 1 | | 14 | C16 | 1 | C16 | 1 | C20 | 1 | C14 | 1 | C17 | 1 | | 15 | C17 | 1 | C17 | 1 | C23 | .1 | C15 | 1 | C20 | 1 | | 16 | C19 | 1 |
C19 | 1 | C24 | 1 | C16 | 1 | C23 | 1 | | 17 | C20 | 1 | . C20 | 1 | C25 | 1 | C17 | 1 | C25 | 1 | | 18 | C21 | 1 | C23 | 1 | C28 | 1 | C19 | 1 | C28 | 1 | | 19 | C23 | 1 | C24 | 1 | C30 | 1 | C20 | 1 | C30 | 1 | | 20 | C24 | 1 | C25 | 1 | C33 | . 1 | C21 | 1 | C31 | 1 | | 21 | C25 | 1 - | C28 | 1 | C35 | 1 | C22 | 1 | C32 | 1 | | 22 | C26 | 1 | C30 | 1 | C37 | 1 | C23 | 1 | C33 | 1 | | 23 | C28 | 1 | C31 | 1 | C38 | 1 | C24 | 1 | C35 | 1 | | 24 | C30 | 1 | C32 | 1 | C39 | 1 | C25 | 1 | C37 | 1 | | 25 | C32 | 1 | C33 | 1 | C10 | 2 | C27 | 1 | C38 | 1 | | 26 | C33 | 1 | C35 | 1 | C11 | 2 | C28 | 1 | C39 | 1 | | 27 | C35 | 1 | C37 | 1 | C14 | 2 | C29 | 1 | | 1 | | 28 | C36 | 1 | C38 | 1 | C14 | 2 | C30 | | C40 | | | 29 | C37 | 1 | C39 | 1 | C22 | 2 | | 1 | C11 | 11 | | 30 | C38 | 1 | C40 | 1 | | | C31 | 1 | C13 | 11 | | 31 | C39 | 1 | C21 | 2 | C29 | 2 | C32 | 1 | C22 | 11 | | 32 | C40 | 1 | | | C31 | 2 | C33 | 1 | C27 | 11 | | 33 | C41 | | C26 | 2 | C32 | 2 | C34 | 1 | C29 | 11 | | | | 1 | C36 | 2 | C40 | 2 | C35 | 1 | C34 | 11 | | 34 | C42 | 1 | C41 | 2 | C21 | 3 | C36 | 1 | C15 | 15 | | 35 | C43 | 1 | C42 | 2 | C26 | 3 | C37 | 1 | C19 | 15 | | 36 | C11 | 2 | C43 | 2 | C36 | 3 , | C38 | 1 | C21 | 15 | | 37 | C13 | 2 | C11 | 3 | C41 | 3 | C39 | 1 | C24 | 15 | | 38 | C18 | 2 | C13 | 3 | C42 | 3 | C40 | 1 | C26 | 15 | | 39 | C22 | 2 | C18 | 3 | C43 | 3 | C18 | 18 | C36 | 15 | | 40 | C27 | 2 | C22 | 3 | C13 | 4 | C26 | 26 | C41 | 15 | | 41 | C29 | 2 | C27 | 3 | C18 | 4 | C43 | 26 | C42 | 15 | | 42 | C31 | 2 | C29 | 3 | C27 | 4 | C41 | 41 | C43 | 15 | | 43 | C34 | 2 | C34 | 3 | C34 | 4 | C42 | 41 | C18 | 18 | | | | | | - | - | - | | | 010 | -0 | 12.16 (a), (b) Dendrograms for single linkage and complete linkage follow. The dendrograms are similar; as examples, in both procedures, countries 11, 40 and 46 form a group at a relatively high level of distance, and countries 4, 27, 37, 43, 25 and 44 form a group at a relatively small distance. The clusters are more apparent in the complete linkage dendrogram and, depending on the distance level, might have as few as 3 or 4 clusters or as many as 6 or 7 clusters. (c) The results for K = 4 and K = 6 clusters are displayed below. The results seem reasonable and are consistent with the results for the linkage procedures. Depending on use, K = 4 may be an adequate number of clusters. ### **Data Display** | Country | Clast MomV-6 | ClustMemK=4 | | | | | | |-----------|--------------|-------------|-----------|--------------|--------------------|-----------------|-----------------| | Country 1 | ClustMemK=6 | 2 | | | | | | | 2 | 2 | 4 | | | | | | | 3 | 1 | 2 | | | | | | | 4 | 4 | 4 | | | | | | | 5 | 3 | 1 | | | | | | | 6 | 6 | 2 | Number of | clusters: 4 | | | | | . 7 | 6 | 2 2 | | | | | | | 8 | 1
4 | 4 | | | Within | Average | Maximum | | 9
10 | 1 | 2 | | | cluster | distance | | | 11 | 5 | 3 | | Number of | sum of | from | from | | 12 | 3 | 1 | | observations | squares | centroid | | | 13 | 2 | 4 | Cluster1 | 11 | | 4.494 | 9.049 | | 14 | . 6 | 2 | Cluster2 | 20 | 318.294 | 3.613 | 6.800 | | 15 | 3 | 1 | Cluster3 | 3
20 | 490.251
182.870 | 11.895
2.681 | 16.915
7.024 | | 16 | 6 | 2 | Cluster4 | 20 | 102.070 | 2.001 | 7.024 | | 17 | 6 2 | 2 | | | | | | | 18
19 | 4 | 4 | | | | | | | 20 | 1 | 2 | | | | | | | 21 | 3 | 1 | | | | | | | 22 | 6 | 2 | | | | | | | 23 | 1 | 2 | Number of | clusters: 6 | | | | | 24 | 1 | 1 | | | | | | | 25 | 4 | 4 | | | Within | Average | Maximum | | 26 | 1
4 | 2
4 | | | cluster | distance | distance | | 27
28 | 4 | 4 | | Number of | sum of | from | from | | 29 | 4 | 4 | | observations | squares | centroid | centroid | | 30 | 6 | 2 | Cluster1 | 10 | 90.154 | 2.884 | 4.008 | | 31 | 6 | 2 | Cluster2 | 8 | 22.813 | 1.613 | 2.428 | | 32 | 6 | 2 | Cluster3 | 8 | 116.518 | 3.346 | 6.651
5.977 | | 33 | 3 | 1 | Cluster4 | 10 | 78.508
490.251 | 2.513
11.895 | 16.915 | | 34 | 3
2 | 1
4 | Cluster5 | 3
15 | 128.783 | 2.669 | 5.521 | | 35 | 1 | 1 | Cluster6 | 13 | 120.703 | | | | 36
37 | 4 | 4 | | | | | | | 38 | 6 | 2 | | | | | | | 39 | 4 | 4 | V Ide | 4: 1 | | | | | 40 | 5 | 3 | A Trac | mical | | | | | 41 | 3 | 1 | | | | | | | 42 | 2 | 4 | | | | | | | 43 | 4 | 4 | | | | | | | 44 | 2
2 | 4 | | | | | | | 45
46 | 5 | 3 | | | | | | | 46 | 1 | 2 | | | | | | | 48 | 6 | 4 | | | | | | | 48
49 | 6 | 2 | | | | | | | 50 | 6 | 4 | | | | | | | 51 | 1 | 1 | | | | | | | 52 | 3 | 1 | | | | | | | 53 | 6 | 2
4 | | | | | | | 54 | 2 | 4 | | | | | | 12.17 (a), (b) Dendrograms for single linkage and complete linkage follow. The dendrograms are similar; as examples, in both procedures, countries 11 and 46 form a group at a relatively high level of distance, and countries 2, 19, 35, 4, 48 and 27 form a group at a relatively small distance. The clusters are more apparent in the complete linkage dendrogram and, depending on the distance level, might have as few as 3 or 4 clusters or as many as 6 or 7 clusters. (c) The results for K = 4 and K = 6 clusters are displayed below. The results seem reasonable and are consistent with the results for the linkage procedures. Depending on use, K = 4 may be an adequate number of clusters. The results for the men are similar to the results for the women. ### **Data Display** | (| Count | try | Clusti | MemK=4 | ClustMemK=6 | | | | | | |-----|-------|-----|--------|-------------------|-------------|-------------|---------------|-----------|----------|----------| | | 1 | | | 2 | 2 | | | | | | | | 2 | | | 4 | 4 | | | | | | | | 3 | | | 2 | 1 | | | | | | | | 4 | | | 4 | 4 | | | | | | | | 5 | | | | | | | | | | | | 6 | | | 1 | 3 | Manufa a sa | | | | | | | - | | | 4 | 6 | Muliber 01 | f clusters: 4 | | | | | | 7 | | | 2 | 2 | | | | | | | | 8 | | | 2 | 1 | | | w | | | | | 9 | | | 4 | 2 | | | Wi thin | Average | Maximum | | | 10 | | | 2 | 2 | | | cluster | distance | distance | | | 11 | | | 3 | 5 | | Number of | sum of | from | from | | | 12 | | | 2 | 1 | | observations | squares | centroid | | | | 13 | | | 2 | 1 | Cluster1 | 10 | 169.042 | 3.910 | 5.950 | | | 14 | | | 2 . | 2 | Cluster2 | 21 | 73.281 | 1.684 | 3.041 | | | 15 | | | 1 | 3 | ✓ Cluster3 | 2 | 49.174 | 4.959 | 4.959 | | | 16 | | | 2 | 2 | Cluster4 | 21 | 56.295 | 1.481 | 3.249 | | | 17 | | | 4 | 6 | | | | 2.301 | 3.243 | | | 18 | | | 4 | 4 | | | * | | | | | 19 | | | 4 | 4 | | | | | | | | 20 | | | 2 | 1 | Number of | clusters: 6 | | | | | | 21 | | | 2 | ī | | | | | | | | 22 | | | 2 | ī | | | | | | | | 23 | | | -
2 | ī | | | Within | Average | Maximum | | | 24 | | | 1 | 3 | | | cluster | | | | | 25 | | | 4 | 2 | | Number of | sum of | from | from | | | 26 | | | -
2 | 1 | | observations | squares | centroid | | | | 27 | | | 4 | 4 | Cluster1 | 12 | 26.806 | 1.418 | 2.413 | | | 28 | | | .
1 | 6 | Cluster2 | 15 | 18.764 | 1.048 | 1.844 | | | 29 | | | ±.
1 | 6 | Cluster3 | 10 | 169 . 042 | 3.910 | | | | 30 | | | <u>.</u>
1 | _ | Cluster4 | 10 | 10.137 | 0.935 | 5.950 | | | | | | _ | 4 | Cluster5 | 2 | 49.174 | | 1.559 | | | 31 | | | 3 | - 4 | Cluster6 | 5 | 6.451 | 4.959 | 4.959 | | | 32 | | 2 | | 1 | 01000010 | 3 | 0 - 45T | 1.092 | 1.606 | | | 33 | | 1 | | 3 | | | | | | | | 34 | | 1 | | 3 | | | | | | | | 35 | | 4 | | 4 | / 7 | Edentical | | | | | | 36 | | 1 | | 3 | ٠, | Lowinted | | | | | _ | 37 | | 4 | • | 4 | | | | | | | _ | 8 | | 4 | | 2 | | | | | | | . 3 | 9 | | 2 | | 2 | | * • · · · | | | | | 4 | 0 | | 1 | | 3 | | | | | | | 4 | 1 | | 1 | | 3 | | | | | | | 4 | 2 | | . 4 | | 2 | | | | | | | 4 | 3 | | 4 | | 4 | | | | | | | 4 | 4 | | 2 | | 1 | | | | | | | 4 | 5 | | 4 | | 2 | | | | | | | 4 | 6 | | 3 | | 5 | | | | | | | | | | _ | | | | | | | | | 4 | 7 | | 1 | | 3 | | | | | | 12.19. The stress of final configuration for q=5 is 0.000. The sites in 5 dimensions and the plot of the sites in two dimensions are ### COORDINATES IN 5 DIMENSIONS | VARIABLE | PLOT | DIME | NSION | | | | |----------|------|-------|-------|------|------|-----| | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | | P1980918 | · A | .51 | 28 | .24 | 68 | .12 | | P1931131 | В | -1.32 | . 69 | . 62 | 05 | 02 | | P1550960 | C | .47 | 07 | .19 | . 30 | .06 | | P1530987 | D | .39 | .09 | .05 | . 34 | .10 | | P1361024 | E | .23 | . 30 | 32 | . 05 | .12 | | P1351005 | F | .47 | .14 | 22 | 14 | 28 | | P1340945 | Ğ | . 58 | 35 | .46 | .18 | 10 | | P1311137 | H | -1.12 | -1.12 | 31 | . 05 | 01 | | P1301062 | I | 22 | . 61 | 70 | 06 | .01 | | | | | | | | | #### DIMENSION 2 The results show a definite time pattern (where time of site is frequently determined by C-14 and tree ring (lumber in great houses) dating). ## 12.20. A correspondence analysis of the mental health-socioeconomic data lambda 0.1613 0.0371 0.0082 0.0000 Cumulative inertia 0.0260 0.0274 0.0275 Cumulative proportion 0.9475 0.9976 1.0000 The lowest economic class is located between moderate and impaired. The next lowest class is closest to impaired. #### 12.21. A correspondence analysis of the income and job satisfaction data ``` V -0.6272 -0.2392 0.7412 -0.6503 -0.6661 -0.3561 0.2956 0.8073 0.5107 -0.1944 0.5933 -0.7758 0.7206 -0.5394 0.4356 -0.3400 0.3159 0.2253 0.6510 -0.3233 -0.4696 ``` lambda 0.1069 0.0106 0.0000 Cumulative inertia 0.0114 0.0116 Cumulative proportion 0.9902 1.0000 Very satisfied is closest to the highest income group, and very dissatisfied is below the lowest income group. Satisfaction appears to increase with income. ## 12.22. A correspondence analysis of the Wisconsin forest data ``` U -0.3877 -0.2108 -0.0616 0.4029 -0.0582 0.3269 0.4247 -0.1590 -0.3856 -0.2428 -0.0106 0.4345 -0.1950 -0.1968 -0.2635 -0.3835 -0.3495 -0.1821 0.4079 -0.5718 0.2343 -0.1167 0.3294 -0.1272 -0.3006 0.1355 0.0540 -0.2646 0.0006 -0.0826 -0.6644 -0.3192 0.2022 0.5400 0.4626 0.2687 -0.0978 -0.3943 0.2668 -0.3606 0.1852 -0.0756 -0.5090 -0.0291 0.6026 -0.1955 0.1520 -0.5154 0.3140 0.0644 0.3394 0.1567 0.3366 0.6573 -0.2507 -0.2267 0.3549 -0.2897 -0.0345 -0.3393 -0.5994 0.2002 0.1262 -0.4907
-0.3904 -0.0831 -0.4781 0.4562 -0.0377 0.3369 0.4071 -0.3511 -0.5327 -0.4985 0.4080 0.0925 -0.0738 -0.3420 -0.2464 -0.3310 -0.1999 0.3889 0.4089 -0.3622 0.4391 0.3217 0.1808 -0.4260 0.0698 0.5382 -0.1726 0.3181 -0.0544 -0.1596 -0.6122 -0.4138 -0.0820 -0.0151 -0.4271 -0.7086 -0.4160 -0.1685 0.0307 -0.3258 0.4005 0.0831 0.1478 0.1866 -0.0042 -0.5895 0.5587 -0.3412 0.4689 -0.2476 0.3150 0.0726 -0.4771 0.5142 -0.0763 -0.3412 ``` #### lambda 0.7326 0.3101 0.2685 0.2134 0.1052 0.0674 0.0623 0.0000 #### Cumulative inertia 0.5367 0.6329 0.7050 0.7506 0.7616 0.7662 0.7700 #### Cumulative proportion 0.6970 0.8219 0.9155 0.9747 0.9891 0.9950 1.0000 12.23. We construct biplot of the pottery type-site data, with row proportions as variables. | S | | | | Eigenve | | | | |---------|---------|---------|---------|---------|---------|---------|------| | 0.0511 | -0.0059 | -0.0390 | -0.0061 | 0.6233 | 0.5853 | 0.1374 | -0.5 | | -0.0059 | 0.0084 | -0.0051 | 0.0025 | 0.0064 | -0.2385 | -0.8325 | -0.5 | | -0.0390 | -0.0051 | 0.0628 | -0.0187 | -0.7694 | 0.3464 | 0.1951 | -0.5 | | -0.0061 | 0.0025 | -0.0187 | 0.0223 | 0.1396 | -0.6932 | 0.5000 | -0.5 | Eigenvalues of S 0.0978 0.0376 0.0091 0.0000 pc1 pc2 pc3 pc4 St. Dev. 0.3128 0.1940 0.0952 0 Prop. of Var. 0.6769 0.2604 0.0627 0 Cumulative Prop. 0.6769 0.9373 1.0000 1 As in the correspondence analysis. 12.24. We construct biplot of the mental health-socioeconomic data, with column proportions as variables. ``` Eigenvectors of S 0.003089 0.000809 -0.000413 -0.003485 -0.6487 0.0837 -0.5676 0.5 0.000809 0.000329 -0.000284 -0.000853 -0.1685 0.4764 0.7033 0.5 -0.000413 -0.000284 0.000379 0.000318 0.0794 - 0.8320 0.2270 0.5 -0.003485 -0.000853 0.000318 0.004021 0.7379 0.2719 -0.3628 0.5 Eigenvalues of S 0.007314 0.000480 0.000024 0.000000 pc2 pc3 pc4 St. Dev. 0.0855 0.0219 0.0049 Prop. of Var. 0.9355 0.0614 0.0031 Cumulative Prop. 0.9355 0.9969 1.0000 ``` The biplot gives similar locations for health and socioeconomic status. A reflection about the 45 degree line would make them appear more alike. #### 12.25. A Procrustes analysis of archaeological data A two-dimensional representation of archaeological sites produced by metric multidimensional scaling A two-dimensional representation of archaeological sites produced by nonmetric multidimensional scaling | Site | Metric | MDS | Nonmet | ric MDS | |----------|---------|----------|---------|---------| | P1980918 | -0.512 | -0.278 | -0.276 | -0.829 | | P1931131 | 1.318 | 0.692 | 1.469 | 0.703 | | P1550960 | -0.470 | -0.071 | -0.545 | -0.156 | | P1530987 | -0.387 | 0.088 | -0.338 | -0.048 | | P1361024 | -0.234 | 0.296 | -0.137 | 0.379 | | P1351005 | -0.469 | 0.137 | -0.642 | 0.387 | | P1340945 | -0.581 | -0.349 | -0.889 | -0.409 | | P1311137 | 1.118 | -1.122 | 1.262 | -0.989 | | P1301062 | 0.216 | 0.608 | 0.096 | 0.963 | | U | | v | | | | -0.9893 | -0.1459 | -0.9977 | -0.0679 | | | -0.1459 | 0.9893 | -0.0679 | 0.9977 | | | Q | | Lambda | | | | 0.9969 | 0.0784 | 4.7819 | 0.000 | | | -0.0784 | 0.9969 | 0.0000 | 2.715 | | To better align the metric and nonmetric solutions, we multiply the nonmetric scaling solution by the orthogonal matrix $\hat{\mathbf{Q}}$. This corresponds to clockwise rotation of the nonmetric solution by 4.5 degrees. After rotation, the sum of squared distances, 0.803, is reduced to the Procrustes measure of fit $PR^2=0.756$. 12.26 The dendrograms for clustering Mali Family Farms are given below for average linkage and Ward's method. The dendrograms are similar but a moderate number of distinct clusters is more apparent in the Ward's method dendrogram than the average linkage dendrogram. Both dendrograms suggest there may be as few as 4 clusters (indicated by the checkmarks in the figures) or perhaps as many as 7 or 8 clusters. Reading the "right" number of clusters from either dendrogram would depend on the use and require some subject matter knowledge. 12.27 If average linkage and Ward's method clustering is used with the standardized Mali Family Farm observations, the results are somewhat different from those using the original observations and different from one another. The dendrograms follow. There could be as few as 4 clusters (indicated by the checkmarks in the figures) or there could be as many as 8 or 9 clusters or more. The distinct clusters are more clearly delineated in the Ward's method dendrogram and if we focus attention on the 4 marked clusters, we see the two procedures produce quite different results. 12.28 The results for K = 5 and K = 6 clusters follow. The results seem reasonable and are similar to the results for Ward's method considered in Exercise 12.26. Note as the number of clusters increases from 5 to 6, cluster 1 in the K = 5 solution is partitioned into two clusters, 1 and 6, in the K = 6 solution, there is no change in the other clusters. Although not shown, K = 4 is a reasonable solution as well. #### **Data Display** #### Number of clusters: 5 | | | Within | Average | Maximum | |----------|--------------|----------|----------|----------| | | | cluster | distance | distance | | | Number of | sum of | from | from | | | observations | squares | centroid | centroid | | Cluster1 | 6 | 2431.094 | 18.498 | 33.076 | | Cluster2 | 11 | 4440.330 | 19.511 | 24.647 | | Cluster3 | 35 | 3298.539 | 8.878 | 21.053 | | cluster4 | 12 | 1129.083 | 9.072 | 16.024 | | Cluster5 | 8 | 1943.156 | 15.030 | 19.619 | #### Number of clusters: 6 | | | Within | Average | Maximum | |----------|--------------|----------|----------|----------| | | | cluster | distance | distance | | | Number of | sum of | from | from | | | observations | squares | centroid | centroid | | Cluster1 | 4 | 696.609 | 13.005 | 15.474 | | Cluster2 | 11 | 4440.330 | 19.511 | 24.647 | | Cluster3 | 35 | 3298.539 | 8.878 | 21.053 | | Cluster4 | 12 | 1129.083 | 9.072 | 16.024 | | eluster5 | 8 | 1943.156 | 15.030 | 19.619 | | Cluster6 | 2 | 1005.125 | 22.418 | 22.418 | | | | | | | / Identical for two choices of K 12.29 The results for K = 5 and K = 6 clusters follow. The results seem reasonable and are similar to the results for Ward's method considered in Exercise 12.27. Note as the number of clusters increases from 5 to 6, clusters 3 and 4 in the K=5 solution lose 1 and 2 farms respectively to form cluster 6 in the K = 6 solution, there is no change in the other clusters. These results using standardized observations are somewhat different from the corresponding results using the original data. It makes a difference whether standardized or un-standardized observations are used. | rm. | SdClusMemK=5 | SdClusMemK=
1 | |------------|-----------------------|------------------| | 1
2 | 1 5 | 5 | | 3 | 3 | 3 | | 4 | 3
5 | 3
5 | | 5
6 | 1 | 1 | | 7 | 3 | 3 | | 8
9 | | 5 | | 0 ' | 3 | . 4 | | 1
2 | 5
3
3
3
3 | 3 | | 3 | 3 | 3 | | 4 | 3
4 | 3 | | 5
6 | 3 | 3 | | 7 | 4 | 4 | | 8
9 | 3
2
3 | 2 | | 0 | 3 | 3 | | 1
2 | 3 | 3
3
4 | | 3 | 4 | 4 | | 4 | 4 3 | 6 | | 6 | 3 | 3 | | 7 | 3
4 | 3 | | 8 | 2 | | | 0 | 3 | 3 | | 1 | 2
3
4
3
3 | | | 3 | 3 | | | 14 | 4 3 | | | 16 | 4 | | | 17 | 3 | | | 9 | 3 | | | 10
11 | 4 | | | 12 | 4 | | | 13 | 5
3 | | | 14 | 3 | | | 16 | 4 | | | 17 | 3 | | | 19 | 3 | | | 50
51 | 3
3
3
2
3 | | | 52 | 4 | | | 53
54 | 3
2 | | | 55 | 5 | | | 56
57 . | 4 | | | 57
58 | 4 | | | 59 | 4 | | | 60
61 | 5 | | | 62 | 4
4
5
3
3 | | | 63 | 4 | | | 64
65 | 4
3
3 | | | 66 | 3 | | | 67 | 4
2
1
1 | | Number of clusters: 5 | | | Within cluster | Average distance | Maximum distance | |----------|--------------|----------------|------------------|------------------| | - Marie | Number of | sum of | from | from | | | observations | squares | centroid | centroid | | Cluster1 | 5 | 14.050 | 1.568 | 2.703 | | eluster2 | 5 | 56.727 | 3.288 | 4.259 | | Cluster3 | 35 | 55.318 | 1.211 | 1.993 | | Cluster4 | 20 | 84.099 | 1.954 | 3.172 | | Cluster5 | 7 | 63.071 | 2.970 | 3.482 | Number of clusters: 6 | | | Within | Average | Maximum | |---------------------|--------------|---------|----------|----------| | | | cluster | distance | distance | | | Number of | sum of | from | from | | | observations | squares | centroid | centroid | | Cluster1 | 5 | 14.050 | 1.568 | 2.703 | | Luster2
Cluster3 | 5 | 56.727 | 3.288 | 4.259 | | | 34 | 51.228 | 1.183 | 1.951 | | Cluster4 | 18 | 65.501 | 1.806 | 3.195 | | LeTuster5 | 7 | 63.071 | 2.970 | 3.482 | | Cluster6 | 3 | 7.960 | 1.604 | 1.954 | Identical for two choices of K 12.30 The cumulative lift (gains) chart is shown below. The y-axis shows the percentage of positive responses. This is the percentage of the total possible positive responses (20,000). The x-axis shows the percentage of customers contacted, which is a fraction of the 100,000 total customers. With no model, if we contact 10% of the customers we would expect 10%, or $2,000 = .1 \times 20,000$, of the positive responses. Our response model predicts 6,000 or 30% of the positive responses if we contact the top 10,000 customers. Consequently, the y-values at x = 10% shown in the chart are 10% for baseline (no model) and 30% for the gain (lift) provided by the model. Continuing this argument for other choices of x (% customers contacted) and cumulating the results produces the lift (gains) chart shown. We see, for example, if we contact the top 40% of the customers determined by the model, we expect to get 80% of the positive responses. 12.31 (a) The Mclust function, which selects the best overall model according to the BIC criterion, selects a mixture with four multivariate normal components. The four estimated centers are: $$\widehat{\mu}_{1} = \begin{bmatrix} 3.3188 \\ 6.7044 \\ 0.3526 \\ 0.1418 \\ 11.9742 \end{bmatrix} \quad \widehat{\mu}_{2} = \begin{bmatrix} 5.1806 \\ 5.2871 \\ 0.5910 \\ 0.1794 \\ 5.5369 \end{bmatrix}, \quad \widehat{\mu}_{3} = \begin{bmatrix} 7.2454 \\ 4.8099 \\ 0.3290 \\ 0.2431 \\ 3.2834
\end{bmatrix}, \quad \widehat{\mu}_{4} = \begin{bmatrix} 8.6893 \\ 4.1730 \\ 0.5158 \\ 0.2445 \\ 7.4846 \end{bmatrix}$$ and the estimated covariance matrices turn out to be restricted to be of the form $\eta_k \mathbf{D}$ where \mathbf{D} is a diagonal matrix. The estimated $$\widehat{\mathbf{D}} = \text{diag}(11.2598, 2.7647, 0.3355, 0.0053, 18.0295)$$ and the estimated scale factors are $\hat{\eta}_1 = 0.0319$, $\hat{\eta}_2 = 0.3732$, $\hat{\eta}_3 = 0.0909$, $\hat{\eta}_4 = 0.1073$. The estimated proportions are $\hat{p}_1 = 0.1059$, $\hat{p}_2 = 0.4986$, $\hat{p}_3 = 0.1322$, $\hat{p}_4 = 0.2633$. This minimum BIC model has BIC = -547.1408. (b) The model chosen above has 4 multivariate normal components. These four components are shown in the matrix scatter plot where the observations have been classified into one of the four populations. The matrix scatter plot of the true classification, is given in the next figure. Comparing the matrix scatter plot of the four group classification with the matrix scatter plot of the true classification, we see how the oil samples from the Upper sandstone are essentially split into two groups. This is clear from comparing the two scatter plots for (x_1, x_2) . We also repeat the analysis using the me function to select mixture distribution with K=3 components. We further restrict the covariance matrices to satisfy $\Sigma_k = \eta_k \mathbf{D}$. The K=3 groups selected by this function have estimated centers $$\widehat{\mu}_{1} = \begin{bmatrix} 5.3395 \\ 5.2467 \\ 0.5485 \\ 0.1862 \\ 5.2465 \end{bmatrix}, \quad \widehat{\mu}_{2} = \begin{bmatrix} 8.5343 \\ 4.2762 \\ 0.4988 \\ 0.2453 \\ 6.6993 \end{bmatrix}, \quad \widehat{\mu}_{3} = \begin{bmatrix} 3.3228 \\ 6.7093 \\ 0.3511 \\ 0.1418 \\ 11.9780 \end{bmatrix},$$ Figure 1: Classification into four groups using Mclust Figure 2: True classification into sandstone strata the estimated diagonal matrix $$\widehat{\mathbf{D}} = \text{diag}(10.1535, 2.6295, 0.2969, 0.0052, 24.0955)$$ with estimated scale parameters $\hat{\eta}_1 = 0.3702$, $\hat{\eta}_2 = 0.1315$, $\hat{\eta}_3 = 0.0314$, with resulting BIC = -534.0949. The estimated proportions are $\hat{p}_1 = 0.5651$, $\hat{p}_2 = 0.3296$, $\hat{p}_3 = 0.1052$. If we use this method to classify the oil samples, the following samples are misclassified: and the misclassification error rate is 33.93%. #### **Proofs of Results in Chapter 7** **Proof of Result 7.2** Before the response $Y = Z\beta + \varepsilon$ is observed, it is a random vector. Now, $$\hat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'(\mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}) = \boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\varepsilon}$$ $$\hat{\boldsymbol{\varepsilon}} = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\mathbf{Y}$$ $$= [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'][\mathbf{Z}\boldsymbol{\beta} + \boldsymbol{\varepsilon}] = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}$$ since $$[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\mathbf{Z} = \mathbf{Z} - \mathbf{Z} = \mathbf{0}$$. From (2-24) and (2-45), $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'E(\varepsilon) = \boldsymbol{\beta}$ $Cov(\hat{\boldsymbol{\beta}}) = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'Cov(\varepsilon)\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1} = \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}$ $= \sigma^2(\mathbf{Z}'\mathbf{Z})^{-1}$ $E(\hat{\varepsilon}) = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']E(\varepsilon) = \mathbf{0}$ $Cov(\hat{\varepsilon}) = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']Cov(\varepsilon)[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']'$ $= \sigma^2[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$ where the last equality follows from (7-6). Also, $$\operatorname{Cov}(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\varepsilon}}) = E[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\hat{\boldsymbol{\varepsilon}}'] = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}')[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$$ $$= \sigma^{2}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{0}$$ because $\mathbf{Z}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{0}$. From the definition of $\hat{\varepsilon}$ above, (7-6) and Result 4.9, $$\hat{\varepsilon}'\hat{\varepsilon} = \varepsilon'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'][\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\varepsilon$$ $$= \varepsilon'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\varepsilon$$ $$= \operatorname{tr}[\varepsilon'(\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}')\varepsilon]$$ $$= \operatorname{tr}([\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\varepsilon\varepsilon')$$ Now, for an arbitrary $n \times n$ random matrix W, $$E(\operatorname{tr}(\mathbf{W})) = E(W_{11} + W_{22} + \dots + W_{nn})$$ = $E(W_{11}) + E(W_{22}) + \dots + E(W_{nn}) = \operatorname{tr}[E(\mathbf{W})]$ Thus, using Result 2A.12, we obtain $$E(\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}) = \operatorname{tr}([\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'))$$ $$= \sigma^{2} \operatorname{tr}[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$$ $$= \sigma^{2} \operatorname{tr}(\mathbf{I}) - \sigma^{2} \operatorname{tr}[\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$$ $$= \sigma^{2}n - \sigma^{2} \operatorname{tr}[(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Z}]$$ $$= n\sigma^{2} - \sigma^{2} \operatorname{tr}\left[\mathbf{I}_{(r+1)\times(r+1)}\right]$$ $$= \sigma^{2}(n-r-1)$$ and the result for $s^2 = \hat{\varepsilon}' \hat{\varepsilon}/(n-r-1)$ follows. **Proof of Result 7.4** Given the data and the normal assumption for the errors, the likelihood function for β , σ^2 is $$L(\boldsymbol{\beta}, \sigma^2) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi} \sigma} e^{-\varepsilon_j^2/2\sigma^2} = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\varepsilon' \varepsilon/2\sigma^2}$$ $$= \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})/2\sigma^2}$$ For a fixed value σ^2 , the likelihood is maximized by minimizing $(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\beta})$. But this minimization yields the least squares estimate $\hat{\boldsymbol{\beta}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$, which does not depend upon σ^2 . Therefore, under the normal assumption, the maximum likelihood and least squares approaches provide the same estimator $\hat{\boldsymbol{\beta}}$. Next, maximizing $L(\hat{\boldsymbol{\beta}}, \sigma^2)$ over σ^2 [see (4-18)] gives $$L(\hat{\boldsymbol{\beta}}, \hat{\sigma}^2) = \frac{1}{(2\pi)^{n/2} (\hat{\sigma}^2)^{n/2}} e^{-n/2} \quad \text{where} \quad \hat{\sigma}^2 = \frac{(\mathbf{y} - \mathbf{Z}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \mathbf{Z}\hat{\boldsymbol{\beta}})}{n}$$ As shown in the proof of Result 7.2, we can express $\hat{\beta}$ and $\hat{\epsilon}$ as linear combinations of the normal variables ϵ . Specifically, $$\begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\varepsilon}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta} + (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\varepsilon} \\ [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\beta} \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}' \\ \mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}' \end{bmatrix} \boldsymbol{\varepsilon} = \boldsymbol{\alpha} + \mathbf{A}\boldsymbol{\varepsilon}$$ Because **Z** is fixed, Result 4.3 implies the joint normality of $\hat{\beta}$ and $\hat{\epsilon}$. Their mean vectors and covariance matrices were obtained in Result 7.2. Again, using (7-6), we get $$\operatorname{Cov}\left(\left\lceil\frac{\hat{\boldsymbol{\beta}}}{\hat{\boldsymbol{\varepsilon}}}\right\rceil\right) = \mathbf{A} \operatorname{Cov}(\boldsymbol{\varepsilon}) \mathbf{A}' = \sigma^2 \left\lceil\frac{(\mathbf{Z}'\mathbf{Z})^{-1}}{\mathbf{0}'}\right\rceil \frac{\mathbf{0}}{\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'}\right]$$ Since $Cov(\hat{\beta}, \hat{\epsilon}) = 0$ for the normal random vectors $\hat{\beta}$ and $\hat{\epsilon}$, these vectors are independent. (See Result 4.5.) Next, let (λ, \mathbf{e}) be any eigenvalue-eigenvector pair for $\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'$. Then, by (7-6), $[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']^2 = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$ so $$\lambda \mathbf{e} = [\mathbf{I} - \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'] \mathbf{e} = [\mathbf{I} - \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}']^2 \mathbf{e} = \lambda [\mathbf{I} - \mathbf{Z} (\mathbf{Z}'\mathbf{Z})^{-1} \mathbf{Z}'] \mathbf{e} = \lambda^2 \mathbf{e}$$ That is, $\lambda = 0$ or 1. Now, $\text{tr}[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = n - r - 1$ (see the proof of Result 7.2), and from Result 4.9, $\text{tr}[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \lambda_1 + \lambda_2 + \cdots + \lambda_n$, where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ are the eigenvalues of $[\mathbf{I} -
\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']$ Consequently, exactly n - r - 1 values of λ_i equal one, and the rest are zero. It then follows from the spectral decomposition that $$[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \mathbf{e}_1\mathbf{e}_1' + \mathbf{e}_2\mathbf{e}_2' + \cdots + \mathbf{e}_{n-r-1}\mathbf{e}_{n-r-1}'$$ where $e_1, e_2, \dots, e_{n-r-1}$ are the normalized eigenvectors associated with the eigenvalues $\lambda_1 = \lambda_2 = \dots = \lambda_{n-r-1} = 1$. Let $$\mathbf{V} = \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_{n-r-1} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{e}_1'}{\mathbf{e}_2'} \\ \vdots \\ \mathbf{e}_{n-r-1}' \end{bmatrix} \varepsilon$$ Then V is normal with mean vector 0 and $$Cov(V_i, V_k) = \begin{cases} \mathbf{e}'_i \sigma^2 \mathbf{I} \mathbf{e}_k = \sigma^2 \mathbf{e}'_i \mathbf{e}_k = \sigma^2, & i = k \\ 0, & \text{otherwise} \end{cases}$$ That is, the V_i are independent $N(0, \sigma^2)$ and $$n\hat{\sigma}^2 = \hat{\varepsilon}'\hat{\varepsilon} = \varepsilon'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\varepsilon = V_1^2 + V_2^2 + \cdots + V_{n-r-1}^2$$ is distributed $\sigma^2 \chi_{n-r-1}^2$. **Proof of Result 7.10** According to the regression model, the likelihood is determined from the data $\mathbf{Y} = [\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_n]'$ whose rows are independent, with \mathbf{Y}_j distributed as $N_m(\boldsymbol{\beta}'\mathbf{z}_j, \boldsymbol{\Sigma})$. We first note that $\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta} = [\mathbf{Y}_1 - \boldsymbol{\beta}'\mathbf{z}_1, \mathbf{Y}_2 - \boldsymbol{\beta}'\mathbf{z}_2, ..., \mathbf{Y}_n - \boldsymbol{\beta}'\mathbf{z}_n]'$ so $$(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta}) = \sum_{i=1}^{n} (\mathbf{Y}_{i} - \boldsymbol{\beta}'\mathbf{z}_{i})(\mathbf{Y}_{i} - \boldsymbol{\beta}'\mathbf{z}_{i})'$$ and $$\sum_{j=1}^{n} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j}) = \sum_{j=1}^{n} \operatorname{tr} [(\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})' \boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})]$$ $$= \sum_{j=1}^{n} \operatorname{tr} [\boldsymbol{\Sigma}^{-1} (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j}) (\mathbf{Y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})']$$ $$= \operatorname{tr} [\boldsymbol{\Sigma}^{-1} (\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})]$$ Another preliminary calculation will enable us to express the likelihood in a simple form. Since $\hat{\boldsymbol{\varepsilon}} = \mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}}$ satisfies $\mathbf{Z}'\hat{\boldsymbol{\varepsilon}} = \mathbf{0}$ [(see 7-29)], $$(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{Z}\boldsymbol{\beta})$$ $$= [\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}} + \mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]'[\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}} + \mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]$$ $$= (\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}})'(\mathbf{Y} - \mathbf{Z}\hat{\boldsymbol{\beta}}) + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$ $$= \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$$ Using the results above, we obtain the likelihood $$L(\boldsymbol{\beta}, \boldsymbol{\Sigma}) = \prod_{j=1}^{n} \frac{1}{(2\pi)^{m/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})' \boldsymbol{\Sigma}^{-1}(\mathbf{y}_{j} - \boldsymbol{\beta}' \mathbf{z}_{j})}$$ $$= \frac{1}{(2\pi)^{mn/2}} \frac{1}{|\boldsymbol{\Sigma}|^{n/2}} e^{-\frac{1}{2} \text{tr}[\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}} + (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{Z}' \mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]}$$ $$= \frac{1}{(2\pi)^{mn/2}} \frac{1}{|\boldsymbol{\Sigma}|^{n/2}} e^{-\frac{1}{2} \text{tr}[\boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{\varepsilon}}' \hat{\boldsymbol{\varepsilon}}] - \frac{1}{2} \text{tr}[\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})' \mathbf{Z}']}$$ The matrix $\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'$ is the form $\mathbf{A}'\mathbf{A}$, with $\mathbf{A} = \boldsymbol{\Sigma}^{-1/2}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'$, and, from Exercise 2.16, it is nonnegative definite. Therefore, its eigenvalues are nonnegative also. Since, by Result 4.9, $\mathrm{tr}[\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}']$ is the sum of its eigenvalues, this trace will equal its minimum value, zero, if $\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}$. This choice is unique because \mathbf{Z} is of full rank and $\hat{\boldsymbol{\beta}}_{(i)} - \boldsymbol{\beta}_{(i)} \neq \mathbf{0}$, implies that $\mathbf{Z}(\hat{\boldsymbol{\beta}}_{(i)} - \boldsymbol{\beta}_{(i)}) \neq \mathbf{0}$, in which case $\mathrm{tr}[\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\boldsymbol{\Sigma}^{-1}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'\mathbf{Z}'] \geq \mathbf{c}'\boldsymbol{\Sigma}^{-1}\mathbf{c} > 0$, where \mathbf{c}' is any nonzero row of $\mathbf{Z}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})$. Applying Result 4.10 with $\mathbf{B} = \hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}$, b = n/2, and p = m, we find that $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\Sigma}} = n^{-1}\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}$ are the maximum likelihood estimators of $\boldsymbol{\beta}$ and $\boldsymbol{\Sigma}$, respectively, and $$L(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\Sigma}}) = \frac{1}{(2\pi)^{mn/2}} \frac{(n)^{mn/2}}{|\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}}|^{n/2}} e^{-nm/2} = \frac{e^{-nm/2}}{(2\pi)^{mn/2}|\hat{\boldsymbol{\Sigma}}|^{n/2}}$$ It remains to establish the distributional results. From (7-33), we know that $\hat{\boldsymbol{\beta}}_{(i)}$ and $\hat{\boldsymbol{\varepsilon}}_{(i)}$ are linear combinations of the elements of $\boldsymbol{\varepsilon}$. Specifically, $$\hat{\boldsymbol{\beta}}_{(i)} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\boldsymbol{\varepsilon}_{(i)} + \boldsymbol{\beta}_{(i)}$$ $$\hat{\boldsymbol{\varepsilon}}_{(i)} = [\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon}_{(i)}, \qquad i = 1, 2, ..., m$$ Therefore, by Result 4.3, $\hat{\boldsymbol{\beta}}_{(1)}$, $\hat{\boldsymbol{\beta}}_{(2)}$,..., $\hat{\boldsymbol{\beta}}_{(m)}$, $\hat{\boldsymbol{\varepsilon}}_{(1)}$, $\hat{\boldsymbol{\varepsilon}}_{(2)}$,..., $\hat{\boldsymbol{\varepsilon}}_{(m)}$ are jointly normal. Their mean vectors and covariance matrices are given in Result 7.9. Since $\hat{\boldsymbol{\varepsilon}}$ and $\hat{\boldsymbol{\beta}}$ have a zero covariance matrix, by Result 4.5 they are independent. From the proof of Result 7.4, $[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'] = \sum_{\ell=1}^{n-r-1} \mathbf{e}_{\ell}\mathbf{e}'_{\ell}$, where $\mathbf{e}'_{\ell}\mathbf{e}_{k} = 0$, $\ell \neq k$, and $\mathbf{e}'_{\ell}\mathbf{e}_{\ell} = 1$. Set $\mathbf{V}_{\ell} = \boldsymbol{\mathcal{E}}' \mathbf{e}_{\ell} = [\boldsymbol{\varepsilon}'_{(1)} \mathbf{e}_{\ell}, \boldsymbol{\varepsilon}'_{(2)} \mathbf{e}_{\ell}, \dots, \boldsymbol{\varepsilon}'_{(m)} \mathbf{e}_{\ell}]' = e_{\ell 1} \boldsymbol{\varepsilon}_{1} + e_{\ell 2} \boldsymbol{\varepsilon}_{2} + \dots + e_{\ell n} \boldsymbol{\varepsilon}_{n}$. Because \mathbf{V}_{ℓ} , $\ell = 1, 2, \dots, n - r - 1$, are linear combinations of the elements of $\boldsymbol{\mathcal{E}}$, they have a joint normal distribution with $E(\mathbf{V}_{\ell}) = E(\boldsymbol{\mathcal{E}}') \mathbf{e}_{\ell} = \mathbf{0}$. Also, by Result 4.8, \mathbf{V}_{ℓ} and \mathbf{V}_{k} have covariance matrix $(\mathbf{e}'_{\ell}\mathbf{e}_{k})\boldsymbol{\Sigma} = (0)\boldsymbol{\Sigma} = \mathbf{0}$ if $\ell \neq k$. Consequently, the \mathbf{V}_{ℓ} are independently distributed as $N_{m}(\mathbf{0}, \boldsymbol{\Sigma})$. Finally, $$\hat{\boldsymbol{\varepsilon}}'\hat{\boldsymbol{\varepsilon}} = \boldsymbol{\varepsilon}'[\mathbf{I} - \mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}']\boldsymbol{\varepsilon} = \sum_{\ell=1}^{n-r-1} \boldsymbol{\varepsilon}'\mathbf{e}_{\ell}\mathbf{e}'_{\ell}\boldsymbol{\varepsilon} = \sum_{\ell=1}^{n-r-1} \mathbf{V}_{\ell}\mathbf{V}'_{\ell}$$ which has the $W_{p,n-r-1}(\Sigma)$ distribution, by (4-22). ### **Proof of Result in Chapter 10** **Proof of Result 10.1** We assume that Σ_{11} and Σ_{22} are nonsingular.¹ Introduce the symmetric square-root matrices $\Sigma_{11}^{1/2}$ and $\Sigma_{22}^{1/2}$ with $\Sigma_{11} = \Sigma_{11}^{1/2} \Sigma_{11}^{1/2}$ and $\Sigma_{11}^{-1} = \Sigma_{11}^{-1/2} \Sigma_{11}^{-1/2}$. [See (2-22).] Set $\mathbf{c} = \Sigma_{11}^{1/2} \mathbf{a}$ and $\mathbf{d} = \Sigma_{22}^{1/2} \mathbf{b}$, so $\mathbf{a} = \Sigma_{11}^{-1/2} \mathbf{c}$ and $\mathbf{b} = \Sigma_{22}^{-1/2} \mathbf{d}$. Then $$Corr(\mathbf{a}'\mathbf{X}^{(1)}, \mathbf{b}'\mathbf{X}^{(2)}) = \frac{\mathbf{a}'\Sigma_{12}\mathbf{b}}{\sqrt{\mathbf{a}'\Sigma_{11}\mathbf{a}}\sqrt{\mathbf{b}'\Sigma_{22}\mathbf{b}}} =
\frac{\mathbf{c}'\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1/2}\mathbf{d}}{\sqrt{\mathbf{c}'\mathbf{c}}\sqrt{\mathbf{d}'\mathbf{d}}}$$ (1) By the Cauchy-Schwarz inequality (2-48), $$\mathbf{c}' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{d} \le \left(\mathbf{c}' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1/2} \mathbf{c} \right)^{1/2} (\mathbf{d}' \mathbf{d})^{1/2}$$ (2) Since $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}$ is a $p \times p$ symmetric matrix, the maximization result (2-51) yields $$\mathbf{c}' \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1/2} \mathbf{c} \le \lambda_1 \mathbf{c}' \mathbf{c}$$ (3) where λ_1 is the largest eigenvalue of $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{21}^{-1}\Sigma_{11}^{-1/2}$. Equality occurs in (3) for $\mathbf{c} = \mathbf{e}_1$, a normalized eigenvalue associated with λ_1 . Equality also holds in (2) if **d** is proportional to $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_1$. Thus, $$\max_{\mathbf{a},\mathbf{b}} \operatorname{Corr}(\mathbf{a}'\mathbf{X}^{(1)},\mathbf{b}'\mathbf{X}^{(2)}) = \sqrt{\lambda_1}$$ (4) with equality occurring for $\mathbf{a} = \Sigma_{11}^{-1/2} \mathbf{c} = \Sigma_{11}^{-1/2} \mathbf{e}_1$ and with **b** proportional to $\Sigma_{22}^{-1/2} \Sigma_{21}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1/2} \mathbf{e}_1$, where the sign is selected to give positive correlation. We take $\mathbf{b} = \Sigma_{22}^{-1/2} \mathbf{f}_1$. This last correspondence follows by multiplying both sides of $$(\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2})\mathbf{e}_1 = \lambda_1\mathbf{e}_1$$ by $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}$, yielding $$\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1/2}(\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_{1}) = \lambda_{1}(\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_{1})$$ (5) Thus, if $(\lambda_1, \mathbf{e}_1)$ is an eigenvalue-eigenvector pair for $\Sigma_{11}^{-1/2}\Sigma_{12}\Sigma_{21}^{-1}\Sigma_{21}\Sigma_{11}^{-1/2}$, then $(\lambda_1, \mathbf{f}_1)$ —with \mathbf{f}_1 the normalized form of $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1/2}\mathbf{e}_1$ —is an eigenvalue-eigenvector pair for $\Sigma_{22}^{-1/2}\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1/2}$. The sign for \mathbf{f}_1 is chosen to give a positive correlation. We have demonstrated that $U_1 = \mathbf{e}_1'\Sigma_{11}^{-1/2}\mathbf{X}^{(1)}$ and $V_1 = \mathbf{f}_1'\Sigma_{22}^{-1/2}\mathbf{X}^{(2)}$ are the first pair of canonical variables and that their correlation is $\rho_1^* = \sqrt{\lambda_1}$. Also, $\mathrm{Var}(U_1) = \mathbf{e}_1'\Sigma_{11}^{-1/2}\Sigma_{11}\Sigma_{11}^{-1/2}\mathbf{e}_1 = \mathbf{e}_1'\mathbf{e}_1 = 1$, and similarly, $\mathrm{Var}(V_1) = 1$. Continuing, we note that U_1 and an arbitrary linear combination $\mathbf{a}'\mathbf{X}^{(1)} = \mathbf{c}' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$ are uncorrelated if $$0 = \text{Cov}(U_1, \mathbf{c}' \Sigma_{11}^{-1/2} \mathbf{X}^{(1)}) = \mathbf{e}'_1 \Sigma_{11}^{-1/2} \Sigma_{11} \Sigma_{11}^{-1/2} \mathbf{c} = \mathbf{e}'_1 \mathbf{c}, \text{ or } \mathbf{c} \perp \mathbf{e}_1$$ At the kth stage, we require that $\mathbf{c} \perp \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{k-1}$. The maximization result (2-52) then yields $$c' \Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1/2} c \leq \lambda_k c' c \quad \text{for } c \perp e_1, \dots, e_{k-1}$$ ¹ If Σ_{11} or Σ_{22} is singular, one or more variables may be deleted from the appropriate set, and the linear combinations $\mathbf{a}'\mathbf{X}^{(1)}$ and $\mathbf{b}'\mathbf{X}^{(2)}$ can be expressed in terms of the reduced set. If $p > \text{rank}(\Sigma_{12}) = p_1$, then the nonzero canonical correlations are $\rho_1^*, \ldots, \rho_{p_1}^*$. and by (1), $$\operatorname{Corr}(\mathbf{a}'\mathbf{X}^{(1)},\mathbf{b}'\mathbf{X}^{(2)}) = \frac{\mathbf{c}'\boldsymbol{\Sigma}_{11}^{-1/2}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1/2}\mathbf{d}}{\sqrt{\mathbf{c}'\mathbf{c}}\sqrt{\mathbf{d}'\mathbf{d}}} \leq \sqrt{\lambda_k}$$ with equality for $\mathbf{c} = \mathbf{e}_k$ or $\mathbf{a} = \Sigma_{11}^{-1/2} \mathbf{e}_k$ and $\mathbf{b} = \Sigma_{22}^{-1/2} \mathbf{f}_k$, as before. Thus, $U_k = \mathbf{e}_k' \Sigma_{11}^{-1/2} \mathbf{X}^{(1)}$ and $V_k = \mathbf{f}_k' \Sigma_{22}^{-1/2} \mathbf{X}^{(2)}$, are the kth canonical pair, and they have correlation $\sqrt{\lambda_k} = \rho_k^*$. Although we did not explicitly require the V_k to be uncorrelated, $$Cov(V_k, V_\ell) = \mathbf{f}_k' \mathbf{\Sigma}_{22}^{-1/2} \mathbf{\Sigma}_{22} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{f}_\ell = \mathbf{f}_k' \mathbf{f}_\ell = 0, \quad \text{if } k \neq \ell \leq p$$ Also, $$Cov(U_k, V_{\ell}) = \mathbf{e}_k' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2} \mathbf{f}_{\ell} = 0, \quad \text{if } k \neq \ell \leq p$$ • since \mathbf{f}'_k is a multiple of $\mathbf{e}'_k \mathbf{\Sigma}_{11}^{-1/2} \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1/2}$ by (5).