Preface

This solution manual was prepared as an aid for instructors who will benefit by
having solutions available. In addition to providing detailed answers to most of the
problems in the book, this manual can help the instructor determine which of the
problems are most appropriate for the class.

The vast majority of the problems have been solved with the help of available
computer software (SAS, S-Plus, Minitab). A few of the problems have been solved with
hand calculators. The reader should keep in mind that round-off errors can occur—
particularly in those problems involving long chains of arithmetic calculations.

We would like to take this opportunity to acknowledge the contribution of many
students, whose homework formed the basis for many of the solutions. In particular, we
would like to thank Jorge Achcar, Sebastiao Amorim, W. K. Cheang, S. S. Cho, S. G.
Chow, Charles Fleming, Stu Janis, Richard Jones, Tim Kramer, Dennis Murphy, Rich
Raubertas, David Steinberg, T. J. Tien, Steve Verrill, Paul Whitney and Mike Wincek.
Dianne Hall compiled most of the material needed to make this current solutions manual
consistent with the sixth edition of the book.

The solutions are numbered in the same manner as the exercises in the book.
Thus, for example, 9.6 refers to the 6™ exercise of chapter 9.

We hope this manual is a useful aid for adopters of our Applied Multivariate
Statistical Analysis, 6" edition, text. The authors have taken a little more active role in
the preparation of the current solutions manual. However, it is inevitable that an error or
two has slipped through so please bring remaining errors to our attention. Also,
comments and suggestions are always welcome.

Richard A. Johnson
Dean W. Wichern
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1.2

Chapter 1

x1 ="4.29 x2 = 6.29

su = 4,20 522 = 3.56 s.‘2 = 3.70
a) ,
" Scatter Plot and Marginal Dot Plots
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b) s12 is negative

c) v
X, =5.20 x,=12.48 5, =3.09 8§y =35.27
5, =—15.94 r, =—98
Large x; occurs with small x; and vice versa.

d)

5207 309 —15.94 1 -.98
X = S" = R= .
12.48 —15.94 527 —98 1

-



6 16 4 -1.4 1
S = 8 1.2
2 (symmetric) 2 |

577
R = -‘
L{symmetric)

1.4  a) There is a positive correlation between x; and x,. Since sample size is
small, hard to be definitive about nature of marginal distributions.
However, marginal distribution of x; appears to be skewed to the right. -

The marginal distribution of x, seems reasonably symmetric.

Scatter Plot and Marginal Dot Plots
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b) :
5c', =155.60 x, =14.70 5, =82.03
=273.26 r, =.69
Large profits (x2) tend to be associated w1th large sales (x;); small profits
with small sales.

5y, =4.85

-.40
.300



15 a) There is negative correlation between x, and x; and negative correlation
between x; and x3. The marginal distribution of x; appears to be skewed to
‘the right. The marginal distribution of x, seems reasonably symmetric.
The marginal distribution of x; also appears to be skewed to the right.
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1-5 b)
['155.60 82.03
x=| 14.70 S, = 273.26
71091 1-32018.36
M1 69 -85
R=| .69 1 -42
-85 -42 1
1.6 a) Histograms
x,
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w6 v [757] [zwm -2ne -39 -4%2 S571 -2.79 167 |
73.857 293.360  3.816 -1.354  6.602  30.058  .609
4.548 1.486  .658  2.260  2.755  .138
5= | 2091 |- | 1.1 1.062 . -.791 72
10.048 - 11.093  3.052 1.018
9.405 . | 30.241  .580
L 3.095 h L(‘synmetr‘ic) , | .467
1 -0 -.194 =270  -.110  -.254 156 |
1 183 -.074 116 .319 .052
1 .502 .557 411 .166
R = B 207 © -.13%  .235
1 167 .448
1 .154
L_(symmetric) ! i

The pair Xq» Xy exhibits a small to moderate positive correlation and so does the

pair Xq» x‘s. Most of the entries are smail.

1.7 i

a) ' b) 3
Xam : A
4 L o4 [ } 4 3 o0
2 E o [
®
: t > X1
2 4

Scatter plot
(variable space)




1I8

1.9

using (1-12) d(P,Q) = J(1-1)%+(- 1-0)2 /5 = 2.236

Using (1-20) d(P.Q) RVATRRITETUTEE 1)(1-0)4—2#-1-0) /32 = 1.388
Using (1-20) the locus of points a constant squared distance 1 from Q = (1 ,0)

is given by the expression —(x 1%+ -'(X]-T)X é; x, = 1. To sketch the

locus of points defined by th1s equation, we first obtain the coordinates of

some points satisfying the equat1on
(-1,1.5), (0,-1.5), (0,3), (1,-2.6), (1,2.6), (2.-3), (2,1.5), (3,-1. 5)

The resulting ellipse is:

X,
a) S41 = 20.48 29 =6.19 S12 = 9.09
X2 4
5 4 °
[ J
®
[ .~ :
t } } }—> X
-10 -5 ol . 5 10 1
®
[ ]
"5 qr




1.9

1.10

1.1

b)

c)

d)

a)

b)

321‘-6.20 2410 -1.23 37 2.73 4.83 7.70  8.43

22‘ 127 1.0 1.87 -1.37 .73 -1.63 1.33 -1.40

§11 = 24.90 §22 = 1.77 (Note §12 = .QO)

(i1'22) = (2.72, -3.55)

"d(0,P) = 2.72 using (1-17).

d(0,P) = 2.72 using (1-19).

P +3 : - 1 = =l =
This equation is of the form (1 19) with a7 1,373 and 2y, = 4.

Therefore this is adistance for correlated variables if it is non-negative

for all values of Xy Xge But this follows easily if we write

2 2 e L1 (215 2

X] + 4xp + xpxg = (X * ) * 7 Xp 2.0

In order for this expression to be a distance jt has to be non-negative for
. _ 2 .2 _

all values Xy» Xg- Since, for (x1,x2) = (0,1) we have x1-2x2 = -2, we

conclude thatAthis is not a valid distance function.

4(PQ) = ATyl 2N (X ¥ U] + (k)

= my]'x'l)z + 2(‘1)()’]"(] ),(yZ‘xz) + (xz'yZ)z‘ = d(Q’P)
Next, & (x;-y;)% = 2(y-yy) (xgy,) * (goyp)” =
=\(x]-y.l-x2+y2)2' + 3(x]-_v])2 >0 so d(P,Q) >0.

The second term is zero in this last expression only if X =¥ and

then the first is zero only if X, = Yo



112 a) If P = (-3,8) then d(0,P) =max (]-3],]4]) = 4

b) The locus of points whose squared distance from (0,0) is 1 i‘s

1

1

+

¢) The generalization to p-dimensions is given by d(0,P) = max(|x] [-,Ile,...,lxpl).

113 Place the facility at C-3.



1.14 a)

360.+ Xa
- .
320.+
- :
- :
2 .+
280.+ . .
- x
- x ®
- ® %
240.+ %
- s
- R i ®
- % x
- z %
200.+ ¢ *x
- *
-  J
160.+
" + 4 S + +. X,
130 1sS. 180, 20s. 230, 2ss. :

 strong positive correlation. No obvious "unusual®™ observations.

b) Multiple-sclerosis group.

42.07
179.64
12.31
236.62
13.16

[ ]
L]

116. 91 61.78 -20.10 61.13 -27.65

812.72 218.35 865.32 90.48

S = ' 305.94 221.93 286.60
1146.38 82.53

{symmetric) 337.80



-. 106
.438
1
(symmetric)

Non mu]tiple-sderos‘isv group.

37.99
147.21
1.56
195.57
1.62

- 273.61  95.08
110.13
Sn =
_ (symmetric)

R 1)
n

.239
132

{symmetric)

5.28
1.84
1.78

167 -.139
8%  .173
375 .8®
1 .133
B
101.67
103.28
2.22
183.04 -
454 .127
727 .134
123 .244
1 R

3.20
2.15

2.35
2.32

10



1.15 a) Scatterplot of x, and Xq.
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1.15 4.61 74 .58 .27 1.06 .15
.61 1 A2 .39 -.02
.57 .09 .34 A1

Sh T R .21 .02

_ - .85  -.0
(symmetric) : 85
R 651 .362  .386  .537  .077

) .187 .455 .535  -.035

1 .36 .49  .156

R = : 1 704 .07
] -.0]0 '

(symmetric) 1

The largest correlation is between appetite and amount of food eaten.
Both activity and appetite have moderate positive correlations with
symptoms. Also, appetite and activity have a moderate positive

correlation.



1.16
There are significant positive correlations among all variables. The lowest correlation is

0.4420 between Dominant humerus and Ulna, and the highest correlation is 0.89365 bewteen
Dominant hemerus and Hemerus. _

0.67789

(0.8438 1.00000 0.85181 0.69146 0.66826 0.74369
0.8183 0.85181 1.00000 0.61192 0.74909 0.74218 0.80980
% = 1.7927 R = 0.69146 0.61192 1.00000 0.89365 0.55222 0.44020
1.7348 |’ 0.66826 0.74909 0.89365 1.00000 0.62555 0.61882
0.7044 0.74369 0.74218 0.55222 0.62555 1.00000 0.72889
\0.6938 0.67789 0.80980 0.44020 0.61882 0.72889 1.00000
[0.0124815 0.0099633 0.0214560 0.0192822 0.0087559 0.0076395
0.0099633  0.0109612 0.0177938 0.0202555 0.0081886 0.0085522
S. = 0.0214560 0.0177938 0.0771429 0.0641052 0.0161635 0.0123332
I 0.0192822 0.0202555 0.0641052 0.0667051 0.0170261 0.0161219
0.0087559 0.0081886 0.0161635 0.0170261 0.0111057 0.0077483
\0.0076395 0.0085522 0.0123332 0.0161219 0.0077483 0.0101752
1.17
There are large positive correlations among all variables. Particularly large
correlations occur between running events that are “similar”, for example,
the 100m and 200m dashes, and the 1500m and 3000m runs. .
T 11.367 [ 152 338 .875 027 .082 230 4.254]
23.12 .338 847 2.152 .065 .199 544 10.193
51.99 875 2152 6.621 .178 .500 1400 28.368
x=| 202 Sa=| 027 065 .178 .007 .021 -.060 1.197
4.19 ' .082 199 500 021 .073 212 3474
9.08 230 544 1400 .060 .212 .652 10.508
153.62 | | 4.254 10.193 28368 1.197 3.474 10508 265.265 |
[1.000 .941 .871 .809 782 7728 .669 ]
941 1.000 .909 .820 801 .732 .680
871 .909 1.000 .806 .720 .674 .677
R =|.809 .820 .806 1.000 .905 .867 .854
782 .801 .720 .905 1.000 .973 .791
728 732 .674 .867 973 1.000 .799
669 680 677 854 .791 .799 1.000 |




1.18

There are positive correlations among all variables. Notice the correlations
decrease as the distances between pairs of running events increase (see the first
column of the correlation matrix R). The correlation matrix for running events
measured in meters per second is very similar to the correlation matrix for the

. running event times given in Exercise 1.17.

r8.817 091 .096 .097 .065 .082
8.66 096 .115 .114 075 .096
7.71 097 114 .138 .081 .095
%=| 6.60 S,=|.065 075 .081 .074 .086
5.99 082 .096 .095 .086 .124
5.54 092 .105 .108 .100 .144
| 4.62] .081 .093 .102 .094 .118
[1.000 .938 .866 .797 .776 .729 .660]
938 1.000 906 .816 .806 .741 .675|
866 .906 1.000 .804 .731 .694 .672
R=(.797 .816 .804 1.000 .906 .875 .852
776 .806 .731 .906 1.000 972 .824
729 741 694 875 972 1.000 .854
660 675 672 .852 .824 .854 1.000

092
105
.108
100
144
A77
147

.081]
.093
102
094
118
147
167

14
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(2)

1.19

D_RADIUS

RADIUS

J_HUMERUS

D_ULNA

ULNA

D_.RADIVS

RADIUS

HUMERUS

D_HUMERUYS HUMERUS D_ULNA ULNA
UAX
uED
uiN
THAX
: &e Yo
MIN
UAK 7,33
) MED 1.79
MIN . 1.04
HAX .|—|
. uen [
MIN zbl
MAX lal 0.87
NLD 0.71
an L o
MAX
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(b)

1.19




1.20
® ’ (b)
S
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(@) The plot looks like a cigar shape, but bent. Some observations in the lower left hand
part could be outliers. From the highlighted plot in (b) (actually non-bankrupt group -
not highlighted), there is one outlier in the nonbankrupt group, which is apparently
located in the bankrupt group, besides the strung out pattern to the right. '

(b) The dotted line in the plot would be an orientation for the classification.
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1.21

o | 0 o) - o

Outlier Outlier
. X,
°
.
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. :. * ... e %0
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. « . . "
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\
. X, .e5°
(4
. A%

Outlier@

(a) There are two outliers in the upper right and lower right corners of the plot.

e points in the gasoline group are highlighted. The observation in the upper

(b) Only th
he outlier. As indicated in the plot, there is an orientation to classify into two

right is t
- groups.



1.22 o Possible outliers are indicated.

@

Outlier

19

Outliers
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1.24

18

22

Cluster 1

19

Cluster 3

21



Cluster 4

Cluster 5

Cluster 7

He have clustered these faces
in. the same manner as those in
Example 1.12. Note, however,
other groupings are equally
plausible. For instance, utilities
9 and 18 might be switched from
Cluster 2 to Cluster 3 and so
forth.
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We illustrate one cluster of "stars". The remaining stars (not

1.25

shown) can be grouped in 3 or 4 additional clusters.

13

20



1.26 Bull data

S0 52 54 56 58 €0

(8) xBaR R
: ' Breed SalePr YrHgt FtFrBody PrctFFB Frame BkFat SaleHt SaleWt
4.3816 1.000 -0.224 0.525 0.409 0.472 0.434 -0.615 0.487 0.116
1742.4342 -0.224 1.000 0.423 0.102 -0.113 0.479 0.277 0.390 0.317
50.5224 0.525 0.423 1.000 0.624 0.523 0.940 -0.344 0.860 0.368
995.9474 0.409 0.102 0.624 1.000 0.691 0.605 -0.168 0.699 0.555
70.8816 0.472 -0.113 0.523 0.691 1,000 0.482 -0.488 0.521 0.198
6.3158 0.434 0.479 0.940 0.605 0.482 1,000 -0.260 0.801 0.368
- 0.1967 -0.615 0.277 -0.344 -0.168 -0.488 -0.260 1.000 -0.282 0.208
54,1263 0.487 0.390 0.860 0.699 0.521 0.801 -0.282 1.000 0.566
1655.2895 0.116 0.317 0.368 0.5556 0.198 0.368 0.208 0.566 1.000
Sn .
Breed SalePr YrHgt FtFrBody PrctFFB Frame BkFat SaleHt Salelt
9.55 -429.02 2.79 116.28 4.73 1.23 -0.17 3.00 46.32
-429.02 383026.64 450.47 5813.09 -226.46 272.78 15.24 480.56 25308.44
2.79 450.47 2.96 98.81 2.92 1,49 -0.05 2.94 81.72
116.28 5813.09 98.81 8481.26 206.75 51.27 -1.38 128.23 6592.41
4.73 -226.46 2.92 206.75 10.55 1.44 -0.14 3.37 82.82
1.23 272.78 1.49 51.27 1.44 0.85 -0.02 1.47 43.74
-0.17 16.24¢ -0.05 -1.38 -0.14 -0.02 0.0f -0.05 2.38
3.00 480.56 2.94 128.23 3.37 1.47 -0.0% 3.97 145.35
46.32 26308.44 81.72 ©6592.41 82.82 43.74 2.38 145.35 16628.94
L 5:0 ) 5:0 A 7:O ) 8:0 9(‘” . llgb . !SE e
greed || ° 7 (| "°°°° - Breed == e .
- o b o
« g.‘ .
. Frame §.'§ FtFrBody o
j i | §:L! ; 5 \:'.-::.:'.
..s- ...... :3 . i - . o'l .
. . . . =3 1 : .oy s 8
. . < R X -8
4o . . . . BkFat b i . ;1 R S SaleHt Lz
. I | s PR o
. R ° o p : TN
. . |~ ] ! i . &
— =

04 02 03 04 05
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1.27

(a) Correlation r=.173

Scatterplot of Size vs Visitors
2500
2000+
~ 1500- .
k] .
(7] :
- 1000+ .
: & % Smmole
500- N
04 ) S .
0 1 2 3 4 5 6 7 8 9
Visitors

(b) Great Smoky is unusual park. Correlation with this park removed is r = .391.
This single point has reasonably large effect on correlation reducing the positive
correlation by more than half when added to the national park data set.

(¢) The correlation coefficient is a dimensionless measure of association. The
correlation in (b) would not change if size were measured in square miles

instead of acres.



2.1 a)

s

b) i) L =/x'x = /35 =5.916

5 - =
x'y
ii) cos(e) = {T- = ]9—162-,- = .051
A <Ly :

@ = arc cos (.051) = 87°
ii1) projection of y on X is l

"

-t

ey o

K| !

—
b

-




2.2

23

-

c)

e)

b)

c)

d)

SA

-5
20

A'B' =
No.

’2‘
Al =

1

1
c! =

| 4
1=
(AB)' =
B'A' =
AB has

a5

[-15 -9 z}
d)
6§ -1 -6

27

15 -6 6
b) BA=|-9 -1
10 2 -6

c'8 = [12, -7]

.
=A so (A') =A'=A
3] |
3] 2 3
ol 0 70
. ? (C) = 4 ]
2 — -
- 10 ~70
Y % %
LR CH PR P B B BN O
70 70 70 T70
7 8 77 7 16
= 8 4
16 4 1| 7 1N
1 5 2 1 7 1%
4 0 1 3/=|8 4| = (aB)
2 3 7 N

‘(1' ,j)th entry

aybyy * aggbyy vt aik ki léiaiz %3
. o th
Consequent‘ly, (AB)* has (i,J) entry
I 50005 -
has ith row [b‘li’bz'i""'bki] and A* has’ jth

Next 8'



column l:aj1 ,ajz,'-—,ajk]' so B'A' has {i,:j)!‘:h entry
. ' k »
byi2sq *P2iP52 T kit T 12, 359D04 7 €3

since i and J were arbitrary choices, (AB)' = B'A'.

g4 a) I=1' and AT =1= alA Thes T =D (AT =T
and I = (A"]A)' = A'(A'])'. Consequently, (Af‘)' is the inverse
of A' or (a7 = wh'. |
5 W - e = BT = 1 so BB has inverse (he)™ =
' I

g-1a-1. It was sufficient to check for a left inverse but we may

J1so verify AB(BTTATT) = age- it = =1,

2.8 | s 12 [5 2 (182 1 o
|13 T3 |13 13| |1e9 _ L
Q' = = = =Q'Q .
<12 5|12 S o 168 0 1
133 13| |13 13 169 :
2.6 a) Since A=A', A is symmetric.

b) Since the quadratic form

| ' 9 -2ilx \ \
' = = -

= (2x1-xz)z+5(x§+x§) >0 for {x1 ,x2] # [0,0]
we conclude that A fis positive definite.

27 a) CEigenvalues: Xy = 10, X, = 5.
. Normalized eigenvectors: €y = [2/v/5, -1/v/51= (.89, -.447]

ey = [1/¥5, 2//51= [.447, .894]



29

| [9 -2] [z//s] [2//5, -11Y5) [1//5] /5, 2//5]
b) A= =10 +5
2 9 -1//5 a5 |

- . s 2 a2 .04
A= )
c S 9(8)-(-2)(-2) |, o .04 .18

d) Eigenvalues: XAy = 2, 12 = .1

Normalized eigenvectors: gi = [1//5, 2//5]1

ey = [2//5, -1/¥5]

2.8 | Eigenvalues: 11 =2, 7\2 = -3
Normalized eigenvectors: . g; = [2//5, 1/V5]
sé = [1/'/5" ’2//5]

Y f2/8 7 [2/VE, 15 ] yanE. 251
A = = - 3
175 IR Yy 3

) A"ll ' 1 --z -2
2.9 a = ~ =
1(-25-2225 1

b) Eigenvalues: Ay =1/2, }; = -1/3

Normalized eigenve.ctors: 51' = [2//5, 1/75]

1 1
3 3

-1, =1

C) A - l "l 2
v 3 6

e, = (1/Y/5, 2181

25 [2vs, AWED [ BT, 21/
1//5 N-ars]|



2.10

2.11

: . |‘ 4.002001 -4.001§
B = 3(2.002001)-(4.001)% 4001 4
4.002001 -4.001
= 333,333
. -4.001 4
. 4.002 -4.001
Al = 1 ‘
" 4(4.002)-(4.001)* | _4.001 4

. 4.002 -4.001
-1,000,000
-4.001 &

Thus AV 2 (-3)87]

With p = 1, lalll = a;; and with p = 2

i 0

= 21425, - 000) = apq35,
0 322

Proceeding by induction,we assume the result holds for any

(p=1)x(p-1) diagonal matrix Ay;. Then writing

'h11 0 *°* 0]
A =10
(pxp) | : A
0 |

we expand |A| according to Definition 2A.24 to find
|Al =2y, |Ajq] +0+ "+ 0. Since [Aq ] = 25333ttt 2,
by the induction hypothesis, |A| = a]](azza33.--- app) =

311322233 °°" ¥pp°



2.12

2.14

2.16

2.18

31

By (2-20), A = PAP' with PP' =P'P = I. From Result 2A.11(e)
|A] = |P| 1Al IP'] ='IA|. Since A is a diagonal matrix with
diagonal elements A1,A2,...,1 , we can apply Exercise 2.11 to

p
get [A] = [A] = T ..
i=]

P

Let A be.an eigenvalue of A. Thus 0= [A-AI|. If q .is
orthogonal, Q@' =1 and [Q]|Q'] = 1 by Exercise 2.13. - Using
Result 2A.11(e) we can then write |

0 = [q] [A-a1] |Q'] = |QAQ"-AI]
and it follows that A is also an eigenvalue of QAQ' if Q s

orthogonal.

(A'A)' = A*(A')' = A'A showing A'A is symmetric.

- [n]
-yp-

and A'A is non-negative definite by definition.

4 -7
Write c2 = x'Ax with A = | jl. The eigenvalue-normalized
eigenvector pairs for A are:

M o= 2, e = [.577, .816]

A, =5, & =[.816, -.577]

.For c® =1, the half lengths of the major and minor axes of the

ellipse of constant distance are

£ - i .707 and

1
a2 s 8

respectively. These axes lie in the directions of the vectors al

and & respectively.



2.20

32

For ¢2 = 4, the half lengths of the major and minor axe$ are

As c? increases the lengths of the major and minor axes increase.

Using matrix A in Exercise 2.3, we determine

1-' = 1'382' SI = [-8507’ -.5257]'
Ay = 3.618, &, = [.s5257, .8507]"
We know

1.376 .325]

V2 ~ :
A = /i, e, 8! + VX, e, el =
114 2 <22 [ 325 1.701

RV 1 | 7608 -.1453
——e +-———e =

/a1 A, -.1453 615§

We check

10
J1/2 4112 g[ J _ V2 12
| 0

aned
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2.21 (a)
1 1
1 2 2 91
AA= [ ] 2 2| = [ ]

1 -2 2 [2 2} 19
0=|A'A-AI|=(9-))2-1=(10—-X)(8— -}) ,so /\1 =10 a.nd Ay =
Next, ,

€1 _ € . _ 1/\/§
_[62] = 10 [62] gives elv— [ 1/\/5]

[13] [2] = s[2] o= - [ 03]

(b)
1 1 . 2 0 4
AA'=|2 —2 [}_g g] = |loso
2 2 408]
A 0 4
=|AA =) | = 0 8-X 0
4 0 8-
=(2—)\)(8—A) 42(8 /\)“(8 /\()\ 10) so A\; =10, A = 8, and
/\3=0. .

A
2 0 4 e
0 80 e 10
4 0 8 €3

[ 1
ives deg = Be so ege= —1| 0
& 862 = 10e €2 1= \/5 L2

2047 [er er ]
0 80 e = 8 | e

4 0 8 €3 € |
ives de3 = Gey SO ey = (1)

&l 481 — 0 2 =

Also, e3 =[-2/v5,0,1/v5 ]




34
{0
11 % 1 1 ’ 0 1 .1
2 =2 =VI0| 0| [% #]+ VB|1|[% ~%]
2 2 % 0 |

2.22 (a)

(4 3 |
,_[48 8 _ [ 144 -1
AA'[s 6 -9] [g _g] = [—12 126]

0=[AA'=AT|= (144 - ))(126 — \) — (12)2 = (150 — A)(120— }) , s0
A1 = 150 and A2 =120. Next,

[25] (2] - w[a] ane o= [2F]
~ and Ay = 120 gives e, = [1/v/5,2/v/5 ]'

(b)
T4 3 2% 50 5
AA=|8 6 [g : _S] = |50 100 10
8 -9 5 10 145
| 25 — A 50 5
0=|A’A=AI|=| 50 100-2A 10 | = (150 — A)(A — 120)
5 10 145

so Ay = 150, A2 =120, and A3 = 0. Next,

25 50 5 e | (41
50 100 10 | e = 150 [ €2
5 10 145 €3 ’
1
. —120e; + 60e; =0 _ 1,
gives —2561 + Ses =0 or e; = ‘/5(—, [ J

25 50 5 e (2}
50 100 10 e = 120 | e
5 10 145 e3
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. 60e; -+ 60e; =0 _ 1
EVE _1%0e, + —240e5 =0 O 2% '\/—g[ f}

AISO, €3 = [2/\/57 —1/\/5’ 0]' |

()
48 8]
13 6 =9
2 1 .
= vE| _F |5 % F) - D[ F] (% & - %)
V5 V5
2.24 .
1 0 0 l] =4, & = 1,0,0]'
a4 . - \
a) t =1 0 ) 0 b) 1z = 9’ 52 = [0,1,0]
o 0 1 Ay =1, e3=1[0,0,]

) For i Ay =1/8, g = [1,0,00"
=1/9, e, = [0,1,0]"
)\3 = ]’ fé = [0309]]l



2.25

5 0 0 1 -1/s 4187 - [0 -2 .26
g WZ-lo 2 ofsp=|-us v we|= -2 1 a8
0 0 3 415 1/6 1 ;267 167 1
b) vllzev'l/Z-
s g o1 1 ~-1/5 4/15] [5 0 O 5 -1 43][5 00
0o 2 ofl-is 1 we||o 2z of=|-2/5 2 131020
o o 3lLans 176 1 003 as 172 3dLlo o 3
25 -2 4
= [-2 4 ;]:#
4 1
2.26 a) P13 = 013/ ;Hzo';éz = 4)¥75 /3 = 4/15 = .267

b) Write Xy = 1-X +0-X;+0X3 = ciX with ¢ = [1,0,0]

—.

l.x +lX3 = Sé} with C [03 7 2]

272 2
Then Var(X1) =0y = ZS.V By (2-43), .
Va,.(_;_xz;_;_xa) e T +Roptgoy ] *%f%
.= ‘—5- = 3.75
By (2-45), (see also hint to Exercj#g é.28),
(:ov(;(P]z-X1 :',_ tc .-.%-. 2+1§013=-l»+2=]

S0

36



2.27

2.29

a)
b)
c)
d)

e)

Ctn'r(x.l . %X.l t 5

By = Bps Oy
My * 3y Oy
My Uy Fus

l-!1 +'2u2 -. u3-

3up - 4y Sogy * 1695

+ 4o

1

22

X

1

1
7%

)

2)

- 4972

+ 905, - 69y,

o171 ¥ %2

1

since °12 =0.

Oyq tAogy * 033 + 40y, - 2043 - 4953

Kar(x) AarLn, + 11,) ST

37

= .103

.
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231 ()
px®=u=[3] © au=1 2115
| (c)
Cov(X(l))=2u=[g (1)] |
@
COV(Ax(U):AzuA':U ~1] [g ‘1)] [_”=4
(e)
axresrf] 0 a3 1)
(e) | |
Cov(X® ) = Sy = [ _ 'i]
| (h)
e[ 1] 23] [20]-[57]
o |
cov(xm,x(?)):[f (2)]
@

Cov(AX®W,BX®) = AZ;,B' =1 ~-1] [f 3] [_*’1‘ 2]:{0 2
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2.32 ()
A IELAR B R
(c)
Cov(X(l))=2u.___[_‘11 —;]
(d)

COV(A.X )—AzuA = [ 1 1 ] [ 1 3 i1 _ 9 1

(e)

Cmeneee[3] man- LR

(8)

6 1 -1
-1 0 2

(b)
Cov(BX® ) = BEy,B' -
11 1 61 -1] [1 1 5 o
=11 -2 14 0 11| = | %
-10 2 1 -2
{i)
(0 x 1 -1o0
crERE )=[1 -1 0]
t)

Cov(AX ™, BX®) = ATy, B



2.33 (a)
,E[X(l)]__:“{l):[ Z] (b) A[J.(l)=[2 -1 O]IV i] = [0]
| -1 1 13 -1 3
()

4 -1
Cov(XM)=%=|-1 31
1

(d)
Cov(AX™ )= AT A’ .

1
-;— 1 6 0 3 :

(o) |
| E[X(z)]:.“(z):[gj (£) Bn‘2)= [i -f”g];‘[g]

-~ (g)

 Cov(X® ) =3y = [3 g]

(h)

@ _ 1 2] 40 1 1) _ 120}
Cov(BX )—Bzz:zB—[l _1} [0 2 2 -1} 06



()

1

P

 Cov(XW, x®) = [ -1
1

Cov(AX™, BX®) = AZ,B'

I )
_[2 = 0] 1 [1 1
1 13 1 -1 9 -1

|

|

0 O
—-4.5 4.5

|

41



4+1+16+0=21, g'd=15 and b'd = -2-3-8+0 = -13

2.34 b'b =
(b'd)? = 169 < 21(15) = 315
2.35 b'd = -4+3 = -

2 2] [ a1

s/6 26 [ 1
¢85l = DT | g g6 (|1 | = 18

so 1= (b'd)? < 125 (11/6) = 229.17

4z + 422 + 62,2, = X'Ax where A = ( ; Z ) .

— 2 - z — . —_— ’ .
(4—-2)*-32=0gives \; = 7,12 = 1. Hence the maximum is 7 and the minimum is 1.

2.36

x'A

~

£

= 1]

2.37 From (2-51), x  x'Ax = max —=

1 xp0 X

D

where l] js the largest eigenvalue of A. For A given in
Exercise 2.6, we have from Exercise 2.7, A s 10 and

e! = [.894, -.447]. Therefore max x'Ax =10 and this
=1 x'xel T 7

maximum is attained for X = 2.

2.38 .
Using computer, A; = 18, A; =9, A3 = 9. Hence the maximum is 18 and the minimum is 9.



1
241 (a) EAX)=AEX)=Ay, =|1
3

| | 6 0 0

() Cov(AX)=ACow(X)A’=A%,A’=|0 18 0

0 0 36

(c) All pairs of linear combinations have zero covariances.

| 1
242 (@) E(AX)=AEX)=Ay, =|1

3
4 0 O
() Cov(AX)=ACov(X)A’=AX,A’=[0 12 0
0 0 24

(c) All pairs of linear combinations have zero covariances.

43



3.1

3.2

a)

c)

a)

c)

Chapter 3

t %)

-

5 |
=[ ] b) & =y -kl =0 4T

& = fp-%l =01 10T

L =/32; L =42
& TTe

Let 8 be the angle between & and gy then cos {8) =

-4/v32%x2 = =.5

= . = 2 - .
or S4q = 32/3; nsy, =L, or Sy = 2/3;

CZ g2
Therefore n 11 ¢ Le e,

<1

ns;, e e, or s, = -4/3. Also, r, =cos (8) = -.5. Conse-

: 32/3 -4/3 . 1 -.5
quently Sn = and R = 5 1 .
-4/3 2/3 -

4
H SR SR

L ="5'; L =/18

5 %
Let & be the angle between & and 255 then cos (8) =
-9//6 x 18 = -.866 .

. = = D g =12
or sn—6/3-2,nszz_l.£

or s,,; =
€y 22

[’ = 2
Therefore n s.n LS]

2 -3 1 -.866
and R =
-3 ' s : ";86’6 1 .

=18/3 =63 n §12 =75-; e, or ?512

cos (8) = -.866. <Consequently Sh



3.3

3.5

3.6

Thus
A 1 3
Yy = 4| =1 3

-9/2

11

-2
1

| - - f
y] = [1, 4, 4].; x]l = [3, 3, 31; !] - x'l 1 =[-2,1,1]

= K1y -k )

3
so S = and |S] = 27/4
-9/2 9 .

1x

, 3 0 -3
a) . 1x=]0 11 . Thus &, = [-3,0,-3],

3 -1 2

¢, =1{0,1,-1] and ¢, = [-3,1,2].

Since d, = d, = g, the matrix of deviations is not of full rank.



b) 18 -3 15
25 = (X-1xY(X-1xh=|-3 2 -
| 15 -1 14
So
9 -3/2 15/2

S = -3/2 1 -1/2
15/2 -1/2 7

Is| = 0 (Verify). The 3 deviation vectors lie in a 2-dimensional

subspace. - The 3-dimensional vo]ume;enclosed by the deviation

- vectors is zero.
c) Total sample variance = 9 +1 +7 =17.

3.7 A1l ellipses are ‘centered at g .

[5 4] 4 [ 5/9 -4/9]
'i) For S = ’ S =1
4 5 -4/9 5/9

Eigenvalue-normalized eigenvector pairs for S" are:

Al ]’ sﬂ; = [.707, '.707]

A, =1/9, &, = [.707, .707]

Half 1engthvs of axes of ellipse  (x- )':)'S"(gg_-:'() <1
are 1//A{ =1 and 1//x; = 3 respectively. The major axis
of ellipse lies 1in the direction of 53 _the minor axis

lies in the direction of e -

5 -4 | 5/9 4/9
if) For S = [ , S"I = / : /
-4 5 a9 5/9 |

Eigenvalue-normalized eigenvectors for S"I are:

A =1, e = [.707, 7071

Xy = 1/9, e, = [.707, -.107]

46



3.8

a)

b)

iii)

- Eigenvalue-normalized eigenvector pairs for s”

Half lengths of axes of ellipse (E-g)fS"l (5-3) <1 are,
again,.I/JX; =1 and I/Ji; = 3, The major axes of the
ellipse lies in the direction of €5 the minor axis lies

in the direction of e- Note that e, here is e] in

‘part (i) above and e, here is ‘&, in part (i) above.

3 0 -1 1/3 0
For S = s S = -
0 3 0 1/3

! are:

. ! - .
11 = 1/3; 4 01, o]
Ay =173, & =10,1]
Half lengths of axes of ellipse (x '-?_)'S"I (5-2) <1 are
equal and given by 1//X{ = IIJTE = /3, Major and minor
axes of ellipse can be taken to lie in the dfrections of the

coordinate axes. Here, the solid ellipse is, in fact, é solid

sphere.

Notice for all three cases S| = 9.

Total sample variance in both cases is 3.

For

For

1. 0 0 ,
s=]0 1 o], |s]=1
0 0 1

1 A2 A2
s=|-172 1 -2, Is|=0
/2 <172

47



3.9 (a) We calculate T = [16,18,34]' and

f 4 1 —5
2 2 4 '
X.=| -2 -2 —4| and we notice col;( X.)+ colo( X.) = col;( X,)
4 0 4
0 1 1

soa=1[1,1,-1] gives X.a=0.

(b)
[ 3 13
S , _ 10(25)(18.5) + 39(15.5) + 39(15.5)
S [13 gg 12:2} ©I81= "_n3p@es) - 9(185) - 55(5.3) =0

10+3-13 0
Sa = 3+25-55| = |0

13+5.5—-18.5 0

As above in a)

(c) Check.

3.10 (a) We calculate T =[5,2,3 ) and

[ -2 —1 -3]
1 2 3 :
X.=| -1 0 -1 and we notice coly( X.)+ colo( Xc) = coli( X.)
2 -2 0
0 1 1)

soa=1{1,1,-1] gives X.a=0.

{b)
256 0 25
5(2.5)2 + 0 + 0
S=| 025 25| so |S|= 3 3 _
[2.5 P 5} ~(25)° — 0 — (25)* =0

Using the save coefficient vector a as in Part a) Sa = 0.
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(¢) Setting Xa =0,

3a; + a =0

7a, 4+ 3az =0 so M = ~3as
5a1 + 3a2 + 4a3 =0 501 - 3(301)+4a3;0

so we must have a; = a3 = 0 but then, by the first equation in the first
set, ap = 0. The columns of the data matrix are linearly independent.

3.11 14808 14213
S = . Consequently

14213 15538

1 .9370 ' 121.6881 o -1
R = 3 p!/? - S '
.9370 1 0 124.6515

.0082 0
and 0'1 e
. 0 .0080

1/2 o 1/2

The relationships R = 0-1/25p1/2 4nd s=0"%Rp

can now be verified by direct matrix multiplication.



3.14° a)

b)

From first principles we have
,. 9
b™x = [2 3] = 21
- - 1
Similarly b' x, =19 and b' x3=8 0
2141948 _ 46

sample mean = —3—

(21-1s)2+(19£1s)2+(a-1s)=

= 49

sample variance

9
Also c¢' x, = [-1 2] []--7; c'x2='l and ¢' x, =3
so

sample mean = -l

sample variance = 28

50

Finally sample covariance = (21']6)('7'”)"'(]9‘;5)(1"")"(345)(3-!4)

-28.
. : | 16 -2
=[5 2] and S =
- -2 1

Using (3-36)

t %



3.15

5
sample mean of P' 5 = B’ .’.‘. =[2 3] [2]= 16

5
sample mean of S' X= -1 2] [z]g -1

sample variance of b' X = E' sb = [2 3][

sample variance of 5" X= E' Sc = [ 2]‘:

sample covariance of b' X and c' X

16 -2 -1
=b'Sc=[2 3][ , ] \: } = -28
-~ -2 1 2 |

Results same as those in part (a).

5 13 -2.5
=03, s=|-25 1
4 1.5 -1.5

sample mean of b' X =12
- Q

to< 1

sample mean of g'
sample variance of b' X =12
sample variance of c' X =43

sample covariance of E' X and ¢' X=-3

16

16

1.5
-] 05

b

51



3.16 Since v © E(V -y )Y "-’-V).

. ]
B - Yy -y i)

E(WY') - By - B0 *ey

]
E(WV') - gy - Rylty *Byby

E(W') - nysy »

we have E(W') =§ + Mydy -

3.18 (a) Lety = x;+xo+x3+x4 be the total energy consumption. Then

y=[1 1 1 1Jx=1.873
st=f0 1 1 1St 1 1 1]'=3.913

(b) Lety=x;—x; be the excess of petroleum consumption over natural gas
consumption. Then

y=[ -1 0 o]x=.258
s2=[1 -1 0o o]sfi -1 0 o]'=.154

52
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Chapter 4

4.1 (a)Wearegivenp=2,,u,=[;], E=[—8x\/§ —.8x\/?} ©

| £ |=.72and
1 34 2
a2z
==

|
flz) = @)—lﬁ exp (-% [ 5@ = 1) + B2 0y~ 12~ )+ (er — 9] )
® |
2v2
9

Tl =1+ 2w = D=9+ 5ter = I

: 5 1
4.2 (a) Wearegivenp=2, u=[g , 2:;[ 1 75] so| X |=3/2

and ’ % :
' [ 2 _\/2
V3
1=
.‘_%2 2
L V3
fle)= Z;;)_l\/——:?é exp ("';‘ [ %xf - %\'3/—5-'01(332 - 2) + %(1‘2 - 2)?] )
(b)
%:cf - %5'1?1-(3:2 - 2) + %(xz - 2 )2

{c) ¢ = x3(-5) = 1.39. Ellipse centered at [0,2]' with the major axis hav-
ing half-length A7 ¢ = /2.366v1.39 = 1.81 . The major axis lies
in the direction e = [.888,.460]' . The minor axis lies in the direction
e ={—.460 , 888)' and has half-length vz c = V634V1.39 = .94.



Constant density contour that contains |
50% of the probability

3.0

25

X2
2.0
1

1.5

1.0

apply Result 4.5 that relates zero covariance to statistical in-

4.3 We
dependence
a) No, 92 #0
b) VYes, Opg = 0
c) VYes, Oy3 = Op3 = 0

d)

e)

Yes, by Result 4.3, (x1+xz)/2 and X3 are jointTy normal and

. . I | 1 -
their covariance is 5013""2'523 0.

o 1 0
No, by Result 4.3 with A =[-§ 1 _1], form A A’
2

to see that the covariance is 10 and not 0.

>4
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4.4 a) 3X.l - ZXZ + X3 is N(l;,g)

b) Require Cov (xz,xz-a]xl-a3x3) = .3 - a; - 2a3 = 0. Thus any
[3-2a3,.a3.] will meet the

a' = [a] ,33] of the form a'

. requirement. As an example, a' = [1,1].
. 1. 3
4.5 a) X.llx2 is N5 (x-2), 3)

1 1
c) X3{x.| Xy s N(-z-(x.l+x2+3),§)

4.6 (a) X, and X, are independent since they have a bivariate normal distribution
with covariance o153 = 0.
{b) X, and X; are dependent since they have nonzero covariance o3 = —1.
{c) X, and X3 are independent since they have a bivariate normal distribution
~ with covariance o3 = 0.
(d) X,,Xs and X, are independent since they have a trivariate normal distri-
bution where 012 =0 and o352 = 0.
{e) X1 and X +2X, —3X; are dependent since they have nonzero covariance

o + 20'12 - 30'13 =4+ 2(0) - 3(—1) =7

4.7 (a) Xilzs is N(1+ .5(zs — 2) ,3.5)
(b) Xi|z2, 23 is N(1+.5(zs — 2) ,3.5) . Since X is independent of X,, condi-
tioning further on =, does not change the answer from Part a).



415 First,
n - n -
jzl (S-g)(fj-f)' = (f-g)[jg}(fj-f)']

n
= ('5'-}_1)(‘]_21 X5=nx)'

(X-y) (nx-ng)"

0

Also,

- i |
T R Ge) = L] e (x-R)'T" = 0" = o
R U B

4.16 (a) By Result 4.8, with ¢; = ¢; = 1/4, ¢ =¢4 = —1/4 and #; = p for
- Jj=1,..,4wehave ©j_ c;u; = O and ( Tj=1€3 ) & = 12, Consequently,
V1 is N(0, ;3 ). Similarly, setting by, = b, = 1/4 and by = by = —-1/4, we

find that V3 is N(0, 15).

(b) Again by Result 4.8, we know that V1 and V', are jointly multivariate
normal with covariance

4 1,1 -1.1 1, -1 -1, -1
b" P = —_—f - -_— - - ) =
(j‘é{]c,)z: (4(4)+4(4)+4(4)+4(4) ==0
That is,

14 SR iZ 0

[V;J is distributed Ng, (0, [ 40 %E])

so the joint density of the 2p variables is

1 -1 _
o gmres (-3 8 8] 2] )

1 1 ! - ! -
m—z—lexp (—-g(vlz v, + v, T 1'02))

4.17 By Result 4.8, withe) =y =c3 = ¢y = ¢5 = 1/5.and pij=pforj=1,..,5we
flir;:d that V; has mean Zj:?:l ¢jp; = p and covariance matrix ( Z?_:l e)T =
5< ,

Similarly, setting bl = b3 = b5 = 1/5 and b2 = b4 = -1/5 we find that Vg has

mean 32 b;u; = L and covariance matrix ( i)z =1x

Again by Result 4.8, we know that V; and V', have covariance

4 — —
(Tue==(55)+5 @) + 53+ h+kb)==-Ls

i=1

56
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4.18 By Result 4.11 we know that the maximum likelihood estimates of y

s+ OB ENELED
BE- BRG]
e #fge afle o o

_1fe2
8

4.19 a) By Result 4.7 we know that (X1‘“)' t"(xl-u) ~ X%

. 1 I ]
'b) From (4-23), X~ NG(E’EE £). Then X-y Nﬁ(g‘fﬁ't) and
finally v20 (X-u) = Nﬁ(g,t)
¢) From (4-23), 19S5 has a Wishart distribution with 19 d.f.

420  B(195)8' is a 2x2 matrix distributed as Wyg( BEB") with 19 d.f.

where
a) BfB' has
(L) entry =0y * 02 P33 - %12 %3 * P23
(1,2) entry = ‘%"14*%"24*%"34 '%"15’?%"25*%"35*“16 %."’26’12"3%
(2,2) entry = ggg * 14055 * %"44 - 046 ~ 956 " 172"45
b) 9 93
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4.21 (a) X is distributed Ny(p,n 'S )
(b) X'1—pis distributed Ny(0,% ) so ( Xy —p )=~} X - p ) is distributed
as chi-square with p degrees of freedom. :
(c) Using Part a),

(X-p)(n's )‘1(7—#)=n(f-u) ‘(X )
is distributed as chi-square with p degrees of freedom |

(d) Approximately distributed as chi-square with p degrees of freedom Since
the sample size is large, ¥ can be replaced by S.



422" ;) e see that n =75 isa sufficiently large sample (compared
with p)and apply Result 4.13 to get /m(X-y) is approximately
.. : 1
Np(g,t) and that X 1is approximately Np(‘.f o .

b) By (4-28) we conclude that /5(5".’_)'5-1(3'5) is approximately

2
Xp'

4.23 (a) The Q-0 plot shown below is not particularly straight, but the sample
size n = 10 is small. Difficult to determine if data are normally distributed

from the plot.

Q-Q Plot for Dow Jones Data

304

20-

10+

x(i)

-104

q(i)

(b) rp=.95 a}nd n=10. Since rp=.95 >.9351 (see Table 4.2), cannot reject
hypothesis of normality at the 10% level.
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4.24 (a) Q-Q plots for sales and profits are given below. Plots not particularly
straight, although Q-Q plot for profits appears to be “straighter” than
plot for sales. Difficult to assess normality from plots with such a small

samplc 31ze (n = 10)

300+
L ]
1 . °

250+
200+
e
% .

150- .
A . -

104

‘ -[2 9'1 6
' q(i)

=
o

(b) The critical point for n =10 when a = .10 is 9351 For sales, rQ .940 and for
profits, r, =.968. Since the values for both of these correlations are greater
than .9351, we cannot reject normality in either case.
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4.25 The chi-square plot for the world’s largest companies data is shown below. The
plot is reasonably straight and it would be difficult to reject multivariate normality
given the small sample size of n = 10. Information leading to the construction of

this plot is also displayed.

- world's largest companies da

5-‘ o

o
S | | | 1 |
0 1 2 ] 4 S 6 7 8
ht ChiSqQuantiles
155.6 74765  303.6 —-35576
%=| 14.7 S=| 303.6 26.2 —1053.8
710.9 -35576 —1053.8 237054
Ordered SqDist Chi-square Quantiles
3142 3518
1.2894 7978
1.4073 1.2125
1.6418 1.6416
2.0195 2.1095
3.0411 2.6430
3.1891 3.2831
4.3520 4.1083
4.8365 5.3170

4.9091 7.8147
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5.20] [ 10.6222 -17.7102 ] _,_[2.1898 1.2569 ]

26 () X= =
4.26 @) X [12.48 -17.7102  30.8544 1.2569 .7539

Thus d; = 1.8753, 2.0203, 2.9009, .7353, .3105, 0176, 3.7329, .8165,
1.3753, 4.2153 ’

(b) Since x2(.5)=1.39, 5 observations (50%) are within the 50% contour.

(c) The chi-square plot is shown below.

4 5

. ChiSqQuantiles

(d) Given the results in parts (b) and (c) and the small number of observations
(n = 10), it is difficult to reject bivariate normality.



427 Q- plot is shown below. | 63

X(1) .
-i.of 2

. -2.071
$ .29

-3.0¢4 S

-2,0 ov6 ! 2.0 1)
. “‘100 1‘9 300
The Q-Q plot is reasonably straight. I, =.978 (a=0)
For 2 =1/4, 7,=.993 so A =1/4 isa little better choice for

the normalizing transformation.

4.28 Q-Q plot is shown below.

3t

ao.: x3%

60,

t + ; ¥ +q
-2.5 ~0.5 1.3 )
~-1.5 ) 0.5 205

Since r, = .970 < .973 (See Table 4.2 for n =40 and <« = .05),
we would reject the hypothesis of normality at the 5% level.



4.29

(a)-

% = 10.046719 S = 11.363531  3.126597
T\ 94047619 /' T T 30.978513 /°

Generalized distances are as follows;

0.4607 0.6592 2.3771 1.6283 0.4135 0.4761 1.1849
10.6392 0.1388 0.8162 1.3566 0.6228 5.6494 0.31859
0.4135 0.1225 0.8988 4.7647 3.0089 0.65692 2.7741
1.0360 0.7874 3.4438 6.1489 1.0360 0.1388 0.8856
0.1380 2.2489 0.1901 0.4607 1.1472 7.0857 1.4584
0.1225  1.8985 2.7783 8.4731 0.6370 0.7032 1.8014

(b). The number of observations whose generalized distances are less than x3(0.5) = 1.39 is
26. So the proportion is 26/42=0.6190.

(c). CHI-SQUARE PLOT FOR (X1 X2)
a o
5 .'..
2 1 5
o -

D-SQUARE
4.30 (a) /7., =0.5but /i, =1 (i.e. no transformation) not ruled out by data. For

A4 =1, r, =.981>.9351 the critical point for testing normality with

n=10and 0. =.10. We cannot reject the hypothesis of normality at
the 10% level (and, consequently, not at the 5% level).

(b) 22 =1 (i.e. no transformation). For j, =1, r, =.971>.9351 the critical

point for testing normality with n = 10 and o = .10. We cannot reject the
hypothesis of normality at the 10% level (and, consequently, not at
the 5% level).

(¢) The likelihood function I(4,, 4,) is fairly flat in the region of 4, =1, 4, =1
so these values are not ruled out by the data. These results are consistent with
those in parts (a) and (b).

-0 nlots follow.
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4.31
The non-multiple-sclerosis group:
X1 Xz .Xa 4\’4 i .\’5
rQ 0.94482* 0.96133* = 0.95585" 0.97574° 0.94446°
Transformation | Xy 05 X7 (Xa+ 0.005)%4 X 7 (X + 0.005)0-32

+: significant at 5 % level (the critical point = 0.9826 for n=69).
The multiple-sclerosis group:

Xi X X3 Xy 7 Xs

TQ 0.97137 0.97209 0.79523" 10.97869 0.84135"
Transformation - g (X + 0.005)°26 — (Xs + 0.005)°2

+: significant at 5 % level (the critical point = 0.9640 for n=29).

Transformations of X3 and Xy do not improve the approximation to normality very much
because there are too many zcros.

4.32
_ Xy X2 Xs X Xs X
rqQ 0.98464° 0.94526 0.9970 0.98098* 0.99057 0.92779°
| Transformation | (Xi 4 0.005)7%%% X704 - X028 - (Xs + 0.005)051
«: significant at 5 % level (the critical point = 0.9870 for n=98).

4.33

Marginal Normality: |
Xy Xa X3 X4

rq | 0.95986" 0.95039" 0.96341 0.98079

*: significant at 5 % level (the critical point = 0.9652 for n=30).

Bivariate Normality: the x* plots are given in the next page. Those for (X;;Xg), (X1, Xa),
(Xs, X4) appear reasonably straight.



CHI-SQUARE -

CHI-SQUARE

CHI-SQUARE

CHI-SQUARE PLOT FOR (X1,X2)

D-SQUARE

CHI-SQUARE PLOT FOR {X1,X4)

D-SQUARE -

CHI-SQUARE PLOT FOR (X2,X4)

15

CHI-SQUARE

CHI-SQUARE

CHI-SQUARE

CHI-SQUARE PLOT FOR (X1,X3)

.

CHI-SQUARE PLOT FOR (X2,X3)

D-SQUARE

CHI-SQUARE PLOT FOR (X3,X4)

D-SQUARE

10

12

.

66
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4.34
Marginal Normality:

Xi Xy X3 X4 Xs Xe
0.95162° 0.97209 0.98421 0.99011 0.98124 0.99404

Q.

*: significant at 5 % level (the critical point = 0.9591 for n=25).

Bivariate Normality: Omitted.

4.35 Marginal normality:

X1 (Density) X, (MachDir) X3 {CrossDir)

rpl 897 991 924%

* significant at the 5% level; critical point = .974 for n = 41

From the chi-square plot (see below), it is obvious that observation #25 isa
multivariate outlier. If this observation is removed, the chi-square plot is
considerably more “straight line like” and it is difficult to reject a hypothesis of
multivariate normality. Moreover, 1, increases to .979 for density, it is virtually

unchanged (.992) for machine direction and cross direction (.926).

Chi-square Plot

Chi-square Plot without observation 25




4.36

4.37

68

Marginal normality:

rol 983  .976* .969* .952* .909*  .866* .859*

* significant at the 5% level; critical point = .978 for n = 54

Notice how the values of r, decrease with increasing distance. As the distance
increases, the distribution of times becomes increasingly skewed to the right.

The chi-square plot is not consistent with multivariate normality. There are
several multivariate outliers.

Marginal normality:

rpl 989 .985 .984  .968* 947  929*% 921*

* significant at the 5% level; critical point = .978 for n = 54

As measured by r,, times measured in meters/second for the various distances

are more nearly marginally normal than times measured in seconds or minutes
(see Exercise 4.36). Notice the values of r, decrease with increasing distance. In

this case, as the distance increases the distribution of times becomes increasingly
skewed to the left.

The chi-square plot is not consistent with multivariate normality. There are
several multivariate outliers.



4.38. Marginal and multivariate normality of bull data

Normality of Bull Data

A chi-square plot of the ordered distances
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XBAR s
' YrHgt FtFrBody PrctFFB  BkFat SaleHt SaleWt

50.5224 2.9980 100.1305 2.9600 -0.0534 2.9831 82.8108
995.9474 100.1305 8594.3439 209.5044 -1.3982 129.9401 6680.3088
70.8816 2.9600 209.5044 10.6917 -0.1430 3.4142 83.9254
0.1967 -0.0534 -1.3982 -0.1430 0.0080 -0.0506 2.4130
54.1263 2.9831  129.9401 3.4142 -0.0506 4.0180 147.2896
15566.2895 - 82.8108 6680.3088 83.9254 2.4130 147.2896 16850.6618
Ordered Ordered Ordered
dsq qchisqg dsq gqchisqg dsq qchisqg
1 1.3396 0.7470 26 3.8618 4.0902 51 ©6.6693 ©€.8439
2 1.7751 1.1286 27 3.8667 4.1875 52  6.6748 ©6.9836
3 1.7762 1.3793 28 3.9078 4.2851 563 6.6751 7.1276
4 2.2021 1.5808 29 4.0413 4.3830 54 6.8168 7.2763
5 2.3870 1.7551 30 4.1213 4.4812 55 6.9863 7.4301
6 2.5512 1.9118 31 4.1445 4.5801 56 7.1405 7.5896
7 2.5743 2.0560 32 4.2244 4.6795 57 7.1763 7.7554
8 2.5906 2.1911 33 4.2522 4.7797 58  7.4577 7.9281
9 2.7604 2.3189 34 4.2828 4.8806 59 7.5816 8.1085
10 3.0189 2.4411 36 4.4599 4.9826 60 7.6287 8.2975
11 3.0495 2.5587 36 4.7603 5.0855 61 8.0873 8.4963
12 3.2679 2.6725 37 4.8587 5.1896 62  8.6430 8.7062
13 3.2766 2.7832 38 5.1129 5.2949 63 8.7748 8.9286
14 3.3115 2.8912 39 5.1876 5.4017 64 8.7940 9.1657
156 3.3470 2.9971 40 5.2891 5.5099 656 9.3973 9.4197
16 3.3669 3.1011 ‘41 5.3004 5.6197 66 9.3989 9.6937
17 3.3721 3.2036 42 5.3518 5.7313 67 9.6524 9.9917
18 3.4141 3.3048 43 5.4024 5.8449 68 10.6254 10.3191
19 3.5279 3.4049 44 5.5938 5.9605 69 10.6958 10.6829
20 3.5453 3.5041 45 5.6060 6.0783 70 10,8037 11.0936
21 3.6097 3.6027 46 5.6333 6.1986 71 10.9273 11.5665
22 3.6485 3.7007 47 5.7754 6.3215 72 11.3006 12.1263
23 3.6681 3.7983 48 6.2524 6.4472 73 11.3216 12.8160
24 3.7236 3.8957 49 6.3264 6.5760 74 12.4744 13.7225
25 3.7395 3.9929 50 6.6491 6.7081 75 17.6149 15.0677

76 21.5751 17.8649

From Table 4.2, with o = 0.05 and n = 76, the critical point for the Q — @ plot corre-
lation coefficient test for normality is 0.9839. We reject the hypothesis of multivariate
normality at & = 0.05, because some marginals are not normal.
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4.39 (a) Marginal normality:
independence support benevolence conformity leadership
Iy | 991 993 997 997 .984*
* significant at the 5% level; critical point = .990 for n = 130

(b) The chi-square plot is shown below. Plot is straight with the exception of
observation #60. Certainly if this observation i is deleted would be hard

to argue against multivariate normality.

Chi-square plot for indep; supp, benev, conform, leader

b LR
10 N ......
d(2 . e
5 —
o ] [ ]
T T ! I ] | LI

0 2 4 6 8 10 12 14 16 18
q((j-.5)/130)

(c) Using the r, statistic, normality is rejected at the 5% level for leadership. If

leadership is transformed by taking the square root (i.e. 1=05), r,=.998 and
we cannot reject normality at the 5% level.



4.40 (a) Scatterplot is shown below. Great Smoky park is an outlier.

Visitors

(b) The power transformation i, =0.5 (i.e. square root) makes the size
observations more nearly normal. r, =.904 before transformation and
ry =.975 after transformation. The 5% critical point with n = 15 for the

hypothesis of normality is .9389. The Q-Q plot for the transformed
observations is given below.

-Q Plot for Square Root

10-

(c¢) The power transformation /@ =0 (i.e. logarithm) makes the visitor
observations more nearly normal. 7, =.837before transformation and
ry =960 after transformation. The 5% critical point with n = 15 for the

hypothesis of normality is .9389. The Q-Q plot for the transformed
observations is given next.
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(d) A chi-square plot for the transformed observations is shown below. Given
the small sample size (n = 15), the plot is reasonably straight and it would be
hard to reject bivariate normality.

-~ Chi-square plot f

E o ®
: .l..
E .
09 -°
| H T 3 3 4 = : 7
- Chi-square quantiles.. .. - :




4.41 (a) Scatterplot is shown below. There do not appear to be any outliers with the
possible exception of observation #21.

(b) The power transformation /ﬁ =0 (i.e. logarithm) makes the duration
observations more nearly normal. r, =.958 before transformation and
=.989 after transformation. The 5% critical point with n = 25 for the

hypothes1s of normalxty is .9591. The Q—Q plot for the transformed
observations is given below.

© Q-QPlot for Natural Log Duration -
3.01 ' —

2.5 .

1.0




75

(¢) The power transformation ﬁ? =-0.5 (i.e. reciprocal of square root) makes the
man/machine time observations more nearly normal. r, =.939 before
transformation and r, =.991 after transformation. The 5% critical point with

n = 25 for the hypothesis of normality is .9591. The Q-0 plot for the
transformed observations is given next.

lot for -R‘ét;iprogal of Square Root of Man/Machine Time

0.1754 Yo e

0.150{ °

(d) A chi-square plot for the transformed observations is shown below. The plot is
straight and it would be difficult to reject bivariate normality.




5.1

5.3

5.5

Chapter 5

6 S 8 a3
10 -10/3 2

T2 = 150/11 = 13.64

a)

t xe

b) T? is 3F2’2 (see (5-5))
c) Hgou v = [7,11]
a= .05 so FZ 2(.05) = 19.00

Since T2 =13.64 < 3F2 2( 05) = 3(19) = §7; do not re.]ect Hy at
the a = .05 level

(n-1)] Z (x5710) (% uo) | |
a) 12 - - -(-1)-5534—4)--3=13.64

Ijzl(gj-f)(§j-§)'| |

n

| I,’Z (x;-X) (x5-X)"|

b) A = (244 = .0325
[ Z (X 'uo)(x uo) l

2/n

Wilks' lambda = A%/M = M2 - oTE - 8

H.:' = [.55,.60]; T2 =1.17

o’k
a s -05; F2’40( -05) = 3.23

2 o 2(41) - , -
Sinc;e T 1.17 < =75 F2,40( .‘05) 2.05(3.23) = 6.62,
we do not reject HO at the o = .05 level. The result is consistent.
with the 95% confidence ellipse for u pictured in Figure 5.1 since

u' = [.55,.60] is inside the ellipse.

-

7%
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_ 2636
-1.909

. Gy PR TV | )

a'se o ogzese]” 1T T
- [2636 '1‘9@"[:0117 10144[4.90]

[=]-[2]

59 a) Large sample 95% 7° simultaneous confidence intervals:

Weight: (69.56, 121.48) Girth: (83.49, 103.29)
Body length: (152.17, 176.59) Head length: (16.55, 19.41)
Neck: = (49.61, 61.77) Head width: (29.04, 33.22)

b) 95% confidence region determined by all 4, 1, such that

002799  —.006927](95.52 -
95.52  11,,93.39 - | <12.59/61 = 2064
©s.52-4 Ha {- 006927 019248 ](93.39 - ,u,,)

Beginning at the center ¥’ = (95.52,93.39), the axes of the 95%
confidence ellipsoid are:

T _ {.939
major axis  * J§695.52J12.‘59L 243

-.343)
minor axis ~ £+/45.92+12.59 J

939
(See confidence ellipsoid in part d.)

c) Bonferroni 95% simultaneous confidence intervals (m = 6):
t,,(.025/6) =2.728 (Alternative multiplier is 2(.025/6) = 2.638)

Weight: . (75.56, 115.48) Girth:

Body length: (155.00, 173.76) Head length: (16.88, 19.08)
Neck: (51.01, 60.37) Head width: (29.52, 32.74)
d) Because of the high positive correlation between weight (X;) and girth{X4),

the 95% confidence ellipse is smaller, more informative, than the 95%
Bonferroni rectangle.

(86.27, 100.51)



5.9 (Continued)

Large sample 95%‘confidence regions.

110
|

------ large sample simultaneous
--- Bonferroni

x4
90 95 100 105
[

85

80

60 70 80 90 100 110 120 130

x1

€) Bonferroni 95% simultaneous confidence interval for difference between
mean head width and mean head length ( y, ~ us ) follows. .
(m =17 to allow for new statement and statements about individual means):
16 (:025/7) =2.783 (Alternative multiplier is 2(.025/7) = 2.690)

— 255 + 555 21.26-2(13.88) +9.95

% -X, t1, (.0036)\/ ol =(31.13-17.98) % 2.783\/

n 61

or o 1249< yg - 4, <1381

78



5.10

b)

d)

16— 11, 5,4— 1,
(6= bt 5{009386 025135

| a) 95% T* simultaneous confidence intervals:

Lngth2: (130.65, 155.93) Lngth4: (160.33, 185.95)
Lngth3: (127.00, 191.58) Lngth5: (155.37, 198.91)
95% T* simultaneous intervals for change in length (ALngth):

ALngth2-3: (-21.24, 53.24)
ALngth3-4: (-22.70, 50.42)
ALngth4-5: (-20.69, 28.69)
95% confidence region determined by all u,_;, 4, s such that

011024 .009386](16—#2-3) <7796/ T w1043
4—p, s _ :

where u,_, is the mean increase in length from year 2 to 3, and u,_; is
the mean increase in length from year 4 to 5.

Beginning at the center ' = (16,4), the axes of the 95% confidence

ellipsoid are:

_ .895
major axis ++/157.84/72.96 447)

447
minor axis +4/33.534/72.96 895)
(See confidence ellipsoid in part e.) ‘

Bonferroni 95% simultaneous confidence intervals (m = 7):

Lngth2: (137.37, 149.21) Lngth4: (167.14, 179.14)
Lngth3: (144.18, 174.40) Lngths: (166.95, 187.33)

ALngth2-3: (-1.43, 33.43)  ALngthd-5: (=7.55, 15.55)
ALngth3-4: (=3.25, 30.97)
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5.10 (Continued)

€) The Bonferroni 95% confidence rectangle is much smaller and more
informative than the 95% confidence ellipse.

Hy_s

.20

10

95% confidence regions.

e simultaneous TA2
--- Bonferroni

......................................................................

- el

................................
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511  a) X' = [5.1856, 16.0700]

176.0082  287.2412 o .0508
s = o ; -
287.2412  527.8493 | -.0276

Eigenvalues and eigenvectors of S:

688.759 & =(49,87)
15.094 &, =(87,-49)

A
4

81

-.0276
0169

n-1; _ 8(2) I [
Gelle ¢ (0) < &L Fp 7(:10) = 18 (3.26) = 7.45

Confidence Region

"z

x2 (S r)

-

-10 ] x1 (Cr)

b) 90% 7* intervals for the full data set:

Cr: (-6.88,17.25)  Sr: (-4.83, 36.97)

[.30, 10]* is a plausible value for u

-16 -é\’jm/w 15| 20 25 30 35 4045



5.11 (Continued)-

©) Q-Q plots for the marginal distributions of both variables

. 1
15 40 ©5 00 o0s 10 15
nomscorSr

Since r = 0.818 we reject the hypothesis of normality for this variable at o = 0,0]

d) With data point (40.53, 73.68) removed,

) | "] .3786 1.0303
x' = [.7675, 8.8688]; s =
- . 1.0303 69.8598

S =
-.0406 .0149

N‘J al!g.)- . 31—4 2
ap) Fpan-pl+10) = =g Fy 4(.10) = X (3.46) = 8.07

90% T° intervals:  Cr: (.15, 1.39) St: (.47,17.27)



5.12 ‘Initial estimates are

41 _ [05 00 05
i= |6 £= 2.0 0.0 |.

1.5

The first revised estimates are

4.0833 . 0.6042 0.1667 0.8125
g = |6.0000 |, ¥= 2.500 00 |.
2.2500 1.9375

5.13 The x?2 distribution with 3 degrees of freedom.
5.14 Length of one-at-a time t-interval / Length of Bonferroni interval = tn—1(@/2)/tn—1 (a/2m).

m
n 2 4 10
15 | 0.8546 0.7489 - 0.6449
25 | 0.8632 0.7644 0.6678
50 | 0.8691 0.7749 0.6836

100 | 0.8718 0.7799 0.6910
oo | 0.8745 0.7847 0.6983

5.15
©)-

E(Xi;) = (Opi+(0)(1 —pi) =pi.
Var(X;) = (1 =p)’pi+(0—p)*(1 —p) = pi(l — pi)

(b). Cov(Xij, Xis) = E(Xi Xur) — B(Xi) E(Xij) = 0 = pipx = —PiPk-
5.16
{a). Using p; = m(o.ﬂﬁ)@(l — p;)/n, the 95 % confidence intervals for p1, p2, P3, P4, Ps

are
(0.221, 0.370), (0.258, 0.412), (0.098, 0.217), (0.029, 0.112), {0.084, 0.198) respectively.

' (b). Using p1 — 2 % /xE(0.08)y/(r(1 = 1) + (1 — $2) = 2pan) /7, the 95 % confidence
interval for p; — p is (—0.118, 0.0394). There is no significant difference in two proportions.

5.17

#1 = 0.585, p; = 0.310, 3 = 0.105. Using p; & \/x3(0.05)\/B;(1 — p;)/n, the 95 % confidence

intervals for p1, p2, pa are (0.488, 0.682), (0.219, 0.401), (0.044, 0.166), respectively.




5.18 ,
{a). Hotelling’s T? = 223.31. The critical point for the statistic (a = 0.05) is 8.33. We reject
Ho : p = (500,50, 30)'. That is, The group of students represented by scores are significantly
different from average college students.
(b). The lengths of three axes are 23.730, 2.473, 1.183. And directions of corresponding axes

are ‘
0.994 ~0.104 —0.037
0.103 |, 0.995 |, | —o0.010 |.
0.038 0.006 0.999

(c). Data look fairly normal.

700 . 70 | ' 35 1 .
" .-
600 < % f'f * 3
f f‘ .0.
= / R s Vi R 2 >
500 J f ¢ .-
- -
/ 40 ] 20 -
400 { *~ % . ”.'
. 15 1,
2 1 0 1 2 ' 2 0 1 2 2 1 0 1 2
NORMAL SCORE ‘ NORMAL SCORE NORMAL SCORE
700 . 700 1 . 20 1 .o .
R . Pty
o, " o o oy M
600 e 800 Ut .
- ) o . . o« 8 .o 3 .’.‘ .
x -y x IR X R
500 FAE IR 500 1 LR C :
s W . . Y e
. o.. oo e :
s Y. s ¢
400 1 400 - 4

X2 X3 X3
5.19 a) The summary statistics are:
1860.50 124055.17  361621.03
n=23, X= and S = : :
- 8354.13 361 621.03 3486330.90
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where S has eigenvalues and eigenvectors

M 3407292 ‘ f{ = [.105740, .994394]

Ay 82748 gé = [.994394,-.105740]

Then, since l‘Egﬂ'—.')-'l’ {a) = 1 gigg-)-F

non-p p.,n-p’ 30 28 2.28(+05) = .2308,

a 95% confidence region for u 1is given by the set of u

124055.17 361621.05];1{?860.50-u1]

[1860.50-yy, 8354.13-1.12] [

361621.03 3486330.90 8354.1 3-;12

< .2306

The half lengths of the axes of this ellipse are v/ .2306 /i'.l'-- 886.4 and
/.2306 /X, = 138.1. Therefore the ellipse has the form

- ——— o o+ ece e . e e o mme e ®r e e - ——— o = . e e——————

— T — ¢ —— —— * — ——— . S o e— —

Xz
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ol N NV ' K
- i : . . ‘ \ B
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]
000
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b) Since g = [2000, 10000]' does not fall within the 95% confidence

12000.I - X
10000, 4 XX
8000,+

6000, 1

ellipse, we would reject the hypothesis Hn.u =My at the 5% 1evel.
Thus, the data analyzed are not consistent with these values,

The Q-Q plots for both stiffness and bending strength (see below)
show that ihe marginal normality is not seriously violated. Also

the correlation coefficients for the test of nonnal%ty are .989 and
.990 respectiver so that we fail to reject even at the 1% signifi-
cance level. Finally, the scatter diagram (see below) does not indi-
cate departure from bivariate normality. So, the bivariate normal

distribution is a plausible probability model for these data.

Q-Q Plot-Bending Strength

- S e e s G———e e e e o

- mare s * = cemtn @ cm e ctmm—— wc® = . cecmewm wm® e * wee = momon o o - o . " c— * © — — ap——

-1.,0 1,0 : . 300

Cornelgtion .989




Q-Q Plot-Stiffness

‘ 2800 T
2400.1

2000 .+

. tomom = eof

- XkXK2 - T
i %2
3 con = ** ' - -
+ ) xX
15800.¢ KX KX
‘ + X X
- X
1200."... -..* v memes mmiee - U S - R——— - et
+ x
800t o e e e e m e e ——— e e e
“200 0.0 200
.+ % 1 SN US SO 1.0 SRR €5, S

" e ...Correlation = -.990 . .- e
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Scatter Diagram
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5 .20 (a) Yes, they are plausible since the hypothesized vector Ko (denoted as * in the
plot) is inside the 95% confidence region.

86X Simultaneous Conidence Region for Mean Vector

288 9

206 9

2039

[ =

278 9

278 4

277 9

278 9

279 9

194 199 198

l‘. 190 19 192 193 107 198
(b).
LOWER - UPPER
Bonferroni C. I.: 189.822 197.423
274.782 284.774
Simultaneous C. I.: 189.422 197.823
274.256 285.299

Simultaneous confidence intervals are larger than Bonferroni’s confidence intervals. Simul-
taneous confidence intervals will touch the simultaneous confidence region from outside.
(€). Q-Q plots suggests non-normality of (X, X2). Could try transforming Xj.

Q-Q PLOT FOR X1

Q-Q PLOT FOR X2

310 ¢ 310 1
. 210 Ik 300 o N 200 - .
200 c: 290 - i. 290 1 * Y 3
- . . ... ~ 280 -ﬂ ~ 280 1 we’e o ¢
x : x _/. x : s
190 = 270 : 20 {0 -+ e
260 { -~ 260 - °s
180 o
250 1 250 - .
] d . *
2 -1 0 2 2 4 0 1t 2 180 200
NORMAL SCORE NORMAL SCORE X1




5.21

HOTELLING T SQUARE

 P-VALUE

x1
x2
x3
x4
x5
x6

The Bonferroni intervals use t ( .00417 ) = 2.88 and

0.3616

MEAN
0.84380
0.81832

1.79268

1.73484
0.70440
0.69384

9.0218

STDEV
0.11402
0.10685
0.28347
0.26360
0.10756
0.10295

T2 INTERVAL
TO
.742 .946
. 723 .914
1.540 2.046
1.499 1.970
.608  .800
.602 .786

the T2 intevals use tﬁe constant 4.465.

.880

BONFERRONTI
TO
778 .909
.757 .
1.629 1.95¢
. 1.583 1.887
.642 .766
.635  ,753
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WITH OUTLIERS

WITHOUT OUTLIERS

X1
«n3aB8R S8

X1

)

15

10

16
14
12
10

14

- 12

N s

Q-Q PLOT FOR X1

10 15 20 25 30
X1

Q-Q PLOT FOR X1

15

Qw

x3
o

14

124

%8

18
16
14

Q-Q PLOT FOR X2

NaO

X3
rs2O®mON

X3

X3

X3

. After eliminating outliers, the approximation to normality is improved.

Q-QPLOT FOR X3

18
16 *
14 o
12 -~

10 .,-"

Q-Q PLOT FOR X3

18
16
14 et
12 o

10 -

1‘ )
16
14 °
12 L] L] ° Y
10 {. 3, o L

2 4 6 8 10 14
X2
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@ Outliers removeds’

LOWER UPPER
Bonferroni C. I.: 9.63 - 12.87
5.24 9.67
8.82 12.34
Simultaneous C. I.: 9.25 13.24
4.72 10.19
8.41 12.76

Simultaneous confidence intervals are larger than Bonferroni’s confidence intervals.

() Full data set:

Lower Upper
Bonferroni C. 1. 9.79 15.33
5.78 10.55

8.65 1244

Simultaneous C.I.: 9.16 15.96
5.23 11.09
8.21 12.87



MaxBrth -

BasLgth

140

130

120

110

'5.23 a) The data appear to be multivariate normal as

the Q-Q plots and chi-square plot below.
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shown by the “straightness” of
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5.23 {Continued)

b) Bonferroni 95% simultaneous confidence intervals (m=p=4):
t,,(.05/8) =2.663

MaxBrth:  (128.87, 133.87)
BasHgth:  (131.42, 135.78)
BasLngth:  (96.32, 102.02)
NasHgth:  (49.17, 51.89)

95% T° simultaneous confidence intervals:

\/ﬂz%gl F, ,,(.05) = 3.496

MaxBrth:  (128.08, 134.66)
BasHgth:  (130.73, 136.47)
BasLngth:  (95.43, 102.91)
NasHgth:  (48.75, 52.31)

- The Bonferroni intervals are slightly shorter than the 7° intervals, |



5.24 Individual X charts for the Madison, Wisconsin, Police Department data

xbar

s LCL UCL

-Legal0OT 3557.8 606.5 1738.1 65377.4

ExtraOT 1478.4 1182.8 -2070.0 5026.9 use LCL = 0

Holdover 2676.9 1207.7 -946.2 6300.0 use LCL =0
COA 13563.6 1303.2 9654.0 17473.2

=0

MeetOT

800.0 474.0 -622.1 2222.1 use LCL

Individual Value

Individual Value

-1000

9000

The XBAR chart for x3 = holdover hours

3000 6000

ettt e et e T eV SR S ————

Observation Number

The XBAR chart for x4 =<COA hours

17000

13000

2 4 6 8 10> 12 14 16

Observation Number

Both holdover and COA hours are stable and in control.
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5.25 Quality ellipse and T2 chart for the holdover and COA overtime hours.
All points are in control. The quality control 95% ellipse is

1.37%107%z5 — 2677)2 + 1.18 X 10~5(z, — 13564)?
+1.80x 107%(z3 — 2677) (x4 — 13564) = 5.99.

The quality control 95% ellipse for
holdover hours and COA hours

COA Hours
12000 13000 14000 15000 16000 17000
[] 1L 1 1 (] .

- 11000
1

i 1 1 1 i i 1 i

-1000 0 1000 3000 5000

Holdover Hours

The 95% Tsq chart for holdover hours and COA hours

UCL = 5.991

Tsq
012345678
L]

"l
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5.26 T7? chart using the data on z; = legal appearances overtime hours, z, = extraordinary
~ event overtime hours, and z; = holdover overtime hours. All points are in control.

Tsq

The 99% Tsq chart based on x1, x2 and x3

0246 810

UCL =11.345

Period

5.27 The 95% prediction ellipse for z; = holdover hours and z4 = COA hours is

1.37x107%(z5 — 2677)2 + 1.18 x 10~%(z, — 13564)2
+1.80x10~%(z;3 — 2677)(z4 — 13564) = 8.51.

COA Hours

The 95% control ellipse for future holdover hours

and COA hours

g1

g,

(=]

(=]

g -

o

§ 4

'l 1 1 1 1 1 i 1
-1000 0 1000 3000 5000

Holdover Hours



5.28 (a)

[-.506 ] 0626 .0616 .0474 .0083 .0197 .0031]
-.207 0616 .0924 .0268 —.0008 .0228 .0155
. -.062 S- 0474 0268 .1446 .0078 .0211 -.0049
—.032 .0083 —.0008 .0078 .1086 .0221 .0066
698 0197 .0228 .0211 .0221 .3428 .0146
| —.065 | .0031 .0155 —.0049 .0066 .0146 .0366 |

The T? chart follows.

Median=8.72

6 11 16 21 26 31 36 41 46
e & - i0bservation

(b) Multivariate observations 20, 33, 36, 39 and 40 exceed the upper control limit.
The individual variables that contribute significantly to the out of control data
points are indicated in the table below.

Point Variable P-Value

‘Greater Than UCL 20 x1 0.0000
X2 0.0001

X3 0.0000

x4 0.0105

X5 0.0210

X6 0.0032

33 x4 - 0.0088
X6 0.0000

36 X1 0.0000
X2 0.0000

X3 0.0000

X4 0.0343

39 X2 0.0198
X4 0.0001

X5 0.0054

X6 0.0000

40 X1 0.0000
X2 0.0088

X3 0.0114

x4 0.0013



99

29(6)

529 T?=12472. Since T? =12472 <-—£Z-F6,24(.05)=7;25(2.'5 1)=18.2, we do not

reject H,: =0 at the 5% level.

5.30 (a) Large sample 95% Bonferroni intervals for the indicated means follow.
Multiplier is 7,4(.05/2(6)) = z(.0042) = 2.635

Petroleum:
Natural Gas:
Coal:
Nuclear:

Total:

766+2.635(.925/ V50) =.766 +.345 — (421, 1.11 i)
.508+2.635(.753/ /50) =.508 +.282 — (.226, .790)
438+ 2.635(.414/J5_0) =.438+.155 — (.283, .593)
161+ 2.635(.207/«/5_0) =.161£.076 — (.085, .237)

1.873+£2.635(1 978/+/50) =1.873+.738 — (1.135, 2.611)

Petroleum — Natural Gas: .258 % 2.635(.392/+/50) =.258 +.146 — (.112, .404)

(b) Large sample 95% simultaneous T? intervals for the indicated means follow.

Multiplier is ,/ 22(.05) =+/9.49 =3.081

Petroleum:
Natural Gas:
Coal:
Nuclear:

Total:

766 +£3.081(.925/ \50) =766 +.404 — (362, 1.170)
508+ 3.08‘1(.753/«/36) =.508+.330 — (.178, .838)
.438 + 3.081(.414/\/56) =.438+.182 — (.256, .620)
.161+3.08 l(.207/\/5) =.161£.089 — (.072, .250)

1.873+3.081(1.978/~/50) =1.873+.863 — (1.010, 2.736)

Petroleum — Natural Gas: .258 +3.081(.392/+/50) =.258+.171 — (.087, .429)

Since the multiplier, 3.081, for the 95% simultaneous T? intervals is larger than
the multiplier, 2.635, for the Bonferroni intervals and everything else for a given
interval is the same, the T? intervals will be wider than the Bonferroni intervals.
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5.31 (a) The power transformation j, =0 (i.e. logarithm) makes the duration

observations more nearly normal. The power transformation il =-0.5

(i.e. reciprocal of square root) makes the man/machine time observations
more nearly normal. (See Exercise 4.41.) For the transformed observations,

say y,=lnx, y, = I/J;: where x; is duration and x, is man/machine time,
S_[2m] [ as13 —o0s8] [ 7524 23.905
Y= 240 ~|-.0058 .0018 . “23.905 624.527

The eigenvalues for S are 4 =.15153, 4, =.00160 with corfesponding

eigenvectors e, =[.99925 -.03866), e, =[03866 .99925] Beginning at
center Y, the axes of the 95% confidence ellipsoid are

major axis: i\/z 225((22‘;)) F, 3(.05) e, =*.208¢,

minor axis: +J— \/ ;5((22‘2) 2.23(.05) e, =+.021e,

The ratio of the lengths of the major and minor axes, .416/.042 = 9. 9 indicates
the confidence ellipse is elongated in the e, dll’CCthI‘l

(b) 1,,(.05/2(2))=2.391, so the 95% confidence intervals for the two component
means (of the transformed observations) are:

Y, £1,,(.0125)4/s,, =2.171+£2.3914/.1513 =2.171+.930 — (1.241, 3.101)

¥, xt,, (.0125),/5'22 =.240+2.3914.0018 =.240+.101 — (.139, .341)



6.1

11 = 449,778,

Ay

Chapter 8

= 168.082,

101

Eigenvalues and efigenvectors of Sd are: .

e

-~

[}
1
eé = [.943, -.333]

= [.333, .943]

Ellipse centered at E' = [-9.36, . 13.27]. Half length of major axis is

20.57 units. Half length of minor axis is 12.58 units. Major and hinor

axes lie in Q) and ) directions, respectivgly.

i

Yes, the test answers the question: .Is. § = 0 inside the 95% confi-

dence ellipse?

6.2 Using a critical value t,_;(a/2p) = 1,0(0.0125) = 2.6338,

LOWER

Bonferroni €. I.: - -20.57
. -2.97

Simultaneous C. I.: -22.45
-5.70

UPPER

1.85
29.52

3.73
32.25

Simultaneous confidence intervals are larger than Bonferroni’s confidence intervals.

6.3 The 95% Bonferroni intervals are

LOWER
Bonferroni €. I.: -21.92
-3.36
Simultaneous C. I.: -23.70
-5.50

UPPER
-2.08
20.56

-0.30
22.70

Since the hypothesized vector § = 0 (denoted as * in the plot) is outside the joint confidence
region, we reject Ho : § = 0. Bonferroni C.I. are consistent with this result. After the
elimination of the outlier, the difference between pairs became significant.



95% Simu]tancéusVConrifdence Region for Delta Vector
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Problem 6.3

6.4
(3). Hotelling’s T? = 10.215.
Lower
Bonferroni C. I.: -1.09
-0.04
7* Simultaneous C. L.: -1.18
-0.10

Upper
-0.02
0.64

0.07
0.69

95% Confidence Ellipse About the Mean Vector

Since the critical point with a = 0.05 is 9.459, we reject
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(c) The Q-Q plots for In(DiffBOD) and In(DiffSS) are shown below. Marginal
normality cannot be rejected for either variable. The #? plot is not straight
(with at least one apparent bivariate outlier) and, although the sample size
(n =11) is small, it is difficult to argue for bivariate normality.

In(DiffBOD)

In(DiffSS)
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e
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6.5 @) 7

b)

' R 0
. = = ’ = .
HO. Cg Q where C [0 . _]] » B [ul.uz.u3] .

-11.2 , §5.5 -32.%
= 'Y csc = '
| 6.9 _32.6  66.4

72 = h(cg)'(cst')“(cg) = 90.4; n = 40;

C

tx!

]
L]
{78 ]

(.05) = 322 (3.25) = 6.67

n-1)(g-1 F |
n-q+l qg-1,n-q+

Since T2 = 90.4 > 6.67 reject Hj:Cu =0

95% simultaneous confidence fintervals:

. e [55:5
u] - uzo (46.] ‘57.3) 4 6.67 —40'—

-11.2 £ 3.0

u - M3t -4.3 + 3.3

Tﬁe means are all different from one another.
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' 2
66 a) Treatment 2: Sample mean vector [ ]; sample covariance matrix
: . 4
1 <3/2
- 1=3/2 3
3
Treatment 3: Sample mean vector 3 samplé covariance matrix

2
2 43
413 4/3
" Spooted = 1.6
-1.4 .
: v o1 fe a4 T 237
by T =123, 4-2] |(z3+3) |4 o ‘o = 3.88

(n1+n2-2)p

_18)2 oy .
Giyrgp1T Fpanytnyep-1 (-01) = G- () - 45

Since T% = 3.88 < 45 do not reject Hyp-u3 = 0 at the a = .01
level. |

c) . 99% simultaneous confidence intervals:

Hoy ~ M3y° (2-3) = /35 ’(%+%)‘-6= -1 +65

. 1 1. [r0se3.7  a1505.577° 74.4
6.7 T2 = [74.4 201.6] (E + -g-s-) o = 16.1
_ 21505.5 63661.3 | |. | 201.6

(n1+n2-2)p

o FigpT rp’n] mz_p_,(.os) = 6.26

Since T2 = 16.1 > 6.26 reject HO:EI -y, =0 at the a = .05 level.



ae=

-~

6.8 a)

b)

a4 . . [em7 - | 108
spooled(fl - %) | | -

.0026

For first variable:

treatment

observation = mean | + - effect + residual
6 58 47 4 4 4 4 4 [2 2 2 2 ZJ|0-12-21
31 2 =14 4 4 +|-2 -2 -2 +{1-10
2 5 3 2 14 4 4 4 -‘l-'l-'l'-'l" -1 2 0-=1
. Ssobs‘ =' 296 Ssmean = 192 sstr =36 o ssres = 18
For second variable:
7 96 9 9] [55 55 6] 333 33] [-1 1-211
3 6 =|5 5 5§ -1 -1 -1 +1-1 2 -1
311 3 § 5 § 5§ 1-3 -3 -3 -3 1-1-11
SSops = 402 SSpaap ¢ .300 $S,,. = 84 | ssrgsv = 18
Cross product contributions:
275 240 8 -13
MANOVA table:
Source of o
Variation SSP d.f.
36 48 |
Treatment B = 3-1=2
b48 84 '
. 18 -13] .
Residual W =1 $+3+4-3=9
L:13 18 ~
. ]5 35 ,
Total (corrected) - | 1n
35 102 ‘
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* _ Wl _ 155 _
C) A - 1%%“1- 42 3 = -'0362
Using Table 6.3 with p =2 and g =3

1- ) (P97 L q7.02.
ed g-1

Since F, 15(.0‘!) = 4.77 we conclude that treatment differences
’ s

eiist at o = .01 Tlevel.
Alternatively, using Bartlett's procedure,
- (n-1 - {2291 g0 ax = -(12-1-F)sn(.0362) = 28.209

Since Xﬁ(.m) = 13.28 we again conclude treatmént differences

exist at o = .01 level.

6.9 for any matrix C

- ~J
so S4 = E%T'z(ﬂj‘g)(fj‘é)' = °°a§7'?(55-2)(55-3)')6'.= csc’
6.10 (x ‘1_.)'[(32_]--32)2.l +ouea * (ig—i)gg]

= i[(§1-i)n1'+ v * (ig-i)ng] :
= i[n.‘i.l + ...+ ng:'(g-i(n,l + eee ¥ ng)].

= x[{ny + ...+ ng)i-i(nl oot ng)‘] =0
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6.11 Llyyoupod) = Lluysdltiny.d)

L 1 -1
nyn,)p nym, axp{- 7 (tr 17 [(ny-1)5;+(n,-1)5,]

(zr) 2 I 2
IR v - t =1, ‘ '
+n (% -) 4 (§-g1) +ny(Xy-up)” F (% - Ez))}

using (4-16) and (4-17). The 1ikelihood is maximized with respect
to 1, and p, at ;3] = 21 and 132 = .i.z respectively and with
respect to } at ' '

o1 ' |
f- s [(ny =1)S; #(n,-2)s,] = o Spooled

(For the maximization with respect to t see Result 4.10 with

i b

b=—3

and B = (n.l -'I)S1 + (nz-Z)Sz)

6.13 -a) and b) For first variable:

factor 1 ?actor 2 .
Observation = mean + effect + effect ‘4' residual
5482_1'111 4 4 44 [1-2z4-37 [o 1.0
3-34-4|={1T111[+]=-1-<1 -1+ |1-24=3{+|2-1 0-1
-3 -43 -4 1111 .[-3 -3 -3-3 1-24-3 =201 1}

For second variable:

8 612 6] [3333 5 5 5§ 5] [3-21-2] [-30 3 07
8 2 3 3|/=|3333|+|1 11 1|+|3-2 12|+ 10-21
2-5-3-6|] |3333 -6-6-6-6] |3-2 1-2 20-1-1]

Sstot =440 Ssmean =108 SSeac =248 sz_ac 2° 54 SSres = 30
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Scptot = SCPmean + scpfac-l + Scpfac 2 * SCPNS‘
227 = 36 + 148 + 51 - 8
c) MANOVA table:
“Source of
Variation: SSP d.f.
| 104 148]
Factor 1 : g-1=3-1=2
148 248
: 90 51 | .
Factor 2 b-1=4-1=3
. s 54
| (14 -8
Residual (g-1)(b-1) = 6
L-s 30|
Total (Corrected) {208 191 "gb-1=11
, 191 332 '

d) MWe reject Hy: Ty =75 = Ty = 0 at a-= .05 level since

R _ s\
- 1) (5-1) - (B e = - - Fen T‘sspfa::iss?nsa

& -5.52n(336) = 1087 > xs(.05) = 9.49
13204'
and conclude there are factor 1 effects.

We also reject Hozg1 = Ez = 83 =B = 9 at the a = .05 Tevel

since
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- e (6-1) - @+ (s - 53 ( 1557,

= 62 (22) = 17.77 > x§(.05) = 12.59°

6887

and conclude there are factor 2 effects.

6.14 b) MANOVA Table:

lSspf"at: 2% SS-Prej

“Source of . , — .
variation SSp d.f.
' ' 406 184
Factor 1 . 2

184 208
. 36 24
Factor 2 3
{-_24 36 ’
(32 0
Interaction .6
‘ R 0 44_
312 -84
Residual 12
_-84 400
_
876 124
Total (Corrected) 23
' L_'l 24 688

lss#res" \

¢) Since -[gb(n-1)- {p#1 - (g=1){b-1))/2]enA* = -13.SMQ-S—T,_ TSP y

int 7 res

.= -13.52n(.808) = 2.88 < X}2(.05) = 21.03 we do not reject

0°~

6. = ,05 level.

HgtYqq = Y92 = +» =T34 = 0 (no interaction effects) at the
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Since

Issp_,
-[gb(n-1)-(p+1- (g-]))/Z]lnA =-11 sm(ﬁsp’facl ﬁres‘)

- 11.50n(.2447) =16.19 > X2(.05) = 9.49 we reject

H =0 (no factor 1 effects) at the a=.05

0172713
Tevel .

Since

ISSP,. ]
-[gb{n-1)- (p+1 (b-1))/2]2nA* = -122n Sspfacz sﬁ: T
re

= -122n(.7949) =2.76 < Xi(.05) = 12.59 we do not reject
HoiBy =B, = 83 = By = 0 (no factor 2 effects ) at the

= .05 level.



6.15 Example 6.1}, g=b=2,n=75;

) [ = = *3
a) For Hyi 1y T2 0, A™ = ,3819

»
-~

Since

-[gb(n-1)-(p+1-{g-1))/2]en A" =-14.52n(.3819) =

= 13.96 > x5 (.05) = 7.81,

112

we reject Hjat o = .05 level. For Hy: By = B, = 0. A= 5230 and

-14.52n (.5230) = 9.40. Again we reject Hy at a = .0S Tevel.

These results are consistent with the exact F tests..

1 -1 0
6.16 Hg: Cu = 0; Hy: € # 0 where c={0 1 -1 O
-7 - ' o o 1 -
" Summary statistics:
1906.1 i | 105625 94759 87249 94268
5 = 1749.5 | . S = 101761 76166 81193
Rt 1509.1 : 91809 90333
1725.0 104329
- - -

T% = n(CE)*(CSC*)™ (CX) = 2547

 (n=1)(g-1) _Bonen o i

Since T2 = 2547 > 9.54 we reject Ho at a = .05 Tlevel.

95¢% simultaneous confidence interval for °dynamic® versus "static"

means (u.l + uz) - (1.13 + u4) is, with ¢' = 0o 1
= n-1)(g-1) /c'Sc
c'x */ (n=q+1 Fq-l sn-q+l (a) =

4215 + 1745 ——» (247.596)

-1 '1] >
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6.17(a) Arabic ) —— @
Format '
Words _—
Different Same
Parity
Effects Contrast
. Parity main: (4, "'/14)_(”1"'/‘3).
Format main: (43 + ) - (4 +4,)
Interaction: (u, + ) - (4 + 1)
Contrast matrix:
-1 1 -1 1
C=(-1 -1 1 1
-1 1 1 -1
o 31(3) .
Since T2 =1359> 2—9(2.93) =9.40, reject H, : Cuu =0 (no treatment effects)
at the 5% level.

(b) 95% simultaneous 7* intervals for the contrasts:

Parity main effect: -206.4+ \/9.40 %%—6 —(-280.3, -125.1)
Format main effect: —307++/9.40 f% — (4114, - 186.9)

Interaction effect:  22.4+ 79.40

28185 323, 750)
32

No interaction effect. Parity effect—*“different” responses slower than
“same” responses. Format effect—*words” slower than “Arabic”.
(¢) The M model of numerical cognition is a reasonable population model for the scores.
(d) The multivariate normal model is a reasonable model for the scores corresponding to
the parity contrast, the format contrast and the interaction contrast.



6.18 o
Female turtle

A chi-square plot of the ordered distances
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Male turtle

A chi-square plot of the ordered distances
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mean vector.forvfemales: mean vector for malés:
X1BAR X2BAR
4.9006593 : 4.7254436
4.6229089 4.4775738
3.9402858 ' 3.7031858

SPOOLED 0.0187388 0.0140655 0.0165386
0.0140655 0.0113036 0.0127148
0.0165386 0.0127148 0.0158563

TS@ - CVTSQ F CVF PVALUE
85.052001 8.833461 27.118029 2.8164658 4.355E-10

linear combination most responsible for rejection

of HO has coefficient vector:

COEFFVEC
-43.72677
-8.710687
67.546415

95% simultaneous CI for the difference

in female and male means Bonferroni CI
LOWER UPPER _
R
0.0577676 0.2926638 LOWER UPPE4
0.0541167 0.2365537 0.0768599 2.22?3;;2
0.1290622 0.3451377 0.0689451 0.

0.1466248 0.3275751
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6.19 ' C[12.219 10.106

a) X, = | 8133 X,=[10.762 |;
9.590 18.168

223.0134 12.3664 2.9066
17.5441 4.7731
13.9633

wn
-
)

4.3623 . .7599 2.3621
S - 25.8512 7.6857
46.6543

N
we

15.8112 7.8550 2.6959
20.7458 5.8960
26.5750

Spooled =

[71.0939 -.4084 -.0203

.8745 -.1525
.5640

-1 1 -1
[(EI— + B_z')spooled]

Ho: -y =0

1

2 2 - - l -] - - - »
Stnce T2 = (X1 - Xo) ' UGRr * 7500010l (E1 %) = 50-%2

n

(n.' n,-2)p

T o1y = (8713 ey
> nl-l-nz-p_] Fp,ﬂ]+n2‘P"(.0]) = ——S-SL—l Fa’S‘S(’OI) =13,

we reject HO at the a = .01 level. There is a difference in the

(mean) cost vectors between gasoline trucks and diesel trucks.

3.58

b) &S (x, - ) = -1.88
! ~ pOO]ed ~] ~2
-4.48



c)

d)
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99% simultaneous confidence intervals are:

u'n - l-lz'l: 2.]13'3 3.790

nN
L]
Q
o
4

£ 4.341

4.913

]
o)
L]
wn
~
(o<}
i+

Assumption i = i,

Since S] and S2 are quite different, it may not be reasonable

to pool. However, using "large sample” theory ("l = 36, n, = 23)
we have, by Result 6.4,

-l-.

X, - {uy - Ez))'['nl]‘ 51 %%, S (B - By - (g - ) - X

(%, -

* o~

Since
B 5 G Sy + ST By - ) < s > B0 =11

we reject HO: By =My = 9 at the o = .01 7level. This is con-

sistent with the result in pari (a).
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. 220
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- T
260 ‘ 280 300
wingm

(b) The output below shows that the analysis does not differ when we delete the
observation 31 or when we consider it equals 184. Both tests reject the null
hypothesis of equal mean difference. The most critical linear combination
leading to the rejection of Hy has coefficient vector (—3.490238;2.07955)’
and the the linear combination most responsible for the rejection of Hy is

the Tail difference.
(c) Results below.

Comparing Mean Vectors from Two Populations
ﬁ)bs. 31 Deleted_\

T2 c
25.005014 §.9914645

Reject HO. There is mean difference
957, simultaneous confidence intervals:

LABELCT . LICIMD LSCIMD

Mean Diff. 1: -11.76436 -1.161905 (Tail difference)
Mean Diff. 2: = -5.985685 8.3392202 (Wing difference)

RESULT COEF

Coefficient Vector: -3. 490238
2.07955

118



Comparing Mean Vectors from Two Populations

prs. 31 lhféil

C

25.662531 5.9914645 .

Reject HO. There is mean difference

95% simultaneous confidence intervals:

LABELCI

LICIMD LSCIMD

Mean Diff. 1: ~-11.78669 ~-1.27998

Hean Diff. 2:

RESULT

-6.003431 8.1812088

COEF

Coefficient Vector: -3.574268

Vliﬁg {ength

(d) Female birds are generally larger, since the confidence interval bounds for
difference in Tails (Male - Female) are negative and the confidence interval
for difference in Wings includes zero, indicating no significance difference.

“0 7]

20

2.1220203

95% Confidence Bllipse About the Mean Vector

-107

-40 3

-50 7]

-60
Y
-40

-30 -20 -0
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()

{c)

Hp: By - ¥ =

The (4,2) and (4,4) entries in S1 and S, differ con-
siderably. However, n; =n, SO the 'Iargé sample approxi-
mation amounts to poaling. -

-

0 and Hy: oy - 2p# 0
2 _ (38)(4) _
T? = 15.830 >» 35 F4’3.5(.05) = 11.47

so we reject Ho at the a = .05 Tevel.

1 -024
R e I |-
8 =5 o1edthy - %) = |-3im

: .0l

120
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(d) Looking at the coefficients ai'/sii,pooled » which apply to
the standardized variables, we see that X?_: long term interest
rate  has the largest coefficient and therefore might be

useful in classifying a bond as "higb" or "medium" quality.

4+16
.53556

(e) From (b), T?>=15.830. Havep=4and v = =37.344 so, at the 5% level, the

critical value is . :
vp 37.344(4) 149376

F,, ;n(05)=—r——— 05)=
v-p+l oo (O = o gy e (=30
Since T? =15.830>11.513, reject H, : h — 4, =0, the same conclusion reached in
(b). Notice the critical value here is only slightly larger than the critical value in (b).

(2.647)=11.513

6.22 (a) The sample means for female and male are :

0.3136 0.3972
zeo | P17TS8 | _ | 5.3296
F=1 23152 | ™ T | 36876
38.1548 49.3404

The Hotelling's T? = 96.487 > 11.00 where 11.00 is a critical point corresponding
to @ = 0.05. Therefore, we reject Ho : 1 — 3 = 0. The coefficient of the linear
combination of most responsible for rejection is (—95.600,6.145,5.737, -0.762)".

(b) The 95% simultaneous C. I. for female mean ~male mean:

—0.1697234, 0.00252336
—1.4650835, 1.16348346
—1.8760572, —0.8687428
—17.032834, —5.3383659

{c) We cannot extend the obtained result to the population of persons in their mid-
twenties. Firstly this was a self selected sample of volunteers (friends) and is not
even a random sample of graduate students. Further, graduate students are probably
more sedentary than the typical persons of their age. :



6.23 n] = n2 =ng = 50; p=2,9g=13 (Sepal width and petal width
' responses only!
[ 3.428] (14368 -.00474 ]
5F o5
. L 0306 - L 018576 J
RN [.03860 04128 |
= i 5
| 1.326 | ! .03920 |
o [e.97a] .10368  .04764
X3 = H 53 = .
- | 2.026 .07563
MANOVA Table: |
Source sSSP d.f.
(11.348  -21.820])
Treatment B = 2
| 75.352 |
(16.950 ©  4.125]
Residual W= : . 147
(28.294 -17.695 |
Total B+W = . 149
. i 190.081 |.
a* oo Wl 232,64
A= TauTm = 7735.65 - 104

. In,-p-2 1 - YA*
S 1 ———— a ;

vie reject H

o I T

T, 713 at the a = .05 level.

)



123

90-4-2Y1-+.8301

6.24 Wilks’ lambda: A =.8301. Sinceg=3, =2.049 isan F
& ( 4 /.8301 J

value with 8 and 168 degrees of freedom. Since p-value = P(F > 2.049) - 044, we
wouid just reject the null hypothesis H,:z, =z, =g, = 0 at the 5% level implying
there is a time period effect.

F statistics and p-values for ANOVA’s:
F p-value
MaxBrth: 3.66 .030
BasHght:  0.47 629
BasLgth: 3.84 025
NasHght:  0.10 .901

- Any differences over time periods are probably due to changes in maximum breath
of skull (MaxBrth) and basialveolar length of skull (BasLgth).

95% Bonferroni simultaneous intervals: m=pg(g-1)/2=12,
15,(.05/24) = 2.94

17854( 1 1
BasBrth —ry: 12294 2281 1 i34
. fn " \/ 87 .(30 30)

Ty =Ty —3.11£3.44
Ty =Ty —2.1i3.~44 .

BasHght  7,-7,,: 09+2.94 —-—19.24'3(-3-+i —> 09£357
87 130 30
Ty =Tyt —0.2%3.57
Ty =Tyt —1.11£3.57 ,
BasL Ty =Ty 0102204 23 L, 1) b 6104378
87 \30 30
T3 — T3 3.14+3.78 '
Ty — T3¢ 3.03+£3.78
' 8402(1 1
NasH ~Ty: 030£2.94 || —4— 0.30+2.36
asHgth F1e \i 87 (30 30) e

Tyy — T3 . —0.03+2.36
Tye — T34 ¢ —0.331£2.36

All the simultaneous intervals include 0. Evidence for changes in skull size over
time is marginal. If-changes exist, then these changes might be in maximum breath
and basialveolar length of skull from time periods 1 to 3.

The usual MANOVA assumptions appear to be satisfied for these data.



6.25

Without transforming the data, A* =_|W| = .1159 andF = 18.98.

B + W]

After transformation, A* = .1198 and F = 18.52. >F,4(.05)=1.93
There is a clear need for transforming the data to make the hypothesis tenable.

6.26

6.27
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To test for parallelism, consider Hm: Cg] = ng with C given

T? =

by (6-61).
-.413 1.674 .97  _616
: v b \ - . -‘ -
C(%) - X)) =|-167 |5 (€5, €07 = 2.0014  1.148

- .036 , 2.341

9.58 > ¢ = 8,0, we reject H0 at the a = .05 lTevel. The

excess electrical usage of the test group was much lower than that

of the control group for the 11 A.M., 1 P.M. and 3 P.M. hours.

The similar 9 A.M. usage for the two groups contradicts the

parallelism hypothesis.

a)

b)

" Plots of the husband and wife profiles look similar but seem

disparate for the level of "companionate love that you feel

for your partner®.
Parallelism 'hypothesis Hgt CEI = Cu, with C given by
(6-61), .

-.13 ' .685 .733 .029

C(.XJ -fz) = -.17 ; CSPOOIEdC. = .870 -.028
! .33 ‘ 0095

for a = .05, c2 =8,7 (see (6-62}). Since

T2 = 19.58 > ¢ = 8,7 wve reject HO at the a = .05 Tevel.
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6.28 T? = 106.13 > 16.59. We reject Ho : 1 — pa = 0 at 5% significance level. There
is a significant difference in the two species.

Sample Mean for L.torrems and L.carteri:

L.torrens L.carteri Difference
96.457 99.343 -2.886
42.914 43.743 -0.829
35.371 39.314 -3.943
14.514 14.657 -0.143
25.629 30.000 -4.371

9.571 9.657 -0.086
9.714 9.371 0.343

Pooled Sample Covariance Matrix:

36.008 14.595 6.078 3.675 9.573 2.426 2.649
16.639 2.764 2.992 6.101 1.053 0.934

6.437 0.692 1.615 0.211 0.671

3.039 2.407 0.274 0.229

13.767 0.565 0.637

1.213 0.914

0.990

Linear Combination of most responsible for rejection
of Ho: L.torrems mean - L.carteri mean = 0 is :
(0.006, 0.151, -0.854, 0.268, -0.383, -2.187, 2.971)°

95% Simultaneous C. I. for L.torrens mean - L.carteri mean:
LOWER UPPER

-8.73 2.96
-4.80 3.14
-6.41 -1.47
-1.84 1.55
-7.98 -0.76
-1.16 0.99
-0.63 1.31

The third and fifth components are most responsible for rejecting Ho. The x2 plots look
fairy straight.



CHI-SQUARE PLOT FOR L.torrens

CHI-SQUARE

15 1

10 9

' CHI-SQUARE PLOT FOR L.carteri 126

D-SQUARE

S

0.00366259 0.00482862 0.00154159
0.00482862 0.01628931 0.00304801

15
-
3 10 -
-
X
(3]
§ o
0 5 10 s 20 25
D-SQUARE
6.29
(3).
: XBAR
Summary Statistics: 0.02548
< 0.05784
0.010586

0.00154159 0.00304801 0.00602526

Hotelling’s T? = 5.946. The critical point is 9.979 and we fail to reject Ho: p1 — p2 =0 at

5% significance level.

(b). (©).
LOWER
Bonferroni C. I.: -0.0057
-0.0079
-0.0294
Simultaneous C. I.: -0.0128
-0.0228
-0.0385

6.30

UPPER

0.0566
0.1235
0.0505

0.0637
0.1385
0.0596

HOTELLING T SQUARE - 9.0218

P-VALUE.  0.3616

N MEAN STDEV
x1 24 0.00012 0.04817
x2 24 -0.00325 0.02751
x3 24 -0.0072 0.1030
x4 24 -0.0123 0.0625
x5 24 0.01513 0.03074
x6 24 0.00017 0.04689

T2 INTERVAL BONFERRONI
TO TO
-.0443 .0445 -.0283 .Q285
-.0286 .0221 -.0195 .0130
-.1020 .0876 -.0679 .0S35s
-.0701 .0455 -.0493 .0247
-.0130 .0436 -.0030 .0333
-.0430 .0434 -.0275 ,0278

The Bonferzoni intervals use t ( .00417 ) = 2.89 and

the T intevals use the constant 4.516.
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6.31 (@) Two-factor MANOVA of peanuts data

E = Error SS&CP Matrix

X1 X2 X3
X1 104.205 49.365 76.48
X2 49.365 352.105 © 121.995
X3 76.48 121.995 94.835
H = Type III SSECP Matrix for FACTORt ( Locoation)

o X2 X3
Xt 0.7008333333 -10.6575 7.1291666867
X2 -10.6575 162.0675 -108.4125
X3 7.1291666667 -108.4125 72.520833333

Manova Test Criteria and Exact F Statistics for
the Hypothesis of no Overall FACTOR1 Effect
H = Type III SS&CP Matrix for FACTOR1 E = Error SS&CP Matrix

S=1 M=0.5 N=1

Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda 0.10651620 11.1843 3 4 0.0205
Pillai’s Trace 0.89348380 11.1843 3 4 0.0205
Hotelling-Lawley Trace 8.38824348 11.1843 3 4 0.0205
Roy’s Greatest Root 8.38824348 11.1843 3 4 0.0205

H = Type III SSKCP Matrix for FACTOR2 (Variety)

X1 X2 X3
X1 196.115 365.1825 42.6275
X2 365.1825 1089.015 - 414.655
X3 42.6275 414.655 284.10166667

Manova Test Criteria and F Approximations for
the Hypothesis of no Overall FACTOR2 Effect :
H = Type III SS&CP Matrix for FACTOR2 E = Error SS&CP Matrix

S§=2 M=0 N=1

Statistic Value F Num DF Den DF Pr > F
Wilks’ Lambda ‘ 0.01244417 10.6191 6 8 0.0019
Pillai’s Trace 1.70910921 9.7924 6 10 0.0011
Hotelling-Lawley Trace 21.37567504 10.6878 6 6 0.0055
Roy’s Greatest Root 18.18761127 30.3127 3 5 0.0012
H = Type III SS&CP Matrix for FACTOR1*FACTOR2

X1 X2 , X3
X1 205.10166667 363.6675 107.78583333
X2 363.6675 780.695 254.22

X3 107.78583333 254,22 85.951666667



Manova Test Criteria and F’Approximations for
the Hypothesis of no Overall FACTOR1*FACTOR2 Effect
H = Type III SS&CP Matrix for FACTOR1*FACTOR2

S=2 M=0 N=1
Statistic

Wilks’ Lambda

Pillai’s Trace
Hotelling-Lawley Trace
Roy’s Greatest Root

Value
0.07429984
1.29086073
7.54429038
6.82409388

F

E = Error SS&CP Matrix

3.5582
3.0339
3.7721

11.3735

Num DF

6

6
6
3

Den DF
8

10

6

5

(b) The residuals for X at location 2 for variety 5 seem large in absolute value, but

Q-Q plots of residuals indicate that univariate normality cannot be rejected for all

three variables.

CODE FACTOR1 FACTOR2 PRED1 RES1 PRED2 RES? PRED3 RES3
a 1 5 194.80 0.50 160.40 -7.30 §2.55 -1.15
a 1 5 194.80 -0.50 160.40 7.30 52.55 1.15
b 2 5 185.05 4.65 130.30 9.20 49.95 5.55
b 2 5 185.05 -4.65 130.30 -9.20 49.95 -5.55
c 1 6 199.45 3.55 161.40 -4.60 47.80 2.00
c 1 6 199.45 -3.55 161.40 4.60 47.80 -2.00
d 2 6 200.15 2.55 163.95 2.15 57.25 3.15
d 2 6  200.15 -2.55 163.95 -2.15 57.25 -3.15
e 1 8  190.25 3.25 164.80 -0.30 58.20 -0.40
e 1 8 190.25 -3.25 164.80 0.30 58.20 0.40
£ 2 8 200.75 0.75 170.30 -3.50 66.10 -1.10
f 2 8 200.75 -0.75 170.30 3.50 66.10 1.10

Figure 1: Q-Q Plot - Residual for Yield ///
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Figure 2: Q-Q Plot - Residual for Sound Mature Kernels -
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Figure 3: Q-Q Plot - Residual for Seed Size P .
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(c) Univariate two factor ANOVAs follow. Evidence of variety effect and, for X, = yield
and X, = sound mature kernel, a location*variety interaction.

Dependent variable: yield:

Source
Model
Error

Corrected Total

R-Square

0.794111

Source

location
variety
location*variety

Sum of
DF Squares Mean Square F Value
5 401.9175000 80.3835000 4.63
6 104 .2050000 17.3675000
1 506.1225000
Coeff Vvar Root MSE yield Mean
2.136324 4.167433 195.0750
DF Type III SS Mean Square F value
1 0.7008333 0.7008333 0.04
2 196.1150000 98.0575000 5.865
2 205.1016667 102.5508333 5.90

Pr > F

0.0446

Pr > F

0.8474
0.0418
0.0382
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Dependent Variable: sdmatker

~Source
Model
Error

corrected Total

R-Square

0.852298
Source
location
variety
location*variety

Dependent Variable: seedsize

Source
Model
Error

corrected Total

R-Square

0.823533

Source

location
variety
location*variety

Sum of
DF ‘squares . Mean Square F value
5 2031.777500 406.355500 6.92
6 352.105000 58.684167
11 2383.882500
Coeff Var Root MSE sdmatker Mean
7 .660559 1568.5250

4.832398

DF Type III SS Mean Square F Value
1 162.067500 162.067500 2.76

2 1089.015000 544 ,507500 9.28
2 780.695000 390.347500 6.65

The GLM Procedure
Sum of

DF Squares Mean Square F Value
5 442.5741667 88.5148333 5.60
6 94 .8350000 15.8058333

11 537.4091667

Coeff var Root MSE seedsize Mean
7.188166 3.975655 55.30833

DF Type III SS

1, 72.5208333
2 284.1016667
2 85.9516667

Mean Square F Vvalue
72.5208333 4.59
142.0508333 8.99
42,9758333 2.72

Pr > F

0.0177

Pr>F
0.1476

0.0146
0.0300:

Pr>F

0.0292

Pr > F

0.0759
0.0157
0.1443
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(d) Bonferroni simultaneous comparisons of variety.
Only varieties 5 and 8 differ, and they differ only on Xs.

Bonferroni (Dumnn) T tests for variable: X1

Alpha= 0.05 Confidence= 0.95 df=38 MSE= 38.66333‘

Critical Value of T= 3.01576

Minimum Significant Difference= 13.26

Comparisons significant at the 0.05 level are indicated by ’#*»*’.

Simultaneous Simultaneous
Lower Difference - Upper

FACTOR2 Confidence  Between Confidence
Comparison Limit Means Limit
6 -8 -8.960 4.300 17.560.
6 -5 -3.385 9.875 23.135
8 -6 -17.560 -4.300 8.960
8 -5 -7.685 5.575 18.835
5 -6 -23.13% -9.8756 3.385
5 -8 -18.835 -5.575 7.685

Bonferroni (Dunn) T tests for variable: X2

Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 141.6

Critical Value of T= 3.01576

Minimum Significant Difference= 25.375

Comparisons significant at the 0.05 level are indicated by ’##x’,

Simultaneous Simultaneous
Lower Difference Upper

FACTOR2 Confidence Between Confidence
Comparison Limit Means Limit
8 -6 -20.500 4.875 30.250
8 -5 -3.175 22.200 47.575
6 -8 '-=30.250 -4.875 20.500
6 -5 -8.050 17.325 42.700
5 -8 -47.575 -22.200 3.175
5 -6 -42.700 -17.325 8.050

Bonferroni (Dumnn) T tests for variable: X3

Alpha= 0.05 Confidence= 0.95 df= 8 MSE= 22.59833

Critical Value of T= 3.01576

Minimum Significant Difference= 10.137 .
Comparisons significant at the 0.05 level are indicated by ’#**x’.

Simultaneous : Simultaneous
Lower Difference Upper
FACTOR2 Confidence Between Confidence
Comparison Limit Means Limit
8 -8 -0.512 9.625 19.7862
8 -5 0.763 10.900 21.037  *xx
3] - 8 -19.762 -9.625 0.512
6 -5 -8.862 1.275 11.412
5 -8 -21.037 -10.900 -0.763  **x
[ - A -11 419 -1 078 R KRN
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6.32 {a) MANOVA for Species: Wilks’ lambda A} =.00823
' ' F=5.011; p-value=P(F>5.011)=.173
F,,(.05)=19.25
Do not reject Hy: No species effects
MANOVA for Nutrient: Wilks’ lambda A’, =.31599
F=1.082; p-value=P(F>1.082)=.562
F,,(.05)=199.5
Do not reject Hy: No nutrient effects
(b) Minitab output for the two-way ANOVA'’s:

 560CM
Analysis of Variance for 560CM
Source DF SS MS F P
Spec 2 47.476 23.738 10.06 0.090
Nutrient 1 8.260 8.260 3.50 0.202
Error 2 4.722 2.361
Total 5 60.458

720CM.

Analysis of Variance for 720CM
Source DF SS MS F P
Spec 2 262.239 131.119 28.82 0.034
Nutrient 1 4.489 4.489 0.99 0.425
Error 2 9.099 4.550
Total 5 275.827

The ANOVA results are mostly consistent with the MANOVA results. The
exception is for 720CM where there appears to be Species effects. A look
at the data suggests the spectral reflectance of Japanese larch (JL) at 720
nanometers is somewhat larger than the reflectance of the other two

species (SS and LP) regardless of nutrient level. This difference is not as
apparent at 560 nanometers.

For MANOV A, the value of Wilks’ lambda statistic does not indicate
Species effects. However, Pillai’s trace statistic, 1.6776 with

F=15.203 and p-value = .07, suggests there may be Species effects.

(For Nutrient, Wilks’ lambda and Pillai’s trace statistic give the same F
value.) For larger sample sizes, Wilks’ lambda and Pillai’s trace statistic
would give essentially the same result for all factors.
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6.33. (a) MANOVA for Species: Wilks’ lambda A’ =.06877
F=36.571; p-value=P(F>36.571)=.000
F,,(.05) =255
Reject Hy: No species effects
MANOVA for Time: ~ Wilks’ lambda A’, =.04917
F=45.629; p-value = P( F > 45.629) =.000
F,,(.05)=2.55
, Reject Hy: No time effects
MANOVA for Species*Time: Wilks’ lambda A}, =.08707 v
F=15.528; p-value=P(F >15.528)=.000
F;,(.05)=2.12
Reject Hp: No interaction effects
(b) A few outliers but, in general, residuals approximately normally distributed
(see histograms below). Observations are likely to be positively correlated
over time. Observations are not independent.

’Histogram of the Residuals

Histogram of the Residuals -
(response is 720nm)

(response is 560nm)

Frequency

(¢) Interaction shows up for the 560nm wavelength but not for the 720nm
wavelength. See the Minitab ANOVA output below.

Analysis of Variance for 560nm

Source DF SS MS F P
Species 2 965.18 ' 482.59 169.97 0.000
Time 2 1275.25 637.62 224.58 0.000
Species*Time 4 795.81 198.95 70.07 '0.000
Error 27 . 76.66 2.84

Total 35 3112.90

Analysis of Variance for 720nm

Source DF Ss MS F P
Species 2 202%6.86 1013.43 15.46 0.000
Time 2 5573.81 2786.90 42.52 0.000
Species*Time 4 193.55 48.39 0.74 0.574
Error 27 1769. 64 65.54

Total 35 95%63.85
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(d) The data might be analyzed using the growth curve methodology discussed in
Section 64. The data might also be analyzed assuming species are “nested”
within date. In this case, an interesting question is: Is spectral reflectance the
same for all species for each date?

6.34 Fitting a linear growth curve to calcium measurements on the dominant ulna

Profiles for xbar1 and xbar2

o 1
1 1

g -

SE » 2

g -

2 - 2

8 -

8 -

8 .

8

3
0 1 2 3
Time (year)

XBAR ' Grand mean MLE of beta [B’Sp~(-1)B]1~(-1)
72.3800 69.2875 71.1939 73.4707 70.5049 93.1313 -5.2393
73.2933 70.6562 71.8273 -1.9035 -0.9818 -56.2393 1.2948
72.4733 71.1812 72.1848
64.7867 64.5312 65.2667
S1 ' S2
92.1189 86.1106 73.3623 74.5890 98.1745 97.0134 89.4824 86.1111
86.1106 89.0764 72.9555 71.7728 97.0134 100.5960 88.1425 88.2095
73.3623 72.9555 71.8907 63.5918 89.4824 88.1425 86.3496 80.5506
74.5890 71.7728 63.5918 75.4441 86.1111 88.2095 80.5506 81.4156
Spooled W = (N-g)*Spooled
95.2511 91.7500 81.7003 80.5487 2762.282 2660.749 2369.308 2335.912
91.7500 95.0348 80.8108 80.2745 2660.749 2756.009 2343.514 2327.961
81.7003 80.8108 79.3694 72.3636 2369.308 2343.514 2301.714 2098.544
80.5487 80.2745 72.3636 78.5328 2335.912 2327.961 2098.544 2277.452
Estimated covariance matrix Wi »
7.1816 -0.4040 0.0000 0.0000 2803.839 2610.438 2271.920 2443.549
-0.4040 0.0998 0.0000 0.0000 2610.438 2821.243 2464.120 2196.065
0.0000 0.0000 6.7328 -0.3788 2271.920 2464.120 2531.625 1845.313
0.0000 -0.0000 -0.3788 0.0936 2443.549 2196.065 1845.313 2556.818

Lambda = {W|/I¥1] = 0.201

Since, with o = 0.01, — [N — {p — ¢ + g)] log(A) = 45.72 > Xf-1-12{0.01) = 13.28,
we reject the null hypothesis of a linear fit at o = 0.01.
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6.35 Fitting a quadratic growth curve to calcium measurements on the dominant ulna,
treating all 31 subjects as a single group.

XBAR MLE of beta [B’Sp~(-1)B]~(-1)

70.7839 71.6039 ~92.2789 -5.9783 0.0799

71.9323 : 3.8673 -5.9783 9.3020 -2.9033

71.8065 -1.9404 0.0799 -2.9033 1.0760

64.6548

S ' . W = (n-1)»S

94.5441 90.7962 80.0081 78.0676 2836.322 2723.886 2400.243 2342.027
90.7962 93.6616 78.9965 77.7725 2723.886 2809.848 2369.894 2333.175
80.0081 78.9965 77.1546 70.0366 2400.243 2369.894 2314.639 2101.099
78.0676 77.7725 70.0366 75.9319 2342.027 2333.175 2101.099 2277.957
Estimated covariance matrix . W2

3.1894 -0.2066 0.0028 2857.167 2764.522 2394.410 2369.674
-0.2066 0.3215 -0.1003 2764 .522 2889.063 2358.522 2387.070
0.0028 -0.1003 0.0372 2394.410 2358.522 2316.271 2093.362

2369.674 2387.070 2093.362 2314.625

Lambda = |W|/IW2]| = 0.7653

Since, with & = 0.01, — [n — 4(p — ¢ + 1)] log(A) = 7.893 > x2_,_,{0.01) = 6.635, we
reject the null hypothesis of a quadratic fit at @ = 0.01.

6.36 Here

p=2,n=45n,=55nl5,1=19.90948,1n 1S, I=18.40324,In1S,,,,,, |=19.27712

s u=[i+-1-- 1 ] 2(4)+3(2)-1
44 54 44+54] 62+1)(2-1)

- and

]=.02242

C =(1-.02242)(98(19.27712) — 44(19.90948) — 54(18.40324)) =18.93
The chi-square degrees of freedom v =%2(3)(1) =3 and 2(.05)=7.81. Since

C=18.93> y2(.05)=17.83, reject H,:X, =Z, =X at the 5% level.
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6.37 Here
p=3,n=24,n,=24,In1S,1=9.48091,In1S, = 6.67870,In1S ., = 8.62718
SO u =,:i+ 1 1 j”:2(9)+3(3)—1]=.0706‘5

23 23 23+23]| 6B3+1)2-1)

and
C =(1-.07065)(46(8.62718) —23(9.48091) — 23(6.67870)) = 23.40

The chi-square degrees of freedom vy = .;_3(4)(1) =6 and x?2(.05)=12.59. Since
C=23.40> y2(.05)=12.59, reject H,:X, =X, =X at the 5% level.

6.38 Working with the transformed data, X; = vanadium, X, = ‘\/i-l'_(;g , X3 =m ,
Xi= l/{saturated hydrocarbons], Xs = aromatic hydrocarbons, we have
p=5n=7n,=11,n,=38 nlS, =-17.81620,In 1S, I=-7.24900,
InlS, =-7.09274,In1S ,,,,, I=-7.11438

so u=[l 1,1 1 ][2(25>+3<5)—1]=. 9
6 10 37 6+10+37] 6(5+D3-1)

and

C = (1-.24429)(53(-7.11438) — 6(—17.81620) —10(=7.24900) — 37(=7.09274)) = 48.94
The chi-square degrees of freedom v = -12-5(6)(2) =30 and 22 (.05)=43.77. Since

C=4894> y2,(.05)=43.77, reject H,:Z, =%, =3, =3 at the 5% level.

6.39 '(a) Following Example 6.5, we have (iF -X,,) =(119.55, 29.97),

-1 .
.,l_sF +LSM] = 033186 -.108533 and T® =76.97. Since
28 28 —.108533  .423508

T2 =76.97 > y2(.05) = 5.99, we reject H, : i, — g1, =0 at the 5% level.

(b) With equal sample sizes, the large sample procedure is essentially the same
as the procedure based on the pooled covariance matrix.

(c) Here p=2, 1,,(.05/2(2)) = z(.0125) = 2.24, [-Z%SF +§SM] =

Mgy =My o 11955 2.24+/186.148 — (88.99, 150.11)

fey =ty 29.97£2.24414587 — (21.41, 38.52)
Female Anacondas are considerably longer and heavier than males.

186.148 47.705]
47.705 14587 |
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6.41 Three factors: (Problem) Severity, (Problem) Complexity and (Engineer)
Experience, each at two levels. Two responses: Assessment time,
Implementation time. MANOVA results for significant (at the 5% level) effects.

Effect Wilks’ lambda F P-value
Severity -.06398 - 73.1 .000
Complexity .01852 265.0 .000
Experience .03694 130.4 .000
Severity*Complexity 33521 : 9.9 .004

Individual ANOVA’s for each of the two responses, Assessment time and
Implementation time, show only the same three main effects and two factor
interaction as significant with p-values for the appropriate F statistics less than 01
in all cases. We see that both assessment time and implementation time is affected

by problem severity, problem complexity and engineer experience as well as the
interaction between severity and complexity. Because of the interaction effect, the
main effects severity and complexity are not additive and do not have a clear
interpretation. For this reason, we do not calculate simultaneous confidence
intervals for the magnitudes of the mean differences in times across the two levels
of each of these main effects. There is no interaction term associated with
experience however. Since there are only two levels of experience, we can
calculate ordinary ¢ intervals for the mean difference in assessment time and the
‘mean difference in implementation time for gurus (G) and novices (N). Relevant
summary statistics and calculations are given below. '

2.222 1'.217]

Error sum of squares and crossproducts matrix =
1.217 2.667

Error deg. of freedom: 11

Assessment time: X =3.68, X, =5.39
95% confidence interval for mean difference in experience:

3.68-5.39 .4;2.201‘/%12—12%% =-1.71£.49 = (-2.20,-1.22)

Implementation time: X, = 6.80, X, =10.96
95% confidence interval for mean difference in experience:

6.80-10.96 +2.201 3?19—7-% =—4.16+.54 — (-4.70, - 3.62)

The decrease in mean assessment time for gurus relative to novices is estimated to
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be between 1.22 and 2.20 hours. Similarly the decrease in mean implementation
time for gurus relative to novices is estimated to be between 3.62 and 4.70 hours.



Chapter 7
. y v [0 e[z} [-0]  [-.ee7
7.1 B =(1'2)" '2'y = 70 | -1z -
| ~ -10 1|82 19 [1.267
., - e - - -
180 12.000 15 'I‘Z.(J(JO1 3.000
85 5.667 9 5.667 3.333
N . 1123 8.200| . |3 8.200| |-5.200
y=12=75|351 |=|23.400|; €=y-§ =|25]|-|23.4004=| 1.600
- = 199 13,267 - =~ 7 9 13.267| {-6.267
42 . 113 4 .
_'l | LQ 4’67_ L | L.9 467_‘ -3 ‘SBi
Residual sum of squares: §'§ = 101.467
Fitted equation: ¥ = -.667 + 1.267 2,
7.2 Standardized variables
z, z, y
-.292 -1.088 .391 Fitted equation:
-1.166 -.726 -.391
.87 -.726  -1.174 a i
1.283  .363  1.695 y =1.332) - .79,
- 117 726 -.652
1108 1.451 130
Also, prior to standardizing the variables, 21 = 11.667,
z, =5.000 and § =12.000; /5, =5.716, /5, = 2.757
114 2227
» = L] e
and szy 7.667
The fitted equation for the original variables is
~ -11.667 -
y-12 _ 1.33
7.667 5 “5.7116
y = .43 +1.782 - 2.192,
7.3 Follow hint and note that €* = Y* - v = ']/ZY v lzlﬁw and

(n-r-1)o? = €¥'€* is distributed as x2__ ;-

139



7.4 a)

b)

c)

7.5

7.6

b)

a) First no*e that A~ =-diag£L{],...,k;

-1 n 3 2y
=(z'2)"2'y = (] 295000 23) .

V=1 =so §
o~ j=] '

vois diagonal with jzﬁ.diagonal element 1/zj so

4 - ] "1 “]
B = 2V2)

Ty = (8 y (T 2y)
1 = . Z.
: Xg gh

-1

v is diagonal with’vjigl diagonal element 1/23 -sdv

n
‘§w = (E'Y-IE)-1E.V-1X = (jZ](yj/zj))/n

Solution follows from Hint.

:w”'"' 0] isa

generalized inverse of A since
- I O - h ‘. ’
M = 1 so AAA = S\ = A
0 0 r]+1
0
0 -0

Since

r%‘F] 1
[ 2 Sl - LI -
(2'7)" = L A; eje; = PATP

with PP' =P'P =

(z'2)(z'z) (72'2)

]
-
-
0

—
O
P4

"
.
<
>
=

'

n
o
>
©

"

By the hint, if Z8 1is the projection, 0 = Z'(y - 28) or
Z'78 = 2'y. In c), we show that Zg is the projection of

140

I,» we check that the defining relation holds
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¢) Consider gq; = x;“z Ze, for i=1,2,...,010. Then

~

2(2'7)°7" = 1 zx g2 = L i

The {31} are rT+1 mutual1y perpendicular unit length vectors

vthat span the space of all linear combinations of the columns of

Z. The projection of y is then (see Result 2A.2 and

Definition 2A.12)

ri+l ry ¥l . e , -
L taing; = L gilay) = (1 g9y = 22D Ty

d) See Hint.

7.7 Write B [—B-(-‘-)} and 7 = [z Ez ]
| . ~(2) | I 2"

Recall from Result 7.4 that § =[ ll] = (Z‘Z)']Z'X is distributed
as N +.‘(B,c:xz(Z’Z)") independently of nd% = (n-r-1)s? which is
: N
E 3 'y - 2 2 -

1so’X2 and this is distributed independently of s2. {The latter

AT
N
A d

distributed as o? x

follows because the full. random vectoré is distributed independently
of s2). The result follows from the definition of a F random variable

as the ratio of two independent x* random variables divided by their

degrees of freedom.

7.8 (3) H? = Z(le)-—l Z'Z(Z'Z)-l Z! = Z‘(Z'Z)-l 7' = H.

(b) Since I — H is an idempotent matrix, it is positive semidefinite. Let a be an n x 1 unit
vector with j th element 1. Then 0 < a'(I — H)a = (1 — hj;). That is, k;; < 1. On the
1 eqn s Rji S
other hand, (2’Z)" is posifive definite. Hence hj; = ¥}(Z2'Z)~'b; > 0 where b; is the j
th row of Z.
=1k t"(Z(Z'Z)'l Z") =tr((2'2)12'Z) = tr(In) =7 + L.
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(c) Using

(Z’ )-1 1 [ 2._1 z £.=1 2 }

n E'—l(’zi - 2)2 o...l Z . n
we obtain
b = sz (L)
Z5
n _
= n Z.-1(1, —z)2 (E’ = 2z; ga + nz}’))
1 (25 — %)?

* e— —

n '2?=l(zjb_ 7)2

Hence
(4.8 -3.0]
R 3.9 -1.5
+=28=03.0 0|
2.1 1.5
1.2 3.0
5 -3] (4.8 -3.0 .2 0
. ) 3 - 3.9 -1.5 -9 .5
E=Y-Y=|4 -1]|- (3.0 =11.0 1.0
2 2 21 1.5 -1 .5
1 3] 1.2 3.0 -2 0
YY=1%t+¢e¢
55 -15 53.1 -13.5 1.9 -1.5

+ .
=15 24 -13.5 22.% -1.% 1.5
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7.10 a) Using Result 7.7, the 95% confidence interval for the mean

reponse is given by

o (2 o717 /4 o\
[, .5] 3.0] + 3.18 ﬁ .s][ ][ ](-3—9> or
[ , o .11l.5

"og
(1.35, 3.75).

b) Using Result 7.8, the 95% prediction interval for the actual Y

is given by

I

-.9

(-.25, 5.35) .

c) Using (7-42) a 95% prediction ellipse for the actual VY's is

given by

. 7.5 7.5 Yor -2.55
[yo] - 2.55’ yoz - 075] !
7.5 9.5 | ygp- .75

< (1 + .2285) <(_z_12(31> (19) = 69.825



7.11

The proof follows the proof of Result 7.10 with = replaced by A.

) |
(F-2)'(-2'8) = ] (1j-82p) (Y82’

and

Il d2(8) = tr[a” (r-28)" (-28)]

Next,
(Y-28)'(Y-28) = (Y-ZB+ZB-2B)" (Y-Zf+zB-28) = '€ +1§-8)'2' 2(B-8)]
so
233:] d3(8) ='tr[A_1€.€] + tr[AT (3—8)f2'2(§-8)]

The first term does not depend on the choice of B. Using Result
2A.12(c)

tr[A"V(8-8)'2' (B-8) = tr[{B-B)'Z'1(E-B)A]

tr{z'z(E-8)A(8-8)"']

tr[z{8-8)A(8-8)'2']
2 c'Ac>0
where ¢ is any non-zero row of Z(f-B). Unless B =g, Ug-8)

will have a non-zero row. Thus ‘5 is the best choice for any posi-

tive definite A.
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7;&2 (a) best linear predictor = -4 + ZZ1 - Z2

¥ ) L, el _
(b) mean square error =0, - 92y tzz 2y 4

[] ']
(c) 0 _[%zy baz 2y
Y(x) ¥V Oyy

(d) Following equation (7-56), we partition } as

= ,745

Wl

44

"

w
nN w
-t

—t

and determine covariance of {‘Y } given 2z, to be
7.
1

- (W™ 0,1l = . Therefore
3 2 1 12 1

. 2 V2
= =% = 707
z,.2,” B L

~
o
(N ]
-

f ~ _1. 3.73
7.13 (@) By Result 7. B = szz Soy o

. 5
' = -S-Z z SZ 4 .s.
(b) Let Zip) = (7573 Rz1(2223).-v/r(2) 1 2)72) 2(2)%

21 2-‘
(352,33 .
ceo1 38 - /8

| Zn)
(c) Partition Z = |—~=| SO
- 3
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5691.34 ( L
!
g | ©00.51 12605 I . z(1) (1)} *Za (1)
B P L] T memememem - —
: . I S l S
A 3.3 230 i B2020y 1 %y

and

. 1 3649.04 380.82
Sz 2z E s; z s; 7. 52,2000
(1) (1) ~°3 (M) 3“3 ~°3°(1) L 380.82 102.42

Thus
. - 380.82 R
292,24 co
172 73 /3649.04 Y102.42
7.14 (a) The large positive correlation between a manager's experience

and achieved rate of return on portfolio indicates an apparent
advantage for manégers with experience. The negative correla-
tion between attitude toward risk and achieved rate of return
jndicates an apparent advantage for conservative managers.

(b)  from (7-57)

- Y% AP
Syz‘l - .
S TZaZ
¥zq°2, - 22
r = = 2 2
yZ,°2 1 = 3 s
172 {syy- , Sz, ¥Zp /[ o3,
yy s 213y s
2% 22%2
vy Ty Tz, 31

f‘ - r‘ Fﬁi- r‘ [ 4
¥z, 212,

Removing "years of experience" from consideration, we now have a

positive correlation between “"attitude toward risk" and "achieved
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(@)

(b)

()
(d)
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return". After adjusting for years of experience, there is an

apparent advantage -to managers who take riéks.

MINITAB computer output gives: y =11,870 + 263421 + 45.2z,;
residual sum of squares = 204995012 with 17 degrees of freedom.
Thus s = 3473. Now for example, the estimated standard devi;-
tion of By is /T.9961s% = 4906. Similar calculations give
the estimated standard deviations of @1 and §2.

An analysis of the residuals indicate there are no apparent
model inadequacies.

The 95% prediction interval is ($51,228; $66, 239)

-1
Using (7-1%), F = (45.2)(.0067)-"(45.2

12058533 |
Since Fy ]7(.05) = 4,45 we cannot reject HO:BZ = Q. It appears

as if Zz is not needed in the model provided 21 is included

jn the model.

Predictors P=r+1 Co

Z1 2 1.025

Zz _ 2 12.248
21.22 3 | 3




7.17 (a) Minitab outpi.lt for the regression of profits on sales and assets follows.

Profits = 0.01 + 0.0681 Sales + 0.00577 Assets

Predictor coef  SE Coef T P
Constant 0.013 7.641  0.00 0.999
Sales 0.06806 0.02785 2.44 0.045

- Assets 0.005768 0.004946 1.17 0.282
S = 3.86282 R-Sq = 55.7% R-Sq(adj) = 43.0%

Analysis of Variance

Source DF SS MS F P
Regression 2 131.26 65.63 4.40 0.058
Residual Error 7 104.45 14.92

Total 9 235.71

(b) Given the small sample size, the residual plots below are consistent with the

usual regression assumptions. The leverages do not indicate any unusual

observations. All leverages are less than 3p/n=3(3)/10=.9.

esidual Plots for Profits

obability Plot of the Residuals

B0 15 150

3 2125 - 200
‘Fitted Value

Residuals Versus the Order of the Data.

: 50

0.0

. Residuat

b /\/\/\ .

N/

!205
=.0 , -
.71 3 3 4 5 6 7 89 10
©Observation Order
Obs 1 2 3 4 5 6 7 8 9 10
2222 | 2513 | .2746 | 2785 | .3642 | 2029 | .4362

Lev | .6257 | .1011 | .2433

(c) With sales = 100 and assets = 500, a 95% prediction interval for profits is:

(-1.55, 20.95).

(d) The t-value for testing Hy: 5, =0 ist= 1.17 with a p value of .282. We cannot
reject H, at any reasonable significance level. The model should be refit after

dropping assets as a predictor variable. That is, consider the simple linear

regression model relating profits to 'sales.

148
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7.18 (a) The calculations for the C, plot are given below. Note that p is the number of
model parameters including the intercept.

p (predictor) | 2 (sales) | 2 (assets) | 3 (sales, assets)
C, 2.4 7.0 3.0

(b) The AIC values are shown below.

| p (predictor) | 2 (sales) | 2 (assets) | 3 (sales, assets)
AIC 29.24 33.63 29.46

7.19 (a) The “best” regression equation involving In(y) and Z1, Z2,...,Z5 1S
1i(y) =2.756—.322z, +.114z,

" with s = 1.058 and R? = .60. It may be possible to find a better model
using first and second order predictor variable terms.

(b) A plot of the residuals versus the predicted values indicates no apparent
problems. A Q-0 plot of the residuals is a bit wavy but the sample size is
not large. Perhaps a transformation other than the logarithmic
transformation would produce a better model.
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£igenva1ues-ofthe correlation matrix of the predictor variables Zy»
22,...,25 are 1.4465, 1.1435, .8940, .8545, .6615. The correspond-
ing eigenvectors give the coefficients of 2., Zysreeesig ‘in the
principle component. for example, the first principal component,

written in terms of standardized predictor variables, is

* * *

A * *
Xy = .606411 - .390122 ' .635723 - .275524 - .004525 .

A regression of 2&n(y) on the first principle component gives
tn(y) = 1.7371 - .070121

with s = .701 and R®* = .01S5.

A regressionAof tn(y) on the fourth princfp]e component produces
the best of the one principle component predictor variable regressions.
In this case ih(y) =1.7371 + .3604?4 and s = .618 and R% = ,235.
This data set doesn't appear to yield a regression relationship which
explains a large proportion of the variation in the responses.

(a) (i) One reader, starting with a full quadratic model in the

predictors Z, and 2,5 suggested the fitted regression

- equation:
¥ -7.3808 + .528122 - .003822
with s = 3.05 and R? = .22, {Can you do better than
this?)

(ii) A plot of the residuals versus the fitted values suggests
the responée may not have constant variance. Also a Q-Q
plot of the residuals has the following general appear-

ance:
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Residuals
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Normal probability plot
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Therefore the normality assumption may also be suspect.

Perhaps a better regression can be obtained after the

- responses have been transformed or re-expressed in a

different metric.
Using the results in (a)(i), a 95% prediction interval

of Z = 10 (not needed) and z, = 80 is

10.84 * 2.02/7.47 or (5.32,16.37).
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7.22 (a) The full regression model relating the dominant radius bone to the four predictor
variables is shown below along with the “best” model after eliminating non-
significant predictors. A residual analysis for the best model indicates there is
no reason to doubt the standard regression assumptions although observations

19 and 23 have large standardized residuals.
ﬁ) The regression equation is .
DomRadius = 0.103 + 0.276 DomHumerus - 0.165 Humerus + 0.357 DomUlna
" 4+ 0.407 Ulna

Predictor Coef SE Coef T P
Constant 0.1027 0.1064 0.97 0.34%
DomHumerus 0.2756 0.1147 2.40 0.026
Humerus -0.1652 0.1381 -1.20 0.246
DomUlna . 0.3566 0.1985 1.80 0.088
Ulna 0.4068 0.2174 1.87 0.076

s = 0.0663502 R-Sq = 71.8% R-Sq(adj) = 66.1%

The regression equation is
DomRadius = 0.164 + 0.162 DomHumerus + 0.552 DomUlna

Predictor ‘Coef SE Coef T P
Constant 0.1637 0.1035 1.58 0.128
DomHumerus 0.16249 0.05940 2.74 0.012
DomUlna 0.5519 0.1566 3.53 0.002

s = 0.0687763 R-Sg = 66.7% R-Sq(adj) = 63.6%

Analysis of Variance

Source . DF SS ﬁs F P
Reg;ess;on 2 0.20797 0.10399 21.98 0.000
Residual Error 22 0.10406 0.00473

Total 24 0.31204

5 and Dom Ulna Predictors |

(i) Eﬁiﬂﬁ‘afieﬂdtsforbomﬁaﬂiﬁ £ us and-Dom Uin: _
Residuals Versus the Fitted Values

Normal Probability Plot of the Residuals
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(b) The full regression model relating the radius bone to the four predictor variables
is shown below. This fitted model along with the fitted model for the dominant
radius bone using four predictors shown in part (a) (i) and the error sum of
squares and cross products matrix constitute the multivariate multiple regression
model. It appears as if a multivariate regression model with only one or two
predictors will represent the data well. Using Result 7.11, a multivariate
regression model with predictors dominant ulna and ulna may be reasonable.
The results for these predictors follow.

The regression equation is

Radius = 0.114 - 0.0110 DomHumerus +
Predictor coef SE Coef
Constant 0.11423 0.08971
DomHumerus -0.01103 0.09676
Humerus 0.1520 0.1165
DomUlna 0.1976 0.1674
Ulna 0.4625 0.1833
s = 0.0559501 R-Sq = 77.2%

Error sum of squares and cross products matrix:

The regression equation is

DomRadius = 0.223 + 0.564 DomUlna + 0.321 Ulna
predictor Coef SE Coef T P
Constant 0.2235 0.1120 2.00 0.059

DomUlna 0.5645 0.2108 2.68 0.014

Ulna 0.3209 0.2202 1.46 0.159

s = 0.0760309 R-Sq = 59.2% R-Sq(adj) = 55.5%

Analysis of Variance

Source DF ss MS F P
Regression 2 0.184863 0.092431 15.99 0.000
Residual Error 22 0.127175 0.005781

Total © 24 0.312038

Error sum of squares and cross products matrix:

T P
1.27 0.217
-0.11 0.910
0.207
0.252
0.020

1.31
1.18
2.52

R-Sqg(adj) = 72.6%

.088047 .050120
050120 .062608

The regression equation is

Radius = 0.178 + 0.322 DomUlna
Predictor Coef SE Coef
Constant 0.17846 0.08931 2
DomUlna 0.3220 0.1680 1
Ulna 0.5953 0.1755 3
S = 0.0606160 R-Sq = 70.5%

Analysis of Variance

Source DF SS
Regression 2 0.193195
Residual Error 22 0.080835
Total 24 0.274029

127175 ;064903
064903 .080835

0.152 Humerus + 0.198 DomUlna + 0.462 Ulna

+ 0.595 Ulna

- T P VIF
0.058
0.068
0.003

2.1
2.1

R-Sq(adj) = 67.8%

MS F

I

0.096597 26.29 0.00(

0.003674



7.23. (a) Regression analysis using the response Y; = SalePr.

Summary of Backward Elimination Procedure for Dependent Variable X2
’ Variable Number Partial Model
Step  Removed In Rxx2 R*x2 c(p) F  Prob>F
1 X9 7 0.0041 0.5826 7.6697 0.6697 0.4161
2 X3 6 0.0043 0.5782 6.3735 0.7073 0.4033
3 X5 5 0.0127 0.5655 6.4341 2.0795 0.1538
Dependent Variable: X2 SalePr
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 5 16462859.832 3292571.9663" 18.224 0.0001
Error 70 12647164.839 180673.78342
C Total 75 29110024.671
Root MSE 425.05739 R-square 0.5655
Parameter Estimates '
Parameter ‘Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -5605.823664 1929.3986440 -2.905 0.0049
X1 1 -77.633612  22.29880197 -3.482 0.0009
X4 1 -2.332721 0.75490590 -3.090 0.0029
X6 1 389.364490 89.17300145 4.366 0.0001
X7 1 1749.420733 T701.21819165 2.495 0.0150
X8 1 133.177529  46.66673277 2.854 0.0057

The 95% prediction interval for SalePr for 2 is

2o  10(0.025)/ (425.06)2(1 + 24(Z Z)~20).

SalePrefBreed , FtFrBody, Frame, BkFat, SaleHt)

(a) Residual plot

(b) Normal probability plot
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(b) Regression analysis using the response Y¥; = In(SalePr).

Summary of Backward Elimination Procedure for Dependent Variable LOGX2

Variable Number Partial  Mcdel
Step Removed In R**2 R¥*2 c{p) F  Prob>F
1 X3 7 0.0033 0.6368  7.6121 0.6121 0.4368
2 X7 ] 0.0057 0.6311 6.6655 - 1.0594 0.3070
3 X9 5 0.0122 0.6189 '6.9445 2.2902 0.1348
4 X4 4 0.0081 0.6108 6.4537 1.4890 0.2265
Dependent Variable: LOGX2
Analysis of Variance
Sum of Mean
Source DF ‘Squares Square F Value Prob>F
Model 4 4.02968 1.00742 27.854 '0.0001
Error 71 2.56794 0.03617
C Total 75 6.59762
Root MSE 0.19018 R-square 0.6108
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 5.235773 0.91286786 5.736 0.0001
X1 1 -0.049418 0.00846029 -5.841 0.0001
X5 1 -0.027613 0.00827438 -3.337 - 0.0013
X6 i 0.183611 0.03992448 4.599 0.0001
X8 1 0.058996 0.01927655 3.060 0.0031

The 95% prediction interval for In{SalePr) for 2y is
26 % 110(0.025)1/(0.1902)2(1 + 2(2Z'Z) o).

The few outliers among these latter residuals are not so pronounced.

In(SalePrrBreed 4 PrctFFB; Frame 5 SaleHt)

(a) Residual plot
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and Z, = FtFrBody.

0.005773

Dependent Variable: X8 SaleHt
Analysis of Variance
' Sum of Mean
- Source DF Squares Square F Value
Model 2 235.74533 117.87267 131.165
Error 73 65.60204 0.89866
C Total 75 . 301.34737
Root MSE 0.94798 R-square 0.7823
Parameter Estimates
Parameter <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>