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0.1 Introduction

Problem 1.1 Solution

We let the derivative of error function E with respect to vector w equals
to 0, (i.e. % =0), and this will be the solution of w = {w;} which minimizes
error function E. To solve this problem, we will calculate the derivative of E
with respect to every w; , and let them equal to 0 instead. Based on (1.1) and
(1.2) we can obtain :

=> N
oE .
=) {y(axn, W) —tplx), =0
w; ;=
=>
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Z Y(%xn, Wx}, = Z Xy tn
n=1 n=1
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If we denote A;; =3’ _;x,” and T; =%.'_; xn"t,, the equation above can

be written exactly as (1.222), Therefore the problem is solved.

Problem 1.2 Solution

This problem is similar to Prob.1.1, and the only difference is the last
term on the right side of (1.4), the penalty term. So we will do the same thing
as in Prob.1.1:

=>
oF N .
=Y {y(en, W)= tp}xl + Aw; =0
ow; ;=1
=>
N N
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j:0n:1 n=1
=>
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j:() n=1 n=1



where
0 j#i
9 { .
1 j=i
Problem 1.3 Solution
This problem can be solved by Bayes’ theorem. The probability of selecting
an apple P(a) :
3 1 3
P(a)=P(a|r)P(r)+P(alb)P(b)+P(alg)P(g) = T x0.2+ 3 x0.2+ 10 x0.6=0.34

Based on Bayes’ theorem, the probability of an selected orange coming
from the green box P(g|o) :

P(olg)P(g)

P(glo)= P0)

We calculate the probability of selecting an orange P(o) first :

P(0)=P(o|r)P(r)+P(o|b)P(b)+P(olg)P(g) = 1i0 x 0.2+% x0.2+ % x0.6 =0.36

Therefore we can get :

P(olg)P(g) 15%0.6 05
P(o) 036

P(glo)=

Problem 1.4 Solution

This problem needs knowledge about calculus, especially about Chain
rule. We calculate the derivative of P,(y) with respect to y, according to
(1.27):

dlg ()l
dy

dpy(y) _ d(p(g)Ig M) _ dpa(g(y)

dy dy dy (=)

lg () + px(g(y))

The first term in the above equation can be further simplified:

dp.(g(y) dp.(g(y)) dg(y)

g ()= lg ) (%)
dy ¢V dgy) dy ©7
If £ is the maximum of density over x, we can obtain :
dpx(x) _
dx |fc -

Therefore, when y = ,s.t.x = g(9), the first term on the right side of (xx)
will be 0, leading the first term in (*) equals to 0, however because of the
existence of the second term in (*), the derivative may not equal to 0. But



when linear transformation is applied, the second term in (*) will vanish,
(e.g. x=ay+b). A simple example can be shown by :
pe(x)=2x, x€[0,1] => x=1

And given that:
x =sin(y)

Therefore, p,(y) = 2sin(y)|cos(y)l, y €[0, 51, which can be simplified :

S

py(y) =sin@2y), yelo, g] -> §=
However, it is quite obvious :
X # sin(y)
Problem 1.5 Solution

This problem takes advantage of the property of expectation:

varlfl = E(f(x)-Ef©D%]
= Ef(@)? - 2f (E[f ()] +E[f ()]
= E[f(x)*]-2E[f(x)]? + E[f (x)]?
=>varlfl = Efx)?1-Ef@)P

Problem 1.6 Solution

Based on (1.41), we only need to prove when x and y is independent,
Exylxyl =E[x]E[y]. Because x and y is independent, we have :

p(x,y)=px(x) py(y)

Therefore:
[ [sspprazay = [ [aypuwp,dzdy
= (fxpx(x)dx)(fypy(y)dy)
=>[E, ylxyl = Elx]ELy]

Problem 1.7 Solution

This problem should take advantage of Integration by substitution.
12 +o00 p+oo 1 9 1 9 d d
- [ | gt gmidsds

2n p+oo 1
f f exp(——2r2)rdrd0
o Jo 20



Here we utilize :
x=rcosf, y=rsinf

Based on the fact :
fm exp(——)rdr = —oex (—"—2)|+oo =-0%0-(-1)) = 0?
0 P02 P92l
Therefore, I can be solved :

2
Iz=f 02d9:27w2, =>1=Vv2n0
0

And next,we will show that Gaussian distribution A (x|u,02) is normal-
ized, (l.e. [1o N (x|p,0%)dx=1):

+00 1
N (x|p,0%)dx = exp{— (x w2 dx
f—oo | —00 V210?
+o00 1

1
exp{— y}dy (y=x—p)

v2na
+o00
f expl-5— =y dy

V2ﬂ0

Problem 1.8 Solution
The first question will need the result of Prob.1.7 :

+oo 1
N (x|p,0®)xdx = exp{— (x w2 xdx
f—oo | —c0 V2mo?
+00 1 1 9
= expl--— ¥y y+wdy (y=x-p)
2n0? 20
ety [ =L y2yd
= exp{—-— exp{—-—
o Vano? P20 T L Vg P 202 Y
= pt+t0=p

The second problem has already be given hint in the description. Given

that :
d(fg) _ fd_g ﬁ
dx dx

We differentiate both side of (1.127) with respect to 2, we will obtain :

(o + )N (x|p,0")dx =0

[+w 1 (x 'u)2
—c0 20



Provided the fact that o # 0, we can get:

+00 +00
f (x — W2 AN (x|, 0% dx = f 0% N (x|p,0%)dx = o?

o0

So the equation above has actually proven (1.51), according to the defini-
tion:
+00
varlx] = f (x — E[x])2A (x|, %) dx

(e o]

Where E[x] = ¢ has already been proved. Therefore :

varlx] = a?

Finally,
Elx?] = varlx] + Elx]? = 02 + p2
Problem 1.9 Solution

Here we only focus on (1.52), because (1.52) is the general form of (1.42).
Based on the definition : The maximum of distribution is known as its mode
and (1.52), we can obtain :

0N (x|, %)
ox

1
—5 27+ @D - A x|, Z)

K,2)

>l x-pN(x

Where we take advantage of :

oxT Ax
XX _A+ADx and (ZHf =37!
Therefore,
ON (x|p, %)
only when x=p, - 0
X

Note: You may also need to calculate Hessian Matrix to prove that it is
maximum. However, here we find that the first derivative only has one root.
Based on the description in the problem, this point should be maximum point.
Problem 1.10 Solution

We will solve this problem based on the definition of expectation, variation



and independence.

Elx + z]

f f (x+2)p(x,2)dxdz
ff(x+z)p(x)p(z)dxdz

f f xp@p(2)dadz + f f 2p(©)p()dxdz
[ rordsmp@az + [([ pradnrzperdz

= fxp(x)dx + fzp(z)dz
Elx] + E[z]

var[x + z]

ff(x+z—[E[x+z])2p(x,z)dxdz

ff{(x+z)2 - 2(x+2)Elx +2]) + E2[x + 2]} p(x,2)dxdz

ff(x +2)2px,z)dxdz — 2[E[x+z]ff(x+z)p(x,z)dxdz +E2[x+2]

ff(x + z)2p(x,z)dxdz - [Ez[x+z]

ff(x2 +2xz + 22) px)p(z)dxdz — E2[x + 2]

f(/p(z)dz)xzp(x)dx +[f 2xz p(x)p(z)dxdz +f(fp(x)dx)z2p(z)dz —E’[x+2]

= [E[x2]+[E[22]—[E2[x+z]+ff2xzp(x)p(z)dxdz
= E[x2]+[E[z2]—([E[x]+[E[z])2+ff2xzp(x)p(z)dxdz
= Elx?1-E%[x] + [E[Z2]—[Ez[z]—2[E[x][E[z]+2ffxzp(x)p(z)dxdz

= varlx]+varl[z] —2E[x] [E[z]+2(fxp(x)dx)(fzp(z)dz)

= varlx]+varl[z]

Problem 1.11 Solution

Based on prior knowledge that psr, and 0'%41: will decouple. We will first

calculate upr :

d(lnp(x|p,0%) 1 %
du 0?5

We let :
d(lnp(x| o2

du




Therefore :

uML =

2|'-‘
||M2
5'{

And because:

0l(lnp(x|;1,02

(Z(xn w?-No?

do? " 904
We let :
d(Inpx|u,0%)
do? -
Therefore :

1
01214L = N Z (xn_IJML)2
n=1

Problem 1.12 Solution

It is quite straightforward for E[us7 ], with the prior knowledge that x,, is
i.i.d. and it also obeys Gaussian distribution .4 (i, 0?).

1Y 1 _ X
Elpmr] = [E[]T] rglxn] = N[E[nz::lxn] = Elx,] = u

For [E[a%,[L], we need to take advantage of (1.56) and what has been given
in the problem :

[E[iﬁ( - umr)*]
anl Xn —MML

Elo}]

= im[%( — umr)?]
= N = Xn —HML

1 N
= —[E[ Z (x,zl —2x, UM + ,LLZZML)]
N n=1

LEY - ey LELY 1
= ZEY 221- ZEY 2xuumr) + —ELY 12, ]
N n=1 " N n=1 " N n=1 ML
= p2+02—E[E[Zx(i§:x)]+[E[u2 ]
N n=1 nNn:l " ML

= p2+02—i[E[§x (%x )]+[E[(l§x )?]
NZ n=1 nn=1 " Nn:1 "

= u2+02_i[5[(§x )2]+iE[(§x )?]
N2 n=1 " N2 n=1 "

2 2 1 N 2
= P +ot = SE(Y %)%
N n=1

1
= 2 +o?- m[N(N,12+o2)]



Therefore we have:
N-1 ,

Eloy,z] = ( )0

Problem 1.13 Solution
This problem can be solved in the same method used in Prob.1.12 :

N

[E[N (x, — ,u)2] (Because here we use p to replace upr)

El0.]

n=1

= i[E[%( -w?
=N = Xn—H

1 N
= ZEY 2 - 2x,u+ )]

N n=1
LRLY 21~ LE Y 2 LEY
= —E[) x51- —=E[) 2x,ul+ —E[) p“l
N n:1n N n=1 " N n=1
2 N
= ,u2+a2—F'M[E[an]+y2
n=1
= ,u2+0'2—2y2+u2
= 0'2

Note: The biggest difference between Prob.1.12 and Prob.1.13 is that the
mean of Gaussian Distribution is known previously (in Prob.1.13) or not (in
Prob.1.12). In other words, the difference can be shown by the following equa-
tions:

E[p®] = 4 (uis determined, i.e. its expectation is itself, also true for y2)

2 1Y 2 1 N 2 1 2, 2 2 o?
Eluy ] = Bl len) 1= S 2)] = G NN +0%) = i +

n=1

Problem 1.14 Solution

This problem is quite similar to the fact that any function f(x) can be
written into the sum of an odd function and an even function. If we let:
s _ WijtWji

wy; 3 and wi; = 3

A _Wij—Wji

It is obvious that they satisfy the constraints described in the problem,

which are :
S _ .8 A s s A
wij = wy;; + Wi, f i i i



To prove (1.132), we only need to simplify it :

D D D D
ZZwijxixj ZZ(wS + w; )x xj
i=1j=1 i=1j=1
D D
= ZZwixli+ ZZwuxli

~
]

-
.
]

—

i=1j=1

Therefore, we only need to prove that the second term equals to 0, and
here we use a simple trick: we will prove twice of the second term equals to 0
instead.

D D D D
Zzzw‘{}xixj ZZ(wf‘j+w‘i“j)xixJ
i=1j=1 i=1j=1
D D
= ZZ(wf} w )X

..
Il
-
~.
Il
—

Il
™o
P%

Ax ixXj— Z Zwﬂx,xj

i=1j=1 i= 1]
D D A

= ZZ xx] Zzwﬂx]xl
i=1j=1 j=1li=

=0

Therefore, we choose the coefficient matrix to be symmetric as described
in the problem. Considering about the symmetry, we can see that if and only
iffori =1,2,...,D and i < j, w;; is given, the whole matrix will be determined.
Hence, the number of independent parameters are given by :

DD +1)

D+D-1+..+1= 3

Note: You can view this intuitively by considering if the upper triangular
part of a symmetric matrix is given, the whole matrix will be determined.
Problem 1.15 Solution

This problem is a more general form of Prob.1.14, so the method can also
be used here: we will find a way to use w;;,. ;,, to represent w;,;, ;,,.
We begin by introducing a mapping function:

F(xij1xio...xiM) = Xj1Xj2...,X;M

s.t. Uxik: ijk, and Xj1 ZXjo = Xj3... Z XM
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It is complexed to write F in mathematical form. Actually this function
does a simple work: it rearranges the element in a decreasing order based on
its subindex. Several examples are given below, when D =5, M =4:

F(x5x2x3%x2) = x5X3%2%2
F(x1x3x3%2) = x3x3%2%1
F(x1x4%2x3) = x4x3%X2X1
F(x1x1x5%2) = x5x2%1%1

After introducing F', the solution will be very simple, based on the fact
that F' will not change the value of the term, but only rearrange it.

J1 JM-1

Wity iy Xi1Xi2 XiM = Z Do D Wiy 1K 2 XM
J1=1j2=1 ju=1

EHMG

where By = 2, W
we

Q = Wiy, iy | F@i1xiz..Xipm) = Xj1%j2...X M, YXi1%i9...2i0 }

By far, we have already proven (1.134). Mathematical induction will be
used to prove (1.135) and we will begin by proving D =1, i.e. n(1,M) =
n(1,M —1). When D =1, (1.134) will degenerate into u7x11”, i.e., it only has
one term, whose coefficient is govern by w regardless the value of M.

Therefore, we have proven when D =1, n(D,M) = 1. Suppose (1.135)
holds for D, let’s prove it will also hold for D + 1, and then (1.135) will be
proved based on Mathematical induction.

Let’s begin based on (1.134):

D+1 11 i

Z Z Z wl112 ApXilXi2-- - XiM (%)

i1=1is=1 iy=1

We divide (*) into two parts based on the first summation: the first part
is made up of i; =1,2,...,D and the second part i1 =D + 1. After division, the
first part corresponds to n(D,M), and the second part corresponds to n(D +
1,M —1). Therefore we obtain:

nD+1,M)=nD,M)+nD+1,M-1) (%)

And given the fact that (1.135) holds for D :

D
n(D,M) =Y nG,M-1)
i=1
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Therefore,we substitute it into (*)

D D+1
nD+1,M)=) ni,M-1D+nD+1,M-1)= ) n(i,M-1)
i=1 i=1
We will prove (1.136) in a different but simple way. We rewrite (1.136) in
Permutation and Combination view:

D
M-1 _ ~M
> Citai-2 = Cpaya
i=1
Firstly, We expand the summation.
M-1 M-1 M-1 _ M
Cy1+Cy  +-Cpiy2=Chiy1

Secondly, we rewrite the first term on the left side to C%, because C%j =
C% = 1. In other words, we only need to prove:

M, ~M-1 M-1  _ ~M
Cy+Cy  +-Cpim2=Chiy

Thirdly, we take advantage of the property : Cy, = Cy_; + Czrv__ll. So we

can recursively combine the first term and the second term on the left side,
and it will ultimately equal to the right side.

(1.137) gives the mathematical form of n(D,M), and we need all the con-
clusions above to prove it.

Let’s give some intuitive concepts by illustrating M =0,1,2. When M =0,
(1.134) will consist of only a constant term, which means n(D,0) =1. When
M = 1,it is obvious n(D,1) = D, because in this case (1.134) will only have D
terms if we expand it. When M = 2, it degenerates to Prob.1.14, so n(D,2) =
w is also obvious. Suppose (1.137) holds for M — 1, let’s prove it will also
hold for M.

D

Z n(i,M-1) (basedon (1.135))
i=1

n(D,M)

D
= Z C?ﬁ,}d (based on (1.137) holds for M —1)
i=1

_ ~M-1 M-1 M-1 M-1
= Cy1+Cy  +Cyii-+Cniyo
_ M M-1 M-1 M-1

= (Cyy+Cy ) +Cyii-+Cpiaro
_ M M-1 M-1

= (Cyry1 +Cpi1)- +Cpiar s

_ oM M-1

= Chsz+Chpiys
M

= Cpim—

By far, all have been proven.
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Problem 1.16 Solution

This problem can be solved in the same way as the one in Prob.1.15.
Firstly, we should write the expression consisted of all the independent terms
up to Mth order corresponding to N(D,M). By adding a summation regard-
ing to M on the left side of (1.134), we obtain:

Im-1

M D i
oYY Y Wiy iy XilXi2eKim (*)
m=0i;=1ig=1 in=1

(1.138) is quite obvious if we view m as an looping variable, iterating
through all the possible orders less equal than M, and for every possible oder
m, the independent parameters are given by n(D,m).

Let’s prove (1.138) in a formal way by using Mathematical Induction.
When M = 1,(x) will degenerate to two terms: m =0, corresponding to n(D,0)
and m = 1, corresponding to n(D,1). Therefore N(D,1) = n(D,0) + n(D,1).
Suppose (1.138) holds for M, we will see that it will also hold for M + 1. Let’s
begin by writing all the independent terms based on () :

M+1 D iy i

m—1
Z Z Z . Z wi1i2...imxi1xi2~~xim (%)
=1

m=0i1=1ig=1 i,

Using the same technique as in Prob.1.15, we divide (*x*) to two parts
based on the summation regarding to m: the first part consisted of m =
0,1,...,M and the second part m = M + 1. Hence, the first part will corre-
spond to N(D,M) and the second part will correspond to n(D,M +1). So we
obtain:

ND,M+1)=ND,M)+nD,M+1)

Then we substitute (1.138) into the equation above :

M
Y n(D,m)+nD,M+1)
m=0

M+1

Z nD,m)

m=0

NWD,M+1)

To prove (1.139), we will also use the same technique in Prob.1.15 instead
of Mathematical Induction. We begin based on already proved (1.138):

M
ND,M) = > nD,M)

m=0
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We then take advantage of (1.137):

M
ND,M) > Chim-1
m=0

_ 0 1 2 M
= Cp 1+Cp+Ch 1 +...+Cph 1
= (CV+CH+C%.  +..+CM
- D D D+1 7T T ¥ D4M-1

_ 1 2 M

= (Cpu +Cpi) +. +Cpuy
M

- CD+M

Here as asked by the problem, we will view the growing speed of N(D,M).
We should see that in n(D, M), D and M are symmetric, meaning that we only
need to prove when D > M, it will grow like DM and then the situation of
M > D will be solved by symmetry.

D+M) (D+MPM

ND.M = —pom 5 “pbapt
1 D+M
= PO+
1
= W[(1+—)M]M<D+M)M
~ (M)M(D+M)M
M
e M o u
= —(1 D
w1 p)
M
M 2
= |+ )i DY
2
N M+ Mo ﬁDM

MMD T MM

2

. . . . u?
Where we use Stirling’s approximation, hm (1 + l)” =eanded ~e¥ =

1. Accordlng to the description in the problem When D > M, we can actually

view 11e4M as a constant, so N(D,M) will grow like D™ in this case. And by

symmetry, N(D, M) will grow like MP, when M > D.
Finally, we are asked to calculate N(10,3) and N(100,3):

N(10,3) = C3, = 286

N(100,3) = C3; = 176851
Problem 1.17 Solution
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+00
ue “du

+00
= f —-u*de™¥
0

+00 +oo

= -y e ¥ —f e “d(-u”)
0 0
+00 +too

I'x+1)

Il
S—

= —u e ¥ +xf e “u* du
0 0

P +00o
= —-u’e 0 +xr(x)

Where we have taken advantage of Integration by parts and according to
the equation above, we only need to prove the first term equals to 0. Given
L’Hospital’s Rule:

* x!

lim -2 = lim —— =0
u—+oo el u—+oo el
And also when u = 0,—u”*e* = 0, so we have proved I'(x+1) = xI'(x). Based

on the definition of I'(x), we can write:
+00 +00
') = f e %du=-e" =—(0-1=1
0 0
Therefore when x is an integer:
Tx)=x-DIx-1D)=x-1Dx-2)I'(x-2)=... =x1TQ1Q) = x!
Problem 1.18 Solution

Based on (1.124) and (1.126) and by substituting x to \/Qay, it is quite
obvious to obtain :
+00 9
f e Nidx; =Vn
—00
Therefore, the left side of (1.42) will equal to 7
(1.42):

. For the right side of

+00 9 +00 D-1
Spf e " P ldr = Spf e tu T dvu (w=r?
0 0

= S?D 0+ooe_”ug_1du
S D
= ST
Hence, we obtain:
2225212y o g 2%
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Sp has given the expression of the surface area with radius 1 in dimen-
sion D, we can further expand the conclusion: the surface area with radius r
in dimension D will equal to Sp - ¥, and when r = 1, it will reduce to Sp.
This conclusion is naive, if you find that the surface area of different sphere
in dimension D is proportion to the D — 1th power of radius, i.e. 7?71, Con-
sidering the relationship between V and S of a sphere with arbitrary radius
in dimension D: % =S, we can obtain :

szSdrszDrD_ldr: %rD

The equation above gives the expression of the volume of a sphere with
radius r in dimension D, so we let r =1 :

Sp

Vp =22

b=
ForD=2and D =3:

Se 1 2n
V:—:—«—:
259 "oty "

3 3
Sg 1 27z 1 272 4
V3:—:—- = —. = —7
3 3T1d 3 \/Tfr 3

Problem 1.19 Solution

We have already given a hint in the solution of Prob.1.18, and here we
will make it more clearly: the volume of a sphere with radius r is Vp - r?.
This is quite similar with the conclusion we obtained in Prob.1.18 about the

surface area except that it is proportion to Dth power of its radius, i.e. r° not
D-1

r’=.

volume of sphere ~ Vpa” Sp e

volume of cube ~ (2a)? 20D - 2D—1DF(1§))

(%)

Where we have used the result of (1.143). And when D — +o0o, we will use
a simple method to show that () will converge to 0. We rewrite it :

Hence, it is now quite obvious, all the three terms will converge to 0 when
D — +o00. Therefore their product will also converge to 0. The last problem is
quite simple :

center to one corner va2-D _ \/I_) and lim \/I_) oo

center to one side a D—+o00

Problem 1.20 Solution
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The density of probability in a thin shell with radius r and thickness ¢
can be viewed as a constant. And considering that a sphere in dimension D
with radius r has surface area Spr”~1, which has already been proved in
Prob.1.19:

2 2
exp(—LI) exp(—L5)
f p(x)dx = p(x) f dx = — 22 . V(shell) = — 225 rP~1¢
shell shell 2no2)z (2m02)2
Thus we denote : D1 )
_Sprm
p(r) = ono?)L exp( 202)

We calculate the derivative of (1.148) with respect to r :

dp(r) Sp D9 r2 r?
= -——)D-1-—
dr 2n02)7 r e 202)( 02) (*)

We let the derivative equal to 0, we will obtain its unique root( stationary
point) 7 = VD — 10, because r € [0,+0c0]. When r < 7, the derivative is large
than 0, p(r) will increase as r {, and when r > 7, the derivative is less than 0,
p(r) will decrease as r 1. Therefore 7 will be the only maximum point. And it
is obvious when D > 1, # = VDo.

AL 2
pi+e) _ G+oPlexp-GF)
p(F) f“D’lexp(—;sz)
2e 7+ €2

)

€.D-1
(1+;) exp(— 952

2¢F + €2
exp(—2L 2 L (D-Din(1+%))
202 ?

We process for the exponential term by using Taylor Theorems.

2 2 2

_2627‘04-26 +(D—1)ln(1+%) ~ _262'";26 +(D—1)(%—%)
B 2er+e2  2fc—¢2
T 902 * 202
62
0—2

Therefore, p(7+¢€) = p(F)exp —5—22). Note: Here I draw a different con-
clusion compared with (1.149), but I do not think there is any mistake in
my deduction.

Finally, we see from (1.147) :

1
p(x) = —
x=0 (27!02)%
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1 72
Piwioce ™ gyt P 207 ™ (gt P

Problem 1.21 Solution

The first question is rather simple :
1 1.1 1
(ab)z —a =a2(b2-a2)=0
Where we have taken advantage of b = a = 0. And based on (1.78):

p(mistake) = p(x€eR1,Cs)+ p(xeR2,Cq)
fP(X,Cz)dx+[ p(x,C1)dx
Rl R2

Recall that the decision rule which can minimize misclassification is that
if p(x,C1) > p(x,C2), for a given value of x, we will assign that x to class
C1. We can see that in decision area R1, it should satisfy p(x,C1) > p(x,C52).
Therefore, using what we have proved, we can obtain :

f p(x,C2)dx < f {p(x,C1) p(x,C2)}E dx

Rl Rl

It is the same for decision area Ry. Therefore we can obtain:
p(mistake) < f (p(x,C1) p(x,C2)}E dx

Problem 1.22 Solution
We need to deeply understand (1.81). When Lj; = 1-1;; :

2 Lijp(Ci|x) = ) p(Ci|x) - p(Cj|x)
k k

Given a specific x, the first term on the right side is a constant, which
equals to 1, no matter which class C; we assign x to. Therefore if we want to
minimize the loss, we will maximize p(C j|x). Hence, we will assign x to class
C, which can give the biggest posterior probability p(C; |x).

The explanation of the loss matrix is quite simple. If we label correctly,
there is no loss. Otherwise, we will incur a loss, in the same degree whichever
class we label it to. The loss matrix is given below to give you an intuitive

view:
o1 1 .. 1
1 0 1 1
1 11 0

Problem 1.23 Solution
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[E[L]:ZZf ijp(x,Ck)dx:ZZf L;p(Ci)p(x|Cr)dx
ko J R;j k j R;

If we denote a new loss matrix by L;k = Lj;,p(Cy), we can obtain a new
equation :

BLI=YY [ Ljpx|Chdx
ko j IR,

Problem 1.24 Solution

This description of the problem is a little confusing, and what it really
mean is that A is the parameter governing the loss, just like 6 governing the
posterior probability p(C|x) when we introduce the reject option. Therefore
the reject option can be written in a new way when we view it from the view
of A and the loss:

class C; min} ; Ly p(Crlx) <A
choice l
reject else

Where C; is the class that can obtain the minimum. If L;; = 1-1;;,
according to what we have proved in Prob.1.22 :

Y L;jp(Cr|x) = Y p(Cr|x) - p(C;j|x) = 1 - p(C}|x)
7 %

Therefore, the reject criterion from the view of A above is actually equiv-
alent to the largest posterior probability is larger than 1- A :

mlinZLklp(Cklx)</1 <=> mlaxp(Cllx)>1—/1
k

And from the view of 8 and posterior probability, we label a class for x (i.e.
we do not reject) is given by the constrain :

mlaxp(Cl lx)>0

Hence from the two different views, we can see that A and 6 are correlated
with:
A+60=1

Problem 1.25 Solution

We can prove this informally by dealing with one dimension once a time
just as the same process in (1.87) - (1.89) until all has been done, due to the
fact that the total loss E can be divided to the summation of loss on every
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dimension, and what’s more they are independent. Here, we will use a more
informal way to prove this. In this case, the expected loss can be written :

E[L] = f f y(x) - t}?p(x,t)dtdx

Therefore, just as the same process in (1.87) - (1.89):

OHLI _, f ) —tp(x, t)dt = 0
0y(x)
tp(x,t)dt
>y = LPEOLE
p(x)

Problem 1.26 Solution

The process is identical as the deduction we conduct for (1.90). We will
not repeat here. And what we should emphasize is that E[t|x] is a function of
x, not t. Thus the integral over t and x can be simplified based on Integration
by parts and that is how we obtain (1.90).

INote: There is a mistake in (1.90), i.e. the second term on the right side
is wrong. You can view (3.37) on P148 for reference. It should be :

E[L] = f {y(x) - E[t|x]* p(x)dx + f {Elt|x - 1% p(x, ) dxdt

Problem 1.27 Solution

We deal with this problem based on Calculus of Variations.

JE[L,] L
= Qf[y(x— )19 sign(y(x) - ) p(x,t)dt = 0
dy(x)
y(x) +00
=> f [y(x) - 19" p(x,t)dt :f [y(x)—t]17 ' p(x,t)d¢
—00 y(x)
y(x) 1 +00 )
=> f [yx)—¢17 " p(tIx)dt = f( ) [y(x)—¢]19" " p(tIx)d¢
oo x

Where we take advantage of p(x,t) = p(¢|x) p(x) and the property of sign
function. Hence, when g = 1, the equation above will reduce to :

y(x) +00
f p(tlx)dt = f px)dt
—00 y(x)

In other words, when g = 1, the optimal y(x) will be given by conditional
median. When g =0, it is non-trivial. We need to rewrite (1.91) :

[E[Lq]

f{f|y(X)—t|qP(t|X)P(X)dt}dx

f{p(X)fly(X)—thp(tlx)dt}dx (%)
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If we want to minimize E[L,], we only need to minimize the integrand of
():
fly(x)—thp(tlx)dt (%)

When g =0, |y(x)—t|? is close to 1 everywhere except in the neighborhood
around ¢ = y(x) (This can be seen from Figl.29). Therefore:

() f%p(ux)dt— f (1= |y — 1) p(t]x)dt ~ f%pmx)dt— f p(tx)dt

Where ¢ means the small neighborhood,%” means the whole space x lies
in. Note that y(x) has no correlation with the first term, but the second term
(because how to choose y(x) will affect the location of €). Hence we will put ¢
at the location where p(#|x) achieve its largest value, i.e. the mode, because
in this way we can obtain the largest reduction. Therefore, it is natural we
choose y(x) equals to ¢ that maximize p(¢|x) for every x.

Problem 1.28 Solution

Basically this problem is focused on the definition of Information Content,
i.e.h(x). We will rewrite the problem more precisely. In Information Theory,
h(-) is also called Information Content and denoted as I(-). Here we will still
use h(-) for consistency. The whole problem is about the property of A(x).
Based on our knowledge that A(-) is a monotonic function of the probability
p(x), we can obtain:

h(x) = f(p(x))

The equation above means that the Information we obtain for a specific
value of a random variable x is correlated with its occurring probability p(x),
and its relationship is given by a mapping function f(:). Suppose C is the
intersection of two independent event A and B, then the information of event
C occurring is the compound message of both independent events A and B
occurring:

h(C) = H(ANB) = h(A)+h(B) (%)
Because A and B is independent:
P(C) = P(A)-P(B)
We apply function £(-) to both side:
f(P(C)) = f(P(A)-P(B)) (#%)

Moreover, the left side of () and (**) are equivalent by definition, so we
can obtain:

h(A)+h(B) = f(P(A)-P(B))
=>  f(p(A)+f(p(B)) = f(P(A)-P(B))
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We obtain an important property of function f(-): f(x-y) = f(x)+ f(y).
Note: In problem (1.28), what it really wants us to prove is about the form
and property of function f in our formulation, because there is one sentence
in the description of the problem : "In this exercise, we derive the relation
between A and p in the form of a function A(p)", (i.e. f(-) in our formulation
is equivalent to A(p) in the description).

At present, what we know is the property of function f(-):

flxy) = f)+f(y) (%)

Firstly, we choose x = y, and then it is obvious : f(x?) = 2f(x). Secondly, it
is obvious f(x™) = nf(x), n € Nis true for n = 1, n = 2. Suppose it is also true
for n, we will prove it is true for n + 1:

FGE™) = F&™) + f(x) = nf @) + f@) = (n+ Df (x)

Therefore, f(x") = nf(x), n € N has been proved. For an integer m, we
rewrite x" as (x%)m, and take advantage of what we have proved, we will
obtain:

fG&™) = fxm)") = mf(xm)
Because f(x") also equals to nf(x), therefore nf(x) = mf(xn). We sim-
plify the equation and obtain:
flam) = 2 f )
m

For an arbitrary positive x, x € R*, we can find two positive rational array
{y»} and {z,}, which satisfy:

y1<y2<..<yn<x and lim yny=x
N—+oo

z1>29>..>zy>x, and lim zy=x
N—-+oc0

We take advantage of function f(-) is monotonic:

yNf(p)=f(P™) =< f(p*) < f(p*™) = znf(p)

And when N — +oo, we will obtain: f(p*) = xf(p), x € R*. Welet p =,
it can be rewritten as : f(e*) = xf(e). Finally, We denote y =e* :

() =1In(y)f(e)

Where f(e) is a constant once function f(-) is decided. Therefore f(x)
In(x).

Problem 1.29 Solution
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This problem is a little bit tricky. The entropy for a M-state discrete ran-
dom variable x can be written as :

M
Hlx] = =) Ailn(};)

Where A; is the probability that x choose state i. Here we choose a concave
function f(-) = In(-), we rewrite Jensen’s inequality, i.e.(1.115):

M M
Zn(z )Lixi) = Z Ailn(xi)
i=1 i=1

We choose x; = % and simplify the equation above, we will obtain :

InM =— % Ailn(1;) = Hlx]
i=1
Problem 1.30 Solution
Based on definition :
ln{%} = ln(g)—[%(x—u)z - z—iz(x—m)z]
= zm%)—[(% - 2—i2)x2 - - s%)x+<2”722 - ;n—;)]

We will take advantage of the following equations to solve this problem.

E[x*] = fx2 N (x|, 0?)dx = pi? + o2

Elx] = fxﬂ(xlu,az)dx =pu

fﬂ(xlu,az)dx =1

Given the equations above, it is easy to see :

KL(pllg) = —fp(x)ln{@}dx
p(x)
= fﬂ(xlu,a)ln{l&}dx
q(x)
L. NP S SO SN A O (ot
B ln(a) (02 232)(H +0)+(02 sz)u (202 252

2 2
s, o“+(u-m) 1
In(-)+ —————
ars 252 2
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We will discuss this result in more detail. Firstly, if KL distance is defined
in Information Theory, the first term of the result will be Zog2(§) instead of
l n(%). Secondly, if we denote x = %, KL distance can be rewritten as :

1 1 2
KL(pllg) = ln(x)+2_x2 —§+a, wherea = (,u2s’;1)

We calculate the derivative of KL with respect to x, and let it equal to O:

d(KL 1
( ):__x—3:0 => x:l('.'8,0'>0)
dx x

When x < 1 the derivative is less than 0, and when x > 1, it is greater than
0, which makes x = 1 the global minimum. When x = 1, KL(p||q) = a. What’s
more, when u =m, a will achieve its minimum 0. In this way, we have shown
that the KL distance between two Gaussian Distributions is not less than 0,
and only when the two Gaussian Distributions are identical, i.e. having same
mean and variance, KL distance will equal to 0.

Problem 1.31 Solution
We evaluate H[x]+ H[yl— H[x,y] by definition. Firstly, let’s calculate
Hix,yl:

Hlx,yl

—ffp(x,y)lnp(x,y)dxdy
= —ffP(X,y)lnp(X)dxdy—ffp(x,y)lnp(ylx)dxdy

= - [pwinpidx- [ [ peyiinpyodxdy
= HI[x]+ Hlylx]
Where we take advantage of p(x,y) = p(x)p(y|x), [ p(x,y)dy = p(x) and

(1.111). Therefore, we have actually solved Prob.1.37 here. We will continue
our proof for this problem, based on what we have proved:

H[x]+Hlyl-HIx,y] Hlyl - Hlylx]

- - f p@inpy)dy + f f P&,y inp(ylx)dxdy
= —ffp(x,y)lnp(y)dxdy+ffp(x,y)lnp(ylx)dxdy

= —ffp(x,y)ln(lm)dxdy
p(x,y)

= KL(px,y)llp&)p(y)) = I(x,y) =0

Where we take advantage of the following properties:

p(y) = fp(x,y)dx
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ply) _ p&x)p(y)
plylx)  p(x,y)
Moreover, it is straightforward that if and only if x and y is statistically
independent, the equality holds, due to the property of KL distance. You can
also view this result by :

Hlx,yl

- [ [ prinpzraxdy
= —ffp(x,y)lnp(x)dxdy—ffp(x,y)lnp(y)dxdy

= —fp(x)lnp(x)dx—ffp(y)lnp(y)dy
= H[x]+Hlyl

Problem 1.32 Solution

It is straightforward based on definition and note that if we want to
change variable in integral, we have to introduce a redundant term called
Jacobian Determinant.

Hly]

—fp(y)lnp(y)dy

_ p(x)lnP(X)|0_y|dX
B Al Al ox

px)

= —fp(x)lnmdx

= —fp(x)lnp(x)dx—fp(x)ln%dx
= HIx]+In|A|

Where we have taken advantage of the following equations:

0 0
YA and p® =pIZ| = py)IAl
0x 0x

f px)dx =1
Problem 1.33 Solution

Based on the definition of Entropy, we write:
Hlylx] = =) Y plx;,y)Inp(y;lx;)
Xi Yj

Considering the property of probability, we can obtain that 0 < p(y;lx;) <

1, 0 < p(x;,y;) < 1. Therefore, we can see that —p(x;,y;)Inp(y;lx;) = 0 when

0 < p(yjlx;) < 1. And when p(y;|x;) = 0, provided with the fact that lin(l)plnp =
p—
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0, we can see that —p(x;,y;)Inp(y;lx;) = —p(x)p(yjlx;)inp(y;lx;) = 0, (here
we view p(x) as a constant). Hence for an arbitrary term in the equation
above, we have proved that it can not be less than 0. In other words, if and
only if every term of H[y|x] equals to 0, H[y|x] will equal to 0.

Therefore, for each possible value of random variable x, denoted as x; :

- pla;, y)Inp(yjlx;) = 0 (%)
¥

If there are more than one possible value of random variable y given
x = x;, denoted as y;, such that p(y;|x;) # 0 (Because x;,y; are both "possi-
ble", p(x;,y;) will also not equal to 0), constrained by 0 < p(y;|x;) <1 and
> jp(yjlx;) = 1, there should be at least two value of y satisfied 0 < p(y;lx;) <
1, which ultimately leads to (*) > 0.

Therefore, for each possible value of x, there will only be one y such that
p(ylx) #0. In other words, y is determined by x. Note: This result is quite
straightforward. If y is a function of x, we can obtain the value of y as soon
as observing a x. Therefore we will obtain no additional information when
observing a y; given an already observed x.

Problem 1.34 Solution

This problem is complicated. We will explain it in detail. According to
Appenddix D, we can obtain the relation,i.e. (D.3) :

oF
Fly(x)+en(x)] = Fly(x)] + f Een(x)dx (%)

Where y(x) can be viewed as an operator that for any input x it will give
an output value y, and equivalently, F[y(x)] can be viewed as an functional
operator that for any input value y(x), it will give an ouput value F[y(x)].
Then we consider a functional operator:

Ip()] = f p)f () da

Under a small variation p(x) — p(x) + en(x), we will obtain :

I[p(x)+en(x)] = fp(x)f(x)dx + fen(x)f(x)dx

Comparing the equation above and (), we can draw a conclusion :

ol
ap(x) F@

Similarly, let’s consider another functional operator:

JIp()] = f @) Inp()dx
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Then under a small variation p(x) — p(x)+en(x):

JIp(x)+en(x)] f(p(x) +en(x)) In(p(x) +en(x))dx

fp(x) In(p(x)+en(x))dx + fen(x) In(p(x)+en(x))dx

Note that en(x) is much smaller than p(x), we will write its Taylor Theo-
rems at point p(x):

In(p(x) +en(x)) = Inp(x) + M +O(€n(x)2)
p(x)

Therefore, we substitute the equation above into J[p(x) +en(x)]:

JIpx)+en(x)] = fp(x) Inp(x)dx + en(x)f(lnp(x) +1)dx + 0(62)

Therefore, we also obtain :

o0J
— =Inpx)+1
op(x) P
Now we can go back to (1.108). Based on % and %, we can calculate

the derivative of the expression just before (1.108) and let it equal to O:
—Inp(x)—1+2A1 + dox + A3(x— )2 = 0

Hence we rearrange it and obtain (1.108). From (1.108) we can see that
p(x) should take the form of a Gaussian distribution. So we rewrite it into
Gaussian form and then compare it to a Gaussian distribution with mean p
and variance o2, it is straightforward:

(x— w?
202

exp(=1+11) = , exp(Aax + A3(x — w)?) = exp{ }

(2n02)3

Finally, we obtain :
A1 = 1-1n(2n0?)

Ao =0

1
Ay = ——
37 902

Problem 1.35 Solution
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If p(x) = A (u,02), we write its entropy:

Hlx]

—fp(x)lnp(x)dx

1

202
+ o
2ng? 202

= %{ 1+1n2no?)}

(x — p?
202

= —fp(x)ln{ }dx—fp(x){— }dx

= —In{ }

Where we have taken advantage of the following properties of a Gaussian
distribution:

fp(x)dx =1and f(x—u)zp(x)dx =g?
Problem 1.36 Solution

Here we should make it clear that if the second derivative is strictly pos-
itive, the function must be strictly convex. However, the converse may not be
true. For example f(x) = x*, g(x) = 22, x € Z are both strictly convex by def-
inition, but their second derivatives at x = 0 are both indeed 0 (See keyword
convex function on Wikipedia or Page 71 of the book Convex Optimization
written by Boyd, Vandenberghe for more details). Hence, here more precisely
we will prove that a convex function is equivalent to its second derivative is
non-negative by first considering Taylor Theorems:

f,(x)e‘ + f”(x)6‘2 + f’”(x)€3 + ...

flate) =i+ = 21 3!

/ " "
f (x)e + f (x)€2 - f (x)€3 + ...
1! 2! 3!

Then we can obtain the expression of f”(x):

flx+e)+ fx—€)—2f(x)

" BRT
11 =l S

flx—e) = f(x) -

Where O(e*) is neglected and if f(x) is convex, we can obtain:

f(x) = f(%(x+e)+%(x—e)) < %f(x+e) + %f(x—e)

Hence f"'(x) = 0. The converse situation is a little bit complex, we will use
Lagrange form of Taylor Theorems to rewrite the Taylor Series Expansion
above :

fll(x*)

fx) = flxo) + f(xo)x —x0) +

(x —x0)
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Where x* lies between x and xo. By hypothesis, f”(x) = 0, the last term is
non-negative for all x. We let xg = Ax1 + (1 — A)x2, and x = x1:

fx1) = fx) + (1 — V(1 — x2)f " (x0) (%)
And then, we let x = x9:
fx2) = f(xo) + Mxg —x1)f (x0) (%)

We multiply () by A, (+%) by 1— A and then add them together, we will
see :

Af(x1) + (1 =V)f(x2) = f(Ax1 + (1= A)x2)
Problem 1.37 Solution
See Prob.1.31.
Problem 1.38 Solution

When M =2, (1.115) will reduce to (1.114). We suppose (1.115) holds for
M, we will prove that it will also hold for M + 1.

Moo
fApv1xpm+1 + (1= Apr41) Z — )
me1 1= AMm+1

M2
A (are1) + A=A )Y, ——x)
Mm+1f(xpe1 m+f mzz‘,l 1—/1M+1x

M
FCY. Amm)
m=1

I\

M Am
Ams1feprer) + (1= Apre1) Y Tf(xm)
m=1+"/""M+1

IA

M+1
Z Am f(xm)
m=1

IA

Hence, Jensen’s Inequality, i.e. (1.115), has been proved.
Problem 1.39 Solution

It is quite straightforward based on definition.

2.2 1.1
Hlx] = —Zi:p(xi)lnp(xi) = _§Zn§ - §ln§ = 0.6365

2. 2 1.1
Hlyl = —;p(yi)lnp(yi) = —§ln§ - gln§ = 0.6365

1.1
Hlx,yl = =) pla;, y)lnp(xi,y;) = —3-§Zn§ -0 =1.0986
i,
1. 1

1 1.1
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1.1 1.1 1
H _—_z )l )= —=In= — —ZIn=—=ZInl = 0.4621
[ylx] .p(xl,yj) np(yjlx;) 3 n2 3 n2 3 n

i,J
p(x;)p(y;)
Ilx,y] = =) plj,y)ln———
; U pla, y))
;2.1 1 2.2 1.2
= —ZInd3 3 _Zpd33_Zpnd3-01744
3 1/3 3 1/3 3 1/3

Their relations are given below, diagrams omitted.
Ilx,y] = H[x] — H[x|y] = H[y] — H[ylx]
Hlx,yl = Hlylx] + H[x] = H[x|y] + H[y]
Problem 1.40 Solution

f(x) = Inx is actually a strict concave function, therefore we take advan-
tage of Jensen’s Inequality to obtain:

M M
f(z Amxm) = Z Amf Xm)
=1 i=1

Welet A, = ﬁ,m =1,2,...,M. Hence we will obtain:

1 !
It xZZ-ltI T Emy o 7LD + In(eo) + .+ Inea)] = ln(xixe...xu)

We take advantage of the fact that f(x) = Inx is strictly increasing and
then obtain :

X1 t+tx2+...+XxXm

= M\/xlxz...xM
M

Problem 1.41 Solution

Based on definition of I[x,y], i.e.(1.120), we obtain:

—ffp(x,y)lnwdxdy
p(x,y)

- _ffp(x,y)ln P& dxdy
pxly)

= —ffP(X,y)lnp(X)dxdy+ffp(x,y)lnp(xly)dxdy

= —ffp(x)lnp(x)dx+ffp(x,y)lnp(x|y)dxdy
= HI[x] - H[x|y]

I[x,y]

Where we have taken advantage of the fact: p(x,y) = p(y)p(xly), and
J p(x,y)dy = p(x). The same process can be used for proving I[x,y] = H[y] -
Hly|x], if we substitute p(x,y) with p(x)p(y|x) in the second step.
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0.2 Probability Distribution

Problem 2.1 Solution

Based on definition, we can obtain :

Y pla)=p+1-w=1
xi:O,l

Elx]= ) xipx)=0-1-@)+1-p=p

x,‘:O,l
varlx] = Y (x;—ElxD)?px;)
xi:0,1
= 0-w?A-w+A-p? u
= pu(l-p

Hlxl=- ) px)inp(x;) = —plnp— Q- p)in(l—p)
x;=0,1

Problem 2.2 Solution

The proof in Prob.2.1. can also be used here.

1- 1+
Y pan=—F+TE=1

x;=-1,1 2 2
1- 1+
Elx]= ) xip(xi)=—1'—'u+1'—'u=ﬂ
x;i=—1,1 2 2
var[E] = Y (x; —Elx])’p(x;)
xi:—l,l
1—p 2 1+p
= -1- 2._+ 1- —_
( ) 3 1-p 2
= 1-wp?
1-p 1-p 14p, 1+pu
Hix] = - ; ) = — l - l
[x] xizz_l’lp(xz)lnp(xz) 7 " 5 In—

Problem 2.3 Solution

(2.262) is an important property of Combinations, which we have used
before, such as in Prob.1.15. We will use the ’old fashioned’ denotation C]"\} to
represent choose m objects from a total of N. With the prior knowledge:

N!

cn=——"
N7 mI(N —=m)!
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We evaluate the left side of (2.262) :

N N
Cm Cm—l —
NTEN mIN=m)!  m=DIN —(m 1)
N 1 1
= (= +—— )
m-DIIN-m)) m N-m+1
WD
m!(N+1-m) N+l

To proof (2.263), here we will proof a more general form:

N
w+y)N =Y CcramyNm (+)
m=0
If we let y =1, (%) will reduce to (2.263). We will proof it by induction.
First, it is obvious when N =1, (x) holds. We assume that it holds for N, we
will proof that it also holds for N + 1.

N
(x+y)N+1 — (x+y) chn\}xmyN m

m=0

N
C]n\}xmyN m+y ZC]n\}xmyN m

I
8
M=

0

Il
M= 3

N
mem+1Nm+Z C™M ™ N+1-m
N

m=0

0 NEY
m= =
Nt 1 N+1- Y N+1-
_ m m + m m ., .m + m
= Cy x"y E NXy
m=1 m=0

(C%—1+C%)xmyN+l—m +xN+1 +yN+1

I
M=

3
I
—

CJr(L]+1xmyN+1 m +xN+1 +yN+1

m, N+1-m
CN+1x y

Mf iD=

By far, we have proved (). Therefore, if we let y =1 in (%), (2.263) has
been proved. If we let x =y and y =1 — p, (2.264) has been proved.

Problem 2.4 Solution

Solution has already been given in the problem, but we will solve it in a
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more intuitive way, beginning by definition:

N
Elm] = Y mCru™@1-pN™
m=0
N
= ) mCﬁum(l—u)N_m
m=1
N
— N! um(l_#)N—m
o1 (m=DUN —m)!
N @w-n!
- N- : m—1 1— N-m
L Dy T g A
N
= N-u C%:%ﬂm_l(l—u)N_m
m=1
N-1
= Nep) Cypta-ph i
k=0

N-plp+Q-pN =Ny

Some details should be explained here. We note that m = 0 actually
doesn’t affect the Expectation, so we let the summation begin from m =1,
i.e. (what we have done from the first step to the second step). Moreover, in
the second last step, we rewrite the subindex of the summation, and what we
actually do is let £ = m — 1. And in the last step, we have taken advantage of
(2.264). Variance is straightforward once Expectation has been calculated.

varlml = E[m?]- Elm)?

N
Y mPCR{ ™ (- N ™ — Elm]-Elm]

m=0

N N
— Z mZC%Hm(]-_,U)N_m_(NIJ)' Z mC]n\}/Jm(l_H)N_m
m=0 m=0

N
mQC%”m(l_IJ)N—m - Nu- Z mC%[Jm(l—/J)N_m

I
M=

m=1 1
N N! m (1 N-m _ (N N J— N
B mZ:"lm(m—1)!(N—m)!'u 1-p) —( #)‘mZ:lm vu (=)
N (N - 1)! N
= N m-1 ]_— N—m_N . Cm m 1_ N-m
“mzzlm(m—l)!(zv-mn” (1=w) p mZ:lm T CE)

= Nu Yy mu™ 'a-pN ™ (CRL - uCy)

1

M=

Here we will use a little tick, —pu = —1 + (1 — p) and then take advantage
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of the property, C; = C}'_; + CR}:;

N
Nu Y muymta-pN el - Ccr + (1-wCh]

m=1

var[m]

N
= Np Y mp™'Q-pN " [Q-peR +CR-1-cr]

m=1

N
= Np ), mp" A= " [(1-pCR - CF ]

m=1

N N
— NIJ{ Z m“mfl(l_u)meJrl C]r\r;_ Z m“mfl(l_u)me C%—l}

m=1 m=1

= Np{-NA-pip+a-pP - -1 -l + -2}
= Np{N1-p-O-DA-p} = Nu(1-p)
Problem 2.5 Solution

Hints have already been given in the description, and let’s make a little
improvement by introducing ¢ = y +x and x = tu at the same time, i.e. we will
do following changes:

x=tu t=x+y
{ y=t(1-p) and { x

T x+y

Note t € [0, +o0], € (0,1), and that when we change variables in integral,
we will introduce a redundant term called Jacobian Determinant.

ox  Ox

o(u, 2) g—z & —t 1-p

Now we can calculate the integral.

+00 +00
[(@)I(b) = f exp(—x)x® tdx f exp(-y)y°1dy
0 0

+00 +00
f f exp(—x)x® Texp(—y)y? 1dydx
o Jo
+00 +00
f f exp(—x—y)x* 1y 1dydx
o Jo

1 p+oo
f f exp(—) () (¢(1 - )> 1t dt dp
0 JO

+00 1
f exp(—t)ta+b_1 dtf Ha_l(l _ﬂ)b_ldﬂ
0 0

1
T(a+b) fo et -wltdu
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Therefore, we have obtained :

- _ T'(@)'(b)
a-1. _ nb-1 —
L S P

Problem 2.6 Solution

We will solve this problem based on definition.

1
f pBeta(ula,b)du
0

1 F(a+b) b-1
20+ D) e - pbla
L T@reH 1w du

Ia+b)I(a+1) (! T(a+1+bd)
I'a+1+b)(a)Jo T'(a+1)I'(b)
Ia+b)I(a+1) (1
I'a+1+b)'(a) Jo

I'a+b) T(a+1)

Ta+1+b) TI(a)
a

a+b

Elpl

IJa(l _ /J')b_l d/.t

Beta(ula+1,b)du

Where we have taken advantage of the property: I'(z+ 1) = zI'(z). For
variance, it is quite similar. We first evaluate E[n2].

E[1]

1
f ,u2 Beta(ula,b)du
0

L Ta+d) 4.4 -
= N a 1— d
o T@rm? (T
_ T@+dl@+2) (1 T@+2+b) 4.1, pg
T T(a+2+b)I(a) o r(a+2)r(b)” Q- dpu
_ Ta+dI(@+2) (!
- mfo Beta(ula+2,b)du
Ia+b) T(a+2)
I'a+2+b) I'(a)
ala+1)

(a+b)a+b+1)

Then we use the formula: var[ul = E[u?] — E[u]?.

B ala+1) a 2
varlul = o @rer ) avb

3 ab

" (a+b)2(a+b+1)

Problem 2.7 Solution
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The maximum likelihood estimation for p, i.e. (2.8), can be written as :

m
m+l

HML =

Where m represents how many times we observe ’head’, [ represents how
many times we observe ’tail’. And the prior mean of y is given by (2.15), the
posterior mean value of x is given by (2.20). Therefore, we will prove that
(m+a)/(m+a+1+Db)lies between m/(m +1), a/(a + b). Given the fact that :
m m+a a+b

= h = —m—m-——
m+l m+a+l+bwere/1 m+l+a+b

AL+(1—A)
a+b

We have solved problem. Note : you can also solve it in a more simple way
by prove that :

m+a a m+a m

- . - )=<0
m+a+l+b a+b m+a+l+b m+l

The expression above can be proved by reduction of fractions to a common
denominator.

Problem 2.8 Solution

We solve it base on definition.

BIELD = [Eddylp()dy
[ p@indnpdy
[ [2peinpmidsds

ffxp(x,y)dxdy

fxp(x)dx = E[x]

(2.271) is complicated and we will calculate every term separately.

Eylvar.[xl|yll fvarx[xly]p(y)dy

f ( f (x = Eolxly])®p(xly) dx) p(y)dy

f/(x - [Ex[xly])2p(x,y)dxdy

ff(x2 —2xE, [x|y]l+ [Ex[xly]z)p(x,y)dxdy

f f & p(x)dx — f f 2xE,[xlyl plx, y)dxdy + f f (EoLxly1®) p(y)dy
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About the second term in the equation above, we further simplify it :

ff2x[Ex[x|y]p(x,y)dxdy 2f[Ex[x|y](fxp(x,y)dx)dy

2 f E.Lxly] p(y) ( f eply)dx)dy

2 f E.lxly2p(y)dy

Therefore, we obtain the simple expression for the first term on the right
side of (2.271) :

Eylvar.lx|yll = ffx2p(x)dx—ff[Ex[xly]2p(y)dy (%)

Then we process for the second term.

vary[Elx|yll f([Ex[xly] —Ey[E,[xlyID)?p(»)dy

f (Exlxly]—ELx])2p(y)dy

f E.lxly1?p(y)dy — 2 f Elx]Ec[xylp(y)dy + f Elxp(y)dy

f E.lxly1?p(y)dy — 2E[x] f E.lxlylp(y)dy + Elx]?

Then following the same procedure, we deal with the second term of the
equation above.

2F[x]- f Elxlylp(y)dy = 2Elx]-E, [E.[x|y]T] = 2E[x]?

Therefore, we obtain the simple expression for the second term on the
right side of (2.271) :

var, [Exlxlyll = f Elxlyl2p(y)dy — Elx)? (%)
Finally, we add (*) and (**), and then we will obtain:
Eylvarglxlyll + vary[Eclx]y]ll = Elx%] - Elx]? = varlx]

Problem 2.9 Solution

This problem is complexed, but hints have already been given in the de-
scription. Let’s begin by performing integral of (2.272) over ujr—1. (Note :
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by integral over ups—1, we actually obtain Dirichlet distribution with M —1
variables.)

l1-p—-m—..—ppy-o M-1 gl M-1 w1
pym-1(p,m, ..., upr—2) fo Cu [ w* (A=) pp™  dup
k=1

J=1

M-2 -1 l—ﬂ—m—...—ﬂM,z a ~1 M-1 1
Cu [ 1" fo pars (A= ) pp™ T duy-
k=1 j=1

We change variable by :

Hpm-1

t=
l-p—m—...—upy—9

The reason we do so is that up—1 €[0,1-pg—m—...—upr_2], by making this
changing of variable, we can see that ¢ € [0,1]. Then we can further simplify
the expression.

M-2 M-2 1 u(lM—l—l(l_Z]M_—lu_)aM—l
-1 ay_1+ay-1 M-1 j=1 Hj
mM-1 = Cy ap=1q _ yEm-1tan f g
! kl]l g J;[ H 0 (l—ﬂ—m—...—pM_Q)aM—1+aM—2
M-2 1 M-2 1
= Cy [[ ' a- )% uj)“M*““M‘lf 111 — =1 gy
k=1 j=1 0
i &2 T(ap-1— DI (any)
= C ap—1lq _ Nam-1t+ay—1
M kl:[l Hy ( J; :u'j) Tan 1t )

Comparing the expression above with a normalized Dirichlet Distribution
with M —1 variables, and supposing that (2.272) holds for M —1, we can obtain

that:
C(ap-1)T(ap) I'ai+ag+...+ay)

MT(ap-1 +ay)  TlapT(az).. T(ay—1+amy)

Therefore, we obtain

B INai+ag+...+ay)
"~ T(ap(ag)..T(ay-1)T(ay)

Cu

as required.

Problem 2.10 Solution
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Based on definition of Expectation and (2.38), we can write:
Elu;] = f,ujDir(ﬂla)dp

f . I‘(af()) K ak—ld
Mt (@ (@) Tag) j % “F

I'(ao) S
= ~ d
T(ap)(az)..I(ag) “Jkl:[l“k K
T(a) T(apT(as)...T(@;_ )T (a; + D(aj1).. (k)
T(ap)(az)..I(ak) T(ao+1)
F(aO)F(aj+ 1) _ &

T(a)T(ag+1)  ag

It is quite the same for variance, let’s begin by calculating [E[u?].

Elu] = fyfpir(ma)dp

I'(ao) g & ap-1
= y d
FanT(a). Tap ) *o LLHdn
T (ao) T(ay)T(ag)...[(a; 1) (a; +2)T(a41)..T(ak)
T(an(as)..L(ak) T(ao+2)
F(ao)F(aj+2) _ aj(aj+1)

T(a,)T(ag+2) aglag+1)

Hence, we obtain :

aj(aj+1) LA aj(ap — a;)

1= E[u?] - Elu;1? = =
varlp;] = Elu;] - Elu;l aolap+1) ap aZ(ag+1)

It is the same for covariance.

coolizpn) = [ G~ ELu Do = ElpuD Dir(ula) dp

f(ﬂj i — ELujlpy — Bl lp; + Elp IEy D Dir(pla) d p

F(aO)F(aj + 1)F(al +1)

= TaTaT(ag+)  ZEksIELk + Elu;1Ew]

= YRR
- ao(a0+1) 'uJ H

a;aj a;a;

aglap+1)  a?
a;ag

= —— I (£l
a%(a0+1) (7#0)
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Note : when j =1, covlu;u;] will actually reduce to var[u;], however we
cannot simply replace / with j in the expression of covlu;u,] to get the right
result and that is because [ Dir(ple)da will reduce to f,u?Dir(uIa)da
in this case.

Problem 2.11 Solution
Based on definition of Expectation and (2.38), we first denote :

I'(ao)

=K
Mapl(@y). Tag) _ 2@

Then we can write :

oDi K
oDir(pl®)  _ K (@) [T uf )/ 0a;
da i=1
oK () K T, ™
= (a)H/J?‘ 1+K(a)—l_lul
oaj 1 oa;
0K(a) K _
= () p 1+ln,uj-Dir(p|a)
daj

Then let us perform integral to both sides:

oDir(pla) 0K(a) &
| FrE L - °11
aj Oaj ;5

,u?"_l dp+fln,uj ‘Dir(pla)dp

The left side can be further simplified as :

0[Di d 1
left side = —f ir(pla)dp = _0 =
aaj aaj

The right side can be further simplified as :

oK) (& ,_
30 f]_[uf‘ Ydu+Ellny;]
a; i=1

_ O0K(a) 1 _
= —6aj K—(a)+[E[lnuJ]

0lnK(a)

right side
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Therefore, we obtain :

0lnK(a)
Ellnu;l = _Tj
o{inT(ao) - XK, inT(ay)}
- aaj
_ 9lnl(a) dlnT(ap)
B OCKJ' aaj
_ 9lnT(@))  dlnI(ag) dag
B oa; oag Oa;
_ 0inl(a;) 0lnI(ao)
B oa; oag

y(a;) — y(ao)
Therefore, the problem has been solved.

Problem 2.12 Solution

Since we have :

b 1
dx =1
fab—a ¥

It is straightforward that it is normalized. Then we calculate its mean :

b 1 x2 b a+b
[E = =
L] fa xb—adx 2(b-a)

a 2

Then we calculate its variance.

b 42 +b x3 b a+b

- F 2 —F 2:f X dx — a 2: 3 9
var[x] [x“]—E[x] b a x—( 2 ) 36 —a)la 2
Hence we obtain:
1 = 02"
varlx] =
12

Problem 2.13 Solution

This problem is an extension of Prob.1.30. We can follow the same proce-

dure to solve it. Let’s begin by calculating In —5(((?) :
p(x) 1 L] 1 Ty-1 1 Ty-1
i = — l JE— — — — —_— — —
In( q(x)) 3 n(|z|)+2(x m) 'L " (x—m) 2(x X (x—p)

If x ~ p(x) = &/ (u|Z), we then take advantage of the following properties.

fp(x)dx =1
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Elx] = fxp(x)dx =u

El(x—a)  A(x-a)] = tr(AZ) + (- a) A(p - a)

We obtain :

_ L I PN D DY JUNS DI

KL = f{zznIZI sE- ' Z @+ S -m) L m)}p(x)dx
R R 2] B U DNIIET \N NSNS I D
= ZIHIZI 2E[(x W (x—p) ]+2E[(x m) L™ (x—m)]
_ L T L ) TL =)+ L1
= 21n|2| 2tr{ID}+2(p m) L (u m)+2tr{L 2}
= %[ln:Lf:—D+tr{L_1Z}+(m—y)TL_1(m—y)]

Problem 2.14 Solution

The hint given in the problem is straightforward, however it is a little bit
difficult to calculate, and here we will use a more simple method to solve this
problem, taking advantage of the property of Kullback—Leibler Distance. Let
g(x) be a Gaussian PDF with mean p and variance X, and f(x) an arbitrary
PDF with the same mean and variance.

g(x)

OSKL(fIIg):—ff(x)ln{%}dxz—H(f)—ff(x)lng(x)dx (%)

Let’s calculate the second term of the equation above.

1 1 1

11 1 _
ff(x)ln{WW}dx+ff(x)[—§(x—p)Tz Y — )] da

_ L T GRS PN S v
= ln{(2n)D/2|Z|1/2} 2[E[(x W I N (x - )]

1 1 1
= G| 5

1 D
= —{glnIZI + §(1+ln(2n))}
= -H(g)

We take advantage of two properties of PDF f(x), with mean p and vari-
ance X, as listed below. What’s more, we also use the result of Prob.2.15,
which we will proof later.

ff(x)dx =1

El(x—a) A(x—a)] = tr(AZ) + (- a) A(p - a)
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Now we can further simplify (x) to obtain:
H(g) = H(f)

In other words, we have proved that an arbitrary PDF f(x) with the same
mean and variance as a Gaussian PDF g(x), its entropy cannot be greater
than that of Gaussian PDF.

Problem 2.15 Solution
We have already used the result of this problem to solve Prob.2.14, and
now we will prove it. Suppose x ~ p(x) = A (u|X) :

Hlx]

—fp(x)lnp(x)dx

1 1 1
= —fp(x)ln {Wwexp[— é(x— ”)Tz—l(x_ ﬂ)] } dx

_ BN O T s
fp(x)ln{(zﬂ)m2 |Z|1/2}dx ff(x)[ 2(s\r W I N(x-p)dx

1 1 1 _
_ln{WW} + §[E[(x—”)TZ l(x—p)]

1 1 1
—In WW +§tr{ID}

1 D
ElnIZI + §(1+ In(2m))

Where we have taken advantage of :

fp(x)dx =1

El(x—a) A(x-a)] = tr(AZ) + (- a) A(p - a)

Note : Actually in Prob.2.14, we have already solved this problem, you can
intuitively view it by replacing the integrand f(x)/ng(x) with g(x)Ing(x), and
the same procedure in Prob.2.14 still holds to calculate [ g(x)Ing(x)dx.

Problem 2.16 Solution

Let us consider a more general conclusion about the Probability Density
Function (PDF) of the summation of two independent random variables. We
denote two random variables X and Y. Their summation Z =X +Y,is still a
random variable. We also denote f(-) as PDF, and F(-) as Cumulative Distri-
bution Function (CDF). We can obtain :

Fu2)=P(Z<z)= f[ Fry @,y dxdy
x+y=sz
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Where z represents an arbitrary real number. We rewrite the double in-
tegral into iterated integral :

+o0
Fz(z) = f

We fix z and y, and then make a change of variable x = u—y to the integral.

+00 +00
Fuz) = f dy = f

Note: fx,y(:) is the joint PDF of X and Y, and then we rearrange the
order, we will obtain :

dy

z-y
f fxyx,y)dx

dy

z-y
f fxy(x,y)dx

f Fxy(u—2,y)du

z +00
Fz(z)=f [f fxyw-y,y)dy|du

Compare the equation above with th definition of CDF :

FZ(z)zf fz(w)du

We can obtain : oo
fz(u) =f fxylu-y,y)dy

And if X and Y are independent, which means fx y(x,y) = fx(x)fy(y), we
can simplify fz(2) :

+00
Fau) = f fxw-nfydy ie fz=fx*fy

Until now we have proved that the PDF of the summation of two inde-
pendent random variable is the convolution of the PDF of them. Hence it is
straightforward to see that in this problem, where random variable x is the
summation of random variable x1 and x9, the PDF of x should be the convo-
lution of the PDF of x; and x2. To find the entropy of x, we will use a simple
method, taking advantage of (2.113)-(2.117). With the knowledge :

plrg) = N (uz,750)

pxlxe) = A (1 + x2,777)

We make analogies : x9 in this problem to x in (2.113), x in this problem to
yin (2.114). Hence by using (2.115), we can obtain p(x) is still a normal dis-
tribution, and since the entropy of a Gaussian is fully decided by its variance,
there is no need to calculate the mean. Still by using (2.115), the variance of
x is TII + 7, 1 which finally gives its entropy :

Hlx] = % [1+In2nG7t +73h)
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Problem 2.17 Solution

This is an extension of Prob.1.14. The same procedure can be used here.
We suppose an arbitrary precision matrix A can be written as AS + A2, where
they satisfy :

s _ NijtAji A _DNij—Aji
u- 2 ’ A 2
Hence it is straightforward that Afj = Afi, and A‘i‘xj =— A;‘i. If we expand
the quadratic form of exponent, we will obtain :
r D D
(- A —p) =Y > (e — i) ANijloxj— ) (*)
i=1j=1

It is straightforward then :

D D D D
() = Y i AT =)+ Y Y = ) A e — )

iSj=1 iA1=
D D <

= ) >~ AT — )
i=1j=1

Therefore, we can assume precision matrix is symmetric, and so is covari-
ance matrix.

Problem 2.18 Solution

We will just follow the hint given in the problem. Firstly, we take complex
conjugate on both sides of (2.45) :

Su; =Aiu; => Zu;-= /l_lu_,

Where we have taken advantage of the fact that X is a real matrix, i.e.,
3 = 3. Then using that X is a symmetric, ie., 27 = X :

Wil Zu; = u;t (Zuy) = wit (Ajug) = Mg u;

— I —_ —T__
il Zu; = (Zu) u; = Auwi)Tu; = A; u;tu;

. — =T . .
Since u; # 0, we have uiTui #0. Thus AiT = A; , which means }A; is real.
Next we will proof that two eigenvectors corresponding to different eigenval-
ues are orthogonal.

Ai<uj,uj>=<Aiuj,uj>=<Zu;,uj >=<ui,ZTuj >=Aj<ui,uj>

Where we have taken advantage of 7 = X and for arbitrary real matrix
A and vector x, y, we have :

<Ax,y>=<xATy>
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Provided A; # 1;, we have < u;,uj >= 0, i.e., u; and u; are orthogo-
nal. And then if we perform normalization on every eigenvector to force its
Euclidean norm to equal to 1, (2.46) is straightforward. By performing nor-
malization, I mean multiplying the eigenvector by a real number a to let its
Euclidean norm (length) to equal to 1, meanwhile we should also divide its
corresponding eigenvalue by a.

Problem 2.19 Solution

For every N x N real symmetric matrix, the eigenvalues are real and the
eigenvectors can be chosen such that they are orthogonal to each other. Thus
a real symmetric matrix = can be decomposed as = = UAUT ,where U is an
orthogonal matrix, and A is a diagonal matrix whose entries are the eigen-
values of A. Hence for an arbitrary vector x, we have:

ufx Alufx D
Sx=UAUTx=UA| : |[=U| : |=() hurup)x
ugx /IDulT)x k=1

And since =71 = UAIUT, the same procedure can be used to prove
(2.49).

Problem 2.20 Solution

Since w1, us,...,up can constitute a basis for R?, we can make projection
for a :
a=ajul +agug +...tapup

We substitute the expression above into al Za, taking advantage of the
property: u;uj=1onlyif i = j, otherwise 0, we will obtain :

a’>a = (a1uy + agusg +... +aDuD)TZ(a1u1 +asug +... +apup)

= (alulT + a2u2T + ... +aDuDT)Z(a1u1 +agug + ... +aDuD)

= (a1u1T + a2u2T + ... +aDuDT)(a1)L1u1 +agloug + ... +aD)LDuD)

= /11(112 + A2a22 + ...+ /1[)aD2

Since a is real,the expression above will be strictly positive for any non-
zero a, if all eigenvalues are strictly positive. It is also clear that if an eigen-
value, A;, is zero or negative, there will exist a vector @ (e.g. a = u;), for
which this expression will be no greater than 0. Thus, that a real symmet-
ric matrix has eigenvectors which are all strictly positive is a sufficient and
necessary condition for the matrix to be positive definite.

Problem 2.21 Solution

It is straightforward. For a symmetric matrix A of size D x D, when the
lower triangular part is decided, the whole matrix will be decided due to
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symmetry. Hence the number of independent parametersis D + (D —-1) + ... +
1, which equals to D(D + 1)/2.

Problem 2.22 Solution

Suppose A is a symmetric matrix, and we need to prove that A~ is also
symmetric, i.e., A~! = (A™1)T. Since identity matrix I is also symmetric, we
have :

AA7 = AAHT

And since ABT = BTAT holds for arbitrary matrix A and B, we will
obtain : r
AAT =AY AT

Since A = AT, we substitute the right side:
AA T =(a)'A
And note that AA™! = A~'A = I, we rearrange the order of the left side :
AlA=a)H'A
Finally, by multiplying A~! to both sides, we can obtain:
AlAA =4 aA?
Using AA1 =1 wewill get what we are asked :
Al=@a
Problem 2.23 Solution

Let’s reformulate the problem. What the problem wants us to prove is
that if (x— )T’ 1(x—p) = r2, where r? is a constant, we will have the
volume of the hyperellipsoid decided by the equation above will equal to
VpIZ|Y2rP . Note that the center of this hyperellipsoid locates at p, and a
translation operation won’t change its volume, thus we only need to prove
that the volume of a hyperellipsoid decided by x*7= " 1x = r2, whose center
locates at 0 equals to Vp |z V2D,

This problem can be viewed as two parts. Firstly, let’s discuss about Vp,
the volume of a unit sphere in dimension D. The expression of Vp has already
be given in the solution procedure of Prob.1.18, i.e., (1.144) :

SD 271.D/2

V = - = -
7D 1@+

And also in the procedure, we show that a D dimensional sphere with
radius r, i.e., xTx = r2, has volume V(r) = VprP. We move a step forward: we
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perform a linear transform using matrix V2, i.e., yTy = r2, where y = Z12x.
After the linear transformation, we actually get a hyperellipsoid whose center
locates at 0, and its volume is given by multiplying V(r) with the determinant
of the transformation matrix, which gives =12V rP, just as required.

Problem 2.24 Solution

We just following the hint, and firstly let’s calculate :

A B y M —-MBD!
C D -D1cM D '+DcMBD!

The result can also be partitioned into four blocks. The block located at
left top equals to :

AM-BD'CM =A-BD'CYA-BD '0) =1
Where we have taken advantage of (2.77). And the right top equals to :
~-AMBD '+BD '+BD'CMBD ' =(I-AM+BD 'CM)BD ' =0

Where we have used the result of the left top block. And the left bottom
equals to :

CM-DD'CM =0
And the right bottom equals to :
-CMBD '+DD '+DD 'cMDD ' =1

we have proved what we are asked. Note: if you want to be more precise,
you should also multiply the block matrix on the right side of (2.76) and then
prove that it will equal to a identity matrix. However, the procedure above
can be also used there, so we omit the proof and what’s more, if two arbitrary
square matrix X and Y satisfied XY =1, it can be shown that YX =1 also
holds.

Problem 2.25 Solution

We will take advantage of the result of (2.94)-(2.98). Let’s first begin by
grouping x, and xp together, and then we rewrite what has been given as :

_| ®ab _ | Hapb ) _
X = = ’ 2> =
( xC ) ” ( I'lc

Then we take advantage of (2.98), we can obtain :

Z(a,b)ab) Z(ab)e
Z(0t,b)c Zee

PXap) = N (X plpg by Z(a,b)a,b))
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Where we have defined:
_ K, ) > _ Zaa Z"ab ]
Kop ( Ky (a,b)(a,b) Soa Zbb

Since now we have obtained the joint contribution of x, and x;, we will
take advantage of (2.96) (2.97) to obtain conditional distribution, which gives:

P(alwp) = N (] py . Aga)
Where we have defined
Hap = Bg — A;;Aab(xb - 1)

And the expression of A;(} and A,j can be given by using (2.76) and (2.77)
once we notice that the following relation exits:

-1

Aaa Aab ] — [ Zaa Z\'ab ]
Npa  App Zpa Zob

Problem 2.26 Solution

This problem is quite straightforward, if we just follow the hint.

(A+BCD)(A™'-A"'B(C"'+DA'B)'DA™Y)
=AA'-AA'B(C"'+DA 'B'DA ' +BCDA ' -BCDA 'B(C"'+DA'B) 'DA!
=I-B(C"'+DA 'B'DA'+BCDA ' +B(C"'+DA By 'DA 1 —-BCDA™!
=1

Where we have taken advantage of
—-BCDA 'B(C"'+DA'B)"'DA!
=-BC(-C'+C'+DA 'BYXC'+DA'B) DA
=(-BC)-CHYC1+DA B 'DA ' +(-BC)C'+DA'BXC ' +DA'B) 'DA!
=B(C'+DA'By'DA'-BCDA!

Here we will also directly calculate the inverse matrix instead to give
another solution. Let’s first begin by introducing two useful formulas.

I+P)yT+P-P)
I-d+p)’'p

I+p)?!

And since

P+PQP =P(I+QP)=(+PQ)P
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The second formula is :
I+PQ)'P=PUI+QP)!
And now let’s directly calculate (A + BCD)™! :

(A+BCD)! = [ATd+A'BCD)!
I+ABCcD)'A™!
[I-(I+A'BCD)'A™'BCD]A™!
= A'-I+A'BCD)'A"'BCcDA!

Where we have assumed that A is invertible and also used the first for-
mula we introduced. Then we also assume that C is invertible and recur-
sively use the second formula :

Al-I+A'BCD) 'A'BCDA™!
= A '-A'U+BCDA Y)Y 'BCDA™!
= A'-A"'BU+CDA'B)"'CDA™!
= Al-AB[c(c'+DA'B)| 'cDA™!
= A -A"'Bc"'+DAT'B'C'CDA™!
= A'-A"'B(C'+DA'B)"'DA!

(A+BCD) !

Just as required.
Problem 2.27 Solution

The same procedure used in Prob.1.10 can be used here similarly.

Flx+ 2] f f (x+2)p(x, 2)dxdz
ff(x+z)p(x)p(z)dxdz
ffxp(x)p(z)dxdz + ffzp(x)p(z)dxdz
f ( f p(2)d2)ap(x)dx + f ( f p)dx)zp(z)dz

fxp(x)dx + fzp(z)dz
E[x] + E[2]

And for covariance matrix, we will use matrix integral :
covlx+2z] = ff(x +z-Elx+z])(x+2z—-E[x+ z])Tp(x,z)dxdz

Also the same procedure can be used here. We omit the proof for simplic-
ity.
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Problem 2.28 Solution

It is quite straightforward when we compare the problem with (2.94)-
(2.98). We treat x in (2.94) as 2z in this problem, x, in (2.94) as x in this
problem, x; in (2.94) as y in this problem. In other words, we rewrite the
problem in the form of (2.94)-(2.98), which gives :

_|* _ U _
z—(y) [E(z)_(Ap+b) cov(z) =

By using (2.98), we can obtain:

AL A1AT
AN L1+ AA1AT

p®) = N (xlp, A
And by using (2.96) and (2.97), we can obtain :
P(YIX) = N (ylptye, Ayy)

Where Ay, can be obtained by the right bottom part of (2.104),which gives
Ayy = L1, and you can also calculate it using (2.105) combined with (2.78)
and (2.79). Finally the conditional mean is given by (2.97) :

Byy=Ap+L-L ' (-LA)x—p) = Ax+L
Problem 2.29 Solution
It is straightforward. Firstly, we calculate the left top block :
left top = [(A+ ATLA)— (—ATLXL Y)(-LA)| " = A~
And then the right top block :
right top = ~A"1(-ATL)L™! = A71AT
And then the left bottom block :
left bottom = ~L™(-LA)A™" = AA™
Finally the right bottom block :
right bottom = L™+ L Y(-LA)A Y (-ATL)L ' = L' + AA"1AT
Problem 2.30 Solution
It is straightforward by multiplying (2.105) and (2.107), which gives :

AL A1AT )(AF—ATLb)_( 7 )
AAY L1+ AATAT Lb " Apu+b

Just as required in the problem.
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Problem 2.31 Solution

According to the problem, we can write two expressions :
px) = N(xlpe,Zy), p(ylx) = N (ylp: +x,2;)

By comparing the expression above and (2.113)-(2.117), we can write the
expression of p(y) :
P = N (Yl + Pz, 2o+ 22)

Problem 2.32 Solution

Let’s make this problem more clear. The deduction in the main text, i.e.,
(2.101-2.110), firstly denote a new random variable z corresponding to the
joint distribution, and then by completing square according to z,i.e.,(2.103),
obtain the precision matrix R by comparing (2.103) with the PDF of a mul-
tivariate Gaussian Distribution, and then it takes the inverse of precision
matrix to obtain covariance matrix, and finally it obtains the linear term i.e.,
(2.106) to calculate the mean.

In this problem, we are asked to solve the problem from another perspec-
tive: we need to write the joint distribution p(x,y) and then perform inte-
gration over x to obtain marginal distribution p(y). Let’s begin by write the
quadratic form in the exponential of p(x,y) :

1 1
—§(x —wIAx—p) - E(y -Ax-b)TL(y-Ax-b)
We extract those terms involving x :

1
= —éxT(A+ATLA)x + 2T [Ap+ATL(y-b)1+const

1 1
-5 m)T (A+ATLA)(x-m) + §mT(A +ATLA)Ym + const
Where we have defined :

m=(A+ATLA) ' [Au+ATL(y-b)]

Now if we perform integration over x, we will see that the first term van-
ish to a constant, and we extract the terms including y from the remaining
parts, we can obtain :

- _%yT [L-LAM+ATLA) AL ]y
+y"{[L-LAA+ATLA)'ATL]b
+LAA+ATLAY " Ap)

We firstly view the quadratic term to obtain the precision matrix, and
then we take advantage of (2.289), we will obtain (2.110). Finally, using the
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linear term combined with the already known covariance matrix, we can ob-
tain (2.109).

Problem 2.33 Solution

According to Bayesian Formula, we can write p(x|y) = 2 I(ny%, ), where we

have already known the joint distribution p(x,y) in (2.105) and (2.108), and
the marginal distribution p(y) in Prob.2.32., we can follow the same proce-
dure in Prob.2.32., i.e. firstly obtain the covariance matrix from the quadratic
term and then obtain the mean from the linear term. The details are omitted
here.

Problem 2.34 Solution

Let’s follow the hint by firstly calculating the derivative of (2.118) with
respect to Z and let it equal to O :

N o 10
= <lnlE -

N

Ts-1

> —n) =
E_ - (xp,—w =0

By using (C.28), the first term can be reduced to :

N o N __
—oaslnlZl= - @Y = -
2 0% 2 2

Z_l

Provided with the result that the optimal covariance matrix is the sample
covariance, we denote sample matrix S as :

S—iiu—Xx—F
_anlnﬂ n— M

We rewrite the second term :

10
second term = —55 Z(xn W= x, —p)

N o 1

= ———=Tr[Z"
2 3> [Z7°S]
N 1qy-1

= —X°'SX
2

Where we have taken advantage of the following property, combined with
the fact that S and X is symmetric. (Note : this property can be found in The
Matrix Cookbook.)

d
ﬁTr(AX Ig)y= - (x1BAX V)T = - x HTATBTx )T

Thus we obtain :
N_,; N__
——3XT+==
2 2

lgx-1-9
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Obviously, we obtain X = S, just as required.
Problem 2.35 Solution

The proof of (2.62) is quite clear in the main text, i.e., from page 82 to
page 83 and hence we won’t repeat it here. Let’s prove (2.124). We first begin
by proving (2.123) :

Elpar] 1[E[i 1= L1.n
= — X = — =
Hurl = LD %nl = 5 -Ni =

Where we have taken advantage of the fact that x,, is independently and
identically distributed (i.i.d).
Then we use the expression in (2.122) :

1 N
ElZmL] —E Z (n — L) %n — )" ]

N n=
1Y T
= = El@n — pmp)@n — pyr)’ ]
Nn:l
1Y T
= — ) Elxn—pur)®n—pur)' ]
Nn=1
1Y T T T
= =) Elxpxn —2pMran’ +pyLiyg]
Nn:l
1 X o 1L T
= Nn; [E[xnxn 1- QNEIIE[IJMan ]+N,LZ:,1[E[IJMLIJML]
By using (2.291), the first term will equal to :
1
first term = N ~N(ny+Z) = pyT+Z
The second term will equal to :
1 N
second term = — Z [E[ﬂManT]
Nn:l
2L 3 EL (S
= — 2 EH=() xm)x," ]
anl N m=1 e
1 N N
= m Z Z [E[xmxn
n=1m=1
1 N N
nzlmzl
= —QZW(szuTJrNZ)

1
—2(ppT + NZ)
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Similarly, the third term will equal to :

Zt—A

third term —> [E[ﬂMLﬂ{u;]

n=1

= T (_Zx.l) ( le)]

n=1

2|~

1 N

= N3 [E(ng)'(;xi)]
i_
N3

= uuT +=Z
Finally, we combine those three terms, which gives:

N-1
[E[ZML] = TZ
Note: the same procedure from (2.59) to (2.62) can be carried out to prove
(2.291) and the only difference is that we need to introduce index m and n
to represent the samples. (2.291) is quite straightforward if we see it in this
way: If m = n, which means x, and x,, are actually the same sample, (2.291)
will reduce to (2.262) (i.e. the correlation between different dimensions ex-
ists) and if m # n, which means x, and x,, are different samples, also i.i.d,
then no correlation should exist, we can guess E[x,Xm ] = puT in this case.

Problem 2.36 Solution

Let’s follow the hint. However, firstly we will find the sequential expres-
sion based on definition, which will make the latter process on finding coef-
ficient ay_1 more easily. Suppose we have N observations in total, and then
we can write:

1 N
AN) (N)\2
Omr” = NZ( ~Hyr)
n=1
1 (N (N)\2 (N)\2
= N 1( ~ B N = Hyyp)
n=
N-1 1 NI ), N
= N lzunu<> < - i)’
N-1 ow-p_ 1 ) \2
= TN ML +N( ~Hyr)

- g2N-D [(x u(N))z 2(N 1)
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And then let us write the expression for oj/z..

0 1§z Gl p| =0
— 4= np(x,lu,o =
00'2 Nn:]_ Pl il oML

By exchanging the summation and the derivative, and letting N — +oo,
we can obtain :

lim L5 lnpGealio) = € [ O Inpeal,0)
im — ) — =E |=—5 o
N—’+00Nn:1 60_2 n’p Xn IJ”U X 60_2 np Xn ,U,

Comparing it with (2.127), we can obtain the sequential formula to esti-
mate oy, :

2AN 2AN-1 N) _(N-1
O'A;L) = U]V(IL )+aN_1—6 2(N_1)lnp(xN|,u§W£,0§uL ) (%)
Omr
(N) 2
- 2N 1 (xn — 1)
- "ML N-1 95 20N-1) 95 N1
ML oML

Where we use 012‘,%) to represent the Nth estimation of U%,IL, i.e., the esti-

mation of ‘712\/1 ;, after the Nth observation. What’s more, if we choose :

A(N-1)
aN_1 = 201,
B N
Then we will obtain :
o) _ av-1) , 1 2AN-1) (N)+\2
oML %L t N |T%ML +(en = py)

We can see that the results are the same. An important thing should be
2(N)

noticed : In maximum likelihood, when estimating variance o}, ", we will
first estimate mean ,ugf,IVL), and then we we will calculate variance 0121/% ),

In other words, they are decoupled. It is the same in sequential method.
For instance, if we want to estimate both mean and variance sequentially,

after observing the Nth sample (i.e., xy), firstly we can use p%[vi D together

with (2.126) to estimate /JE{;I)J and then use the conclusion in this problem

NE‘Z}? ’fvhalt is why in (%) we write Inp(xpy| ug‘]}[i,ag}g D) instead of
InpGenlugy, Vo5 ).

to obtain o

Problem 2.37 Solution (Wait for revising)

We follow the same procedure in Prob.2.36 to solve this problem. Firstly,
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we can obtain the sequential formula based on definition.

=M = —Z<xn P — p)T
1N ™) N\T ™) N\T
n=1
N-1 1
= TZ(N_1)+—(xN—ﬂ Dxn — p)”
= I e - - ) -2

If we use Robbins-Monro sequential estimation formula, i.e., (2.135), we
can obtain :

0
N) _ (N-1) (N) w(N-1)
ZML = ZML +aN—1Wlnp(leﬂMLaz )
ML
0
_ (N-1) (N) (N 1)
= 2y tan- 1WZVL1T?(S‘?N|MML,Z )
ML
1 N-D e
o ran ——[z 7 U1 Iy VT e — gy Ve — g L P

Where we have taken advantage of the procedure we carried out in Prob.2.34
to calculate the derivative, and if we choose :

2 2 1
ay 1 = 252D

We can see that the equation above will be identical with our previous
conclusion based on definition.

Problem 2.38 Solution

It is straightforward. Based on (2.137), (2.138) and (2.139), we focus on
the exponential term of the posterior distribution p(u|X), which gives :

(= po)? ———2(u )’

22Z(xn IJ)_ZZ %

We rewrite the left side regarding to p.

L0 o
uadratic term = —(—5 + —
! (202 ZUg)u
N
1%
linear term = ( ”(;; "4 ,u_g m

o)
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We also rewrite the right side regarding to u, and hence we will obtain :

N
Zn:l Xn

N 1 2 1 Ho _ HEN
G T T g (Tt R Sk
0 N 0 N
Then we will obtain :
1 1 +N
22

And with the prior knowledge that ny:lxn = N upyr, we can write :

N
Lp-1%n | Ho

2
= (
HUN N 02 0_(2)
1 N _; Nupyr
= (—2 —2) L H2 +M—g)
oy O o o5
0302 NuMLU% + /.1002
T 3 2" 2
o +N00 lofops
o2 Na%
= + UML
NU%+U2MO N<7(2)+02
Problem 2.39 Solution
Let’s follow the hint.
1 _1 N _1 N-1 1 _ 1 1
oy o5 o o o* o o}, o

However, it is complicated to derive a sequential formula for uy directly.
Based on (2.142), we see that the denominator in (2.141) can be eliminated if
we multiply 1/012\7 on both side of (2.141). Therefore we will derive a sequen-
tial formula for uN/UJzV instead.

N o2 +N(7(2) a2 s NU% )
CR 2 2 2, o Ho 2., oHML
oy 050 N00+0 N00+0
o2 +N0% o2 NO’% )
= Ho + K
0%02 NU% + g2 NO’% +o2 ML
(N) N
po  NEyp  po  Xy_q1%n
= ot 5 T 5 f 2
og o og o
N-1
Ho  Xa-i%n XN
= StV 5+t
o o o
HN-1 XN
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Another possible solution is also given in the problem. We solve it by
completing the square.

1
2
20’N

1
—th(xN—#)z— (L—pn-1)? = - (u—pn)?

2
ZGN_l

By comparing the quadratic and linear term regarding to u, we can ob-

tain:

1 1 1
2 T 2 2
oy O oN_1

And :
UN XN = HN-1
2T 22
On ON-1
It is the same as previous result. Note: after obtaining the Nth observa-
tion, we will firstly use the sequential formula to calculate 012\,, and then uy.

This is because the sequential formula for uy is dependent on 012\].

Problem 2.40 Solution
Based on Bayes Theorem, we can write :
p(p1X) ox p(X|p)p(p)

We focus on the exponential term on the right side and then rearrange it
regarding to p.

N1 1
right = Z—§<xn—u)Tz—1(xn—m —E(u—ﬂo)Tzo_l(ﬂ—ﬂo)
n=1
_ N_l _NI'y-1 _ _1 _ T -1 _
= | )Y —s@n-p) Z  xp—p) (B—po) Zo (1 — po)
n=1 2 2

1 N
—511(20_1 +NZ Hp+p" g o + =71 Y x) + const

n=1

Where ’const’ represents all the constant terms independent of y. Accord-
ing to the quadratic term, we can obtain the posterior covariance matrix.

=320 t+NzT

Then using the linear term, we can obtain :

N
en = Colpo + 271 Y %)
n=1
Finally we obtain posterior mean :

N
py = Eo T+ NI YT E o + 27 Y )

n=1
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Which can also be written as :
BN = (o +NZTH N (Zo o + = N pyr)

Problem 2.41 Solution

Let’s compute the integral of (2.146) over A.

f 1 b2 Lexp(=bA) dA i maa—l (=bA)dA
—_— ex - = ex -
) P T(@ Jo P

ba +00

_ ga—l _ 1
= T@Jo (b) exp( u)bdu

1 +00
= _F(a)j(; u® texp(—u)du
1

= — T =1
@ (a)
Where we first perform change of variable b1 = u, and then take advan-
tage of the definition of gamma function:

+00
I'x) = f ule % du
0

Problem 2.42 Solution
We first calculate its mean.

fﬂoaibu“—lex (-bA)dA = i fooaaex (-bA)dA
o T P T Tl P
a

b X
T'(a) Jo b
1

+00
= F(a)-bfo uexp(—u)du

- ! raip=?
T T YTV Ty

+OOu

)aexp(—u)% du

Where we have taken advantage of the property I'(a + 1) = al'(a). Then
we calculate E[A2].

fooﬂibw—lexp(—bmda b
0 ['(a) ['(a)
I (et TR 1
= Tk (b) exp( u)bdu
1

+00
= F(a)~b2f0 uexp(—u)du

1 ala+1)
= T@5? T(@+2) = B2

+00
f A% lexp(=bA)dA
0
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Therefore, according to var[A] = E[A%]-E[A]%, we can obtain :

ala+1) ( ) _a

b2 b2
For the mode of a gamma distribution, we need to find where the max-
imum of the PDF occurs, and hence we will calculate the derivative of the

gamma distribution with respect to 1.

d

var[Al = E[A2]1-E[A]2 =

@ )b%a lexp(=bA)| = [(@a—1)-bA] @ )b“/l“ 2exp(=bA)

It is obvious that Gam(A|a, b) has its maximum at A = (a —1)/b. In other
words, the gamma distribution Gam(1|a, b) has mode (a — 1)/b.
Problem 2.43 Solution

Let’s firstly calculate the following integral.

+00 I Iq +00
f exp(——)d = 2[ exp(——)dx

o0 o0
+00 202)a

2[ exp(—u)( 7 )q ué_l du
0 q

1

202)4

2(0)q
q

22q
_ (U)F()
q

+00 1
f exp(—u)ue ~dx
0

And then it is obvious that (2.293) is normalized. Next, we consider about
the log likelihood function. Since € = ¢ — y(x,w) and € ~ p(elo?,q), we can
write:

N
Inp(tIX,w,0?) Y Inp (y(@n,w) - tylo?,q)
n=1
L §| @y w) — 5|7 + N -1 1
= —— Xp, W) — ‘n|—————
202 =y " 2(202)VaT(1/q)
N N
Z ly(%n, w) —t,19 — —1n(202) + const
- q

Problem 2.44 Solution

Here we use a simple method to solve this problem by taking advantage
of (2.152) and (2.153). By writing the prior distribution in the form of (2.153),
i.e., p(u,AlB,c,d), we can easily obtain the posterior distribution.

p(p,AX) o« pXiu,A)-p(u,A)
N+p

exp

2

N N
(c+ Y x)Ap—(d+ ). 2

/l
o [/11/2exp( —)
n=1 n=1
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Therefore, we can see that the posterior distribution has parameters: ' =

2
B+N,c =c+ Zf:]:lxn, d =d+ Zf:’:l % And since the prior distribution is

actually the product of a Gaussian distribution and a Gamma distribution:
p(u, Ao, B,a,b) = A [ulpo,(BA) ] Gam(Ala, b)

Where g = ¢/B, @ = 1+ B/2, b = d — ¢2/28. Hence the posterior distri-
bution can also be written as the product of a Gaussian distribution and a
Gamma distribution.

P, AX) = A [ulug,(B1) 1] Gam(Ala',b")

Where we have defined:
N
po =c'/p =(c+ ) x,)/(N+P)
n=1

a'=1+p72=1+(N+p)/2
) N 2 N
b =d -2 =d+ Y 2 —(c+ Y x)?/(2B+N))
n=1 2 n=1
Problem 2.45 Solution

Let’s begin by writing down the dependency of the prior distribution # (A|W,v)
and the likelihood function p(X|u,A) on A.

N o1
pXIp,A) < AN exp[ Y 5 @n = w7 Ay, — p)]

n=1

And if we denote
Ly ( ) )T
N z n— H)\Xp—

Then we can rewrite the equation above as:

S =

1
X, A) o< |ANZ exp| - 5Tr(SA)]

Just as what we have done in Prob.2.34, and comparing this problem with
Prob.2.34, one important thing should be noticed: since S and A are both
symmetric, we have: Tr(SA) = Tr((SA)T) = Tr(ATST) = Tr(AS). And we
can also write down the prior distribution as:

1
W(AIW,v) o |[A|CP-D2 exp[—ETr(W_lA)]
Therefore, the posterior distribution can be obtained:

PAIX,W,v) x pXiu,AN)-#(AIW,v)
1
o, |A|(N+v—D—1)/2 exp{—ETr[(W_l+S)A]}
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Therefore, p(A|X,W,v) is also a Wishart distribution, with parameters:
vy=N+v

Wy =W1l+8)!
Problem 2.46 Solution

It is quite straightforward.

p(xlp,a,b) f JV(qu,T_l)Gam(TIa,b)dT
0

foo b%exp(—br)r? !
0 I'(a)

b 1k
I'(a) 27

T 172 T 2
(g) exp{—é(x—u) }dr

a-1/2 2
br— S dt
fo T exp{ (x—pw) }

And if we make change of variable: z = 7[b + (x — 1)?/2], the integral above
can be written as:

plxlu,a,b) = % % szooora_mexp{—br—%(x—u)z} dt
a oo a-1/2
- %‘%)mfo b+(xz—u)2/2] exp e T e
a a+1/2 poo
_ %%1/2 b+(x1_“)2/2 foza_l/zexp{—z}dz
= %(%)1/2 b+@ _a_1/2r(a+1/2)

And if we substitute ¢ = v/2 and b = v/21, we will obtain (2.159).
Problem 2.47 Solution

We focus on the dependency of (2.159) on «x.

Ax — 9 1-0/2-1/2
St(x|y,A,v) [1+%

-v—-1 Mx — p)?

x exp v ln(1+%)]
—v—-1 Mx—p)?

o« exp v2 ((xvﬂ) +O(v_2))]

A — p)?
= exp —— (v — 00)

Where we have used Taylor Expansion: In(1+¢) = e+ O(e?). We see that
this, up to an overall constant, is a Gaussian distribution with mean y and
precision A.
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Problem 2.48 Solution

The same steps in Prob.2.46 can be used here.

St(x | u,A,v)

+00 1 v v
f N (x| p,mA) ) -Gam(n| =, =) dn
A 22

+00 1 1 un 1 v v/2
fo R I Y STATT
(U/2)U/2 |A|1/2 +00

1 T 077} DI2+v/2-1
fvrel 1AV - C(x— MNa—p) -2 d
QP2 Tw2) Jo P { g @1 (A& —p) =2 n

Where we have taken advantage of the property: [nA| = 7 |Al, and if we

denote:

A% = (x— p)TA(x— p) and z = g(A2 +v)
The expression above can be reduced to :
(v/2)v/2 |A|1/2 +00 D/2+v/2-1 2
St(x | u, A, _— - ) . dz
Clwho) = & T Jy P G, AZ+o

/2 v/2 A 1/2 2 D/2+v/2 p+oo
(v/2)”= |A| exp(—z)- 222021 g
@mP2Tw/2) AZ+v

(U/2)U/2 |A|1/2 2 D/2+v/2

T(D/2 +v/2
@PPTw2) A +o) ( v/2)

And if we rearrange the expression above, we will obtain (2.162) just as

required.

Problem 2.49 Solution

Firstly, we notice that if and only if & = u, A% equals to 0, so that St(x|u, A, v)
achieves its maximum. In other words, the mode of St(x|u,A,v) is g. Then
we consider about its mean E[x].

Elx]

f St(x|p,A,v) - x dx
xeRP

fxe[RD

+o00o
f f xJV(x|u,(nA)_1)-Gam(n| E,E) dndx
xeRP Jo 2°2

f+00
0

+o00o
\/(;

[+00Gam( |E E)al =
”0 772,2 n=pg

+00
fo JV(x|u,(nA)—1).Gam(n|§,g) dn x] dx

1y dx- vy
LERDxJV(x|p,(nA) )dx Gam(n|2,2)] dn

u-Gam(n|§,%)] dan

Where we have taken the following property:

f RD x N (x| g, (pA) ) dx = Elx] = p



Then we calculate E[xx”]. The steps above can also be used here.

[E[xxT] =

fxe[RD

+o00o
fo JV(x|p,(nA)_1)-Gam(n|§,§) dn xx!

f St(x|p, A,v) xxl dx
xeRD

dx

+00 _ v v
_ f f xxT N (x| p,(nA) Y- Gam(n| 2, ) dndo
xeRP JO 2°2

f(b
f(}
f(}

f xxTJV(x|p,(nA)_1)dx-Gam(n|E,E)] dn
xeRD 22

Tq. vy
Elpp”] Gam(n|2,2)] dn

lHJT +(T]A)_1] Gam(n| g, g) dn

T +00 _1 vV v
- +[ At -Gam(n| 2, 2) dn
o 2’2

T oo 1
= pp o+ fo (nA)-

= pp”

v _
(_)U/2nv/2 1

v
Tw/2) 2 exp(=gmdn

4 1 v oo ol v

I'w/2) 2

If we denote: z = %, the equation above can be reduced to :

Elxx’] = ppb + A~

T

= pp

= pp”

= pp’ +

1 Vo [T 22009 2
Tw2)'2 fo (577 Texp(=2); dz

REE T B
Tw/2) 5[{) z exp(—z)dz
A_11"(v/2— 1) v
w2 2
-1 1 E
v/2-12
v Al
v—2
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Where we have taken advantage of the property: I'(x +1) = xI'(x), and
since we have covlx] = E[(x—Elx])(x —E[x])7], together with E[x] = p, we

can obtain:

Problem 2.50 Solution

U a-1
=——A
cov[x] —
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The same steps in Prob.2.47 can be used here.
9 1—D/2-v/2

1+—
1%

St(xlp,A,v)

A2
x exp|(-D/2-v/2)-In(1+—)
v
D A?
o« exp|-— +v-(—+0(v_2))]
2 v
2
= exp(—?) (v —00)

Where we have used Taylor Expansion: In(l1+¢) = ¢+ 0O(¢2). And since
A? = (x— p)TA(x—Il), we see that this, up to an overall constant, is a Gaussian
distribution with mean u and precision A.

Problem 2.51 Solution

We first prove (2.177). Since we have exp(iA)-exp(—iA) = 1,and exp(iA) =
cosA +isinA. We can obtain:

(cosA +isinA)-(cosA —isinA) =1
Which gives cos?A +sin?A = 1. And then we prove (2.178) using the hint.

cos(A —B)

Rlexp(i(A - B))]
= §R[exp(iA)/exp(iB)]
cosA +isinA

cosB +1isinB
(cosA +isinA)(cosB —isinB)

(cosB +1isinB)(cosB —isinB)
= R[(cosA +isinA)(cosB —isinB)]

= cosAcosB +sinAsinB

It is quite similar for (2.183).

sin(A -B) Slexp(i(A —B))]
Sl(cosA +isinA)(cosB —isinB)]

= sinAcosB—-cosAsinB

Problem 2.52 Solution

Let’s follow the hint. We first derive an approximation for exp[mcos(6 —
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00)].

_ 2
exp {mcos(0 —0¢)} %

exp{m [1— +0((9—90)4)”

(0 - 00)?

—mo«e—emﬁ}
(0 —60)?

= exp{m—m

exp(m)-exp {—m }-exp {-mO((@ - 0p)*)}

It is same for exp(mcosH) :

92
exp{mcosf} = exp(m)-exp(—m;%exp{—m0(94)}
Now we rearrange (2.179):

1
p010p,m) = mexp{mcos(@—eo)}

1

= exp{mcos(6 —6y)}
02” exp{mcos0} do

exp(m)-exp {—m%} -exp {—mO((0 - 0p)H)}

f02” exp(m)- exp(—m%) -exp {-mO(6*)} do

1 exp{—m(e_eo)z}
[ exp(—m%)d@ 2

Where we have taken advantage of the following fact:
exp {—mO((B — 90)4)} ~ exp {—m0(64)} (when m — o0)

Therefore, it is straightforward that when m — oo, (2.179) reduces to a
Gaussian Distribution with mean 6y and precision m.

Problem 2.53 Solution
Let’s rearrange (2.182) according to (2.183).
N N
sin(6 —06p) Z (sinB,,cosly — cosO,sinby)

n=1 n=1

N N
cosBy Z sinB, — sinfBy Z cost,
n=1 n=1

Where we have used (2.183), and then together with (2.182), we can ob-
tain :

N N
cosOy Z sinf, — sinfg Z cosf, =0

n=1 n=1
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Which gives:

1 (X, sin0,
oML _ 1{ n }
0 an Y ncos0y,

Problem 2.54 Solution

We calculate the first and second derivative of (2.179) with respect to 6.

I — —1 _ / — —_
pB16g,m) = 2nIo(m)[ msin(6 —0g)] exp{mcos(@ 60)}
n_ —1 — — — 7 — 2 —_
p010g,m)’ = Slo( )[ mcos(0 —0g) + (—msin(8 —6y)) ]exp{mcos(@ 90)}

If we let p(0|09,m) equals to 0, we will obtain its root:
0=0p+kn (keZ)
When £ =0(mod2), i.e. 0 =0y (mod2n), we have:

—-mexp(m)
2nlog(m)

Therefore, when 0 = 0y, (2.179) obtains its maximum. And when & =
1(mod2),i.e. 6 =0y + n (mod2n), we have:

pB16o,m)" = <0

(-m)
0100, m)" = P 5
p(B169,m) nlo(m) >

Therefore, when 0 = 0y + n (mod2mn), (2.179) obtains its minimum.
Problem 2.55 Solution
According to (2.185), we have :

1 N
Almuyr) = = Y cos(@, —03F)
anl
By using (2.178), we can write :

Almyr) = ﬁ Z cos(0, —0)1L)

1 N
= Z (cos@ncos%w‘ + sin@nsinegﬂ‘)

1 ¥ .
cosOn cosHéWL+ NZsmHN smHgIL

Il
2|~
uMZ

n

By using (2.168), we can further derive:

A(mpyr)

1y :
cosOy 003034L+ NZstN smHéVIL

1
2|~
I iMZ

rcos0 - cos@ém‘ + 7sinb - sinHéWL
Fcos(O — 03“‘)
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And then by using (2.169) and (2.184), it is obvious that § = 6}/L, and
hence A(myyg) = 7.

Problem 2.56 Solution

Recall that the distributions belonging to the exponential family have the
form:
p(ln) = h(x) g exp(n” u(x))

And according to (2.13), the beta distribution can be written as:

I'(a+0b)

['(a)I'(b)
_ Ta+bd)
= mexp [(a—=Dinx + (b-1)In(1l-x)]

I['(a+b) explalnx + bln(1—x)]
['(a@)'(b) x(1-x)

Beta(x|a,b) %@ (1 -x)°1

Comparing it with the standard form of exponential family, we can obtain:

1 =la,b]”

u(x) = [Inx, In(1-x)1T

gm) =T(n1 +n2)/[T(nI(n2)]
h(x) = 1/(x(1-x))

Where 7171 means the first element of 7, i.e. 71 = a — 1, and 12 means the
second element of 7, i.e. ng = b—1. According to (2.146), Gamma distribution

can be written as:

1
Gam(x|a,b) = ——b%%* Lexp(—bx)
I'(a)

Comparing it with the standard form of exponential family, we can obtain:

n = la, b]¥

u(x) = [0, —x]
g = ng' / I'(n1)
h(x) = xm~1

According to (2.179), the von Mises distribution can be written as:

1
px|0p,m) = Wexp(mcos(x —-0y))

1
= ———exp[m(cosxcosly + sinxsinby)]
2nly(m)
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Comparing it with the standard form of exponential family, we can obtain:

1 = [mcosby, msinfo]T
u(x) = [cosx, sinx]

g(m) = 1/2nIo(\/n§ +1%)

h(x) =1

Note : a given distribution can be written into the exponential family in
several ways with different natural parameters.

Problem 2.57 Solution

Recall that the distributions belonging to the exponential family have the
form:

p(ln) = h(x)gm)exp(n” u(x))
And the multivariate Gaussian Distribution has the form:

1

N ) = —
@R 2) = o b 52 6P

1
{—Q(x -wiE - u)}

We expand the exponential term with respect to p.

1 1 1 Ts-1 Ts-1 -1

_ 1 1 1 ry1 Ty-1 |
= Wwexp{—éx 2 x+p X xrexp —5;12 )

Comparing it with the standard form of exponential family, we can obtain:

n=[Z"1pu, —%vec(Z’l)]T

u(x) = [x, vec(xxT)]

gm) = exp(GmiTna"Iny) + |- 212
h(x) = (21)~D"2

|1/2

Where we have used 7); to denote the first element of 77, and 7, to denote
the second element of 7. And we also take advantage of the vectorizing oper-
ator, i.e.vec(-). The vectorization of a matrix is a linear transformation which
converts the matrix into a column vector. This can be viewed in an example :

A= => vec(A) =la,c, b,d]T

b
d

a
4

Note: By introducing vectorizing operator, we actually have vec(Z71)-
vec(xxT) = xTZ 1x

Problem 2.58 Solution (Wait for updating)
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Based on (2.226), we rewrite the expression for Vg(n).
Vg(n) = —g(mElu(x)]

And then we calculate the derivative of both sides of the equation above
with respect to 7.

VVg(n) = — |VemEux)"1+ g VEux)"]
If we multiply both sides by —g(Ln), we can obtain :
~VVing(n) = Ving(mElu(x)"] + VE[u(x)"]
According to (2.225), we calculate VE[u(x)T].
VE[u(x)"] = Vg(n) f h@)exp {n" u®)} u@) du+
g f h(x)exp {nTu(x)} u(x)u(x) dx

=> VE[u(x)T] = Ving@)Eu@x)"] + Elu@)u@x)"]

Therefore, we obtain :
—VVing(n) = 2VingmEu(x)" 1+ Elu@)ux)"] = —2E[w(x)]Elux)T]+Elux)u(x)]
Problem 2.59 Solution

It is straightforward.

fp(xw)dx _ flﬂf)dx
g g
f lf(u)adu
g

ff(u)du =1

Where we have denoted u = x/0.
Problem 2.60 Solution
Firstly, we write down the log likelihood function.

N M

Inp(xy,) = Z n;ln(h;)
n=1 i=1

Some details should be explained here. If x, falls into region A;, then
p(xy,) will equal to &;, and since we have already been given that among
all the N observations, there are n; samples fall into region A;, we can easily
write down the likelihood function just as the equation above, and note we use
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M to denote the number of different regions. Therefore, an implicit equation
should hold:

M
Zni =N
i=1

We now need to take account of the constraint that p(x) must integrate
to unity, which can be written as Zjﬁ’i 1hjA; = 1. We introduce a Lagrange
multiplier to the expression, and then we need to minimize:

M M
Z niln(h;) + A(Zthj -1)
i=1 7

We calculate its derivative with respect to #; and let it equal to O.
n;

+AA; =0
hi '

Multiplying both sides by A;, performing summation over i and then us-
ing the constraint, we can obtain:

N+A1=0

In other words, A = —N. Then we substitute the result into the likelihood
function, which gives:

Problem 2.61 Solution

It is straightforward. In K nearest neighbours (KNN), when we want to
estimate probability density at a point x;, we will consider a small sphere
centered on x; and then allow the radius to grow until it contains K data
points, and then p(x;) will equal to K/(INV;), where N is total observations
and V; is the volume of the sphere centered on x;. We can assume that V; is
small enough that p(x;) is roughly constant in it. In this way, We can write
down the integral:

N N K
fp(x)dx =) plx)Vi=) — - Vi=K#1
i=1 ANV
We also see that if we use "INN" (K = 1), the probability density will be
well normalized. Note that if and only if the volume of all the spheres are
small enough and N is large enough, the equation above will hold. Fortu-
nately, these two conditions can be satisfied in KNN.
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0.3 Probability Distribution

Problem 3.1 Solution

Based on (3.6), we can write :

20(2a)—1 = 2 _ 1-exp(-2a) _ exp(a)-exp(-a)

1+exp(—2a) T 1+exp(—2a) exp(a)+exp(—a)

Which is exactly tanh(a). Then we will find the relation between y;, w;
in (3.101) and (3.102). Let’s start from (3.101).

M
wo + Y w,o(
=1
M tanh(SE)+1
wo+ Y wi——=——
j=1 2
1M M ow,; x — fj
+ = i+ ) —tanh(——
wo + 5 2 wjt ) 5 tanh(— )

J=1 J=1

X — W

y(x,w) )

Hence the relation is given by :

1M w;
,uo:w0+§ij and Bi=
j=1
Note: there is a typo in (3.102), the denominator should be 2s instead of
s, or alternatively you can view it as a new s’, which equals to 2s.

Problem 3.2 Solution

We first need to show that (®7®)~! is invertible. Suppose, for the sake of
contradiction, ¢ is a nonzero vector in the kernel(Null space) of ®7T®. Then
®T®c equals to 0 and so we have:

0=cl®"d®c = (®c) dc = ||De|)?

The equation above shows that ®¢ = 0. However, ®c = c1¢p; + capy +
o + Py and {Pq, Pg, ,..., Py} is a basis for @, there is no linear relation
between the ¢; and therefore we cannot have c1¢p; + capy + ... + cpyrpy, = 0.
This is the contradiction. Hence ®7 ® is invertible. Then let’s first prove two
specific cases.

Case 1: wi is in ®@. In this case, we have ®¢ = w; for some ¢. So we
have:

(@7 0) 07w, = ®(@T D) 10T ®e = de = w;

Case 2:ws is in @1, where ® is used to denote the orthogonal comple-
ment of ® and then we have ®Twy = 0, which leads to:

@ o) o w, =0
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Recall that any vector x € RM can be divided into the summation of two
vectors wi and ws, were w1 € ® and wy € @+ separately. And so we have:

(@7 D) 107w = d(@T®) 1O (w; + wo) = wy
Which is exactly what orthogonal projection is supposed to do.
Problem 3.3 Solution

Let’s calculate the derivative of (3.104) with respect to w.

N
VEp@) = Y. ra{tn - 0" ®(xn)| @an)"
n=1

We set the derivative equal to 0.
N N
0=Y rat, @)’ - wT( rncD(xn)cD(xn)T)
n=1 n=1
If we denote /7, ¢p(xp) = ¢'(x,) and /7 ¢, = t}, we can obtain:
N N
0= th®x.)" - wT( cb’(xn)cb’(xn)T)

n=1 n=1

Taking advantage of (3.11) — (3.17), we can derive a similar result, i.e.
wyr = (@T®) 1®T¢. But here, we define # as:

t = [Vrity, Viste, ..,vINtN]"
We also define @ as a N x M matrix, with element ®(i, j) = \/7; ¢;(x;).
Problem 3.4 Solution
Firstly, we rearrange E p(w).

N D 2
{[wo +) wilx; +€;)] - tn}

1 =1

Il
DN | =

S
Il

Ep(w)

Il
DN | =
M=

D D 2
{(wo+Zwixi)—tn+Zwiei}
j i=1

n=1 i=1
1N D 2
= _Z y(xn,w)_tn+zwi€i
2,5 i=1
1N , D ) D
= QZ{(y(xn,w)_tn) +() wie;) +2(Zwi€i)(y(xn,w)—tn)}
n=1 i=1 i=1

Where we have used y(x,,w) to denote the output of the linear model
when input variable is x,, without noise added. For the second term in the
equation above, we can obtain :

D D D D D D D
El() wie)®1=ElY. Y wiwjeiel =Y. Y wiw;Eeleie;]1 =02 Y. Y wiw;d;;
i=1

i=1j=1 i=1j=1 i=1j=1
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Which gives
D D
El(Y wie)?1 = 0% ) w?
i=1 i=1

For the third term, we can obtain:

b D
Eel2( Y. wiei) (Y0, w) = ta)] = 2(yCin,10)= ) ELLY wie]
i=1 i=1

D
i=1
= 0

Therefore, if we calculate the expectation of Ep(w) with respect to €, we

can obtain:
N 2 D

1
E[Epw)] = 3 > (y(xn,w)_tn)z + = > wtz
n=1 i=1

Problem 3.5 Solution
We can firstly rewrite the constraint (3.30) as :
1(M

Where we deliberately introduce scaling factor 1/2 for convenience.Then
it is straightforward to obtain the Lagrange function.

1 N 9 A M
Lw,A) ==Y {tn —wT(P(xn)} + = (Z lw ;| —T))
2n:1 2 j:1

It is obvious that L(w, 1) and (3.29) has the same dependence on w. Mean-
while, if we denote the optimal w that can minimize L(w, A1) as w* (1), we can
see that

M
n=) lwil
j=1
Problem 3.6 Solution
Firstly, we write down the log likelihood function.
N 1 N T Ts-1 T
lnp(T|X,W,ﬁ) = _Eln|zl - 5 Z [tn -W ‘p(xn)] ) [tn -W ‘p(xn)]
n=1

Where we have already omitted the constant term. We set the derivative
of the equation above with respect to W equals to zero.

N
0=—3 Z 'ty —W pxn)|pxn)"

n=1
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Therefore, we can obtain similar result for W as (3.15). For X, comparing
with (2.118) — (2.124), we can easily write down a similar result :

1 N
2 == [tn — W]ZC/[L(p(xn)] [tn - W;Il;L(p(xn)]T
N n=1
We can see that the solutions for W and X are also decoupled.

Problem 3.7 Solution

Let’s begin by writing down the prior distribution p(w) and likelihood
function p(¢|1 X,w, B).

N
pw) = N (wimo,So) , ptX,w,p) =[] A talw” plxn), )
n=1

Since the posterior PDF equals to the product of the prior PDF and likeli-
hood function, up to a normalized constant. We mainly focus on the exponen-
tial term of the product.

D= N N

M=

2 1
exponential term {tn - chp(xn)} - Q(w ~mo)'Sy (w—myg)

S
I
—

M=

{t,% —2t,w” P(xp) +wT¢(xn)¢(xn)Tw} ~ %(w—moﬂsal(w—mo)

S
]
[y

~

(S

N
;ﬁ¢<xn)¢<xn)T +8p 1] w

1

w

N
-2mlS; - Y 2Bt,d(an)T
n=1

[\)

+ const

Hence, by comparing the quadratic term with standard Gaussian Distri-
bution, we can obtain: Sz_vl =S, Ly ﬁ(DT(I). And then comparing the linear
term, we can obtain :

N
—2myTSN! = —2mIS 1 - Y 2Bt p(xn)T
n=1

If we multiply —0.5 on both sides, and then transpose both sides, we can
easily see that my = SN(So Tmo+ ﬁ(DTt)
Problem 3.8 Solution

Firstly, we write down the prior :

p(w) = N(my,SN)
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Where my,Sy are given by (3.50) and (3.51). And if now we observe
another sample (Xn,1,tn+1), We can write down the likelihood function :

PUNs1lEN 1, W) = N (Ens1ly(xnst,w), 1)

Since the posterior equals to the production of likelihood function and the
prior, up to a constant, we focus on the exponential term.

exponential term = (w-— mN)TSZ_Vl(w -mpy)+ BN+ — wT([)(xNJrl))2
= w'[Sn!+ Bpan1) Plan)” Jw
—2w” St my + BP(xn1) N1 ]
+const

Therefore, after observing (Xn1,tn8+1), we have p(w) = A/ (mpy.1,SN+1),
where we have defined:

SJ_VI+1 = SJ_VI + ﬁ¢(xN+1)¢(xN+1)T

And
myi1 = Sni1(SN MmN + BIEN 1) EN+1)

Problem 3.9 Solution

We know that the prior p(w) can be written as:
pw) = N(my,SN)
And the likelihood function p(¢y+1|%¥n+1,Ww) can be written as:
PN 1lEN 1, w) = N (En1ly@nag,w), )

According to the fact that y(xn.1,w) = wT¢(xN+1) = ¢(xN+1)Tw, the
likelihood can be further written as:

pPAN+1lxN1, W) = JV(tN+1|(¢(xN+1)Tw,[3_1)

Then we take advantage of (2.113), (2.114) and (2.116), which gives:
plxni1,tN+1) = N (E{Ppxni1)Btn+1+ SN my},Z)

Where 2 = (Sy ' +¢(xn+1)fp(xn.1)T) 1, and we can see that the result
is exactly the same as the one we obtained in the previous problem.

Problem 3.10 Solution

We have already known:

pltlw, B) = N (tly(x,w), 1)



77
And
pwlt,a,p) = ¥ (wlmy,SN)

Where mpr, Sy are given by (3.53) and (3.54). As what we do in previous
problem, we can rewrite p(t|lw, ) as:

p(tiw,B) = N (tlp) w, )
And then we take advantage of (2.113), (2.114) and (2.115), we can obtain:
p(tlt,a,p) = N (@) ' my, " +p@) Syp))
Which is exactly the same as (3.58), if we notice that
</>(x)TmN = mNT(p(x)
Problem 3.11 Solution

We need to use the result obtained in Prob.3.8. In Prob.3.8, we have de-

. -1 .
rived a formula for S N1 -

SJ_VI+1 = SJ_VI + ﬁ¢(xN+1)¢(xN+1)T

And then using (3.110), we can obtain :

Sne1 = [SnH+Bdlani) planin)]
[SN—1 + \/B¢(xN+l) \/B<P(xN+1)T]_1
B SN(/Bodxn 1))/ Bpani1) SN
1+ (/BN DTSN/ Bh(xn 1)
_ BSNo(xN 1PN 1) SN
1+ fpxn+1)T SNP(xn 1)

Now we calculate Uzzv(x) - 0]2\, +1(®) according to (3.59).

o%(®) — 0%, (@) = ¢@T(SN-Sni1)P)
)T BSNPxN+1)PxN+1) SN b(x)
1+ Bpxn+1)T SNP(xn 1)
)" SnPpxn 1PN 1) Snp(x)
1/p+ ¢(xN+1)TSN¢(xN+1)
(@) SnPan:1)]?
1/p+ ¢(xN+1)TSN¢(xN+1)

And since Sy is positive definite, (x) is larger than 0. Therefore, we have
proved that Uzzv(x) - 0]2\, +1®=0

(%)

Problem 3.12 Solution
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Let’s begin by writing down the prior PDF p(w, §):

pw,p) = N(wlmg,p 18¢) Gam(Blag,bo) (*)
1
(ls_ﬁo|)2exp(_§(w - mo)Tﬁsal(w _ mo)) bgoﬁao_lexp(—boﬁ)

And then we write down the likelihood function p(t|1X,w, f) :
N T
ptXw,p) = [[ A nlw” dpxn), )
=1

N
o 1'[ﬁ”zexp[—gun—w%(xn))z] (%%)
n=1

According to Bayesian Inference, we have p(w, BIt) x p(t|X,w, f)xpw, B).
We first focus on the quadratic term with regard to w in the exponent.

N
quadratic term —EwTSO_lw + Z —ng(p(xn)(p(xn)Tw

2

n=1

= —EwT[S -1+§ (xn)Pp(x,)T
= B 0 n:1¢xn¢xn ]w

Where the first term is generated by (x), and the second by (). By now,
we know that:

N
SN =801+ Y pxn)p(xa)”
n=1

We then focus on the linear term with regard to w in the exponent.

N
linear term = ﬁmoTSO_1w+ Z ﬁtn(p(xn)Tw
n=1

N
ﬁ[mOTSO_l + Z tn(p(xn)T]w
n=1

Again, the first term is generated by (), and the second by (). We can
also obtain: N
mNTSN_l = mOTS()_l + Z tn([)(xn)T
n=1

Which gives:

N
my = Sy[So tmo+ Y tadp(xy)]

n=1
Then we focus on the constant term with regard to w in the exponent.
N

constant term = (—EmoTS(flmo —bof) - B £2
2 2 n=1

1 T -1 1 al 2
—ﬁ[§m0 So m0+b0+§ Z tn]
n=1
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Therefore, we can obtain:

1 1 1y
—mNTSN_lmN + bN = —moTS()_lmo + b() + = Z t%
2 2 2,7
Which gives :
1o 1Y 5 1 ro 1
by = =mo S mgo+by+ t, my SN mpy
2 2. 2

Finally, we focus on the exponential term whose base is .

N
exponent term = (2+ag—1)+ 5
Which gives:
N
2+ay-—-1= (2+a0—1)+§
Hence,

+
anN =ao+—
N=aoty

Problem 3.13 Solution(Waiting for update)

Similar to (3.57), we write down the expression of the predictive distribu-
tion p(¢X,t):

X, t) = f f p(thw, p) paw, BIX,t) dw d (+)
We know that:
p(tlw, p) = N (tyx,w), ) = A (tlpx) w, )
And that:
pw, X, t) = N wlmy,p ' Sn) Gam(Play,bn)

We go back to (*), and we first deal with the integral with regard to w:

p(EIX, t) [[[JV(tI(P(x)Tw,ﬁ_l)JV(wImN,ﬁ_lsN)dw]Gam(ﬁIaN,bN)dﬁ

f N (@) ' my, 71+ px)T 1SN P(x)) Gam(Blan,by) df
- f N [t1p@) T my, 11+ ¢ Sy ()] Gam(Blaw, by) dp

Where we have used (2.113), (2.114) and (2.115). Then, we compare the
expression above with (2.160), we can see that p(¢|X,t) = St(¢|u, A,v), where
we have defined:

p=¢@) 'my, A=[1+¢@TSy¢@)] ", v=2an
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Problem 3.14 Solution(Wait for updating)

Firstly, according to (3.16), if we use the new orthonormal basis set spec-
ified in the problem to construct ®, we can obtain an important property:
®T® = I. Hence, if @ = 0, together with (3.54), we know that Sy = 1/B.
Finally, according to (3.62), we can obtain:

k(x,x') = py(x) Sy () = wx) p(a')

Problem 3.15 Solution

It is quite obvious if we substitute (3.92) and (3.95) into (3.82), which

gives,
B 2, @ T N-y y N
E :—t_ + — = —t— = —
(mp) 2|| Omy|| g MN MmN 2 9~

Problem 3.16 Solution(Waiting for update)

We know that
N
ptlw,B) = ] A (pan) w, fHx N (@w,pT)
n=1
And

pwla) = A (0,a”'D
Comparing them with (2.113), (2.114) and (2.115), we can obtain:

p(tla, B) = A0, 1+a 00T
Problem 3.17 Solution

We know that:

N (Pplxn) T w, 1)

I
—=

p(tlw, p)
1

n

1
i (271,6_1)1/2

N UNY S B, T 2
= (—)"?exp{)_ 5 (tn = P(@n) w)”}

2n |
p
2

exp{- (tn — Plan) w)?}

|
—1=

1
2671

S

= (P

t— dw||?
. Il wl|*}

exp{-

And that:

N(0,a7 1)
aM/2

(2n)M/2

pwla)

a
exp{—§||w||2}
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If we substitute the expressions above into (3.77), we can obtain (3.78)
just as required.

Problem 3.18 Solution
We expand (3.79) as follows:

P
2
B

a
= E(tTt —otTow + wTCI)T(I)w) + EwTw

Ew)

[04
||t—c1>w||2+§wTw

= % [ (B®T ® + aDw - 26t" dw + ptT't]

Observing the equation above, we see that E(w) contains the following
term :

%(w -my) Aw-my) (x)
Now, we need to solve A and mp;. We expand (x) and obtain:
(%) = %(wTAw —2mnTAw + myTAmy)
We firstly compare the quadratic term, which gives:
A=p0T®+al
And then we compare the linear term, which gives:
myTA = pt7 @

Noticing that A = AT, which implies A™! is also symmetric, we first trans-
pose and then multiply A1 on both sides, which gives:

my = ﬁA_lq)Tt
Now we rewrite E(w):

E(w)

% [w” (BT ® + aDw - 2pt" Ow + ft” t]

B %[(w ~my) AW —my) + pt’ t—my" Amy]

= %(w —mn) A -mpy) + %(,BtTt -myTAmy)

= %(w —mn)TAw-mpy)+ %(,BtTt— omyTAmy + myTAmy)

1 1
= J- my) Aw - my)+ 5(/3tTt —2mnTAmy +myT(BOT® + aD)my)

1 1
= S@-my)A@w-my)+ S [pt t-2pt" Omy + myT (FOT Omy] + %mNTmN

1
= E(w —-mn)TAw-my) + gllt ~®myl|®+ gmNTmN
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Just as required.
Problem 3.19 Solution

Based on the standard form of a multivariate normal distribution, we
know that

1 1 1 r
f WW@&CP{ - E(w - mN) A(w - mN)} dw=1
Hence,
1
fexp{ - E(w —mnTAw - mpy)} dw = 2m)M?|A1V2

And since E(mj) doesn’t depend on w, (3.85) is quite obvious. Then we

substitute (3.85) into (3.78), which will immediately gives (3.86).

Problem 3.20 Solution

You can just follow the steps from (3.87) to (3.92), which is already very
clear.
Problem 3.21 Solution

Let’s first prove (3.117). According to (C.47) and (C.48), we know that if A
is a M x M real symmetric matrix, with eigenvalues 1;,i=1,2,...,.M, |A| and
Tr(A) can be written as:

M M
Al=[]A:, TrA)=) A
i=1 i=1

Back to this problem, according to section 3.5.2, we know that A has
eigenvalues a+1;,1=1,2,...,M. Hence the left side of (3.117) equals to:

eft side = Za n[iznl(a+/1i)] —i;% n(a+/1i)—izzia+/1i

And according to (3.81), we can obtain:

4

A=A1l1=A"1
da

A*l

For the symmetric matrix A, its inverse A1 has eigenvalues 1/(a+1;), i =
1,2,...,M. Therefore,

d M 1
Tr(A™1—A) =
A da ) i:ZiOH‘/li

Hence there are the same, and (3.92) is quite obvious.

Problem 3.22 Solution
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Let’s derive (3.86) with regard to . The first term dependent on § in
(3.86) is :

d N N
—(=Inp) = —
dg 2 2
The second term is :
d 1 B d d a
—E = Z|llt—-® 2, P % ) 2, > = T
ap (mp) 2IIt my|| +2dﬁ”t myl| +dﬁ2mN my
The last two terms in the equation above can be further written as:
pd » da p_d o d a g dmy
——|t-® —_—— = {= t-@ - —_—
2d,6” myl| tapamy MmN {deNII myl| t Imn 2™ my} T
B T o dmy
= {=[-20°(t-D —2 —
{2[ (t—@mpy)l+ o my} a5
= {—IB(DT(t—(DmN)+amN}~d'n—N
ap
d
- {—/3®Tt+(al+,6(DT€I))mN}-dLﬁN
dmpy
= {-poTt+A —_—
{-po t+Amny} p

=0
Where we have taken advantage of (3.83) and (3.84). Hence
d 1 1Y
ZpEmw) = 5lit- dmyl® = Engl(tn —my" plaxn))

The last term dependent on S in (3.86) is:

d 1 _r
d—ﬁ(élnlAl) = 2ﬁ

Therefore, if we combine all those expressions together, we will obtain
(3.94). And then if we rearrange it, we will obtain (3.95).

Problem 3.23 Solution

First, according to (3.10), we know that p(t|X,w, B) can be further written
as p(tX,w, B) = N (t|®w, 1), and given that p(w|B) = A (mg, f~'Sp) and
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p(B) = Gam(Blag, bg). Therefore, we just follow the hint in the problem.

p© = [ [ptXw,p paip)dw pip)dp
= ff(%)]wzexp{ - g(t— dw)” (t - Dw)} -
(%)M/%sor”zexp{ - g(w —mg)"So~ w —myg)} dw
T(ao) b5 67 exp(=bo ) dp
_ by’ p T
T @) MRS, 12 ffexp{ -5 t-Pw) (t- Dw)}
exp{— g(w —mg) 'So Hw - mo)} dw
paoLENIZM2 0 (b 8Y d B
- by [ [ expt-Eao-mm"sn e - ma)t duo
(27T)(M+N)/2|So|1/2 2
exp{- g(tTt +mo’ Sy tmg —myTSN I mn)}
,B“N_“M/zexp(—boﬁ) dﬂ
Where we have defined

mpy = SN (So_lm0+(DTt)
SN_l = So_l +q)T(D

anNy =ag+—
2

1 N
by =bo+ E(mOTSO_lmO - mNTSN_lmN + Z t%)
n=1
Which are exactly the same as those in Prob.3.12, and then we evaluate
the integral, taking advantage of the normalized property of multivariate
Gaussian Distribution and Gamma Distribution.

b‘é" (271
(27.[)(M+N)/2 |S0|1/2 F

ao

) (27r)(M”\(7))/2|So|1/2(ZH)MQ'SNH/Z f B lexp(-byp)dp

p(t)

)M/2|SN|1/2fﬂaN—HM/Qexp(—bNﬁ)dﬁ

1 ISNIV2 bg° T(an)
@m)N'2 [Sp|V2 3N T(by)

Just as required.

Problem 3.24 Solution
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Let’s just follow the hint and we begin by writing down expression for the
likelihood, prior and posterior PDF. We know that p(tlw, ) = A (t|®w, ,6_11).
What’s more, the form of the prior and posterior are quite similar:

pw,B) = N (wlmy, f71S¢) Gam(Blag,bo)

And
pw, BIt) = N (wmy, f1SN) Gam(Blay,by)

Where the relationships among those parameters are shown in Prob.3.12,
Prob.3.23. Now according to (3.119), we can write:

N (wlmg, B~1Sg) Gam(Bla, bo)

N (w|my, f~1SN) Gam(Blan,bn)

N (wlmg, f71S) by % rexp(~bop)/T(ao)
N (wimy, 718N) bYY v ~lexp(—bn )/ T(an)
N (wlmy, B18) b’ Tay)
N (w|my, f71SN) b?\}v I'(ag)
A (wlmy, B71Sp)
N (w|my, f71SN)

p(t) N (t|®w, f711)

N (t|®w, 1)

N (t|®w, 71T BN exp{—(bo—bn)B}

by’ T(an) g2
by T(ao)

N (t|®w, 711)

exp{—(bo—bn)B}

Where we have used ay = ag + %] Now we deal with the terms expressed
in the form of Gaussian Distribution:
N (wlmy, B71Sp)
A (wmy, ~1SN)

N (t|Dw, 7T

_ (Bwe, o B o T -
= (2n) expi 2(t Qw)” (t- dw)}

|B~1SNIV2 expi{- g(w —-mg)’'So ! (w —my)}
167801 exp{ - L (w - mn)TSN " (w - mn)}
ﬁ N/2|SN|1/2
2n [So V2

exp{- g(w -mg)'Sp ! (w-my)}

Gaussian terms

= (

exp{- g(t - ®w)’(t - dw)} -

exp{ - g(w -mn)TSy H(w - mn)}

We look back to the previous problem and we notice that at the last step
in the deduction of p(t), we complete the square according to w. And if we
carefully compare the left and right side at the last step, we can obtain :

exp{- g(t - ow)T(t - dw)lexp{ - g(w ~mg)'So L w —mg)}

= exp{- g(w —mpN)TSN Hw - mp)}exp{—(by —bo)B}
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Hence, we go back to deal with the Gaussian terms:

ﬁ N/ |SN|1/2
2T |S0|1/2

Gaussian terms = ( exp{—(bn —bo)B}
If we substitute the expressions above into p(t), we will obtain (3.118)
immediately.

0.4 Linear Models Classification

Problem 4.1 Solution

If the convex hull of {x,} and {yy} intersects, we know that there will be a
point z which can be written as z = ) ,, @, X, and also z = Y, ,yn. Hence we
can obtain:

wlz+wy = W' anxn) +wo
n

= (Z anﬁ'TXn) + (Z an)wo

= Y ap(®xn +wp) (%)

Where we have used Y ,, a, = 1. And if {x,} and {yn} are linearly separa-
ble, we have Wl xp +wo > 0 and WTyn +wqo <0, for Vxy, yn. Together with
a, = 0 and (%), we know that Wz +wg > 0. And if we calculate Wl z+ wy
from the perspective of {y,} following the same procedure, we can obtain
wlz+wy < 0. Hence contradictory occurs. In other words, they are not lin-
early separable if their convex hulls intersect.

Now let’s assume they are linearly separable and try to prove their convex
hulls don’t intersect. This is obvious. We can obtain Wl x, +wo > 0 and
vAvan+w0 <0, for Vxy, yn, if the two sets are linearly separable. And if there
is a point z, which belongs to both convex hulls of {x,} and {yy}, following the
same procedure as above, we can see that W’ z+wq > 0 from the perspective
of {xn} and W'z +wq < 0 from the perspective of {yn}, which directly leads to
a contradictory. Therefore, the convex hulls don’t intersect.

Problem 4.2 Solution

Let’s make the dependency of E D(W) on wy explicitly:
— 1
Ep(W) = 5Tr{(xw +1wp” — T XW + 1wy’ -T)}

Then we calculate the derivative of E D(V~V) with respect to wy:

0Ep(W)

= 2Nwp+2XW-T)T1
6W0
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Where we have used the property:

0

X 1" [(AXB + C)(AXB + O)7] = 2AT(AXB + C)B”

We set the derivative equals to 0, which gives:
wo = —]iV(XW—T)Tl =t-Wr's

Where we have denoted:

t= %TTI, and %= %xﬁ
If we substitute the equations above into Ep(W), we can obtain:

Ep(W) = %Tr{(XW+T—XW—T)T(XW+T—XW—T)}
Where we further denote
T=1t', and X=1x"
Then we set the derivative of Ep (W) with regard to W to 0, which gives:
W =X'T
Where we have defined:
X=X-X, and T=T-T

Now consider the prediction for a new given x, we have:

WTX +WwWo
wix+t-Wix
t+Wix-%)

y(x)

If we know that a’t, + b = 0 holds for some a and b, we can obtain:

rp= Larpri o LS ame, -
at=—a = — a = -
N anl "

Therefore,
alyx) = al[t+ W/ (x-%)
= alt+a"wWlix-x%
= -b+alTTXN ' (x-%)
= -b
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Where we have used:
. _ 1
alTl = al(r-1f =a’(T- NIITT)T

1
= alTT - NaTTTllT =-p1T +p17

= of
Problem 4.3 Solution

Suppose there are @ constraints in total. We can write athner ¢=0,q=
1,2,...,Q for all the target vector t, , n = 1,2...,N. Or alternatively, we can
group them together:

ATt,+b =0

Where A is a @ x @ matrix, and the gth column of A is aq, and mean-
while b is a @ x 1 column vector, and the gth element is bg. for every pair
of {aq, b4} we can follow the same procedure in the previous problem to show
that aqy(x) + b, = 0. In other words, the proofs will not affect each other.
Therefore, it is obvious :

AlTyx)+b=0

Problem 4.4 Solution

We use Lagrange multiplier to enforce the constraint w/w = 1. We now
need to maximize :

LA, w) =wl(mg—my) + Awlw-1)

We calculate the derivatives:

oL(A

And
OL(A,w)

=mg—mj + 2Aw
ow

We set the derivatives above equals to 0, which gives:

W = —ﬁ(mz—ml)u (m2—m1)

Problem 4.5 Solution

We expand (4.25) using (4.22), (4.23) and (4.24).

(mg—m1)?
P
81+S2

llw? (mg —my)|?
ZneCl(wan -m1)?+ Zn602 (WTXn —-mg)?
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The numerator can be further written as:
numerator = [w’ (mg —my)][w’ (mg - ml)]T = w!Sgw
Where we have defined:
Sp = (mz —m;)(mg —my)”

And ti is the same for the denominator:

denominator = Y [wl(xn-mpP®+ Y [w!(xy—mg)]?
neCy neCq
= wTSWIW + WTSW2W
= WTSWW
Where we have defined:
Sw= Y (xXn-mp)xn-mp)’ + Y (Xy-mp)(xy—mp)"
neCy neCs

Just as required.
Problem 4.6 Solution

Let’s follow the hint, beginning by expanding (4.33).

N N N
4.33) = Z WTXan +wo Z Xpn — Z tnXn
n=1 n=1
= anxn W-—W man—( Z tpXn + Z tnXn)
n=1 n=1 I‘LECl nEC2

= anxn wow'm- V(Y Vxat ¥ M)

n=1 n601 Nl n€02 N2
1
= Zxx w—Nw! mm — N(Z n—Z—xn)
e nECllvl nECZIVQ

T

= Z xnanW—Nmm w—N(mj; —mg)

n=1
N
= [Y %nXn?) - Nmm”lw - N(m; —mp)
n=1
If we let the derivative equal to 0, we will see that:
N
[Y XnXn?) - Nmm”lw = N(m; - my)
n=1

Therefore, now we need to prove:

N NN
Y (Xnxn?)-Nmm” = S, + ;v 2
n=1

Sp
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Let’s expand the left side of the equation above:

N N
left = Y XpXn! - N(==mj + ~—=my)
n=1 N
% T N(N%n 12 3” 2 4 o V1V Ty
= XnXn — —|my||"+ —|mg||” + mipmy
= N2 N2 N2
T 1 2 2 2 14V2 T
= - —|my||* - == |mg|[* -2 mpm
n;xnxn ol = <l N mims
N NN NN NN
= Y Xaxn! + (N + ——2 —2Ny)|imy || + (Ng + ——2 — 2Np)|Img|[> - 22 m;m,
n=1 N
N NN
= Y Xnxn? + (V1 - 2N)|my [ + (N2 - 2Np)|mg|l? + ——2|jm; — mg||?
n=1
N NNy
= Y XnXn! +Nillmy||? - 2m; - (Nym;7) + No|img|® - 2ms - (Nomp”) + S
n=1
N N1Ny
= Y XnXn! +Nillmy|*-2m; Y xl +Nallmg|*-2my Y xf + ——-Sp
n=1 neC, neCs,
= Y XpXn +Nilmy|®*-2my ) x7
neCy neCy
N1Ny
+ Y XnXn® +Nollmg|®>-2mp Y 27 + S
neCs neCy N
NN
= Y GnXa! +Iml2-2m1xD)+ Y axn” +1imgl% - 2max,’) + ——2Sp
neCq neCy
N1Ny
= Y lxn-myl®+ Y lIxn—mg|l*+ S

n€C1
NN
Sw+ ;V 2

Just as required.
Problem 4.7 Solution

Sp

nECz

N

This problem is quite simple. We can solve it by definition. We know that

logistic sigmoid function has

Therefore, we can obtain:

o(a)+o(—a)

the form:
1

ola) = 1+exp(—a)

1 N 1
l+exp(—a) 1+exp(a)
2+exp(a)+exp(—a)
[1+exp(—a)lll+exp(a)l
2+exp(a)+exp(-a)

=1
2+exp(a)+exp(—a)
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Next we exchange the dependent and independent variables to obtain its

inverse. 1

a=————
1+exp(—y)
We first rearrange the equation above, which gives:

l1-a

exp(—y) =
Then we calculate the logarithm for both sides, which gives:
a
= In(——
y =In(3—)

Just as required.
Problem 4.8 Solution
According to (4.58) and (4.64), we can write:

nP(chl)p(Cl)
p(x|C2)p(Cs)
p(C1)
= Inpx|C1)-Inpx|C2)+In
p(C2)
1 T -1 1 T-1 p(C1)
= ——x-p)'E2(x- “(x—pg) = M x - 1
2(x £1) (x u1)+2(x H2) (x—p2) + np(Cz)
_ 1 _ 1 _ p(Cy)
= > Ly, — _ 2y Iyl Zp, Tt In 2
(p1— p2)x ! H1+ 5 He H2 + o Cy
= vaX4-um

Where in the last second step, we rearrange the term according to x, i.e.,
its quadratic, linear, constant term. We have also defined :

w =2y - p2)

And 1 1
wo = _Eﬂsz_lﬂl + Eﬂsz_lﬂz +In

p(Cy)
p(Co)

Finally, since p(C1|x) = o(a) as stated in (4.57), we have p(C1|x) = o(wlx+
wy) just as required.

Problem 4.9 Solution
We begin by writing down the likelihood function.

N K

pUn, tn}lm1, mo, .uig) = [p(pr|Cr) p(Cp)I'*
n=1k=1

N K
T1 T1t7: p(@nlCiIT

n=1k=1
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Hence we can obtain the expression for the logarithm likelihood:

N K N K
Inp =73 3 tn [Inmg + Inp(pnlCr) ox Y Y tar Inmy
n=lk=1 n=1k=1

Since there is a constraint on 73, so we need to add a Lagrange Multiplier
to the expression, which becomes:

N K K
L=) Y tulnm+AM) a,-1)
n=1k=1 k=1

We calculate the derivative of the expression above with regard to 7:
oL X ¢,

= —+A1
aﬂk ,;1 9’

And if we set the derivative equal to 0, we can obtain:

N N,
mp = —(Y tap)/ A= —=E (%)

n=1 A
And if we preform summation on both sides with regard to &, we can see

that:

K

N
1=~} Np)/A=-—
k=1 A

Which gives A = —N, and substitute it into (*), we can obtain n, = N3 /N.

Problem 4.10 Solution

This time, we focus on the term which dependent on gz and X in the
logarithm likelihood.

N K N K
Inp = Z Z Ink [lnﬂk + 1np(¢n|Ck)] X Z Z tnr Inp(Ppn|Cr)
n=1k=1 n=1k=1

Provided p(¢|Cp) = N (d|ug,X), we can further derive:

N K 1 1 = T
Inpoc 3 Y tor [~ sIn|Zl = =(Pn— pr)Z " (P — pz)" |
n=1k=1 2 2
We first calculate the derivative of the expression above with regard to

He:
Olnp

N
=Yt Z Hpn— )
o n; kX (Pn—p

We set the derivative equals to 0, which gives:

N N
Y takZ b = Y tarn T tpr = NpZ g
n=1 n=1
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Therefore, if we multiply both sides by /N, we will obtain (4.161). Now
let’s calculate the derivative of In p with regard to X, which gives:

dlnp N K L 14
= t _Z> L0 5
33 n:lk; wk (~5Z -2 Z;g ton( D — R)Z " (P — i)
N K N
Ink «-1 10 o r
= LY 5T 5o 2 2 taPa—BZT (0 — )
n=1k=1 2 202k:1n: n n n
N1 10 K
- =X - — Y N Tr(E 'Sk
;;1 2 ZOZ};
N_; 1 K ) )
= —EZ_ +§ ZNkZ_ Skz_

Where we have denoted

N
— Y tur(dn — pa)bn — )"

Now we set the derivative equals to 0, and rearrange the equation, which
gives:

- Z—sk

Problem 4.11 Solution

Based on definition, we can write down

M L
p@IC) = TT T g

m=1]=1
Note that here only one of the value among ¢,,1, 2, ... oL is 1, and the
others are all 0 because we have used a 1 —of — L binary coding scheme, and
also we have taken advantage of the assumption that the M components of
¢ are independent conditioned on the class C;. We substitute the expression

above into (4.63), which gives:

L
Z Gmibkmi +1np(Cp)

||M§

Hence it is obvious that ay, is a linear function of the components of ¢.
Problem 4.12 Solution

Based on definition, i.e., (4.59), we know that logistic sigmoid has the

form:
1

ala) = 1+exp(—a)
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Now, we calculate its derivative with regard to a.

do(a) B exp(a) B exp(a) . 1
da [l+exp(-a)12 1l+exp(-a) 1+exp(-a)

=[1-0(a)]- a(a)

Just as required.

Problem 4.13 Solution

Let’s follow the hint.
N
VEw) = -V ) {tyIny,+(1—t,)In(1-y,)}
n=1
N
= - ) Vitylny,+(1-t,)In(1-y,)}
n=1
N d{t,Iny, +(1—t,)In(1-y,)} dy, dan

. dyn da, dw
L %(t_n_ 1-t,
n=1 Yn 1-y,
In—Yn
Yn(L=yn)

I
—

) ¥yn (1=yn) - pp

*Yn (1_yn)'¢n

M= 1=

(tn = Yn)Pn

Il
—

Yn—tn)Pn

=
Il

I
M=

Where we have used y, = o(a,), a, = wT¢n, the chain rules and (4.88).
Problem 4.14 Solution

According to definition, we know that if a dataset is linearly separable,
we can find w, for some points x,, we have wT<p(xn) > 0, and the others
w! p(xm) < 0. Then the boundary is given by w ¢p(x) = 0. Note that for any
point xg in the dataset, the value of wl¢(xg) should either be positive or
negative, but it can not equal to 0.

Therefore, the maximum likelihood solution for logistic regression is triv-
ial. We suppose for those points x, belonging to class C1, we have w’ ¢p(x,) >
0 and w” ¢p(xg) < 0 for those belonging to class Cy. According to (4.87), if
|w| — oo, we have

p(C1lp(xp)) = o(wl Pp(xp)) — 1

Where we have used w” ¢p(x,) — +0o. And since w’ ¢p(xy) — —co, we can
also obtain:

p(Colp(xm)) = 1- p(C1lp(xm)) = 1 - (Wl p(xm)) — 1
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In other words, for the likelihood function, i.e.,(4.89), if we have |w| — oo,
and also we label all the points lying on one side of the boundary as class C1,
and those on the other side as class Cg, the every term in (4.89) can achieve
its maximum value, i.e., 1, finally leading to the maximum of the likelihood.

Hence, for a linearly separable dataset, the learning process may prefer
to make |w| — oo and use the linear boundary to label the datasets, which
can cause severe over-fitting problem.

Problem 4.15 Solution(Waiting for update)

Since yj, is the output of the logistic sigmoid function, we know that 0 <
y» <1 and hence y,(1 - y,) > 0. Then we use (4.97), for an arbitrary non-zero
real vector a # 0, we have:

N
aTHa = a’[) y,(1-y,)¢,0 ]a
n=1

yn(1=y)(@La) (¢pla)

I
M=

S
Il
=

yn (1= y,) b2

I
M=

Il
—

n

Where we have denoted b, = ¢ a. What’s more, there should be at least
one of {b1, bg,...,b N} not equal to zero and then we can see that the expression
above is larger than 0 and hence H is positive definite.

Otherwise, if all the b, = 0, a = [a1, as,...,ay]? will locate in the null
space of matrix ®@y.py. However, with regard to the rank-nullity theorem,
we know that Rank(®) + Nullity(®) =M, and we have already assumed that
those M features are independent, i.e., Rank(®) = M, which means there is
only 0 in its null space. Therefore contradictory occurs.

Problem 4.16 Solution

We still denote y,, = p(t = 1|¢p,), and then we can write down the log
likelihood by replacing ¢,, with m, in (4.89) and (4.90).

N
Inp(tjlw) = {rpIny, + (1-7m,)In(1-y,)}

n=1
Problem 4.17 Solution
We should discuss in two situations separately, namely j = & and j # k.
When j # k&, we have:
Oyr —exp(ar)-exp(a;)
da;  [x,expla,)P
And when j = &, we have:
dyr _ explap) X jexpla;) —explag)explar)
daj, [Y,exp(a))]?

=Yk )Yy

= ye—yp = ye(L— )
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Therefore, we can obtain:

Oyr
e _ In:—v:
aaj yk( kj yj)

Where I is the elements of the indentity matrix.
Problem 4.18 Solution

We derive every term ¢, Iny,; with regard to a;.

Otnr Inypp _ Otnr InYynk OYnr aaj

ow; O0Ynk Oa; Owj

1
tnk_'ynk(ij_ynj)’(l’n

nk

= tpeUkj—Ynj)Pn

Where we have used (4.105) and (4.106). Next we perform summation
over n and k.

|
M=
M=

Vw,E = tnk Ukj = Ynj) bn

Il
-
_
I
[

N K
nkYnj®n— 2 Y tnklpjdn

n=1k=1

Il
M= .
M=

S
Il
-
ol
Il

N
tnk)ynj (,bn] - Zl tnj(Pn

I
M=
M= -

[(

S
1]
—
4
I
—

I
M=

N
Ynj Gn— Z tnj‘»bn
n=1

i
u

Il
M=

(ynj - tnj)(pn
1

S
Il

Where we have used the fact that for arbitrary n, we have Zle thr = 1.
Problem 4.19 Solution

We write down the log likelihood.

N
In p(tiw) = {tnlnyn+(1_tn)1n(1_yn)}

n=1

Therefore, we can obtain:

Vwlinp
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Where we have used y = p(¢t = 1la) = ®(a) and a, = W ¢p,,. According to
(4.114), we can obtain:

1 1
V'@ = A0, D]y, = Z=exp(-5a”)

Hence, we can obtain:

N _an
YVn—t, exp(—=3)
Vwinp =
v nglﬁ)’n(]-_yn) Vo "

To calculate the Hessian Matrix, we need to first evaluate several deriva-
tives.

i Yn—1Iln )= i Yn—tn _ayn.aa_n
ow yp(1-yp) O0yn yn(1=yn) Oa, Ow
yn(l_yn)_(yn_tn)(l_zyn)

= o} n)Pn
[yn(]-_yn)]z @)

2
YR 4tn—2yntn exp(—%")(p
v2A-y2  Vom

And
2 2
i{exp(—%")} _ i{exp(—%”)}aan
ow Vo oa, Vo ow
2
9
= mexp( 5 Ybr
Therefore, using the chain rule, we can obtain:
az a2 a2
i{ Yn—tn_exp(=F) i{ Yn—tn exp(—y")+ Yn—tn iexp(—gn)}
ow yn(1-yn) V2r ow yp(1-yn) V2r  ya(l-yp)0W 27

2
exp(—%”)

\/2_nyn(]- - yn)

2
Y2 +ty —2ynty €xp(=%)
yn(l_yn) vV 27

Finally if we perform summation over n, we can obtain the Hessian Ma-
trix:

_an(yn_tn)] bn

H

VVwInp
2
N 6  y,—t, exp(-3)

)3

—A
m10w yn(1-yn)  V2nm
2
N y;21+tn_2yntnexp(_a7n)
n=1 yn(1=2yn) vVan

}'(pn

e L
)

- n n_tn Y
anly )]\/ﬂyn(l—yn
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Problem 4.20 Solution(waiting for update)

We know that the Hessian Matrix is of size MK x MK, and the (j,%k)th
block with size M x M is given by (4.110), where j,k =1,2,...,K. Therefore,
we can obtain:

T & T
u Hu = Z Z u; Hj yuy (%)
Jj=1k=1

Where we use ug to denote the £ th block vector of u with size M x 1, and
H; x to denote the (j,%)th block matrix of H with size M x M. Then based on
(4.110), we further expand (4.110):

K

o

<

1l
—
o

Il
—

N
() = W (= Y Ynkkj = yn)) P Pn” e
n=1

Il
M=
M=
M=

u;P{—ynk(ij — Yn)) Pn Pn” hug

(-
Il
-
ol
Il
—
S
Il
—

Il
M=
M=
M=
- H
™=

K N
u; {— ynkaJ(pn(pn hag + Z Z T{ynkynj(pn(l’n hak

Jj=1k=1n=1 j=lk=1n
L& T T X al T T

= Z Z uk{_ynk PnPn” hug + Z Z Ynjuy {pnbn” tynrux
k=1n=1 Jj=lk=1n=1

Problem 4.21 Solution

It is quite obvious.
a
D(a) = f N(610,1)d6
-0
1 a
- —+f H(010,1)d6
0
a
- 5+ we0a0
0

exp(—62/2)do

L1 f
Nor
\/;_‘/2_ 0 7exp( 0%/2)do

T

1+ — | ——exp(-6%2
(+\/§f0 ﬁexp( 04/2)d6)

+

NI NH= NI NI~ DN~ DN

1
1+ —erf(a)
{ 7 f(@)}
Where we have used

0 1
f A 010,1)d0 =
oo 2
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Problem 4.22 Solution
If we denote (@) = p(D|0)p(0), we can write:

(D) f »(DI0)p(0)d0 = f £0)do

(2].[)M/2
f(oMAP)W

(2”)M/2
p(D|0MAP)p(0MAP)W

Where 074 p is the value of 8 at the mode of £(0), A is the Hessian Matrix
of —Inf(0) and we have also used (4.135). Therefore,

M 1
Inp(D) =InpD|Opyap) + InpO@pap) + 31112” - §1n|A|

Just as required.
Problem 4.23 Solution

According to (4.137), we can write:

M 1
Inp(D) Inp(D|Oprap) + Inp@prap) + Eann— anIAI

M 1 1
Inp(D16yap) = 5 27 — S In|Vol = —(Omap —m) Vo (@ ap —m)

M 1
+—1In27 — =InlA|
2 2

1 1 1
Inp(D1Oxap) = 5 Vol - S (Omap -m) Vo 1 @yap -m) - S InlA|

Where we have used the definition of the multivariate Gaussian Distri-
bution. Then, from (4.138), we can write:

A

~VVInp(D|0yap)r@map)
= —VVInpD|0yap)—VVInpO@pyap)

1 _
= H-VV{- §(BMAP -~m)" Vo Oy ap - m)}
= H+V{V0_1(0MAp—m)}
= H+Vy!

Where we have denoted H = —VVInp(D|0prap). Therefore, the equation
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above becomes:

1 1
Inp(D) = Inp(DIOyap) - 5@map —m)' Vo (Oyap —m) - S Inf[Vol- H+V,'|}

1 _ 1
Inp(D|Opap) - §(HMAP —m)"Vy X Oy ap —m) - §ln{ IVoH +1|}

u

1 1 1
Inp(DIOxap) = 5 Omap —m) Vo 1(@yap -m) - 5 Vol - S In[H|

u

1 _ 1
Inp(D10xyap) ~ 5Omap —m)"Vy X @y ap —m) - 5 In[H + const

Where we have used the property of determinant: |[A|-|B| = |AB|, and the
fact that the prior is board, i.e. I can be neglected with regard to VoH. What'’s
more, since the prior is pre-given, we can view Vy as constant. And if the data
is large, we can write:

N A
H= )Y H,=NH
n=1

Where H = 1/N Zf:’zl H,, and then

u

1 1
Inp(D) Inp(D|0yrap) — 5((;vMAP —m)'Vo 1@y ap -m) - 51n|H| +const

u

1 N
Inp(D1Byap) = 5 Omap - m) Vo 1(0yap —m) - 5 InINH] + const

u

M 1 I
Inp(D|@prap) — Q(HMAP —m)TVo_l(BMAp -m) — ElnN - §ln|H| + const

u

Inp(D|0pap) - %IHN

This is because when N >> 1, other terms can be neglected.
Problem 4.24 Solution(Waiting for updating)
Problem 4.25 Solution

We first need to obtain the expression for the first derivative of probit
function ®(Aa) with regard to a. According to (4.114), we can write down:

2y - 4200 dla
= \/%exp{ - %(la)z}
Which further gives:
22090 7
And for logistic sigmoid function, according to (4.88), we have
do

1
— =0(1-0)=05x05=-
Ja o(l-0) x 1
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Where we have used 0(0) = 0.5. Let their derivatives at origin equals, we

have:
A 1

Vonr 4
i.e., A = V27 /4. And hence A% = 7/8 is obvious.

Problem 4.26 Solution

We will prove (4.152) in a more simple and intuitive way. But firstly, we
need to prove a trivial yet useful statement: Suppose we have a random vari-
able satisfied normal distribution denoted as X ~ A/ (X|u,o 0?), the probability
of X <xis P(X <x) = ®(XE), and here x is a given real number. We can see
this by writing down the 1ntegral.

PX<x) = fx ! exp[- 5 (X w?ldX
00 V2o
= fT 1 exp(——yz)ady
\/_
= —ex (—— 2yd
f \/— p Y Y
= o=h)
o

Where we have changed the variable X = u+o0y. Now consider two ran-
dom variables X ~ A (0,A"2) and Y ~ A (,u,az). We first calculate the condi-
tional probability P(X <Y |Y = a):

-0
PX<Y|Y =a)=PX<a)= QD(%) = ®(1a)
Together with Bayesian Formula, we can obtain:

+00
PX<Y) = f PX<Y|Y =a)pdf(Y =a)dY

+00
f ®(Aa) N (alp,0?)da

(e.o]

Where pdf(-) denotes the probability density function and we have also
used pdf(Y) = N (u,0%). What’s more, we know that X —Y should also sat-
isfy normal distribution, with:

EX-Y]=E[X]-E[Y]=0-pu=—-pu
And
var[X - Y1 = varlX1+var[Y]= 172+ 0>
Therefore, X —Y ~ A (—u,A~2 +02) and it follows that:
0—(-pw ) = o U
Vitio? ViZio?
Since P(X <Y) = P(X -Y <0), we obtain what have been required.

PX-Y <0) = d( )
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0.5 Neural Networks

Problem 5.1 Solution

Based on definition of tanh(-), we can obtain:

e — @
tanh(a) = ——
ed+e @
3 2e?
- e?+e @
= -14+2———
1+e2a
= 202a)-1
If we have parameters wjls), w%s) and w(2js) w(zs) for a network whose

hidden units use logistic sigmoid function as activation and w(m w%) and

wfjt) w%) for another one using tanh(:), for the network using tanh(-) as

activation, we can write down the following expression by using (5.4):

M
a(,:) — Z’ w(2t) tanh(a(t))+w§320t)

Z w(2t)[2o_(2a(t)) 1] +w(2t)

What’s more, we also have :
b

(s) (28) (s) (2s)
Zw U(aj )+wk0

(s) — @

To make the two networks equivalent, i.e., a 3 a;’, we should make

k ’
sure:
(S) _ 2a(t)
(2s) _ (2¢t)
Wy, Zwa
(2s) M (2¢) (2¢t)
— LWy, Wi,

Note that the first condition can be achieved by simply enforcing:

wl® =201 and wl¥ = 2wV
Ji Ji Jjo Jjo

Therefore, these two networks are equivalent under a linear transforma-
tion.

Problem 5.2 Solution
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It is obvious. We write down the likelihood.
N 1
p(TIX,w) = H N (Anly(xXn, W), 8 71)
n=1

Taking the negative logarithm, we can obtain:

B T NK
E(w,p) = ~Inp(TX,w) = 5 Y [(y(Xn, W)—tn) (y(xn,w)—tn)]—Tlnﬁ+const

n=1

Here we have used const to denote the term independent of both w and
B. Note that here we have used the definition of the multivariate Gaussian
Distribution. What’s more, we see that the covariance matrix $~'I and the
weight parameter w have decoupled, which is distinct from the next prob-
lem. We can first solve wy, by minimizing the first term on the right of the
equation above or equivalently (5.11), i.e., imaging f is fixed. Then according
to the derivative of E(w, ) with regard to 8, we can obtain (5.17) and hence

BmL.
Problem 5.3 Solution

Following the process in the previous question, we first write down the
negative logarithm of the likelihood function.

N
Ew,X) = % > {[yXn, W) —tn]” =7 [y (xn, W) — tal} + %VlnIZI + const (x)

n=1

Note here we have assumed X is unknown and const denotes the term
independent of both w and X. In the first situation, if X is fixed and known,
the equation above will reduce to:

N
Ew) = % > {[y(xn,w)—tn]TZ_l[y(xn,w)—tn]} + const
n=1
We can simply solve wyr, by minimizing it. If £ is unknown, since X is
in the first term on the right of (), solving wy, will involve X. Note that in
the previous problem, the main reason that they can decouple is due to the
independent assumption, i.e., X reduces to $'I, so that we can bring S to the
front and view it as a fixed multiplying factor when solving wiy..

Problem 5.4 Solution

Based on (5.20), the current conditional distribution of targets, consider-
ing mislabel, given input x and weight w is:

pt=1x,w)=(1-¢€)-p(t,=1x,w) + €- p(t, =0[x, W)
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Note that here we use ¢ to denote the observed target label, ¢, to denote
its real label, and that our network is aimed to predict the real label ¢, not ¢,
i.e., p(t, = 1|x,w) = y(X,w), hence we see that:

pt=1x,w) = (1-€)-y(x,w) + - [1- y(x,w)] (%)
Also, it is the same for p(t = 0|x, w):

pt=01x,w) = (1-¢€)-[1-y(x,w)] + € y(x,w) (%)
Combing () and (**), we can obtain:

pltix,w) = (1-e)-y'A-y)' T +e-1-y)y'

Where y is short for y(x,w). Therefore, taking the negative logarithm, we
can obtain the error function:

N
Ew) = - Y In{(1-0)-y(1-y) ™ +e-(1-y)nyn '}
n=1
When ¢ = 0, it is obvious that the equation above will reduce to (5.21).
Problem 5.5 Solution
It is obvious by using (5.22).

N
—In [ ] p(tixn, w)

n=1

N K
~In [T T 22 (n, W) [1 - yp(xn, w)] 7
n=1k=1
& 1-¢
> In{yp(xn, W) [1- yp(xn, w)| "}

E(w)

M=

S
Il
-
o
Il
—

I
|

M=

M=

In [y (1= i)'

S
Il
-
ol
Il
—

I
|

M=

M=

{tnk Inypp +(1=t,)In(1 =y, )}

S
Il
—
ol
Il
—

Where we have denoted

Ynk = yk(Xn,W)
Problem 5.6 Solution

We know that y; = o(ay), where () represents the logistic sigmoid func-

tion. Moreover,
do
— =0(1-0
da ( )
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dE(w) 1
= —tp— -] + (A —tp) (1- )
da, kyk[yk i) kl_yk[yk i)
1-t,
= (1—1v3) -
[k yk][l_yk yk]
= (A=tp)yr—tr(1—y)
= Yr—lz

Just as required.
Problem 5.7 Solution

It is similar to the previous problem. First we denote yp, = yi(Xp,w). If
we use softmax function as activation for the output unit, according to (4.106),

we have: 4
YEn
daj :ykn(ij_yjn)
Therefore,
dE(w) d N K
= - trnl ,
da, dak{ n;k; ko 10 Y (Xn, W)}
>y
= - ——trnInyg
n=1k:1daj{ " )

1

Il

|
M=
M=

[ Yen Trj— yjn)]

kn

S
Il
—
J
Il
-

Il

|
M=
M=

(tankj —tkn yjn)

S
Il
—
o
Il
—

N K
tenhj+ Y, D thnYin
n=1k=1

Il

|
M=
M=

S
Z
—
x>
il
—

N
= - tjn+zyjn
1 n=1

S
Il

N
Z (yjn - tjn)
n=1
Where we have used the fact that only when k2 = j, I;,; = 1 # 0 and that
Zi{:ltkn = 1.
Problem 5.8 Solution

It is obvious based on definition of ’tanh’, i.e., (5.59).

d (e teT (e +e ) — (e —e ) —e™)
%tanh(a) = (@100

B ~ (ea _ e—a)z

B (e® + e—9)2

1- tamh(at)2
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Problem 5.9 Solution

We know that the logistic sigmoid function o(a) € [0,1], therefore if we
perform a linear transformation A(a) = 20(a)—1, we can find a mapping func-
tion A(a) from (—oco, +oo) to [-1,1]. In this case, the conditional distribution
of targets given inputs can be similarly written as:

1+ y(x,w) ](1+t)/2 [ 1- y(X,W)]u—t)/z

pltlx,w) = | 5 5

Where [1+y(x,w)|/2 represents the conditional probability p(C1|x). Since
now y(xX,w) € [—1,1], we also need to perform the linear transformation to
make it satisfy the constraint for probability. Then we can further obtain:

% {1+tn 1+ y, 1—tnln1—yn

E(w) 5t g 2}

L\'JIH=

=1
N
Z {1+t)In(1+y,) + (1 —¢)In(1 - y,)} + NIn2

Problem 5.10 Solution

It is obvious. Suppose H is positive definite, i.e., (5.37) holds. We set v
equals to the eigenvector of H, i.e., v = u; which gives:

viHv = vI(Hv) = wiT Auy = A;]lus)1?

Therefore, every A; should be positive. On the other hand, If all the eigen-
values A; are positive, from (5.38) and (5.39), we see that H is positive defi-
nite.

Problem 5.11 Solution

It is obvious. We follow (5.35) and then write the error function in the
form of (5.36). To obtain the contour, we enforce E(w) to equal to a constant
C.

1
E(w) = E(w*)+ §Zaia? =C
i

We rearrange the equation above, and then obtain:
Y Aiaf =B
15

Where B = 2C —2E(w™) is a constant. Therefore, the contours of con-
stant error are ellipses whose axes are aligned with the eigenvector u; of
the Hessian Matrix H. The length for the jth axis is given by setting all
a; =0,s.t.i1#]:

B
a; = /1—
J
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In other words, the length is inversely proportional to the square root of
the corresponding eigenvalue A;.

Problem 5.12 Solution

If H is positive definite, we know the second term on the right side of
(5.32) will be positive for arbitrary w. Therefore, E(w*) is a local minimum.
On the other hand, if w* is a local minimum, we have

1
E(w")-E(w) = —E(W—W*)TH(W—W*) <0
In other words, for arbitrary w, (w—w*)TH(w—w"*) > 0, according to the
previous problem, we know that this means H is positive definite.

Problem 5.13 Solution

It is obvious. Suppose that there are W adaptive parameters in the net-
work. Therefore, b has W independent parameters. Since H is symmetric,
there should be W(W + 1)/2 independent parameters in it. Therefore, there
are W+ W(W +1)/2 = W(W + 3)/2 parameters in total.

Problem 5.14 Solution

It is obvious. Since we have
2
€
En(wji+€) = En(wji) +eE, ;i) + 5 By w;i) + O(e?)

And

&2

E,(wj;—¢€) = E,(wj;)—€cE),(w;i)+ EE’,:(wji) +0(?)
We combine those two equations, which gives,
E (wji+€)~E,(wj; —€) = 2¢E,(w;;) + 0(e®)
Rearrange the equation above, we obtain what has been required.

Problem 5.15 Solution

It is obvious. The back propagation formalism starts from performing
summation near the input, as shown in (5.73). By symmetry, the forward
propagation formalism should start near the output.

Oy,  Oh(ap) , Oay,
_— = = h
0x; 0x; (@) 0x;

ki =

()

Where A(-) is the activation function at the output node aj;. Considering
all the units j, which have links to unit k:
Oay, Oay, 0a

a .
= Y ST 2 Y g (a5 )
0x; S daj 0x; I 0x;




108

Where we have used:
ap = Zwkaj, zj = h(a;)
J

It is similar for da j/0x;. In this way we have obtained a recursive formula
starting from the input node:

Oa; {wli,if there is a link from input unit i to /
0x; a

0,if there isn’t a link from input unit i to /

Using recursive formula (x#) and then (x), we can obtain the Jacobian
Matrix.

Problem 5.16 Solution
It is obvious. We begin by writing down the error function.

1 N 9 1 N M 9
E=§Z||Yn_tn|| =§Z Z(yn,m_tn,m)
n=1

n=1m=1

Where the subscript m denotes the mthe element of the vector. Then we
can write down the Hessian Matrix as before.

N M N M
H=VVE = Z Z Vyn,mvyn,m + Z Z (yn,m - tn,m)VVYn,m

n=1m=1 n=1m=1

Similarly, we now know that the Hessian Matrix can be approximated as:

N M r
H= Z Z by mby m

n=1m=1
Where we have defined:
bnm = Vynm
Problem 5.17 Solution
It is obvious.
Ouffws N air %f f 2y-9) aab;:sp Ox, Dddxdi

dy? 0y Oy
= -t t)dxdt
/f[(y )aw,aws " ow; 0w, |p(x,Bydx

Since we know that

0y? 0y?
f f (y-t—2_ p(x,t)dxdt f [ (y— ) —2  p(tIx)p(x)dxdt
0w, 0w, 0w, 0w,

Ws

dy?
féwra {f(y_t)p(ﬂx)dt}p(x)dx
0
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Note that in the last step, we have used y = [#p(¢[x)d¢. Then we substi-
tute it into the second derivative, which gives,

’E dy Ody
= tdxdt
ow, 0w, f_[aws ow, p(x,t)dx
dy Oy
= d
owg 0w, p(x)dx

Problem 5.18 Solution

By analogy with section 5.3.2, we denote wzljip as those parameters corre-
sponding to skip-layer connections, i.e., it connects the input unit i with the
output unit 2. Note that the discussion in section 5.3.2 is still correct and
now we only need to obtain the derivative of the error function with respect

to the additional parameters wzlzip.

0E, OE, Odap 5
skip skip kX
Owy; dar owy;

Where we have used a; = y; due to linear activation at the output unit
and:

M
_ 2), . skip
Vi = .Z()wijJ+Zwki X
J= 4

Where the first term on the right side corresponds to those information
conveying from the hidden unit to the output and the second term corre-
sponds to the information conveying directly from the input to output.

Problem 5.19 Solution

The error function is given by (5.21). Therefore, we can obtain:

N SE
VE(w) = Va
nX::l dan "
N oo
- _ Z 5 [tnIny, +(1-t,)In(1l-y,)|Va,
n=1 n
_ i {a(tnlnyn) Oyn , 00— tn)In(1 - yy) Oy, \Va
el 0y, Oay 0y oa, "
= - Z [_'yn(l_yn)"'(l_tn) 'yn(l_yn)]van
n=1 Yn 1_yn

Z

= - [tn(l_yn)_(l_tn)yn]van

I
—

I
M= 5

(yn —tn)Va,

S
Il
—
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Where we have used the conclusion of problem 5.6. Now we calculate the
second derivative.

N
VVE(W) = Y {ya(1-y)VanVan, +(yn —ta)VVa,}
n=1

Similarly, we can drop the last term, which gives exactly what has been
asked.

Problem 5.20 Solution(waiting for update)
We begin by writing down the error function.
N K
Ew) = - Z Z tnklnynk
n=1k=1

Here we assume that the output of the network has K units in total and
there are W weights parameters in the network. WE first calculate the first
derivative:

dE
da,
[

N
VE = ) -Va,,

n=1

N K

= _Z d (Ztnklnynk)]'van
n=1 Gan p=1

N
= ch-Van

n=1

Note that here ¢,, = —dE/da, is a vector with size K x 1, Va,, is a matrix
with size K x W. Moreover, the operator - means inner product, which gives
VE as a vector with size 1 x W. According to (4.106), we can obtain the jth
element of ¢p:

0 K
Cnj = —aj(k;tnk Iny,z)
K

0
= - — (e Inynr)
(=10a;

K
Ink
= =) Zyuldrj—yn))

k=1JYnk
K K

= - Z tnklkj+ Z tnkYnj
k=1 k=1

K
= _tnj"‘ynj(z tnk)
k=1

= ynj_tnj
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Now we calculate the second derivative:

N
VVE = Z(jzn

n=1

Va,)-Va, +¢,VVa,
Here dc,/da,, is a matrix with size K x K. Therefore, the second term can
be neglected as before, which gives:

N de
H= Z(da:Van)-Van

Problem 5.21 Solution

We first write down the expression of Hessian Matrix in the case of K
outputs.
N K r
Hyx =) ) buib,,
n=1k=1

Where b, = Vwa, ;. Therefore, we have:

K

T T
Hy.x =Hyg + ) byi1kby, 1, = Hvg + BniiBy
k=1

Where By 1 = [by+1,1, bN+1,2, ..., by+1k] is a matrix with size W x K,
and here W is the total number of the parameters in the network. By analogy
with (5.88)-(5.89), we can obtain:

-1 T -1
_1 HN,KBN+1BN+1HN,K

-1
HN+1,K = HN,K_ 1+BT

(%)
-1
N+1HN,KBN+1

Furthermore, similarly, we have:

N+1

T T
Hy.1x+1 =Hyiig + ) b, k+1b;, k1 = Hvi1x + Bre1Bg
n=1

Where Bx,1 = [b1x+1, b2 k+1, ..., bN+1,K+1]1s a matrix with size W x (N +
1). Also, we can obtain:

-1 T -1
HN+1,KBK+1BK+1HN+1,K

H! =H o —
N+1,K+1 N+1,K T -1
1+By Hy ; ¢Bk+1

Where HI_V}Jr1 x 18 defined by (*). If we substitute () into the expression
above, we can obtain the relationship between Hz_vl+1 x4 and Hz_le'

Problem 5.22 Solution



We begin by handling the first case.

0*E, 0 (OEn
@4 2 @) 5 (2
dwkjdwk,j, Owkj 6wk,j,
0 OE, day
 ow (2) dar §u'2.

By

0 aEn azj/wkr‘/zj'/

ow? dar  ow?
J

k/l
0 OE,
" u® a0y
kj

0 OE oE, 0z
= ( n)Zj/+ n %
ow'® day

kj

0 OE, day
= +0
dak (aakl )a (2) =7

Oay awfj)

0 (0E )
= Y AVAL
dayp Oap '’

= Z]Z]’Mkk’

Then we focus on the second case, and if here j # '

*E, 0 ,OE,
VoD - aw(l)(aw(l))
Jji O ji T
3 0 O0E, 0day
= ow (1) w 6ak, 61,0(1)
0 OE,
— Z (2) h (ajl)xll)

W ow'Y Oa
Ji

0 OE,
Zh (aj )x, (1) day

)

6 ok, oa
"oy (2) k
;h (aJ )xz Z aa ) (1)

jl

0 OE,
Ba)xir (2) (2)h
kE (@;)x; Ek 30, day )y h(a)x;)

Zh'(aj:)xir ZMkk/wg), ng)h (aJ)xl
k' k

xi'xih/(aj’)h,(aj)zzwge%)' wfj)M kR!
k' k

112
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When j =/, similarly we have:

O’Ey, o OE, o
=2~ "h'(a)xi)
aw(.li)aw(<1.? % awﬁ) Oay J
=y 0 (O w w® oh'(a;)
- Y G s DG
Ji w;
oh'(a;)
- x"xh(aJ)h(aJ)ZZw(z)' (2)Mkk’+xz Z(a (2)) (1;
k!
jl
= xpxh (aj)h (aJ)ZZw(Z). ;ezj)Mkk""xi’ (2))h"(aj)xl
ap

= xpxh'(aph (aJ)ZZw(Z). (2)Mkk/+h(aj)x Xy Zak/w@’

It seems that what we have obtained is slightly different from (5.94) when

= j'. However this is not the case, since the summation over %’ in the second
term of our formulation and the summation over & in the first term of (5.94) is
actually the same (i.e., they both represent the summation over all the output
units). Combining the situation when j = j' and j # j/, we can obtain (5.94)
just as required. Finally, we deal with the third case. Similarly we first focus

on j#j"

0*E, 0 (OEn
MDA 2 1) (2)
6wji awkj, Owﬁ Owkj,
0 OE, dap

ow'l 0ar 5y®
Ji kj

0 0E,0)jwjzj
ow'l day aw(2)
Jt

0 (OEn )
= —_— 2
ow'l oay /
Jji
0 OE, Oap
= er

k! Oak/ aak aw(l)
= zerMkkr (2)h(aj)xl

= x;h (aj)zj ZMkk/w(Z)

Note that in (5.95), there are two typos: (i)Hpz should be M. (ii) j should



exchange position with j’
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in the right side of (5.95). When j = j/, we have:

’E, 0 (9En

M4, (2 1) 2)

6wji 6wkj dwﬁ Owkj
o OE, oay

Combing these two situations, we obtain (5.95) just as required.

Problem 5.23 Solution

ow'l 0ap 5@
Ji kj

0 OE,0) wk;z;

1) (2)
ow;) 0ar  Ow
0 (OEn )
= —_—(—2z;
ow'V dap /
Ji
B 0 (OEn . O0E, 0z;
- ow'l Oay / day, 'V
Ji Ji

OE, 0z;
day, w(.l.)
Jji

= xih'(aj)Zj ZMkk/wf,} +
k!

= xih'(aj)2j ;Mkk’wfr; + 5kh'(aj)xi

It is similar to the previous problem.

0*E, 0 0E,
Owp 10wy, j © Owpy Owgj
0 OE,
 dwpry ( Oay, 2
6wk/,-r 0 aEn

2.
I day dap dap
= zjxi’Mkk’
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And
0’E 0 0E, da
n _ (Z n k )
awkri/awﬂ awkrir 7 0ak 6wji
0 oE,

= (Z

awkrir 7 aak

wi;h'(@)x;)

0 OFE
= h'(a)xjwp——(—=
% I Jawk/i/ aak

Zh,( ) 0 OE, ap
= a)xijwy; —(—
7 TV da day,  wery

= Y h(@)xiwpiMppxi
7

= xixph'(a))) wiiMpp
7

Finally, we have
0’E, é OE,
Owpi Wi Owprir Owg;
0 OFE
= (—x;)
0wkri, aak
8 OE, dap
i
"Oap dap wpy
= X% Mg

Problem 5.24 Solution

It is obvious. According to (5.113), we have:

a; = ijixi+wj0
i

1 b
;iji'(axi+b)+wj0—;;wﬁ

= ijixierjo =aj
i
Where we have used (5.115), (5.116) and (5.117). Currently, we have
proved that under the transformation the hidden unit a; is unchanged. If
the activation function at the hidden unit is also unchanged, we have z; = z;.
Now we deal with the output unit yp:

Y = Zﬁkj5j+ﬁko
= icwkj-2j+cwk0+d
J
= CZ[wkj'Zj""ka]"'d
= chk+d
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Where we have used (5.114), (5.119) and (5.120). To be more specific,
here we have proved that the linear transformation between y, and y; can
be achieved by making transformation (5.119) and (5.120).

Problem 5.25 Solution

Since we know the gradient of the error function with respect to w is:
VE = H(w-w")
Together with (5.196), we can obtain:

w® = W(T—l)_pVE

= WD pHwW D - wt)

Multiplying both sides by uf, using w; = wlu i, we can obtain:

w;r) — u}"[w(r—l) —pH(W(T_l)—W*)]
— w;r—l) _ puJTH(W(T—l) —W*)

_ o G-D T (1-1) %
w; pnju; (w w)

(-1 o«

;W)

_ N,,,(T-1) Lk

= (1_P77])wj T pnjw;

— w;T—l) _pnj(w

Where we have used (5.198). Then we use mathematical deduction to
prove (5.197), beginning by calculating w}l):
w®
J

(1-pnw'? + pnjw;
= pnjw;

[1-(1-pn))]w;

Suppose (5.197) holds for 7, we now prove that it also holds for 7 + 1.

(t+1) _ () .
wi = (1-pnw” +pnw]

1-pn)[1-1-pn)" Jw} +pnjw;
= {d-pnp[1-A-pn)" ]| +pnjtw;
[1 _(1 _pnj)‘[+1]w;

Hence (5.197) holds for 7 = 1,2, .... Provided |1-pn;| <1, we have (1—
pn;)* — 0 as T — oo ans thus w'? = w*. If 7 is finite and nj >> (p7)71, the
above argument still holds since 7 is still relatively large. Conversely, when
nj <<(p7)™!, we expand the expression above:

|w37)| =1[1-A-pn)" |wil = [tpnw]l << [w}]
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We can see that (p7)~! works as the regularization parameter « in section
3.5.3.
Problem 5.26 Solution

Based on definition or by analogy with (5.128), we have:

Oyn
Q, = _Z( - k|£ 0)2
= _Z Z |<f 0)2
= _Z(Z ynk)

aynk 0x;

Where we have denoted
0x;

T; = 0_5 |f:0
And this is exactly the form given in (5.201) and (5.202) if the nth obser-
vation y,; is denoted as y; in short. Firstly, we define a; and f; as (5.205)
shows, where z; and a; are given by (5.203). Then we will prove (5.204) holds:

0z; oh(a;)
aJ = ;Tla—xi—;‘lfl OXi
Z 0h(a;) 0a;
= T; R
: ! Oaj Ox;

0
h/(aj)ZTi a_x'aj = h'(aj)ﬂj

15
Moreover,

o an _ .6Zi/wJ'irZir
bi = Zi"rldxi _;TL 0x;
owjjrzy 0z
Z Z JL 12 —Zrizwﬁlaz_l
l’ y '!

Lwji Zn = 2wy

So far we have proved that (5.204) holds and now we aim to find a forward
propagation formula to calculate ,. We firstly begin by evaluating {§;} at
the input units, and then use the first equation in (5.204) to obtain {«} at the
input units, and then the second equation to evaluate {§;} at the first hidden
layer, and again the first equation to evaluate {a;} at the first hidden layer.
We repeatedly evaluate {8;} and {a;} in this way until reaching the output
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layer. Then we deal with (5.206):

0Q, o 1 9y 1. 0(Gyp)?
" = (] =
dwrs w2 %( W =3,

1 0(Gy)* 0(Gy) 04y

= = g
2% AGyr) Owrs ; L

oyp, Oy Oa,
= Gv, 4 = ar9
%‘ Yk [aw,s] %‘ k [Gar aw,s]

= Zakﬁg[b‘krzs] = Zak{%[ékr]zs +C§[ZS](5kr}
k k

= ) ap{Prrzs + asOpr}
%

Provided with the idea in section 5.3, the backward propagation formula
is easy to derive. We can simply replace E, with y; to obtain a backward
equation, so we omit it here.

Problem 5.27 Solution

Following the procedure in section 5.5.5, we can obtain:
1
Q= f TVyx))? p(x)dx

Since we have T = 0s(x, &) / 0¢ and s = x+ ¢, so we have T = 1. Therefore,
substituting T into the equation above, we can obtain:

1
Q=; f (Vy(x))? p(x)dx

Just as required.
Problem 5.28 Solution

The modifications only affect derivatives with respect to the weights in
the convolutional layer. The units within a feature map (indexed m) have
different inputs, but all share a common weight vector, w'™. Therefore, we
can write:

(m)

OBy _ g OB 04" _ - som )

= = . 2.
dwgm) r 0a™ 6uw'™ F J T
J 1
Here ag.m ) denotes the activation of the Jjth unit in th mth feature map,

whereas wﬁm) denotes the ith element of the corresponding feature vector
and finally zg'Jn ) denotes the ith input for the jth unit in the mth feature map.

Note that 6;’”) can be computed recursively from the units in the following
layer.

Problem 5.29 Solution
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It is obvious. Firstly, we know that:

0 9 Wi —Hj 2
awi{njﬂ(wiluj,aj)}=—ﬂj 0? N (wilp;,0%)

We now derive the error function with respect to w;:

0E _ OE , 9A0w)
ow;,  Ow; Owi
OE

- {Zl (gnjﬂ(wiluj,af))}

awi awl

_ OE -2 0 {ln(anﬂ(wilyj,Ui))}

ow; ow; =1

OE 1 0

= — {anﬂ(w I/JJ,U )}

Ow; Y 7N (wilw,0%) 0w |15

OE 1

S {z "

awi Z ”]Jv(w IIJ_], 2)

JJV(w |j» 07 )}
j

wi—H;j
oE ZJlfa U)
A

owi " SN il o)

6E+ M ﬂjJV(winaU?) w; — W
Ow; ;T3 YpmpN wilpe,03)  0F
oE

M w; —
= +AY Yj(wi)%

Where we have used (5.138) and defined (5.140).
Problem 5.30 Solution
Is is similar to the previous problem. Since we know that:

0 2 Wi—Hj 2
aj{ﬂjﬂ(wimj,(fj)} = ﬂja—?c/‘/(win,Uj)
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We can derive:

)]
Ou;

[y

0 M
_/IZ _{Zﬂjﬂ(wiluj’aﬁ)}

i Zjail i N (w; |,Uj,(7?) ouj | ;=1

_,12 e
i Zyzlﬂjﬂ(wimpa’?) ! 0?
N (wilp;,a2) Ui —w;

K ’ 2 ! 2 l :AZYj(wi)
T Yy TN Wilpg,03) 0 :

1 w;—

u;
JJV(wi“Jj,U?)

B~ wi
o2
J

Note that there is a typo in (5.142). The numerator should be p; —w;

instead of y; —w ;. This can be easily seen through the fact that the mean and
variance of the Gaussian Distribution should have the same subindex and
since 0 is in the denominator, u; should occur in the numerator instead of

Problem 5.31 Solution

It is similar to the previous problem. Since we know that:

oo

(w; — pj)*

1
{ﬂjz/V(wi“lj,U?)} = (_0'_ +—3)njﬂ(wi|uj,0§)

. 3
J J
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We can derive:

O0E  0AQ(W)
0o B 00 ;
M
= —A—{Zln(an,/V(w IuJ,U )}
doj |5 j=1

g {fr et
{g N Wilyj,o 2)}

=

- 1Yy

i Z’] 17TJ=/V(wl|ﬂJ,0' )60'_]

1 0
= - N (wilp;,o 2)
;ZJ (TN (Wilpj,o 2)(90]{ J J }
1 1 (wi—p))?
= AZ M 3 (f— - 3J )anV(w I, o%)
7 ijlnjﬂ(wilyj,aj) o o

B mj N (wilpj, o) (1 (wi_,uj)z)

T XM N Wilpg,02) \ 0 o
1 (wi_ﬂj)z)
= AZY'(w')(———
A U U?

Just as required.
Problem 5.32 Solution

It is trivial. We begin by verifying (5.208) when j # k.

0 f e |
on; on; | Xrexp(ng)
_ —exp(nplexp(;)
[Zrexpnp)]?
= -7’

And if now we have j =k:

im0 e |
ony, ong | Xrexp(ng)
exp(y) [Xr exp(nr)] —exp(nr)exp(ny)

(S expp)]?

= T — TRk

If we combine these two cases, we can easily see that (5.208) holds. Now
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we prove (5.147).
oE AaQ(w)
on; on;

0 M 2

i j=1

M
= —AZ o {ln{ > njﬂ(wiluj,ai)}}

= -2 . i{% N (Wi |ﬂk>0k)}
i Zﬁlﬂjﬂ(wiluj,a )0n; | k=1
= -1 1 % i{ﬂkﬂ(w Iuk,ak)}
T X N (il 0%) =100,
1 M9

= - — s N (Wil g, 07)
;Z‘] IHJJV(LU |'uj, ) zlaﬂk{ k l”k k}

1 M
- _ N (w; i, o )(6 Mi—T;mp)
ZL:ZJ anJV(w I,uJ, g’ Hien OO RTS i

M

_k
on;

- ZZ T JV(w i, o {”J‘/V(w |,UJ,U )= anﬂ(w I,uk,ak))}
i j=1"%J 7,0

B 1 { anV(wi“Jjan) njzkzlﬂkﬂ(wiluk’ak))}
T Z i wilpg,0® X N il 0%)
=AY {riwi)-m}t =AY {n;—v;wi}

Just as required.
Problem 5.33 Solution

It is trivial. We set the attachment point of the lower arm with the ground
as the origin of the coordinate. We first aim to find the vertical distance from
the origin to the target point, and this is also the value of xs.

Lqsin(m —61)+ Lgsin(6y — (7w —6071))
L{sinf1— Lgsin(61 +69)

X2

Similarly, we calculate the horizontal distance from the origin to the tar-
get point.

—L1cos(mt—601)+Locos(Bg — (1 —671))
L1cosf01—Lgcos(01+69)

X1

From these two equations, we can clearly see the forward kinematics’ of
the robot arm.



123

Problem 5.34 Solution
By analogy with (5.208), we can write:

onp(x)
0a”
J

= 6 pmj(x) — 7 j(X)7p(X)
Using (5.153), we can see that:

K
E, = —ln{ Y nkW(tn|pk,a§)}
k=1

Therefore, we can derive:

OE G K >
J J
1 0
- _ RN (bl py,02)
YK N (tality, k>0a {Zl e
1

dnk
= - Z JV(t )
YK RN (bl k)k 10 " *

1
s STV kZ ,knj(xn)—nj<xn)nk(xn)]W(tnmk,az)
n ks =1

K
n-(xn)ﬂ(tnlﬂ-,az-)—n~(xn) wp(Xp) N (tn ,02)}
Zk lﬂkg/V(tn”lk, %){ J 77 J kgl k kYR

7 (%) N (b, |8 ; aU' )+71 i(X5) 7 (Xp) N (b |y, 0 )
Zlenkﬂ(tnlpk,ai){ J J J k;l k jr O }

And if we denoted (5.154), we will have:
OoE,

0a”
J

—]/j+71j

Note that our result is slightly different from (5.155) by the subindex. But
there are actually the same if we substitute index j by index % in the final
expression.

Problem 5.35 Solution

We deal with the derivative of error function with respect to p, instead,
which will give a vector as result. Furthermore, the /th element of this vector
will be what we have been required. Since we know that:

ﬂk
o}

0
@{ﬂkﬂ(tn|ﬂk,02)} = nkJV(tn“lk’o-k)
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One thing worthy noticing is that here we focus on the isotropic case as
stated in page 273 of the textbook. To be more precise, A (t,|u,, k) should
be A (t,] uk,oil). Provided with the equation above, we can further obtain:

oE, 0
= In ) 7mp N (tplpy,o0%)
oy, 6Mk{ kz mr k}
L {Z N (] )}
= T Hp,0
1 K 2
= - . T N (tnl ey, 07)
YK N (tnlpy, 02) 02 mER T
-
= Tk 5 i
O%

Hence noticing (5.152), the /th element of the result above is what we are

required.
ok, _ ok, _ k,ukl_
OaZl Olr] OZ

Problem 5.36 Solution

Similarly, we know that:

0 D ||tn_ﬂk||2 2
— N (L] ,02) ={——+—— rmpN(t,lp,,07)
aak{ E nllE,0p } { or Uz k nilp,0p

Therefore, we can obtain:

0E, 0

{ In Z nkﬂ(tnlpk,ak)}

0oy B ooy,
1 0
- Tp N (bn |y, 02)
Zk 17Tk N Rnlpy, 0 k)aak{z " k
1 D ity —pmll?
= - 7 B . ——+% ”k‘js/(tnlﬂk,gi)
Zkzlﬂkd‘/(tnmk,(fk) O o,

D Ity — P
Op o'k

Note that there is a typo in (5.157) and the underlying reason is that:
l02Ip«p| = (0P
Problem 5.37 Solution

First we know two properties for the Gaussian distribution A (t|g, 02I):

E[t] = f tN (tlp,0’)dt = p
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E[It1%] = f lt112 (tlp, 02D dt = Lo? + ||l |2

Where we have used E[t"At] = Tr[Ac?I]+ u” Ap by setting A = I. This
property can be found in Matrixcookbook eq(378). Here L is the dimension of
t. Noticing (5.148), we can write:

E[t|x]

ftp(tlx)dt

K
ftz TN (b, 02)dt
k=1

K
Tp, tﬂ(tlyk,az)dt
k=1

K
Z Tp My,
k=1

Then we prove (5.160).

s2(x)

ELI[t — E[tIx]]1%x] = E[(t* — 2¢E[tIx] + E[t/x]?) [x]
E[t?|x] — E[2tE[t|x]x] + E[t|x]? = E[t?|x] - E[t|x]?

K K

fntu2 S tp N (g, 02— 11 S oy 1P
k=1 =1

K 9 9 K

Y. e [P A Gy 0Dt 11 Y map P

k=1 =1

S 2 2 S 2

3 mpLo? + D -1 Y. mpm

k=1 =1

K K
2 2 2
mrpoy + ) Rl P =11 ol

h
M=

k=1 k=1 =1
X 2 X 2 X 2 X 2
L};”kok"‘;lﬂk“ﬂkﬂ _2X”z-zlwl” +1X”z-zlwl”
K 9 K 9 K K K K
LY mpoi+ Y mellmll —2<anl)(2nkuk)+(znk)||znml||2
k=1 k=1 =1 k=1 k=1 =1
K 9 K 9 K K K K 9
LY mpoy+ Y mpllpgll® =20 mp)(Y mpp) + Y mpll Y mll
k=1 k=1 =1 k=1 k=1 =1
K K K
LY mpop+ Y mellpg— Y mmll®
A kKL LK
k=1 k=1 =1
X 2 X 2
Y mp Loy + 1y, — Y mmll
k=1 =1

Note that there is a typo in (5.160), i.e., the coefficient L in front of 0% is
missing.
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Problem 5.38 Solution

From (5.167) and (5.171), we can write down the expression for the pre-
dictive distribution:

p(tx,D,a,p)

fp(W|D,6¥,ﬁ)p(t|X,W,,B)dw

u

fq(W|D)p(t|X,W,ﬁ)dw

f N (wiwyap, AN (tig" w — g7 wiap + y(x, wyap), 1 dw

Note here p(t|x,w, B) is given by (5.171) and ¢g(w|D) is the approximation
to the posterior p(w|D, a, §), which is given by (5.167). Then by analogy with
(2.115), we first deal with the mean of the predictive distribution:

T T
mean = g W-—g WMAP *+ Y(X, WMAP)|lw=wyp

= y(X,wmaP)
Then we deal with the covariance matrix:
Covariance matrix = ﬁ_l + gTA_lg

Just as required.
Problem 5.39 Solution

Using Laplace Approximation, we can obtain:
pDIw,Ppwia) = pDIwnap, Ap(Wyapl@)exp {~(w—waiap) AW - wyiap)|

Then using (5.174), (5.162) and (5.163), we can obtain:

pDla,p)

fp(DIW,ﬂ)p(w, a)dw

f p(DIwyap, B)p(Wyiapla)exp {—(w ~wiap) T A(w — WMAP)} dw

(27.[)W/2
p(D|wpyap, ,B)P(WMAPW)W

— 1_[ (/V(tnly(xn,WMAP),ﬂ_l)z/V(WMAPlo’a_ll) |A|1/2
n=1

If we take logarithm of both sides, we will obtain (5.175) just as required.

Problem 5.40 Solution

For a k-class classification problem, we need to use softmax activation
function and also the error function is now given by (5.24). Therefore, the
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Hessian matrix should be derived from (5.24) and the cross entropy in (5.184)
will also be replaced by (5.24).

Problem 5.41 Solution

By analogy to Prob.5.39, we can write:

(27T)W/2

p(Dl]a) = p(D|WMAP)p(WMAP|C¥)W

Since we know that the prior p(w|a) follows a Gaussian distribution, i.e.,
(5.162), as stated in the text. Therefore we can obtain:

Inp(D|a)

1
In p(D|wpmap) + In p(wyapla) — 2 In|A| + const

T

W 1
In p(D|wpap) — gw w + Elna— §ln |A| + const
w 1
= —E(wpap) + Elna— Eln |A| + const

Just as required.

0.6 Kernel Methods

Problem 6.1 Solution

Recall that in section.6.1, a, can be written as (6.4). We can derive:

an, = _%{WT(P(Xn)_tn}
1
= _Z{wl(pl(xn)"‘w2¢)2(xn)+-'-+wM§bM(Xn)_tn}
_ W _Wwe _ _WwM in
- 1 (,bl(xn) 1 (,DZ(Xn) 1 (,bM(xn)+ 1
= (cn- %)gbl(xn) +(cn - %)gbz(xn) ot len- wTM)ng(xn)

Here we have defined:

_ tn/A
C p1(Xp) + Po(Xn) + ...+ Par(Xp)

Cn

From what we have derived above, we can see that a, is a linear com-
bination of ¢(x,). What’s more, we first substitute K = ®o®7 into (6.7), and
then we will obtain (6.5). Next we substitute (6.3) into (6.5) we will obtain
(6.2) just as required.

Problem 6.2 Solution
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©) _

If we set w 0 in (4.55), we can obtain:

N
W(T+1) = Z neptnd,
n=1

where N is the total number of samples and ¢, is the times that ¢, ¢, has
been added from step O to step 7+ 1. Therefore, it is obvious that we have:

N
wW = Z Antn,
n=1

We further substitute the expression above into (4.55), which gives:

N N

1
Z agzpr )tn‘pn = Z aﬁzr)tn(pn + ntnd,
n=1 n=1

In other words, the update process is to add learning rate 1 to the coeffi-
cient a, corresponding to the misclassified pattern x,,, i.e.,

™ = ol

Now we similarly substitute it into (4.52):

F(wTp(x))
N

F(OY antndpl p(x))
n=1

y(x)

N
f( Z Antnk(X,,X))
n=1

Problem 6.3 Solution

We begin by expanding the Euclidean metric.

x-x,)7(x—x,)

2
X — X5
T T
(x" —x,)(x—xp)

_ T T T
= X X—-2X,X+X,X,

Similar to (6.24)-(6.26), we use a nonlinear kernel k(x,,x) to replace x,:fx,

which gives a general nonlinear nearest-neighbor classifier with cost function
defined as:
k(x,X) + k(X,,X,) — 2k(X,,X)

Problem 6.4 Solution

To construct such a matrix, let us suppose the two eigenvalues are 1 and
2, and the matrix has form:
a b
c d ]
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Therefore, based on the definition of eigenvalue, we have two equations:

{ (@a-2)(d-2)=bc (1)
(a-1(d-1)=bc (2)
(2)-(1), yielding:

a+d=3

Therefore, we set a =4 and d = —1. Then we substitute them into (1), and
thus we see:

bc=-6

Finally, we choose b = 3 and ¢ = —2. The constructed matrix is:
4 3
-2 -1

Problem 6.5 Solution

Since k1(x,x’) is a valid kernel, it can be written as:

k1(x,x) = )" p(x)
We can obtain:
k(x,x) = cki(x,x) = [vep®)]" [Vepx))]
Therefore, (6.13) is a valid kernel. It is similar for (6.14):
E(x,x) = fF@k1(x,x)f &) = [f@e@®)]” [f&)pE)]

Just as required.
Problem 6.6 Solution

We suppose g(x) can be written as:

q(x) = anx™ + an_12" 1 + ... + a1x + ag
We now obtain:
E(x,x) = apki(x,x)" + an_lkl(x,x’)n_l + ..+ a1ki1(x,X) + ag

By repeatedly using (6.13), (6.17) and (6.18), we can easily verify k(x,x’)
is a valid kernel. For (6.16), we can use Taylor expansion, and since the
coefficients of Taylor expansion are all positive, we can similarly prove its
validity.

Problem 6.7 Solution

To prove (6.17), we will use the property stated below (6.12). Since we
know k1(x,x') and ko(x,x’) are valid kernels, their Gram matrix K; and Ky
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are both positive semidefinite. Given the relation (6.12), it can be easily
shown K = K; + Kj is also positive semidefinite and thus k(x,x’) is also a
valid kernel.

To prove (6.18), we assume the map function for kernel %1(x,x’) is (,b(l)(x),
and similarly ¢(2)(x) for ko(x,x’). Moreover, we further assume the dimension
of ([)(l)(x) is M, and ¢(2)(x) is N. We expand k(x,x’) based on (6.18):

k(x,x') k1(x,x)ka(x,x)

— (p(l)(X)T(p(l)(X,)(P(Z)(X)T(P(Z)(X,)
M N
= Y @) Y ¢P P )
j=1

i=1
M N

- 35 fotaoo] o)
i=1j=1

MN
= Y r@Pr(x) = )T )
k=1

where ¢§1)(x) is the ith element of ¢V(x), and ¢§2)(x) is the jth element

of ¢@(x). To be more specific, we have proved that k(x,x’) can be written as
dx)T p(x'). Here ¢p(x) is a MN x 1 column vector, and the kth (¢ = 1,2,..., MN)
element is given by (/)(il)(x) X (/)5.2)(x). What’s more, we can also express i, in
terms of k:

i=(k-1)oN+1 and j=(k-1)oN+1

where @ and © means integer division and remainder, respectively.
Problem 6.8 Solution

For (6.19) we suppose k3(x,x') = g(x)T g(x), and thus we have:
k(x,x') = k3(px),px) = gdpx) g(px) = F®T Fx)

where we have denoted g(¢p(x)) = f(x) and now it is obvious that (6.19)
holds. To prove (6.20), we suppose x is a N x 1 column vector and Aisa N x N
symmetric positive semidefinite matrix. We know that A can be decomposed
to QBQ”. Here Q is a N x Northogonal matrix, and B is a N x N diagonal
matrix whose elements are no less than 0. Now we can derive:

kx,x) = xTAx =x7QBQTx = (QTx)"B(Q’x) = y’By’'
N N
= Y Biiyiy; = )_(VBiiy)(V/Biiy,) = o) px)
i=1 i=1

To be more specific, we have proved that k(x,x') = ¢p(x)7 ¢(x'), and here
¢(x) is a N x 1 column vector, whose ith (i = 1,2,...,N) element is given by

Biiyi, i-e., /Bii(QTx);.
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Problem 6.9 Solution

To prove (6.21), let’s first expand the expression:

k(x,x) = ka(xa,x;)+kb(xb,x'b)

M N
Y 6P x,) + Y PP xp)p P (x,)
i=1 j=1
M+N ,
Y or®pr(x) = ¢x) p(x')
k=1

where we have assumed the dimension of x, is M and the dimension of
xp is N. The mapping function ¢p(x) is a (M + N) x 1 column vector, whose kth
(k =1,2,..,M +N) element ¢ (x) is:

P (x) 1<k<M

Pr(x) = { ¢ (x) M+1<k<M+N

(6.22) is quite similar to (6.18). We follow the same procedure:

k(X,x’) = ka(xa,X;)kb(Xb,X;)
L@ @'\ S (b) by
= i:zl¢ia (xa)p} (xa)jzzlgbj (x5)9”(x3,)

M N , ,
= ) [0 Pixe)]| [0 )6 ;)

i=1j=1
MN

= Y @) = ¢ Ppx)
k=1

By analogy to (6.18), the mapping function ¢(x) is a M N x 1 column vector,
whose kth (k = 1,2,..., MN) element ¢ (x) is:

Pr(x) = ¢ (x4) x P (xp)

To be more specific, X, is the sub-vector of x made up of the first M ele-
ment of X, and x; is the sub-vector of x made up of the last N element of x.
What’s more, we can also express i,/ in terms of k&:

i=(k-1oN+1 and j=(k-1)oN+1
where @ and ® means integer division and remainder, respectively.

Problem 6.10 Solution

According to (6.9), we have:

N
yx) = k@TE+AIY 't = k@ a= Y f(x,) fx)a, =

n=1

f(x)

N
Y Fxn)an
n=1
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We see that if we choose k(x,x') = f(x)f(x) we will always find a solution
y(x) proportional to f(x).

Problem 6.11 Solution

We follow the hint.
k(x,x') = exp(-x!x/202)-exp(x!x'/c?)-exp(—(x) x'/26?)
xT'x/ (&?/)2
= exp(-x'x/20%)-|1+ 5+ 021 +-- | exp(-(x)Tx'/26?%)
o !

o) p(x)

where ¢p(x) is a column vector with infinite dimension. To be more spe-
cific, (6.12) gives a simple example on how to decompose (xTx')2. In our case,
we can also decompose xTx' )k,k = 1,2,...,,00 in the similar way. However,
since k£ — 00, i.e., the decomposition will consist monomials with infinite de-
gree. Thus, there will be infinite terms in the decomposition and the feature
mapping function ¢(x) will have infinite dimension.

Problem 6.12 Solution

First, let’s explain the problem a little bit. According to (6.27), what we
need to prove here is:

k(A1,Ag) = 21410420 = A )T p(Ay)

The biggest difference from the previous problem is that ¢p(A) is a 2P x 1
column vector and instead of indexed by 1,2, ...,2'P! here we index it by {U|U <
D} (Note that {U|U < D} is all the possible subsets of D and thus there are
2/P! elements in total). Therefore, according to (6.95), we can obtain:

PANTPA) = Y pu(A1dy(As)

UcD

By using the summation, we actually iterate through all the possible sub-
sets of D. If and only if the current iterating subset U is a subset of both A;
and Ag simultaneously, the current adding term equals to 1. Therefore, we
actually count how many subsets of D is in the intersection of A; and As.

Moreover, since A and Ag are both defined in the subset space of D, what
we have deduced above can be written as:

(AN P(Ag) = 24174
Just as required.

Problem 6.13 SolutionWait for update
Problem 6.14 Solution
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Since the covariance matrix S is fixed, according to (6.32) we can obtain:
g(p,x) = VyInp(xip) = % (—%(x— ”)TS—I(x—p)) =S x- 1)
Therefore, according to (6.34), we can obtain:
F = Ex [g(p, 080" | = S5 [x- wix -] 87
Since x ~ A (x|, S), we have:
Ex [(x— px- p)T] =S

So we obtain F = S7! and then according to (6.33), we have:

k(x,x) = g(p,x) Flg(p,x) = x-p'S7(x - p)

Problem 6.15 Solution

We rewrite the problem. What we are required to prove is that the Gram

matrix K:
k11 k1o
ka1 koo

where k;; (i,j = 1,2) is short for k(x;,x;), should be positive semidefinite. A
positive semidefinite matrix should have positive determinant, i.e.,

b

|

k12k21 < k11k22.

Using the symmetric property of kernel, i.e.,k12 = ko1, we obtain what
has been required.

Problem 6.16 Solution

Based on the total derivative of function f, we have:

N af
AW ¢, (w+AW) o, ... (w+ AW Py ]| = ¥ ———  AwT
f((w+ W) 1, (W+AW)" Py, ...,(W+ Aw) ‘/’N) n;la(wT‘pn) w o,
Which can be further written as:
f((w+Aw)T(,b W+AW) ¢, ..., (w+AW) P ) = % _of oL | Aw
1> 200y N = 6(WT¢n) n

Note that here ¢, is short for ¢(x,). Based on the equation above, we can
obtain: N
of T

Vol =3 =——¢
“= Lot



134

Now we focus on the derivative of function g with respect to w:

0
= £ . ow’
owTw)

Vwg

In order to find the optimal w, we set the derivative of J with respect to
w equal to 0, yielding:

Vad = Vof + Vg = %L-¢T+ 98 owT =0
v wEOOWE T SawTg,) T dwTw)
Rearranging the equation above, we can obtain:
1 ¥ of
V7 2 T,
Where we have defined: @ = 1+ -2 and since g is a monotonically

. . . a(WTW) ’
increasing function, we have a > 0.

Problem 6.17 Solution
We consider a variation in the function y(x) of the form:
y(x) = y(x) +en(x)

Substituting it into (6.39) yields:

1y 9
Ely+enl 5 Y. [ {y+en—ta} v®)dé
n=1

1 N
= 5L [ 10—t +2En - (y-tw) +Een*}v@)dE
n=1
N
= Elyl+e ) | {y—tanvdé&+0(?)
n=1

Note that here y is short for y(x, +¢&), n is short for n(x, + &) and v is short
for v(&) respectively. Several clarifications must be made here. What we have
done is that we vary the function y by a little bit (i.e., en) and then we expand
the corresponding error with respect to the small variation €. The coefficient
before € is actually the first derivative of the error E[y + en] with respect to
€ at € = 0. Since we know that y is the optimal function that can make E
the smallest, the first derivative of the error E[y +en] should equal to zero at
€ =0, which gives:

N
5 f (3 + &)t} + EV@)E = 0
n=1
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Now we are required to find a function y that can satisfy the equation
above no matter what 1 is. We choose:

nx) = 6(x—2z)

This allows us to evaluate the integral:

N N
Z {yx,+&)— tun(x, + v (&)dé = Z {y(z)-tplv(z—-x,)
n=1 n=1
We set it to zero and rearrange it, which finally gives (6.40) just as re-
quired.
Problem 6.18 Solution

According to the main text below Eq (6.48), we know that f(x, ), i.e., f(z),
follows a zero-mean isotropic Gaussian:

f(z) = N (2]0,0%T)

Then f(x —xp,,t —tn), i.e., f(z—2z,) should also satisfy a Gaussian distri-

bution:
f(z—2p) = N (2lzp,0%])

Where we have defined:
Zy = (xm: tm)

The integral [ f(z—z,)d¢ corresponds to the marginal distribution with
respect to the remaining variable x and, thus, we obtain:

ff(z—zm)dt = N (x|xpm,02)

We substitute all the expressions into Eq (6.48), which gives:
pt,x) ¥, N (2|Zy,, 021)

[pt,x)dt ¥, N (xlxm,02)

Yo sazexp (-3(z—2,)T (02D Nz -2,))

p(tlx)

1 1
L ooy exD (—@(x —xm)z)

En gagrexp (gt an?)exp (gt - ta)?)

1 1
Ym GrgniE €XD (—W(x _xm)2)

1

S ik o N
202

\/ 2
" Ym (2,,012)1/2 exp (_ 21172 (x—xm )2) 2n0
Y p - N (tltn,0?)
n

exp (— (t—tn)2)



136

Where we have defined:

exp (—#(x - xn)2)

We also observe that:

Znnzl
n

Therefore, the conditional distribution p(¢|x) is given by a Gaussian Mix-
ture. Similarly, we attempt to find a specific form for Eq (6.46):

Jfx—x,,8)dt
Yo [ Flx—xm,t)dt
N (x|, 02)

Yo N (x|, 02)
= ]In

k(x,x;,)

In other words, the conditional distribution can be more precisely written
as:
p(tlx) = Y k(x,x,) - N (tlEy,0%)
n

Thus its mean is given by:

Elt|x] = Zk(x,xn) “tn

Its variance is given by:

E[(¢|x)?] - E[¢|x]?

2
> k(x,x)- (2 +0%) - (Zk(x,xn) : tn)

varl[¢|x]

Problem 6.19 Solution
Similar to Prob.6.17, it is straightforward to show that:

y(x) =) tpk(x,X,)

Where we have defined:

g(x, —x)

k(x,x,)= ———
" > 8%, —X)
Problem 6.20 Solution

Since we know that ty.1 = (¢1,29,....tN,tn+1)L follows a Gaussian distri-
bution, i.e., ty+1 ~ A/ (tny+110,Cn+1) given in Eq (6.64), if we rearrange its
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order by putting the last element (i.e., £y+1) to the first position, denoted as
ty 1, it should also satisfy a Gaussian distribution:

tne1 = ENs1,E1, o, tN) T ~ A (En4110,Cni1)

Where we have defined:

ckT)

Where k and ¢ have been given in the main text below Eq (6.65). The
conditional distribution p(¢px+1/ty) should also be a Gaussian. By analogy to
Eq (2.94)-(2.98), we can simply treat ty+1 as X4, ty as xp, c as Z,4, k as Zp,,
kT as 2, and Cy as Zpp. Substituting them into Eq (2.79) and Eq (2.80)
yields:

Mg = (c-k'CRK)™

And:

Agp = —(c -k Cy'k) Kk Cy

Then we substitute them into Eq (2.96) and (2.97), yields:
PUNL1ItN) = A (g, AZa)

For its mean p,,;,, we have:

Bap = 0-(c-K"CK-[~(c-K"Cilk) K Cl| - (b - 0)

k' Cy'ty = m(xy 1)

Similarly, for its variance A;(} (Note that here since ¢ .1 is a scalar, the
mean and the covariance matrix actually degenerate to one dimension case),
we have:

Ay; = c-k'Cy'k = 02 (xy+1)

Problem 6.21 Solution

We follow the hint beginning by verifying the mean. We write Eq (6.62)
in a matrix form:

1
Cy = —00T + Iy
a

Where we have used Eq (6.54). Here @ is the design matrix defined below
Eq (6.51) and Iy is an identity matrix. Before we use Eq (6.66), we need to
obtain k:
[o(x1, %N +1), kX2, XN 41), -oos RN, XN 411

1
= E[¢(xl>T¢(xN+1>,¢<xz)T¢(xN+1>,...,¢<xn)T¢(xN+1)]T

k

1
= —0¢xy.1)”
a
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Now we substitute all the expressions into Eq (6.66), yielding:
mxy+1) = @ Lpxy.1) @7 [a—lcpcpT + ﬁ—llN] Tt
Next using matrix identity (C.6), we obtain:
@7 a_l(I)(I>T+,6_11N]_1 = ap [ﬁCDT(D+aIM]_1<DT = apSy®”
Where we have used Eq (3.54). Substituting it into m(xy 1), we obtain:
m(xn+1) = Ppxn+1)T SN @t =< pxn1)T, pSN DTt >

Where < -, - > represents the inner product. Comparing the result above
with Eq (3.58), (3.54) and (3.53), we conclude that the means are equal. It is
similar for the variance. We substitute ¢, k and Cy into Eq (6.67). Then we
simplify the expression using matrix identity (C.7). Finally, we will observe
that it is equal to Eq (3.59).

Problem 6.22 Solution

Based on Eq (6.64) and (6.65), We first write down the joint distribution
for ty+r = [t1(X), t2(X), ..., L ()17

p(niL) = A (tn+210,CNL)
Where Cy ., is similarly given by:

C _ Cl,N K
N+L= KT CN+1,N+L

The expression above has already implicitly divided the vector ty .z, into
two parts. Similar to Prob.6.20, for later simplicity we rearrange the order
of tyirdenoted as tn+r = [EN+1yees ENLL, 1, EN1T. Moreover, ty.z, should
also follows a Gaussian distribution:

p(niL) = N En+110,CnsL)
Where we have defined:

¢ _( Cnsin+r KT

Now we use Eq (2.94)-(2.98) and Eq (2.79)-(2.80) to derive the conditional
distribution, beginning by calculate A, :

Ada = Cye1nr-K'-Clyy K™

and Agp:
Agy = —(Cyniin:z—K'-Ciy KK -Cly
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Now we can obtain:
PUN+1,-IN+LIEN) = JV(ﬂaw,A;i)
Where we have defined:
Hap = 0+K"-Cl -ty =K' -Cy -ty

If now we want to find the conditional distribution p(¢;[ty), where N +1 <
J <N + L, we only need to find the corresponding entry in the mean (i.e., the
(j — N)-th entry) and covariance matrix (i.e., the (j — N)-th diagonal entry) of
pEN+1,...,tN+LItN). In this case, it will degenerate to Eq (6.66) and (6.67)
just as required.

Problem 6.24 Solution

By definition, we only need to prove that for arbitrary vector x # 0, xTWx
is positive. Here suppose that W is a M x M matrix. We expand the multipli-
cation:

M M M
x'Wx = Z ZWij-xi~xj = ZWii-x?
i=1;=1 i=1

where we have used the fact that W is a diagonal matrix. Since W;; > 0,
we obtain x? Wx > 0 just as required. Suppose we have two positive definite
matrix, denoted as A; and Ag, i.e., for arbitrary vector x, we have xTA1x>0
and xT Agx > 0. Therefore, we can obtain:

xT(A1 +Ag9)x = xTAlx + xTA2x >0

Just as required.
Problem 6.25 Solution

Based on Newton-Raphson formula, Eq(6.81) and Eq(6.82), we have:

new
ay

ay —(-Wy - Ci) Mty - oy - Cylan)
= ay+(Wy+Cy) l(ty —on —Cxilan)
= (Wy+CyH) Wy +Cyhay +ty —on —Cxray]
= CnNCy' (Wy +Cy) Nty —on + Wyay)
= Cn(CyWy +D 7Lty —on +Wyan)
Just as required.

Problem 6.26 Solution
Using Eq(6.77), (6.78) and (6.86), we can obtain:

plan+1lty) [P(GN+1|3N)P(3N|tN)daN

f N(an+1k?Cytay,c — kT Cy'k)-N(ayla), H Hday
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By analogy to Eq (2.115), i.e.,

p(y) = fp(yIX)p(X)dx
We can obtain:
plan+1lty) = NAp+b, L1+ AATAT) (%)
Where we have defined:
A=K'C,b=0,L! =c-Kk'CHk

And
u= a}{,, A=H
Therefore, the mean is given by:
Ap+b =k'Cyla}y = kT Cy'Cy(ty —on) =k  (ty —on)
Where we have used Eq (6.84). The covariance matrix is given by:
L '+AA AT = c-K'Cilk+ KT CH M KT CHT
= c-kI(Cy{ -CyHICHK
= =K' (Ci - G Wy + ) IC K
= c-K'(Cy - (CyWNCy + CH K
Where we have used Eq (6.85) and the fact that Cp is symmetric. Then we

use matrix identity (C.7) to further reduce the expression, which will finally
give Eq (6.88).

Problem 6.27 Solution(Wait for update) This problem is really complicated.
What’s more, I find that Eq (6.91) seems not right.

0.7 Sparse Kernel Machines

Problem 7.1 Solution
By analogy to Eq (2.249), we can obtain:

1 Ny

1
Y =k t=+1
N1 = Z, (x, %z)

n=1

p(x|t) =
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where N, represents the number of samples with label # = +1 and it is
the same for N_;. Z; is a normalization constant representing the volume of
the hypercube. Since we have equal prior for the class, i.e.,

o085 1=+
P05 t=-1

Based on Bayes’ Theorem, we have p(¢|x) o p(x|t)- p(¢), yielding:

N+1
Z k(x,x,) t=+1

'~ P
px) = ’

1
—Z k(x,x,) t=-1
-1p=1

NI~ N[+

Where 1/Z is a normalization constant to guarantee the integration of the
posterior equal to 1. To classify a new sample x*, we try to find the value ¢t*
that can maximize p(¢|x). Therefore, we can obtain:

N+1

+1 if Z -k(x, xn)>—z -k(X,X5,)
+1 N_1
t* = n= n= (*)
N+1
-1 if Z -k(x, xn)<—z k(x,%x,)
41 = N_1;
If we now choose the kernel function as k(x,x’) = xIx’,we have:
N+1 N+1
Z k(x,x,) = Z x %, = X' %41

N +1p +1 p=1
Where we have denoted:

1 N+1

Xi1= Xn

+1 pn=1

and similarly for Xx_;. Therefore, the classification criterion (x) can be
written as:

t*— +1 if X,1=2X_1
-1 if X,1<X_1

When we choose the kernel function as k(x,x’) = ¢p(x)T ¢p(x'), we can sim-
ilarly obtain the classification criterion:

o +1 if P(x41) = P(x_1)
-1 if P(x41) < P(x_1)
Where we have defined:

N+1

(ﬁ(X+1) = N,
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Problem 7.2 Solution

Suppose we have find wy and b¢, which can let all points satisfy Eq (7.5)
and simultaneously minimize Eq (7.3). This hyperlane decided by wg and
by is the optimal classification margin. Now if the constraint in Eq (7.5)
becomes:

tn(Wl p(x,)+b) 2y

We can conclude that if we perform change of variables: wo— > ywg and
b— > yb, the constraint will still satisfy and Eq (7.3) will be minimize. In
other words, if the right side of the constraint changes from 1 to y, The new
hyperlane decided by ywg and yb is the optimal classification margin. How-
ever, the minimum distance from the points to the classification margin is
still the same.

Problem 7.3 Solution

Suppose we have x; belongs to class one and we denote its target value
t1 = 1, and similarly xo belongs to class two and we denote its target value
to = —1. Since we only have two points, they must have ¢;-y(x;) = 1 as shown
in Fig. 7.1. Therefore, we have an equality constrained optimization problem:
wT(p(x1)+ b=1

1
minimize —||w| |2 s.t. T
2 w Pp(xg)+b =-1

This is an convex optimization problem and it has been proved that global
optimal exists.

Problem 7.4 Solution

Since we know that

1
= Tiwll
Therefore, we have:
1 2
— = llwll
0

In other words, we only need to prove that

9 N
Iwli? = Y an
n=1

When we find th optimal solution, the second term on the right hand side
of Eq (7.7) vanishes. Based on Eq (7.8) and Eq (7.10), we also observe that its
dual is given by:

_ N1,
L@ =) ap—=llwll
n=1 2
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Therefore, we have:
1. . N 1,
—llwll* = L(a) = L(a) = )_ an— =Wl
2 = 2

Rearranging it, we will obtain what we are required.
Problem 7.5 Solution

We have already proved this problem in the previous one.
Problem 7.6 Solution

If the target variable can only choose from {—1,1}, and we know that
p(t =1ly) = o(y)
We can obtain:
pt=-1y)=1-p( = 1ly) = 1-0(y) = o(-y)
Therefore, combining these two situations, we can derive:
p(tly) = o(yt)

Consequently, we can obtain the negative log likelihood:

N N N
~InpM) = ~In [[ 0(yntn) = = Y In0Gntn) = Y. ELr(yntn)
n=1 n=1 n=1

Here D represents the dataset, i.e.,.D = {(x,,,t,);n = 1,2,...,N}, and Err(yt)
is given by Eq (7.48). With the addition of a quadratic regularization, we ob-
tain exactly Eq (7.47).

Problem 7.7 Solution

The derivatives are easy to obtain. Our main task is to derive Eq (7.61)
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using Eq (7.57)-(7.60).

N =~ 1 9 N ~
n=1 n=1
N N R
- an(€+6n+yn_tn)_Zd\n(€+6n+yn_tn)
n=1 n=1

N 1 N N .
CY (En+&p)+ §||w||2 — Y @n+n)én— ) @n+0n)n
n=1 n=1 n=1

N N
=Y anle+yn—tn)— ) @nle+yn—tp)
n=1

n=1

N N 1 9 N N
n=1 n=1 n=1

N N
- Z (an +d\n)€_ Z (an _é\n)(yn - tn)
n=1 n=1
1 9 N N
= —||W|| - Z(an +6n)6_ Z(an_d\n)(yn_tn)
2 n=1 n=1

1 N N N
- 5||W||2 =Y (an— @)W PR, +b—1,)— Y (an+ane+ Y.
n=1 n=1 n=1

1 N N N
= §||w||2— Y (@n @)W px,)+b)— Y (an+ane+ Y (an—an)ty
n=1 n=1 n=1

N N
Y (an+@nde+ Y (an—@nlty

1 2 N T
= Zwll* =) (an—@)W $(xp) -
n=1 n=1 n=1

2

1 9 9 N N
= EIIWII —lIwll® =) (an+@nde+ Y (an—@nltn
n=1 n=1

1 9 N N
= _EHW“ _Z(an+&n)€+ Z(an_an)tn
n=1 n=1

Just as required.
Problem 7.8 Solution

This obviously follows from the KKT condition, described in Eq (7.67) and
(7.68).

Problem 7.9 Solution

The prior is given by Eq (7.80).

M
pwla) = [[AH(0,a;") = #(w|0,A™)
i=1

Where we have defined:
A =diag(a;)
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The likelihood is given by Eq (7.79).

ptIX,w,p) = ﬁp(tn|xn,w,ﬁ‘1)
n;l
= nﬂmmw%(xn),ﬁ—l)
= N (tlow,f'D)
Where we have defined:

D = [p(x1), Pp(x2), ...,(P(Xn)]T

Our definitions of ® and A as consistent with the main text. Therefore,
according to Eq (2.113)-Eq (2.117), we have:

pwit,X a,p) = A (m,2)
Where we have defined:
> =A+p0To)!
And
m = @7t
Just as required.
Problem 7.10&7.11 Solution

It is quite similar to the previous problem. We begin by writting down the
prior:

M
pwla) = [[A4(0,a;1) = #(wl0,A™)
i=1

Then we write down the likelihood:

N
p(tn|Xn,W,ﬁ_l)
n=1
N
N (W p(x,), 1)
=1

p(tIX,w, )

n

= N(t|Ow,B ')

Since we know that:

ptX a,p) = fp(th,w,,B)p(wla)dw
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First as required by Prob.7.10, we will solve it by completing the square.
We begin by write down the expression for p(t|X,w, §):

rtX, a,p)

f N (w|0, A" N (t|®w, D) dw
(ﬁ)N/Z.;. ﬁ am-fexp{—E(w)}dw
21 @emMz St

Where we have defined:

B

1
E(w) = ngAw+ Ellt—(l)wll2

We expand E(w) with respect to w:

E(w) = %{WT(A+ T ®)w - 26tT (Ow) + ﬁtTt}

1
= §{WTZ_1W—2mTZ_1W+,BtTt}
1
= 5{(W—m)TZ_l(w—m)+ﬂtTt—mTZ_1m}

Where we have used Eq (7.82) and Eq (7.83). Substituting E(w) into the
integral, we will obtain:

_ (B 1

ail/z -fexp{—E(w)}dw
1

= (E)N/2 . ;
2 2m)M2

:E ﬁjg

1 _
ail/2 .(zn)M/2 . IZII/zexp{ _ §(ﬁtTt _mT> lm)}

3
I
—

_  Bove sz 17 o1e, _Llor, o rso1
= (271) IZIV% I] ;% -exp 2(ﬁt t-m" X 'm)

m=1

_ (ﬁ)N/2_|z|1/2_ ﬁ a1/2~exp{—E(t)}
27 m=1 !

We further expand E(t):

E(t) %(,BtTt—mT > 1m)

= %(,BtTt—(,BZ(I)Tt)TZ‘l(ﬁZd)Tt))

1
= E(ﬁtTt -pATozz"120Tt)

- %(ﬁtTt— gt oze’t)
- %tT(ﬁI—ﬁ2(I>Z(I)T)t
_ %tT pI- po(A + poT @) 10T |t

1 1
= 51;T(,6‘1I+(I)A‘lcpT)‘lt = 5tTC‘lt
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Note that in the last step we have used matrix identity Eq (C.7). There-
fore, as we know that the pdf is Gaussian and the exponential term has been
given by E(t), we can easily write down Eq (7.85) considering those normal-
ization constant.

What’s more, as required by Prob.7.11, the evaluation of the integral can
be easily performed using Eq(2.113)- Eq(2.117).

Problem 7.12 Solution

According to the previous problem, we can explicitly write down the log
marginal likelihood in an alternative form:

N N
InptX a,p) = —lnﬁ——ln2n+—ln|2|+ Zlnal E(t)
We first derive:
dE(t) 1d T
= >
da; 2dal(m m)
1d T IvgT
= —= tTPXI It
2dal ﬁ )
= t'PIDt
2d0¢l(/3 )

1 Il
5 ﬂd (B )- i]
1 1
= ST @TH@THT 1] = Sm?,

In the last step, we have utilized the following equation:

d
—Tr(AX'B) = -X TATBTX T
dX
Moreover, here I; is a matrix with all elements equal to zero, expect the
i-th diagonal element, and the i-th diagonal element equals to 1. Then we
utilize matrix identity Eq (C.22) to derive:

dn|Z| _  dln|Z7}

da; B da;
= -Tr|X
= —Zi

Therefore, we can obtain:

dnp 1 1 , 1
- _Cm?_Zy
da; 2a; 2 g“u




Set it to zero and obtain:

1-ai2i _ vi
m;

%

1
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Then we calculate the derivatives of In p with respect to § beginning by:

Then we continue:

dE(t)
ap

Therefore,

din|Z| _  dIn|Z7}
g dap
d T
- —Tr[Z%(AJr,B(D <1>)]
= —Tr[zchcb]
1, 1d, o
= —t't— x>
2 2dﬁ( Im)
1 T 1d T 1 T
= ZtTt-= ox3 '@
St 2d,6(ﬂ t t)
_ Ly 1d — T ozot)

2" ' 2dp
W ptlozo’t - 1 ﬁ2i(th>zq>Tt)
2 2" 4p
{tTt 26tT @z 0Tt - B2 ﬁ(tTCDZ(I)Tt)}
{tTt 2t7(®m) - f —ﬁ(tTcpchTt)}
Z—l
{t"t—2¢" (@m) - 2 Trl——= (tT(I)Z(DTt) I}

ap
t7t— 2t (@m) + ﬁ2Tr[Z(<I)Tt)(<I)Tt)TZ 0" o]}

t"t -2t (@m) + Tr[mm” - o7 @]}

HNIHNDIH DN N

= E{tTt —2tT(®m) + Tr[(I)mmT . CI)T]}
1 2

= —||[t—®m]||
2

we have obtained:

dlnp l(N
dg 2

2 T
5° [t— ®m]||2 - Tr[Z® m])
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Using Eq (7.83), we can obtain:

o070 = zoTo+p'ZA-p1ZA
= IpoT®+A)p-pIZA
= It -pzA
= (I-ZA)p!

Setting the derivative equal to zero, we can obtain:

_lt-®m|? _ [|t—®m]]?
T N-Tr(I-XA)  N-Y,7;

,6_1
Just as required.

Problem 7.13 Solution

This problem is quite confusing. In my point of view, the posterior should
be denoted as p(wlt,X,{a;,b;},ap,bp), where ag,bg controls the Gamma dis-
tribution of B, and a;,b; controls the Gamma distribution of a;. What we
should do is to maximize the marginal likelihood p(t|X,{a;,b;},ap,bp) with
respect to {a;,b;},ap,b5. Now we do not have a point estimation for the hyper-
parameters § and «;. We have a distribution (controled by the hyper priors,
ie., {ai,bi},ap,bp) instead.

Problem 7.14 Solution

We begin by writing down p(¢|x,w, ). Using Eq (7.76) and Eq (7.77), we
can obtain:
plelx,w, %) = N (tw! ¢x),(6*)7H)

Then we write down p(w|X,t,a*,$*). Using Eq (7.81), (7.82) and (7.83),
we can obtain:
pwiX,t,a*, ") = ¥ (wm,Z)

Where m and X are evaluated using Eq (7.82) and (7.83) given a = a*
and § = B*. Then we utilize Eq (7.90) and obtain:

pEx, X, t,a*,f*) = f,/V(t|wT<p(x),(ﬁ*)—l)mw|m,2)dw

f</V(t|¢(X)TW,(ﬁ*)_l)ﬂ(wlm,Z)dw

Using Eq (2.113)-(2.117), we can obtain:
p(tIx,X,t,a*, %) = N (u,0%)

Where we have defined:
p=m"Ppx)
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And
o2 = () 1+ )T ZPp(x)

Just as required.
Problem 7.15 Solution
We just follow the hint.

1
L(a) —§{N1n2n+1n|0| +tfC 1y

1 _ _
= —§{N1n2n +In|C_;|+In|1+a; 1(pLTC_i1¢pi|

-1 T-1
C_i‘pi‘Pi C

wlCl - 2= iy
" ait+@]Clle; }
Clg;plC}

—_—
a;i+@l Cly;

1 _ _ 1
= L(a)-;Ill+a; loTC lo, 1+ 5tT

2
1 1 q;
= Lla_)-=In|l+a; s;|+-—
(a_;) 2 n| a; sil 2@+,
2
- Lla)--m&rsi, 1 4
2 a; 2a;+s;
1 q?
= L(a_))+=|lna; -In(a; +s;) + — =La_;)+ Ma;)
2 a;+S;

Where we have defined A(a;), s; and q; as shown in Eq (7.97)-(7.99).
Problem 7.16 Solution
We first calculate the first derivative of Eq(7.97) with respect to «;:

oA 1.1 1 q?

aa’i 2 a; _ai+s,~ _(ai+si)2
Then we calculate the second derivative:

21 1.1 1 2q?
+ + .
(a; +8))2%  (a;+s;)3

0z 2 a2
1 l

Next we aim to prove that when a; is given by Eq (7.101), i.e., setting the
first derivative equal to 0, the second derivative (i.e., the expression above) is
negative. First we can obtain:

s? 5iq7
1 15
5 +8; = B
q; —Si q; —Si

a;+s; =



151

Therefore, substituting a; +s; and a; into the second derivative, we can

obtain:

A
aa?

Just as required.

1[ (@?-s) (@7-3) 297(g7—s)’
2 s‘i1 S?Q? s?q?
1 qj(q} =51  sHqi-s)®  2si(q} -s)
2 qisy sia; 514}
1(g7-s)”
E1(14—34’[_q‘i‘+slz.+2si(qlz-—Si)]

iSi

2 )2
lu[_(qZ—si)z]
2 q?s? '
1(g?—s)*
2 q‘ils‘i1

Problem 7.17 Solution

We just follow the hint. According to Eq (7.102), Eq (7.86) and matrix
identity (C.7), we have:

Qi

= @ Ct

= ol 1+oA dT) 1t

= @l (BI-BIDA + @7 pID) '@ pI)t
= @7 (f-poA+po @) 0 )t

= ¢T(p-proz0)t

= Polt- ol ozt

Similarly, we can obtain:

Just as required.

S; = ¢?C_1(Pi
¢! (p-pOZO g,
Bol @~ frpl DD,

Problem 7.18 Solution

We begin by deriving the first term in Eq (7.109) with respect to w. This
can be easily evaluate based on Eq (4.90)-(4.91).

ow

N

0 N B .
—{ ¥ talnya + A=t IA-ya)} = 3 (t = ya)p,, = O"(6-Y)
n=1

n=1
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Since the derivative of the second term in Eq (7.109) with respect to w
is rather simple to obtain. Therefore, The first derivative of Eq (7.109) with

respect to w is:
Olnp

=0T (t-y)-Aw

For the Hessian matrix, we can first obtain:

20"y} = é%{(tn—ynm}
N 4
= _n;l%{yn"pn}
N oo(wl¢p,)
— _ZU‘;—W(I,?;

S
I
—

do(a) da
0a ow "

|
|
M=

S
Il
—

Where we have defined @ = w’ ¢,. Then we can utilize Eq (4.88) to derive:

i{q)T(t—y)} =- % o(1-0)-¢,-¢T = ~-0TB®
ow = n n

Where B is a diagonal N x N matrix with elements b, = y,(1-y,). There-
fore, we can obtain the Hessian matrix:

o (al
H=—{ np}=—(d)TB<D+A)
ow U Oow

Just as required.
Problem 7.19 Solution
We begin from Eq (7.114).

ptlw")p(w*|a)2m)M2 x| V2

[ ﬁ P(tnlxn,W)] [ ﬁ JV(wi|O,ai_1)](2n)M/2|Z|1/2‘
n=1 i=1

p(tla)

w=w*

N
[ TT pttnln, )] - A (w10, A)- @) 2 22|
n=1 w

We further take logarithm for both sides.

Nl (t )+ 1InA( 0A)+%1 2 +11 b2
Y Inp(tplxn, w)+1InA (w0, 5 In27+ S ln| |”w:w*

n=1

Inp(t|a)

I
M=

n=1

1 1 1
[ty Iny, +(1-t,)In(1 - y,)] - “wlAwW - =1In|A|+=In|Z| + const] |
2 2 2 W=w*

N 1 5 1 1
= nX::l [tnIny, +(1-t,)In(1 - y,)] - §W Aw] + [élnIZI - éln |A| + const] |w:w*
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Using the Chain rule, we can obtain:

Oln p(t|a) _ Olnp(tla) ow
Oa; w=w' ow  Oa;lw=w"
Observing Eq (7.109), (7.110) and that (7.110) will equal 0 at w*, we can
conclude that the first term on the right hand side of In p(t|a) will have zero

derivative with respect to w at w*. Therefore, we only need to focus on the
second term:

Oln p(t|a) B 0

1 1
—In|Z|-=1n|A]
2 2

‘w:w*

oa; w=w"* oa;
It is rather easy to obtain:
0o 1 10
—~mnjAl=-=—[YInail] = —
aai[ 2 o |] 26ai[2i" ne; ] 2ai

Then we follow the same procedure as in Prob.7.12, we can obtain:

0o 1 1
“n|Z] = -=3;
aai[Z n|X[] 9 ii

Therefore, we obtain:
Olnp(t|a) 1 1
—— = — -2
oa; 2a; 2

Note: here I draw a different conclusion as the main text. I have also
verified my result in another way. You can write the prior as the product of
A (w; 10, ai_l) instead of A4 (w|0,A). In this form, since we know that:

1
2a;

o M _
Y A (wil0,a; ) = —(GIna; ~ %w?) =

1 .,
oa; i oa; 2 2

The above expression can be used to replace the derivative of —1/2w? Aw—

1/2In|A|. Since the derivative of the likelihood with respect to a; is not zero
at w*, (7.115) seems not right anyway.

0.8 Graphical Models

Problem 8.1 Solution

We are required to prove:

K
fp(x)dx = f Hp(xklpak)dx =1
x Xp=1
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Here we adopt the same assumption as in the main text: No arrows lead
from a higher numbered node to a According to Eq(8.5), we can write:

K
fp(x)dx H plaplpar)dx
X Xkp=1

K-1
= fp(xKlpaK) l_[ plxplpay)dx
x k=1

K-1
f f [p(xKlpaK) [T pCxr Ipak)de] dxi1dxg,..dxg_1
[x1,%2,....xx-1]1 Jxx k=1

K-1
f [ l_[ P(xklpak)f p(xKlpaK)de] dxi1dxs,..dxg_1
[x1,%2,....xk-1] * p=1 XK

K-1
f [ l_[ P(xklpak)] dx1dxe,..dxg_1
(21,202,011 * p=1

K-1
‘[[ H plxplpar)dxidxs,...dxg_1

X1,%2,..,Xk-11 =1
Note that from the third line to the fourth line, we have used the fact
that x1,x9,...xx_1 do not depend on xx, and thus the product from &2 =1 to
K —1 can be moved to the outside of the integral with respect to xx, and that
we have used the fact that the conditional probability is correctly normalized
from the fourth line to the fifth line. The aforementioned procedure will be
repeated for K times until all the variables have been integrated out.

Problem 8.2 Solution

This statement is obvious. Suppose that there exists an ordered num-
bering of the nodes such that for each node there are no links going to a
lower-numbered node, and that there is a directed cycle in the graph:

ag—ag — ...~ aN

To make it a real cycle, we also require ay — aj. According to the as-
sumption, we have a; < ag < ... < an. Therefore, the last link ay — a7 is
invalid since ay = aj.

Problem 8.3 Solution

Based on definition, we can obtain:

0.336,ifa = 0,6 =0
0.264,ifa =0, =1
0.256, ifa = 1,6 =0
0.144,ifa =1, =1

pla,b) = pla,b,c=0)+pla,b,c=1)=

Similarly, we can obtain:

0.6,ifa =0

p(a) :p(a,b:())-l-p(a,b:l):{ 04’ lfa = 1
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And
0.592,ifb =0

p(b) :p(a:O’b)+p(a: 1,b):{ 0408, ifb=1

Therefore, we conclude that p(a,b) # p(a)p(b). For instance, we have
pla=1,b=1) =0.144, p(a = 1) = 0.4 and p(b = 1) = 0.408. It is obvious
that:

0.144 = p(a=1,b=1)#pla=1)p(b=1) = 0.4 x 0.408

To prove the conditional dependency, we first calculate p(c):

p@= Y plab,e)=

{ 0.480, ifc =0
a,b=0,1

0.520, ifc =1

According to Bayes’ Theorem, we have:

0.400, ifa = 0,6 =0,c =0
0.277,ifa =0, =0,c =1
0.100,ifa =0, =1,¢=0
pla,ble) = pla,b,c) iy 0.415,ifa =0,b=1,c =1

’ p(c) 0.400, ifa =1,6 =0,c =0
0.123,ifa = 1,6 =0,c =1
0.100,ifa =1,6=1,¢=0
0.185,ifa =1,b=1,c =1

Similarly, we also have:

0.240/0.480 = 0.500, ifa = 0,c =0

pla,c) ) 0.360/0.520 = 0.692, ifa =0,c =1
p(e) ] 0.240/0.480 = 0.500, ifa = 1,¢ =0
0.160/0.520 = 0.308, ifa =1,c =1

plalc) =

Where we have used p(a,c) = p(a,b =0,¢)+ p(a,b = 1,c¢). Similarly, we
can obtain:

0.384/0.480 = 0.800, ifb = 0,c = 0

p(b,c) ] 0.208/0.520 = 0.400, ifb = 0,¢ = 1
p(c) | 0.096/0.480 = 0.200, ifb = 1,¢ = 0
0.312/0.520 = 0.600, ifb = 1,¢ = 1

p(ble) =

Now we can easily verify the statement p(a,blc) = p(alc)p(b|c). For in-
stance, we have:

01=pa=1,b=1lc=0)=pla=1lc=0pb=1lc=0)=0.5x0.2 =0.1

Problem 8.4 Solution
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This problem follows the previous one. We have already calculated p(a)
and p(b|c), we rewrite it here.

0.6,ifa =0
pla) = pla,b=0)+p(a,b= 1)—{ 0.4, ifa = 1
And
0.384/0.480 = 0.800,if6 =0,c =0
p(b,c) 0.208/0.520 = 0.400, ifb =0,c =1
plc) = —— =

plc) 0.096/0.480 = 0.200,ifb =1,c =0
0.312/0.520 = 0.600, ifb = 1,c =1

We can also obtain p(c|a):

0.24/0.6 = 0.4, ifa = 0,¢ = 0

pla,c) 0.36/0.6 = 0.6, ifa = 0,c = 1
~ pla) 0.24/0.4 = 0.6,ifa =1,¢ =0
0.16/0.4 = 0.4,ifa =1,c =1

Now we can easily verify the statement that p(a,b,c) = p(a)p(cla)p(blc)
given Table 8.2. The directed graph looks like:

a—c—b

Problem 8.5 Solution

It looks quite like Figure 8.6. The difference is that we introduce «; for
each w;, wherei = 1,2,...,.M.

Figure 1: probabilistic graphical model corresponding to the RVM described
in (7.79) and (7.80).

Problem 8.6 Solution(Wait for update)
Problem 8.7 Solution

Let’s just follow the hint. We begin by calculating the mean p.

Elx1] = b1
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According to Eq (8.15), we can obtain:

Elxgl = Y wojElx;]l+bo = wo1bi +ba
JEpasy

Then we can obtain:

Elxc3]

wagklxa] + b3

w32(wa1b1+bg)+b3

w3aw21b1 +w3zbg + b3

Therefore, we obtain Eq (8.17) just as required. Next, we deal with the
covariance matrix.
covlx1,x1] = vy

Then we can obtain:

covlxi,xel = ) wopcovixy,xr]+I12v2 = warcovixy,x1] = woivs
k=1

And also cov[xg,x1] = covlx1,x9] = woiv1. Hence, we can obtain:

2
covlxg,x9] = Z wapcovixg,xr]+ Iogve = w5 v1 + 02
k=1

Next, we can obtain:

cov[xl,xg] = Z w3kcov[x1,xk]+I3lvl = W32W2101
k=2

Then, we can obtain:

2
covlxg,x3] = ) wagcovlxg,xr]+I23vs = w3a(ve + wipv1)
k=2

Finally, we can obtain:

)" waprcovlxs,xr]+I33v3
k=2

covlxs,x3]

2
w3g [W32(vz +w5 V1) | + U3

Where we have used the fact that covlxs,x2] = covlxe,x3]. By now, we
have obtained Eq (8.18) just as required.

Problem 8.8 Solution



