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1

The Single-Person Decision Problem

1.

2. Going to the Movies: There are two movie theatres in your neighbor-

hood: Cineclass, which is located one mile from your home, and Cineblast,

located 3 miles from your home, each showing three films. Cineclass is show-

ing Casablanca, Gone with the Wind and Dr. Strangelove, while Cineblast

is showing The Matrix, Blade Runner and Aliens. Your problem is to decide

which movie to go to.

(a) Draw a decision tree that represents this problem without assigning

payoff values.

Answer:
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4 1. The Single-Person Decision Problem

¥
(b) Imagine that you don’t care about distance and that your preferences

for movies is alphabetic (i.e., you like Aliens the most and The Matrix

the least.) Using payoff values 1 through 6 complete the decision tree

you drew in part (a). What option would you choose?

Answer:

¥
(c) Now imagine that your car is in the shop, and the cost of walking each

mile is equal to one unit of payoff. Update the payoffs in the decision

tree. Would your choice change?

Answer:

¥

3.

4. Alcohol Consumption: Recall the example in which you needed to choose

how much to drink. Imagine that your payoff function is given by − 42
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1. The Single-Person Decision Problem 5

where  is a parameter that depends on your physique. Every person may

have a different value of , and it is known that in the population () the

smallest  is 02; () the largest  is 6; and () larger people have higher ’s

than smaller people.

(a) Can you find an amount of drinking that no person should drink?

Answer: The utility from drinking 0 is equal to 0. If a decision maker

drinks  = 2 then, if he has the largest  = 6, his payoff is  = 6× 2−
4 × (2)2 = −4 and it is easy to see that decision makers with smaller
values of  will obtain an even more negative payoff from consuming

 = 2. Hence, no person should choose  = 2. ¥

(b) How much should you drink if your  = 1? If  = 4?

Answer: The optimal solution is obtained by maximizing the payoff

function () =  − 42. The first-order maximization condition is
 − 8 = 0 implying that  = 

8
is the optimal solution. For  = 1 the

solution is  = 1
8
and for  = 4 it is  = 1

2
. ¥

(c) Show that in general, smaller people should drink less than larger people.

Answer: This follows from the solution in part (b) above. For every

type of person , the solution is () = 
8
which is increasing in , and

larger people have higher values of  ¥

(d) Should any person drink more than one bottle of wine?

Answer: No. Even the largest type of person with  = 6 should only

consume  = 3
4
of a bottle of wine. ¥

5.

6. Fruit Trees: You have room for up to two fruit bearing trees in your garden.

The fruit trees that can grow in your garden are either apple, orange or pear.

The cost of maintenance is $100 for an apple tree, $70 for an orange tree and

$120 for a pear tree. Your food bill will be reduced by $130 for each apple
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6 1. The Single-Person Decision Problem

tree you plant, by $145 for each pear tree you plant and by $90 for each

orange tree you plant. You care only about your total expenditure in making

any planting decisions.

(a) What is the set of possible actions and related outcomes?

Answer: You have two “slots” that can be left empty, or have one of 3

possible trees planted in each slot. Hence, you have 10 possible choices.1

The outcomes will just be the choices of what to plant. ¥

(b) What is the payoff of each action/outcome?

Answer: To calculate the payoffs from each choice it is convenient to

use a table as follows:

Choice cost food savings net payoff

nothing 0 0 0

one apple tree 100 130 30

one orange tree 70 90 20

one pear tree 120 145 25

two apple trees 200 260 60

two orange trees 140 180 40

two pear trees 240 290 50

apple and orange 170 220 50

apple and pear 220 275 55

pear and orange 190 235 45

(c) Which actions are dominated?

Answer: All but choosing two apple trees are dominated. ¥

(d) Draw the associated decision tree. What will a rational player choose?

Answer: The tree will have ten branches with the payoffs associated

with the table above, and the optimal choice is two apple trees. ¥

1This is a probem of choosing 2 items out of 4 possibilities with replacement, which is equal to
4+2−1

2


=

(4+2−1)!
2!(4−1)! =

5×4
2
= 10.
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1. The Single-Person Decision Problem 7

(e) Now imagine that the food bill reduction is half for the second tree of

the same kind (you like variety). That is, the first apple still reduces

your food bill by $130, but if you plant two apple trees your food bill

will be reduced by $130 + $65 = $195. (Similarly for pear and orange

trees.) What will a rational player choose now?

Answer: An apple tree is still the best choice for the first tree, but now

the second tree should be a pear tree. ¥
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Introducing Uncertainty and Time

1.

2. Recreation Choices: A player has three possible venues to choose from:

going to a football game, going to a boxing match, or going for a hike.

The payoff from each of these alternatives will depend on the weather. The

following table gives the agent’s payoff in each of the two relevant weather

events:

Alternative payoff if Rain payoff if Shine

Football game 1 2

Boxing Match 3 0

Hike 0 1

For Let  denote the probability of rain.

(a) Is there an alternative that a rational player will never take regardless

of ? (i.e., it is dominated for any  ∈ [0 1].)
Answer: For this decision maker choosing the hike is always worse

(dominated) by going to the football game, and he should never go on

a hike. ¥
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10 2. Introducing Uncertainty and Time

(b) What is the optimal decision, or best response, as a function of .

Answer: The expected payoffs from each of the remaining two choices

are given by,

(Football) = × 1 + (1− )× 2 = 2−  

(Boxing) = × 3 + (1− )× 0 = 3 

which implies that football is a better choice if and only if

2−  ≥ 3 

or,  ≤ 1
2
, and boxing is better otherwise. ¥

3.

4. Drilling for Oil: An oil drilling company must decide whether or not to

engage in a new drilling activity before regulators pass a law that bans drilling

at that site. The cost of drilling is $1,000,000. After drilling is completed and

the drilling costs are incurred, then the company will learn if there is oil or

not. If there is oil, operating profits generated are estimated at $4,000,000.

If there is no oil, there will be no future profits.

(a) Using  to denote the likelihood that drilling results in oil, draw the

decision tree of this problem.

Answer: Two decision branches: drill or not drill. Following drilling,

Nature chooses oil with probability , with the payoff of $3 million (4

minus the initial investment). With probability 1 −  Nature chooses

no-oil with a payoff $− 1 million. ¥

(b) The company estimates that  = 06. What is the expected value of

drilling? Should the company go ahead and drill?

Answer: The expected payoff (in millions) from drilling is × 3− (1−
)× 1 = 4− 1 = 06, which means that the company should drill. ¥
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2. Introducing Uncertainty and Time 11

(c) To be on the safe side, the company hires a specialist to come up with a

more accurate estimate of . What is the minimum vale of  for which

it would be the company’s best response to go ahead and drill?

Answer: The minimum value of  for which drilling causes no expected

loss is calculated by solving × 3− (1− )× 1 ≥ 0, or  ≥ 1
4
 ¥

5.

6. Real Estate Development: A real estate developer wishes to build a new

development. Regulations impose an environmental impact study that will

yield an “impact score,” which is an index number based on the impact the

development will likely have on traffic, air quality, sewage and water usage,

etc. The developer, who has lots of experience, knows that the score will

be no less than 40, and no more than 70. Furthermore, he knows that any

score between 40 and 70 is as likely as any other score between 40 and 70

(use continuous values). The local government’s past behavior implies that

there is a 35% chance that it will approve the development if the impact

score is less than 50, a 5% chance that it will approve the development if

the score is between 50 and 55, and if the score is greater than 55 then the

project will surely be halted. The value of the development to the devel-

oper is $20,000,000. Assuming that the developer is risk neutral, what is the

maximum cost of the impact study such that it is still worthwhile for the

developer to have it conducted?

Answer: Observe that there is a 1
3
probability of getting a score between

40 and 50 given that 40 to 50 is one-third of the range 40 to 70. There is

a 1
6
probability of getting a score between 50 and 55 given that 50 to 55 is

one-sixth of the range 40 to 70. Hence, the expected value of doing a study

is

1

3
× 35× $20 000 000 + 1

6
× 05× $20 000 000 + 1

2
× 0× $20 000 000

= $2 500 000

Hence, the most the developer should pay for the study is $2,500,000. ¥

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



12 2. Introducing Uncertainty and Time

7.

8. Juice: Bozoni is a renowned Swiss maker of fruit and vegetable juice, whose

products are sold at specialty stores around Western Europe. Bozoni is con-

sidering whether to add cherimoya juice to its line of products. “It would

be one of our more difficult varieties to produce and distribute,” observes

Johann Ziffenboeffel, Bozoni’s CEO. “The cherimoya would be flown in from

New Zealand in firm, unripe form, and it would need its own dedicated ripen-

ing facility here in Europe.” Three successful steps are absolutely necessary

for the new cherimoya variety to be worth producing. The industrial ripen-

ing process must be shown to allow the delicate flavors of the cherimoya

to be preserved; the testing of the ripening process requires the building

of a small-scale ripening facility. Market research in selected small regions

around Europe must show that there is sufficient demand among consumers

for cherimoya juice. And cherimoya juice must be shown to withstand the

existing tiny gaps in the cold chain between the Bozoni plant and the end

consumers (these gaps would be prohibitively expensive to fix). Once these

three steps have been completed, there are about 2,500,000 worth of ex-

penses in launching the new variety of juice. A successful new variety will

then yield profits, in expected present-value terms, of 42.5 million.

The three absolutely necessary steps can be done in parallel or sequentially

in any order. Data about these three steps is given in Table 1. “Probability

of success” refers to how likely it is that the step will be successful. If it is not

successful, then that means that cherimoya juice cannot be sold at a profit.

All probabilities are independent of each other (i.e., whether a given step is

successful or not does not affect the probabilities that the other steps will be

successful). “Cost” refers to the cost of doing this step (regardless of whether

it is successful or not).

(a) Suppose Mr. Ziffenboeffel calls you and asks your advice about the

project. In particular, he wants to know (i) should he do the three

necessary steps in parallel (i.e., all at once) or should he do them se-

quentially; and (ii) if sequentially, what’s the right order for the steps
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2. Introducing Uncertainty and Time 13

to be done? What answers do you give him?

Answer: Bozoni should do the steps sequentially in this order: first test

the cold chain, then the ripening process, then do the test-marketing.

The expected value of profits is 1.84 million. Observe that it would not

be profitable to launch the product if Bozoni had to do all the steps

simultaneously. This is an example of real options–by sequencing the

steps, Bozoni creates options to switch out of a doomed project before

too much money gets spent. ¥

(b) Mr. Ziffenboeffel calls you back. Since Table 1 was produced (see below),

Bozoni has found a small research firm that can perform the necessary

tests for the ripening process at a lower cost than Bozoni’s in-house

research department.

Table 1: Data on launching the Cherimoya juice

Step Probability of success Cost

Ripening process 0.7 1,000,000

Test marketing 0.3 5,000,000

Cold chain 0.6 500,000

At the same time, the EU has raised the criteria for getting approval

for new food producing facilities, which raises the costs of these tests.

Mr. Ziffenboeffel would, therefore, like to know how your answer to (a)

changes as a function of the cost of the ripening test. What do you tell

him?

Answer: This is sensitivity analysis for the cost of testing the ripening

process. This can be done by varying the cost for ripening, and seeing

which expected payoff (highlighted yellow) is highest for which values of

the cost. For example, whenever we set the cost below 375,000 it turns

out that the payoff from the sequence  →  →  gives the highest

payoff among the six possible sequences. (Excel’s GoalSeek is a partic-

ularly handy way for finding the threshold values quickly).

Specifically, the optimal sequence is
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14 2. Introducing Uncertainty and Time

i) →  →  if the cost of  ≤ 375 000
ii)  → →  if the cost of 375 000 ≤  ≤ 2 142 857
iii)  →  →  if the cost of 2 142 857 ≤  ≤ 8 640 000
iv) don’t launch if  costs more than 8 640 000

where “” stands for the ripening process, “” stands for the cold

chain, and “” stands for test marketing. ¥

(c) Mr. Ziffenboeffel calls you back yet again. The good news is the EU

regulations and the outsourcing of the ripening tests “balance” each

other out, so the cost of the test remains 1,000,000. Now the problem

is that his marketing department is suggesting that the probability that

the market research will result in good news about the demand could

be different in light of some recent data on the sales of other subtropical

fruit products. He would, therefore, like to know how your answer to

(a) changes as a function of the probability of a positive result from the

market research. What do you tell him?

Answer: This can be found by varying the probability of success for

test marketing (highlighted by blue in the excel sheet) between 0 and

1. The optimal sequence turns out to be

i) don’t launch if  ≤ 01905
ii)  → →  if   01905

where  is the probability that the test marketing will be successful.

¥

9.

10. Surgery: A patient is very sick, and will die in 6 months if he goes untreated.

The only available treatment is risky surgery. The patient is expected to live

for 12 months if the surgery is successful, but the probability that the surgery

fails and the patient dies immediately is 0.3.
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2. Introducing Uncertainty and Time 15

(a) Draw a decision tree for this decision problem.

Answer: Using () to denote the value of living  more months, the

following is the decision tree:

¥

(b) Let () be the patient’s payoff function, where  is the number of

months till death. Assuming that (12) = 1 and (0) = 0, what is the

lowest payoff the patient can have for living 3 months so that having

surgery is a best response?

Answer: The expected value of the surgery given the payoffs above is

[(surgery)] = 07(12) + 03(0) = 07

which implies that if (3)  07 then the surgery should be performed.¥

For the rest of the problem, assume that (3) = 08.

(c) A test is available that will provide some information that predicts

whether or not surgery will be successful. A positive test implies an

increased likelihood that the patient will survive the surgery as follows:

True-positive rate: The probability that the results of this test will

be positive if surgery is to be successful is 0.90.

False-positive rate: The probability that the results of this test will

be positive if the patient will not survive the operation is 0.10.

What is the probability of a successful surgery if the test is positive?

Answer: The easiest way to think about this is to imagine that the

original 0.7 probability of success is true because for 70% of the sick
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16 2. Introducing Uncertainty and Time

population, call these the “treatable” patients, the surgery is success-

ful, while for the other 30% (“untreatable”) it is not, and previously

the patient did not know which population he belongs to. The test can

be thought of as detecting which population the patient belongs to.

The above description means that if the patient is treatable then the

test will claim he is treatable with probability 0.9, while if the patient

is untreatable then the test will claim he is treatable with probability

0.1. Hence, 63% of the population are treatable and detected as such

(0.7×09), while 3% of the population are untreatable but are detected

as treatable (0.3×01). Hence, of the population of people for whom the
test is positive, the probability of successful surgery is 63

63+3
= 0955 ¥

(d) Assuming that the patient has the test done, at no cost, and the result

is positive, should surgery be performed?

Answer: The value from not having surgery is (3) = 08, and a positive

test updates the probability of success to 0955 with the expected payoff

being 0955× 1 so the patient should have surgery done. ¥

(e) It turns out that the test may have some fatal complications, i.e., the

patient may die during the test. Draw a decision tree for this revised

problem.

Answer: Given the data above, we know that without taking the test

the patient will not have surgery because the expected value of surgery

is 0.7 while the value of living 3 months is 0.8. Also, we showed above

that after a positive test the patient will choose to have surgery, and it

is easy to show that after a negative test he won’t (the probability of

a successful outcome is 7
7+27

= 0206) Hence, the decision tree can be

collapsed as follows 9the decision to have surgery have been collapsed

to the relevant payoffs):
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2. Introducing Uncertainty and Time 17

¥

(f) If the probability of death during the test is 0.005, should the patient

opt to have the test prior to deciding on the operation?

Answer: From the decision tree in part (e), the expected value condi-

tional on surviving the test is equal to

07(09× 1 + 01× 08) + 03(01× 0 + 09× 08) = 0902

which implies that if the test succeeds with probability 0.995 then the

expected payoff from taking the test is

0995× 0902 + 0005× 0 = 0897

which implies that the test should be taken because 0897  08. ¥

11.

12. More Oil: Chevron, the No. 2 US oil company, is facing a tough decision.

The new oil project dubbed “Tahiti” is scheduled to produce its first commer-

cial oil in mid-2008, yet it is still unclear how productive it will be. “Tahiti

is one of Chevron’s five big projects,” told Peter Robertson, vice chairman

of the company’s board to the Wall Street Journal.1 Still, it was unclear

1“Chevron’s Tahiti Facility Bets Big on Gulf Oil Boom.” Jun 27, 2007. pg. B5C.

http://proquest.umi.com/pqdweb?did=1295308671&sid=1&Fmt=3&clientId=1566&RQT=309&VName=PQD
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18 2. Introducing Uncertainty and Time

whether the project will result in the blockbuster success Chevron is hoping

for. As of June 2007, $4-billion has been invested in the high-tech deep sea

platform, which suffices to perform early well tests. Aside from offering in-

formation on the type of reservoir, the tests will produce enough oil to just

cover the incremental costs of the testing (beyond the $4 billion investment).

Following the test wells, Chevron predicts one of three possible scenarios.

The optimistic one is that Tahiti sits on one giant, easily accessible oil reser-

voir, in which case the company expects to extract 200,000 barrels a day

after expending another $5 billion in platform setup costs, with a cost of

extraction at about $10 a barrel. This will continue for 10 years, after which

the field will have no more economically recoverable oil. Chevron believes

this scenario has a 1 in 6 chance of occurring. A less rosy scenario, that is

twice as likely as the optimistic one, is that Chevron would have to drill

two more wells at an additional cost of $0.5 billion each (above and beyond

the $5 billion set-up costs), and in which case production will be around

100,000 barrels a day with a cost of extraction at about $30 a barrel, and

the field will still be depleted after 10 years. The worst case scenario involves

the oil tucked away in numerous pockets, requiring expensive water injection

techniques which would include up-front costs of another $4 billion (above

and beyond the $5 billion set-up costs), extraction costs of $50 a barrel, and

production is estimated to be at about 60,000 barrels a day, for 10 years.

Bill Varnado, Tahiti’s project manager, was quoted giving this least desir-

able outcome odds of 50-50.

The current price of oil is $70 a barrel. For simplicity, assume that the price

of oil and all costs will remain constant (adjusted for inflation) and that

Chevron’s faces a 0% cost of capital (also adjusted for inflation).

(a) If the test-wells would not produce information about which one of three

possible scenarios will result, should Chevron invest the set-up costs of

$5 billion to be prepared to produce at whatever scenario is realized?

Answer:We start by noticing that the $2 billion that were invested are

a sunk cost and hence irrelevant. Also, since the cost of capital is just

about the same as the projected increase in oil prices, we do not need to
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2. Introducing Uncertainty and Time 19

discount future oil revenues to get the net present value (NPV) sine the

two effects (price increase and time discounting) will cancel each other

out. If the company invests the $2.5 billion dollars, then they will be

prepared to act upon whatever scenario arises (great with probability
1
6
, ok with probability 1

3
 or bad with probability 1

2
). Notice from the

table below that in each scenario the added costs of extraction that

Chevron needs to invest (once it becomes clear which scenario it is) is

worthwhile (e.g., even in the bad scenario, the profits are $2.19 billion,

which covers the added drilling costs of $2 billion in this case.) Hence,

Chevron would proceed to drill in each of the three scenarios, and the

expected profits including the initial $2.5 billion investment would be,

 =
1

6
×($21)+1

3
×($73−$05)+1

2
×($219−$2)−$25 = $3

(b) If the test-wells do produce accurate information about which of three

possible scenarios is true, what is the added value of performing these

tests?

Answer: Now, if the test drilling will reveal the scenario ahead of time,

then in the event of the bad scenario the revenues would not cover the

total investment of $4.5 billion ($2.5 billion initially, and another $2

billion for the bad scenario.) In the great and ok scenarios, however,

the revenues cover all the costs. Hence, with the information Chevron

would not proceed with the investments at all when the bad scenario

happens (probability 1
2
), and proceed only when the scenario is great or

ok, yielding an expected profit of

 =
1

6
×($21−25)+1

3
×($73−$25−$05)+1

2
×0 = $4 666 666

Hence, the added value of performing the tests is,

info = $4 666 666 667− $3 511 666 667 = $1 155 000 000
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¥

13.
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3

Preliminaries

1.

2. Penalty Kicks: Imagine a kicker and a goalie who confront each other in a

penalty kick that will determine the outcome of the game. The kicker can kick

the ball left or right, while the goalie can choose to jump left or right. Because

of the speed of the kick, the decisions need to be made simultaneously. If the

goalie jumps in the same direction as the kick, then the goalie wins and the

kicker loses. If the goalie jumps in the opposite direction of the kick then the

kicker wins and the goalie loses. Model this as a normal form game and write

down the matrix that represents the game you modeled.

Answer: There are two players, 1 (kicker) and 2 (goalie). Each has two

actions,  ∈ {} to denote left or right. The kicker wins when they
choose opposite directions while the goalie wins if they choose the same

direction. Using 1 to denote a win and −1 to denote a loss, we can write
1() = 1() = 2() = 2() = 1 and 1() = 1() =
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24 3. Preliminaries

2() = 2() = −1. The matrix is therefore,

Player 1

Player 2

 





−1 1 1−1
1−1 −1 1

¥

3.

4. Hunting: Two hunters, players 1 and 2 can each choose to hunt a stag,

which provides a rather large and tasty meal, or hunt a hare, also tasty, but

much less filling. Hunting stags is challenging and requires mutual coopera-

tion. If either hunts a stag alone, then the stag will get away, while hunting

the stag together guarantees that the stag is caught. Hunting hares is an

individualistic enterprise that is not done in pairs, and whoever chooses to

hunt a hare will catch one. The payoff from hunting a hare is 1, while the

payoff to each from hunting a stag together is 3. The payoff from an unsuc-

cessful stag-hunt is 0. Represent this game as a matrix.

Answer: This is the famous “stag hunt” game. Using  for stag and  for

hare, the matrix is,

Player 1

Player 2

 





3 3 0 1

1 0 1 1

¥

5.

6. Price Competition: Imagine a market with demand () = 100− . There

are two firms, 1 and 2, and each firm  has to simultaneously choose it’s price

. If   , then firm  gets all of the market while no one demands the

good of firm . If the prices are the same then both firms equally split the
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market demand. Imagine that there are no costs to produce any quantity

of the good. (These are two large dairy farms, and the product is manure.)

Write down the normal form of this game.

Answer: The players are  = {1 2} and the strategy sets are  = [0∞
for  ∈ {1 2} and firms choose prices  ∈ . To calculate payoffs, we need

to know what the quantities will be for each firm given prices (1 2). Given

the assumption on ties, the quantities are given by,

( ) =

⎧⎪⎨⎪⎩
100−  if   

0 if   
100−
2

if  = 

which in turn means that the payoff function is given by quantity times price

(there are no costs):

( ) =

⎧⎪⎨⎪⎩
(100− ) if   

0 if   
100−
2

 if  = 

¥

7.
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Rationality and Common Knowledge

1.

2. Weak dominance.We call the strategy profile  ∈  is a weakly domi-

nant strategy equilibrium if  ∈  is a weakly dominant strategy for all

 ∈  . That is if ( −) ≥ (
0
 −) for all 

0
 ∈  and for all − ∈ −.

(a) Provide an example of a game in which there is no weakly dominant

strategy equilibrium.

Answer:

Player 1

Player 2

 





1−1 −1 1
−1 1 1−1

¥

(b) Provide an example of a game in which there is more than one weakly

dominant strategy equilibrium.

Answer: In the following game each player is indifferent between his
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strategies and so each one is weakly dominated by the other. This means

that any outcome is a weakly dominant strategy equilibrium.

Player 1

Player 2

 





1 1 1 1

1 1 1 1

¥

3.

4. eBay’s recommendation: It is hard to imagine that anyone is not familiar

with eBay c°, the most popular auction website by far. The way a typical

eBay auction works is that a good is placed for sale, and each bidder places

a “proxy bid”, which eBay keeps in memory. If you enter a proxy bid that

is lower than the current highest bid, then your bid is ignored. If, however,

it is higher, then the current bid increases up to one increment (say, 1 cent)

above the second highest proxy bid. For example, imagine that three people

placed bids on a used laptop of $55, $98 and $112. The current price will be

at $98.01, and if the auction ended the player who bid $112 would win at a

price of $98.01. If you were to place a bid of $103.45 then the who bid $112

would still win, but at a price of $103.46, while if your bid was $123.12 then

you would win at a price of $112.01.

Now consider eBay’s historical recommendation that you think hard about

your value of the good, and that you enter your true value as your bid, no

more, no less. Assume that the value of the good for each potential bidder is

independent of how much other bidders value it.

(a) Argue that bidding more than your valuation is weakly dominated by

actually bidding your valuation.

Answer: If you put in a bid  = 0   where  is your valuation, then

only the three following cases can happen: () All other bids are below 

In this case bidding  =  will yield the exact same outcome: you’ll win
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at the same price. () Some bid is above 0. In this case bidding  = 

will yield the exact same outcome: you’ll lose to a higher bid. () No

bids are above 0 and some bid ∗ is in between  and 0. In this case

bidding 0 will cause you to win in and pay ∗   which means that

your payoff is negative, while if you would have bid  =  then you

would lose and get nothing. Hence, in cases () and () bidding  would

do as well as bidding 0, and in case () it would do strictly better,

implying that bidding more than your valuation is weakly dominated

by actually bidding your valuation. ¥

(b) Argue that bidding less than your valuation is weakly dominated by

actually bidding your valuation.

Answer: If you put in a bid  = 0   where  is your valuation, then

only the three following cases can happen: () Some other bid are above

In this case bidding  =  will yield the exact same outcome: you’ll

lose to a higher bid. () All other bids are below 0. In this case bidding

 =  will yield the exact same outcome: you’ll win at the same price.

() No bids are above  and some bid ∗ is in between 0 and . In

this case bidding 0 will cause you to lose and get nothing, while if you

would have bid  =  then you would win and get a positive payoff of

−∗ . Hence, in cases () and () bidding  would do as well as bidding
0, and in case () it would do strictly better, implying that bidding

less than your valuation is weakly dominated by actually bidding your

valuation. ¥

(c) Use your analysis above to make sense of eBay’s recommendation.Would

you follow it?

Answer: The recommendation is indeed supported by an analysis of

rational behavior.1

1Those familiar with eBay know about sniping, which is bidding in the last minute. It still is a weakly dominated

strategy to bid your valuation at that time, and waiting for the last minute may be a “best response” if you believe

other people may respond to an early bid. More on this is discussed in chapter 13.
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5.

6. Roommates: Two roommates need to each choose to clean their apartment,

and each can choose an amount of time  ≥ 0 to clean. If their choices are 
and , then player ’s payoff is given by (10− )− 2 . (This payoff function
implies that the more one roommate cleans, the less valuable is cleaning for

the other roommate.)

(a) What is the best response correspondence of each player ?

Answer: Player  maximizes (10− )− 2 given a belief about , and
the first-order optimality condition is 10 −  − 2 = 0 implying that

the best response is  =
10−
2

 ¥

(b) Which choices survive one round of IESDS?

Answer: The most player  would choose is  = 5, which is a BR to

 = 0. Hence, any   5 is dominated by  = 5.
2 Hence,  ∈ [0 5] are

the choices that survive one round of IESDS.

(c) Which choices survive IESDS?

Answer: The analysis follows the same ideas that were used for the

Cournot duopoly in section 4.2.2. In the second round of elimination,

because 2 ≤ 5 the best response  =
10−
2

implies that firm 1 will

choose 1 ≥ 25, and a symmetric argument applies to firm 2. Hence,

the second round of elimination implies that the surviving strategy sets

are  ∈ [25 5] for  ∈ {1 2}. If this process were to converge to an
interval, and not to a single point, then by the symmetry between both

players, the resulting interval for each firm would be [min max] that

simultaneously satisfy two equations with two unknowns: min =
10−max

2

and max =
10−min

2
. However, the only solution to these two equations is

2This can be shown directly: The payoff from choosing  = 5 when the opponent is choosing  is (5 ) =

(10− )5− 25 = 25− 5 . The payoff from choosing  = 5 +  where   0 when the opponent is choosing  is

(5+ ) = (10−)(5+)−(5+)2 = 25−5−2− , and because   0 it follows that (5+ )  (5 


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min = max =
10
3
 Hence, the unique pair of choices that survive IESDS

for this game are 1 = 2 =
10
3
. ¥

7.

8. Consider the -Beauty contest presented in section 4.3.5.

(a) Show that if player  believes that everyone else is choosing 20 then 19

is not the only best response for any number of players .

Answer: If everyone else is choosing 20 and if player  chooses 19 then
3
4
of the average will be somewhere below 15, and 19 is closer to that

number, and therefore is a best response. But the same argument holds

for any choice of player  that is between 15 and and 20 regardless of

the number of players. (In fact, you should be able to convince yourself

that this will be true for any choice of  between 10 and 20.) ¥

(b) Show that the set of best response strategies to everyone else choosing

the number 20 depends on the number of players .

Answer: Imagine that  = 2. If one player  is choosing 20, then any

number  between 0 and 19 will beat 20. This follows because the target

number (3
4
of the average) is equal to 3

4
× 20+

2
= 15

2
+ 3

8
, the distance

between 20 and the target number is 25
2
− 3
8
 (this will always be positive

because the target number is less than 20) while the distance between

 and the target number is
¯̄
5
8
 − 15

2

¯̄
. The latter will be smaller than

the former if and only if
¯̄
5
8
 − 15

2

¯̄
 25

2
− 3

8
, or −20    20. Given

the constraints on the choices,  ∈ {0 1 19}. Now imagine that
 = 5. The target number is equal to 3

4
× 80+

5
= 12+ 3

20
, the distance

between 20 and the target number is 8− 3
20
 while the distance between

 and the target number is
¯̄
17
20
 − 12

¯̄
. The latter will be smaller than

the former if and only if
¯̄
17
20
− 12

¯̄
 8− 3

20
, or 40

7
   20. Hence,

 = {6 7  19}. You should be able to convince yourself that as
→∞, if everyone but  chooses 20 then ’s best response will converge
to  = {10 11  19}. ¥
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9.

10. Popsicle stands: There are five lifeguard towers lined along a beach, where

the left-most tower is number 1 and the right most tower is number 5. Two

vendors, players 1 and 2, each have a popsicle stand that can be located next

to one of five towers. There are 25 people located next to each tower, and

each person will purchase a popsicle from the stand that is closest to him or

her. That is, if player 1 locates his stand at tower 2 and player 2 at tower

3, then 50 people (at towers 1 and 2) will purchase from player 1, while 75

(from towers 3,4 and 5) will purchase from vendor 2. Each purchase yields a

profit of $1.

(a) Specify the strategy set of each player. Are there any strictly dominated

strategies?

Answer: The strategy sets for each player are  = {1 2  5} where
each choice represents a tower. To see whether there are any strictly

dominated strategies it is useful to construct the matrix representation

of this game. Assume that if a group of people are indifferent between

the two places (equidistant) then they will split between the two vendors

(e.g., if the vendors are at the same tower then their payoffs will be 62.5

each, while if they are located at towers 1 and 3 then they split the

people from tower 2 and their payoffs are 37.5 and 87.5 respectively.)

Otherwise they get the people closest to them, so payoffs are:

Player 1

Player 2

1 2 3 4 5

1 625 625 25 100 375 875 50 75 625 625

2 100 25 625 625 50 75 625 625 75 50

3 875 375 75 50 625 625 75 50 875 375

4 75 50 625 625 50 75 625 625 100 25

5 625 625 50 75 375 875 25 100 625 625

Notice that the choices of 1 and 5 are strictly dominated by any other

choice for both players 1 and 2. ¥
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(b) Find the set of strategies that survive Rationalizability.

Answer: Because the strategies 1 and 5 are strictly dominated then

they cannot be a best response to any belief (Proposition 4.3). In the

reduced game in which these strategies are removed, both strategies 2

and 4 are dominated by 3, and therefore cannot be a best response in

this second stage. Hence, only the choice {3} is rationalizable. ¥
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5

Pinning Down Beliefs: Nash Equilibrium

1.

2. A strategy  ∈  is a weakly dominant strategy equilibrium if  ∈
 is a weakly dominant strategy for all  ∈  . That is if (


  −) ≥

(
0
 −) for all 

0
 ∈  and for all − ∈ −. Provide an example of a game

for which there is a weakly dominant strategy equilibrium, as well as another

Nash equilibrium.

Answer: Consider the following game:

Player 1

Player 2

 





1 1 1 1

1 1 2 2

In this game, () is a weakly dominant strategy equilibrium (and of

course, a Nash equilibrium), yet () is a Nash equilibrium that is not

a weakly dominant strategy equilibrium. ¥

3.
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4. Splitting Pizza:You and a friend are in an Italian restaurant, and the owner

offers both of you an 8-slice pizza for free under the following condition. Each

of you must simultaneously announce how many slices you would like; that

is, each player  ∈ {1 2} names his desired amount of pizza, 0 ≤  ≤ 8

If 1 + 2 ≤ 8 then the players get their demands (and the owner eats any
leftover slices). If 1 + 2  8, then the players get nothing. Assume that

you each care only about how much pizza you individually consume, and the

more the better.

(a) Write out or graph each player’s best-response correspondence.

Answer: Restrict attention to integer demands (more on continuous

demands is below). If player  demands  ∈ {0 1  7} then ’s best

response is to demand the complement to 8 slices. If  asks for more

then both get nothing while if  asks for less then he is leaving some

slices unclaimed. If instead player  demands  = 8 then player  gets

nothing regardless of his request so any demand is a best response. In

summary,

() =

(
8−  if  ∈ {0 1  7}

{0 1  8} if  = 8


Note: if the players can ask for amounts that are not restricted to

integers then the same logic applies and the best response is

() =

(
8−  if  ∈ [0 8)
[0 8] if  = 8



¥

(b) What outcomes can be supported as pure-strategy Nash equilibria?

Answer: It is easy to see from the best response correspondence that

any pair of demands that add up to 8 will be a Nash equilibrium, i.e.,

(0 8) (1 7)  (8 0). However, there is another Nash equilibrium: (8,8)

in which both players get nothing. It is a Nash equilibrium because
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given that each player is asking for 8 slices, the other player gets noth-

ing regardless of his request, hence he is indifferent between all of his

requests including 8.

Note: The pair  = 8 and  =  where  ∈ {1 2  7} is not a Nash
equilibrium because even though player  is playing a best response to

, player  is not playing a best response to  because by demanding

8 player  received nothing, but if he instead demanded 8−   0 then

he would get those amount of slices and get something. ¥

5.

6. Hawk-Dove: The following game has been widely used in evolutionary biol-

ogy to understand how “fighting” and “display” strategies by animals could

coexist in a population. For a typical Hawk-Dove game there are resources to

be gained (i.e. food, mates, territories, etc.) denoted as . Each of two players

can chooses to be aggressive, called “Hawk” (), or can be compromising,

called “Dove” (). If both players choose  then they split the resources,

but loose some payoff from injuries, denoted as . Assume that   
2
. If

both choose  then they split the resources, but engage in some display of

power that a display cost , with   
2
. Finally, if player  chooses  while

 chooses , then  gets all the resources while  leaves with no benefits and

no costs.

(a) Describe this game in a matrix

Answer:

Player 1

Player 2

 

 
2
−  

2
−   0

 0  
2
−  

2
− 

¥
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(b) Assume that  = 10,  = 6 and  = 4. What outcomes can be supported

as pure-strategy Nash equilibria?1

Answer: The game is:

Player 1

Player 2

 

 −1−1 10 0

 0 10 1 1

and the two strategy profiles that can be supported as pure strategy

Nash equilibria are () and (), leading to outcomes (10 0) and

(0 10) respectively. ¥

7.

8. The  firm Cournot Model: Suppose there are  firms in the Cournot

oligopoly model. Let  denote the quantity produced by firm , and let

 = +···+ denote the aggregate production. Let  () denote the market
clearing price (when demand equals ) and assume that inverse demand

function is given by  () = − (where   ). Assume that firms have

no fixed cost, and the cost of producing quantity  is  (all firms have the

same marginal cost, and assume that   ).

(a) Model this as a Normal form game

Answer: The players are  = {1 2  }, each player chooses  ∈ 

where the strategy sets are  = [0∞) for all  ∈  , and the payoffs of

each player are given by,

( −) =

⎧⎪⎪⎨⎪⎪⎩
(−

P
=1

) −  if
P

=1

  

− if
P

=1

 ≥ 

1 In the evolutionary biology literature, the analysis performed is of a very different nature. Instead of considering

the Nash equilibrium analysis of a static game, the analysis is a dynamic analysis where successful strategies

“replicate” in a large population. This analysis is part of a methodology called “evolutionary game theory.” For

more on this see Gintis (2000).
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¥

(b) What is the Nash (Cournot) Equilibrium of the game where firms choose

their quantities simultaneously?

Answer: Let’s begin by assuming that there is a symmetric “interior

solution” where each firm chooses the same positive quantity as a Nash

equilibrium, and then we will show that this is the only possible Nash

equilibrium. Because each firm maximizes

( −) = (−
X

=1

) −  ,

the first order condition is

−
X
 6=

 − 2 −  = 0 

which yields the best response of player  to be

(−) =

−P
 6=

 − 

2
.

Imposing symmetry in equilibrium implies that all  best response con-

ditions will hold with the same values ∗ = ∗ for all  ∈  , and can be

solved using the best response function as follows,

∗ =
− (− 1)∗ − 

2
,

which yields

∗ =
− 

+ 1


It is more subtle to show that there cannot be other Nash equilibria. To

show this we will show that conditional on whatever is chosen by all but

two players, the two players must choose the same amount in a Nash

equilibrium. Assume that there is another asymmetric Nash equilibrium

in which two players,  and , choose two different equilibrium quantities

∗ 6= ∗ . Let  =
P

6= 
∗
 be the sum of all the other equilibrium
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quantity choices of the players who are not  or . Because we assumed

that this is a Nash equilibrium, the best response function of both  and

 must hold simultaneously, that is,

∗ =
−  − ∗ − 

2
 (5.1)

and

∗ =
−  − ∗ − 

2
 (5.2)

If we substitute (5.2) into (5.1) we obtain,

∗ =
−  − −−∗−

2
− 

2


which implies that ∗ =
−−
3
. If we substitute this back into (5.2) we

obtain,

∗ =
−  − −−

3
− 

2
=

−  − 

3
= ∗ ,

which contradicts the assumption we started with, that ∗ 6= ∗ . Hence,

the unique Nash equilibrium has all the players choosing the same level

∗ = −
+1
. ¥

(c) What happens to the equilibrium price as  approaches infinity? Is this

familiar?

Answer: First consider the total quantity in the Nash equilibrium as

a function of ,

∗ = ∗ =
(− )

+ 1

and the resulting limit price is

lim
→∞

 (∗) = lim
→∞

µ
− (− )

+ 1

¶
= .

This means that as the number of firms grow, the Nash equilibrium

price will also fall and will approach the marginal costs of the firms as

the number of firms grows to infinity. Those familiar with a standard

economics class know that in perfect competition price will equal mar-

ginal costs, which is what happens here when  approaches infinity. ¥
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9.

10. Synergies: Two division managers can invest time and effort in creating a

better working relationship. Each invests  ≥ 0, and if both invest more then
both are better off, but it is costly for each manager to invest. In particular,

the payoff function for player  from effort levels ( ) is ( ) = ( +

) − 2 .

(a) What is the best response correspondence of each player?

Answer: If player  believes that player  chooses  then ’s first order

optimality condition for maximizing his payoff is,

+  − 2 = 0 

yielding the best response function,

() =
+ 

2
for all  ≥ 0

¥

(b) In what way are the best response correspondences different from those

in the Cournot game? Why?

Answer: Here the best response function of player  is increasing in

the choice of player  whereas in the Cournot model it is decreasing in

the choice of player . This is because in this game the choices of the

two players are strategic complements while in the Cournot game they

are strategic substitutes. ¥

(c) Find the Nash equilibrium of this game and argue that it is unique.

Answer: We solve two equations with two unknowns,

1 =
+ 2

2
and 2 =

+ 1

2
,

which yield the solution 1 = 2 = . It is easy to see that it is unique

because it is the only point at which these two best response functions

cross. ¥
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11.

12. Asymmetric Bertrand: Consider the Bertrand game with 1(1) = 1 and

2(2) = 22, demand equal to  = 100 − , and where firms must choose

prices in increments of one cent. We have seen in section ?? that one possible

Nash equilibrium is (∗1 
∗
2) = (199 200).

(a) Show that there are other Nash equilibria for this game.

Answer: Another Nash equilibrium is (01 
0
2) = (150 151)In this

equilibrium firm 1 fulfills market demand at a price of 1.50 and has no

incentive to change the price in either direction. Firm 2 is indifferent

between the current price and any higher price, and strictly prefers it

to lower prices. ¥

(b) How many Nash equilibria does this game have?

Answer: There are 100 Nash equilibria of this game starting with

(1 2) = (100 101) and going all the way up with one-cent increases

to (∗1 
∗
2) = (199 200). The same logic explains why each of these is

a Nash equilibrium. ¥

13.

14. Negative Ad Campaigns: Each one of two political parties can choose

to buy time on commercial radio shows to broadcast negative ad campaigns

against their rival. These choices are made simultaneously. Due to govern-

ment regulation it is forbidden to buymore than 2 hours of negative campaign

time so that each party cannot choose an amount of negative campaigning

above 2 hours. Given a pair of choices (1 2), the payoff of party  is given

by the following function: (1 2) =  − 2 +  − ()2 

(a) What is the normal form representation of this game?

Answer: Two players  = {1 2}, for each player the strategy space is
 = [0 2] and the payoff of player  is given by (1 2) =  − 2 +
 − ()2. ¥
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(b) What is the best response function for each party?

Answer: Each player maximizes (1 2) resulting in the first order

optimality condition 1 +  − 2 = 0 resulting in the best response

function,

() =
1 + 

2


¥

(c) What is the pure strategy Nash equilibrium? is it unique?

Answer: Solving the two best response functions simultaneously,

1 =
1 + 2

2
and 2 =

1 + 1

2

yields the Nash equilibrium 1 = 2 = 1, and this is the unique solution

to these equations implying that this is the unique equilibrium. ¥

(d) If the parties could sign a binding agreement on how much to campaign,

what levels would they choose?

Answer: Both parties would be better off if they can choose not to

spend money on negative campaigns. The payoffs for each player from

the Nash equilibrium solved in part (c) are (1 1) = −1 while of they
agreed not to spend anything they each would obtain zero. This is a

variant of the Prisoners’ Dilemma. ¥

15.

16. Hotelling’s Price Competition: Imagine a continuum of potential buyers,

located on the line segment [0 1], with uniform distribution. (Hence, the

“mass” or quantity of buyers in the interval [ ] is equal to − .) Imagine

two firms, players 1 and 2 who are located at each end of the interval (player

1 at the 0 point and player 2 at the 1 point.) Each player  can choose its price

, and each customer goes to the vendor who offers them the highest value.

However, price alone does not determine the value, but distance is important

as well. In particular, each buyer who buys the product from player  has
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a net value of  −  −  where  is the distance between the buyer and

vendor , and represents the transportation costs of buying from vendor 

Thus, buyer  ∈ [0 1] buys from 1 and not 2 if −1−1  −2−2, and if
buying is better than getting zero. (Here 1 =  and 2 = 1− . The buying

choice would be reversed if the inequality is reversed.) Finally, assume that

the cost of production is zero.

(a) Assume that  is very large so that all the customers will be served by at

least one firm, and that some customer ∗ ∈ [0 1] is indifferent between
the two firms. What is the best response function of each player?

Answer: Because customer ∗’s distance from firm 1 is ∗ and his

distance from firm 2 is 1− ∗, his indifference implies that

 − 1 − ∗ =  − 2 − (1− ∗)

which gives the equation for ∗,

∗ =
1 + 2 − 1

2


It follows that under the assumptions above, given prices 1 and 2, the

demands for firms 1 and 2 are given by

1(1 2) = ∗ =
1 + 2 − 1

2


1(1 2) = 1− ∗ =
1 + 1 − 2

2


Firm 1’s maximization problem is

max
1

µ
1 + 2 − 1

2

¶
1

which yields the first order condition

1 + 2 − 21 = 0 

implying the best response function

1 =
1

2
+

2

2
.
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A symmetric analysis yields the best response of firm 2,

2 =
1

2
+

1

2
.

¥

(b) Assume that  = 1. What is the Nash equilibrium? Is it unique?

Answer: If we use the best response functions calculated in part (a)

above then we obtain a unique Nash equilibrium 1 = 2 = 1, and this

implies that ∗ = 1
2
so that each firm gets half the market. However,

when  = 1 then the utility of customer ∗ = 1
2
is −1− 1

2
= 1−1− 1

2
=

−1
2
, implying that he would prefer not to buy, and by continuity, an

interval of customers around ∗ would also prefer not to buy. his violated

the assumptions we used to calculate the best response functions.2 So,

the analysis in part (a) is invalid when  = 1. It is therefore useful to

start with the monopoly case when  = 1 and see how each firm would

have priced if the other is absent. Firm 1 maximizes

max
1

(1− 1)1

which yields the solution 1 =
1
2
so that everyone in the interval  ∈

[0 1
2
] wished to buy from firm 1 and no other customer would buy. By

symmetry, if firm 2 were a monopoly then the solution would be 2 =
1
2

so that everyone in the interval  ∈ [1
2
 1] would buy from firm 2 and no

other customer would buy. But this implies that if both firms set their

monopoly prices 1 = 2 =
1
2
then each would maximize profits ignoring

the other firm, and hence this is the (trivially) unique Nash equilibrium.

¥

(c) Now assume that  = 1 and that the transportation costs are 1
2
, so

that a buyer buys from 1 if and only if  − 1 − 1
2
1   − 2 − 1

2
2

Write the best response function of each player and solve for the Nash

2We need  ≥ 15 for customer ∗ = 1
2
to be just indifferent between buying and not buying when 1 = 2 = 1

All the other customers will strictly prefer buying.
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Equilibrium.

Answer: Like in part (a), assume that customer ∗’s distance from

firm 1 is ∗ and his distance from firm 2 is 1− ∗, and he is indifferent

between buying from either, so his indifference implies that

 − 1 − 1
2
∗ =  − 2 − 1

2
(1− ∗)

which gives the equation for ∗,

∗ =
1

2
+ 2 − 1 

It follows that under the assumptions above, given prices 1 and 2, the

demands for firms 1 and 2 are given by

1(1 2) = ∗ =
1

2
+ 2 − 1 

1(1 2) = 1− ∗ =
1

2
+ 1 − 2 

Firm 1’s maximization problem is

max
1

µ
1

2
+ 2 − 1

¶
1

which yields the first order condition

1

2
+ 2 − 21 = 0 

implying the best response function

1 =
1

4
+

2

2
.

A symmetric analysis yields the best response of firm 2,

2 =
1

4
+

1

2
.

The Nash equilibrium is a pair of prices for which these two best re-

sponse functions hold simultaneously, which yields 1 = 2 =
1
2
, and
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∗ = 1
2
. To verify that this is a Nash equilibrium notice that for cus-

tomer ∗, the utility form buying from firm 1 is −1− 1
2
= 1− 1

2
− 1
2
= 0

implying that he is indeed indifferent between buying or not, which in

turn implies that every other customer prefer buying over not buying.

¥

(d) Following your analysis in (c) above, imagine that transportation costs

are , with  ∈ [0 1
2
]. What happens to the Nash equilibrium as

→ 0? What is the intuition for this result?

Answer: Using the assumed indifferent customer ∗, his indifference

implies that

 − 1 − ∗ =  − 2 − (1− ∗)

 − 1 −  =  − 2 − (1− )

which gives the equation for ∗,

∗ =
1

2
+
1

2
(2 − 1) 

It follows that under the assumptions above, given prices 1 and 2, the

demands for firms 1 and 2 are given by

1(1 2) = ∗ =
1

2
+
1

2
(2 − 1) 

1(1 2) = 1− ∗ =
1

2
+
1

2
(1 − 2) 

Firm 1’s maximization problem is

max
1

µ
1

2
+
1

2
(2 − 1)

¶
1

which yields the first order condition

1

2
+

2

2
− 1


= 0 

implying the best response function

1 =


2
+

2

2
.
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A symmetric analysis yields the best response of firm 2,

2 =


2
+

1

2
.

2 =


2
+


2
+ 2

2

2
.

The Nash equilibrium is a pair of prices for which these two best re-

sponse functions hold simultaneously, which yields 1 = 2 = , and

∗ = 1
2
. From the analysis in (c) above we know that for any  ∈ [0 1

2
)

customer ∗ will strictly prefer to buy over not buying and so will every

other customer. We see that as  decreases, so do the equilibrium prices,

so that at the limit of  = 0 the prices will be zero. The intuition is that

the transportation costs  cause firms 1 and 2 to be differentiated, and

this “softens” the Bertrand competition between the two firms. When

the transportation costs are higher this implies that competition is less

fierce and prices are higher, and the opposite holds for lower transporta-

tion costs.¥

17.

18. Political Campaigning: Two candidates are competing in a political race.

Each candidate  can spend  ≥ 0 on adds that reach out to voters, which
in turn increases the probability that candidate  wins the race. Given a pair

of spending choices (1 2), the probability that candidate  wins is given

by 
1+2

. If neither spends any resources then each wins with probability 1
2

Each candidate values winning at a payoff of   0, and the cost of spending

 is just .

(a) Given two spend levels (1 2), write the expected payoff of a candidate



Answer: Player ’s payoff function is

(1 2) =


1 + 2
−  

¥
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(b) What is the function that represents each player’s best response func-

tion?

Answer: Player 1 maximizes his payoff 1(1 2) shown in (a) above

and the first order optimality condition is,

(1 + 2)− 1

(1 + 2)2
− 1 = 0

and if we use 1(2) to denote player 1’s best response function then

it explicitly solves the following equality that is derived from the first-

order condition,

[1(2)]
2 + 21(2)2 + (2)

2 − 2 = 0 

Because this is a quadratic equation we cannot write an explicit best

response function (or correspondence). However, if we can graph 1(2)

as shown in the following figure (the values correspond for the case of

 = 1).

0.2 0.4 0.6 0.8 1.0 1.2

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

s2

s1

Similarly we can derive the symmetric function for player 2. ¥

(c) Find the unique Nash equilibrium.

Answer: The best response functions are symmetric mirror images and

have a symmetric solution where 1 = 2 in the unique Nash equilibrium.

We can therefore use any one of the two best response functions and

replace both variables with a single variable ,

2 + 22 + 2 −  = 0 
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or,

 =


4
so that the unique Nash equilibrium has ∗1 = ∗2 =


4
¥

(d) What happens to the Nash equilibrium spending levels if  increases?

Answer: It is easy to see from part (c) that higher values of  cause

the players to spend more in equilibrium. As the stakes of the prize rise,

it is more valuable to fight over it. ¥

(e) What happens to the Nash equilibrium levels if player 1 still values

winning at , but player 2 values winning at  where   1?

Answer: Now the two best response functions are not symmetric. The

best response function of player 1 remains as above, but that of player

2 will now have  instead of ,

(1)
2 + 212 + (2)

2 − 2 = 0  ((BR1))

and

(2)
2 + 212 + (1)

2 − 1 = 0  ((BR2))

Subtracting (BR2) from (BR1) we obtain,

1 = 2,

which implies that the solution will no longer be symmetric and, more-

over, 2  1 which is intuitive because now player 2 cares more about

the prize. Using 1 = 2 we substitute for 2 in (BR1) to obtain,

(1)
2 + 2(1)

2 + 2(1)
2 − 1 = 0

which results in,

1 =


1 + 2 + 2




1 + 2 + 2




4

where both inequalities follow from the fact that   1. From 1 = 2

above we have

2 =
2

1 + 2 + 2


2

2 + 22 + 2
=



4

where the inequality follows from   1. ¥

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



6

Mixed Strategies

1.

2. Let  be a mixed strategy of player  that puts positive weight on one strictly

dominated pure strategy. Show that there exists a mixed strategy 0 that puts

no weight on any dominated pure strategy and that dominates .

Answer: Let player  have  pure strategies  = {1 2  } and let 
be a pure strategy which is strictly dominated by 0, that is, (0  −) 

(0  −) for any strategy profile of ’s opponents −. Let  = (1 2  

be a mixed strategy that puts some positive weight   0 on  and let 

be identical to  except that it puts weight 0 on  and diverts that weight

over to 0. That is, 
0
 = 0 and 00 = 0 + , and 0 =  for all  6= 

and  6= 0. It follows that for all −,

(
0
 −) =

X
=1

0( −) 
X
=1

( −) = (
0
 −)

because (0  −)  (0  −) and the way in which 0 was constructed.

Hence,  is strictly dominated by 
0
. ¥

3.
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4. Monitoring: An employee (player 1) who works for a boss (player 2) can

either work ( ) or shirk (), while his boss can either monitor the employee

() or ignore him (). Like most employee-boss relationships, if the em-

ployee is working then the boss prefers not to monitor, but if the boss is not

monitoring then the employee prefers to shirk. The game is represented in

the following matrix:

player 1

Player 2

 

 1 1 1 2

 0 2 2 1

(a) Draw the best response functions of each player.

Answer: Let  be the probability that player 1 chooses  and  the

probability that player 2 chooses  . It follows that 1( )  1( )

if and only if 1  2(1− ), or   1
2
, and 2()  2( ) if and only

if + 2(1− )  2+ (1− ), or   1
2
. It follows that for player 1,

1() =

⎧⎪⎨⎪⎩
 = 0 if   1

2

 ∈ [0 1] if  = 1
2

 = 1 if   1
2

and for player 2,

2() =

⎧⎪⎨⎪⎩
 = 1 if   1

2

 ∈ [0 1] if  = 1
2

 = 0 if   1
2



Notice that these are identical to the best response functions for the

matching pennies game (see Figure 6.3). ¥

(b) Find the Nash equilibrium of this game. What kind of game does this

game remind you of?

Answer: From the two best response correspondences the unique Nash

equilibrium is ( ) = (1
2
 1
2
) and the game’s strategic forces are identical

to those in the Matching Pennies game. ¥

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



6. Mixed Strategies 53

5.

6. Declining Industry: Consider two competing firms in a declining indus-

try that cannot support both firms profitably. Each firm has three possible

choices as it must decide whether or not to exit the industry immediately, at

the end of this quarter, or at the end of the next quarter. If a firm chooses

to exit then its payoff is 0 from that point onward. Every quarter that both

firms operate yields each a loss equal to −1, and each quarter that a firm
operates alone yields a payoff of 2 For example, if firm 1 plans to exit at the

end of this quarter while firm 2 plans to exit at the end of the next quarter

then the payoffs are (−1 1) because both firms lose −1 in the first quarter
and firm 2 gains 2 in the second. The payoff for each firm is the sum of its

quarterly payoffs.

(a) Write down this game in matrix form.

Answer: Let  denote immediate exit,  denote exit this quarter, and

 denote exit next quarter.

Player 1

Player 2

  

 0 0 0 2 0 4

 2 0 −1−1 −1 1
 4 0 1−1 −2−2

(b) Are there any strictly dominated strategies? Are there any weakly dom-

inated strategies?

Answer: There are no strictly dominated strategies but there is a

weakly dominated one:  . To see this note that choosing both  and

 with probability 1
2
each yields the same expected payoff as choos-

ing  against  or  , and a higher expected payoff against  and

hence  = (() ( ) ()) = (1
2
 0 1

2
) weakly dominates  . The

reason there is no strictly dominated strategy is that, starting with 

increasing the weight on  causes the mixed strategy to be worse than
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 against , while increasing the weight on  causes the mixed strat-

egy to be worse than  against  , implying it is impossible to find a

mixed strategy that strictly dominates  . ¥

(c) Find the pure strategy Nash equilibria.

Answer: Because  is weakly dominated, it is suspect of never being

a best response. A quick observation should convince you that this is

indeed the case: it is never a best response to any of the pure strategies,

and hence cannot be part of a pure strategy Nash equilibrium. Removing

 from consideration results in the reduced game:

Player 1

Player 2

 

 0 0 0 4

 4 0 −2−2

for which there are two pure strategy Nash equilibria, () and ()

¥

(d) Find the unique mixed strategy Nash equilibrium (hint: you can use

your answer to (b) to make things easier.)

Answer: We start by ignoring  and using the reduced game in part

(c) by assuming that the weakly dominated strategy  will never be

part of a Nash equilibrium. We need to find a pair of mixed strategies,

(1() 1()) and (2() 2()) that make both players indifferent

between  and  . For player 1 the indifference equation is,

0 = 42()− 2(1− 2())

which results in 2() =
1
3
, and for player 2 the indifference equation

is symmetric, resulting in 1() =
1
3
. Hence, the mixed strategy Nash

equilibrium of the original game is (() ( ) ()) = (1
3
 0 2

3
)

Notice that at this Nash equilibrium, each player is not only indifferent

between  and  , but choosing  gives the same expected payoff of

zero. However, choosing  with positive probability cannot be part of
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a mixed strategy Nash equilibrium. To prove this let player 2 play the

mixed strategy 2 = (2() 2( ) 2()) = (2 2  1− 2 − 2 )

The strategy  for player 1 is at least as good as  if and only if,

0 ≤ 22 − 2 − (1− 2 − 2 )

or, 2 ≥ 1
3
. The strategy  for player 1 is at least as good as  if and

only if,

42 − 2 − 2(1− 2 − 2 ) ≤ 22 − 2 − (1− 2 − 2 )

or, 2 ≤ 1−32. But if 2 ≥ 1
3
(when  is as good as ) then 2 ≤

1 − 32 reduces to 2 ≤ 0, which can only hold when 2 =
1
3
and

2 = 0 (which is the Nash equilibrium we found above). A symmetric

argument holds to conclude that (() ( ) ()) = (
1
3
 0 2

3
) is the

unique mixed strategy Nash equilibrium. ¥

7.

8. Market entry: There are 3 firms that are considering entering a newmarket.

The payoff for each firm that enters is 150

where  is the number of firms

that enter. The cost of entering is 62.

(a) Find all the pure strategy Nash equilibria.

Answer: The costs of entry are 62 so the benefits of entry must be at

least that for a firm to choose to enter. Clearly, if a firm believes the

other two are not entering then it wants to enter, and if it believes that

the other firms are entering then it would stay out (it would only get

50). If a firm believes that only one other firm is entering then it prefers

to enter and get 75. Hence, there are three pure strategy Nash equilibria

in which two of the three firms enter and one stays out. ¥

(b) Find the symmetric mixed strategy equilibrium where all three players

enter with the same probability.

Answer: Let  be the probability that a firm enters. In order to be
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willing to mix the expected payoff of entering must be equal to zero.

If a firm enters then with probability 2 it will face two other entrants

and receive  = 50 − 62 = −12 with probability (1 − )2 it will face

no other entrants and receive  = 150− 62 = 88 and with probability
2(1 − ) it will face one other entrant and receive  = 75 − 62 = 13
Hence, to be willing to mix the expected payoff must be zero,2+1−2

(1− )288 + 2(1− )13− 212 = 0

which results in the quadratic equation 252 − 75 + 44 = 0, and the
relevant solution (between 0 and 1) is  = 4

5
. ¥

9.

10. Continuous all pay auction: Consider an all-pay auction for a good worth

1 to each of the two bidders. Each bidder can choose to offer a bid from the

unit interval so that  = [0 1]. Players only care about the expected value

they will end up with at the end of the game (i.e., if a player bids 0.4 and

expects to win with probability 0.7 then his payoff is 07× 1− 04).

(a) Model this auction as a normal-form game.

Answer: There are two players,  = {1 2}, each has a strategy set
 = [0 1], and assuming that the players are equally likely to get the

good in case of a tie, the payoff to player  is given by

( ) =

⎧⎪⎨⎪⎩
1−  if   
1
2
−  if  = 

− if   

(b) Show that this game has no pure strategy Nash Equilibrium.

Answer: First, it cannot be the case that  =   1 because then each

player would benefit from raising his bid by a tiny amount  in order to

win the auction and receive a higher payoff 1− −  
1
2
− . Second,
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it cannot be the case that  =  = 1 because each player would prefer

to bid nothing and receive 0  −1
2
. Last, it cannot be the case that

   ≥ 0 because then player  would prefer to lower his bid by 

while still beating player  and paying less money. Hence, there cannot

be a pure strategy Nash equilibrium. ¥

(c) Show that this game cannot have a Nash Equilibrium in which each

player is randomizing over a finite number of bids.

Answer: Assume that a Nash equilibrium involves player 1 mixing

between a finite number of bids, {11 12 1} where 11 ≥ 0 is the
lowest bid, 1 ≤ 1 is the highest, 1  1(+1) and each bid 1 is

being played with some positive probability 1. Similarly assume that

player 2 is mixing between a finite number of bids, {21 22 2}
and each bid 2 is being played with some positive probability 2. ()

First observe that it cannot be true that 1  2 (or the reverse by

symmetry). If it were the case then player 2 will win for sure when he

bids 2 and pay his bid, while if he reduces his bid by some  such that

1  2 −  then he will still win for sure and pay less, contradicting

that playing 2 was part of a Nash equilibrium. () Second observe

that when 1 = 2 then the expected payoff of player 2 from bidding

2 is

2 = Pr{1  2}(1− 2) + Pr{1 = 2}(1
2
− 2)

= (1− 1)(1− 2) + 1(
1

2
− 2)

= 1− 2 − 1
2
 ≥ 0

where the last inequality follows from the fact that 2  0 (he would

not play it with positive probability if the expected payoff were nega-

tive.) Let 02 = 2+  where  = 1
4
 . If instead of bidding 2 player

2 bids 02 then he wins for sure and his utility is

2 = 1− 02 = 1− 2 − 1
4
  1− 2 − 1

2


contradicting that playing 2 was part of a Nash equilibrium. ¥
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(d) Consider mixed strategies of the following form: Each player  chooses

and interval, [ ] with 0 ≤    ≤ 1 together with a cumulative
distribution () over the interval [ ] (Alternatively you can think

of each player choosing () over the interval [0 1], with two values 

and  such that () = 0 and () = 1.)

i. Show that if two such strategies are a mixed strategy Nash equilib-

rium then it must be that 1 = 2 and 1 = 2

Answer: Assume not. There are two cases: () 1 6= 2: With-

out loss assume that 1  2. This means that there are values

of 01 ∈ (1 2) for which 01  0 but for which player 1 loses

with probability 1. This implies that the expected payoff from this

bid is negative, and player would be better off bidding 0 instead.

Hence, 1 = 2 must hold. () 1 6= 2: Without loss assume that

1  2. This means that there are values of 
0
2 ∈ (1 2) for which

1  02  1 but for which player 2 wins with probability 1. But

then player 2 could replace 02 with 
00
2 = 02−  with  small enough

such that 1  002  02  1, he will win with probability 1 and pay

less than he would pay with 02. Hence, 1 = 2 must hold. ¥

ii. Show that if two such strategies are a mixed strategy Nash equilib-

rium then it must be that 1 = 2 = 0

Answer: Assume not so that 1 = 2 =   0. This means that

when player  bids  then he loses with probability 1, and get

an expected payoff of −  0. But instead of bidding  player 

can bid 0 and receive 0 which is better than −, implying that
1 = 2 =   0 cannot be an equilibrium. ¥

iii. Using the above, argue that if two such strategies are a mixed strat-

egy Nash equilibrium then both players must be getting an expected

payoff of zero.

Answer: As proposition 6.1 states, if a player is randomizing be-

tween two alternatives then he must be indifferent between them.

Because both players are including 0 in the support of their mixed
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strategy, their payoff from 0 is zero, and hence their expected payoff

from any choice in equilibrium must be zero. ¥

iv. Show that if two such strategies are a mixed strategy Nash equilib-

rium then it must be that 1 = 2 = 1

Answer: Assume not so that 1 = 2 =   1. From () above the

expected payoff from any bid in [0 ] is equal to zero. If one of the

players deviates from this strategy and choose to bid +  1 then

he will win with probability 1 and receive a payoff of 1−(+)  0
contradicting that 1 = 2 =   1 is an equilibrium. ¥

v. Show that () being uniform over [0 1] is a symmetric Nash equi-

librium of this game.

Answer: Imagine that player 2 is playing according to the pro-

posed strategy 2() uniform over [0 1]. If player 1 bids some value

1 ∈ [0 1] then his expected payoff is

Pr{1  2}(1−1)+Pr{1  2}(−1) = 1(1−1)+(1−1)(−1) = 0

implying that player 1 is willing to bid any value in the [0 1] interval,

and in particular, choosing a bid according to 1() uniform over

[0 1]. Hence, this is a symmetric Nash equilibrium. ¥

11.

12. The Tax Man: A citizen (player 1) must choose whether or not to file taxes

honestly or whether to cheat. The tax man (player 2) decides how much effort

to invest in auditing and can choose  ∈ [0 1], and the cost to the tax man of
investing at a level  is () = 1002. If the citizen is honest then he receives

the benchmark payoff of 0, and the tax man pays the auditing costs without

any benefit from the audit, yielding him a payoff of (−1002). If the citizen
cheats then his payoff depends on whether he is caught. If he is caught then

his payoff is (−100) and the tax man’s payoff is 100 − 1002. If he is not
caught then his payoff is 50 while the tax man’s payoff is (−1002) If the
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citizen cheats and the tax man chooses to audit at level  then the citizen is

caught with probability  and is not caught with probability (1− ).

(a) If the tax man believes that the citizen is cheating for sure, what is his

best response level of ?

Answer: The tax man maximizes (100−1002)+(1−)(0−1002) =
100 − 1002. The first-order optimality condition is 100 − 200 = 0

yielding  = 1
2
. ¥

(b) If the tax man believes that the citizen is honest for sure, what is his

best response level of ?

Answer: The tax man maximizes −1002 which is maximized at  = 0
¥

(c) If the tax man believes that the citizen is honest with probability 

what is his best response level of  as a function of ?

Answer: The tax man maximizes (−1002)+(1−)(100−1002) =
100(1−)−1002. The first-order optimality condition is 100(1−)−
200 = 0, yielding the best response function ∗() = 1−

2
. ¥

(d) Is there a pure strategy Nash equilibrium of this game? Why or why

not?

Answer: There is no pure strategy Nash equilibrium. To see this, con-

sider the best response of player 1 who believes that player 2 chooses

some level  ∈ [0 1]. His payoff from being honest is 0 while his payoff

from cheating is (−100) + (1− )50 = 50− 150. Hence, he prefers to
be honest if and only if 0 ≥ 50 − 150 or  ≥ 1

3
. Letting ∗() denote

the best response correspondence of player 1 as the probability that he

is honest, we have that

∗() =

⎧⎪⎨⎪⎩
1 if   1

3

[0 1] if  = 1
3

0 if   1
3
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and it is easy to see that there are no values of  and  for which both

players are playing mutual best responses. ¥

(e) Is there a mixed strategy Nash equilibrium of this game? Why or why

not?

Answer: From (d) above we know that player 1 is willing to mix if

and only if  = 1
3
, which must therefore hold true in a mixed strategy

Nash equilibrium. For player 2 to be willing to play  = 1
3
we use his

best response from part (c), 1
3
= 1−

2
, which yields,  = 1

3
. Hence, the

unique mixed strategy Nash equilibrium has player 1 being honest with

probability 1
3
and player 2 choosing  = 1

3
. ¥
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Preliminaries

1.

2. Strategies and equilibrium: Consider a two player game in which player

1 can choose  or . The game ends if he chooses  while it continues to

player 2 if he chooses . Player 2 can then choose  or , with he game

ending after  and continuing again with player 1 after . Player 1 then can

choose  or  , and the game ends after each of these choices.

(a) Model this as an extensive form game tree. Is it a game of perfect or

imperfect information?

Answer:

This game is a game of perfect information. ¥
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(b) How many terminal nodes does the game have? How many information

sets?

Answer: The game has 4 terminal nodes (after choices A, C, E and F)

and 3 information sets (one for each player. ¥

(c) How many pure strategies does each player have?

Answer: Player 1 has 4 pure strategies and player 2 has 2. ¥

(d) Imagine that the payoffs following choice  by player 1 are (2 0), fol-

lowing  by player 2 are (3 1), following  by player 1 are (0 0) and

following  by player 1 are (1 2). What are the Nash equilibria of this

game? Does one strike you as more “appealing” than the other? If so,

explain why.

Answer: We can write down the matrix form of this game as follows

( denotes a strategy for player 1 where  ∈ {} is what he does
in his first information set and  ∈ {} in his second one),

Player 1

Player 2

 

 2 0 2 0

 2 0 2 0

 3 1 0 0

 3 1 1 2

It’s easy to see that there are three pure strategy Nash equilibria:

() () and (). The equilibria () () are

Pareto dominated by the equilibrium (), and hence it would be

tempting to argue that () is the more “appealing” equilibrium.

As we will see in Chapter 8 it is actually () that has properties

that are more appealing (sequential rationality). ¥

3.
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4. Centipedes: Imagine a two player game that proceeds as follows. A pot of

money is created with $6 in it initially. Player 1 moves first, then player 2,

then player 1 again and finally player 2 again. At each player’s turn to move,

he has two possible actions: grab () or share (). If he grabs, he gets 2
3
of

the current pot of money, the other player gets 1
3
of the pot and the game

ends. If he shares then the size of the current pot is multiplied by 3
2
and the

next player gets to move. At the last stage in which player 2 moves, if he

chooses share then the pot is still multiplied by 3
2
, player 2 gets 1

3
of the pot

and player 1 gets 2
3
of the pot.

(a) Model this as an extensive form game tree. Is it a game of perfect or

imperfect information?

Answer:

This is a game of perfect information. Note that we draw the game from

left to right (which is the common convention for “centipede games” of

this sort.) We use capital letters for player 1 and lower case for player

2. ¥

(b) How many terminal nodes does the game have? How many information

sets?

Answer: The game has five terminal nodes and four information sets.

¥

(c) How many pure strategies does each player have?

Answer: Each player has four pure strategies (2 actions in each of his

2 information sets). ¥

(d) Find the Nash equilibria of this game. How many outcomes can be

supported in equilibrium?
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Answer: Using the convention of  to denote a strategy of player

where he chooses  in his first information set and  in his second, we

can draw the following matrix representation of this game,

Player 1

Player 2

   

 4 2 4 2 4 2 4 2

 4 2 4 2 4 2 4 2

 3 6 3 6 9 45 9 45

 3 6 3 6 675 135 2025 10125

We see that only one outcome can be supported as a Nash equilibrium:

player 1 grabs immediately and the players’ payoffs are (4 2). ¥

(e) Now imagine that at the last stage in which player 2 moves, if he chooses

to share then the pot is equally split among the players. Does your

answer to part (d) above change?

Answer: The answer does change because the payoffs from the pair of

strategies ( ) changes from (2025 10125) to (151875 151875) in

which case player 2’s best response to  will be , and player 1’s best

response to  remains , so that ( ) is another Nash equilibrium

in which they split 30375 equally (the previous Nash equilibria are still

equilibria). ¥

5.

6. Entering an Industry: A firm (player 1) is considering entering an estab-

lished industry with one incumbent firm (player 2). Player 1 must choose

whether to enter or to not enter the industry. If player 1 enters the industry

then player 2 can either accommodate the entry, or fight the entry with a

price war. Player 1’s most preferred outcome is entering with player 2 not

fighting, and his least preferred outcome is entering with player 2 fighting.

Player 2’s most preferred outcome is player 1 not entering, and his least

preferred outcome is player 1 entering with player 2 fighting.
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(a) Model this as an extensive form game tree (choose payoffs that repre-

sent the preferences).

Answer:

(b) How many pure strategies does each player have?

Answer: Each player has two pure strategies. ¥

(c) Find all the Nash equilibria of this game.

Answer: There are two Nash equilibria which can be seen in the matrix,

Player 1

Player 2

 

 0 2 0 2

 1 1 −1−1

Both ( ) and () are Nash equilibria of this game. ¥

7.

8. Brothers: Consider the following game that proceeds in two steps: In the

first stage one brother (player 2) has two $10 bills and can choose one of two

options: he can give his younger brother (player 1) $20, or give him one of

the $10 bills (giving nothing is inconceivable given the way they were raised.)

This money will be used to buy snacks at the show they will see, and each
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one dollar of snack yields one unit of payoff for a player who uses it. The

show they will see is determined by the following “battle of the sexes” game:

Player 1

Player 2

 

 16,12 0,0

 0,0 12,16

(a) Present the entire game in extensive form (a game tree).

Answer: Let the choices of player 1 first be  for spliting the

$20 and  for giving it all away. The entire game will have the payoffs

from the choice of how to split the money added to the payoffs from the

Battle of the Sexes part of the game as follows,

Because the latter is simultaneous, it does not mater which player moves

after player 1 as long as the last player cannot distinguish between the

choice of the player who moves just before him. ¥

(b) Write the (pure) strategy sets for both players.

Answer: Both players can condition their choice in the Battle of the

Sexes game on the initial split/give choice of player 1. For player 2,

2 = { } where 2 =  means that player 2 chooses

 ∈ {} after player 1 chose  while player 2 chooses  ∈ {}
after player 1 chose . For player 1, however, even though he chooses

first between  or , he must specify his action for each information
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set even if he knows it will not happen (e.g., what he will do following

 even when he plans to play ). Hence, he has 8 pure strategies,

1 = { } where 1 =

 means that player 1 first chooses  ∈ {} and then chooses
 ∈ {} if he played  and  ∈ {} if he played . ¥

(c) Present the entire game in one matrix.

Answer: This will be a 8× 4 matrix as follows,

Player 1

Player 2

   

 26 22 26 22 10 10 10 10

 26 22 26 22 10 10 10 10

 10 10 10 10 22 26 22 26

 10 10 10 10 22 26 22 26

 16 32 0 20 16 32 0 20

 0 20 12 36 0 20 12 36

 16 32 0 20 16 32 0 20

 0 20 12 36 0 20 12 36

(d) Find the Nash equilibria of the entire game (pure and mixed strategies).

Answer: First note that for player 1, mixing equally between  and

 will strictly dominate the four strategies  and

 . Hence, we can consider the reduced 4× 4 game,

Player 1

Player 2

   

 26 22 26 22 10 10 10 10

 26 22 26 22 10 10 10 10

 10 10 10 10 22 26 22 26

 10 10 10 10 22 26 22 26

The simple overline-underline method shows that we have eight pure

strategy Nash equilibria, four yielding the payoffs (26 22) and the other
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four yielding (22 26). Because of each players indifference between the

ways in which the payoffs are reached, there are infinitely many mixed

strategies that yield the same payoffs. For example, any profile where

player 1 mixes between  and  and where player 2 mixes be-

tween  and  will be a Nash equilibrium that yields (26 22). Sim-

ilarly, any profile where player 1 mixes between  and  and

where player 2 mixes between  and  will be a Nash equilibrium

that yields (22 26). There is, however, one more class of mixed strategy

Nash equilibria that are similar to the one found in section 6.2.3. To see

this, focus on an even simpler game where we eliminate the duplicate

payoffs as follows,

Player 1

Player 2

 

 26 22 10 10

 10 10 22 26

which preserve the nature of the game. For player 1 to be indifferent

between  and  it must be that player 2 chooses  with

probability  such that

26 + 10(1− ) = 10 + 22(1− )

which yields  = 3
7
. Similarly, for player 2 to be indifferent between 

and  it must be that player 1 chooses  with probability  such

that

22+ 10(1− ) = 10+ 26(1− )

which yields  = 4
7
. Hence, we found a mixed strategy Nash equilibrium

that results in each player getting an expected payoff of 26× 3
7
+10× 4

7
=

166
7
 Notice, however, that player 1 is always indifferent between 

and  , as well as between  and  so there are infinitely

many ways to achieve this kind of mixed strategy, and similarly for

player 2 because of his indifference between  and  as well as 

and  . ¥
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9.

10.
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Credibility and Sequential Rationality

1.

2. Mutually Assured Destruction (revisited): Consider the game in sec-

tion ??.

(a) Find the mixed strategy equilibrium of the war stage game and argue

that it is unique.

Answer: The war-game in the text has a weakly dominated Nash equi-

librium ( ) and hence does not have an equilibrium in which any

player is mixing. This exercise should have replaced the war-stage game

with the following game:
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The subgame we called the war-stage game is given in the following ma-

trix:

Player 1

Player 2

 

 −5−5 −120−80
 −80−120 −100−100

Let player 1 choose  with probability  and player 2 choose  with

probability . For player 2 to be indifferent it must be that 4
19
(−5) +

(1− 4
19
)(−120) = −1820

19

(−5) + (1− )(−120) = (−80) + (1− )(−100)
and the solution is  = 4

19
. By symmetry, for player 1 to be indifferent

it must be that  = 4
19
. Hence, ( ) = ( 4

19
 4
19
) is the unique mixed

strategy Nash equilibrium of this subgame with expected payoffs of

(1 2) = (−9578−9579). ¥

(b) What is the unique subgame perfect equilibrium that includes the mixed

strategy you found above?

Answer: Working backward, player 2 would prefer to choose  over 

and player 1 would prefer  over .

3.

4. The Industry Leader: Three oligopolists operate in a market with inverse

demand given by  () = − , where  = 1+2+3, and  is the quantity

produced by firm . Each firm has a constant marginal cost of production, 

and no fixed cost. The firms choose their quantities dynamically as follows:

(1) Firm 1, who is the industry leader, chooses 1 ≥ 0 ; (2) Firms 2 and 3
observe 1 and then simultaneously choose 2 and 3 respectively.

(a) How many proper subgames does this dynamic game have? Explain

Briefly.

Answer: There are infinitely many proper subgames because every

quantity choice of payer 1 results in a proper subgame. ¥
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(b) Is it a game of perfect or imperfect information? Explain Briefly.

Answer: This is a game of imperfect information because players 2 and

3 make their choice without observing each other’s choice first. ¥

(c) What is the subgame perfect equilibrium of this game? Show that it is

unique.

Answer: first we solve for the Nash equilibrium of the simultaneous

move stage in which players 2 and 3 make their choices as a function

of the choice made first by player 1. Given a choice of 1 and a belief

about 3 player 2 maximizes

max
2

(− (1 + 2 + 3)− )2

which leads to the first order condition

− 1 − 3 − − 22 = 0

yielding the best response function

2 =
− 1 − 3 − 

2


and symmetrically, the best response function of player 3 is

3 =
− 1 − 2 − 

2
.

Hence, following any choice of 1 by player 1, the unique Nash equilib-

rium in the resulting subgame is the solution to the two best response

functions, which yields

∗2(1) = ∗3(1) =
− − 1

3


Moving back to player 1’s decision node, he will choose 1 knowing that

2 and 3 be be chosen using the best response function above, and

hence player 1 maximizes,

max
1

(− (1 + − − 1

3
+

− − 1

3
)− )1
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which leads to the first order equation

1

3
(− − 21) = 0

resulting in a unique solution 1 =
−
2
. Hence, the unique subgame

perfect equilibrium dictates that ∗1 =
−
2
, and ∗2(1) = ∗3(1) =

−−1
3

¥

(d) Find a Nash equilibrium that is not a subgame perfect equilibrium.

Answer: There are infinitely many Nash equilibria of the form “if player

1 plays 01 then players 2 and 3 play ∗2(
0
1) = ∗3(

0
1) =

−−01
3
, and oth-

erwise they play 2 = 3 = .” In any such Nash equilibrium, players

2 and 3 are playing a Nash equilibrium on the equilibrium path (fol-

lowing 01) while they are flooding the market and casing the price to

be zero off the equilibrium path. One example would be 01 = 0. In this

case, following 01 = 0 the remaining two players play the duopoly Nash

equilibrium, and player 1 gets zero profits. If player 1 were to choose

any positive quantity, his belief is that players 2 and 3 will flood the

market and he will earn −1  0, so he would prefer to choose 01 = 0
given those beliefs. Of course, the threats of players 2 and 3 are not

sequentially rational, which is the reason that this Nash equilibrium is

not a subgame perfect equilibrium. ¥

5.

6. Investment in the Future: Consider two firms that play a Cournot com-

petition game with demand  = 100 − , and costs for each firm given by

() = 10. Imagine that before the two firms play the Cournot game, firm

1 can invest in cost reduction. If it invests, the costs of firm 1 will drop to

1(1) = 51. The cost of investment is   0. Firm 2 does not have this

investment opportunity.

(a) Find the value  ∗ for which the unique subgame perfect equilibrium

involves firm 1 investing.
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Answer: If firm 1 does not invest then they are expected to play the

Cournot Nash equilibrium where both firms have costs of 10. Each

firm solves,

max


(100− ( + )− 10)
which leads to the first order condition

90−  − 2 = 0
yielding the best response function

() =
90− 

2


and the unique Cournot Nash equilibrium is 1 = 2 = 30 with profits

1 = 2 = 900. If firm 1 does invest then for firm 1 the problem becomes

max
1

(100− (1 + 2)− 5)1
which leads to the best response function

1(2) =
95− 2

2


For firm 2 the best response function remains the same as solved earlier

with costs 102, so the unique Cournot Nash equilibrium is now solved

using both equations,

1 =
95− 90−1

2

2


which yields 1 =
100
3
, 2 =

85
3
, and profits are 1 = 1 1111

9
while

2 = 8027
9
. Hence, the increase in profits from the equilibrium with

investment for player 1 are  ∗ = 1 1111
9
−900 = 2111

9
, which is the most

that player 1 would be willing to pay for the investment anticipating that

they will play the Cournot Nash equilibrium after any choice of player

1 regarding investment. If    ∗ then the unique subgame perfect

equilibrium is that first, player 1 invests, then they players choose 1 =
100
3
, 2 =

85
3
, and if player 1 did not invest the payers choose 1 = 2 = 30

(Note that if    ∗ then the unique subgame perfect equilibrium is

that first, player 1 does not invest, then they players choose 1 = 2 =

30, and if player 1 did invest the payers choose 1 =
100
3
, 2 =

85
3
.) ¥
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(b) Assume that    ∗. Find a Nash equilibrium of the game that is not

subgame perfect.

Answer: We construct a Nash equilibrium in which player 1 will invest

despite    ∗. Player 2’s strategy will be, play 2 =
85
3
if player 1

invests, and 2 = 100 if he does not invest. With this belief, if player 1

does not invest then he expects the price to be 0, and his best response

is 1 = 0 leading to profits 1 = 0. If he invests then his best response

to 2 =
85
3
is 1 =

100
3
, which together are a Nash equilibrium in the

Cournot game after investment. For any   1 1111
9
this will lead to

positive profits, and hence, for  ∗    1 1111
9
the strategy of player 2

described above, together with player 1 choosing to invest, play 1 =
100
3

if he invests and 1 = 0 if he does not is a Nash equilibrium. It is not

subgame perfect because in the subgame following no investment, the

players are not playing a Nash equilibrium. ¥

7.

8. Entry Deterrence 1: NSG is considering entry into the local phone market

in the Bay Area. The incumbent S&P, predicts that a price war will result

if NSG enters. If NSG stays out, S&P earns monopoly profits valued at $10

million (net present value, or NPV of profits), while NSG earns zero. If NSG

enters, it must incur irreversible entry costs of $2 million. If there is a price

war, each firm earns $1 million (NPV). S&P always has the option of accom-

modating entry (i.e., not starting a price war). In such a case, both firms

earn $4 million (NPV). Suppose that the timing is such that NSG first has

to choose whether or not to enter the market. Then S&P decides whether

to “accommodate entry” or “engage in a price war.” What is the subgame

perfect equilibrium outcome to this sequential game? (Set up a game tree.)

Answer: Letting NSG be player 1 and S&P be player 2,
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Backward induction implies that player 2 will Accommodate, and player 1

will therefore enter. Hence, the unique subgame perfect equilibrium is (En-

ter,Accommodate). ¥

9.

10. Playing it safe: Consider the following dynamic game: Player 1 can choose

to play it safe (denote this choice by ), in which case both he and player 2 get

a payoff of 3 each, or he can risk playing a game with player 2 (denote this

choice by ). If he chooses , then they play the following simultaneous

move game:

player 1

Player 2

 





8 0 0 2

6 6 2 2

(a) Draw a game tree that represents this game. How many proper sub-

games does it have?

Answer:
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The game has two proper subgames: the whole game and the subgame

starting at the node where 1 chooses between  and . ¥

(b) Are there other game trees that would work? Explain briefly.

Answer: Yes - it is possible to have player 2 move after 1’s initial move,

and then have player 1 with an information set as follows:

(c) Construct the matrix representation of the normal form of this dynamic

game.
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Answer: The game can be represented by the following matrix,

Player 1

Player 2

 

 8 0 0 2

 6 6 2 2

 3 3 3 3

 3 3 3 3

¥

(d) Find all the Nash and subgame perfect equilibria of the dynamic game.

Answer: It is easy to see that there are two pure strategy Nash equi-

libria: () and (). It follows immediately that there are infi-

nitely many mixed strategy Nash equilibria in which player 1 is mixing

between  and  in any arbitrary way and player 2 chooses . It is

also easy to see that following a choice of , there is no pure strategy

Nash equilibrium in the resulting subgame. To find the mixed strategy

Nash equilibrium in that subgame, let player 1 choose  with proba-

bility  and  with probability (1−), and let player 2 choose  with
probability . For player 2 to be indifferent it must be that

(0) + (1− )(6) = (2) + (1− )(2)

and the solution is  = 2
3
. Similarly, for player 1 to be indifferent it must

be that

(8) + (1− )(0) = (6) + (1− )(2)

and the solution is  = 1
2
. Hence, ( ) = (1

2
 3
5
) is a mixed strategy

Nash equilibrium of the subgame after player 1 chooses , yielding

expected payoffs of (1 2) = (4 2). In any subgame perfect equilibrium

the players will have to play this mixed strategy equilibrium following

, and because 4  3 player 1 will prefer  over . Hence, choosing 

followed by the mixed strategy computed above is the unique subgame

perfect equilibrium. ¥
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11.

12. Agenda Setting:An agenda-setting game is described as follows. The “issue

space” (set of possible policies) is an interval  = [0 5]. An Agenda Setter

(player 1) proposes an alternative  ∈  against the status quo  = 4

After player 1 proposes , the Legislator (player 2) observes the proposal

and selects between the proposal  and the status quo . Player 1’s most

preferred policy is 1 and for any final policy  ∈  his payoff is given by

1() = 10− | − 1|

where |− 1| denotes the absolute value of (− 1). Player 2’s most preferred
policy is 3 and for any final policy  ∈  her payoff is given by

2() = 10− | − 3|

That is, each player prefers policies that are closer to their most preferred

policy.

(a) Write the game down as a normal form game. Is this a game of perfect

or imperfect information?

Answer: There are two players,  ∈ {1 2} with strategy sets 1 =  =

[0 5] and 2 = {} where  denotes accepting the proposal  ∈ 

and  means rejecting it and adopting the status quo  = 4. The payoffs

are given by

1(1 2) =

(
10− |1 − 1| if 2 = 

7 if 2 = 

and

2(1 2) =

(
10− |1 − 3| if 2 = 

9 if 2 = 

(b) Find a subgame perfect equilibrium of this game. Is it unique?

Answer: Player 2 can guarantee himself a payoff of 9 by choosing 
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implying that his best response is to choose if and only if 10−|1−3| ≥
9, which will hold for any 1 ∈ [2 4]. Player 1 would like to have an
alternative adopted that is closest to 1, which implies that his best

response to player 2’s sequentially rational strategy is to choose 1 = 2

This is the unique subgame perfect equilibrium which results in the

payoffs of (1 2) = (9 9). ¥

(c) Find a Nash equilibrium that is not subgame perfect. Is it unique? If

yes, explain. If not, show all the Nash equilibria of this game.

Answer: One Nash equilibrium is where player 2 adopts the strategy

“I will reject anything except 1 = 3” If player 1 chooses 1 = 3 then

his payoff is 8, while any other choice of 1 is expected to yield player

1 a payoff of 7. Hence, player 1s best response to player 2’s proposed

strategy is indeed to choose 1 = 3 and the payoffs from this Nash

equilibrium are (1 2) = (8 10). Since player 2 can guarantee himself

a payoff of 9, there are infinitely many Nash equilibria that are not

subgame perfect and that follow a similar logic: player 2 adopts the

strategy “I will reject anything except 1 = ” for some value  ∈ (2 4)
Player 1 would strictly prefer the adoption of  over 4, and hence would

indeed propose , and player 2 would accept the proposal. For  = 4

both players are indifferent so it would also be supported as a Nash

equilibrium. ¥

13.

14. Hyperbolic Discounting: Consider the three period example of a player

with hyperbolic discounting described in section 8.3.4 with ln() utility in

each of the three periods and with discount factors 0    1 and 0    1

(a) Solve the optimal choice of player 2, the second period self, as a function

of his budget 2,  and .

Answer: Player 2’s optimization problem is given by

max
2

2(2 − 2) = ln(2) +  ln( − 2)
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for which the first order condition is

2

2
=
1

2
− 

2 − 2
= 0 

which in turn implies that player 2’s best response function is,

2(2) =
2

 + 1
,

which leaves 3 = 2 − 2(2) =
2

+1
for consumption in the third

period. ¥

(b) Solve the optimal choice of player 1, the first period self, as a function

of ,  and .

Answer: Player 1 decides how much to allocate between his own con-

sumption and that of player 2 taking into account that 2(2) =
2

+1

hence player 1 solves the following problem,

max
1

1(1
 − 1

 + 1

( − 1)

 + 1
) = ln(1)+ ln(

 − 1

 + 1
)+2 ln(

(



for which the first order condition is,

1

1
=
1

1
− 

 − 1
− 2

 − 1
= 0 

which in turn implies that player 1’s best response function is,

1() =


 + 2 + 1
.

¥

15.

16. The Value of Commitment: Consider the three period example of a player

with hyperbolic discounting described in section 8.3.4 with ln() utility in

each of the three periods and with discount factors  = 1 and  = 1
2
. We

solved the optimal consumption plan of a sophisticated player 1.
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(a) Imagine that an external entity can enforce any plan of action that

player 1 chooses in  = 1 and will prevent player 2 from modifying it.

What is the plan that player 1 would choose to enforce?

Answer: Player 1 wants to maximize,

max
23

( − 2 − 3 2 3) = ln( − 2 − 3) +  ln(2) + 2 ln(

= ln( − 2 − 3) +
1

2
ln(2) +

1

2
ln(3)

when  = 1
2
and  = 1. The two fist order conditions are,



2
= − 1

 − 2 − 3
+

1

22
= 0 

and,


3
= − 1

 − 2 − 3
+

1

23
= 0 

Solving these two equations yields the solution

2 = 3 =


4


and using 1 =  − 2 − 3 gives,

1 =


2


Thus, player 1 would choose to enforce 1 =

2
and 2 = 3 =


4
. ¥

(b) Assume that = 90. Up to how much of his initial budget will player

1 be willing to pay the external entity in order to enforce the plan you

found in part (a)?

Answer: If the external entity does not enforce the plan, then from the

analysis on pages 168-169 we know that player 2 will choose 2 =

3
= 30

and 3 =

6
= 15, and player 1 will choose 1 =


2
= 45. The discounted

value of the stream of payoffs for player 1 from this outcome is therefore,

ln(45) +
1

2
ln(30) +

1

2
ln(15) ≈ 686 
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If, however, player 1 can have the plan in part (a) above enforced then

his discounted value of the stream of payoffs is

ln(45) +
1

2
ln(225) +

1

2
ln(225) ≈ 692 

We can therefore solve for the amount  of budget  = 90 that player

1 would be willing to give up which is found by the following equality,

ln(45−) +
1

2
ln(225) +

1

2
ln(225) = 686 

which yields  ≈ 263 Hence, player 1 will be willing to give up to 263
of his initial budget  = 90 in order to enforce the plan 2 =  3 =

4
= 225. ¥
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