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Solutions to Problems

from “Essentials of Electronic Testing”
©M. L. Bushnell and V. D. Agrawal, 2002

February 10, 2006

Please Read This

This manual contains solutions to all problems that appear at the end of the chapters
in the book. At the end of the manual we have included the solutions to problems
we used for the examinations in the Spring 2002 course at Rutgers University, and
Spring 2004 and Spring 2005 courses at Auburn University.

In spite of all the care taken to ensure accuracy, we caution the user that some
answers may contain errors as it is the first release of this manual. We will appreciate
if any errors or comments are forwarded to us by email: vagrawal@eng.auburn.edu
or bushnell@caip.rutgers.edu.

This manual has been created as teaching material that accompanies the book.
To preserve its effectiveness, it should not be distributed. If necessary, only a very
small set of solutions can be copied for distribution in the class. Please do not pass
your copy on to others and ask any one requesting it to contact the authors.

Teachers can also use the presentation slides for 31 lectures (or an alternative
sequence of 23-lectures), based on the book and available at the following websites:

http://www.eng. auburn. edu/~vagrawal/COURSE/lectures. html
http://www. caip.rutgers. edu/~bushnell /rutgers.html

We hope the readers of our book, both teachers and students, will benefit from
this work. We acknowledge the help from colleagues and students in completing
this solution manual and the assistance of the University of Wisconsin-Madison in
its initial distribution.
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Chapter 1: Introduction

1.1 Chip testing
The events of Example 1.1 are redefined as follows:

PQ: chip is good P: chip passes the test
FQ: chip is bad F: chip fails the test

A 70% yield means, Prob(PQ) = 0.7 and Prob(FQ) = 0.3. Following the analysis
of Example 1.1, Prob(P) = 0.68. Then,

Bad chips that pass tests

All chips that pass tests

= Prob(FQ|P)

Prob(P|FQ)Prob(FQ)
Prob(P)

0.05 x 0.3

= —— =0.022
0.68

Defect level =

The defect level is 22,000 ppm (parts per million).

1.2 Chip testing

Let x denote the escape probability, Prob(P|FQ). Referring to the formula derived
in Problem 1.1, a defect level of 500 ppm means,

Prob(P|FQ)Prob(F'Q) x % 0.3 — 0.0005
Prob(P) C095x0.7+xx03
This gives,
~0.0003325
0.29985

Next, we obtain,

Defect coverage = Prob(F|FQ)=1— Prob(P|FQ)
= 1—x=0.99889
The required defect coverage is 99.889%. This represents the capability of the

test in detecting the actual “defects” that occur and should not be confused with
the “fault coverage,” which is defined for the “single stuck-at” fault model.

1.3 Test cost

Assuming that one vector is applied per clock cycle during the digital test, the rate
of test application is 200 million vectors per second. Therefore,

1000 x 10°
Dicital Co _
igital test time 200 x 105 ]
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Adding the analog test time, we get
Total test time =1.5+5.0=6.5 s

The testing cost for a 500 M Hz, 1,024 pin tester was obtained as 4.56 cents in
Example 1.2 (see page 11 of the book.) Thus,

Cost of testing a chip = 6.5 x 4.56 = 29.64 cents

The cost of testing bad chips should also be recovered from the price of good chips.
Since the yield of good chips is 70%, we obtain

29.64
Test cost in the price of a chip = % ~ 42 cents

41.8 cents should be included as the cost of testing while figuring out the
price of chips.

1.4 Test cost and self-test
Following Example 1.2 of the book (pp. 10-11), we obtain
ATE purchase price = $1.2M + 256 x $3,000 = $1.968 M

Assuming a 20% per year linear rate of depreciation, a maintenance cost of 2% of
the price, and an annual operating cost of $0.5M,

Running cost = $1.968M x 0.2 + $1.968 M x 0.02 + $0.5M = $932,960/year

$932, 960

Testi _
eStng COSt = g 91 % 3600

= 2.96 cents/second

Testing cost of the self-test design is 2.96 cents per second, down from
4.56 cents per second calculated in Example 1.2

1.5 Test complexity

Consider a cube of side d. The number of transistors (/NV¢) is proportional to the
volume d3, and the number of pins (N,) is proportional to the surface area 6d>.
Thus, the Rent’s rule for the cube can be expressed as,

N, = K x N3

where K is a constant, which depends on such technology parameters as the mini-
mum feature spacing. For simplicity, we will assume that this constant is the same
for the flat and cubic chips. Following Example 1.3 (pp. 12-13 of book), we define
the test complexity, T'C', as transistors per pin, or TC' = N;/N,,. For the cube,

TCrupe = Fp = W = ENt
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Using the Rent’s rule for a flat chip (Equation 1.5 on page 13 of book), we obtain
N, 1

— _ 1/2
Tquuare - W == ?Nt
Therefore,
Tquuare _ Ntl/ﬁ
chube

This ratio of test complexities continues to increase as the number of transistors (Ny)
on the VLSI device grows. For example, for Ny = 1 million, the square-chip test
complexity is ten times greater than that of the cubic-device. The test problem
of the cubic configuration is less complex than that for the flat chip.

Note: Although chips at present are not designed as three-dimensional objects,
three-dimensional packages and interconnects are in use. An interested reader may
see the article: H. Goldstein, “Packages Go Vertical,” IEEE Spectrum, vol. 38,
no. 8, pp. 46-51, August 2001. Recently, Matrix Semiconductor announced plans
to produce a three-dimensional memory chip. See, “Adding a Third Dimension to
Chips,” Computer, vol. 35, no. 3, p. 29, March 2002.
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Chapter 2: VLSI Testing Process and Test Equipment

2.1 Test types

To reduce the warranty and product liability costs, the manufacturer must adopt a
thorough but cost-effective test plan. A low failure rate, which may be as low as 100
parts per million, means that among one million chips shipped by the manufacturer
there should be no more than 100 defective chips. A suitable test strategy requires
adjustments to tests as the production ramps up. A realistic plan is as follows:

e Initial production: The manufacturer uses parametric tests and vector tests,

the latter with coverage in the 95-100% stuck-at fault range. For high-speed
microprocessor chips, at-speed critical path tests are run. The chips should
be subjected to burn-in test for infant mortality.

Matured production: If burn-in failures are lower than the required defect level
then that test is eliminated or reduced to a sample basis. Any field returns
are re-tested by the manufacturing tests. If these pass then the manufacturing
tests are augmented, when necessary, by customer-supplied tests.

Test optimization: Tests are optimized to reduce the manufacturing cost.
First, test sequences that fail a larger number of devices are moved to the
beginning. Second, test sequences that do not fail any devices are dropped.
Such modifications change the emphasis from detection of modeled faults to
detection of actual defects.

Process monitoring: Once the chip goes into high-volume production, the
manufacturing process and the outgoing product (chips) should be moni-
tored to keep any variations within statistical ltmits. This means that var-
ious parameters, such as metal resistivity, polysilicon conductivity, transistor
parameters, etc., should be within their three-sigma range (average + 3 X
standard deviation). Any excursions outside such a range are immediately
diagnosed and the causes remedied.

2.2 Contact test

Assume a diode drop of 0.7V. Then, the pin voltage range for contact test is given

by:

Upper range : Vpi, = 0V — 0.7V — 1004 x 200052

—-0.9V

Lower range : Vpi, = 0V —0.7V — 2504 x 200052
= —1.2V

2.3 Set-up time test

To test a set-up time, tser—yp = 360ps, apply the following waveforms to the chip (a
clock-to-@Q delay of 400ps is assumed):
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Inputs
CLK //
—»| 360ps |=—
Q Output
~— 400p
«— 450ps —»

Measure Q

At an interval of 450ps after the rising CLK edge, measure ) on the ATE.
If Q = 1, the device passes, otherwise it fails. Using M S instead of MC, repeat
the above waveform sequence, but with D inverted and the expected @ signal also
inverted. At an interval of 450us after the rising C LK edge, again measure () on
the ATE. If Q = 0, the device passes, otherwise it fails. The same waveforms are
applied simultaneously to all five D lines, and five simultaneous measurements are
made on the five Q) lines.

2.4 Hold time test

To test a hold time, tpoq = 120ps, apply the following waveforms to the chip (a
clock-to-@ delay of 400ps is assumed):

MC |_| 120ps

Inputs
CLK //
—»| 400ps |=—
Q Output
~— 400p
~— 450ps

Measure Q

At an interval of 120ps after the rising C' LK edge, we lower the D line. If Q =1
450ps after the rising CLK edge, the device passes, otherwise it fails. Using M S
instead of M C, repeat the above waveform sequence, but with D inverted and the
expected @ signal also inverted. At an interval of 450us after the rising C LK edge,
again measure () on the ATE. If Q = 0, the device passes, otherwise it fails. The
same waveforms are applied simultaneously to all five D lines, and five simultaneous
measurements are made on the five Q lines.
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2.5 Threshold test

Perform the threshold test as given on page 32 of the book, but with the following
changes: Assume a 5V supply, and perform binary search to find Vi, and Vig. The
following procedure determines Vjp:

Write a 1.25V signal to the
input pin and a propagating pattern.
Read the expected output

Correct Incorrect
Add 0.6V to input pin. Subtract 0.6V to input pin.
Read output pin. Read output pin.
Incorrect Correct
Correct Incorrect
A Y
Add 0.3V to input pin. Subtract 0.3V to input pin.
Read output pin. Read output pin.
Incorrect Correct
Correct Incorrect
L\ 4
Add 0.15V to input pin. Subtract 0.15V to input pin.
Read output pin. Read output pin.
Incorrect Correct
y Correct Incorrecty
Add 0.1V to input pin. | Correct _|Subtract 0.1V to input pin.
Read output pin. D Read output pin.

Incorrect

Correct

Incorrect

Read input voltage as V”_

Ifitis 0.8V or greater,
the chip passes.

The advantage of this procedure is that it greatly speeds up the test. The test
for Vig is analogous.
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Chapter 3: Test Economics and Product Quality

3.1 Economic decision

We start with the following formula for the price of the car deriven by John (Equa-
tion 3.2 on page 38 of the book):

20, 000

P =20,000 + dollars

where n is the number of breakdowns per 15,000 miles since John’s car is driven
15,000 miles in a year. Because Laura drives only 5,000 miles per year, her car is
expected to have n/3 breakdowns per year. Assuming a linear depreciation to zero
value over 20 years and an average repair cost of $250 per breakdown, the annual
cost of driving is

P
C = —+ K+250n/3 dollars

20

1

= 1,000+ , 000
n

+ K 4 250n/3 dollars

where K is the cost of gasoline and regular maintenance, assumed to be the same
for all models. To minimize this cost, we write

1 2
dC-——-’OM)+AEQ:=0 or n=1v12

dn n2 3
This is a minimum because 327? > 0. The price of a car for minimum transportation
cost is,
20,000
P = 20,000 + = 25,774 dollars

V12

Laura should invest in a car priced around 25,774 dollars.

3.2 FEconomic decision

(a) Let = be the daily wages of a technician and ¢ be the cost of components on a
board. When n technicians work in the assembly shop, the cost of one board is,

Warehouse cost Ly
C(n) = + technician's wages + component cost
n

+workspace cost

10,000 5002
= " +xr+c+

To minimize this cost, we write

dc 10,000
(n) _ _10, +1,000n =0 or n=+/20=4.47
dn n?
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2
This is a minimum since dcg;(gn) > 0. We obtain the minimum cost as,

C(4) = C(5) = $4,500 + = + ¢

To minimize the cost we should either hire four technicians, or reduce
the workforce to five if more than five technicians were already employed.

(b) Substituting z = 200 and ¢ = 10,000 in the last equation, we get
C(4 or 5) = $4,500 + 200 + 10,000 = $14, 700

The minimum cost of a single-board system is $14,700.

3.3 Benefit-cost analysis

Please note a correction in the statement of this problem. The part (a) should read:
Show that this scheme is beneficial for chips whose total cost is less than ten times
the burn-in cost when the burn-in yield is 90%.

(a) Complete elimination of burn-in: Let Cy be the total cost of a chip in the present
scheme where burn-in test is applied to every chip that passes the conventional test.
Let % be the per chip cost of burn-in. C} includes C, as well as another component,
C'y, which accounts for the costs of fabrication, conventional test, etc. It is given by,

_ Cr 4+ y.Ch
YeYb

where . is the yield with the conventional test and , is the yield reduction due to
burn-in. Since the cost of Ippg test is 10% of the burn-in cost and there is a 10%
yield loss, the cost of a chip when burn-in is replaced by Ippg test is given by,

Ct

o, = Cy + 0.1y.Cy
0.9ycyp
For the new scheme to be beneficial, we must have
9CY

C’t<Ct or Cp < —
Y
For the given 90% burn-in yield, y, = 0.9, and Cy < 10C,. The total cost should
not exceed ten times the burn-in cost.

(b) Apply burn-in test only to chips that fail Ippg test: Let y, be the burn-in yield.
Consider all chips that have passed pre-burn-in tests. A fraction y; of these is “good”
chips. We apply Ippg test to all chips passing the pre-burn-in test. Due to the 10%
yield loss, this will produce a fraction 0.9y, consisting of good chips. The remaining
fraction, 1 — 0.9y, must be subjected to the burn-in test to recover the lost yield.
For the new scheme to be beneficial, we must have

1
0.1C, + (1 — O.9yb)0b < Cy or yp > §
Burn-in yield should be greater than 1/9 or 11.1%.
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3.4 Yield and cost

Let C, be the cost of processing a wafer having N chips and let y(A) be the yield
of chips, where A is the chip area. Then the cost per good chip is obtained as,

C
C, =
Ny(A)

DFT changes the chip area to (1 + A)A. The number of chips on a wafer of area
NA is now given by, NA/(A+ AA) = N/(1+ A). The cost of a good chip with
DFT is given by,

Cu
HLA y(A+ AA)

C.(DFT) =

Therefore, the cost increase due to DFT is,

DFT) —
Cost increase = CC(C)CC x 100 percent
_ [+ A)y(4) ]
= [y(A+AA) 1| x 100 percent

Using the yield formula of Equation 3.12 (p. 46 in the book), we get

Cost increase = [(1 + A) 1 —i—(tl—:—AAd)/jiZ_/a)—a} X percent
AdA \“
= {(1 +A) (1 + s Ad> - 1} x 100 percent

which is the required result.
For the given data, d = 1.25 defects/cm?, a = 0.5, A = 0.1, and A = 1 em?,
we obtain

1.25 x 0.1

0.5
()5)(125) — 1:| x 100 percent

Cost increase = [1.1(14—
= 13.86%

There is a 13.86% increase in the chip cost due to DFT.

3.5 Defect level and fault coverage

Defect level, DL, is given by Equation 3.20 (p. 50 of the book), as follows:

B+TAf>ﬁ

DL:l_(Mf

where T is the fault coverage, Af is the average number of faults on a chip of area
A, and (3 is a fault clustering parameter. Further manipulation of this equation
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leads to the following result:

_prys - PETAS
(1-DL) 51 Af
_ /B _
or T = (5+A47)(1—DL)! ﬁxlOO percent

Af

which is the required result.

3.6 Defect level and fault coverage

Substituting the given fault density, f = 1.45 faults/cm?, the fault clustering pa-
rameter, § = 0.11, and the fault coverage, T' = 0.95, in Equation 3.20 (page 50 of
the book), we obtain the defect level as,

L (ﬁ+TAf>ﬁ
B+ Af
o (0.11 +0.95 x 1.0 x 1.45)0~11
0.1141.0 x 1.45
= 0.00522 or 5,220 parts per million

DL(T)

The defect level is 5,220 parts per million (ppm).

(a) To obtain the fault coverage T for a required defect level of 1,000 ppm, we
substitute DL = 0.001 in the formula derived in Problem 3.5. Thus,

A1+1.4 .999%/011 _ .11
7 - (011+145) X104§99 011 100 = 0.990

The required fault coverage is 99%.

(b) For a defect level of 500 ppm (DL = 0.0005), we get

(0.11 4 1.45) x 0.9995/0-11 — .11
1.45

The required fault coverage is 99.5%.

T = x 100 = 0.995

3.7 Defect level
Defect level, DL(T), given by Equation 3.20 (p. 50 of the book), can be written as:

(1+TAf/B)°
(1+Af/B)°

oTAf
eAf

DL(T) = 1-

- 1-

=1- e*Af(lfT), as 3 — oo

Also, as 3 — oo, Equation 3.19 (p. 50 of the book) gives the yield,

Y = <1+Aﬁf>_ﬂ:e—f“f
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Substituting this expression for yield in the defect level, we get
DL(T)=1— (e AN T =1y T

which is the required result.
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Chapter 4: Fault Modeling

4.1 Boolean functions

An n-variable Boolean function is completely specified by its truth-table. The output
column in this table is a 2"-bit vector that can be in 22" distinct states, each
specifying a different Boolean function.

4.2 Initialization faults

In the circuit of Figure 4.1 (p. 62 of the book), let (), denote the present state at
the output of the F'F. Let the next state, i.e., the output of the AND gate, be @,,.
We can write the next state function, as

Qn=(Qp+A)(A+B)

If we set A = 1, the next state function, (),, = B, becomes independent of the
present state. That is, irrespective of the present state, the next state can be set to
a value, which is uniquely determined by primary inputs. This makes the fault-free
circuit initializable. When the fault A s-a-0 is present, the above equation reduces to
Qn = Qp. Thus, starting with @, = X, @, can never be changed to any value other
than X and, therefore, the circuit will remain uninitialized in the presence
of this fault.

Using the next-state expression, we can easily determine that no other single
stuck-at fault in this circuit will prevent initialization. For example, consider the
s-a-0 fault on the top branch of the fanout of A. The faulty next state function is
Qn = Qp(A+ B), which can be set to 0, when @, = X, by applying A =1, B=0.

4.3 Fault counting
See Section 4.5 (last paragraph on p. 70 of the book.)

4.4 Fault counting
For the circuit of Figure 4.6 (p. 72 of book), we have

Number of fault sites = Pls + gates + fanout branches
= 24+446=12

Therefore,

Number of single and multiple faults = gnwmber of fault sites _ 4

= 312_1=531,440

The circuit has 531,440 single and multiple stuck-at faults.
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DD

P1

A
—0—<:| P2
A —]
C
B N1 B —
| N2 Logic NAND gate.

Ground
CMOS NAND gate.

Circuit for Problem 4.5.

4.5 CMOS faults

(a) A two-input NAND gate is shown in the above figure. The following table gives
tests for transistor stuck-open (sop) faults:

’ Test No.  Fault Test: Vector 1, Vector 2

1 Plsop 11,01
2 P2sop 11,10
3 N1sop 01,11 or 10, 11 or 00, 11
4 N2 sop 01, 11 or 10, 11 or 00, 11

Notice that the sop faults of N1 and N2 have exactly the same tests. These two
faults are equivalent. Equivalence of transistor faults is discussed in the following
paper:

M.-L Flottes, C. Landrault and S. Provossoudovitch, “Fault Modeling and Fault
Equivalence in CMOS Technology,” J. Electronic Testing: Theory and Applications,
vol. 2, pp. 229-241, August 1991.

(b) The following sequence of four vectors contains one vector pair for each fault in
the above table:

11, 01, 11, 10

Notice that this sequence also detects all single stuck-at faults in the logic model of
the NAND gate.

(c) A stuck-at fault in a signal affects two transistors in the two-input NAND gate.
For example, the fault A s-a-1 will mean that N1 remains permanently shorted
(N1-ssh) and P1 remains permanently open (P1l-sop). The following table gives all
equivalences:
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’ Stuck-at fault Equivalent transistor faults ‘

A s-a-1 N1-ssh and P1-sop

B s-a-1 N1-ssh and P2-sop

C s-a-1 (P1-ssh or P2-ssh) and (N1-sop or N2-sop)
A s-a-0 N1-sop and P1-ssh

B s-a-0 N2-sop and P2-ssh

C s-a-0 N1-ssh, N2-ssh, P1-sop and P2-sop

Notice that the three equivalent faults, A s-a-0, B s-a-0 and C s-a-0, are actually
caused by different faulty transistors. They are detected by the same test (11).

4.6 Fault models
See Section 4.4 in the book.

4.7 Fault indistinguishability

Without loss of information we will write a function f(V') as f. Thus, the left hand
side of Equation 4.3 is:

[fo@fl] [fo @ fo

[fofi + fofil @ [fof2 + fofe]

(fofi + foft)(fofz + fofo) + (fofi + fof1)(fof2 + fof)

(fofr + fof1)(fof2)(fof2) + (fofr) (fofr)(fofa + fof2)

= (fofr + fofr)(fo + fo)(fo + f2) + (fo + f1)(fo + f1)(fofe + fofe)
(fofi + foft)(fo f2+ fof2) + (fo fr + fofi)(fofa + fof2)

= fofifo+ fofife+ fo fife+ fofife

(frf2)(fo + Jo) + fifa(fo + fo)

fife+ fife

19 fa
= Left hand side of Equation 4.4

This completes the derivation of Equation 4.4 from Equation 4.3.
4.8 Functional equivalence

Faulty functions for the circuit of Figure 4.12 corresponding to the two faults are:

i(cs—a—0) = blab) =ab
i(fs—a—1) = (a+ba=ab

The two faulty functions are indistinguishable and hence the two faults are equiv-
alent.
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4.9 Functional equivalence
Faulty functions for the circuit of Figure 4.6 corresponding to the two faults are:
z2(cs—a—1) = ab.(ab.b)

= ab.(ab+b) =ab
2(fs—a—1) = ab

The two faulty functions are indistinguishable and hence the faults are equiva-
lent.
4.10 Fault collapsing for test generation

The circuit of Figure 4.9 has 18 single stuck-at faults. Gate-level fault equivalence,
as shown in the following figure, reduces the number to 12. The faults in shaded
boxes have been collapsed as shown by arrows. Many ATPG and fault simulation

sa0 sao/ggl///fﬂﬂg‘\\\\\\‘

A Al sa0
sal sa0 B2
sal C
sa0 sal -
B ® Bl sal
sal sa0 sal

programs will collapse faults as shown above. However, functional fault collapsing
can further reduce the number of faults to 10. As shown in Example 4.11 (see page
75 of the book), the s-a-1 faults on Al and Bl are equivalent, and so are the s-a-1
faults on A2 and B2.

Whether we take the set of 12 faults or the set of 10 faults, their
detection requires all four input vectors.

4.11 Equivalence and dominance fault collapsing

(a) The given circuit is shown below with fault sites marked by numbers. The
number of potential fault sites is 18. The total number of faults is 36.

(b) The figure shows deletion of equivalent faults using an output to input pass.
Of the 36 faults, 20 remain, giving a collapse ratio 20/36 = 0.56.

(c) Checkpoint lines are shown by boldface numbers. These are three PIs and seven
fanout branches. Line 2 fans out to 4 and 5. Line 3 fans out to 6, 7 and 8.
Line 10 fans out to 12 and 13. There are ten checkpoints and 20 checkpoint
faults. Further, s-a-0 faults on lines 6 and 12 are equivalent and any one of
them can be chosen. Similarly, s-a-0 faults on 7 and 13 are equivalent, and so
are s-a-0 on 5 and s-a-1 on 8. Thus, the size of the fault set is reduced to 17,
giving a collapse ratio 17/36 = 0.47.
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sa0 sa0

1 sal {>C 9 sal Checkpoints are shown in boldface

sa0| 6 \ 14
sal 12 / sa0
sa0 sa0 sal
sa0 sal sa0 [S3l sa0
2 sal 4 sal sal sa0
—
10 13
3 7
sa0 sa0 18
sal 53(1) 8 sal sa0
sa sa0 sa0 sal
sal sal
sa0 11
sal Deleted due to
5 sal equivalence

Circuit for Problem 4.11: (b) Equivalence collapse ratio = 20/36 = 0.56
(c) Dominance (uncollapsed faults at checkpoints) collapse ratio = 17/36 = 0.47

4.12 Dominance fault collapsing

(a) Checkpoints are defined for the signals in a combinational circuit. These signals
are the interconnects between Boolean gates, a fact not always explicitly stated. To
avoid ambiguity, the definition on page 78 of the book should read as:

Definition 4.7 Checkpoints. Primary inputs and fanout branches of a combina-
tional circuit consisting only of Boolean gates are called the checkpoints.

To find checkpoints of the circuit of Figure 4.12, we must replace the exclusive-
OR (XOR) function by a primitive Boolean gate implementation. AND, OR, NAND,
NOR and NOT are called the primitive Boolean gates. Functions such as XOR are
sometimes referred to as complex gates. In the following figure, we have assumed
one such implementation. Our result is, therefore, based on this assumption. Other
implementations of the XOR function are possible and can give a different set of
checkpoints.

el
k
b e

There are nine checkpoints in this circuit. These include three primary inputs,
a, b and ¢, and six fanout branches, d1, d2, f, el, e2 and g. The checkpoint fault
set consists of eighteen faults — s-a-0 and s-a-1 faults on the nine lines.

Notice that lines d and e of the original circuit are not checkpoints. If we did
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not model the XOR block with Boolean gates, then those lines will appear to be
checkpoints, whose number will be fourteen. However, detection of those faults will
not guarantee detection of faults on the fanouts that are internal to the XOR, block.
Considering the Boolean gate structure, a fault on d corresponds to a simultaneous
(multiple) fault on d1 and d2 and, in general, the detection of a multiple fault is not
equivalent to detection of the component faults.

(b) We evaluate the output function k corresponding to the two faults:

k(ds—a—-0) = ¢+b+a+b
= C+b+ab

k(gs—a—1) = c+ab+ab+a
= ¢c4+ab+a

The two faulty functions are shown by Karnaugh maps below. In both cases, the
functions have exactly one false minterm, abc. Since the two faulty functions
are identical the corresponding faults are equivalent.

false minterm\ b false minterm\ b
o ] [ N G i L
3 |UJICID 4 [ D

|

M — -
< =\ <=\
ab a
k with d s-a-0 k with g s-a-1

Note: this type of fault equivalence is functional and is often difficult to find by
typical fault analysis tools, which rely on structurally identifiable equivalences.
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Problem 5.2

The following figure shows a two-bit shift register. Initially, both flip-flops are in the
0 state. The first two 0 inputs initialize the fip-flops to the 00 state. Subsequent
inputs, outputs and state transitions are shown in the figure.

Input Output
0011101000 —=| FF1 < FFZ2 |—=111010000 XX
In:na{{iar:on State fransitions

XX —0X —»00 —»00 —-»10 01 =10 —11 —11 01— 00

0|

State diagram of 2-bit shift register.
Problem 5.4 [

The longest path in the circuit (see Figure 5.2) is (5 to (4. The delay of this path
should be tested for both rizing and falling transitions. As shown in Example 5.3, the
path delay for a rising transition is tested by vector 2 followed by 6. which causes
the transition to ripple through the path. Similarly, the path delay for a falling
transition can be tested by vector-pair, 6 followed by 2. From Table 5.2, vectors 1
through 6 cover all stuck-at faults. Since the circuit is combinational, these vectors
can be applied in any order. We construct a sequence of seven vectors using these
six vectors that contains the two delay test vector-pairs. The sequence is 1, 2, 6, 2,
3.4 5.

Note: If we use the rezult of Table 5.3, a sequence of six vectors for all stuck-at
faults and two path delay faultz can be constructed.



Problem 5.8

The following schematic shows a logic model for a bus with memory. When both
drivers feed data to the bus, ie.. C'1 = 2 = 1, D1 . D2 appears at the output,
assuming a O-dominance. When both drivers are turned off, i.e., C1 = C2 = 0,
the output retains its value through feedback. When only one driver is on, the
corresponding data input appears at the ontput.

519 >—
Ela=
1) >—

This model represents most of the characteristics of a MOS bus, with the excep-
tion of bidirectionality. One problem with it is that it is an asynchronous sequential
circuit and cannot be correctly simulated by some simulators. An event-driven logic
simulator can simulate it, but will be inefﬁci[@t in comparison with synchronous

bus output

circnit simulation.

Problem 5.10

With the given inputs, ()0, and output X, when the clock iz applied the circuit will
not be initialized. The Yeason is that in a three-state logic system the inversion of
X iz also X.

The circuit can be initialized to a 1 output by clocking the flip-flop when a 11
input is applied. Then, if we change the input to 10 and clock the flip-flop, the
output will become (1. These two vectors can be correctly simulated by a three-state
logic simulator.

5.11 (10 points)

The two cases are sketched below. The rise and fall delays of the OR gate are denoted by tr
and t f, respectively. In (a) the output pulse width is 8 units and in (b) it is 4 units.

Input g |

fr=3 if=5
(&) Output ]
tr=5 tf=3

(1) Qutput |_ time units




5.12 (15 points)

The two cases are sketched below., The rise and fall delays of the OR gate are denoted by tr
and tf, respectively. In (a), a rise is first scheduled to occur at 3 time units after the rising
edge of the input. Before this rise takes place, the input falls at 1 unit, and reschedules a falling
output at time 6 units, A conservative simulator produces an unknown (XX') output between 3
and 6 units of time, This is shown as a level between logic 0 and 1 in the following figure.

Input J

I —
ir=3 o5
{a) Output 1
tr=5
(1) Output ti=3 time units

0

In (b), the output cannot rise until 5 units of time. Meanwhile, at time unit 1, a fall is
scheduled to be completed at time unit 4. Thus, the output does not change at all.

Clage (b) is an example of a pulse being filtered by a slow gate. In simulators, this phe-
nomenon is referred to as spike suppression. The actual waveform produced by the simulator
depends upon the specific assumptions made, In pessimistic simulation, a pulse of ambiguous

height may be produced as in case (a) above, In optimistic simulation, the output may remain
unchanged if the input pulse width is smaller tq\m1 the gate delay.

Problem 5.16

Since no fault dropping is used, the serial fault simulator must simulate the entire
circuit n 4+ 1 times, Assuming the CPU time for one simulation with all vectors is
t. total time of serial fault simulation is given by,

Tiserial) =tn+1)

Using CPU time ¢, the parallel simulator processes w — 1 fanlts. Thus, it will make
n/(w — 1) such passes, requiring total time,

i

T{parallel) =

w —
Therefore,

T(serial)  (n+1)(w—1)

T'{parallel) n




5.17 (15 points)

The circuit of Figure 5.22 is shown below, The hits of the four-bit word are assipned as follows:
Bit 0: G, good circuit

Bit 1: Faulty circuit with fault F1, second input s-a-1

Bit 2: Faulty circuit with fault F2, input to inverter s-a-1

Bit 3: Faulty cirenit with fault F3, second input of first AND gate s-a-1

bit 1 (F1)

= bit0 (G
= b
= bit 3(F3)

bit 0 (G)
= bit 2 (F2)

of1]o]1]

R
|
)—x<—e e / Q
sa’l
Tiele] 2, [/ oo |°
sall [o[i]1]o] - 1
; 1 [1]of1]
1 mmn 1 GF1F2F3
R

1 L/
ST [1]ofo]1]

The fipure shows the good and faulty ecircuit values for each signal by a four-bit word., A com-
parison among bits of the word at the primary output indicates that only the bit corresponding
to F2 differs with the good circuit output. Hence, the vector 101 detects F2 but does not detect

F1 and F3.
Problem 5.25 Fault sampling

Since the size of fault population (N, = 10°) is very large compared to the sample
size (N, = 4,000}, we use the approximation of Equation 5.5 (page 123 in the book.}
, 3. 900 .
Sample coverage, r = = (1.975

4,000



Uzsing Equation 5.8 (see page 123 in the book), we get

4.5 -
3o coverage estimate = » + \r—}\/l + 0. 44 Ny (1 = )

4.5

4, 000
= 0,975 £ 0.0075 or 97.50 £ 0.75 percent

= 00975 <%

V4044 % 4,000 % 0.975 % 0.025

Problem 5.26 Fault sampling

Assuming that the fault sample size is much smaller than the total fault population,
Le., Ng <0 Ny, we use the result of Equation 5.9 (page 124 in the book), which can
be written as.

4 E2

Sample size, N, = ?D.;Lria‘(l — )

where £ is the 30 range of the coverage estimate and 2 is the sample coverage.
Using the given data, A = 0.02 and » = 0.70, we obtain
4.5% % 0.44 % 0.7 x 0.3

N, = 0052 = 4,678 faults




Problem 6.2 SCOAP

1,1)5
S 5—-\5. (2,3)3 .

(5,4)0
— _/ ) >———0
R 0 7

7 (3.2)5
E

ans LI :}L (CC0,CC1)CO
A (2,4)3

Circuit of Figure 6.20 with combinational SCOAP measures.

(Bushnell and Agrawal) Problem 6.3

Circuit of Figure 6.21 with combinational SCOAF measures.

3

Problem 6.4 SCOAP

(1,1)5 ,
*4 3337 (5,4)0
a 5
(1,16 6 3

X2 <3
CCO.CC1)CO
«. (11)5 ] b ¢ 5 j’ 42)3 (CCO.CC1)

%4 }— (3.2)5 |9 5 z 3 (5.5)0 E
{(1.1)86 7 8 3347 2
- (4.23

Circuit of Figure 6.22 with combinational SCOAP measures.

X5



Problem 6.7 SCOAP

The steps of calculation for SCOAP testability measures are shown in the three

figures that follow. Combinational measures are shown as (C'C'0,C'C'1)C'O and
sequential measures as [SC0, SC'1]50.

1.1 fi
g (1.1 [0.0e g (2.4)0
p 11k [0 - T [0 g
(1.1 (42 e
Sl——— e - {2.4%0
0.0 0.0 -
[ ]w. | (2.0 ko [°. e [0.0]ea
[0. 0 }eo
) 3
Q D
[e2. 20 Jeo FE
[ —
MC <}—— CK (1,1} [0.0]=

J
[

RESET (1,1}s [0,0]e

Circuit of Figure §.25: Pl and PO inttialization and first controllability pass.

o (11po [0,0)e

(2.4)0
b (1,1)ee :: [0,0]0 g
; o
(2.4)0
(0,01 [0,0]¢e
[0,1]ee
d
(3.7 Uee”
[1.1]e —
C <}—— CK (1,1% [0.0]w

([)— RESET (1,1ke [00]e

Circuit of Figure §.25: Converged controllability values.



(1,193 [0,00

i b B (2,4)0
, (1.05_[0.00 ;\ 000
e
] (2.4)9
0,01 <
[0,1]0

d

(376 @b

[1,1]0 —

MC — CK (1.1)16 [0,0]2

L RESET (1.1)16 [0,0]2

Circuit of Figure 6.25: All controllability and observability values.

(Bushnell and Agrawal) Problem 6.9
The steps of caleulation for SCOAP testability measures are shown in the three figures that
follow. Combinational measures are shown as (C'C0O, C'C1)C'O and sequential measures as

[SC0, SC1]S0.
Problem 6.8 SCOAP

The steps of caleulation for SCOAP testability measures are shown in the three

fioures that follow. Combinational measures are shown as (C'C0,CC1)C'O and
sequential measures as [SC0, SC1]50.

(24)0 [0.0]0

1

i, (1) [0.0p0

1, (.11 (0.0
1, (.1l (0.0

3(5.11]0 [0,0]0 o,

(2,4)0 [0,0]0
%—‘ O

o0 o o [ o o0 D (2,4)e0 [0,0]e0
FF

MC —— CLOCK (1,1} [0,0]e

L RESET (1,1)e [0,0]e

Circuit of Figure 6.26: Pl and PO initialization and first controllability pass.

L




(2,4}0 [D.D]DD?

j; (1) [0.0p

(2,4}
'r;_:' (1,1)e [0,0k
'rS (1,1)e [0,0k

35.11]0 [n.n]n%

(2,4)0 [0.0]0
O3

Ly

(3,70 [1,1]e (2,4)e0 [0,0]e0
Q0 D
FF

MC <—— CLOCK (1,1)= [0,0]

(1)— RESET (11w [0,0]e

Circuit of Figure 6.26: Comvergad controllability values.

. 2401000
j, (114 000 9
, (1,1)3 [00]0
29 (5,110 [0,0]0
L (113 [0 Oz
33— 9—
.
9
. (2,4)0 [0,0]0 o,
(3.7)4 [1,1]0 (2,417 [0,0]1
Q@ D
FF

MC <—— CLOCK (1,1)14 [0,0]2

(I)— RESET (1,114 [0,0]2

Circuit of Figure 8.26: All controllability and observability values.

Problem 6.13 SCOAP

The steps of caleulation for SCOAP testability measures are shown in the four fipures
that follow. Combinational measures are shown as (CC0,C'C1)C'0 and sequential
measures as [SC0, SC1]50.



L [2m0) e [De0]e L feo,d) 0 oo, 1]
i1,1) =0 [0,0] -\'|LD ol ;‘Dlg |
I —] "y —
U T
ClLOCK, (1,1 e [1,0] e
PESET (1,1 e [1,0] e
A Az
(300 [10]0 (310 [1p 10

Circuit of Figura 6.31: Initizlization and first controllability pass.

L

, (L PO

(2.9)= [0.2] = [o0,4) eo o, 1]
L, R ):J_ T O+
A *—
P WA P e
(]

cLock_ 1= A=

T A el O

Circuit of Figura 6.31: Continuation of controliability calculation.

A
(32010 [120]0

£

{3,710 [1.2]0

L 2,8 [0,2]e L (20,4} o0 [51] o
i1 )= 0.0 7o \DJ-D Q—e
F o __/' -— A
P wE  wE
(8] (]
cLock M= D=
BEscy M= D=
A Az
34290 [1,310 3,710 1200
Circuit of Figura 6.31: Stabilized controllabiity valuas.
L (23 0.2 L (20,4)3 [51]1
-,
- . Sy a7 D O
> i1 0 p. 1 :Di —
[ — =
15 E"” | LME
. 4| 5, 3 10
cLock 10D . a
A
A Az
{3,12)0 1,310 3,710 (.20

Circuit of Figura 6.31: All controliability and observability values.



Problem 7.2 Stuck-at fault testing

(a) Three tests for a two-input OR gate:

a—‘T_

c
b—7/
Vector number [ a b | ¢ || Collapsed faults tested
1 0 0D | asal,bsal, ¢sal
2 0 1| D] bsal, ¢ sal
3 L 0| D || asal, e sal)

(b) Gate replacements:

OR replaced Test results
by: Vector 1 Vector 2 Vector 3
AND pass fail fail
NAND fail pass pass
NOR fail fail fail

The three-vector test will detect the error if the OR gate were to be
replaced by an AND, NAND or NOR gate.

(c) OR gate replaced by an erclusive-OR gate: All three vectors will produce the
same output as that of the OR gate. Therefore, this error will not be detected. It
is necessary to include a fourth vector 11 to detect this error. The addition of the

1
—I\"'.l_ (1 for OR gate)
G
b——[__ :;

fourth vector makes the vector set exhaustive, which completely verifies the truth
table of the gate.

Note: In a simulation-based comparison of two circuits to establish logic equiv-
alence, a good (though not complete) heuristic is to use a vector set that covers all
single stuck-at faults in both circuitz. See the paper: V. [ Agrawal, *Choice of
Tests for Logic Verification and Equivalence Checking and the Use of Fault Simula-
tion,” Proe. 13th Int. Conf. VLSI Design, 2000, pp. 306-311.



Problem 7.3 D-ALG

We level order the signals and proceed as follows:

Step Action Signals D [mpl.
10, ABCde fgY h kZ | front. | stack
1 Fault Activation 00D ke g=10
Immediate impl. 00 00D ke g=~0
Immediate impl. 1100 00D fe g=>0
Immediate impl. 1100000D I qg=10
Immediate impl. 1100000D0 b g=10
Immediate impl. 1 100000D01 & g=>0

The fault is redundant, because the D-frontier disappeared. No backtracks.
Signals are shown in the following figure.

R D AL’ 0
e, U_L_)_E
X saf
1 — DL 0

Problem 7.4 D-ALG

We level order the signals and proceed as follows:

Step Action Siognals D [mpl.

10. ABCde fgVY h k Z | front. | stack

1 Fault activation 11D ke g=1

: D-drive h — k 111 DD A f=1

qg=1

3 D-drive k — Z 0 111 DDD| PO | B=0

f=1

qg=1

Immediate Impl. 0 0 111DDD| PO K

Immediate Impl. 0 011110DDD| PO
Immediate impl. 0101111 0DDD| PO




The test 1s: A =X, B=0,C =1 as shown in the following figure; 0 backtracks.

A— “\: d 0 T g ’
— | Y
B T __>_E_
sal
_ O ~,
B 0 ™ e D

Problem 7.5 PODEM

The figure below shows the SCOAP testability measures used for guiding PODEM.

SCOAP values: (CCO,CC1)CO
(2,3)4 (6,3)0

(116 A———T ~ d — 6.3)0
— : \,»—gu 69 Y
E— r— h
6361521 4710
- | —4nz
(1,1)5 B > e [(3.2)3 ] L I
(1.1)5 C T — (6,90
(1.1)8 w f |(3.3)6
.'I"I .-'/3_
(1,1)8 =
{1.115

The steps of the PODEM algorithm are recorded in the following table:

Step | Objec- Action Imp. Implied signal values D X
No. tive stack |ABCde fghltY Z |front. | path
1 g =0 | Backtrace | B=1 1 O L5k
2 g =0 | Backtrace | C' =1 11 00 0 1 & none
B=1

3 g =0 | Backtrack | €' =0 10 1111110 @ nomne
B=1

4 g =0 | Backtrack | B=10 0o 01 11 1 @ none
5 g =0 | Backtrack | Empty

Algorithm termination: Objective g=0 15 impossible; fault h s-a-1 15 redundant.




Explanation: An X-path is a path from the fault site to a PO, such that the
signals on it are either faulty states (D or D) or undetermined. An “ok” for X-
path in the table means that one or more such paths exist. Having no X-path is a
reason for backup because its existence is a necessary condition for the detection of
the fault. When a series of backups leads to an empty stack, it indicates that the
objective g = 0 is impossible. As a result, the fault i s-a-1 cannot be activated
and, hence, it 1s redundant. Three backtracks.

Problem 7.6 PODEM

The figure below shows the SCOAP testability measures used for guiding PODEM.

(1,113 — SCOAP values: (CCD,CC1)CO

P (3.2)11
B 03 jh‘_L (5.4)8
(1,1)13 ::)?
C }J (9.6)3
D——— (3.2)11 ‘
(1.1)13 | H 50—
_ N
S— DDEE s o
(1,1)13 L N
G(mm__>iﬁ7_}ﬁﬁﬂ 7
H

(1.19 — (3.217

The steps of the PODEM algorithm are recorded in the following table:

Step | Objec- Action lmp. [:@mpliocl signal values D X
No. tive stack | ABCDEFGHEmopgsrZ | front. | path
1 r =1 | Backtrace | ' =10 EF=00=1 i ok

2 r=1 | Backtrace | G=0 | EF=0G=0,0=1,p=1 PO ok
E =0 g=0,r=1,2=1
Algorithm termination: Fault detected with 0 backtracks.
Test is {ABCDEFGH} = {XXXX0X0X}

Erplanation: An X-path is a path from the fault site to a PO, such that the
signals on it are either faulty states (D or D) or undetermined. An “ok™ for X-path
in the table means that one or more such paths exist. Having no X-path is a reason
for backup because its existence is a necessary condition for the detection of the
fault.



Dominators: Problem 7.7
For each gate in Figure 7.41. identify its absolute dominators.

c
g
D
E
FE—
Figure 7.41: Circuit for Problems 7.7 through 7.12.
: Grate Z 1s an absolute dominator.
: (GGate Z 1s an absolute dominator.
: Gates m and Z are absolute dominators.
: Gates m and Z are absolute dominators.
: Gates L 5. w and Z are absolute dominators.
: Gates L. s. w and Z are absolute dominators.
: GGates m and Z are absolute dominators.
h: Gates m and Z are absolute dominators.
k: Gates m and Z are absolute dominators.
l: Gates s, w and Z are absolute dominators.
m: Gate Z is an absolute dominator.

R M e M M M v e B

p: Gates r and Z are absolute dominators.

q: Gates w and Z are absolute dominators.
s: Gates w and Z are absolute dominators.
r: Gate Z is an absolute dominator.

u: Gate Z is an absolute dominator.

w: Gate Z 1s an absolute dominator.

Z: none.



(Bushnell and Agrawal) Problem 7.8
Note : While von are performing the PODEM algorithm, follow the rules given below.

- Order: Try to excite the fault first then propagate.

- Backtrace: Follow a path from the objective to a primary input while
always following the alphabetical order (e.g. if a gate has input A and B,
backtrace on that gate goes to line A first.

- PI assignment: Always assign O first, then assign 1 in case of backtrack.

- Choice of D or D_bar @ Always try to propagate a D or D_bar from the
D-frontier which has the shortest path to the primary output.

In the case of tie, follow the alphabetical order.

The following table gives the steps of PODEM (see Problem 7.5 for an explanation of X-path,
it’s not required):

N
Step | Objec- Action [mp. Implied signal values D X
No. tive stack ABCDEF ghklmpgsruws front. | path
1 g =0(D) | Backtrace | C' =0 C=0.h=0 ) ok
2 g =0(D) | Backtrace | D =0 C=0,D=0,g=0(D) ) none
C'=10 h=0k=0m=0u=10
3 g =0(D) | Backtrack | D =1 C=0D=1.g=1h=0 ) none
C=0|k=1m=1,p=0.g=1.r=0
4 g =0(D) | Backtrack | C'= C=lg=1Lh=1,m=1 ) none
p=0.g=1,r=20
5 g =0(D) | Backtrack | Empty
Algorithm termination: g = 0(D) with X-path -Q’tpm.e-sﬁbfe: fault g s-a-1 is redundant.
3 backtracks.

PODENMI: Problem 7.8. Do not use any internal node assignments or mandatory
value assignments. (Make an arbitrary decision when a choice is available during
back-trace). Generate a test with the PODEM ATPG algorithm for the fault g s-a-1 in

Figure 7.41. s
See problem 2) for circuit diagram. 0 C 1
Selectpath: g2 h2>m—=2>u—>Z / \

Fault not

Initial objective: g = 0 (excite s-a-1 fault) :
0 \\i et e

C > 0 (path through h is blocked)
D - 0 (paths through h. k are blocked, D-frontier empty)  O-frontier  Fault ror
D = 1 (fault not excited) empty excitzd
C = 1 (fault not excited)

PODEM stops (fault untestable)



(Bushnell and Agrawal) Problem 7.13

i2 =10

Step | Action Impl. stack Forward implications D-frontier
1 Fault act. hh=0 h=0hl=D.i2=0 il
2 D-prop. | gl=1,h =10 gl=1h= xhl =D PO
il=1D.,i2=10

3 Justify |el=1,gl=1 el=1gl=1h=0 PO
h=0 hl=D,il=D,i2=0

14 Justity a=1b=1 |a=1b=1el=14gl=1 PO
el=1¢gl=1 e2 =1,¢g1 =_l.‘t;L =i
h=0 h=0hl=D,il=D

Test found: (a,b,c.d h. k)= (1,1.X.X,0,X);il=D

The above figure shows the circuit and the signal values specified by D-algorithm.

1 at
a___ o el 4
b ° b1
| ) o
T
. d1 1 g1
h ® KI _hf
0 a2 ssa=l p
b2 e2
DDy
e
a2
K

oy
?



Problem 7.14 PODEM

Step | Objective Impl. Forward implications D X
(goal) stack frontier | path
Fault act. h=10 h=0hl=D,i2=0 il ok
2 Fault prop. | h=0,a=1| a=1.h=0h =D il ok
gl =1 i2 =0
3 Fault prop. | hA=0,a =1 a=1.b=1lel=1 PO ok
gl =1 h=1 e2=1,9gl=1,92=1
h=0hl=D,il=D
i2=10
Test found: (a,b,e,d, h. k)= (1,1, X, X,0,X);il=D

The following fipure shows the SCOAP testability measures used to guide the
PODEM algorithm, and the signal values detremined.

—-—1 .17 %‘:'1_\{23)5
(1,17 b1 : (CC0,CC1)CO

1 ® ?_/ef 1)

a
b

(5,4)2

(1,1)7 7 1
wEranr B L 1 1
g1 L Jess J i1 D
h (1) > > —x ht (2.6)0

0 az
9 bo ™ (2,3)7 1 7
9 L ez 1

9 c2 )—//{5‘4}4 h2 i2 |0
a d2 “{2,3]? j

,1)3
k“ )

This test 15 found without any backtracks.



7.17T SOCRATES (15 points)

To obtain a test for the fault n s-a-1 in the circuit of Figure 7.24 (see page 190 of the book and
the figure helow ), we perform static learning:

| Signal | Learned implications |] Signal | Learned implications |

B=0| (m=0)= (B=1) X=0] (r=1)=({X=1)
(g=1)= (B=1) (Y =1)= (X =1)
(r=1)=(B=1) (v=1)= (X =1)
(s=0)=(B=1) (g=1)= (X =1)
(v=1)= (B=1) (s=1)= (X =1)

j = (d =0) _
(r=0)=(d=0) [:‘:[Ij_fl}’:lj
(¢ =1)= (d=0) [ff=[]“=}[1’=1}|

_ % (m=0)=(Y =1}
(VY =1) = uf—UJ
(v=1)=(d=10)
(Z =0)= (d=0)

Step 1: Goal — sensitize fault, m =0
Static learning — B =1
Implications - d=0,X =1, Y =1, A=0r=D.g=1,m=0,s=D,v=D0D,7Z =1
D-frontier — ¢ (null)
Redundant fault, because D-frontier vanishes at gate Z, no decision alternatives. No
need for dynamic learning, no use of the constructive dilemma or Modus Tollens. No

backtracks.
e | {2,358 (11,3)0
(CCO,CC1C0 }7’" X
N I 1
o .
{1,110
A —
{1,110
B {14,6)0
1 Y Y
1
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{1,115 o z
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7.19 Redundancy proofs (20 points)

(1) Proof of d s-a-0 redundant using PODEM.

Step 1: Goal — sensitize fault, Objective — d = 1. Backtrace — Implication stack —a = 1.
Implication — d = ). D-frontier — g.

Step 2: Goal — propagate fault. Objective — ¢ = 0. Backtrace — Implication stack —
a=1,b=10.
% Implications ~d =D,g=D.h=1.n=D,p=D.q = 1.
D-frontier — .
Fault proved redundant because D-frontier disappears at q — no alternative assign-
ments possible.

(2) Proof of m s-a-0 testable using PODEM.

Step 1: Goal — sensitize fault. Objective — g = 1.
Backtrace — Implication stack — a = 1. Implications — g =1,m = D, n = 0.
D-frontier — p.

Step 2: Goal — propagate fault. Objective — i = 1.
Backtrace — Implication stack — a = 1.6 = 0, Implications — g = 1,m = D, n =
Oh=1,p=D,g=D.
D-frontier — & fault at PO.
Test found —a=1,b=0;g= D).
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(3) Redundancy removal.

A, Start with redundant fault d s-a-0.

B. Set fault site to the faulty state and find all implications. For d = 0, we find g = b.
Thus, OR gate g is removed and & and m become fanouts of PI b, The reduced
circuit is shown on the left in the following figure.

a1\

: .
h i
T — Tl
. sal ~ p
f ~a )
ar —

Circuit after removing d sa0 fault. Circuit after removing m sa0 fault

C. Examine the reduced circuit for another redundant fault, We find that m s-a-(), which
was testable in the original circuit, is now redundant.,

D. Repeat steps B and C until all faults in the reduced circuit are testable,

The above procedure leads to the cirenit, %: i & b, as shown on the right in the above
figure.,

Note: This procedure removes only one redundant fault at a ftme and requires repeated
use of ATPG. It is possible to remove seveml redundant faults together, provided they are
selected such that the eircuit function is preserved. Removal of a single redundant fault
leaves the circuit function unchanged.

7.26 Static Compaction (10 points)

Forward order Reverse order

ty Mits = 1010 ty Mty = 1100

tq Mty = 0100 tg Mty = 0010
tr = 1100 ts Mtamis = 1100

Compacted vector sets:
Forward order compaction: | 1010, 0100, 1100

Recerse order compaction: [0010,1100
Reverse order is better, as if gives 1 fewer vectors.




(Bushnell and Agrawal) Problem 8.2

It requires just one vector to initialize the circuit. If the initial state is unknown, i.e.,
C, = X, the vector A, = B,, = 1 initializes the state to 1, irrespective of the presence
of any fault at the output 5,. Given this state, detection of any output fault at the
output reduces to a combinational ATPG problem of setting the output to the opposite
value. This can be done by a single vector: (A4, = 0, B, = 0) will set the output to 1
or (A, =0, 8, = 1) will set it to 0. Thus, just two vectors, an initialization vector 11
followed by an appropriate vector to set the output, will detect the output fault in the
circuit of Figure 8.3 {see page 215 of the book.)

Problem &8.5

For test generation with the five-valued algebra, we use the following steps (also see
the illustration):

Step 1: Place a 1) at the output B in time-frame ().

Step 2: This can only be justified by either DD or D1 input to the AND gate in
time-frame (. DD iz not possible due to the state input being X in the time-
frame -1. We place D1 by applving A = 1 and assuming that a state 1 can be
justified.

Step 3: Any input, 0 or 1, as shown in the figure, produces a state output X from
time-frame —1. Thus, the faulty circuit cannot be initialized to any known
state, including the 1 needed for the test. Hence, it is impossible to find
a test by the 5-valued algebra.

DorXx D
B B
Time-frame -1 Time-frame 0

Test generation attempted with S-valued algebra.

Following similar steps with the nine-valued algebra (zee illustration below), we
find that two 1's at A detect the fault at B as 1/0 in time-frame (. Notice that the
fault is detected a]tlmugl]l the faulty circuit is never initialized.



g-a-0

110
1

i}
B8
Time-frame -1 Time-frame 0

Test gensration with 9-valued algebra.

8.6 Initialization fault

The following figure illustrates the time-frame expansion procedure of generating
a vector, A = 0, B = 1, which starting from the unknown state detects the fault
A s-a-1 as 1/X. After the application of the input vector. the flip-flop is clocked
before the output can be observed. Even if we add more vectors to the test sequence,
the faulty circuit output will not become deterministic. This is because the faulty
circuit is not initializable. The fault is only potentially detectable.

A=f=X

0.0.% =, 0f1,0,01
- 100,100 ¢ A Yoo "_l—«; o 1,100,201 ¢
’ . FF 11.110,1 NRAXE _|_ FF (0,110
a8 - 4 100,100, % g -~ 4 19D, 100,/
11X 10,1020 X 0,170, %0
Tes: simulation with inifial state 1. Test simulation with initial state 0.

v



Note: Some test generators will find the potential detection test of the above
type. Others will consider the fault untestable (conservative approach.) Most fault
simulators will find the fault potentially detectable. Interestingly, the two test simu-
lation scenarios in the figure show that the fault is definitely detectable, though the
detection requires multiple observations. If we assume the initial state to be I then

the fault is detected as 1/0 after the application of the first clock. However, this
output will be I (same as the correct output) if the initial state was 0. In this case,

repeating the same vector and clocking once again will produce a 1/0 output. A con-
ventional fault simulator will not report such detection because it does not enumerate
the possible initial state scenarios. For such multiple observation tests see reference

[525] of the book.
8.7

The note in the solution of Problem 8.6 explains the operation of a multiple obser-
vation test. Besides simulation, a multiple observation test can also be derived by
the following procedure.

An observable state variable, which cannot be initialized in the faulty circuit
but must be observed for fault detection, is represented symbolically by a Boolean
variable s. Inversion of s is 7. A test sequence is derived such that any one of the
following pairs of outputs is produced:

e (/s and 0/F
o 1/s and 1/5 %
e 0/s and 1/s
e 0/Fand 1/7

We notice that irrespective of the value the uninitialized state variable assumes,
one element in each test output pair will provide definite fault detection. For exam-
ple, the outputs produced by the test (A, B) = (0,1), (0,1) of Problem 8.6 are 1/3
and 1/s, respectively, which agree with the second pair given above.

When the feedback in the circuit of Figure 8.25 (see page 250 of the book) has
no inversion, a test sequence (A, B) = (0,0), (0,1) will produce outputs 0/s and 1/s.
This is a multiple observation test. Details on multiple observation tests may be
found in reference [525] cited in the book.

Y



Problem &.8

The following figure shows the combinational () and 1 controllabilities as (C'C'0, C'C'1).
Notice that the output measures for a flip-flops are obtained by just adding 1 to
the input measures. This is due to assumptions that the clock has controllabilities
(1,1} and the combinational depth of a flip-flop is 0. The fault site can be driven
to 1/ by controlling B = 1 and it cannot be driven to (/1. Thus, its drivabilities
are d(0/1) = o0 and d(1/0) = 1, respectively. Drivabilities of all other signals are
successively computed by simple path sensitization.

di0M)= o
o leeneeh D (22)  d{i0)}=®
/ d(0i1)= o l DO by
A (1,1) d{1/0)= = —C 42) (5.3) s Z (16,3)
2 0 di0M)=o 7 N
s-a=0 (2.2 diDi)=c | F2 = d(0/1)=115
B s H d(1/0)=103 di”':'g 203 74) d10)=wo
(1,1) F1|di0M)=w — 1
dilM)=w [ d1/0)=101 dil/1)=105 | F3 | diD/1)=205
d1/0=1 d(10)=c | | d10)=

Drivahilities for fault B s—a—0 in circuit of Figure 8.9, Bold lines show easiest drivabhility path.

D 0,0,0
o
A l T>c 111 z

X,1,1 -
s-a-0 X,1/0,1/0 F2 b=, 0
B o — '
1'1'x F1 o £ amm I-l:

I X.0/1,011 F3| X.X.01

1,11

J

[~

A three—vecior test for fault B s—a—0. Dotted lines show an additional path sensitized.

The path shown in bold lines is the least drivability (minimum effort) path. A
test obtained by a drivability-based ATPG procedure iz shown in the lower figure.
This three-vector test, (A, B) = (1,1}, (1, 1), (1, X}, sensitizes the minimum driv-
ability path and we find that another path, shown by dotted lines, muzt alzo be
sensitized.
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Problem 8.9 Approximate test

A combinational test for the fault A4 s-a-0, as shown in the following figure, is

CLE=X, A=1, PS5 =1. The fault is detected at Z as 0/1.

LR D@
— N O
Al . iy *
AR 2' Do ot L —, 0/1

PS —~ X s

Combinational test for A s—a—0.

z

)

To justify PS = 1 in this test, we generate an input vector for the combinational
circuit that will produce NS = 1 output. We find a vector, CLKE = 0, A =
1, PS = 0. In order to apply the required approximation. we assume no fault
during justification. The justification must continue until we can find a vector with
PS = X. PS5 = 0 is easily justified by an input, CLR =1, A = X. PS5 = X.
Thus, the test sequence contains three vectors, (CLR, A, PS) = (1, X, X ), (0,1,0),
(X.1,1), which is simulated in the next figure. We find that the test fails to detect
the faunlt. In the last time-frame, where the combinational vector is applied, the
PS input is 1/0 instead of 1. This is due to the fault being present in the previous
time-frame. Thus the faulty previous state interferes with the newly generated fault
effect and the output Z becomes 0 instead of 0/1.

A valid test is generated by time-frame expansion when the fault is assumed to
be present in all time-frames (as we did for simulation in the above figure.) The new
test, as shown in the following figure, has only one change. In the last time-frame
A is changed to 0. So, no new fault effect is produced there and the fault effect 1/0
produced in time-frame -1 is propagated to 2.

The test sequence 1s (CLR, A, PS) = (1, X, X), (0,1,0), (X,0,1/0).
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Problem 8.12 Pseudo-combinational circuit

The pseudo-combinational circuit and a combinational test, A =0, B = 1. for the
fault ) s-a-0 are shown in the following figure. Simulation of the sequential cireuit
with input A =0, B =1, repeated four times shows that the fault will be detected
as 1/0 appearing as the fourth output. We assume that the initial states of all three
Hip-flops are X,

S 5-a-0 1/0

0
A l —C =< 0
) —
1
& \_r _\E 0
1 | P

Pseudo-combinational circuit for the sequential circuit of Figure 8.9..

N D s—a-04/0,1/0,1/0,1/0

A 2000 l —C w114 XX 1,1 Lr - Z
- -
g 1,111 F2 10X A0, 170
. E
Fi X111 't:

— xx.00 | F3| xxx0

Test simulation in sequential circuit. Q



Problem 8.18 Simulation-based initialization

The initialization sequence for the circuit of Figure 8.9 (zee page 226 of the book)
is, (A, B) = (0,0}, (1,0). The procedure is illustrated in the following table where
the selected vectors are shown in boldface.

Simulation-based initialization of circuit of Figure 8.9

Phase | Types of vectors | Trial vectors States Cost Remarks
A B 1 2 P3| func.
I Initial condition X X X X X 3 Cost=4#FFs
Starting vector 0 0 0 X X 2 Cost red.
Unit Hamm. dist. | 1 0 0 I I 0 Cost red.

Circuit initialized (cost=0}, Phase | completed.

The initialization sequence for the circuit of Figure 8,14 (see page 230 of the
book) is, (CNT,CLR)= (0.1}). The procedure is illustrated in the following table
where the selected vector is shown in boldface.

Simulation-based initialization of circuit of Figure 8.13
Phase | Types of vectors Trial vectors States Cost Remarks
CNT CLR| FF1 FF2|fune.
| [nitial condition X X X X 2 Cost=#FFs
Starting vector 0 0 X X 2 No cost red.
Unit Hamm. dist. 1 0 X X 2 No cost red.
0 1 { { 0 Cost red.
Clircuit initialized {cost=0}, Phasze | completed.

This procedure cannot initialize the circuit in Figure 8,12, because neither CNT =
0 nor C'NT = 1 can force any flip-flop into a defined state. These are the only pos-
sible trial vectors. Thus, the initial cost of 2 1ﬂrill never be reduced.



