Instructor's Resource Manual to accompany

Electronic Devices and Circuit Theory

Tenth Edition

Robert L. Boylestad
Louis Nashelsky

Copyright © 2009 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.

Pearson Prentice Hall. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall ${ }^{\text {тм }}$ is a trademark of Pearson Education, Inc.
Pearson ${ }^{\circledR}$ is a registered trademark of Pearson plc
Prentice Hall ${ }^{\circledR}$ is a registered trademark of Pearson Education, Inc.

Instructors of classes using Boylestad/Nashelsky, Electronic Devices and Circuit Theory, $10^{\text {th }}$ edition, may reproduce material from the instructor's text solutions manual for classroom use.

PEARSON

Prentice
Hall

Contents

Solutions to Problems in Text 1
Solutions for Laboratory Manual 185

Chapter 1

1. Copper has 20 orbiting electrons with only one electron in the outermost shell. The fact that the outermost shell with its $29^{\text {th }}$ electron is incomplete (subshell can contain 2 electrons) and distant from the nucleus reveals that this electron is loosely bound to its parent atom. The application of an external electric field of the correct polarity can easily draw this loosely bound electron from its atomic structure for conduction.

Both intrinsic silicon and germanium have complete outer shells due to the sharing (covalent bonding) of electrons between atoms. Electrons that are part of a complete shell structure require increased levels of applied attractive forces to be removed from their parent atom.
2. Intrinsic material: an intrinsic semiconductor is one that has been refined to be as pure as physically possible. That is, one with the fewest possible number of impurities.

Negative temperature coefficient: materials with negative temperature coefficients have decreasing resistance levels as the temperature increases.

Covalent bonding: covalent bonding is the sharing of electrons between neighboring atoms to form complete outermost shells and a more stable lattice structure.
3. -
4. $\quad W=Q V=(6 \mathrm{C})(3 \mathrm{~V})=\mathbf{1 8} \mathbf{~ J}$
5. $48 \mathrm{eV}=48\left(1.6 \times 10^{-19} \mathrm{~J}\right)=\mathbf{7 6 . 8} \times \mathbf{1 0}^{\mathbf{- 1 9}} \mathbf{J}$
$Q=\frac{W}{V}=\frac{76.8 \times 10^{-19} \mathrm{~J}}{12 \mathrm{~V}}=\mathbf{6 . 4 0} \times \mathbf{1 0}^{-19} \mathbf{C}$
$6.4 \times 10^{-19} \mathrm{C}$ is the charge associated with 4 electrons.
6. GaP Gallium Phosphide $\quad \mathrm{E}_{\mathrm{g}}=\mathbf{2 . 2 4} \mathbf{e V}$
$\mathrm{ZnS} \quad$ Zinc Sulfide $\quad \mathrm{E}_{\mathrm{g}}=\mathbf{3 . 6 7} \mathbf{e V}$
7. An n-type semiconductor material has an excess of electrons for conduction established by doping an intrinsic material with donor atoms having more valence electrons than needed to establish the covalent bonding. The majority carrier is the electron while the minority carrier is the hole.

A p-type semiconductor material is formed by doping an intrinsic material with acceptor atoms having an insufficient number of electrons in the valence shell to complete the covalent bonding thereby creating a hole in the covalent structure. The majority carrier is the hole while the minority carrier is the electron.
8. A donor atom has five electrons in its outermost valence shell while an acceptor atom has only 3 electrons in the valence shell.
9. Majority carriers are those carriers of a material that far exceed the number of any other carriers in the material.
Minority carriers are those carriers of a material that are less in number than any other carrier of the material.
10. Same basic appearance as Fig. 1.7 since arsenic also has 5 valence electrons (pentavalent).
11. Same basic appearance as Fig. 1.9 since boron also has 3 valence electrons (trivalent).
12. -
13. -
14. For forward bias, the positive potential is applied to the p-type material and the negative potential to the n-type material.
15. $T_{K}=20+273=293$
$k=11,600 / n=11,600 / 2\left(\right.$ low value of $\left.V_{D}\right)=5800$
$I_{D}=I_{s}\left(e^{\frac{k V_{D}}{T_{K}}}-1\right)=50 \times 10^{-9}\left(e^{\frac{(5800)(0.6)}{293}}-1\right)$
$=50 \times 10^{-9}\left(e^{11.877}-1\right)=\mathbf{7 . 1 9 7} \mathbf{m A}$
16. $k=11,600 / n=11,600 / 2=5800\left(n=2\right.$ for $\left.V_{D}=0.6 \mathrm{~V}\right)$
$T_{K}=T_{C}+273=100+273=373$
$e^{k V / T_{K}}=e^{\frac{(5800)(0.6 \mathrm{~V})}{373}}=e^{9.33}=11.27 \times 10^{3}$
$I=I_{s}\left(e^{k V / T_{K}}-1\right)=5 \mu \mathrm{~A}\left(11.27 \times 10^{3}-1\right)=\mathbf{5 6 . 3 5} \mathbf{m A}$
17. (a) $T_{K}=20+273=293$
$k=11,600 / n=11,600 / 2=5800$

$$
\begin{aligned}
I_{D} & =I_{s}\left(e^{\frac{k V_{D}}{T_{K}}}-1\right)=0.1 \mu \mathrm{~A}\left(e^{\frac{(5800)(-10 \mathrm{~V})}{293}}-1\right) \\
& =0.1 \times 10^{-6}\left(e^{-197.95}-1\right)=0.1 \times 10^{-6}\left(1.07 \times 10^{-86}-1\right) \\
& \cong 0.1 \times 10^{-6} 0.1 \mu \mathrm{~A} \\
I_{D} & =I_{s}=\mathbf{0 . 1} \boldsymbol{\mu} \mathbf{A}
\end{aligned}
$$

(b) The result is expected since the diode current under reverse-bias conditions should equal the saturation value.
18. (a)

x	$y=e^{x}$
0	1
1	2.7182
2	7.389
3	20.086
4	54.6
5	148.4

(b) $y=e^{0}=1$
(c) For $V=0 \mathrm{~V}, e^{0}=1$ and $I=I_{s}(1-1)=\mathbf{0} \mathbf{m A}$
19. $T=20^{\circ} \mathrm{C}: I_{s}=0.1 \mu \mathrm{~A}$
$T=30^{\circ} \mathrm{C}: I_{s}=2(0.1 \mu \mathrm{~A})=0.2 \mu \mathrm{~A}$ (Doubles every $10^{\circ} \mathrm{C}$ rise in temperature)
$T=40^{\circ} \mathrm{C}: I_{s}=2(0.2 \mu \mathrm{~A})=0.4 \mu \mathrm{~A}$
$T=50^{\circ} \mathrm{C}: I_{s}=2(0.4 \mu \mathrm{~A})=0.8 \mu \mathrm{~A}$
$T=60^{\circ} \mathrm{C}: I_{s}=2(0.8 \mu \mathrm{~A})=\mathbf{1 . 6} \mu \mathrm{A}$
$1.6 \mu \mathrm{~A}: 0.1 \mu \mathrm{~A} \Rightarrow 16: 1$ increase due to rise in temperature of $40^{\circ} \mathrm{C}$.
20. For most applications the silicon diode is the device of choice due to its higher temperature capability. Ge typically has a working limit of about 85 degrees centigrade while Si can be used at temperatures approaching 200 degrees centigrade. Silicon diodes also have a higher current handling capability. Germanium diodes are the better device for some RF small signal applications, where the smaller threshold voltage may prove advantageous.
21. From 1.19:

	$-75^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
V_{F}	1.1 V	0.85 V	0.6 V
$@_{1} 10 \mathrm{~mA}$			
I_{s}	0.01 pA	1 pA	$1.05 \mu \mathrm{~A}$

V_{F} decreased with increase in temperature
$1.1 \mathrm{~V}: 0.6 \mathrm{~V} \cong \mathbf{1 . 8 3 : 1}$
I_{s} increased with increase in temperature

$$
1.05 \mu \mathrm{~A}: 0.01 \mathrm{pA}=\mathbf{1 0 5} \times \mathbf{1 0}^{\mathbf{3}}: \mathbf{1}
$$

22. An "ideal" device or system is one that has the characteristics we would prefer to have when using a device or system in a practical application. Usually, however, technology only permits a close replica of the desired characteristics. The "ideal" characteristics provide an excellent basis for comparison with the actual device characteristics permitting an estimate of how well the device or system will perform. On occasion, the "ideal" device or system can be assumed to obtain a good estimate of the overall response of the design. When assuming an "ideal" device or system there is no regard for component or manufacturing tolerances or any variation from device to device of a particular lot.
23. In the forward-bias region the 0 V drop across the diode at any level of current results in a resistance level of zero ohms - the "on" state - conduction is established. In the reverse-bias region the zero current level at any reverse-bias voltage assures a very high resistance level the open circuit or "off" state - conduction is interrupted.
24. The most important difference between the characteristics of a diode and a simple switch is that the switch, being mechanical, is capable of conducting current in either direction while the diode only allows charge to flow through the element in one direction (specifically the direction defined by the arrow of the symbol using conventional current flow).
25. $V_{D} \cong 0.66 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$
$R_{D C}=\frac{V_{D}}{I_{D}}=\frac{0.65 \mathrm{~V}}{2 \mathrm{~mA}}=\mathbf{3 2 5} \Omega$
26. At $I_{D}=15 \mathrm{~mA}, V_{D}=0.82 \mathrm{~V}$
$R_{D C}=\frac{V_{D}}{I_{D}}=\frac{0.82 \mathrm{~V}}{15 \mathrm{~mA}}=\mathbf{5 4 . 6 7} \Omega$
As the forward diode current increases, the static resistance decreases.
27. $V_{D}=-10 \mathrm{~V}, I_{D}=I_{s}=\mathbf{- 0 . 1} \boldsymbol{\mu} \mathbf{A}$
$R_{D C}=\frac{V_{D}}{I_{D}}=\frac{10 \mathrm{~V}}{0.1 \mu \mathrm{~A}}=\mathbf{1 0 0} \mathbf{M} \Omega$
$V_{D}=-30 \mathrm{~V}, I_{D}=I_{s}=-\mathbf{0 . 1} \boldsymbol{\mu} \mathbf{A}$
$R_{D C}=\frac{V_{D}}{I_{D}}=\frac{30 \mathrm{~V}}{0.1 \mu \mathrm{~A}}=\mathbf{3 0 0} \mathbf{M} \Omega$
As the reverse voltage increases, the reverse resistance increases directly (since the diode leakage current remains constant).
28.

(a) $r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{0.79 \mathrm{~V}-0.76 \mathrm{~V}}{15 \mathrm{~mA}-5 \mathrm{~mA}}=\frac{0.03 \mathrm{~V}}{10 \mathrm{~mA}}=\mathbf{3} \Omega$
(b) $r_{d}=\frac{26 \mathrm{mV}}{I_{D}}=\frac{26 \mathrm{mV}}{10 \mathrm{~mA}}=\mathbf{2 . 6} \Omega$
(c) quite close
29. $I_{D}=10 \mathrm{~mA}, V_{D}=0.76 \mathrm{~V}$
$R_{D C}=\frac{V_{D}}{I_{D}}=\frac{0.76 \mathrm{~V}}{10 \mathrm{~mA}}=76 \Omega$
$r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}} \cong \frac{0.79 \mathrm{~V}-0.76 \mathrm{~V}}{15 \mathrm{~mA}-5 \mathrm{~mA}}=\frac{0.03 \mathrm{~V}}{10 \mathrm{~mA}}=\mathbf{3} \Omega$
$R_{D C} \gg r_{d}$
30. $I_{D}=1 \mathrm{~mA}, r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{0.72 \mathrm{~V}-0.61 \mathrm{~V}}{2 \mathrm{~mA}-0 \mathrm{~mA}}=\mathbf{5 5} \Omega$
$I_{D}=15 \mathrm{~mA}, r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{0.8 \mathrm{~V}-0.78 \mathrm{~V}}{20 \mathrm{~mA}-10 \mathrm{~mA}}=\mathbf{2} \Omega$
31. $I_{D}=1 \mathrm{~mA}, r_{d}=2\left(\frac{26 \mathrm{mV}}{I_{D}}\right)=2(26 \Omega)=\mathbf{5 2} \Omega$ vs $55 \Omega(\# 30)$
$I_{D}=15 \mathrm{~mA}, r_{d}=\frac{26 \mathrm{mV}}{I_{D}}=\frac{26 \mathrm{mV}}{15 \mathrm{~mA}}=\mathbf{1 . 7 3 \Omega} \boldsymbol{\mathrm { vs }} 2 \Omega(\# 30)$
32. $r_{a v}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{0.9 \mathrm{~V}-0.6 \mathrm{~V}}{13.5 \mathrm{~mA}-1.2 \mathrm{~mA}}=\mathbf{2 4 . 4} \Omega$
33. $r_{d}=\frac{\Delta V_{d}}{\Delta I_{d}} \cong \frac{0.8 \mathrm{~V}-0.7 \mathrm{~V}}{7 \mathrm{~mA}-3 \mathrm{~mA}}=\frac{0.09 \mathrm{~V}}{4 \mathrm{~mA}}=\mathbf{2 2 . 5} \Omega$
(relatively close to average value of $24.4 \Omega(\# 32)$)
34. $r_{a v}=\frac{\Delta V_{d}}{\Delta I_{d}}=\frac{0.9 \mathrm{~V}-0.7 \mathrm{~V}}{14 \mathrm{~mA}-0 \mathrm{~mA}}=\frac{0.2 \mathrm{~V}}{14 \mathrm{~mA}}=\mathbf{1 4 . 2 9} \Omega$

35. Using the best approximation to the curve beyond $V_{D}=0.7 \mathrm{~V}$:
$r_{a v}=\frac{\Delta V_{d}}{\Delta I_{d}} \cong \frac{0.8 \mathrm{~V}-0.7 \mathrm{~V}}{25 \mathrm{~mA}-0 \mathrm{~mA}}=\frac{0.1 \mathrm{~V}}{25 \mathrm{~mA}}=\mathbf{4} \Omega \xrightarrow[+]{0}$
36. (a) $V_{R}=-25 \mathrm{~V}: C_{T} \cong \mathbf{0 . 7 5} \mathbf{p F}$
$V_{R}=-10 \mathrm{~V}: C_{T} \cong \mathbf{1 . 2 5} \mathbf{p F}$
$\left|\frac{\Delta C_{T}}{\Delta V_{R}}\right|=\left|\frac{1.25 \mathrm{pF}-0.75 \mathrm{pF}}{10 \mathrm{~V}-25 \mathrm{~V}}\right|=\frac{0.5 \mathrm{pF}}{15 \mathrm{~V}}=\mathbf{0 . 0 3 3} \mathbf{~ p F} / \mathbf{V}$
(b) $V_{R}=-10 \mathrm{~V}: C_{T} \cong \mathbf{1 . 2 5} \mathbf{p F}$
$V_{R}=-1 \mathrm{~V}: C_{T} \cong \mathbf{3} \mathbf{p F}$
$\left|\frac{\Delta C_{T}}{\Delta V_{R}}\right|=\left|\frac{1.25 \mathrm{pF}-3 \mathrm{pF}}{10 \mathrm{~V}-1 \mathrm{~V}}\right|=\frac{1.75 \mathrm{pF}}{9 \mathrm{~V}}=\mathbf{0 . 1 9 4} \mathbf{~ p F} / \mathbf{V}$
(c) $\quad 0.194 \mathrm{pF} / \mathrm{V}: 0.033 \mathrm{pF} / \mathrm{V}=5.88: 1 \cong \mathbf{6 : 1}$

Increased sensitivity near $V_{D}=0 \mathrm{~V}$
37. From Fig. 1.33
$V_{D}=0 \mathrm{~V}, C_{D}=\mathbf{3 . 3} \mathbf{~ p F}$
$V_{D}=0.25 \mathrm{~V}, C_{D}=\mathbf{9} \mathbf{~ p F}$
38. The transition capacitance is due to the depletion region acting like a dielectric in the reversebias region, while the diffusion capacitance is determined by the rate of charge injection into the region just outside the depletion boundaries of a forward-biased device. Both capacitances are present in both the reverse- and forward-bias directions, but the transition capacitance is the dominant effect for reverse-biased diodes and the diffusion capacitance is the dominant effect for forward-biased conditions.
39. $V_{D}=0.2 \mathrm{~V}, C_{D}=7.3 \mathrm{pF}$

$$
\begin{aligned}
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(6 \mathrm{MHz})(7.3 \mathrm{pF})}=\mathbf{3 . 6 4} \mathbf{~ k} \boldsymbol{\Omega} \\
& V_{D}=-20 \mathrm{~V}, C_{T}=0.9 \mathrm{pF} \\
& X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(6 \mathrm{MHz})(0.9 \mathrm{pF})}=\mathbf{2 9 . 4 7} \mathbf{~ k} \Omega
\end{aligned}
$$

40. $I_{f}=\frac{10 \mathrm{~V}}{10 \mathrm{k} \Omega}=1 \mathrm{~mA}$
$t_{s}+t_{t}=t_{r r}=9 \mathrm{~ns}$
$t_{s}+2 t_{s}=9 \mathrm{~ns}$
$t_{s}=\mathbf{3}$ ns
$t_{t}=2 t_{s}=\mathbf{6} \mathbf{n s}$

41.

42. As the magnitude of the reverse-bias potential increases, the capacitance drops rapidly from a level of about 5 pF with no bias. For reverse-bias potentials in excess of 10 V the capacitance levels off at about 1.5 pF .
43. At $V_{D}=-25 \mathrm{~V}, I_{D}=-0.2 \mathrm{nA}$ and at $V_{D}=-100 \mathrm{~V}, I_{D} \cong-0.45 \mathrm{nA}$. Although the change in I_{R} is more than 100%, the level of I_{R} and the resulting change is relatively small for most applications.
44. Log scale: $\quad T_{A}=25^{\circ} \mathrm{C}, I_{R}=\mathbf{0 . 5} \mathbf{n A}$

$$
T_{A}=100^{\circ} \mathrm{C}, I_{R}=\mathbf{6 0} \mathbf{n A}
$$

The change is significant.
$60 \mathrm{nA}: 0.5 \mathrm{nA}=\mathbf{1 2 0}: 1$
Yes, at $95^{\circ} \mathrm{C} I_{R}$ would increase to 64 nA starting with 0.5 nA (at $25^{\circ} \mathrm{C}$) (and double the level every $10^{\circ} \mathrm{C}$).
45. $I_{F}=0.1 \mathrm{~mA}: r_{d} \cong \mathbf{7 0 0} \Omega$
$I_{F}=1.5 \mathrm{~mA}: r_{d} \cong 70 \Omega$
$I_{F}=20 \mathrm{~mA}: r_{d} \cong \mathbf{6} \Omega$
The results support the fact that the dynamic or ac resistance decreases rapidly with increasing current levels.
46. $T=25^{\circ} \mathrm{C}: P_{\text {max }}=500 \mathrm{~mW}$
$T=100^{\circ} \mathrm{C}: P_{\text {max }}=260 \mathrm{~mW}$
$P_{\text {max }}=V_{F} I_{F}$
$I_{F}=\frac{P_{\max }}{V_{F}}=\frac{500 \mathrm{~mW}}{0.7 \mathrm{~V}}=\mathbf{7 1 4 . 2 9} \mathbf{~ m A}$
$I_{F}=\frac{P_{\max }}{V_{F}}=\frac{260 \mathrm{~mW}}{0.7 \mathrm{~V}}=\mathbf{3 7 1 . 4 3} \mathbf{~ m A}$
$714.29 \mathrm{~mA}: 371.43 \mathrm{~mA}=1.92: 1 \cong \mathbf{2 : 1}$
47. Using the bottom right graph of Fig. 1.37:

$$
\begin{aligned}
I_{F} & =500 \mathrm{~mA} @ T=25^{\circ} \mathrm{C} \\
\text { At } I_{F} & =250 \mathrm{~mA}, T \cong \mathbf{1 0 4}^{\circ} \mathbf{C}
\end{aligned}
$$

48.

49. $T_{C}=+0.072 \%=\frac{\Delta V_{Z}}{V_{Z}\left(T_{1}-T_{0}\right)} \times 100 \%$

$$
0.072=\frac{0.75 \mathrm{~V}}{10 \mathrm{~V}\left(T_{1}-25\right)} \times 100
$$

$$
0.072=\frac{7.5}{T_{1}-25}
$$

$$
T_{1}-25^{\circ}=\frac{7.5}{0.072}=104.17^{\circ}
$$

$$
T_{1}=104.17^{\circ}+25^{\circ}=\mathbf{1 2 9 . 1 7}{ }^{\circ}
$$

50. $\quad T_{C}=\frac{\Delta V_{Z}}{V_{Z}\left(T_{1}-T_{0}\right)} \times 100 \%$

$$
=\frac{(5 \mathrm{~V}-4.8 \mathrm{~V})}{5 \mathrm{~V}\left(100^{\circ}-25^{\circ}\right)} \times 100 \%=\mathbf{0 . 0 5 3} \% /{ }^{\circ} \mathbf{C}
$$

51. $\frac{(20 \mathrm{~V}-6.8 \mathrm{~V})}{(24 \mathrm{~V}-6.8 \mathrm{~V})} \times 100 \%=77 \%$

The 20 V Zener is therefore $\cong 77 \%$ of the distance between 6.8 V and 24 V measured from the 6.8 V characteristic.

At $I_{Z}=0.1 \mathrm{~mA}, T_{C} \cong 0.06 \% /{ }^{\circ} \mathrm{C}$
$\frac{(5 \mathrm{~V}-3.6 \mathrm{~V})}{(6.8 \mathrm{~V}-3.6 \mathrm{~V})} \times 100 \%=44 \%$
The 5 V Zener is therefore $\cong 44 \%$ of the distance between 3.6 V and 6.8 V measured from the 3.6 V characteristic.

At $I_{Z}=0.1 \mathrm{~mA}, T_{C} \cong \mathbf{- 0 . 0 2 5 \%} /{ }^{\circ} \mathbf{C}$
52.

53. 24 V Zener:
$0.2 \mathrm{~mA}: \cong 400 \Omega$
$1 \mathrm{~mA}: \cong 95 \Omega$
$10 \mathrm{~mA}: \cong \mathbf{1 3} \Omega$
The steeper the curve (higher $d I / d V$) the less the dynamic resistance.
54. $V_{T} \cong 2.0 \mathrm{~V}$, which is considerably higher than germanium ($\left.\cong 0.3 \mathrm{~V}\right)$ or silicon $(\cong 0.7 \mathrm{~V})$. For germanium it is a 6.7:1 ratio, and for silicon a 2.86:1 ratio.
55. Fig. 1.53 (f) $I_{F} \cong \mathbf{1 3} \mathbf{~ m A}$

Fig. 1.53 (e) $V_{F} \cong \mathbf{2 . 3} \mathbf{~ V}$
56. (a) Relative efficiency @ $5 \mathrm{~mA} \cong \mathbf{0 . 8 2}$
(a) $10 \mathrm{~mA} \cong \mathbf{1 . 0 2}$
$\frac{1.02-0.82}{0.82} \times 100 \%=\mathbf{2 4 . 4 \%}$ increase
ratio: $\frac{1.02}{0.82}=1.24$
(b) Relative efficiency @ $30 \mathrm{~mA} \cong \mathbf{1 . 3 8}$
@ $35 \mathrm{~mA} \cong 1.42$
$\frac{1.42-1.38}{1.38} \times 100 \%=\mathbf{2 . 9 \%}$ increase
ratio: $\frac{1.42}{1.38}=\mathbf{1 . 0 3}$
(c) For currents greater than about 30 mA the percent increase is significantly less than for increasing currents of lesser magnitude.
57. (a) $\frac{0.75}{3.0}=0.25$

From Fig. 1.53 (i) $\measuredangle \cong 75^{\circ}$
(b) $0.5 \Rightarrow \measuredangle=40^{\circ}$
58. For the high-efficiency red unit of Fig. 1.53:

$$
\begin{aligned}
& \frac{0.2 \mathrm{~mA}}{{ }^{\circ} \mathrm{C}}=\frac{20 \mathrm{~mA}}{x} \\
& x=\frac{20 \mathrm{~mA}}{0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}}=100^{\circ} \mathrm{C}
\end{aligned}
$$

Chapter 2

1. The load line will intersect at $I_{D}=\frac{E}{R}=\frac{8 \mathrm{~V}}{330 \Omega}=24.24 \mathrm{~mA}$ and $V_{D}=8 \mathrm{~V}$.
(a) $V_{D_{Q}} \cong 0.92 \mathrm{~V}$
$I_{D_{Q}} \cong 21.5 \mathbf{~ m A}$
$V_{R}=E-V_{D_{Q}}=8 \mathrm{~V}-0.92 \mathrm{~V}=7.08 \mathrm{~V}$
(b) $\quad V_{D_{Q}} \cong 0.7 \mathrm{~V}$
$I_{D_{Q}} \cong \mathbf{2 2 . 2} \mathbf{~ m A}$
$V_{R}=E-V_{D_{\underline{Q}}}=8 \mathrm{~V}-0.7 \mathrm{~V}=7.3 \mathrm{~V}$
(c) $V_{D_{Q}} \cong \mathbf{0} \mathbf{~ V}$
$I_{D_{Q}} \cong \mathbf{2 4 . 2 4} \mathbf{~ m A}$
$V_{R}=E-V_{D_{Q}}=8 \mathrm{~V}-0 \mathrm{~V}=\mathbf{8} \mathbf{V}$
For (a) and (b), levels of $V_{D_{Q}}$ and $I_{D_{Q}}$ are quite close. Levels of part (c) are reasonably close but as expected due to level of applied voltage E.
2. (a) $I_{D}=\frac{E}{R}=\frac{5 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=2.27 \mathrm{~mA}$

The load line extends from $I_{D}=2.27 \mathrm{~mA}$ to $V_{D}=5 \mathrm{~V}$.
$V_{D_{Q}} \cong \mathbf{0 . 7} \mathrm{~V}, I_{D_{Q}} \cong \mathbf{2} \mathbf{~ m A}$
(b) $\quad I_{D}=\frac{E}{R}=\frac{5 \mathrm{~V}}{0.47 \mathrm{k} \Omega}=10.64 \mathrm{~mA}$

The load line extends from $I_{D}=10.64 \mathrm{~mA}$ to $V_{D}=5 \mathrm{~V}$.
$V_{D_{Q}} \cong \mathbf{0 . 8} \mathrm{~V}, I_{D_{Q}} \cong 9 \mathbf{m A}$
(c) $\quad I_{D}=\frac{E}{R}=\frac{5 \mathrm{~V}}{0.18 \mathrm{k} \Omega}=27.78 \mathrm{~mA}$

The load line extends from $I_{D}=27.78 \mathrm{~mA}$ to $V_{D}=5 \mathrm{~V}$.
$V_{D_{Q}} \cong \mathbf{0 . 9 3} \mathrm{~V}, I_{D_{Q}} \cong \mathbf{2 2 . 5} \mathbf{~ m A}$

The resulting values of $V_{D_{Q}}$ are quite close, while $I_{D_{Q}}$ extends from 2 mA to 22.5 mA .
3. Load line through $I_{D_{Q}}=10 \mathrm{~mA}$ of characteristics and $V_{D}=7 \mathrm{~V}$ will intersect I_{D} axis as 11.25 mA .

$$
\begin{aligned}
I_{D} & =11.25 \mathrm{~mA}=\frac{E}{R}=\frac{7 \mathrm{~V}}{R} \\
& \text { with } R=\frac{7 \mathrm{~V}}{11.25 \mathrm{~mA}}=\mathbf{0 . 6 2} \mathbf{~ k} \boldsymbol{\Omega}
\end{aligned}
$$

4. (a) $I_{D}=I_{R}=\frac{E-V_{D}}{R}=\frac{30 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{1 3 . 3 2} \mathbf{~ m A}$
$V_{D}=\mathbf{0 . 7} \mathbf{V}, V_{R}=E-V_{D}=30 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{2 9 . 3} \mathbf{V}$
(b) $I_{D}=\frac{E-V_{D}}{R}=\frac{30 \mathrm{~V}-0 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{1 3 . 6 4} \mathbf{~ m A}$
$V_{D}=\mathbf{0} \mathbf{V}, V_{R}=\mathbf{3 0} \mathbf{V}$
Yes, since $E \gg V_{T}$ the levels of I_{D} and V_{R} are quite close.
5. (a) $I=\mathbf{0} \mathbf{m A}$; diode reverse-biased.
(b) $V_{20 \Omega}=20 \mathrm{~V}-0.7 \mathrm{~V}=19.3 \mathrm{~V}$ (Kirchhoff's voltage law)
$I=\frac{19.3 \mathrm{~V}}{20 \Omega}=\mathbf{0 . 9 6 5} \mathrm{A}$
(c) $I=\frac{10 \mathrm{~V}}{10 \Omega}=\mathbf{1} \mathbf{A}$; center branch open
6. (a) Diode forward-biased,

Kirchhoff's voltage law (CW): $-5 \mathrm{~V}+0.7 \mathrm{~V}-V_{o}=0$ $V_{o}=-4.3 \mathrm{~V}$
$I_{R}=I_{D}=\frac{\left|V_{o}\right|}{R}=\frac{4.3 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{1 . 9 5 5} \mathbf{~ m A}$
(b) Diode forward-biased,

$$
\begin{aligned}
I_{D} & =\frac{8 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}=\mathbf{1 . 2 4} \mathbf{~ m A} \\
V_{o} & =V_{4.7 \mathrm{k} \Omega}+V_{D}=(1.24 \mathrm{~mA})(4.7 \mathrm{k} \Omega)+0.7 \mathrm{~V} \\
& =\mathbf{6 . 5 3} \mathbf{V}
\end{aligned}
$$

7.

(a) $\quad V_{o}=\frac{2 \mathrm{k} \Omega(20 \mathrm{~V}-0.7 \mathrm{~V}-0.3 \mathrm{~V})}{2 \mathrm{k} \Omega+2 \mathrm{k} \Omega}$

$$
=\frac{1}{2}(20 \mathrm{~V}-1 \mathrm{~V})=\frac{1}{2}(19 \mathrm{~V})=\mathbf{9 . 5} \mathrm{V}
$$

(b) $I=\frac{10 \mathrm{~V}+2 \mathrm{~V}-0.7 \mathrm{~V})}{1.2 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}=\frac{11.3 \mathrm{~V}}{5.9 \mathrm{k} \Omega}=1.915 \mathrm{~mA}$
$V^{\prime}=I R=(1.915 \mathrm{~mA})(4.7 \mathrm{k} \Omega)=9 \mathrm{~V}$
$V_{o}=V^{\prime}-2 \mathrm{~V}=9 \mathrm{~V}-2 \mathrm{~V}=7 \mathrm{~V}$
8. (a) Determine the Thevenin equivalent circuit for the 10 mA source and $2.2 \mathrm{k} \Omega$ resistor.
$E_{T h}=I R=(10 \mathrm{~mA})(2.2 \mathrm{k} \Omega)=22 \mathrm{~V}$
$R_{T h}=2.2 \mathrm{k} \Omega$

Diode forward-biased

$$
\begin{aligned}
I_{D} & =\frac{22 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}=\mathbf{6 . 2 6} \mathbf{~ m A} \\
V_{o} & =I_{D}(1.2 \mathrm{k} \Omega) \\
& =(6.26 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
& =7.51 \mathrm{~V}
\end{aligned}
$$

(b) Diode forward-biased
$I_{D}=\frac{20 \mathrm{~V}+5 \mathrm{~V}-0.7 \mathrm{~V}}{6.8 \mathrm{k} \Omega}=\mathbf{2 . 6 5} \mathbf{~ m A}$
Kirchhoff's voltage law (CW):

$$
\begin{aligned}
+V_{o}-0.7 \mathrm{~V}+5 \mathrm{~V} & =0 \\
V_{o} & =-4.3 \mathrm{~V}
\end{aligned}
$$

9. (a) $V_{o_{1}}=12 \mathrm{~V}-0.7 \mathrm{~V}=11.3 \mathrm{~V}$

$$
V_{o_{2}}=\mathbf{0 . 3} \mathbf{~ V}
$$

(b) $V_{o_{1}}=-10 \mathrm{~V}+0.3 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{- 9} \mathbf{V}$

$$
I=\frac{10 \mathrm{~V}-0.7 \mathrm{~V}-0.3 \mathrm{~V}}{1.2 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}=\frac{9 \mathrm{~V}}{4.5 \mathrm{k} \Omega}=2 \mathrm{~mA}, V_{o_{2}}=-(2 \mathrm{~mA})(3.3 \mathrm{k} \Omega)=-\mathbf{6 . 6} \mathrm{V}
$$

10. (a) Both diodes forward-biased

$$
I_{R}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=4.106 \mathrm{~mA}
$$

Assuming identical diodes:

$$
\begin{aligned}
& I_{D}=\frac{I_{R}}{2}=\frac{4.106 \mathrm{~mA}}{2}=\mathbf{2} .05 \mathbf{~ m A} \\
& V_{o}=20 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 9 . 3} \mathbf{~ V}
\end{aligned}
$$

(b) Right diode forward-biased:

$$
\begin{aligned}
& I_{D}=\frac{15 \mathrm{~V}+5 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{8 . 7 7} \mathbf{~ m A} \\
& V_{o}=15 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 4 . 3} \mathrm{V}
\end{aligned}
$$

11. (a) Ge diode "on" preventing Si diode from turning "on":
$I=\frac{10 \mathrm{~V}-0.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=\frac{9.7 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{9 . 7} \mathbf{~ m A}$
(b) $I=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}-0.7 \mathrm{~V}-12 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=\frac{2.6 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=\mathbf{0 . 5 5 3} \mathbf{~ m A}$
$V_{o}=12 \mathrm{~V}+(0.553 \mathrm{~mA})(4.7 \mathrm{k} \Omega)=14.6 \mathrm{~V}$
12. Both diodes forward-biased:

$$
\begin{aligned}
& V_{o_{1}}=\mathbf{0 . 7 ~ V}, V_{o_{2}}=\mathbf{0 . 3 ~ V} \\
& I_{1 \mathrm{k} \Omega}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{k} \Omega}=\frac{19.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=19.3 \mathrm{~mA} \\
& \begin{aligned}
I_{0.47 \mathrm{k} \Omega}=\frac{0.7 \mathrm{~V}-0.3 \mathrm{~V}}{0.47 \mathrm{k} \Omega}=0.851 \mathrm{~mA} \\
\begin{aligned}
(\text { Si diode }) & =I_{1 \mathrm{k} \Omega}-I_{0.47 \mathrm{k} \Omega} \\
& =19.3 \mathrm{~mA}-0.851 \mathrm{~mA} \\
& =\mathbf{1 8 . 4 5} \mathbf{~ m A}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

13. For the parallel $\mathrm{Si}-2 \mathrm{k} \Omega$ branches a Thevenin equivalent will result (for "on" diodes) in a single series branch of 0.7 V and $1 \mathrm{k} \Omega$ resistor as shown below:

14. Both diodes "off". The threshold voltage of 0.7 V is unavailable for either diode.

$$
V_{o}=\mathbf{0} \mathbf{V}
$$

15. Both diodes "on", $V_{o}=10 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{9 . 3} \mathbf{~ V}$
16. Both diodes "on".

$$
V_{o}=\mathbf{0 . 7} \mathbf{V}
$$

17. Both diodes "off", $V_{o}=\mathbf{1 0} \mathbf{V}$
18. The Si diode with -5 V at the cathode is "on" while the other is "off". The result is

$$
V_{o}=-5 \mathrm{~V}+0.7 \mathrm{~V}=-4.3 \mathrm{~V}
$$

19. 0 V at one terminal is "more positive" than -5 V at the other input terminal. Therefore assume lower diode "on" and upper diode "off".
The result:

$$
V_{o}=0 \mathrm{~V}-0.7 \mathrm{~V}=-0.7 \mathrm{~V}
$$

The result supports the above assumptions.
20. Since all the system terminals are at 10 V the required difference of 0.7 V across either diode cannot be established. Therefore, both diodes are "off" and

$$
V_{o}=+\mathbf{1 0} \mathrm{V}
$$

as established by 10 V supply connected to $1 \mathrm{k} \Omega$ resistor.
21. The Si diode requires more terminal voltage than the Ge diode to turn "on". Therefore, with 5 V at both input terminals, assume Si diode "off" and Ge diode "on".

The result: $V_{o}=5 \mathrm{~V}-0.3 \mathrm{~V}=\mathbf{4 . 7} \mathrm{V}$
The result supports the above assumptions.
22. $V_{\mathrm{dc}}=0.318 V_{m} \Rightarrow V_{m}=\frac{V_{\mathrm{dc}}}{0.318}=\frac{2 \mathrm{~V}}{0.318}=\mathbf{6 . 2 8} \mathbf{V}$

$I_{m}=\frac{V_{m}}{R}=\frac{6.28 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{2 . 8 5} \mathbf{~ m A}$

23. Using $V_{\mathrm{dc}} \cong 0.318\left(V_{m}-V_{T}\right)$

$$
2 \mathrm{~V}=0.318\left(V_{m}-0.7 \mathrm{~V}\right)
$$

Solving: $V_{m}=\mathbf{6 . 9 8} \mathbf{V} \cong 10: 1$ for $V_{m}: V_{T}$

24. $\quad V_{m}=\frac{V_{\mathrm{dc}}}{0.318}=\frac{2 \mathrm{~V}}{0.318}=\mathbf{6 . 2 8} \mathrm{V}$

$I_{L_{\max }}=\frac{6.28 \mathrm{~V}}{6.8 \mathrm{k} \Omega}=\mathbf{0 . 9 2 4} \mathbf{~ m A}$

$I_{\max }(2.2 \mathrm{k} \Omega)=\frac{6.28 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{2 . 8 5 5} \mathbf{~ m A}$
$I_{D_{\max }}=I_{L_{\max }}+I_{\max }(2.2 \mathrm{k} \Omega)=0.924 \mathrm{~mA}+2.855 \mathrm{~mA}=\mathbf{3 . 7 8} \mathbf{~ m A}$

25. $V_{m}=\sqrt{2}(110 \mathrm{~V})=155.56 \mathrm{~V}$
$V_{\mathrm{dc}}=0.318 V_{m}=0.318(155.56 \mathrm{~V})=49.47 \mathrm{~V}$

26. Diode will conduct when $v_{o}=0.7 \mathrm{~V}$; that is,

$$
v_{o}=0.7 \mathrm{~V}=\frac{10 \mathrm{k} \Omega\left(v_{i}\right)}{10 \mathrm{k} \Omega+1 \mathrm{k} \Omega}
$$

Solving: $v_{i}=\mathbf{0 . 7 7} \mathbf{V}$
For $v_{i} \geq 0.77 \mathrm{~V}$ Si diode is "on" and $v_{o}=\mathbf{0 . 7} \mathbf{V}$.
For $v_{i}<0.77 \mathrm{~V}$ Si diode is open and level of v_{o} is determined by voltage divider rule:

$$
v_{o}=\frac{10 \mathrm{k} \Omega\left(v_{i}\right)}{10 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=0.909 v_{i}
$$

For $v_{i}=-10 \mathrm{~V}$:

$$
\begin{aligned}
v_{o} & =0.909(-10 \mathrm{~V}) \\
& =\mathbf{- 9 . 0 9} \mathbf{V}
\end{aligned}
$$

When $v_{o}=0.7 \mathrm{~V}, v_{R_{\max }}=v_{i_{\max }}-0.7 \mathrm{~V}$

$$
=10 \mathrm{~V}-0.7 \mathrm{~V}=9.3 \mathrm{~V}
$$

$$
I_{R_{\max }}=\frac{9.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}
$$

$I_{\max }($ reverse $)=\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega+10 \mathrm{k} \Omega}=\mathbf{0 . 9 0 9} \mathbf{~ m A}$

27. (a) $P_{\text {max }}=14 \mathrm{~mW}=(0.7 \mathrm{~V}) I_{D}$

$$
I_{D}=\frac{14 \mathrm{~mW}}{0.7 \mathrm{~V}}=\mathbf{2 0} \mathbf{~ m A}
$$

(b) $4.7 \mathrm{k} \Omega \| 56 \mathrm{k} \Omega=4.34 \mathrm{k} \Omega$
$V_{R}=160 \mathrm{~V}-0.7 \mathrm{~V}=159.3 \mathrm{~V}$
$I_{\text {max }}=\frac{159.3 \mathrm{~V}}{4.34 \mathrm{k} \Omega}=\mathbf{3 6 . 7 1} \mathbf{~ m A}$
(c) $I_{\text {diode }}=\frac{I_{\max }}{2}=\frac{36.71 \mathrm{~mA}}{2}=\mathbf{1 8 . 3 6} \mathbf{~ m A}$
(d) Yes, $I_{D}=20 \mathrm{~mA}>18.36 \mathrm{~mA}$
(e) $I_{\text {diode }}=36.71 \mathrm{~mA} \gg I_{\max }=20 \mathrm{~mA}$
28. (a) $V_{m}=\sqrt{2}(120 \mathrm{~V})=169.7 \mathrm{~V}$
$V_{L_{m}}=V_{i_{m}}-2 V_{D}$
$=169.7 \mathrm{~V}-2(0.7 \mathrm{~V})=169.7 \mathrm{~V}-1.4 \mathrm{~V}$
$=168.3 \mathrm{~V}$
$V_{\mathrm{dc}}=0.636(168.3 \mathrm{~V})=\mathbf{1 0 7 . 0 4} \mathrm{V}$
(b) $\mathrm{PIV}=V_{m}($ load $)+V_{D}=168.3 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{1 6 9} \mathrm{V}$
(c) $\quad I_{D}(\max)=\frac{V_{L_{m}}}{R_{L}}=\frac{168.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{1 6 8 . 3} \mathbf{~ m A}$
(d) $P_{\text {max }}=V_{D} I_{D}=(0.7 \mathrm{~V}) I_{\text {max }}$

$$
=(0.7 \mathrm{~V})(168.3 \mathrm{~mA})
$$

$$
=117.81 \mathrm{~mW}
$$

29.

30. Positive half-cycle of v_{i} :

Negative half-cycle of v_{i} :

Voltage-divider rule:

$$
\begin{aligned}
V_{o_{\max }}= & \frac{2.2 \mathrm{k} \Omega\left(V_{i_{\max }}\right)}{2.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega} \\
& =\frac{1}{2}\left(V_{i_{\max }}\right) \\
& =\frac{1}{2}(100 \mathrm{~V}) \\
& =\mathbf{5 0} \mathbf{~}
\end{aligned}
$$

Polarity of v_{0} across the $2.2 \mathrm{k} \Omega$ resistor acting as a load is the same.

Voltage-divider rule:
$V_{o_{\max }}=\frac{2.2 \mathrm{k} \Omega\left(V_{i_{\max }}\right)}{2.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}$
$=\frac{1}{2}\left(V_{i_{\max }}\right)$
$=\frac{1}{2}(100 \mathrm{~V})$
$=50 \mathrm{~V}$
31. Positive pulse of v_{i} :

Top left diode "off", bottom left diode "on"
$2.2 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega=1.1 \mathrm{k} \Omega$
$V_{o_{\text {pakk }}}=\frac{1.1 \mathrm{k} \Omega(170 \mathrm{~V})}{1.1 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=56.67 \mathrm{~V}$
Negative pulse of v_{i} :
Top left diode "on", bottom left diode "off"
$V_{o_{\text {pakk }}}=\frac{1.1 \mathrm{k} \Omega(170 \mathrm{~V})}{1.1 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=56.67 \mathrm{~V}$
$V_{\mathrm{dc}}=0.636(56.67 \mathrm{~V})=\mathbf{3 6 . 0 4} \mathbf{~ V}$
32. (a) Si diode open for positive pulse of v_{i} and $v_{o}=\mathbf{0} \mathbf{V}$

For $-20 \mathrm{~V}<v_{i} \leq-0.7 \mathrm{~V}$ diode "on" and $v_{o}=v_{i}+0.7 \mathrm{~V}$.
For $v_{i}=-20 \mathrm{~V}, v_{o}=-20 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{- 1 9 . 3} \mathbf{V}$
For $v_{i}=-0.7 \mathrm{~V}, v_{o}=-0.7 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{0} \mathbf{~ V}$

(b) For $v_{i} \leq 5 \mathrm{~V}$ the 5 V battery will ensure the diode is forward-biased and $v_{o}=v_{i}-5 \mathrm{~V}$.

$$
\begin{aligned}
\text { At } v_{i} & =5 \mathrm{~V} \\
v_{o} & =5 \mathrm{~V}-5 \mathrm{~V}=\mathbf{0} \mathbf{V} \\
\text { At } v_{i} & =-20 \mathrm{~V} \\
v_{o} & =-20 \mathrm{~V}-5 \mathrm{~V}=\mathbf{- 2 5} \mathbf{V}
\end{aligned}
$$

For $v_{i}>5 \mathrm{~V}$ the diode is reverse-biased and $v_{o}=\mathbf{0} \mathbf{V}$.

33. (a) Positive pulse of v_{i} :

$$
V_{o}=\frac{1.2 \mathrm{k} \Omega(10 \mathrm{~V}-0.7 \mathrm{~V})}{1.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=\mathbf{3 . 2 8} \mathbf{V}
$$

Negative pulse of v_{i} :
diode "open", $v_{o}=\mathbf{0} \mathbf{~ V}$
(b) Positive pulse of v_{i} :
$V_{o}=10 \mathrm{~V}-0.7 \mathrm{~V}+5 \mathrm{~V}=\mathbf{1 4 . 3} \mathrm{V}$
Negative pulse of v_{i} :
diode "open", $v_{o}=\mathbf{0} \mathbf{~ V}$

34. (a) For $v_{i}=20 \mathrm{~V}$ the diode is reverse-biased and $v_{o}=\mathbf{0} \mathbf{V}$.

For $v_{i}=-5 \mathrm{~V}, v_{i}$ overpowers the 2 V battery and the diode is "on".
Applying Kirchhoff's voltage law in the clockwise direction:

$$
\begin{aligned}
-5 \mathrm{~V}+2 \mathrm{~V}-v_{o} & =0 \\
v_{o} & =-3 \mathrm{~V}
\end{aligned}
$$

(b) For $v_{i}=20 \mathrm{~V}$ the 20 V level overpowers the 5 V supply and the diode is "on". Using the short-circuit equivalent for the diode we find $v_{o}=v_{i}=\mathbf{2 0} \mathbf{V}$.

For $v_{i}=-5 \mathrm{~V}$, both v_{i} and the 5 V supply reverse-bias the diode and separate v_{i} from v_{o}. However, v_{o} is connected directly through the $2.2 \mathrm{k} \Omega$ resistor to the 5 V supply and $v_{o}=5 \mathrm{~V}$.

35. (a) Diode "on" for $v_{i} \geq 4.7 \mathrm{~V}$

For $v_{i}>4.7 \mathrm{~V}, V_{o}=4 \mathrm{~V}+0.7 \mathrm{~V}=4.7 \mathrm{~V}$
For $v_{i}<4.7 \mathrm{~V}$, diode "off" and $v_{o}=\boldsymbol{v}_{i}$
(b) Again, diode "on" for $v_{i} \geq 4.7 \mathrm{~V}$ but v_{o} now defined as the voltage across the diode

For $v_{i} \geq 4.7 \mathrm{~V}, v_{o}=\mathbf{0 . 7} \mathbf{~ V}$
For $v_{i}<4.7 \mathrm{~V}$, diode "off", $I_{D}=I_{R}=0 \mathrm{~mA}$ and $V_{2.2 \mathrm{k} \Omega}=I R=(0 \mathrm{~mA}) R=0 \mathrm{~V}$
Therefore, $v_{o}=v_{i}-4 \mathrm{~V}$
At $v_{i}=0 \mathrm{~V}, v_{o}=-\mathbf{4} \mathrm{V}$
$v_{i}=-8 \mathrm{~V}, v_{o}=-8 \mathrm{~V}-4 \mathrm{~V}=\mathbf{- 1 2} \mathbf{V}$

36. For the positive region of v_{i} :

The right Si diode is reverse-biased.
The left Si diode is "on" for levels of v_{i} greater than
$5.3 \mathrm{~V}+0.7 \mathrm{~V}=6 \mathrm{~V}$. In fact, $v_{o}=6 \mathbf{V}$ for $v_{i} \geq 6 \mathrm{~V}$.
For $v_{i}<6 \mathrm{~V}$ both diodes are reverse-biased and $v_{o}=\boldsymbol{v}_{i}$.
For the negative region of v_{i} :
The left Si diode is reverse-biased.
The right Si diode is "on" for levels of v_{i} more negative than $7.3 \mathrm{~V}+0.7 \mathrm{~V}=8 \mathrm{~V}$. In fact, $v_{o}=-\mathbf{8} \mathbf{V}$ for $v_{i} \leq-8 \mathrm{~V}$.

For $v_{i}>-8 \mathrm{~V}$ both diodes are reverse-biased and $v_{o}=\boldsymbol{v}_{\boldsymbol{i}}$.

$i_{R}:$ For $-8 \mathrm{~V}<v_{i}<6 \mathrm{~V}$ there is no conduction through the $10 \mathrm{k} \Omega$ resistor due to the lack of a complete circuit. Therefore, $i_{R}=0 \mathrm{~mA}$.

For $v_{i} \geq 6 \mathrm{~V}$

$$
v_{R}=v_{i}-v_{o}=v_{i}-6 \mathrm{~V}
$$

For $v_{i}=10 \mathrm{~V}, v_{R}=10 \mathrm{~V}-6 \mathrm{~V}=4 \mathrm{~V}$

$$
\text { and } i_{R}=\frac{4 \mathrm{~V}}{10 \mathrm{k} \Omega}=\mathbf{0 . 4} \mathbf{~ m A}
$$

For $v_{i} \leq-8 \mathrm{~V}$

$$
v_{R}=v_{i}-v_{o}=v_{i}+8 \mathrm{~V}
$$

For $v_{i}=-10 \mathrm{~V}$
$v_{R}=-10 \mathrm{~V}+8 \mathrm{~V}=-2 \mathrm{~V}$
and $i_{R}=\frac{-2 \mathrm{~V}}{10 \mathrm{k} \Omega}=-\mathbf{0 . 2} \mathbf{~ m A}$

37. (a) Starting with $v_{i}=-20 \mathrm{~V}$, the diode is in the "on" state and the capacitor quickly charges to $-20 \mathrm{~V}+$. During this interval of time v_{o} is across the "on" diode (short-current equivalent) and $v_{o}=0 \mathrm{~V}$.
When v_{i} switches to the +20 V level the diode enters the "off" state (open-circuit equivalent) and $v_{o}=v_{i}+v_{C}=20 \mathrm{~V}+20 \mathrm{~V}=+40 \mathrm{~V}$

(b) Starting with $v_{i}=-20 \mathrm{~V}$, the diode is in the "on" state and the capacitor quickly charges up to $-15 \mathrm{~V}+$. Note that $v_{i}=+20 \mathrm{~V}$ and the 5 V supply are additive across the capacitor. During this time interval v_{o} is across "on" diode and 5 V supply and $v_{o}=-5 \mathrm{~V}$.

When v_{i} switches to the +20 V level the diode enters the "off" state and $v_{o}=v_{i}+v_{C}=$ $20 \mathrm{~V}+15 \mathrm{~V}=35 \mathrm{~V}$.

38. (a) For negative half cycle capacitor charges to peak value of $120 \mathrm{~V}-0.7 \mathrm{~V}=119.3 \mathrm{~V}$ with polarity $\left(--(-+)\right.$. The output v_{o} is directly across the "on" diode resulting in $v_{o}=\mathbf{0 . 7} \mathrm{V}$ as a negative peak value.
For next positive half cycle $v_{o}=v_{i}+119.3 \mathrm{~V}$ with peak value of $v_{o}=120 \mathrm{~V}+119.3 \mathrm{~V}=\mathbf{2 3 9 . 3} \mathbf{~ V}$.

(b) For positive half cycle capacitor charges to peak value of $120 \mathrm{~V}-20 \mathrm{~V}-0.7 \mathrm{~V}=99.3 \mathrm{~V}$ with polarity $(+--)$. The output $v_{o}=20 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{2 0 . 7} \mathrm{V}$ For next negative half cycle $v_{o}=v_{i}-99.3 \mathrm{~V}$ with negative peak value of $v_{o}=-120 \mathrm{~V}-99.3 \mathrm{~V}=\mathbf{- 2 1 9 . 3} \mathrm{V}$.

Using the ideal diode approximation the vertical shift of part (a) would be 120 V rather than 119.3 V and -100 V rather than -99.3 V for part (b). Using the ideal diode approximation would certainly be appropriate in this case.
39. (a) $\tau=R C=(56 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F})=5.6 \mathrm{~ms}$
$5 \tau=\mathbf{2 8} \mathbf{~ m s}$
(b) $5 \tau=28 \mathrm{~ms} \gg \frac{T}{2}=\frac{1 \mathrm{~ms}}{2}=\mathbf{0 . 5} \mathbf{~ m s}, 56: 1$
(c) Positive pulse of v_{i} :

Diode "on" and $v_{o}=-2 \mathrm{~V}+0.7 \mathrm{~V}=-1.3 \mathrm{~V}$
Capacitor charges to $10 \mathrm{~V}+2 \mathrm{~V}-0.7 \mathrm{~V}=11.3 \mathrm{~V}$
Negative pulse of v_{i} :
Diode "off" and $v_{o}=-10 \mathrm{~V}-11.3 \mathrm{~V}=-21.3 \mathrm{~V}$

40. Solution is network of Fig. 2.176(b) using a 10 V supply in place of the 5 V source.
41. Network of Fig. 2.178 with 2 V battery reversed.

42. (a) In the absence of the Zener diode

$$
\begin{aligned}
& V_{L}=\frac{180 \Omega(20 \mathrm{~V})}{180 \Omega+220 \Omega}=9 \mathrm{~V} \\
& V_{L}=9 \mathrm{~V}<V_{Z}=10 \mathrm{~V} \text { and diode non-conducting }
\end{aligned}
$$

Therefore, $I_{L}=I_{R}=\frac{20 \mathrm{~V}}{220 \Omega+180 \Omega}=\mathbf{5 0} \mathbf{~ m A}$

$$
\begin{aligned}
& \text { with } I_{Z}=\mathbf{0} \mathbf{m A} \\
& \text { and } V_{L}=\mathbf{9} \mathbf{V}
\end{aligned}
$$

(b) In the absence of the Zener diode

$$
\begin{aligned}
& V_{L}=\frac{470 \Omega(20 \mathrm{~V})}{470 \Omega+220 \Omega}=13.62 \mathrm{~V} \\
& V_{L}=13.62 \mathrm{~V}>V_{Z}=10 \mathrm{~V} \text { and Zener diode "on" }
\end{aligned}
$$

Therefore, $V_{L}=\mathbf{1 0} \mathbf{V}$ and $V_{R_{s}}=10 \mathrm{~V}$

$$
I_{R_{s}}=V_{R_{s}} / R_{s}=10 \mathrm{~V} / 220 \Omega=\mathbf{4 5 . 4 5} \mathbf{~ m A}
$$

$$
I_{L}=V_{L} / R_{L}=10 \mathrm{~V} / 470 \Omega=\mathbf{2 1 . 2 8} \mathbf{~ m A}
$$

and $I_{Z}=I_{R_{s}}-I_{L}=45.45 \mathrm{~mA}-21.28 \mathrm{~mA}=\mathbf{2 4 . 1 7} \mathbf{~ m A}$
(c) $P_{Z_{\max }}=400 \mathrm{~mW}=V_{Z} I_{Z}=(10 \mathrm{~V})\left(I_{Z}\right)$

$$
\begin{aligned}
& I_{Z}=\frac{400 \mathrm{~mW}}{10 \mathrm{~V}}=40 \mathrm{~mA} \\
& I_{L_{\text {min }}}=I_{R_{s}}-I_{Z_{\max }}=45.45 \mathrm{~mA}-40 \mathrm{~mA}=5.45 \mathrm{~mA} \\
& R_{L}=\frac{V_{L}}{I_{L_{\text {min }}}}=\frac{10 \mathrm{~V}}{5.45 \mathrm{~mA}}=\mathbf{1 , 8 3 4 . 8 6} \Omega
\end{aligned}
$$

Large R_{L} reduces I_{L} and forces more of $I_{R_{s}}$ to pass through Zener diode.
(d) In the absence of the Zener diode

$$
\begin{aligned}
V_{L}=10 \mathrm{~V} & =\frac{R_{L}(20 \mathrm{~V})}{R_{L}+220 \Omega} \\
10 R_{L}+2200 & =20 R_{L} \\
10 R_{L} & =2200 \\
R_{L} & =220 \Omega
\end{aligned}
$$

43. (a) $V_{Z}=12 \mathrm{~V}, R_{L}=\frac{V_{L}}{I_{L}}=\frac{12 \mathrm{~V}}{200 \mathrm{~mA}}=\mathbf{6 0} \Omega$

$$
\begin{aligned}
V_{L}=V_{Z}=12 \mathrm{~V} & =\frac{R_{L} V_{i}}{R_{L}+R_{s}}=\frac{60 \Omega(16 \mathrm{~V})}{60 \Omega+R_{s}} \\
720+12 R_{s} & =960 \\
12 R_{s} & =240 \\
R_{s} & =\mathbf{2 0} \Omega
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
P_{Z_{\max }} & =V_{Z} I_{Z_{\max }} \\
& =(12 \mathrm{~V})(200 \mathrm{~mA}) \\
& =\mathbf{2 . 4} \mathbf{~ W}
\end{aligned}
$$

44. Since $I_{L}=\frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L}}$ is fixed in magnitude the maximum value of $I_{R_{s}}$ will occur when I_{Z} is a maximum. The maximum level of $I_{R_{s}}$ will in turn determine the maximum permissible level of V_{i}.

$$
\begin{aligned}
I_{Z_{\max }} & =\frac{P_{Z_{\max }}}{V_{Z}}=\frac{400 \mathrm{~mW}}{8 \mathrm{~V}}=50 \mathrm{~mA} \\
I_{L}= & \frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L}}=\frac{8 \mathrm{~V}}{220 \Omega}=36.36 \mathrm{~mA} \\
I_{R_{s}} & =I_{Z}+I_{L}=50 \mathrm{~mA}+36.36 \mathrm{~mA}=86.36 \mathrm{~mA} \\
I_{R_{s}} & =\frac{V_{i}-V_{Z}}{R_{s}} \\
\text { or } V_{i} & =I_{R_{s}} R_{s}+V_{Z} \\
& =(86.36 \mathrm{~mA})(91 \Omega)+8 \mathrm{~V}=7.86 \mathrm{~V}+8 \mathrm{~V}=\mathbf{1 5 . 8 6} \mathbf{V}
\end{aligned}
$$

Any value of v_{i} that exceeds 15.86 V will result in a current I_{Z} that will exceed the maximum value.
45. At 30 V we have to be sure Zener diode is "on".

$$
\therefore V_{L}=20 \mathrm{~V}=\frac{R_{L} V_{i}}{R_{L}+R_{s}}=\frac{1 \mathrm{k} \Omega(30 \mathrm{~V})}{1 \mathrm{k} \Omega+R_{s}}
$$

Solving, $R_{s}=0.5 \mathbf{k} \Omega$

$$
\text { At } 50 \mathrm{~V}, I_{R_{s}}=\frac{50 \mathrm{~V}-20 \mathrm{~V}}{0.5 \mathrm{k} \Omega}=60 \mathrm{~mA}, I_{L}=\frac{20 \mathrm{~V}}{1 \mathrm{k} \Omega}=20 \mathrm{~mA}
$$

$$
I_{Z M}=I_{R_{S}}-I_{L}=60 \mathrm{~mA}-20 \mathrm{~mA}=\mathbf{4 0} \mathbf{~ m A}
$$

46. For $v_{i}=+50 \mathrm{~V}$:
Z_{1} forward-biased at 0.7 V
Z_{2} reverse-biased at the Zener potential and $V_{Z_{2}}=10 \mathrm{~V}$.
Therefore, $V_{o}=V_{Z_{1}}+V_{Z_{2}}=0.7 \mathrm{~V}+10 \mathrm{~V}=\mathbf{1 0 . 7} \mathbf{V}$

For $v_{i}=-50 \mathrm{~V}$:
Z_{1} reverse-biased at the Zener potential and $V_{Z_{1}}=-10 \mathrm{~V}$.
Z_{2} forward-biased at -0.7 V .
Therefore, $V_{o}=V_{Z_{1}}+V_{Z_{2}}=\mathbf{- 1 0 . 7} \mathbf{V}$

For a 5 V square wave neither Zener diode will reach its Zener potential. In fact, for either polarity of v_{i} one Zener diode will be in an open-circuit state resulting in $v_{o}=v_{i}$.

47. $V_{m}=1.414(120 \mathrm{~V})=169.68 \mathrm{~V}$

$$
2 V_{m}=2(169.68 \mathrm{~V})=\mathbf{3 3 9 . 3 6} \mathbf{~ V}
$$

48. The PIV for each diode is $\mathbf{2} \boldsymbol{V}_{\boldsymbol{m}}$

$$
\therefore \mathrm{PIV}=2(1.414)\left(V_{\mathrm{rms}}\right)
$$

Chapter 3

1. -
2. A bipolar transistor utilizes holes and electrons in the injection or charge flow process, while unipolar devices utilize either electrons or holes, but not both, in the charge flow process.
3. Forward- and reverse-biased.
4. The leakage current $I_{C O}$ is the minority carrier current in the collector.
5. -
6. -
7. -
8. $\quad I_{E}$ the largest
I_{B} the smallest
$I_{C} \cong I_{E}$
9. $I_{B}=\frac{1}{100} I_{C} \Rightarrow I_{C}=100 I_{B}$
$I_{E}=I_{C}+I_{B}=100 I_{B}+I_{B}=101 I_{B}$
$I_{B}=\frac{I_{E}}{101}=\frac{8 \mathrm{~mA}}{101}=\mathbf{7 9 . 2 1} \boldsymbol{\mu} \mathbf{A}$
$I_{C}=100 I_{B}=100(79.21 \mu \mathrm{~A})=7.921 \mathrm{~mA}$
10. -
11. $I_{E}=5 \mathrm{~mA}, V_{C B}=1 \mathrm{~V}: V_{B E}=\mathbf{8 0 0} \mathbf{~ m V}$

$$
\begin{aligned}
& V_{C B}=10 \mathrm{~V}: V_{B E}=\mathbf{7 7 0} \mathbf{~ m V} \\
& V_{C B}=20 \mathrm{~V}: V_{B E}=\mathbf{7 5 0} \mathbf{~ m V}
\end{aligned}
$$

The change in $V_{C B}$ is $20 \mathrm{~V}: 1 \mathrm{~V}=\mathbf{2 0}: \mathbf{1}$
The resulting change in $V_{B E}$ is $800 \mathrm{mV}: 750 \mathrm{mV}=\mathbf{1 . 0 7 : 1}$ (very slight)
12. (a) $r_{a v}=\frac{\Delta V}{\Delta I}=\frac{0.9 \mathrm{~V}-0.7 \mathrm{~V}}{8 \mathrm{~mA}-0}=\mathbf{2 5} \Omega$
(b) Yes, since 25Ω is often negligible compared to the other resistance levels of the network.
13. (a) $I_{C} \cong I_{E}=4.5 \mathrm{~mA}$
(b) $I_{C} \cong I_{E}=4.5 \mathrm{~mA}$
(c) negligible: change cannot be detected on this set of characteristics.
(d) $I_{C} \cong I_{E}$
14. (a) Using Fig. 3.7 first, $I_{E} \cong 7 \mathrm{~mA}$

Then Fig. 3.8 results in $I_{C} \cong \mathbf{7 m A}$
(b) Using Fig. 3.8 first, $I_{E} \cong 5 \mathrm{~mA}$

Then Fig. 3.7 results in $V_{B E} \cong \mathbf{0 . 7 8} \mathbf{~ V}$
(c) Using Fig. 3.10(b) $I_{E}=5 \mathrm{~mA}$ results in $V_{B E} \cong \mathbf{0 . 8 1} \mathbf{~ V}$
(d) Using Fig. 3.10(c) $I_{E}=5 \mathrm{~mA}$ results in $V_{B E}=\mathbf{0 . 7} \mathbf{V}$
(e) Yes, the difference in levels of $V_{B E}$ can be ignored for most applications if voltages of several volts are present in the network.
15. (a) $I_{C}=\alpha I_{E}=(0.998)(4 \mathrm{~mA})=\mathbf{3 . 9 9 2} \mathbf{~ m A}$
(b) $I_{E}=I_{C}+I_{B} \Rightarrow I_{C}=I_{E}-I_{B}=2.8 \mathrm{~mA}-0.02 \mathrm{~mA}=\mathbf{2 . 7 8} \mathbf{~ m A}$
$\alpha_{\mathrm{dc}}=\frac{I_{C}}{I_{E}}=\frac{2.78 \mathrm{~mA}}{2.8 \mathrm{~mA}}=\mathbf{0 . 9 9 3}$
(c) $I_{C}=\beta I_{B}=\left(\frac{\alpha}{1-\alpha}\right) I_{B}=\left(\frac{0.98}{1-0.98}\right)(40 \mu \mathrm{~A})=1.96 \mathrm{~mA}$
$I_{E}=\frac{I_{C}}{\alpha}=\frac{1.96 \mathrm{~mA}}{0.993}=\mathbf{2} \mathbf{~ m A}$
16. -
17. $I_{i}=V_{i} / R_{i}=500 \mathrm{mV} / 20 \Omega=25 \mathrm{~mA}$
$I_{L} \cong I_{i}=25 \mathrm{~mA}$
$V_{L}=I_{L} R_{L}=(25 \mathrm{~mA})(1 \mathrm{k} \Omega)=25 \mathrm{~V}$
$A_{v}=\frac{V_{o}}{V_{i}}=\frac{25 \mathrm{~V}}{0.5 \mathrm{~V}}=\mathbf{5 0}$
18. $I_{i}=\frac{V_{i}}{R_{i}+R_{s}}=\frac{200 \mathrm{mV}}{20 \Omega+100 \Omega}=\frac{200 \mathrm{mV}}{120 \Omega}=1.67 \mathrm{~mA}$
$I_{L}=I_{i}=1.67 \mathrm{~mA}$
$V_{L}=I_{L} R=(1.67 \mathrm{~mA})(5 \mathrm{k} \Omega)=8.35 \mathrm{~V}$
$A_{v}=\frac{V_{o}}{V_{i}}=\frac{8.35 \mathrm{~V}}{0.2 \mathrm{~V}}=\mathbf{4 1 . 7 5}$
19. -
20. (a) Fig. 3.14(b): $I_{B} \cong 35 \mu \mathrm{~A}$

Fig. 3.14(a): $I_{C} \cong \mathbf{3 . 6} \mathbf{~ m A}$
(b) Fig. 3.14(a): $V_{C E} \cong 2.5 \mathrm{~V}$

Fig. 3.14(b): $V_{B E} \cong \mathbf{0 . 7 2} \mathbf{V}$
21. (a) $\beta=\frac{I_{C}}{I_{B}}=\frac{2 \mathrm{~mA}}{17 \mu \mathrm{~A}}=\mathbf{1 1 7 . 6 5}$
(b) $\alpha=\frac{\beta}{\beta+1}=\frac{117.65}{117.65+1}=\mathbf{0 . 9 9 2}$
(c) $I_{C E O}=\mathbf{0 . 3} \mathbf{~ m A}$
(d) $I_{C B O}=(1-\alpha) I_{C E O}$

$$
=(1-0.992)(0.3 \mathrm{~mA})=\mathbf{2 . 4} \mu \mathbf{A}
$$

22. (a) Fig. 3.14(a): $I_{C E O} \cong \mathbf{0 . 3} \mathbf{~ m A}$
(b) Fig. 3.14(a): $I_{C} \cong 1.35 \mathrm{~mA}$

$$
\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{1.35 \mathrm{~mA}}{10 \mu \mathrm{~A}}=\mathbf{1 3 5}
$$

(c) $\alpha=\frac{\beta}{\beta+1}=\frac{135}{136}=\mathbf{0 . 9 9 2 6}$

$$
\begin{aligned}
I_{C B O} & \cong(1-\alpha) I_{C E O} \\
= & (1-0.9926)(0.3 \mathrm{~mA}) \\
& =\mathbf{2 . 2} \boldsymbol{\mu} \mathbf{A}
\end{aligned}
$$

23. (a) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{6.7 \mathrm{~mA}}{80 \mu \mathrm{~A}}=\mathbf{8 3 . 7 5}$
(b) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{0.85 \mathrm{~mA}}{5 \mu \mathrm{~A}}=\mathbf{1 7 0}$
(c) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{3.4 \mathrm{~mA}}{30 \mu \mathrm{~A}}=\mathbf{1 1 3 . 3 3}$
(d) β_{dc} does change from pt. to pt. on the characteristics.

Low I_{B}, high $V_{C E} \rightarrow$ higher betas
High I_{B}, low $V_{C E} \rightarrow$ lower betas
24. (a) $\beta_{\mathrm{ac}}=\left.\frac{\Delta I_{C}}{\Delta I_{B}}\right|_{C E}=5 \mathrm{~V}=\frac{7.3 \mathrm{~mA}-6 \mathrm{~mA}}{90 \mu \mathrm{~A}-70 \mu \mathrm{~A}}=\frac{1.3 \mathrm{~mA}}{20 \mu \mathrm{~A}}=\mathbf{6 5}$
(b) $\beta_{\mathrm{ac}}=\left.\frac{\Delta I_{C}}{\Delta I_{B}}\right|_{V_{C E}}=15 \mathrm{~V}=\frac{1.4 \mathrm{~mA}-0.3 \mathrm{~mA}}{10 \mu \mathrm{~A}-0 \mu \mathrm{~A}}=\frac{1.1 \mathrm{~mA}}{10 \mu \mathrm{~A}}=\mathbf{1 1 0}$
(c) $\beta_{\mathrm{ac}}=\left.\frac{\Delta I_{C}}{\Delta I_{B}}\right|_{C E}=10 \mathrm{~V}=\frac{4.25 \mathrm{~mA}-2.35 \mathrm{~mA}}{40 \mu \mathrm{~A}-20 \mu \mathrm{~A}}=\frac{1.9 \mathrm{~mA}}{20 \mu \mathrm{~A}}=\mathbf{9 5}$
(d) β_{ac} does change from point to point on the characteristics. The highest value was obtained at a higher level of $V_{C E}$ and lower level of I_{C}. The separation between I_{B} curves is the greatest in this region.
(e)

$V_{C E}$	I_{B}	β_{dc}	β_{ac}	I_{C}	$\beta_{\mathrm{dd}} / \beta_{\mathrm{ac}}$
5 V	$80 \mu \mathrm{~A}$	83.75	65	6.7 mA	1.29
10 V	$30 \mu \mathrm{~A}$	113.33	95	3.4 mA	1.19
15 V	$5 \mu \mathrm{~A}$	170	110	0.85 mA	1.55

As I_{C} decreased, the level of β_{dc} and β_{ac} increased. Note that the level of β_{dc} and β_{ac} in the center of the active region is close to the average value of the levels obtained. In each case β_{dc} is larger than β_{ac}, with the least difference occurring in the center of the active region.
25. $\quad \beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{2.9 \mathrm{~mA}}{25 \mu \mathrm{~A}}=\mathbf{1 1 6}$
$\alpha=\frac{\beta}{\beta+1}=\frac{116}{116+1}=\mathbf{0 . 9 9 1}$
$I_{E}=I_{C} / \alpha=2.9 \mathrm{~mA} / 0.991=\mathbf{2 . 9 3} \mathbf{~ m A}$
26.
(a) $\beta=\frac{\alpha}{1-\alpha}=\frac{0.987}{1-0.987}=\frac{0.987}{0.013}=\mathbf{7 5 . 9 2}$
(b) $\alpha=\frac{\beta}{\beta+1}=\frac{120}{120+1}=\frac{120}{121}=\mathbf{0 . 9 9 2}$
(c) $I_{B}=\frac{I_{C}}{\beta}=\frac{2 \mathrm{~mA}}{180}=\mathbf{1 1 . 1 1} \mu \mathrm{A}$

$$
I_{E}=I_{C}+I_{B}=2 \mathrm{~mA}+11.11 \mu \mathrm{~A}
$$

$$
=2.011 \mathrm{~mA}
$$

27. -
28. $V_{e}=V_{i}-V_{b e}=2 \mathrm{~V}-0.1 \mathrm{~V}=1.9 \mathrm{~V}$
$A_{v}=\frac{V_{o}}{V_{i}}=\frac{1.9 \mathrm{~V}}{2 \mathrm{~V}}=\mathbf{0 . 9 5} \cong 1$
$I_{e}=\frac{V_{E}}{R_{E}}=\frac{1.9 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{1 . 9} \mathbf{~ m A}(\mathrm{rms})$
29. Output characteristics:

Input characteristics:
Common-emitter input characteristics may be used directly for common-collector calculations.
30. $\quad P_{C_{\max }}=30 \mathrm{~mW}=V_{C E} I_{C}$

$$
\begin{aligned}
& I_{C}=I_{C_{\max }}, V_{C E}=\frac{P_{C_{\max }}}{I_{C_{\max }}}=\frac{30 \mathrm{~mW}}{7 \mathrm{~mA}}=4.29 \mathrm{~V} \\
& V_{C E}=V_{C E_{\max }}, I_{C}=\frac{P_{C_{\max }}}{V_{C E_{\max }}}=\frac{30 \mathrm{~mW}}{20 \mathrm{~V}}=1.5 \mathrm{~mA} \\
& V_{C E}=10 \mathrm{~V}, I_{C}=\frac{P_{C_{\max }}}{V_{C E}}=\frac{30 \mathrm{~mW}}{10 \mathrm{~V}}=3 \mathrm{~mA} \\
& I_{C}=4 \mathrm{~mA}, V_{C E}=\frac{P_{C_{\max }}}{I_{C}}=\frac{30 \mathrm{~mW}}{4 \mathrm{~mA}}=7.5 \mathrm{~V} \\
& V_{C E}=15 \mathrm{~V}, I_{C}=\frac{P_{C_{\max }}}{V_{C E}}=\frac{30 \mathrm{~mW}}{15 \mathrm{~V}}=2 \mathrm{~mA}
\end{aligned}
$$

31. $I_{C}=I_{C_{\max }}, V_{C E}=\frac{P_{C_{\max }}}{I_{C_{\max }}}=\frac{30 \mathrm{~mW}}{6 \mathrm{~mA}}=\mathbf{5} \mathbf{V}$
$V_{C B}=V_{C B_{\max }}, I_{C}=\frac{P_{C_{\max }}}{V_{C B_{\max }}}=\frac{30 \mathrm{~mW}}{15 \mathrm{~V}}=\mathbf{2} \mathbf{~ m A}$
$I_{C}=4 \mathrm{~mA}, V_{C B}=\frac{P_{C_{\max }}}{I_{C}}=\frac{30 \mathrm{~mW}}{4 \mathrm{~mA}}=7.5 \mathrm{~V}$
$V_{C B}=10 \mathrm{~V}, I_{C}=\frac{P_{C_{\text {max }}}}{V_{C B}}=\frac{30 \mathrm{~mW}}{10 \mathrm{~V}}=\mathbf{3} \mathbf{m A}$

32. The operating temperature range is $-55^{\circ} \mathrm{C} \leq T_{J} \leq 150^{\circ} \mathrm{C}$

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\frac{9}{5}{ }^{\circ} \mathrm{C}+32^{\circ} \\
& =\frac{9}{5}\left(-55^{\circ} \mathrm{C}\right)+32^{\circ}=-67^{\circ} \mathbf{F} \\
{ }^{\circ} \mathrm{F} & =\frac{9}{5}\left(150^{\circ} \mathrm{C}\right)+32^{\circ}=\mathbf{3 0 2}{ }^{\circ} \mathbf{F} \\
\therefore & -\mathbf{6 7}^{\circ} \mathrm{F} \leq \boldsymbol{T}_{J} \leq \mathbf{3 0 2}{ }^{\circ} \mathbf{F}
\end{aligned}
$$

33. $I_{C_{\max }}=200 \mathrm{~mA}, V_{C E_{\max }}=30 \mathrm{~V}, P_{D_{\max }}=625 \mathrm{~mW}$

$$
\begin{aligned}
& I_{C}=I_{C_{\max }}, V_{C E}=\frac{P_{D_{\max }}}{I_{C_{\max }}}=\frac{625 \mathrm{~mW}}{200 \mathrm{~mA}}=3.125 \mathrm{~V} \\
& V_{C E}=V_{C E_{\max }}, I_{C}=\frac{P_{D_{\max }}}{V_{C E_{\max }}}=\frac{625 \mathrm{~mW}}{30 \mathrm{~V}}=20.83 \mathrm{~mA} \\
& I_{C}=100 \mathrm{~mA}, V_{C E}=\frac{P_{D_{\max }}}{I_{C}}=\frac{625 \mathrm{~mW}}{100 \mathrm{~mA}}=6.25 \mathrm{~V} \\
& V_{C E}=20 \mathrm{~V}, I_{C}=\frac{P_{D_{\max }}}{V_{C E}}=\frac{625 \mathrm{~mW}}{20 \mathrm{~V}}=31.25 \mathrm{~mA}
\end{aligned}
$$

34. From Fig. 3.23 (a) $I_{C B O}=50 \mathrm{nA}$ max

$$
\begin{aligned}
& \beta_{\mathrm{avg}}=\frac{\beta_{\min }+\beta_{\max }}{2} \\
&=\frac{50+150}{2}=\frac{200}{2} \\
&=100 \\
& \therefore I_{C E O} \cong \beta I_{C B O}=(100)(50 \mathrm{nA}) \\
&=\mathbf{5} \boldsymbol{\mu} \mathbf{A}
\end{aligned}
$$

35. $h_{F E}\left(\beta_{\mathrm{dc}}\right)$ with $V_{C E}=1 \mathrm{~V}, T=25^{\circ} \mathrm{C}$

$$
I_{C}=0.1 \mathrm{~mA}, h_{F E} \cong 0.43(100)=43
$$

$$
\downarrow
$$

$$
I_{C}=10 \mathrm{~mA}, h_{F E} \cong 0.98(100)=98
$$

$h_{f e}\left(\beta_{\mathrm{ac}}\right)$ with $V_{C E}=10 \mathrm{~V}, T=25^{\circ} \mathrm{C}$
$I_{C}=0.1 \mathrm{~mA}, h_{f e} \cong 72$
$I_{C}=10 \mathrm{~mA}, h_{f e} \cong 160$
For both $h_{F E}$ and $h_{f e}$ the same increase in collector current resulted in a similar increase (relatively speaking) in the gain parameter. The levels are higher for $h_{f e}$ but note that $V_{C E}$ is higher also.
36. As the reverse-bias potential increases in magnitude the input capacitance $C_{i b o}$ decreases (Fig. $3.23(b))$. Increasing reverse-bias potentials causes the width of the depletion region to increase, thereby reducing the capacitance $\left(C=\in \frac{A}{d}\right)$.
37. (a) At $I_{C}=1 \mathrm{~mA}, h_{f e} \cong \mathbf{1 2 0}$

At $I_{C}=10 \mathrm{~mA}, h_{f e} \cong \mathbf{1 6 0}$
(b) The results confirm the conclusions of problems 23 and 24 that beta tends to increase with increasing collector current.
39.
(a) $\beta_{\mathrm{ac}}=\left.\frac{\Delta I_{C}}{\Delta I_{B}}\right|_{C E}=3 \mathrm{~V}=\frac{16 \mathrm{~mA}-12.2 \mathrm{~mA}}{80 \mu \mathrm{~A}-60 \mu \mathrm{~A}}=\frac{3.8 \mathrm{~mA}}{20 \mu \mathrm{~A}}=\mathbf{1 9 0}$
(b) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{12 \mathrm{~mA}}{59.5 \mu \mathrm{~A}}=\mathbf{2 0 1 . 7}$
(c) $\beta_{\mathrm{ac}}=\frac{4 \mathrm{~mA}-2 \mathrm{~mA}}{18 \mu \mathrm{~A}-8 \mu \mathrm{~A}}=\frac{2 \mathrm{~mA}}{10 \mu \mathrm{~A}}=\mathbf{2 0 0}$
(d) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{3 \mathrm{~mA}}{13 \mu \mathrm{~A}}=\mathbf{2 3 0 . 7 7}$
(e) In both cases β_{dc} is slightly higher than $\beta_{\mathrm{ac}}(\cong 10 \%)$
(f)(g)

In general β_{dc} and β_{ac} increase with increasing I_{C} for fixed $V_{C E}$ and both decrease for decreasing levels of $V_{C E}$ for a fixed I_{E}. However, if I_{C} increases while $V_{C E}$ decreases when moving between two points on the characteristics, chances are the level of β_{dc} or β_{ac} may not change significantly. In other words, the expected increase due to an increase in collector current may be offset by a decrease in $V_{C E}$. The above data reveals that this is a strong possibility since the levels of β are relatively close.

Chapter 4

1. (a) $I_{B_{Q}}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}}{470 \mathrm{k} \Omega}=\frac{15.3 \mathrm{~V}}{470 \mathrm{k} \Omega}=\mathbf{3 2 . 5 5} \boldsymbol{\mu} \mathbf{A}$
(b) $I_{C_{Q}}=\beta I_{B_{Q}}=(90)(32.55 \mu \mathrm{~A})=\mathbf{2 . 9 3} \mathbf{~ m A}$
(c) $V_{C E_{Q}}=V_{C C}-I_{C_{Q}} R_{C}=16 \mathrm{~V}-(2.93 \mathrm{~mA})(2.7 \mathrm{k} \Omega)=8.09 \mathrm{~V}$
(d) $V_{C}=V_{C E_{Q}}=8.09 \mathrm{~V}$
(e) $V_{B}=V_{B E}=\mathbf{0 . 7} \mathbf{~ V}$
(f) $V_{E}=\mathbf{0} \mathbf{~ V}$
2. (a) $I_{C}=\beta I_{B}=80(40 \mu \mathrm{~A})=\mathbf{3 . 2} \mathbf{~ m A}$
(b) $R_{C}=\frac{V_{R_{C}}}{I_{C}}=\frac{V_{C C}-V_{C}}{I_{C}}=\frac{12 \mathrm{~V}-6 \mathrm{~V}}{3.2 \mathrm{~mA}}=\frac{6 \mathrm{~V}}{3.2 \mathrm{~mA}}=\mathbf{1 . 8 7 5} \mathbf{~ k} \Omega$
(c) $R_{B}=\frac{V_{R_{B}}}{I_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{40 \mu \mathrm{~A}}=\frac{11.3 \mathrm{~V}}{40 \mu \mathrm{~A}}=\mathbf{2 8 2 . 5} \mathbf{~ k} \boldsymbol{\Omega}$
(d) $V_{C E}=V_{C}=6 \mathbf{V}$
3. (a) $I_{C}=I_{E}-I_{B}=4 \mathrm{~mA}-20 \mu \mathrm{~A}=\mathbf{3 . 9 8} \mathbf{m A} \cong 4 \mathrm{~mA}$
(b) $V_{C C}=V_{C E}+I_{C} R_{C}=7.2 \mathrm{~V}+(3.98 \mathrm{~mA})(2.2 \mathrm{k} \Omega)$

$$
=\mathbf{1 5 . 9 6} \mathrm{V} \cong 16 \mathrm{~V}
$$

(c) $\beta=\frac{I_{C}}{I_{B}}=\frac{3.98 \mathrm{~mA}}{20 \mu \mathrm{~A}}=\mathbf{1 9 9} \cong 200$
(d) $R_{B}=\frac{V_{R_{B}}}{I_{B}}=\frac{V_{C C}-V_{B E}}{I_{B}}=\frac{15.96 \mathrm{~V}-0.7 \mathrm{~V}}{20 \mu \mathrm{~A}}=\mathbf{7 6 3} \mathbf{~ k} \Omega$
4. $\quad I_{C_{\mathrm{stt}}}=\frac{V_{C C}}{R_{C}}=\frac{16 \mathrm{~V}}{2.7 \mathrm{k} \Omega}=\mathbf{5 . 9 3} \mathbf{~ m A}$
5. (a) Load line intersects vertical axis at $I_{C}=\frac{21 \mathrm{~V}}{3 \mathrm{k} \Omega}=7 \mathrm{~mA}$ and horizontal axis at $V_{C E}=21 \mathrm{~V}$.
(b) $I_{B}=25 \mu \mathrm{~A}: R_{B}=\frac{V_{C C}-V_{B E}}{I_{B}}=\frac{21 \mathrm{~V}-0.7 \mathrm{~V}}{25 \mu \mathrm{~A}}=\mathbf{8 1 2} \mathbf{~ k} \Omega$
(c) $I_{C_{\varrho}} \cong \mathbf{3 . 4} \mathbf{~ m A}, V_{C E_{Q}} \cong \mathbf{1 0 . 7 5} \mathrm{~V}$
(d) $\beta=\frac{I_{C}}{I_{B}}=\frac{3.4 \mathrm{~mA}}{25 \mu \mathrm{~A}}=\mathbf{1 3 6}$
(e) $\quad \alpha=\frac{\beta}{\beta+1}=\frac{136}{136+1}=\frac{136}{137}=\mathbf{0 . 9 9 2}$
(f) $\quad I_{C_{\text {stt }}}=\frac{V_{C C}}{R_{C}}=\frac{21 \mathrm{~V}}{3 \mathrm{k} \Omega}=\mathbf{7} \mathbf{~ m A}$
(g) -
(h) $P_{D}=V_{C E_{Q}} I_{C_{Q}}=(10.75 \mathrm{~V})(3.4 \mathrm{~mA})=\mathbf{3 6 . 5 5} \mathbf{~ m W}$
(i) $P_{s}=V_{C C}\left(I_{C}+I_{B}\right)=21 \mathrm{~V}(3.4 \mathrm{~mA}+25 \mu \mathrm{~A})=71.92 \mathrm{~mW}$
(j) $P_{R}=P_{s}-P_{D}=71.92 \mathrm{~mW}-36.55 \mathrm{~mW}=\mathbf{3 5 . 3 7} \mathbf{~ m W}$
6. (a) $I_{B_{Q}}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{510 \mathrm{k} \Omega+(101) 1.5 \mathrm{k} \Omega}=\frac{19.3 \mathrm{~V}}{661.5 \mathrm{k} \Omega}$

$$
=29.18 \mu \mathrm{~A}
$$

(b) $I_{C_{\varrho}}=\beta I_{B_{Q}}=(100)(29.18 \mu \mathrm{~A})=\mathbf{2 . 9 2} \mathbf{~ m A}$
(c) $V_{C E_{Q}}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=20 \mathrm{~V}-(2.92 \mathrm{~mA})(2.4 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega)$

$$
\begin{aligned}
& =20 \mathrm{~V}-11.388 \mathrm{~V} \\
& =\mathbf{8 . 6 1 ~ V}
\end{aligned}
$$

(d) $V_{C}=V_{C C}-I_{C} R_{C}=20 \mathrm{~V}-(2.92 \mathrm{~mA})(2.4 \mathrm{k} \Omega)=20 \mathrm{~V}-7.008 \mathrm{~V}$

$$
=13 \mathrm{~V}
$$

(e) $V_{B}=V_{C C}-I_{B} R_{B}=20 \mathrm{~V}-(29.18 \mu \mathrm{~A})(510 \mathrm{k} \Omega)$

$$
=20 \mathrm{~V}-14.882 \mathrm{~V}=\mathbf{5 . 1 2} \mathrm{V}
$$

(f) $V_{E}=V_{C}-V_{C E}=13 \mathrm{~V}-8.61 \mathrm{~V}=4.39 \mathrm{~V}$
7.
(a) $R_{C}=\frac{V_{C C}-V_{C}}{I_{C}}=\frac{12 \mathrm{~V}-7.6 \mathrm{~V}}{2 \mathrm{~mA}}=\frac{4.4 \mathrm{~V}}{2 \mathrm{~mA}}=\mathbf{2 . 2} \mathbf{~ k} \Omega$
(b) $I_{E} \cong I_{C}: R_{E}=\frac{V_{E}}{I_{E}}=\frac{2.4 \mathrm{~V}}{2 \mathrm{~mA}}=\mathbf{1 . 2} \mathbf{~ k} \Omega$
(c) $R_{B}=\frac{V_{R_{B}}}{I_{B}}=\frac{V_{C C}-V_{B E}-V_{E}}{I_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}-2.4 \mathrm{~V}}{2 \mathrm{~mA} / 80}=\frac{8.9 \mathrm{~V}}{25 \mu \mathrm{~A}}=\mathbf{3 5 6} \mathbf{~ k} \Omega$
(d) $V_{C E}=V_{C}-V_{E}=7.6 \mathrm{~V}-2.4 \mathrm{~V}=\mathbf{5 . 2} \mathrm{V}$
(e) $V_{B}=V_{B E}+V_{E}=0.7 \mathrm{~V}+2.4 \mathrm{~V}=3.1 \mathrm{~V}$
8. (a) $I_{C} \cong I_{E}=\frac{V_{E}}{R_{E}}=\frac{2.1 \mathrm{~V}}{0.68 \mathrm{k} \Omega}=3.09 \mathrm{~mA}$

$$
\beta=\frac{I_{C}}{I_{B}}=\frac{3.09 \mathrm{~mA}}{20 \mu \mathrm{~A}}=\mathbf{1 5 4 . 5}
$$

(b) $V_{C C}=V_{R_{C}}+V_{C E}+V_{E}$

$$
\begin{aligned}
& =(3.09 \mathrm{~mA})(2.7 \mathrm{k} \Omega)+7.3 \mathrm{~V}+2.1 \mathrm{~V}=8.34 \mathrm{~V}+7.3 \mathrm{~V}+2.1 \mathrm{~V} \\
& =\mathbf{1 7 . 7 4 ~ V}
\end{aligned}
$$

(c) $R_{B}=\frac{V_{R_{B}}}{I_{B}}=\frac{V_{C C}-V_{B E}-V_{E}}{I_{B}}=\frac{17.74 \mathrm{~V}-0.7 \mathrm{~V}-2.1 \mathrm{~V}}{20 \mu \mathrm{~A}}$

$$
=\frac{14.94 \mathrm{~V}}{20 \mu \mathrm{~A}}=747 \mathrm{k} \Omega
$$

9. $\quad I_{C_{\mathrm{stt}}}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{20 \mathrm{~V}}{2.4 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega}=\frac{20 \mathrm{~V}}{3.9 \mathrm{k} \Omega}=\mathbf{5 . 1 3} \mathbf{~ m A}$
10.

(a) $I_{C_{\mathrm{stf}}}=6.8 \mathrm{~mA}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{24 \mathrm{~V}}{R_{C}+1.2 \mathrm{k} \Omega}$

$$
\begin{aligned}
R_{C}+1.2 \mathrm{k} \Omega & =\frac{24 \mathrm{~V}}{6.8 \mathrm{~mA}}=3.529 \mathrm{k} \Omega \\
R_{C} & =\mathbf{2 . 3 3} \mathbf{~ k} \Omega
\end{aligned}
$$

(b) $\beta=\frac{I_{C}}{I_{B}}=\frac{4 \mathrm{~mA}}{30 \mu \mathrm{~A}}=\mathbf{1 3 3 . 3 3}$
(c) $R_{B}=\frac{V_{R_{B}}}{I_{B}}=\frac{V_{C C}-V_{B E}-V_{E}}{I_{B}}=\frac{24 \mathrm{~V}-0.7 \mathrm{~V}-(4 \mathrm{~mA})(1.2 \mathrm{k} \Omega)}{30 \mu \mathrm{~A}}$

$$
=\frac{18.5 \mathrm{~V}}{30 \mu \mathrm{~A}}=616.67 \mathrm{k} \Omega
$$

(d) $P_{D}=V_{C E_{Q}} I_{C_{Q}}$

$$
=(10 \mathrm{~V})(4 \mathrm{~mA})=\mathbf{4 0} \mathbf{~ m W}
$$

(e) $P=I_{C}^{2} R_{C}=(4 \mathrm{~mA})^{2}(2.33 \mathrm{k} \Omega)$

$$
=\mathbf{3 7 . 2 8} \mathrm{mW}
$$

11. (a) Problem 1: $I_{C_{Q}}=\mathbf{2 . 9 3} \mathbf{~ m A}, V_{C E_{Q}}=\mathbf{8 . 0 9} \mathrm{V}$
(b) $I_{B_{Q}}=32.55 \mu \mathrm{~A}$ (the same)

$$
\begin{aligned}
& I_{C_{Q}}=\beta I_{B_{Q}}=(135)(32.55 \mu \mathrm{~A})=4.39 \mathrm{~mA} \\
& V_{C E_{Q}}=V_{C C}-I_{C_{Q}} R_{C}=16 \mathrm{~V}-(4.39 \mathrm{~mA})(2.7 \mathrm{k} \Omega)=4.15 \mathrm{~V}
\end{aligned}
$$

(c) $\% \Delta I_{C}=\left|\frac{4.39 \mathrm{~mA}-2.93 \mathrm{~mA}}{2.93 \mathrm{~mA}}\right| \times 100 \%=\mathbf{4 9 . 8 3 \%}$
$\% \Delta V_{C E}=\left|\frac{4.15 \mathrm{~V}-8.09 \mathrm{~V}}{8.09 \mathrm{~V}}\right| \times 100 \%=\mathbf{4 8 . 7 0 \%}$
Less than 50% due to level of accuracy carried through calculations.
(d) Problem 6: $I_{C_{Q}}=\mathbf{2 . 9 2} \mathbf{~ m A}, V_{C E_{Q}}=\mathbf{8 . 6 1} \mathbf{V}\left(I_{B_{Q}}=29.18 \mu \mathrm{~A}\right)$
(e) $I_{B_{Q}}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{510 \mathrm{k} \Omega+(150+1)(1.5 \mathrm{k} \Omega)}=26.21 \mu \mathrm{~A}$
$I_{C_{Q}}=\beta I_{B_{Q}}=(150)(26.21 \mu \mathrm{~A})=\mathbf{3 . 9 3} \mathbf{~ m A}$
$V_{C E_{Q}}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$

$$
=20 \mathrm{~V}-(3.93 \mathrm{~mA})(2.4 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega)=4.67 \mathrm{~V}
$$

(f) $\quad \% \Delta I_{C}=\left|\frac{3.93 \mathrm{~mA}-2.92 \mathrm{~mA}}{2.92 \mathrm{~mA}}\right| \times 100 \%=\mathbf{3 4 . 5 9 \%}$
$\% \Delta V_{C E}=\left|\frac{4.67 \mathrm{~V}-8.61 \mathrm{~V}}{8.61 \mathrm{~V}}\right| \times 100 \%=\mathbf{4 6 . 7 6 \%}$
(g) For both I_{C} and $V_{C E}$ the $\%$ change is less for the emitter-stabilized.
12. $\quad \beta R_{E} \geq 10 R_{2}$
$(80)(0.68 \mathrm{k} \Omega) \geq 10(9.1 \mathrm{k} \Omega)$
$54.4 \mathrm{k} \Omega \nsucceq 91 \mathrm{k} \Omega$ (No!)
(a) Use exact approach:

$$
\begin{aligned}
& R_{T h}=R_{1}\left\|R_{2}=62 \mathrm{k} \Omega\right\| 9.1 \mathrm{k} \Omega=7.94 \mathrm{k} \Omega \\
& E_{T h}=\frac{R_{2} V_{C C}}{R_{2}+R_{1}}=\frac{(9.1 \mathrm{k} \Omega)(16 \mathrm{~V})}{9.1 \mathrm{k} \Omega+62 \mathrm{k} \Omega}=2.05 \mathrm{~V} \\
I_{B_{Q}}= & \frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{2.05 \mathrm{~V}-0.7 \mathrm{~V}}{7.94 \mathrm{k} \Omega+(81)(0.68 \mathrm{k} \Omega)} \\
= & \mathbf{2 1 . 4 2} \boldsymbol{\mu} \mathbf{A}
\end{aligned}
$$

(b) $I_{C_{Q}}=\beta I_{B_{Q}}=(80)(21.42 \mu \mathrm{~A})=1.71 \mathbf{m A}$
(c) $V_{C E_{Q}}=V_{C C}-I_{C_{Q}}\left(R_{C}+R_{E}\right)$
$=16 \mathrm{~V}-(1.71 \mathrm{~mA})(3.9 \mathrm{k} \Omega+0.68 \mathrm{k} \Omega)$
$=8.17 \mathrm{~V}$
(d) $V_{C}=V_{C C}-I_{C} R_{C}$

$$
=16 \mathrm{~V}-(1.71 \mathrm{~mA})(3.9 \mathrm{k} \Omega)
$$

$$
=9.33 \mathrm{~V}
$$

(e) $V_{E}=I_{E} R_{E} \cong I_{C} R_{E}=(1.71 \mathrm{~mA})(0.68 \mathrm{k} \Omega)$

$$
=1.16 \mathrm{~V}
$$

(f) $V_{B}=V_{E}+V_{B E}=1.16 \mathrm{~V}+0.7 \mathrm{~V}$

$$
=1.86 \mathrm{~V}
$$

13. (a) $I_{C}=\frac{V_{C C}-V_{C}}{R_{C}}=\frac{18 \mathrm{~V}-12 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=\mathbf{1 . 2 8} \mathbf{~ m A}$
(b) $V_{E}=I_{E} R_{E} \cong I_{C} R_{E}=(1.28 \mathrm{~mA})(1.2 \mathrm{k} \Omega)=\mathbf{1 . 5 4} \mathbf{V}$
(c) $V_{B}=V_{B E}+V_{E}=0.7 \mathrm{~V}+1.54 \mathrm{~V}=\mathbf{2 . 2 4} \mathbf{V}$
(d) $\quad R_{1}=\frac{V_{R_{1}}}{I_{R_{1}}}: \quad V_{R_{1}}=V_{C C}-V_{B}=18 \mathrm{~V}-2.24 \mathrm{~V}=\mathbf{1 5 . 7 6} \mathrm{V}$

$$
\begin{aligned}
I_{R_{1}} \cong I_{R_{2}}=\frac{V_{B}}{R_{2}}=\frac{2.24 \mathrm{~V}}{5.6 \mathrm{k} \Omega}=0.4 \mathrm{~mA} \\
R_{1}=\frac{V_{R_{1}}}{I_{R_{1}}}=\frac{15.76 \mathrm{~V}}{0.4 \mathrm{~mA}}=\mathbf{3 9 . 4} \mathbf{~ k} \Omega
\end{aligned}
$$

14. (a) $I_{C}=\beta I_{B}=(100)(20 \mu \mathrm{~A})=\mathbf{2} \mathbf{~ m A}$
(b) $I_{E}=I_{C}+I_{B}=2 \mathrm{~mA}+20 \mu \mathrm{~A}$

$$
=2.02 \mathrm{~mA}
$$

$$
V_{E}=I_{E} R_{E}=(2.02 \mathrm{~mA})(1.2 \mathrm{k} \Omega)
$$

$$
=2.42 \mathrm{~V}
$$

(c) $V_{C C}=V_{C}+I_{C} R_{C}=10.6 \mathrm{~V}+(2 \mathrm{~mA})(2.7 \mathrm{k} \Omega)$

$$
\begin{aligned}
& =10.6 \mathrm{~V}+5.4 \mathrm{~V} \\
& =\mathbf{1 6} \mathbf{V}
\end{aligned}
$$

(d) $V_{C E}=V_{C}-V_{E}=10.6 \mathrm{~V}-2.42 \mathrm{~V}$

$$
=8.18 \mathrm{~V}
$$

(e) $V_{B}=V_{E}+V_{B E}=2.42 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{3 . 1 2} \mathrm{V}$
(f) $I_{R_{1}}=I_{R_{2}}+I_{B}$

$$
=\frac{3.12 \mathrm{~V}}{8.2 \mathrm{k} \Omega}+20 \mu \mathrm{~A}=380.5 \mu \mathrm{~A}+20 \mu \mathrm{~A}=400.5 \mu \mathrm{~A}
$$

$$
R_{1}=\frac{V_{C C}-V_{B}}{I_{R_{1}}}=\frac{16 \mathrm{~V}-3.12 \mathrm{~V}}{400.5 \mu \mathrm{~A}}=\mathbf{3 2 . 1 6} \mathbf{~ k} \boldsymbol{\Omega}
$$

15. $I_{C_{\mathrm{stt}}}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{16 \mathrm{~V}}{3.9 \mathrm{k} \Omega+0.68 \mathrm{k} \Omega}=\frac{16 \mathrm{~V}}{4.58 \mathrm{k} \Omega}=\mathbf{3 . 4 9} \mathbf{~ m A}$
16. (a) $\beta R_{E} \geq 10 R_{2}$
(120)(1 k $\Omega) \geq 10(8.2 \mathrm{k} \Omega)$
$120 \mathrm{k} \Omega \geq 82 \mathrm{k} \Omega$ (checks)
$\therefore V_{B}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}=\frac{(8.2 \mathrm{k} \Omega)(18 \mathrm{~V})}{39 \mathrm{k} \Omega+8.2 \mathrm{k} \Omega}=3.13 \mathrm{~V}$
$V_{E}=V_{B}-V_{B E}=3.13 \mathrm{~V}-0.7 \mathrm{~V}=2.43 \mathrm{~V}$
$I_{C} \cong I_{E}=\frac{V_{E}}{R_{E}}=\frac{2.43 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{2 . 4 3} \mathbf{~ m A}$
(b) $V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$

$$
=18 \mathrm{~V}-(2.43 \mathrm{~mA})(3.3 \mathrm{k} \Omega+1 \mathrm{k} \Omega)
$$

$$
=7.55 \mathrm{~V}
$$

(c) $I_{B}=\frac{I_{C}}{\beta}=\frac{2.43 \mathrm{~mA}}{120}=\mathbf{2 0 . 2 5} \boldsymbol{\mu} \mathbf{A}$
(d) $V_{E}=I_{E} R_{E} \cong I_{C} R_{E}=(2.43 \mathrm{~mA})(1 \mathrm{k} \Omega)=\mathbf{2 . 4 3} \mathbf{~ V}$
(e) $V_{B}=\mathbf{3 . 1 3} \mathbf{~ V}$
17. (a) $R_{T h}=R_{1}\left\|R_{2}=39 \mathrm{k} \Omega\right\| 8.2 \mathrm{k} \Omega=6.78 \mathrm{k} \Omega$
$E_{T h}=\frac{R_{C} V_{C C}}{R_{1}+R_{2}}=\frac{8.2 \mathrm{k} \Omega(18 \mathrm{~V})}{39 \mathrm{k} \Omega+8.2 \mathrm{k} \Omega}=3.13 \mathrm{~V}$
$I_{B}=\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{3.13 \mathrm{~V}-0.7 \mathrm{~V}}{6.78 \mathrm{k} \Omega+(121)(1 \mathrm{k} \Omega)}$
$=\frac{2.43 \mathrm{~V}}{127.78 \mathrm{k} \Omega}=19.02 \mu \mathrm{~A}$
$I_{C}=\beta I_{B}=(120)(19.02 \mu \mathrm{~A})=\mathbf{2 . 2 8} \mathbf{~ m A}($ vs. $2.43 \mathrm{~mA} \# 16)$
(b) $V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=18 \mathrm{~V}-(2.28 \mathrm{~mA})(3.3 \mathrm{k} \Omega+1 \mathrm{k} \Omega)$

$$
=18 \mathrm{~V}-9.8 \mathrm{~V}=8.2 \mathrm{~V}(\text { vs. } 7.55 \mathrm{~V} \# 16)
$$

(c) $\mathbf{1 9 . 0 2} \mu \mathrm{A}$ (vs. $20.25 \mu \mathrm{~A} \# 16$)
(d) $V_{E}=I_{E} R_{E} \cong I_{C} R_{E}=(2.28 \mathrm{~mA})(1 \mathrm{k} \Omega)=\mathbf{2 . 2 8} \mathbf{~ V}($ vs. $2.43 \mathrm{~V} \# 16)$
(e) $V_{B}=V_{B E}+V_{E}=0.7 \mathrm{~V}+2.28 \mathrm{~V}=\mathbf{2 . 9 8} \mathrm{V}$ (vs. $3.13 \mathrm{~V} \# 16$)

The results suggest that the approximate approach is valid if Eq. 4.33 is satisfied.
18. (a) $V_{B}=\frac{R_{2}}{R_{1}+R_{2}} V_{C C}=\frac{9.1 \mathrm{k} \Omega(16 \mathrm{~V})}{62 \mathrm{k} \Omega+9.1 \mathrm{k} \Omega}=2.05 \mathrm{~V}$

$$
V_{E}=V_{B}-V_{B E}=2.05 \mathrm{~V}-0.7 \mathrm{~V}=1.35 \mathrm{~V}
$$

$$
I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.35 \mathrm{~V}}{0.68 \mathrm{k} \Omega}=1.99 \mathrm{~mA}
$$

$$
I_{C_{\varrho}} \cong I_{E}=\mathbf{1 . 9 9} \mathbf{~ m A}
$$

$$
\begin{aligned}
V_{C E_{Q}} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
& =16 \mathrm{~V}-(1.99 \mathrm{~mA})(3.9 \mathrm{k} \Omega+0.68 \mathrm{k} \Omega) \\
& =16 \mathrm{~V}-9.11 \mathrm{~V} \\
& =\mathbf{6 . 8 9} \mathbf{V} \\
I_{B_{Q}} & =\frac{I_{C_{Q}}}{\beta}=\frac{1.99 \mathrm{~mA}}{80}=\mathbf{2 4 . 8 8} \boldsymbol{\mu} \mathbf{A}
\end{aligned}
$$

(b) From Problem 12:

$$
I_{C_{Q}}=1.71 \mathrm{~mA}, V_{C E_{Q}}=8.17 \mathrm{~V}, I_{B_{Q}}=21.42 \mu \mathrm{~A}
$$

(c) The differences of about 14% suggest that the exact approach should be employed when appropriate.
19.
(a) $I_{C_{\text {stt }}}=7.5 \mathrm{~mA}=\frac{V_{C C}}{R_{C}+R_{E}}=\frac{24 \mathrm{~V}}{3 R_{E}+R_{E}}=\frac{24 \mathrm{~V}}{4 R_{E}}$

$$
\begin{aligned}
& R_{E}=\frac{24 \mathrm{~V}}{4(7.5 \mathrm{~mA})}=\frac{24 \mathrm{~V}}{30 \mathrm{~mA}}=\mathbf{0 . 8} \mathbf{~ k} \boldsymbol{\Omega} \\
& R_{C}=3 R_{E}=3(0.8 \mathrm{k} \Omega)=2.4 \mathrm{k} \Omega
\end{aligned}
$$

(b) $V_{E}=I_{E} R_{E} \cong I_{C} R_{E}=(5 \mathrm{~mA})(0.8 \mathrm{k} \Omega)=\mathbf{4} \mathbf{V}$
(c) $V_{B}=V_{E}+V_{B E}=4 \mathrm{~V}+0.7 \mathrm{~V}=4.7 \mathrm{~V}$
(d) $\quad V_{B}=\frac{R_{2} V_{C C}}{R_{2}+R_{1}}, 4.7 \mathrm{~V}=\frac{R_{2}(24 \mathrm{~V})}{R_{2}+24 \mathrm{k} \Omega}$

$$
R_{2}=\mathbf{5 . 8 4} \mathbf{k} \Omega
$$

(e) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}=\frac{5 \mathrm{~mA}}{38.5 \mu \mathrm{~A}}=\mathbf{1 2 9 . 8}$
(f) $\quad \beta R_{E} \geq 10 R_{2}$
$(129.8)(0.8 \mathrm{k} \Omega) \geq 10(5.84 \mathrm{k} \Omega)$

$$
103.84 \mathrm{k} \Omega \geq 58.4 \mathrm{k} \Omega \text { (checks) }
$$

20. (a) From problem $12 \mathrm{~b}, I_{C}=\mathbf{1 . 7 1} \mathbf{~ m A}$

From problem 12c, $V_{C E}=\mathbf{8 . 1 7} \mathbf{V}$
(b) β changed to 120 :

From problem 12a, $E_{T h}=2.05 \mathrm{~V}, R_{T h}=7.94 \mathrm{k} \Omega$

$$
\begin{aligned}
I_{B} & =\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{2.05 \mathrm{~V}-0.7 \mathrm{~V}}{7.94 \mathrm{k} \Omega+(121)(0.68 \mathrm{k} \Omega)} \\
& =14.96 \mu \mathrm{~A} \\
I_{C} & =\beta I_{B}=(120)(14.96 \mu \mathrm{~A})=\mathbf{1 . 8} \mathbf{~ m A} \\
V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right) \\
& =16 \mathrm{~V}-(1.8 \mathrm{~mA})(3.9 \mathrm{k} \Omega+0.68 \mathrm{k} \Omega) \\
& =\mathbf{7 . 7 6} \mathbf{V}
\end{aligned}
$$

(c) $\% \Delta I_{C}=\left|\frac{1.8 \mathrm{~mA}-1.71 \mathrm{~mA}}{1.71 \mathrm{~mA}}\right| \times 100 \%=\mathbf{5 . 2 6 \%}$
$\% \Delta V_{C E}=\left|\frac{7.76 \mathrm{~V}-8.17 \mathrm{~V}}{8.17 \mathrm{~V}}\right| \times 100 \%=\mathbf{5 . 0 2} \%$
(d)

(e) Quite obviously, the voltage-divider configuration is the least sensitive to changes in β.
21. I.(a) Problem 16: Approximation approach: $I_{C_{Q}}=\mathbf{2 . 4 3} \mathbf{~ m A}, V_{C E_{Q}}=\mathbf{7 . 5 5} \mathrm{V}$

Problem 17: Exact analysis: $I_{C_{Q}}=\mathbf{2 . 2 8} \mathbf{~ m A}, V_{C E_{Q}}=\mathbf{8 . 2} \mathbf{V}$
The exact solution will be employed to demonstrate the effect of the change of β. Using the approximate approach would result in $\% \Delta I_{C}=0 \%$ and $\% \Delta V_{C E}=0 \%$.
(b) Problem 17: $E_{T h}=3.13 \mathrm{~V}, R_{T h}=6.78 \mathrm{k} \Omega$

$$
\begin{aligned}
I_{B} & =\frac{E_{T H}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{3.13 \mathrm{~V}-0.7 \mathrm{~V}}{6.78 \mathrm{k} \Omega+(180+1) 1 \mathrm{k} \Omega}=\frac{2.43 \mathrm{~V}}{187.78 \mathrm{k} \Omega} \\
& =12.94 \mu \mathrm{~A} \\
I_{C} & =\beta I_{B}=(180)(12.94 \mu \mathrm{~A})=\mathbf{2 . 3 3} \mathbf{~ m A} \\
V_{C E} & =V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=18 \mathrm{~V}-(2.33 \mathrm{~mA})(3.3 \mathrm{k} \Omega+1 \mathrm{k} \Omega) \\
& =\mathbf{7 . 9 8} \mathbf{V}
\end{aligned}
$$

(c) $\% \Delta I_{C}=\left|\frac{2.33 \mathrm{~mA}-2.28 \mathrm{~mA}}{2.28 \mathrm{~mA}}\right| \times 100 \%=\mathbf{2 . 1 9 \%}$
$\% \Delta V_{C E}=\left|\frac{7.98 \mathrm{~V}-8.2 \mathrm{~V}}{8.2 \mathrm{~V}}\right| \times 100 \%=\mathbf{2 . 6 8} \%$
For situations where $\beta R_{E}>10 R_{2}$ the change in I_{C} and/or $V_{C E}$ due to significant change in β will be relatively small.
(d) $\% \Delta I_{C}=2.19 \%$ vs. 49.83% for problem 11.
$\% \Delta V_{C E}=2.68 \%$ vs. 48.70% for problem 11.
(e) Voltage-divider configuration considerably less sensitive.
II. The resulting $\% \Delta I_{C}$ and $\% \Delta V_{C E}$ will be quite small.
22.
(a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}}{470 \mathrm{k} \Omega+(120)(3.6 \mathrm{k} \Omega+0.51 \mathrm{k} \Omega)}$

$$
=15.88 \mu \mathrm{~A}
$$

(b) $I_{C}=\beta I_{B}=(120)(15.88 \mu \mathrm{~A})$

$$
=1.91 \mathrm{~mA}
$$

(c) $V_{C}=V_{C C}-I_{C} R_{C}$

$$
=16 \mathrm{~V}-(1.91 \mathrm{~mA})(3.6 \mathrm{k} \Omega)
$$

$$
=9.12 \mathrm{~V}
$$

23.

(a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}=\frac{30 \mathrm{~V}-0.7 \mathrm{~V}}{6.90 \mathrm{k} \Omega+100(6.2 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega)}=20.07 \mu \mathrm{~A}$
$I_{C}=\beta I_{B}=(100)(20.07 \mu \mathrm{~A})=\mathbf{2 . 0 1} \mathbf{~ m A}$
(b) $V_{C}=V_{C C}-I_{C} R_{C}$

$$
=30 \mathrm{~V}-(2.01 \mathrm{~mA})(6.2 \mathrm{k} \Omega)=30 \mathrm{~V}-12.462 \mathrm{~V}=\mathbf{1 7 . 5 4} \mathrm{V}
$$

(c) $V_{E}=I_{E} R_{E} \cong I_{C} R_{E}=(2.01 \mathrm{~mA})(1.5 \mathrm{k} \Omega)=\mathbf{3 . 0 2} \mathrm{V}$
(d) $V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=30 \mathrm{~V}-(2.01 \mathrm{~mA})(6.2 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega)$

$$
=14.52 \mathrm{~V}
$$

24.

(a) $\quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}=\frac{22 \mathrm{~V}-0.7 \mathrm{~V}}{470 \mathrm{k} \Omega+(90)(9.1 \mathrm{k} \Omega+9.1 \mathrm{k} \Omega)}$

$$
=10.09 \mu \mathrm{~A}
$$

$I_{C}=\beta I_{B}=(90)(10.09 \mu \mathrm{~A})=\mathbf{0 . 9 1} \mathbf{~ m A}$
$V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=22 \mathrm{~V}-(0.91 \mathrm{~mA})(9.1 \mathrm{k} \Omega+9.1 \mathrm{k} \Omega)$ $=5.44 \mathrm{~V}$
(b) $\quad \beta=135, \quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}=\frac{22 \mathrm{~V}-0.7 \mathrm{~V}}{470 \mathrm{k} \Omega+(135)(9.1 \mathrm{k} \Omega+9.1 \mathrm{k} \Omega)}$ $=7.28 \mu \mathrm{~A}$
$I_{C}=\beta I_{B}=(135)(7.28 \mu \mathrm{~A})=\mathbf{0 . 9 8 3} \mathbf{~ m A}$
$V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=22 \mathrm{~V}-(0.983 \mathrm{~mA})(9.1 \mathrm{k} \Omega+9.1 \mathrm{k} \Omega)$

$$
=4.11 \mathrm{~V}
$$

(c) $\% \Delta I_{C}=\left|\frac{0.983 \mathrm{~mA}-0.91 \mathrm{~mA}}{0.91 \mathrm{~mA}}\right| \times 100 \%=\mathbf{8 . 0 2 \%}$
$\% \Delta V_{C E}=\left|\frac{4.11 \mathrm{~V}-5.44 \mathrm{~V}}{5.44 \mathrm{~V}}\right| \times 100 \%=\mathbf{2 4 . 4 5 \%}$
(d) The results for the collector feedback configuration are closer to the voltage-divider configuration than to the other two. However, the voltage-divider configuration continues to have the least sensitivities to change in β.
25. $1 \mathrm{M} \Omega=0 \Omega, R_{B}=150 \mathrm{k} \Omega$

$$
\begin{aligned}
& \quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{150 \mathrm{k} \Omega+(180)(4.7 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega)} \\
& =7.11 \mu \mathrm{~A} \\
& I_{C}=\beta I_{B}=(180)(7.11 \mu \mathrm{~A})=1.28 \mathrm{~mA} \\
& V_{C}=V_{C C} I_{C} R_{C}=12 \mathrm{~V}-(1.28 \mathrm{~mA})(4.7 \mathrm{k} \Omega) \\
& =\mathbf{5 . 9 8} \mathbf{V}
\end{aligned}
$$

Full 1 M $\Omega: R_{B}=1,000 \mathrm{k} \Omega+150 \mathrm{k} \Omega=1,150 \mathrm{k} \Omega=1.15 \mathrm{M} \Omega$
$I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+\beta\left(R_{C}+R_{E}\right)}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{1.15 \mathrm{M} \Omega+(180)(4.7 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega)}$

$$
=4.36 \mu \mathrm{~A}
$$

$$
I_{C}=\beta I_{B}=(180)(4.36 \mu \mathrm{~A})=0.785 \mathrm{~mA}
$$

$$
V_{C}=V_{C C}-I_{C} R_{C}=12 \mathrm{~V}-(0.785 \mathrm{~mA})(4.7 \mathrm{k} \Omega)
$$

$$
=8.31 \mathrm{~V}
$$

V_{C} ranges from 5.98 V to 8.31 V
26. (a) $V_{E}=V_{B}-V_{B E}=4 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{3 . 3} \mathbf{V}$
(b) $I_{C} \cong I_{E}=\frac{V_{E}}{R_{E}}=\frac{3.3 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=\mathbf{2 . 7 5} \mathbf{~ m A}$
(c) $V_{C}=V_{C C}-I_{C} R_{C}=18 \mathrm{~V}-(2.75 \mathrm{~mA})(2.2 \mathrm{k} \Omega)$

$$
=11.95 \mathrm{~V}
$$

(d) $V_{C E}=V_{C}-V_{E}=11.95 \mathrm{~V}-3.3 \mathrm{~V}=\mathbf{8 . 6 5} \mathrm{V}$
(e) $I_{B}=\frac{V_{R_{B}}}{R_{B}}=\frac{V_{C}-V_{B}}{R_{B}}=\frac{11.95 \mathrm{~V}-4 \mathrm{~V}}{330 \mathrm{k} \Omega}=\mathbf{2 4 . 0 9} \boldsymbol{\mu} \mathbf{A}$
(f) $\beta=\frac{I_{C}}{I_{B}}=\frac{2.75 \mathrm{~mA}}{24.09 \mu \mathrm{~A}}=\mathbf{1 1 4 . 1 6}$
27.

$$
\text { (a) } \begin{aligned}
& I_{B}=\frac{V_{C C}+V_{E E}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{6 \mathrm{~V}+6 \mathrm{~V}-0.7 \mathrm{~V}}{330 \mathrm{k} \Omega+(121)(1.2 \mathrm{k} \Omega)} \\
&=23.78 \mu \mathrm{~A} \\
& I_{E}=(\beta+1) I_{B}=(121)(23.78 \mu \mathrm{~A}) \\
&=\mathbf{2 . 8 8} \mathbf{~ m A} \\
&-V_{E E}+I_{E} R_{E}-V_{E}=0 \\
& V_{E}=-V_{E E}+I_{E} R_{E}=-6 \mathrm{~V}+(2.88 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
&=\mathbf{- 2 . 5 4} \mathbf{V}
\end{aligned}
$$

28.

(a) $I_{B}=\frac{V_{E E}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{9.1 \mathrm{k} \Omega+(120+1) 15 \mathrm{k} \Omega}$

$$
=6.2 \mu \mathrm{~A}
$$

(b) $I_{C}=\beta I_{B}=(120)(6.2 \mu \mathrm{~A})=\mathbf{0 . 7 4 4} \mathbf{~ m A}$
(c) $V_{C E}=V_{C C}+V_{E E}-I_{C}\left(R_{C}+R_{E}\right)$

$$
\begin{aligned}
& =16 \mathrm{~V}+12 \mathrm{~V}-(0.744 \mathrm{~mA})(27 \mathrm{k} \Omega) \\
& =7.91 \mathrm{~V}
\end{aligned}
$$

(d) $V_{C}=V_{C C}-I_{C} R_{C}=16 \mathrm{~V}-(0.744 \mathrm{~mA})(12 \mathrm{k} \Omega)=7.07 \mathrm{~V}$
29.
(a) $I_{E}=\frac{8 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\frac{7.3 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{3 . 3 2} \mathbf{~ m A}$
(b) $V_{C}=10 \mathrm{~V}-(3.32 \mathrm{~mA})(1.8 \mathrm{k} \Omega)=10 \mathrm{~V}-5.976$

$$
=4.02 \mathrm{~V}
$$

(c) $V_{C E}=10 \mathrm{~V}+8 \mathrm{~V}-(3.32 \mathrm{~mA})(2.2 \mathrm{k} \Omega+1.8 \mathrm{k} \Omega)$

$$
\begin{aligned}
& =18 \mathrm{~V}-13.28 \mathrm{~V} \\
& =4.72 \mathrm{~V}
\end{aligned}
$$

30. (a) $\beta R_{E}>10 R_{2}$ not satisfied \therefore Use exact approach:

Network redrawn to determine the Thevenin equivalent:

$$
\begin{aligned}
& R_{T h}=\frac{510 \mathrm{k} \Omega}{2}=\mathbf{2 5 5} \mathbf{k} \Omega \\
& \begin{aligned}
I & =\frac{18 \mathrm{~V}+18 \mathrm{~V}}{510 \mathrm{k} \Omega+510 \mathrm{k} \Omega}=35.29 \mu \mathrm{~A} \\
E_{\text {Th }} & =-18 \mathrm{~V}+(35.29 \mu \mathrm{~A})(510 \mathrm{k} \Omega) \\
& =\mathbf{0} \mathbf{V} \\
I_{B} & =\frac{18 \mathrm{~V}-0.7 \mathrm{~V}}{255 \mathrm{k} \Omega+(130+1)(7.5 \mathrm{k} \Omega)} \\
& =\mathbf{1 3 . 9 5 \mu \mathbf { A }}
\end{aligned}
\end{aligned}
$$

(b) $I_{C}=\beta I_{B}=(130)(13.95 \mu \mathrm{~A})=\mathbf{1 . 8 1} \mathbf{~ m A}$
(c) $V_{E}=-18 \mathrm{~V}+(1.81 \mathrm{~mA})(7.5 \mathrm{k} \Omega)$

$$
=-18 \mathrm{~V}+13.58 \mathrm{~V}
$$

$$
=-4.42 \mathrm{~V}
$$

(d) $V_{C E}=18 \mathrm{~V}+18 \mathrm{~V}-(1.81 \mathrm{~mA})(9.1 \mathrm{k} \Omega+7.5 \mathrm{k} \Omega)$

$$
=36 \mathrm{~V}-30.05 \mathrm{~V}=\mathbf{5 . 9 5} \mathrm{V}
$$

31.

(a) $I_{B}=\frac{V_{R_{B}}}{R_{B}}=\frac{V_{C}-V_{B E}}{R_{B}}=\frac{8 \mathrm{~V}-0.7 \mathrm{~V}}{560 \mathrm{k} \Omega}=\mathbf{1 3 . 0 4} \boldsymbol{\mu} \mathbf{A}$
(b) $I_{C}=\frac{V_{C C}-V_{C}}{R_{C}}=\frac{18 \mathrm{~V}-8 \mathrm{~V}}{3.9 \mathrm{k} \Omega}=\frac{10 \mathrm{~V}}{3.9 \mathrm{k} \Omega}=\mathbf{2 . 5 6} \mathbf{~ m A}$
(c) $\beta=\frac{I_{C}}{I_{B}}=\frac{2.56 \mathrm{~mA}}{13.04 \mu \mathrm{~A}}=\mathbf{1 9 6 . 3 2}$
(d) $V_{C E}=V_{C}=\mathbf{8} \mathbf{~ V}$
32. $I_{B}=\frac{I_{C}}{\beta}=\frac{2.5 \mathrm{~mA}}{80}=31.25 \mu \mathrm{~A}$

$$
\begin{aligned}
R_{B} & =\frac{V_{R_{B}}}{I_{B}}=\frac{V_{C C}-V_{B E}}{I_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{31.25 \mu \mathrm{~A}}=\mathbf{3 6 1 . 6} \mathbf{~ k} \boldsymbol{\Omega} \\
R_{C} & =\frac{V_{R_{C}}}{I_{C}}=\frac{V_{C C}-V_{C}}{I_{C}}=\frac{V_{C C}-V_{C E_{Q}}}{I_{C_{Q}}}=\frac{12 \mathrm{~V}-6 \mathrm{~V}}{2.5 \mathrm{~mA}}=\frac{6 \mathrm{~V}}{2.5 \mathrm{~mA}} \\
& =\mathbf{2 . 4} \mathbf{~ k} \boldsymbol{\Omega}
\end{aligned}
$$

Standard values:

$$
\begin{aligned}
& R_{B}=\mathbf{3 6 0} \mathbf{~ k} \boldsymbol{\Omega} \\
& R_{C}=\mathbf{2 . 4} \mathbf{~ k} \boldsymbol{\Omega}
\end{aligned}
$$

33. $\quad I_{C_{\mathrm{stt}}}=\frac{V_{C C}}{R_{C}+R_{E}}=10 \mathrm{~mA}$

$$
\begin{aligned}
& \frac{20 \mathrm{~V}}{4 R_{E}+R_{E}}=10 \mathrm{~mA} \Rightarrow \frac{20 \mathrm{~V}}{5 R_{E}}=10 \mathrm{~mA} \Rightarrow 5 R_{E}=\frac{20 \mathrm{~V}}{10 \mathrm{~mA}}=2 \mathrm{k} \Omega \\
& R_{E}=\frac{2 \mathrm{k} \Omega}{5}=\mathbf{4 0 0} \Omega \\
& R_{C}=4 R_{E}=\mathbf{1 . 6} \mathbf{~ k} \Omega \\
& I_{B}=\frac{I_{C}}{\beta}=\frac{5 \mathrm{~mA}}{120}=41.67 \mu \mathrm{~A} \\
& R_{B}=V_{R B} / I_{B}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}-5 \mathrm{~mA}(0.4 \mathrm{k} \Omega)}{41.67 \mu \mathrm{~A}}=\frac{19.3-2 \mathrm{~V}}{41.67 \mu \mathrm{~A}} \\
& \quad=\mathbf{4 1 5 . 1 7} \mathbf{~ k} \boldsymbol{\Omega}
\end{aligned}
$$

Standard values: $R_{E}=\mathbf{3 9 0} \Omega, R_{C}=\mathbf{1 . 6} \mathbf{~ k} \Omega, R_{B}=\mathbf{4 3 0} \mathbf{~ k} \Omega$
34. $R_{E}=\frac{V_{E}}{I_{E}} \cong \frac{V_{E}}{I_{C}}=\frac{3 \mathrm{~V}}{4 \mathrm{~mA}}=\mathbf{0 . 7 5} \mathbf{~ k} \Omega$

$$
\begin{aligned}
R_{C}=\frac{V_{R_{C}}}{I_{C}} & =\frac{V_{C C}-V_{C}}{I_{C}}=\frac{V_{C C}-\left(V_{C E_{Q}}+V_{E}\right)}{I_{C}} \\
& =\frac{24 \mathrm{~V}-(8 \mathrm{~V}+3 \mathrm{~V})}{4 \mathrm{~mA}}=\frac{24 \mathrm{~V}-11 \mathrm{~V}}{4 \mathrm{~mA}}=\frac{13 \mathrm{~V}}{4 \mathrm{~mA}}=\mathbf{3 . 2 5} \mathbf{~ k} \Omega
\end{aligned}
$$

$V_{B}=V_{E}+V_{B E}=3 \mathrm{~V}+0.7 \mathrm{~V}=3.7 \mathrm{~V}$
$\left.V_{B}=\frac{R_{2} V_{C C}}{R_{2}+R_{1}} \Rightarrow 3.7 \mathrm{~V}=\frac{R_{2}(24 \mathrm{~V})}{R_{2}+R_{1}}\right\} 2$ unknowns!
\therefore use $\beta R_{E} \geq 10 R_{2}$ for increased stability
$(110)(0.75 \mathrm{k} \Omega)=10 R_{2}$
$R_{2}=8.25 \mathrm{k} \Omega$
Choose $R_{2}=7.5 \mathbf{k} \Omega$

Substituting in the above equation:

$$
\begin{aligned}
& 3.7 \mathrm{~V}=\frac{7.5 \mathrm{k} \Omega(24 \mathrm{~V})}{7.5 \mathrm{k} \Omega+R_{1}} \\
& R_{1}=41.15 \mathrm{k} \Omega
\end{aligned}
$$

Standard values:

$$
R_{E}=0.75 \mathbf{k} \boldsymbol{\Omega}, R_{C}=3.3 \mathrm{k} \boldsymbol{\Omega}, R_{2}=7.5 \mathrm{k} \Omega, R_{1}=43 \mathrm{k} \boldsymbol{\Omega}
$$

35. $V_{E}=\frac{1}{5} V_{C C}=\frac{1}{5}(28 \mathrm{~V})=5.6 \mathrm{~V}$

$$
R_{E}=\frac{V_{E}}{I_{E}}=\frac{5.6 \mathrm{~V}}{5 \mathrm{~mA}}=\mathbf{1 . 1 2} \mathbf{~ k} \boldsymbol{\Omega}(\text { use } \mathbf{1 . 1} \mathbf{~ k} \boldsymbol{\Omega})
$$

$$
V_{C}=\frac{V_{C C}}{2}+V_{E}=\frac{28 \mathrm{~V}}{2}+5.6 \mathrm{~V}=14 \mathrm{~V}+5.6 \mathrm{~V}=19.6 \mathrm{~V}
$$

$$
V_{R_{C}}=V_{C C}-V_{C}=28 \mathrm{~V}-19.6 \mathrm{~V}=8.4 \mathrm{~V}
$$

$$
R_{C}=\frac{V_{R_{C}}}{I_{C}}=\frac{8.4 \mathrm{~V}}{5 \mathrm{~mA}}=\mathbf{1 . 6 8} \mathbf{~ k} \boldsymbol{\Omega}(\text { use } 1.6 \mathrm{k} \Omega \text {) }
$$

$$
V_{B}=V_{B E}+V_{E}=0.7 \mathrm{~V}+5.6 \mathrm{~V}=6.3 \mathrm{~V}
$$

$$
V_{B}=\frac{R_{2} V_{C C}}{R_{2}+R_{1}} \Rightarrow 6.3 \mathrm{~V}=\frac{R_{2}(28 \mathrm{~V})}{R_{2}+R_{1}}(2 \text { unknowns })
$$

$$
\beta=\frac{I_{C}}{I_{B}}=\frac{5 \mathrm{~mA}}{37 \mu \mathrm{~A}}=135.14
$$

$$
\beta R_{E}=10 R_{2}
$$

$$
(135.14)(1.12 \mathrm{k} \Omega)=10\left(R_{2}\right)
$$

$$
R_{2}=15.14 \mathrm{k} \Omega \text { (use } 15 \mathrm{k} \Omega \text {) }
$$

Substituting: $6.3 \mathrm{~V}=\frac{(15.14 \mathrm{k} \Omega)(28 \mathrm{~V})}{15.14 \mathrm{k} \Omega+R_{1}}$

$$
\text { Solving, } R_{1}=52.15 \mathrm{k} \Omega \text { (use } 51 \mathrm{k} \Omega \text {) }
$$

Standard values:

$$
\begin{aligned}
& R_{E}=1.1 \mathbf{k} \Omega \\
& R_{C}=1.6 \mathrm{k} \Omega \\
& R_{1}=51 \mathrm{k} \Omega \\
& R_{2}=15 \mathrm{k} \Omega
\end{aligned}
$$

36. $I_{2 \mathrm{k} \Omega}=\frac{18 \mathrm{~V}-0.7 \mathrm{~V}}{2 \mathrm{k} \Omega}=\mathbf{8 . 6 5} \mathbf{~ m A} \cong I$
37. For current mirror:

$$
I(3 \mathrm{k} \Omega)=I(2.4 \mathrm{k} \Omega)=I=\mathbf{2} \mathbf{~ m A}
$$

38. $\quad I_{D_{Q}}=I_{D S S}=\mathbf{6} \mathbf{~ m A}$
39. $\quad V_{B} \cong \frac{4.3 \mathrm{k} \Omega}{4.3 \mathrm{k} \Omega+4.3 \mathrm{k} \Omega}(-18 \mathrm{~V})=-9 \mathrm{~V}$

$$
V_{E}=-9 \mathrm{~V}-0.7 \mathrm{~V}=-9.7 \mathrm{~V}
$$

$$
I_{E}=\frac{-18 \mathrm{~V}-(-9.7 \mathrm{~V})}{1.8 \mathrm{k} \Omega}=\mathbf{4 . 6} \mathbf{~ m A}=I
$$

40. $I_{E}=\frac{V_{Z}-V_{B E}}{R_{E}}=\frac{5.1 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=\mathbf{3 . 6 7} \mathbf{~ m A}$
41. $\quad I_{C_{\mathrm{stt}}}=\frac{V_{C C}}{R_{C}}=\frac{10 \mathrm{~V}}{2.4 \mathrm{k} \Omega}=\mathbf{4 . 1 6 7} \mathbf{~ m A}$

From characteristics $I_{B_{\max }} \cong 31 \mu \mathrm{~A}$

$$
I_{B}=\frac{V_{i}-V_{B E}}{R_{B}}=\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{180 \mathrm{k} \Omega}=51.67 \mu \mathrm{~A}
$$

$51.67 \mu \mathrm{~A} \gg 31 \mu \mathrm{~A}$, well saturated

42. $\quad I_{C_{\mathrm{stt}}}=8 \mathrm{~mA}=\frac{5 \mathrm{~V}}{R_{C}}$

$$
\begin{array}{r}
R_{C}=\frac{5 \mathrm{~V}}{8 \mathrm{~mA}}=\mathbf{0 . 6 2 5} \mathbf{k} \Omega \\
I_{B_{\max }}=\frac{I_{C_{\mathrm{stt}}}}{\beta}=\frac{8 \mathrm{~mA}}{100}=80 \mu \mathrm{~A}
\end{array}
$$

$$
\text { Use } 1.2(80 \mu \mathrm{~A})=96 \mu \mathrm{~A}
$$

$$
R_{B}=\frac{5 \mathrm{~V}-0.7 \mathrm{~V}}{96 \mu \mathrm{~A}}=44.79 \mathrm{k} \Omega
$$

Standard values:

$$
\begin{aligned}
& R_{B}=43 \mathrm{k} \boldsymbol{\Omega} \\
& R_{C}=0.62 \mathrm{k} \boldsymbol{\Omega}
\end{aligned}
$$

43. (a) From Fig. 3.23c:

$$
\begin{aligned}
& \quad I_{C}=2 \mathrm{~mA}: t_{f}=38 \mathrm{~ns}, t_{r}=48 \mathrm{~ns}, t_{d}=120 \mathrm{~ns}, t_{s}=110 \mathrm{~ns} \\
& t_{\mathrm{on}}=t_{r}+t_{d}=48 \mathrm{~ns}+120 \mathrm{~ns}=\mathbf{1 6 8} \mathbf{n s} \\
& t_{\mathrm{off}}=t_{s}+t_{f}=110 \mathrm{~ns}+38 \mathrm{~ns}=\mathbf{1 4 8} \mathbf{~ n s}
\end{aligned}
$$

(b) $I_{C}=10 \mathrm{~mA}: t_{f}=12 \mathrm{~ns}, t_{r}=15 \mathrm{~ns}, t_{d}=22 \mathrm{~ns}, t_{s}=120 \mathrm{~ns}$
$t_{\mathrm{on}}=t_{r}+t_{d}=15 \mathrm{~ns}+22 \mathrm{~ns}=37 \mathbf{n s}$
$t_{\mathrm{off}}=t_{s}+t_{f}=120 \mathrm{~ns}+12 \mathrm{~ns}=132 \mathbf{n s}$
The turn-on time has dropped dramatically
$168 \mathrm{~ns}: 37 \mathrm{~ns}=\mathbf{4 . 5 4 : 1}$
while the turn-off time is only slightly smaller

$$
148 \mathrm{~ns}: 132 \mathrm{~ns}=\mathbf{1 . 1 2 : 1}
$$

44. (a) Open-circuit in the base circuit

Bad connection of emitter terminal
Damaged transistor
(b) Shorted base-emitter junction

Open at collector terminal
(c) Open-circuit in base circuit Open transistor
45. (a) The base voltage of 9.4 V reveals that the $18 \mathrm{k} \Omega$ resistor is not making contact with the base terminal of the transistor.

If operating properly:

$$
V_{B} \cong \frac{18 \mathrm{k} \Omega(16 \mathrm{~V})}{18 \mathrm{k} \Omega+91 \mathrm{k} \Omega}=\mathbf{2 . 6 4} \mathrm{V} \text { vs. } 9.4 \mathrm{~V}
$$

As an emitter feedback bias circuit:

$$
\begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{1}+(\beta+1) R_{E}}=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}}{91 \mathrm{k} \Omega+(100+1) 1.2 \mathrm{k} \Omega} \\
& =72.1 \mu \mathrm{~A} \\
V_{B} & =V_{C C}-I_{B}\left(R_{1}\right)=16 \mathrm{~V}-(72.1 \mu \mathrm{~A})(91 \mathrm{k} \Omega) \\
& =9.4 \mathrm{~V}
\end{aligned}
$$

(b) Since $V_{E}>V_{B}$ the transistor should be "off"

With $I_{B}=0 \mu \mathrm{~A}, V_{B}=\frac{18 \mathrm{k} \Omega(16 \mathrm{~V})}{18 \mathrm{k} \Omega+91 \mathrm{k} \Omega}=2.64 \mathrm{~V}$
\therefore Assume base circuit "open"
The 4 V at the emitter is the voltage that would exist if the transistor were shorted collector to emitter.

$$
V_{E}=\frac{1.2 \mathrm{k} \Omega(16 \mathrm{~V})}{1.2 \mathrm{k} \Omega+3.6 \mathrm{k} \Omega}=\mathbf{4 ~ V}
$$

46. (a) $R_{B} \uparrow, I_{B} \downarrow, I_{C} \downarrow, V_{C} \uparrow$
(b) $\beta \downarrow, I_{C} \downarrow$
(c) Unchanged, $I_{C_{\text {stt }}}$ not a function of β
(d) $V_{C C} \downarrow, I_{B} \downarrow, I_{C} \downarrow$
(e) $\beta \downarrow, I_{C} \downarrow, V_{R_{C}} \downarrow, V_{R_{E}} \downarrow, V_{C E} \uparrow$
47.

(a) $I_{B}=\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}} \cong \frac{E_{T h}-V_{B E}}{R_{T h}+\beta R_{E}}$
$I_{C}=\beta I_{B}=\beta\left[\frac{E_{T h}-V_{B E}}{R_{T h}+\beta R_{E}}\right]=\frac{E_{T h}-V_{B E}}{\frac{R_{T h}}{\beta}+R_{E}}$
As $\beta \uparrow, \frac{R_{T h}}{\beta} \downarrow, I_{C} \uparrow, V_{R_{C}} \uparrow$
$V_{C}=V_{C C}-V_{R_{C}}$
and $\boldsymbol{V}_{C} \downarrow$
(b) $R_{2}=$ open, $I_{B} \uparrow, I_{C} \uparrow$
$V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$ and $\boldsymbol{V}_{C E} \downarrow$
(c) $V_{C C} \downarrow, V_{B} \downarrow, V_{E} \downarrow, I_{E} \downarrow, I_{C} \downarrow$
(d) $I_{B}=0 \mu \mathrm{~A}, I_{C}=I_{C E O}$ and $I_{C}\left(R_{C}+R_{E}\right)$ negligible with $V_{C E} \cong V_{C C}=\mathbf{2 0} \mathbf{~ V}$
(e) Base-emitter junction $=$ short $I_{B} \uparrow$ but transistor action lost and $I_{C}=0 \mathrm{~mA}$ with $V_{C E}=V_{C C}=\mathbf{2 0} \mathbf{~ V}$
48. (a) R_{B} open, $I_{B}=0 \mu \mathrm{~A}, I_{C}=I_{C E O} \cong 0 \mathrm{~mA}$ and $V_{C} \cong V_{C C}=\mathbf{1 8} \mathbf{V}$
(b) $\beta \uparrow, I_{C} \uparrow, V_{R_{c}} \uparrow, V_{R_{E}} \uparrow, V_{C E} \downarrow$
(c) $R_{C} \downarrow, I_{B} \uparrow, I_{C} \uparrow, V_{E} \uparrow$
(d) Drop to a relatively low voltage $\cong 0.06 \mathrm{~V}$
(e) Open in the base circuit
49. $\quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{510 \mathrm{k} \Omega}=\frac{11.3 \mathrm{~V}}{510 \mathrm{k} \Omega}=22.16 \mu \mathrm{~A}$

$$
I_{C}=\beta I_{B}=(100)(22.16 \mu \mathrm{~A})=\mathbf{2 . 2 1 6} \mathbf{~ m A}
$$

$V_{C}=-V_{C C}+I_{C} R_{C}=-12 \mathrm{~V}+(2.216 \mathrm{~mA})(3.3 \mathrm{k} \Omega)$
$=-4.69 \mathrm{~V}$
$V_{C E}=V_{C}=\mathbf{4 . 6 9} \mathrm{V}$
50. $\quad \beta R_{E} \geq 10 R_{2}$
(220) $(0.75 \mathrm{k} \Omega) \geq 10(16 \mathrm{k} \Omega)$
$165 \mathrm{k} \Omega \geq 160 \mathrm{k} \Omega$ (checks)
Use approximate approach:

$$
\begin{aligned}
& V_{B} \cong \frac{16 \mathrm{k} \Omega(-22 \mathrm{~V})}{16 \mathrm{k} \Omega+82 \mathrm{k} \Omega}=-3.59 \mathrm{~V} \\
& V_{E}=V_{B}+0.7 \mathrm{~V}=-3.59 \mathrm{~V}+0.7 \mathrm{~V}=-2.89 \mathrm{~V} \\
& I_{C} \cong I_{E}=V_{E} / R_{E}=2.89 / 0.75 \mathrm{k} \Omega=3.85 \mathrm{~mA} \\
& I_{B}=\frac{I_{C}}{\beta}=\frac{3.85 \mathrm{~mA}}{220}=\mathbf{1 7 . 5} \boldsymbol{\mu} \mathbf{A} \\
& V_{C}=-V_{C C}+I_{C} R_{C} \\
&=-22 \mathrm{~V}+(3.85 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
&=-\mathbf{1 3 . 5 3} \mathbf{~ V}
\end{aligned}
$$

51. $I_{E}=\frac{V-V_{B E}}{R_{E}}=\frac{8 \mathrm{~V}-0.7 \mathrm{~V}}{3.3 \mathrm{k} \Omega}=\frac{7.3 \mathrm{~V}}{3.3 \mathrm{k} \Omega}=\mathbf{2 . 2 1 2} \mathbf{~ m A}$

$$
\begin{aligned}
V_{C} & =-V_{C C}+I_{C} R_{C}=-12 \mathrm{~V}+(2.212 \mathrm{~mA})(3.9 \mathrm{k} \Omega) \\
& =-\mathbf{3 . 3 7} \mathbf{~ V}
\end{aligned}
$$

52. (a) $S\left(I_{C O}\right)=\beta+1=\mathbf{9 1}$
(b) $S\left(V_{B E}\right)=\frac{-\beta}{R_{B}}=\frac{-90}{470 \mathrm{k} \Omega}=-\mathbf{1 . 9 2} \times \mathbf{1 0}^{-4} \mathrm{~S}$
(c) $S(\beta)=\frac{I_{C_{1}}}{\beta_{1}}=\frac{2.93 \mathrm{~mA}}{90}=\mathbf{3 2 . 5 6} \times \mathbf{1 0}^{-6} \mathrm{~A}$
(d) $\Delta I_{C}=S\left(I_{C O}\right) \Delta I_{C O}+S\left(V_{B E}\right) \Delta V_{B E}+S(\beta) \Delta \beta$

$$
=(91)(10 \mu \mathrm{~A}-0.2 \mu \mathrm{~A})+\left(-1.92 \times 10^{-4} \mathrm{~S}\right)(0.5 \mathrm{~V}-0.7 \mathrm{~V})+\left(32.56 \times 10^{-6} \mathrm{~A}\right)(112.5-90)
$$

$$
=(91)(9.8 \mu \mathrm{~A})+\left(1.92 \times 10^{-4} \mathrm{~S}\right)(0.2 \mathrm{~V})+\left(32.56 \times 10^{-6} \mathrm{~A}\right)(22.5)
$$

$$
=8.92 \times 10^{-4} \mathrm{~A}+0.384 \times 10^{-4} \mathrm{~A}+7.326 \times 10^{-4} \mathrm{~A}
$$

$$
=16.63 \times 10^{-4} \mathrm{~A}
$$

$\cong \mathbf{1 . 6 6} \mathrm{mA}$
53. For the emitter-bias:
(a) $S\left(I_{C O}\right)=(\beta+1) \frac{\left(1+R_{B} / R_{E}\right)}{(\beta+1)+R_{B} / R_{E}}=(100+1) \frac{(1+510 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega)}{(100+1)+510 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega}$ $=78.1$
(b) $S\left(V_{B E}\right)=\frac{-\beta}{R_{B}+(\beta+1) R_{E}}=\frac{-100}{510 \mathrm{k} \Omega+(100+1) 1.5 \mathrm{k} \Omega}$

$$
=-\mathbf{1 . 5 1 2} \times 10^{-4} \mathrm{~S}
$$

(c) $S(\beta)=\frac{I_{C_{1}}\left(1+R_{B} / R_{E}\right)}{\beta_{1}\left(1+\beta_{2}+R_{B} / R_{E}\right)}=\frac{2.92 \mathrm{~mA}(1+340)}{100(1+125+340)}$

$$
=21.37 \times 10^{-6} \mathrm{~A}
$$

(d) $\Delta I_{C}=S\left(I_{C O}\right) \Delta I_{C O}+S\left(V_{B E}\right) \Delta V_{B E}+S(\beta) \Delta \beta$

$$
\begin{aligned}
& =(78.1)(9.8 \mu \mathrm{~A})+\left(-1.512 \times 10^{-14} \mathrm{~S}\right)(-0.2 \mathrm{~V})+\left(21.37 \times 10^{-6} \mathrm{~A}\right)(25) \\
& =0.7654 \mathrm{~mA}+0.0302 \mathrm{~mA}+0.5343 \mathrm{~mA} \\
& =\mathbf{1 . 3 3} \mathbf{~ m A}
\end{aligned}
$$

54. (a) $R_{T h}=62 \mathrm{k} \Omega \| 9.1 \mathrm{k} \Omega=7.94 \mathrm{k} \Omega$

$$
\begin{aligned}
S\left(I_{C O}\right) & =(\beta+1) \frac{1+R_{T h} / R_{E}}{(\beta+1)+R_{T h} / R_{E}}=(80+1) \frac{(1+7.94 \mathrm{k} \Omega / 0.68 \mathrm{k} \Omega)}{(80+1)+7.94 \mathrm{k} \Omega / 0.68 \mathrm{k} \Omega} \\
& =\frac{(81)(1+11.68)}{81+11.68}=\mathbf{1 1 . 0 8}
\end{aligned}
$$

(b) $S\left(V_{B E}\right)=\frac{-\beta}{R_{T h}+(\beta+1) R_{E}}=\frac{-80}{7.94 \mathrm{k} \Omega+(81)(0.68 \mathrm{k} \Omega)}$

$$
=\frac{-80}{7.94 \mathrm{k} \Omega+55.08 \mathrm{k} \Omega}=-\mathbf{1 . 2 7} \times \mathbf{1 0}^{-3} \mathrm{~S}
$$

(c) $S(\beta)=\frac{I_{C_{1}}\left(1+R_{T h} / R_{E}\right)}{\beta_{1}\left(1+\beta_{2}+R_{T h} / R_{E}\right)}=\frac{1.71 \mathrm{~mA}(1+7.94 \mathrm{k} \Omega / 0.68 \mathrm{k} \Omega)}{80(1+100+7.94 \mathrm{k} \Omega / 0.68 \mathrm{k} \Omega)}$

$$
=\frac{1.71 \mathrm{~mA}(12.68)}{80(112.68)}=\mathbf{2 . 4 1} \times \mathbf{1 0}^{-6} \mathbf{A}
$$

(d) $\Delta I_{C}=S\left(I_{C O}\right) \Delta I_{C O}+S\left(V_{B E}\right) \Delta V_{B E}+S(\beta) \Delta \beta$

$$
\begin{aligned}
& =(11.08)(10 \mu \mathrm{~A}-0.2 \mu \mathrm{~A})+\left(-1.27 \times 10^{-3} \mathrm{~S}\right)(0.5 \mathrm{~V}-0.7 \mathrm{~V})+\left(2.41 \times 10^{-6} \mathrm{~A}\right)(100-80) \\
& =(11.08)(9.8 \mu \mathrm{~A})+\left(-1.27 \times 10^{-3} \mathrm{~S}\right)(-0.2 \mathrm{~V})+\left(2.41 \times 10^{-6} \mathrm{~A}\right)(20) \\
& =1.09 \times 10^{-4} \mathrm{~A}+2.54 \times 10^{-4} \mathrm{~A}+0.482 \times 10^{-4} \mathrm{~A} \\
& =4.11 \times 10^{-4} \mathrm{~A}=\mathbf{0 . 4 1 1} \mathbf{~ m A}
\end{aligned}
$$

55. For collector-feedback bias:
(a) $S\left(I_{C O}\right)=(\beta+1) \frac{\left(1+R_{B} / R_{C}\right)}{(\beta+1)+R_{B} / R_{C}}=(196.32+1) \frac{(1+560 \mathrm{k} \Omega / 3.9 \mathrm{k} \Omega)}{(196.32+1)+560 \mathrm{k} \Omega / 3.9 \mathrm{k} \Omega}$

$$
=(197.32) \frac{1+143.59}{(197.32+143.59)}
$$

$$
=83.69
$$

(b) $S\left(V_{B E}\right)=\frac{-\beta}{R_{B}+(\beta+1) R_{C}}=\frac{-196.32}{560 \mathrm{k} \Omega+(196.32+1) 3.9 \mathrm{k} \Omega}$

$$
=-1.477 \times 10^{-4} \mathrm{~S}
$$

(c) $S(\beta)=\frac{I_{C_{1}}\left(R_{B}+R_{C}\right)}{\beta_{1}\left(R_{B}+R_{C}\left(\beta_{2}+1\right)\right)}=\frac{2.56 \mathrm{~mA}(560 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega)}{196.32(560 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega(245.4+1))}$

$$
=4.83 \times 10^{-6} \mathrm{~A}
$$

(d) $\Delta I_{C}=S\left(I_{C O}\right) \Delta I_{C O}+S\left(V_{B E}\right) \Delta V_{B E}+S(\beta) \Delta \beta$

$$
\begin{aligned}
& =(83.69)(9.8 \mu \mathrm{~A})+\left(-1.477 \times 10^{-4} \mathrm{~S}\right)(-0.2 \mathrm{~V})+\left(4.83 \times 10^{-6} \mathrm{~A}\right)(49.1) \\
& =8.20 \times 10^{-4} \mathrm{~A}+0.295 \times 10^{-4} \mathrm{~A}+2.372 \times 10^{-4} \mathrm{~A} \\
& =10.867 \times 10^{-4} \mathrm{~A}=\mathbf{1 . 0 8 7} \mathbf{~ m A}
\end{aligned}
$$

56. Type

Collector feedback
Emitter-bias
Voltage-divider
Fixed-bias

$S\left(I_{C O}\right)$	$S\left(V_{B E}\right)$	$S(\beta)$
83.69	$-1.477 \times 10^{-4} \mathrm{~S}$	$4.83 \times 10^{-6} \mathrm{~A}$
78.1	$-1.512 \times 10^{-4} \mathrm{~S}$	$21.37 \times 10^{-6} \mathrm{~A}$
11.08	$-12.7 \times 10^{-4} \mathrm{~S}$	$2.41 \times 10^{-6} \mathrm{~A}$
91	$-1.92 \times 10^{-4} \mathrm{~S}$	$32.56 \times 10^{-6} \mathrm{~A}$

$S\left(I_{C O}\right)$: Considerably less for the voltage-divider configuration compared to the other three.
$S\left(V_{B E}\right)$: The voltage-divider configuration is more sensitive than the other three (which have similar levels of sensitivity).
$S(\beta)$: The voltage-divider configuration is the least sensitive with the fixed-bias configuration very sensitive.

In general, the voltage-divider configuration is the least sensitive with the fixed-bias the most sensitive.
57. (a) Fixed-bias:

$$
\begin{aligned}
& S\left(I_{C O}\right)=91, \Delta I_{C}=0.892 \mathrm{~mA} \\
& S\left(V_{B E}\right)=-1.92 \times 10^{-4} \mathrm{~S}, \Delta I_{C}=0.0384 \mathrm{~mA} \\
& S(\beta)=32.56 \times 10^{-6} \mathrm{~A}, \Delta I_{C}=0.7326 \mathrm{~mA}
\end{aligned}
$$

(b) Voltage-divider bias:

$$
\begin{aligned}
& S\left(I_{C O}\right)=11.08, \Delta I_{C}=0.1090 \mathrm{~mA} \\
& S\left(V_{B E}\right)=-1.27 \times 10^{-3} \mathrm{~S}, \Delta I_{C}=0.2540 \mathrm{~mA} \\
& S(\beta)=2.41 \times 10^{-6} \mathrm{~A}, \Delta I_{C}=0.0482 \mathrm{~mA}
\end{aligned}
$$

(c) For the fixed-bias configuration there is a strong sensitivity to changes in $I_{C O}$ and β and less to changes in $V_{B E}$.

For the voltage-divider configuration the opposite occurs with a high sensitivity to changes in $V_{B E}$ and less to changes in $I_{C O}$ and β.

In total the voltage-divider configuration is considerably more stable than the fixed-bias configuration.

Chapter 5

1. (a) If the de power supply is set to zero volts, the amplification will be zero.
(b) Too low a dc level will result in a clipped output waveform.
(c) $P_{o}=I^{2} R=(5 \mathrm{~mA})^{2} 2.2 \mathrm{k} \Omega=55 \mathrm{~mW}$
$P_{i}=V_{C C} I=(18 \mathrm{~V})(3.8 \mathrm{~mA})=68.4 \mathrm{~mW}$

$$
\eta=\frac{P_{o}(\mathrm{ac})}{P_{i}(\mathrm{dc})}=\frac{55 \mathrm{~mW}}{68.4 \mathrm{~mW}}=0.804 \Rightarrow \mathbf{8 0 . 4 \%}
$$

2. -
3. $x_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(1 \mathrm{kHz})(10 \mu \mathrm{~F})}=\mathbf{1 5 . 9 2} \Omega$
$f=100 \mathrm{kHz}: x_{C}=0.159 \Omega$
Yes, better at 100 kHz
4.
5. (a) $Z_{i}=\frac{V_{i}}{I_{i}}=\frac{10 \mathrm{mV}}{0.5 \mathrm{~mA}}$

$$
=20 \Omega\left(=r_{e}\right)
$$

(b) $V_{o}=I_{c} R_{L}$

$$
\begin{aligned}
& =\alpha I_{c} R_{L} \\
& =(0.98)(0.5 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
& =\mathbf{0 . 5 8 8} \mathbf{~ V}
\end{aligned}
$$

(c) $A_{v}=\frac{V_{o}}{V_{i}}=\frac{0.588 \mathrm{~V}}{10 \mathrm{mV}}$

$$
=58.8
$$

(d) $Z_{o}=\infty \Omega$
(e) $A_{i}=\frac{I_{o}}{I_{i}}=\frac{\alpha I_{e}}{I_{e}}=\alpha=\mathbf{0 . 9 8}$
(f) $I_{b}=I_{e}-I_{c}$

$$
=0.5 \mathrm{~mA}-0.49 \mathrm{~mA}
$$

$$
=10 \mu \mathrm{~A}
$$

6. (a) $r_{e}=\frac{V_{i}}{I_{i}}=\frac{48 \mathrm{mV}}{3.2 \mathrm{~mA}}=\mathbf{1 5} \Omega$
(b) $Z_{i}=r_{e}=15 \Omega$
(c) $I_{C}=\alpha I_{e}=(0.99)(3.2 \mathrm{~mA})=\mathbf{3 . 1 6 8} \mathbf{~ m A}$
(d) $V_{o}=I_{C} R_{L}=(3.168 \mathrm{~mA})(2.2 \mathrm{k} \Omega)=\mathbf{6 . 9 7} \mathrm{V}$
(e) $A_{v}=\frac{V_{o}}{V_{i}}=\frac{6.97 \mathrm{~V}}{48 \mathrm{mV}}=\mathbf{1 4 5 . 2 1}$
(f) $I_{b}=(1-\alpha) I_{e}=(1-0.99) I_{e}=(0.01)(3.2 \mathrm{~mA})$ $=32 \mu \mathrm{~A}$
7. (a) $r_{e}=\frac{26 \mathrm{mV}}{I_{E}(\mathrm{dc})}=\frac{26 \mathrm{mV}}{2 \mathrm{~mA}}=13 \Omega$

$$
\begin{aligned}
Z_{i}=\beta r_{e} & =(80)(13 \Omega) \\
& =\mathbf{1 . 0 4} \mathbf{~} \boldsymbol{\Omega}
\end{aligned}
$$

(b) $I_{b}=\frac{I_{C}}{\beta}=\frac{\alpha I_{e}}{\beta}=\frac{\beta b}{\beta+1} \cdot \frac{I_{e}}{\beta b}=\frac{I_{e}}{\beta+1}$

$$
=\frac{2 \mathrm{~mA}}{81}=\mathbf{2 4 . 6 9} \boldsymbol{\mu} \mathrm{A}
$$

(c) $A_{i}=\frac{I_{o}}{I_{i}}=\frac{I_{L}}{I_{b}}$

$$
I_{L}=\frac{r_{o}\left(\beta I_{b}\right)}{r_{o}+R_{L}}
$$

$$
A_{i}=\frac{\frac{r_{o}}{r_{o}+R_{L}} \cdot \beta \not \eta_{b}}{\eta_{b}}=\frac{r_{o}}{r_{o}+R_{L}} \cdot \beta
$$

$$
=\frac{40 \mathrm{k} \Omega}{40 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}(80)
$$

$$
=77.67
$$

(d) $A_{v}=-\frac{R_{L} \| r_{o}}{r_{e}}=-\frac{1.2 \mathrm{k} \Omega \| 40 \mathrm{k} \Omega}{13 \Omega}$

$$
\begin{aligned}
& =-\frac{1.165 \mathrm{k} \Omega}{13 \Omega} \\
& =-\mathbf{8 9 . 6}
\end{aligned}
$$

8. (a) $Z_{i}=\beta r_{e}=(140) r_{e}=1200$

$$
r_{e}=\frac{1200}{140}=8.571 \Omega
$$

(b) $I_{b}=\frac{V_{i}}{Z_{i}}=\frac{30 \mathrm{mV}}{1.2 \mathrm{k} \Omega}=\mathbf{2 5} \mu \mathrm{A}$
(c) $I_{c}=\beta I_{b}=(140)(25 \mu \mathrm{~A})=\mathbf{3 . 5} \mathbf{~ m A}$
(d) $I_{L}=\frac{r_{o} I_{c}}{r_{o}+R_{L}}=\frac{(50 \mathrm{k} \Omega)(3.5 \mathrm{~mA})}{50 \mathrm{k} \Omega+2.7 \mathrm{k} \Omega}=3.321 \mathrm{~mA}$

$$
A_{i}=\frac{I_{L}}{I_{i}}=\frac{3.321 \mathrm{~mA}}{25 \mu \mathrm{~A}}=\mathbf{1 3 2 . 8 4}
$$

(e) $A_{v}=\frac{V_{o}}{V_{i}}=\frac{-A_{i} R_{L}}{Z_{i}}=-(132.84) \frac{(2.7 \mathrm{k} \Omega)}{1.2 \mathrm{k} \Omega}$

$$
=-298.89
$$

9.

(a) $\quad r_{e}: \quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{220 \mathrm{k} \Omega}=51.36 \mu \mathrm{~A}$

$$
I_{E}=(\beta+1) I_{B}=(60+1)(51.36 \mu \mathrm{~A})
$$

$$
=3.13 \mathrm{~mA}
$$

$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{3.13 \mathrm{~mA}}=8.31 \Omega$
$Z_{i}=R_{B}\left\|\beta r_{e}=220 \mathrm{k} \Omega\right\|(60)(8.31 \Omega)=220 \mathrm{k} \Omega \| 498.6 \Omega$
$=497.47 \Omega$
$r_{o} \geq 10 R_{C} \therefore Z_{o}=R_{C}=\mathbf{2 . 2} \mathbf{~ k} \boldsymbol{\Omega}$
(b) $A_{v}=-\frac{R_{C}}{r_{e}}=\frac{-2.2 \mathrm{k} \Omega}{8.31 \Omega}=\mathbf{- 2 6 4 . 7 4}$
(c) $Z_{i}=497.47 \Omega$ (the same)

$$
Z_{o}=r_{o}\left\|R_{C}=20 \mathrm{k} \Omega\right\| 2.2 \mathrm{k} \Omega
$$

$$
=1.98 \mathrm{k} \Omega
$$

(d) $A_{\nu}=\frac{-R_{C} \| r_{o}}{r_{e}}=\frac{-1.98 \mathrm{k} \Omega}{8.31 \Omega}=\mathbf{- 2 3 8 . 2 7}$

$$
\begin{aligned}
A_{i} & =-A_{v} Z_{i} / R_{C} \\
& =-(-238.27)(497.47 \Omega) / 2.2 \mathrm{k} \Omega \\
& =\mathbf{5 3 . 8 8}
\end{aligned}
$$

10. $A_{v}=-\frac{R_{C}}{r_{e}} \Rightarrow r_{e}=-\frac{R_{C}}{A_{v}}=-\frac{4.7 \mathrm{k} \Omega}{(-200)}=23.5 \Omega$

$$
r_{e}=\frac{26 \mathrm{mV}}{I_{E}} \Rightarrow I_{E}=\frac{26 \mathrm{mV}}{r_{e}}=\frac{26 \mathrm{mV}}{23.5 \Omega}=1.106 \mathrm{~mA}
$$

$$
I_{B}=\frac{I_{E}}{\beta+1}=\frac{1.106 \mathrm{~mA}}{91}=12.15 \mu \mathrm{~A}
$$

$$
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}} \Rightarrow V_{C C}=I_{B} R_{B}+V_{B E}
$$

$$
=(12.15 \mu \mathrm{~A})(1 \mathrm{M} \Omega)+0.7 \mathrm{~V}
$$

$$
=12.15 \mathrm{~V}+0.7 \mathrm{~V}
$$

$$
=12.85 \mathrm{~V}
$$

11.

$$
\text { (a) } \begin{aligned}
I_{B}= & \frac{V_{C C}-V_{B E}}{R_{B}}=\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{390 \mathrm{k} \Omega}=\mathbf{2 3 . 8 5} \boldsymbol{\mu} \mathbf{A} \\
I_{E}= & (\beta+1) I_{B}=(101)(23.85 \mu \mathrm{~A})=2.41 \mathrm{~mA} \\
& r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.41 \mathrm{~mA}}=\mathbf{1 0 . 7 9 \Omega} \\
I_{C}= & \beta I_{B}=(100)(23.85 \mu \mathrm{~A})=\mathbf{2 . 3 8} \mathbf{~ m A}
\end{aligned}
$$

(b) $Z_{i}=R_{B}\left\|\beta r_{e}=390 \mathrm{k} \Omega\right\|(100)(10.79 \Omega)=390 \mathrm{k} \Omega \| 1.08 \mathrm{k} \Omega$

$$
=1.08 \mathrm{k} \Omega
$$

$r_{o} \geq 10 R_{C} \therefore Z_{o}=R_{C}=4.3 \mathrm{k} \boldsymbol{\Omega}$
(c) $A_{\nu}=-\frac{R_{C}}{r_{e}}=\frac{-4.3 \mathrm{k} \Omega}{10.79 \Omega}=\mathbf{- 3 9 8 . 5 2}$
(d) $A_{\nu}=-\frac{R_{C} \| r_{o}}{r_{e}}=-\frac{(4.3 \mathrm{k} \Omega) \|(30 \mathrm{k} \Omega)}{10.79 \Omega}=-\frac{3.76 \mathrm{k} \Omega}{10.79 \Omega}=-\mathbf{3 4 8 . 4 7}$
12. (a) Test $\beta R_{E} \geq 10 R_{2}$
$(100)(1.2 \mathrm{k} \Omega) \stackrel{?}{\geq} 10(4.7 \mathrm{k} \Omega)$
$120 \mathrm{k} \Omega>47 \mathrm{k} \Omega$ (satisfied)
Use approximate approach:
$V_{B}=\frac{R_{2} V_{C C}}{R_{1}+R_{2}}=\frac{4.7 \mathrm{k} \Omega(16 \mathrm{~V})}{39 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}=1.721 \mathrm{~V}$
$V_{E}=V_{B}-V_{B E}=1.721 \mathrm{~V}-0.7 \mathrm{~V}=1.021 \mathrm{~V}$
$I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.021 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=0.8507 \mathrm{~mA}$
$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{0.8507 \mathrm{~mA}}=\mathbf{3 0 . 5 6} \Omega$
(b) $Z_{i}=R_{1}\left\|R_{2}\right\| \beta r_{e}$

$$
=4.7 \mathrm{k} \Omega| | 39 \mathrm{k} \Omega| |(100)(30.56 \Omega)
$$

$$
=1.768 \mathrm{k} \Omega
$$

$r_{o} \geq 10 R_{C} \therefore Z_{o} \cong R_{C}=\mathbf{3 . 9} \mathbf{~ k} \Omega$
(c) $A_{v}=-\frac{R_{C}}{r_{e}}=-\frac{3.9 \mathrm{k} \Omega}{30.56 \Omega}=\mathbf{- 1 2 7 . 6}$
(d) $r_{o}=25 \mathrm{k} \Omega$
(b) Z_{i} (unchanged) $=1.768 \mathbf{k} \Omega$

$$
Z_{o}=R_{C}\left\|r_{o}=3.9 \mathrm{k} \Omega\right\| 25 \mathrm{k} \Omega=\mathbf{3 . 3 7} \mathbf{~ k} \boldsymbol{\Omega}
$$

(c) $\quad A_{v}=-\frac{\left(R_{C} \| r_{o}\right)}{r_{e}}=-\frac{(3.9 \mathrm{k} \Omega) \|(25 \mathrm{k} \Omega)}{30.56 \Omega}=-\frac{3.37 \mathrm{k} \Omega}{30.56 \Omega}$

$$
=\mathbf{- 1 1 0 . 2 8} \text { (vs. } \mathbf{- 1 2 7 . 6})
$$

13. $\beta R_{E} \stackrel{?}{\geq} 10 R_{2}$
$(100)(1 \mathrm{k} \Omega) \geq 10(5.6 \mathrm{k} \Omega)$
$100 \mathrm{k} \Omega>56 \mathrm{k} \Omega$ (checks!) \& $r_{o} \geq 10 R_{C}$
Use approximate approach:

$$
\begin{gathered}
A_{v}=-\frac{R_{C}}{r_{e}} \Rightarrow r_{e}=-\frac{R_{C}}{A_{v}}=-\frac{3.3 \mathrm{k} \Omega}{-160}=\mathbf{2 0 . 6 2 5} \Omega \\
r_{e}=\frac{26 \mathrm{mV}}{I_{E}} \Rightarrow I_{E}=\frac{26 \mathrm{mV}}{r_{e}}=\frac{26 \mathrm{mV}}{20.625 \Omega}=1.261 \mathrm{~mA} \\
I_{E}=\frac{V_{E}}{R_{E}} \Rightarrow V_{E}=I_{E} R_{E}=(1.261 \mathrm{~mA})(1 \mathrm{k} \Omega)=1.261 \mathrm{~V} \\
V_{B}=V_{B E}+V_{E}=0.7 \mathrm{~V}+1.261 \mathrm{~V}=1.961 \mathrm{~V} \\
V_{B}=\frac{5.6 \mathrm{k} \Omega V_{C C}}{5.6 \mathrm{k} \Omega+82 \mathrm{k} \Omega}=1.961 \mathrm{~V} \\
5.6 \mathrm{k} \Omega V_{C C}
\end{gathered}=(1.961 \mathrm{~V})(87.6 \mathrm{k} \Omega) \mathrm{C} .
$$

14. Test $\beta R_{E} \geq 10 R_{2}$
$(180)(2.2 \mathrm{k} \Omega) \geq 10(56 \mathrm{k} \Omega)$
$396 \mathrm{k} \Omega<560 \mathrm{k} \Omega$ (not satisfied)
Use exact analysis:
(a) $R_{T h}=56 \mathrm{k} \Omega \| 220 \mathrm{k} \Omega=44.64 \mathrm{k} \Omega$
$E_{T h}=\frac{56 \mathrm{k} \Omega(20 \mathrm{~V})}{220 \mathrm{k} \Omega+56 \mathrm{k} \Omega}=4.058 \mathrm{~V}$
$I_{B}=\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{4.058 \mathrm{~V}-0.7 \mathrm{~V}}{44.64 \mathrm{k} \Omega+(181)(2.2 \mathrm{k} \Omega)}$

$$
\begin{aligned}
& =7.58 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(181)(7.58 \mu \mathrm{~A}) \\
& =1.372 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{1.372 \mathrm{~mA}}=\mathbf{1 8 . 9 5 \Omega}
\end{aligned}
$$

(b) $V_{E}=I_{E} R_{E}=(1.372 \mathrm{~mA})(2.2 \mathrm{k} \Omega)=3.02 \mathrm{~V}$

$$
V_{B}=V_{E}+V_{B E}=3.02 \mathrm{~V}+0.7 \mathrm{~V}
$$

$$
=3.72 \mathrm{~V}
$$

$$
V_{C}=V_{C C}-I_{C} R_{C}
$$

$$
=20 \mathrm{~V}-\beta I_{B} R_{C}=20 \mathrm{~V}-(180)(7.58 \mu \mathrm{~A})(6.8 \mathrm{k} \Omega)
$$

$$
=10.72 \mathrm{~V}
$$

(c) $Z_{i}=R_{1}\left\|R_{2}\right\| \beta r_{e}$
$=56 \mathrm{k} \Omega| | 220 \mathrm{k} \Omega \|(180)(18.95 \mathrm{k} \Omega)$
$=44.64 \mathrm{k} \Omega| | 3.41 \mathrm{k} \Omega$
$=3.17 \mathrm{k} \Omega$

$$
\begin{aligned}
r_{o}<10 R_{C} \therefore A_{v} & =-\frac{R_{C} \| r_{o}}{r_{e}} \\
& =-\frac{(6.8 \mathrm{k} \Omega) \|(50 \mathrm{k} \Omega)}{18.95 \Omega} \\
& =\mathbf{- 3 1 5 . 8 8}
\end{aligned}
$$

15.

(a) $\quad I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{390 \mathrm{k} \Omega+(141)(1.2 \mathrm{k} \Omega)}$

$$
=\frac{19.3 \mathrm{~V}}{559.2 \mathrm{k} \Omega}=34.51 \mu \mathrm{~A}
$$

$$
I_{E}=(\beta+1) I_{B}=(140+1)(34.51 \mu \mathrm{~A})=4.866 \mathrm{~mA}
$$

$$
r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{4.866 \mathrm{~mA}}=\mathbf{5 . 3 4} \Omega
$$

(b) $Z_{b}=\beta r_{e}+(\beta+1) R_{E}$
$=(140)(5.34 \mathrm{k} \Omega)+(140+1)(1.2 \mathrm{k} \Omega)=747.6 \Omega+169.9 \mathrm{k} \Omega$ $=169.95 \mathrm{k} \Omega$
$Z_{i}=R_{B}\left\|Z_{b}=390 \mathrm{k} \Omega\right\| 169.95 \mathrm{k} \Omega=\mathbf{1 1 8 . 3 7} \mathbf{~ k} \boldsymbol{\Omega}$
$Z_{o}=R_{C}=2.2 \mathrm{k} \Omega$
(c) $A_{v}=-\frac{\beta R_{C}}{Z_{b}}=-\frac{(140)(2.2 \mathrm{k} \Omega)}{169.95 \mathrm{k} \Omega}=\mathbf{- 1 . 8 1}$
(d) $Z_{b}=\beta r_{e}+\left[\frac{(\beta+1)+R_{C} / r_{o}}{1+\left(R_{C}+R_{E}\right) / r_{o}}\right] R_{E}$
$=747.6 \Omega\left[\frac{(141)+2.2 \mathrm{k} \Omega / 20 \mathrm{k} \Omega}{1+(3.4 \mathrm{k} \Omega) / 20 \mathrm{k} \Omega}\right] 1.2 \mathrm{k} \Omega$

$$
\begin{aligned}
& =747.6 \Omega+144.72 \mathrm{k} \Omega \\
& =145.47 \mathrm{k} \Omega
\end{aligned}
$$

$$
Z_{i}=R_{B}\left\|Z_{b}=390 \mathrm{k} \Omega\right\| 145.47 \mathrm{k} \Omega=\mathbf{1 0 5 . 9 5} \mathbf{~ k} \Omega
$$

$$
Z_{o}=R_{C}=\mathbf{2 . 2} \mathbf{k} \boldsymbol{\Omega}\left(\text { any level of } r_{o}\right)
$$

$$
\begin{aligned}
A_{v} & =\frac{V_{o}}{V_{i}}=\frac{-\frac{\beta R_{C}}{Z_{b}}\left[1+\frac{r_{e}}{r_{o}}\right]+\frac{R_{C}}{r_{o}}}{1+\frac{R_{C}}{r_{o}}} \\
& =\frac{\frac{-(140)(2.2 \mathrm{k} \Omega)}{145.47 \mathrm{k} \Omega}\left[1+\frac{5.34 \Omega}{20 \mathrm{k} \Omega}\right]+\frac{2.2 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}}{1+\frac{2.2 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}} \\
& =\frac{-2.117+0.11}{1.11}=\mathbf{- 1 . 8 1}
\end{aligned}
$$

16. Even though the condition $r_{o} \geq 10 R_{C}$ is not met it is sufficiently close to permit the use of the approximate approach.

$$
\begin{gathered}
A_{v}=-\frac{\beta R_{C}}{Z_{b}}=-\frac{\beta R_{C}}{\beta R_{E}}=-\frac{R_{C}}{R_{E}}=-10 \\
\therefore R_{E}=\frac{R_{C}}{10}=\frac{8.2 \mathrm{k} \Omega}{10}=\mathbf{0 . 8 2} \mathbf{~ k} \Omega \\
I_{E}=\frac{26 \mathrm{mV}}{r_{e}}=\frac{26 \mathrm{mV}}{3.8 \Omega}=6.842 \mathrm{~mA} \\
V_{E}=I_{E} R_{E}=(6.842 \mathrm{~mA})(0.82 \mathrm{k} \Omega)=5.61 \mathrm{~V} \\
V_{B}=V_{E}+V_{B E}=5.61 \mathrm{~V}+0.7 \mathrm{~V}=6.31 \mathrm{~V} \\
I_{B}=\frac{I_{E}}{(\beta+1)}=\frac{6.842 \mathrm{~mA}}{121}=56.55 \mu \mathrm{~A} \\
\text { and } R_{B}=\frac{V_{R_{B}}}{I_{B}}=\frac{V_{C C}-V_{B}}{I_{B}}=\frac{20 \mathrm{~V}-6.31 \mathrm{~V}}{56.55 \mu \mathrm{~A}}=\mathbf{2 4 2 . 0 9} \mathbf{~ k} \Omega
\end{gathered}
$$

17. (a) dc analysis the same

$$
\therefore r_{e}=5.34 \Omega(\text { as in } \# 15)
$$

(b) $Z_{i}=R_{B}\left\|Z_{b}=R_{B}\right\| \beta r_{e}=390 \mathrm{k} \Omega \|(140)(5.34 \Omega)=746.17 \Omega$ vs. $118.37 \mathrm{k} \Omega$ in $\# 15$ $Z_{o}=R_{C}=\mathbf{2 . 2} \mathbf{~ k} \boldsymbol{\Omega}($ as in \#15)
(c) $A_{v}=\frac{-R_{C}}{r_{e}}=\frac{-2.2 \mathrm{k} \Omega}{5.34 \Omega}=\mathbf{- 4 1 1 . 9 9} \mathbf{~ v s}-1.81 \mathrm{in} \# 15$
(d) $Z_{i}=746.17 \Omega$ vs. $105.95 \mathrm{k} \Omega$ for $\# 15$
$Z_{o}=R_{C}\left\|r_{o}=2.2 \mathrm{k} \Omega\right\| 20 \mathrm{k} \Omega=\mathbf{1 . 9 8} \mathbf{k} \Omega$ vs. $2.2 \mathrm{k} \Omega$ in $\# 15$

$$
A_{v}=-\frac{R_{C} \| r_{o}}{r_{e}}=-\frac{1.98 \mathrm{k} \Omega}{5.34 \Omega}=-\mathbf{3 7 0 . 7 9} \text { vs. }-1.81 \mathrm{in} \# 15
$$

Significant difference in the results for A_{v}.
18. (a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}$

$$
\begin{aligned}
& =\frac{22 \mathrm{~V}-0.7 \mathrm{~V}}{330 \mathrm{k} \Omega+(81)(1.2 \mathrm{k} \Omega+0.47 \mathrm{k} \Omega)}=\frac{21.3 \mathrm{~V}}{465.27 \mathrm{k} \Omega} \\
& =45.78 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(81)(45.78 \mu \mathrm{~A})=3.71 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{3.71 \mathrm{~mA}}=7 \Omega
\end{aligned}
$$

(b) $r_{o}<10\left(R_{C}+R_{E}\right)$

$$
\begin{aligned}
\therefore Z_{b} & =\beta r_{e}+\left[\frac{(\beta+1)+R_{C} / r_{o}}{1+\left(R_{C}+R_{E}\right) / r_{o}}\right] R_{E} \\
& =(80)(7 \Omega)+\left[\frac{(81)+5.6 \mathrm{k} \Omega / 40 \mathrm{k} \Omega}{1+6.8 \mathrm{k} \Omega / 40 \mathrm{k} \Omega}\right] 1.2 \mathrm{k} \Omega \\
& =560 \Omega+\left[\frac{81+0.14}{1+0.17}\right] 1.2 \mathrm{k} \Omega
\end{aligned}
$$

(note that $\left.(\beta+1)=81 \gg R_{C} / r_{o}=0.14\right)$

$$
\begin{aligned}
& =560 \Omega+[81.14 / 1.17] 1.2 \mathrm{k} \Omega=560 \Omega+83.22 \mathrm{k} \Omega \\
& =\mathbf{8 3 . 7 8} \mathbf{k} \Omega
\end{aligned}
$$

$$
Z_{i}=R_{B}\left\|Z_{b}=330 \mathrm{k} \Omega\right\| 83.78 \mathrm{k} \Omega=\mathbf{6 6 . 8 2} \mathbf{k} \boldsymbol{\Omega}
$$

$$
A_{\nu}=\frac{\frac{-\beta R_{C}}{Z_{b}}\left(1+\frac{r_{e}}{r_{o}}\right)+\frac{R_{C}}{r_{o}}}{1+\frac{R_{C}}{r_{o}}}
$$

$$
=\frac{\frac{-(80)(5.6 \mathrm{k} \Omega)}{83.78 \mathrm{k} \Omega}\left(1+\frac{7 \Omega}{4 / \mathrm{k} \Omega}\right)+\frac{5.6 \mathrm{k} \Omega}{40 \mathrm{k} \Omega}}{1+5.6 \mathrm{k} \Omega / 40 \mathrm{k} \Omega}
$$

$$
=\frac{-(5.35)+0.14}{1+0.14}
$$

$$
=-4.57
$$

19.

(a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}}{270 \mathrm{k} \Omega+(111)(2.7 \mathrm{k} \Omega)}=\frac{15.3 \mathrm{~V}}{569.7 \mathrm{k} \Omega}$

$$
\begin{aligned}
& =26.86 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(110+1)(26.86 \mu \mathrm{~A}) \\
& =2.98 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.98 \mathrm{~mA}}=\mathbf{8 . 7 2} \Omega \\
\beta r_{e} & =(110)(8.72 \Omega)=\mathbf{9 5 9 . 2} \Omega
\end{aligned}
$$

(b) $Z_{b}=\beta r_{e}+(\beta+1) R_{E}$

$$
\begin{aligned}
& =959.2 \Omega+(111)(2.7 \mathrm{k} \Omega) \\
& =300.66 \mathrm{k} \Omega \\
Z_{i} & =R_{B}\left\|Z_{b}=270 \mathrm{k} \Omega\right\| 300.66 \mathrm{k} \Omega \\
& =142.25 \mathrm{k} \Omega \\
Z_{o} & =R_{E}\left\|r_{e}=2.7 \mathrm{k} \Omega\right\| 8.72 \Omega=\mathbf{8 . 6 9} \Omega
\end{aligned}
$$

(c) $A_{v}=\frac{R_{E}}{R_{E}+r_{e}}=\frac{2.7 \mathrm{k} \Omega}{2.7 \mathrm{k} \Omega+8.69 \Omega} \cong \mathbf{0 . 9 9 7}$
20.
(a) $\quad I_{B}=\frac{V_{C E}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{8 \mathrm{~V}-0.7 \mathrm{~V}}{390 \mathrm{k} \Omega+(121) 5.6 \mathrm{k} \Omega}=6.84 \mu \mathrm{~A}$
$I_{E}=(\beta+1) I_{B}=(121)(6.84 \mu \mathrm{~A})=0.828 \mathrm{~mA}$
$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{0.828 \mathrm{~mA}}=31.4 \Omega$
$r_{o}<10 R_{E}$:
$Z_{b}=\beta r_{e}+\frac{(\beta+1) R_{E}}{1+R_{E} / r_{o}}$
$=(120)(31.4 \Omega)+\frac{(121)(5.6 \mathrm{k} \Omega)}{1+5.6 \mathrm{k} \Omega / 40 \mathrm{k} \Omega}$
$=3.77 \mathrm{k} \Omega+594.39 \mathrm{k} \Omega$
$=598.16 \mathrm{k} \Omega$
$Z_{i}=R_{B}\left\|Z_{b}=390 \mathrm{k} \Omega\right\| 598.16 \mathrm{k} \Omega$
$=236.1 \mathrm{k} \Omega$
$Z_{o} \cong R_{E} \| r_{\mathrm{e}}$
$=5.6 \mathrm{k} \Omega \| 31.4 \Omega$
$=31.2 \Omega$
(b) $A_{v}=\frac{(\beta+1) R_{E} / Z_{b}}{1+R_{E} / r_{o}}$

$$
\begin{aligned}
& =\frac{(121)(5.6 \mathrm{k} \Omega) / 598.16 \mathrm{k} \Omega}{1+5.6 \mathrm{k} \Omega / 40 \mathrm{k} \Omega} \\
& =\mathbf{0 . 9 9 4}
\end{aligned}
$$

(c) $\quad A_{v}=\frac{V_{0}}{V_{i}}=0.994$
$V_{o}=A_{v} V_{i}=(0.994)(1 \mathrm{mV})=\mathbf{0 . 9 9 4} \mathbf{~ m V}$
21. (a) Test $\beta R_{E} \stackrel{?}{\geq} 10 R_{2}$ $(200)(2 \mathrm{k} \Omega) \geq 10(8.2 \mathrm{k} \Omega)$ $400 \mathrm{k} \Omega \geq 82 \mathrm{k} \Omega$ (checks)!

Use approximate approach:

$$
\begin{aligned}
& V_{B}=\frac{8.2 \mathrm{k} \Omega(20 \mathrm{~V})}{8.2 \mathrm{k} \Omega+56 \mathrm{k} \Omega}=2.5545 \mathrm{~V} \\
& V_{E}=V_{B}-V_{B E}=2.5545 \mathrm{~V}-0.7 \mathrm{~V} \cong 1.855 \mathrm{~V} \\
& I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.855 \mathrm{~V}}{2 \mathrm{k} \Omega}=\mathbf{0 . 9 2 7} \mathbf{~ m A} \\
& I_{B}=\frac{I_{E}}{(\beta+1)}=\frac{0.927 \mathrm{~mA}}{(200+1)}=\mathbf{4 . 6 1} \boldsymbol{\mu} \mathbf{A} \\
& I_{C}=\beta I_{B}=(200)(4.61 \mu \mathrm{~A})=\mathbf{0 . 9 2 2} \mathbf{~ m A}
\end{aligned}
$$

(b) $r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{0.927 \mathrm{~mA}}=\mathbf{2 8 . 0 5} \Omega$
(c) $Z_{b}=\beta r_{e}+(\beta+1) R_{E}$

$$
\begin{aligned}
& =(200)(28.05 \Omega)+(200+1) 2 \mathrm{k} \Omega \\
& =5.61 \mathrm{k} \Omega+402 \mathrm{k} \Omega=407.61 \mathrm{k} \Omega \\
Z_{i} & =56 \mathrm{k} \Omega\|8.2 \mathrm{k} \Omega\| 407.61 \mathrm{k} \Omega \\
& =7.15 \mathrm{k} \Omega \| 407.61 \mathrm{k} \Omega \\
& =7.03 \mathrm{k} \Omega
\end{aligned}
$$

$$
Z_{o}=R_{E}\left\|r_{e}=2 \mathrm{k} \Omega\right\| 28.05 \Omega=\mathbf{2 7 . 6 6} \Omega
$$

(d) $A_{v}=\frac{R_{E}}{R_{E}+r_{e}}=\frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+28.05 \Omega}=\mathbf{0 . 9 8 6}$
22.
(a) $I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{6 \mathrm{~V}-0.7 \mathrm{~V}}{6.8 \mathrm{k} \Omega}=0.779 \mathrm{~mA}$
$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{0.779 \mathrm{~mA}}=\mathbf{3 3 . 3 8} \Omega$
(b) $Z_{i}=R_{E}\left\|r_{e}=6.8 \mathrm{k} \Omega\right\| 33.38 \Omega$

$$
=33.22 \Omega
$$

$Z_{o}=R_{C}=4.7 \mathrm{k} \Omega$
(c) $A_{v}=\frac{\alpha R_{C}}{r_{e}}=\frac{(0.998)(4.7 \mathrm{k} \Omega)}{33.38 \Omega}$

$$
=140.52
$$

23. $\alpha=\frac{\beta}{\beta+1}=\frac{75}{76}=0.9868$

$$
\begin{aligned}
& I_{E}=\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{5 \mathrm{~V}-0.7 \mathrm{~V}}{3.9 \mathrm{k} \Omega}=\frac{4.3 \mathrm{~V}}{3.9 \mathrm{k} \Omega}=1.1 \mathrm{~mA} \\
& r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{1.1 \mathrm{~mA}}=23.58 \Omega \\
& A_{\nu}=\alpha \frac{R_{C}}{r_{e}}=\frac{(0.9868)(3.9 \mathrm{k} \Omega)}{23.58 \Omega}=\mathbf{1 6 3 . 2}
\end{aligned}
$$

24.

$$
\text { (a) } \begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{F}+\beta R_{C}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{220 \mathrm{k} \Omega+120(3.9 \mathrm{k} \Omega)} \\
& =16.42 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(120+1)(16.42 \mu \mathrm{~A}) \\
& =1.987 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{1.987 \mathrm{~mA}}=\mathbf{1 3 . 0 8} \Omega
\end{aligned}
$$

(b) $\quad Z_{i}=\beta r_{e} \| \frac{R_{F}}{\left|A_{v}\right|}$

Need A_{ν} !

$$
\begin{aligned}
A_{v} & =\frac{-R_{C}}{r_{e}}=\frac{-3.9 \mathrm{k} \Omega}{13.08 \Omega}=-298 \\
Z_{i} & =(120)(13.08 \Omega) \| \frac{220 \mathrm{k} \Omega}{298} \\
& =1.5696 \mathrm{k} \Omega \| 738 \Omega \\
& =\mathbf{5 0 1 . 9 8} \Omega \\
Z_{o} & =R_{C}\left\|R_{F}=3.9 \mathrm{k} \Omega\right\| 220 \mathrm{k} \Omega \\
& =\mathbf{3 . 8 3} \mathbf{k} \Omega
\end{aligned}
$$

(c) From above, $A_{v}=\mathbf{- 2 9 8}$
25. $A_{v}=\frac{-R_{C}}{r_{e}}=-160$

$$
R_{C}=160\left(r_{e}\right)=160(10 \Omega)=\mathbf{1 . 6} \mathbf{k} \boldsymbol{\Omega}
$$

$$
\begin{aligned}
& A_{i}=\frac{\beta R_{F}}{R_{F}+\beta R_{C}}=19 \Rightarrow 19=\frac{200 R_{F}}{R_{F}+200(1.6 \mathrm{k} \Omega)} \\
& 19 R_{F}+3800 R_{C}=200 R_{F} \\
& R_{F}=\frac{3800 R_{C}}{181}=\frac{3800(1.6 \mathrm{k} \Omega)}{181} \\
&=\mathbf{3 3 . 5 9} \mathbf{~ k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{F}+\beta R_{C}} \\
& I_{B}\left(R_{F}+\beta R_{C}\right)=V_{C C}-V_{B E}
\end{aligned}
$$

and $V_{C C}=V_{B E}+I_{B}\left(R_{F}+\beta R_{C}\right)$
with $I_{E}=\frac{26 \mathrm{mV}}{r_{e}}=\frac{26 \mathrm{mV}}{10 \Omega}=2.6 \mathrm{~mA}$

$$
\begin{aligned}
I_{B} & =\frac{I_{E}}{\beta+1}=\frac{2.6 \mathrm{~mA}}{200+1}=12.94 \mu \mathrm{~A} \\
\therefore V_{C C} & =V_{B E}+I_{B}\left(R_{F}+\beta R_{C}\right) \\
& =0.7 \mathrm{~V}+(12.94 \mu \mathrm{~A})(33.59 \mathrm{k} \Omega+(200)(1.6 \mathrm{k} \Omega)) \\
& =\mathbf{5 . 2 8} \mathbf{V}
\end{aligned}
$$

26.

(a) $A_{\nu}: V_{i}=I_{b} \beta r_{e}+(\beta+1) I_{b} R_{E}$ $I_{o}+I^{\prime}=I_{C}=\beta I_{b}$ but $I_{i}=I^{\prime}+I_{b}$

$$
\text { and } I^{\prime}=I_{i}-I_{b}
$$

Substituting, $I_{o}+\left(I_{i}-I_{b}\right)=\beta I_{b}$

$$
\text { and } I_{o}=(\beta+1) I_{b}-I_{i}
$$

Assuming $(\beta+1) I_{b} \gg I_{i}$

$$
I_{o} \cong(\beta+1) I_{b}
$$

and $V_{o}=-I_{o} R_{C}=-(\beta+1) I_{b} R_{C}$

Therefore, $\frac{V_{o}}{V_{i}}=\frac{-(\beta+1) I_{b} R_{C}}{I_{b} \beta r_{e}+(\beta+1) I_{b} R_{E}}$

$$
\cong \frac{\beta \not \lambda_{b} R_{C}}{\beta \beta \chi_{b} r_{e}+\beta \not \chi_{b} R_{E}}
$$

and $A_{v}=\frac{V_{o}}{V_{i}} \cong-\frac{R_{C}}{r_{e}+R_{E}} \cong-\frac{R_{C}}{R_{E}}$
(b) $\quad V_{i} \cong \beta I_{b}\left(r_{e}+R_{E}\right)$

For $r_{e} \ll R_{E}$
$V_{i} \cong \beta I_{b} R_{E}$
Now $I_{i}=I^{\prime}+I_{b}$

$$
=\frac{V_{i}-V_{o}}{R_{F}}+I_{b}
$$

Since $V_{o} \gg V_{i}$

$$
\begin{aligned}
& I_{i}=-\frac{V_{o}}{R_{F}}+I_{b} \\
& \text { or } I_{b}=I_{i}+\frac{V_{o}}{R_{F}}
\end{aligned}
$$

and $V_{i}=\beta I_{b} R_{E}$

$$
V_{i}=\beta R_{E} I_{i}+\beta \frac{V_{o}}{R_{F}} R_{E}
$$

but $V_{o}=A_{v} V_{i}$
and $V_{i}=\beta R_{E} I_{i}+\frac{\beta A_{v} V_{i} R_{E}}{R_{F}}$
or $\quad V_{i}-\frac{A_{v} \beta R_{E} V_{i}}{R_{F}}=\beta R_{E} I_{i}$

$$
V_{i}\left[1-\frac{A_{v} \beta R_{E}}{R_{F}}\right]=\left[\beta R_{E}\right] I_{i}
$$

so $\quad Z_{i}=\frac{V_{i}}{I_{i}}=\frac{\beta R_{E}}{1-\frac{A_{v} \beta R_{E}}{R_{F}}}=\frac{\beta R_{E} R_{F}}{R_{F}+\beta\left(-A_{v}\right) R_{E}}$

$$
Z_{i}=\frac{V_{i}}{I_{i}}=x \| y \quad \text { where } x=\beta R_{E} \text { and } y=R_{F}| | A_{v} \mid
$$

with $Z_{i}=\frac{x \cdot y}{x+y}=\frac{\left.\left(\beta R_{E}\right)\left(R_{F} / \mid A_{v}\right)\right)}{\beta R_{E}+R_{F} /\left|A_{v}\right|}$

$$
Z_{i} \cong \frac{\beta R_{E} R_{F}}{\beta R_{E}\left|A_{v}\right|+R_{F}}
$$

$Z_{o}:$ Set $V_{i}=0$

$V_{i}=I_{b} \beta r_{e}+(\beta+1) I_{b} R_{E}$
$V_{i} \cong \beta I_{b}\left(r_{e}+R_{E}\right)=0$
since $\beta, r_{e}+R_{E} \neq 0 \quad I_{b}=0$ and $\beta I_{b}=0$

$$
\therefore I_{o}=\frac{V_{o}}{R_{C}}+\frac{V_{o}}{R_{F}}=V_{o}\left[\frac{1}{R_{C}}+\frac{1}{R_{F}}\right]
$$

$$
\text { and } Z_{o}=\frac{V_{o}}{I_{o}}=\frac{1}{\frac{1}{R_{C}}+\frac{1}{R_{F}}}=\frac{R_{C} R_{F}}{R_{C}+R_{F}}=\boldsymbol{R}_{C} \| \boldsymbol{R}_{F}
$$

(c) $A_{\nu} \cong-\frac{R_{C}}{R_{E}}=-\frac{2.2 \mathrm{k} \Omega}{1.2 \mathrm{k} \Omega}=-\mathbf{1 . 8 3}$

$$
\begin{aligned}
Z_{i} & \cong \frac{\beta R_{E} R_{F}}{\beta R_{E}\left|A_{v}\right|+R_{F}}=\frac{(90)(1.2 \mathrm{k} \Omega)(120 \mathrm{k} \Omega)}{(90)(1.2 \mathrm{k} \Omega)(1.83)+120 \mathrm{k} \Omega} \\
& =\mathbf{4 0 . 8} \mathbf{~ k} \Omega \\
Z_{o} & \cong R_{C} \| R_{F} \\
& =2.2 \mathrm{k} \Omega \| 120 \mathrm{k} \Omega \\
& =\mathbf{2 . 1 6} \mathbf{k} \Omega
\end{aligned}
$$

27.

$$
\text { (a) } \begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{F}+\beta R_{C}}=\frac{9 \mathrm{~V}-0.7 \mathrm{~V}}{(39 \mathrm{k} \Omega+22 \mathrm{k} \Omega)+(80)(1.8 \mathrm{k} \Omega)} \\
& =\frac{8.3 \mathrm{~V}}{61 \mathrm{k} \Omega+144 \mathrm{k} \Omega}=\frac{8.3 \mathrm{~V}}{205 \mathrm{k} \Omega}=40.49 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(80+1)(40.49 \mu \mathrm{~A})=3.28 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{3.28 \mathrm{~mA}}=7.93 \Omega \\
Z_{i} & =R_{F_{1}} \| \beta r_{e} \\
& =39 \mathrm{k} \Omega\|(80)(7.93 \Omega)=39 \mathrm{k} \Omega\| 634.4 \Omega=\mathbf{0 . 6 2} \mathbf{~ k} \Omega \\
Z_{o} & =R_{C}\left\|R_{F_{2}}=1.8 \mathrm{k} \Omega\right\| 22 \mathrm{k} \Omega=\mathbf{1 . 6 6} \mathbf{k} \Omega
\end{aligned}
$$

(b) $A_{v}=\frac{-R^{\prime}}{r_{e}}=\frac{-R_{C} \| R_{F_{2}}}{r_{e}}=-\frac{1.8 \mathrm{k} \Omega \| 22 \mathrm{k} \Omega}{7.93 \Omega}$

$$
=\frac{-1.664 \mathrm{k} \Omega}{7.93 \Omega}=\mathbf{- 2 0 9 . 8 2}
$$

28. $A_{i} \cong \beta=60$
29. $A_{i} \cong \beta=100$
30. $A_{i}=-A_{v} Z_{i} / R_{C}=-(-127.6)(1.768 \mathrm{k} \Omega) / 3.9 \mathrm{k} \Omega=\mathbf{5 7 . 8 5}$
31.

(c) $A_{i}=\frac{\beta R_{B}}{R_{B}+Z_{b}}=\frac{(140)(390 \mathrm{k} \Omega)}{390 \mathrm{k} \Omega+0.746 \mathrm{k} \Omega}=\mathbf{1 3 9 . 7 3}$
(d) $A_{i}=-A_{v} \frac{Z_{i}}{R_{C}}=-(-370.79)(746.17 \Omega) / 2.2 \mathrm{k} \Omega$

$$
=125.76
$$

32. $A_{i}=-A_{i} Z_{i} / R_{E}=-(0.986)(7.03 \mathrm{k} \Omega) / 2 \mathrm{k} \Omega=\mathbf{- 3 . 4 7}$
33. $A_{i}=\frac{I_{o}}{I_{i}}=\frac{\alpha I_{e}}{I_{e}}=\alpha=\mathbf{0 . 9 8 6 8} \cong 1$
34. $A_{i}=-A_{V} Z_{i} / R_{C}=-(-298)(501.98 \Omega) / 3.9 \mathrm{k} \Omega=\mathbf{3 8 . 3 7}$
35. $A_{i}=-A_{v} \frac{Z_{i}}{R_{C}}=\frac{-(-209.82)(0.62 \mathrm{k} \Omega)}{1.8 \mathrm{k} \Omega}=\mathbf{7 2 . 2 7}$
36.

> (a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{18 \mathrm{~V}-0.7 \mathrm{~V}}{680 \mathrm{k} \Omega}=25.44 \mu \mathrm{~A}$
> $I_{E}=(\beta+1) I_{B}=(100+1)(25.44 \mu \mathrm{~A})$
> $=2.57 \mathrm{~mA}$
> $r_{e}=\frac{26 \mathrm{mV}}{2.57 \mathrm{~mA}}=10.116 \Omega$
> $A_{v_{\mathrm{NL}}}=-\frac{R_{C}}{r_{e}}=-\frac{3.3 \mathrm{k} \Omega}{10.116 \Omega}=\mathbf{- 3 2 6 . 2 2}$
> $Z_{i}=R_{B}\left\|\beta r_{e}=680 \mathrm{k} \Omega\right\|(100)(10.116 \Omega)$
> $=680 \mathrm{k} \Omega \| 1,011.6 \Omega$ $=1.01 \mathrm{k} \Omega$
$Z_{o}=R_{C}=\mathbf{3 . 3} \mathbf{~ k} \boldsymbol{\Omega}$
(b) -
(c) $\quad A_{v_{L}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{N L}}=\frac{4.7 \mathrm{k} \Omega}{4.7 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}(-326.22)$

$$
=-191.65
$$

(d) $A_{i_{L}}=-A_{v_{L}} \frac{Z_{i}}{R_{L}}=-(-191.65) \frac{(1.01 \mathrm{k} \Omega)}{4.7 \mathrm{k} \Omega}$

$$
=41.18
$$

(e) $A_{v_{L}}=\frac{V_{o}}{V_{i}}=\frac{-\beta Y_{b}\left(R_{C} \| R_{L}\right)}{\chi_{b}\left(\beta r_{e}\right)}=\frac{-\chi 00(1.939 \mathrm{k} \Omega)}{\not 00(10.116 \Omega)}$

$$
\begin{aligned}
& =\mathbf{- 1 9 1 . 9 8} \\
Z_{i} & =R_{B} \| \beta r_{e}=\mathbf{1 . 0 1} \mathbf{~} \Omega \\
I_{L}= & \frac{R_{C}\left(\beta I_{b}\right)}{R_{C}+R_{L}}=41.25 I_{b} \\
I_{b}= & \frac{R_{B} I_{i}}{R_{B}+\beta r_{e}}=0.9985 I_{i} \\
A_{i_{L}} & =\frac{I_{o}}{I_{i}}=\frac{I_{L}}{I_{i}}=\frac{I_{L}}{I_{b}} \cdot \frac{I_{b}}{I_{i}}=(41.25)(0.9985) \\
& =\mathbf{4 1 . 1 9} \\
Z_{o}= & R_{C}=\mathbf{3 . 3} \mathbf{~ k} \boldsymbol{\Omega}
\end{aligned}
$$

37. (a) $A_{v_{N L}}=-326.22$
$A_{v_{L}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{M L}}$
$R_{L}=4.7 \mathrm{k} \Omega: \quad A_{v_{L}}=\frac{4.7 \mathrm{k} \Omega}{4.7 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}(-326.22)=\mathbf{- 1 9 1 . 6 5}$
$R_{L}=2.2 \mathrm{k} \Omega: \quad A_{v_{L}}=\frac{2.2 \mathrm{k} \Omega}{2.2 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}(-326.22)=\mathbf{- 1 3 0 . 4 9}$
$R_{L}=0.5 \mathrm{k} \Omega: \quad A_{v_{L}}=\frac{0.5 \mathrm{k} \Omega}{0.5 \mathrm{k} \Omega+2.3 \mathrm{k} \Omega}(-326.22)=\mathbf{- 4 2 . 9 2}$
As $R_{L} \downarrow, A_{v_{L}} \downarrow$
(b) No change for Z_{i}, Z_{o}, and $A_{v_{N L}}$!
38.

$$
\text { (a) } \begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{M} \Omega}=11.3 \mu \mathrm{~A} \\
& I_{E}=(\beta+1) I_{B}=(181)(11.3 \mu \mathrm{~A})=2.045 \mathrm{~mA} \\
& r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.045 \mathrm{~mA}}=12.71 \Omega \\
& A_{V_{N L}}=-\frac{R_{C}}{r_{e}}=-\frac{3 \mathrm{k} \Omega}{12.71 \Omega}=\mathbf{- 2 3 6}
\end{aligned}
$$

$Z_{i}=R_{B}\left\|\beta r_{e}=1 \mathrm{M} \Omega\right\|(180)(12.71 \Omega)=1 \mathrm{M} \Omega \| 2.288 \mathrm{k} \Omega$
$=2.283 \mathrm{k} \Omega$
$Z_{o}=R_{C}=\mathbf{3} \mathbf{k} \boldsymbol{\Omega}$
(b) -
(c) No-load: $A_{v}=A_{v_{M L}}=\mathbf{- 2 3 6}$
(d) $A_{v_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}} A_{v_{M L}}=\frac{2.283 \mathrm{k} \Omega(-236)}{2.283 \mathrm{k} \Omega+0.6 \mathrm{k} \Omega}$

$$
=-186.9
$$

(e) $V_{o}=-I_{o} R_{C}=-\beta I_{b} R_{C}$

$$
V_{i}=I_{b} \beta r_{e}
$$

$$
A_{v}=\frac{V_{o}}{V_{i}}=-\frac{\beta I_{b} R_{C}}{\beta I_{b} r_{e}}=-\frac{R_{C}}{r_{e}}=-\frac{3 \mathrm{k} \Omega}{12.71 \Omega}=-236
$$

$$
A_{v_{s}}=\frac{V_{o}}{V_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}
$$

$$
V_{i}=\frac{\left(1 \mathrm{M} \Omega \| \beta r_{e}\right) V_{s}}{\left(1 \mathrm{M} \Omega \| \beta r_{e}\right)+R_{s}}=\frac{2.288 \mathrm{k} \Omega\left(V_{s}\right)}{2.288 \mathrm{k} \Omega+0.6 \mathrm{k} \Omega}=0.792 V_{s}
$$

$$
A_{v_{s}}=(-236)(0.792)
$$

$$
=-186.9 \text { (same results) }
$$

(f) No change!
(g) $A_{v_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}\left(A_{v_{V_{L I}}}\right)=\frac{2.283 \mathrm{k} \Omega(-236)}{2.283 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=\mathbf{- 1 6 4 . 1}$

$$
R_{s} \uparrow, \quad A_{v_{s}} \downarrow
$$

(h) No change!
39.
(a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{24 \mathrm{~V}-0.7 \mathrm{~V}}{500 \mathrm{k} \Omega}=41.61 \mu \mathrm{~A}$
$I_{E}=(\beta+1) I_{B}=(80+1)(41.61 \mu \mathrm{~A})=3.37 \mathrm{~mA}$
$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{3.37 \mathrm{~mA}}=7.715 \Omega$
$A_{v_{M L}}=-\frac{R_{L}}{r_{e}}=-\frac{4.3 \mathrm{k} \Omega}{7.715 \Omega}=\mathbf{- 5 5 7 . 3 6}$
$Z_{i}=R_{B}\left\|\beta r_{e}=560 \mathrm{k} \Omega\right\|(80)(7.715 \Omega)$

$$
=560 \mathrm{k} \Omega \| 617.2 \Omega
$$

$$
=616.52 \Omega
$$

$Z_{o}=R_{C}=4.3 \mathrm{k} \Omega$
(b) -
(c) $A_{v_{L}}=\frac{V_{o}}{V_{i}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{M L}}=\frac{2.7 \mathrm{k} \Omega(-557.36)}{2.7 \mathrm{k} \Omega+4.3 \mathrm{k} \Omega}$

$$
=-214.98
$$

$$
A_{v_{s}}=\frac{V_{o}}{V_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}
$$

$$
V_{i}=\frac{Z_{i} V_{s}}{Z_{i}+R_{s}}=\frac{616.52 \Omega V_{s}}{616.52 \Omega+1 \mathrm{k} \Omega}=0.381 V_{s}
$$

$$
A_{v_{s}}=(-214.98)(0.381)
$$

$$
=-81.91
$$

(d) $A_{i_{s}}=-A_{v_{s}}\left(\frac{R_{s}+Z_{i}}{R_{L}}\right)=-(-81.91)\left(\frac{1 \mathrm{k} \Omega+616.52 \Omega}{2.7 \mathrm{k} \Omega}\right)$

$$
=49.04
$$

(e) $\quad A_{v_{L}}=\frac{V_{o}}{V_{i}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{N L}}=\frac{5.6 \mathrm{k} \Omega(-557.36)}{5.6 \mathrm{k} \Omega+4.3 \mathrm{k} \Omega}=-315.27$

$$
\begin{aligned}
& \frac{V_{i}}{V_{s}} \text { the same }=0.381 \\
A_{v_{s}}= & \frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}=(-315.27)(0.381)=\mathbf{- 1 2 0 . 1 2}
\end{aligned}
$$

As $R_{L} \uparrow, A_{v_{s}} \uparrow$
(f) $A_{v_{L}}$ the same $=-214.98$
$\frac{V_{i}}{V_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{616.52 \Omega}{616.52 \Omega+0.5 \mathrm{k} \Omega}=0.552$
$A_{v_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}=(-214.98)(0.552)=\mathbf{- 1 1 8 . 6 7}$
As $R_{s} \downarrow, A_{v_{s}} \uparrow$
(g) No change!
40. (a) Exact analysis:

$$
\begin{aligned}
E_{T h} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C}=\frac{16 \mathrm{k} \Omega(16 \mathrm{~V})}{68 \mathrm{k} \Omega+16 \mathrm{k} \Omega}=3.048 \mathrm{~V} \\
R_{T h} & =R_{1}\left\|R_{2}=68 \mathrm{k} \Omega\right\| 16 \mathrm{k} \Omega=12.95 \mathrm{k} \Omega \\
I_{B} & =\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{3.048 \mathrm{~V}-0.7 \mathrm{~V}}{12.95 \mathrm{k} \Omega+(101)(0.75 \mathrm{k} \Omega)} \\
& =26.47 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(101)(26.47 \mu \mathrm{~A}) \\
& =2.673 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.673 \mathrm{~mA}}=9.726 \Omega \\
A_{v_{N L}} & =\frac{-R_{C}}{r_{e}}=-\frac{2.2 \mathrm{k} \Omega}{9.726 \Omega}=\mathbf{- 2 2 6 . 2} \\
Z_{i} & =68 \mathrm{k} \Omega\|16 \mathrm{k} \Omega\| \beta r_{e} \\
& =12.95 \mathrm{k} \Omega \|(100)(9.726 \Omega) \\
& =12.95 \mathrm{k} \Omega \| 972.6 \Omega \\
& =\mathbf{9 0 4 . 6 6 \Omega} \\
Z_{o} & =R_{C}=\mathbf{2 . 2} \mathbf{~ k} \Omega
\end{aligned}
$$

(b) -
(c) $A_{v_{L}}=\frac{R_{L}}{R_{L}+Z_{o}}\left(A_{v_{N L}}\right)=\frac{5.6 \mathrm{k} \Omega(-226.2)}{5.6 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=\mathbf{- 1 6 2 . 4}$
(d) $A_{i_{L}}=-A_{v_{L}} \frac{Z_{i}}{R_{L}}$

$$
=-(-162.4) \frac{(904.66 \Omega)}{5.6 \mathrm{k} \Omega}
$$

$$
=26.24
$$

(e) $\quad A_{\nu_{L}}=\frac{-R_{C} \| R_{e}}{r_{e}}=\frac{-2.2 \mathrm{k} \Omega \| 5.6 \mathrm{k} \Omega}{9.726 \Omega}$

$$
=-162.4
$$

$Z_{i}=68 \mathrm{k} \Omega\|16 \mathrm{k} \Omega\| \underbrace{972.6 \Omega}_{\beta r_{e}}$

$$
=904.66 \Omega
$$

$A_{i_{L}}=-A_{v_{L}} \frac{Z_{i}}{R_{L}}$

$$
=\frac{(-162.4)(904.66 \Omega)}{5.6 \mathrm{k} \Omega}
$$

$$
=26.24
$$

$Z_{o}=R_{C}=2.2 \mathrm{k} \Omega$
Same results!
41.
(b) Unaffected!
42.

$$
\text { (a) } \begin{aligned}
I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{18 \mathrm{~V}-0.7 \mathrm{~V}}{680 \mathrm{k} \Omega+(111)(0.82 \mathrm{k} \Omega)} \\
& =22.44 \mu \mathrm{~A} \\
I_{E} & =(\beta+1) I_{B}=(110+1)(22.44 \mu \mathrm{~A}) \\
& =2.49 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.49 \mathrm{~mA}}=10.44 \Omega \\
A_{v_{N L}} & =-\frac{R_{C}}{r_{e}+R_{E}}=-\frac{3 \mathrm{k} \Omega}{10.44 \Omega+0.82 \mathrm{k} \Omega} \\
& =-\mathbf{3 . 6 1} \\
Z_{i} \cong R_{B} \| Z_{b} & =680 \mathrm{k} \Omega \|\left(\beta r_{e}+(\beta+1) R_{E}\right) \\
& =680 \mathrm{k} \Omega \|(610)(10.44 \Omega)+(110+1)(0.82 \mathrm{k} \Omega) \\
& =680 \mathrm{k} \Omega \| 92.17 \mathrm{k} \Omega \\
& =\mathbf{8 1 . 1 7} \mathbf{k} \Omega
\end{aligned}
$$

$Z_{o} \cong R_{C}=\mathbf{3} \mathbf{k} \Omega$
(b) -

> (a) $A_{v_{L}}=\frac{R_{L}}{R_{L}+Z_{o}} A_{v_{M L}}$
> $R_{L}=4.7 \mathrm{k} \Omega: \quad A_{v_{L}}=\frac{4.7 \mathrm{k} \Omega}{4.7 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}(-226.4)=\mathbf{- 1 5 4 . 2}$
> $R_{L}=2.2 \mathrm{k} \Omega: \quad A_{v_{L}}=\frac{2.2 \mathrm{k} \Omega}{2.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}(-226.4)=\mathbf{- 1 1 3 . 2}$
> $R_{L}=0.5 \mathrm{k} \Omega: \quad A_{v_{L}}=\frac{0.5 \mathrm{k} \Omega}{0.5 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}(-226.4)=\mathbf{- 4 1 . 9 3}$
> $R_{L} \downarrow, A_{v_{L}} \downarrow$
(c) $A_{v_{L}}=\frac{V_{o}}{V_{i}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{N L}}=\frac{4.7 \mathrm{k} \Omega(-3.61)}{4.7 \mathrm{k} \Omega+3 \mathrm{k} \Omega}$

$$
=-2.2
$$

$$
A_{v_{s}}=\frac{V_{o}}{V_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}
$$

$$
V_{i}=\frac{Z_{i} V_{s}}{Z_{i}+R_{s}}=\frac{81.17 \mathrm{k} \Omega\left(V_{s}\right)}{81.17 \mathrm{k} \Omega+0.6 \mathrm{k} \Omega}=0.992 V_{s}
$$

$$
A_{v_{s}}=(-2.2)(0.992)
$$

$$
=-2.18
$$

(d) None!
(e) $A_{v_{L}}-$ none!

$$
\begin{aligned}
\frac{V_{i}}{V_{s}} & =\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{81.17 \mathrm{k} \Omega}{81.17 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=0.988 \\
A_{v_{s}} & =(-2.2)(0.988) \\
& =\mathbf{- 2 . 1 7}
\end{aligned}
$$

$R_{s} \uparrow, A_{v_{s}} \downarrow$, (but only slightly for moderate changes in R_{s} since Z_{i} is typically much larger than R_{s})
43. Using the exact approach:

$$
\begin{aligned}
I_{B} & =\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}} & E_{T h} & =\frac{R_{2}}{R_{1}+R_{2}} V_{C C} \\
& =\frac{2.33 \mathrm{~V}-0.7 \mathrm{~V}}{10.6 \mathrm{k} \Omega+(121)(1.2 \mathrm{k} \Omega)} & & =\frac{12 \mathrm{k} \Omega}{91 \mathrm{k} \Omega+12 \mathrm{k} \Omega}(20 \mathrm{~V})=2.33 \mathrm{~V} \\
& =10.46 \mu \mathrm{~A} & R_{T h} & =R_{1}\left\|R_{2}=91 \mathrm{k} \Omega\right\| 12 \mathrm{k} \Omega=10.6 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
I_{E} & =(\beta+1) I_{B}=(121)(10.46 \mu \mathrm{~A}) \\
& =1.266 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{1.266 \mathrm{~mA}}=20.54 \Omega
\end{aligned}
$$

(a) $A_{v_{M L}} \cong \frac{R_{E}}{r_{e}+R_{E}}=\frac{1.2 \mathrm{k} \Omega}{20.54 \Omega+1.2 \mathrm{k} \Omega}=\mathbf{0 . 9 8 3}$

$$
Z_{i}=R_{1}\left\|R_{2}\right\|\left(\beta r_{e}+(\beta+1) R_{E}\right)
$$

$$
=91 \mathrm{k} \Omega\|12 \mathrm{k} \Omega\|((120)(20.54 \Omega)+(120+1)(1.2 \mathrm{k} \Omega))
$$

$$
=10.6 \mathrm{k} \Omega \|(2.46 \mathrm{k} \Omega+145.2 \mathrm{k} \Omega)
$$

$$
=10.6 \mathrm{k} \Omega \| 147.66 \mathrm{k} \Omega
$$

$$
=9.89 \mathrm{k} \Omega
$$

$$
Z_{o}=R_{E}\left\|r_{e}=1.2 \mathrm{k} \Omega\right\| 20.54 \Omega
$$

$$
=20.19 \Omega
$$

(b) -
(c) $\quad A_{v_{L}}=\frac{R_{L}}{R_{L}+Z_{o}} A_{v_{M L}}=\frac{2.7 \mathrm{k} \Omega(0.983)}{2.7 \mathrm{k} \Omega+20.19 \Omega}$

$$
=0.976
$$

$$
A_{v_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}} A_{v_{L}}=\frac{9.89 \mathrm{k} \Omega(0.976)}{9.89 \mathrm{k} \Omega+0.6 \mathrm{k} \Omega}
$$

$$
=0.92
$$

(d) $A_{v_{L}}=0.976$ (unaffected by change in R_{s})

$$
\begin{aligned}
& A_{v_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}} A_{v_{L}}=\frac{9.89 \mathrm{k} \Omega(0.976)}{9.89 \mathrm{k} \Omega+1 \mathrm{k} \Omega} \\
&=\mathbf{0 . 8 8 6}\left(\text { vs. } 0.92 \text { with } R_{s}=0.6 \mathrm{k} \Omega\right) \\
& \text { As } R_{s} \uparrow, A_{v_{s}} \downarrow
\end{aligned}
$$

(e) Changing R_{s} will have no effect on $A_{v_{M}}, Z_{i}$, or Z_{o}.
(f) $\quad A_{v_{L}}=\frac{R_{L}}{R_{L}+Z_{o}}\left(A_{v_{N L}}\right)=\frac{5.6 \mathrm{k} \Omega(0.983)}{5.6 \mathrm{k} \Omega+20.19 \Omega}$

$$
=\mathbf{0 . 9 7 9} \text { (vs. } 0.976 \text { with } R_{L}=2.7 \mathrm{k} \Omega \text {) }
$$

$A_{v_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}\left(A_{v_{L}}\right)=\frac{9.89 \mathrm{k} \Omega(0.979)}{9.89 \mathrm{k} \Omega+0.6 \mathrm{k} \Omega}$

$$
=\mathbf{0 . 9 2 3}\left(\text { vs. } 0.92 \text { with } R_{L}=2.7 \mathrm{k} \Omega\right)
$$

As $R_{L} \uparrow, A_{v_{L}} \uparrow, A_{v_{s}} \uparrow$
44.

$$
\text { (a) } \begin{aligned}
I_{E} & =\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{6 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega} \\
& =2.41 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.41 \mathrm{~mA}}=10.79 \Omega \\
A_{v_{\mathrm{NL}}} & =\frac{R_{C}}{r_{e}}=\frac{4.7 \mathrm{k} \Omega}{10.79 \Omega}=\mathbf{4 3 5 . 5 9} \\
Z_{i} & =R_{E}\left\|r_{e}=2.2 \mathrm{k} \Omega\right\| 10.79 \Omega=\mathbf{1 0 . 7 4} \Omega \\
Z_{o} & =R_{C}=\mathbf{4 . 7} \mathbf{~ k} \Omega
\end{aligned}
$$

(b) -
(c) $A_{v_{L}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{M L}}=\frac{5.6 \mathrm{k} \Omega(435.59)}{5.6 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}=\mathbf{2 3 6 . 8 3}$
$V_{i}=\frac{Z_{i}}{Z_{i}+R_{s}} V_{s}=\frac{10.74 \Omega\left(V_{s}\right)}{10.74 \Omega+100 \Omega}=0.097 V_{s}$
$A_{v_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}=(236.83)(0.097)$

$$
=22.97
$$

(d) $V_{i}=I_{e} \cdot r_{e}$

$$
V_{o}=-I_{o} R_{L}
$$

$$
\begin{gathered}
I_{o}=\frac{-4.7 \mathrm{k} \Omega\left(I_{e}\right)}{4.7 \mathrm{k} \Omega+5.6 \mathrm{k} \Omega}=-0.4563 I_{e} \\
A_{v_{L}}=\frac{V_{o}}{V_{i}}=\frac{+\left(0.4563 I_{e}\right) R_{L}}{/ I_{e} \cdot r_{e}}=\frac{0.4563(5.6 \mathrm{k} \Omega)}{10.79 \Omega} \\
=\mathbf{2 3 6 . 8 2}(\mathrm{vs} .236 .83 \text { for part c) }
\end{gathered}
$$

$$
\begin{aligned}
& A_{v_{s}}: 2.2 \mathrm{k} \Omega \| 10.79 \Omega=10.74 \Omega \\
& \qquad \begin{aligned}
V_{i} & =\frac{Z_{i}}{Z_{i}+R_{s}} \cdot V_{s}=\frac{10.74 \Omega\left(V_{s}\right)}{10.74 \Omega+100 \Omega}=0.097 V_{s} \\
A_{v_{s}} & =\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}=(236.82)(0.097) \\
& =\mathbf{2 2 . 9 7} \text { (same results) }
\end{aligned} .
\end{aligned}
$$

(e) $A_{v_{L}}=\frac{R_{L}}{R_{L}+R_{o}} A_{v_{N L}}=\frac{2.2 \mathrm{k} \Omega}{2.2 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}$ (435.59)

$$
=138.88
$$

$A_{v_{s}}=\frac{V_{0}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}, \frac{V_{i}}{V_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{10.74 \Omega}{10.74 \Omega+500 \Omega}=0.021$
$A_{v_{s}}=(138.88)(0.021)=\mathbf{2 . 9 2}$
$A_{v_{s}}$ very sensitive to increase in R_{s} due to relatively small $Z_{i} ; R_{s} \uparrow, A_{v_{s}} \downarrow$
$A_{v_{L}}$ sensitive to $R_{L} ; R_{L} \downarrow, A_{v_{L}} \downarrow$
(f) $Z_{o}=R_{C}=4.7 \mathbf{k} \Omega$ unaffected by value of $R_{s}!$
(g) $Z_{i}=R_{E} \| r_{e}=10.74 \Omega$ unaffected by value of R_{L} !
45.
(a) $\quad A_{v_{1}}=\frac{R_{L} A_{v_{N L}}}{R_{L}+R_{o}}=\frac{1 \mathrm{k} \Omega(-420)}{1 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}=\mathbf{- 9 7 . 6 7}$

$$
A_{v_{2}}=\frac{R_{L} A_{v_{N L}}}{R_{L}+R_{o}}=\frac{2.7 \mathrm{k} \Omega(-420)}{2.7 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}=\mathbf{- 1 8 9}
$$

(b) $A_{v_{L}}=A_{v_{1}} \cdot A_{v_{2}}=(-97.67)(-189)=\mathbf{1 8 . 4 6} \times \mathbf{1 0}^{\mathbf{3}}$

$$
\begin{aligned}
\begin{aligned}
A_{v_{s}}=\frac{V_{o}}{V_{s}} & =\frac{V_{o}}{V_{i_{2}}} \cdot \frac{V_{o_{1}}}{V_{i_{1}}} \cdot \frac{V_{i_{1}}}{V_{s}} \\
& =A_{v_{2}} \cdot A_{v_{1}} \cdot \frac{V_{i}}{V_{s}} \\
V_{i} & =\frac{Z_{i} V_{s}}{Z_{i}+R_{s}}=\frac{1 \mathrm{k} \Omega\left(V_{s}\right)}{1 \mathrm{k} \Omega+0.6 \mathrm{k} \Omega}=0.625 \\
A_{v_{s}}= & (-189)(-97.67)(0.625) \\
= & \mathbf{1 1 . 5 4} \times \mathbf{1 0}^{3}
\end{aligned}
\end{aligned}
$$

(c) $A_{i_{1}}=-\frac{A_{v} Z_{i}}{R_{L}}=\frac{-(-97.67)(1 \mathrm{k} \Omega)}{1 \mathrm{k} \Omega}=\mathbf{9 7 . 6 7}$

$$
A_{i_{2}}=\frac{-A_{v} Z_{i}}{R_{L}}=\frac{-(-189)(1 \mathrm{k} \Omega)}{2.7 \mathrm{k} \Omega}=\mathbf{7 0}
$$

(d) $A_{i_{L}}=A_{i_{1}} \cdot A_{i_{2}}=(97.67)(70)=\mathbf{6 . 8 4} \times \mathbf{1 0}^{\mathbf{3}}$
(e) No effect!
(f) No effect!
(g) In phase
46.

$$
\text { (a) } \begin{aligned}
A_{v_{1}} & =\frac{Z_{i_{2}}}{Z_{i_{2}}+Z_{o_{1}}} A_{v_{1, N L}}=\frac{1.2 \mathrm{k} \Omega}{1.2 \mathrm{k} \Omega+20 \Omega} \text { (1) } \\
& =0.984 \\
A_{v_{2}} & =\frac{R_{L}}{R_{L}+Z_{o_{2}}} A_{v_{2 N L}}=\frac{2.2 \mathrm{k} \Omega}{2.2 \mathrm{k} \Omega+4.6 \mathrm{k} \Omega}(-640) \\
& =\mathbf{- 2 0 7 . 0 6}
\end{aligned}
$$

(b) $A_{v_{L}}=A_{v_{1}} \cdot A_{v_{2}}=(0.984)(-207.06)$

$$
\begin{aligned}
& =-203.74 \\
v_{s} & =\frac{Z_{i}}{Z_{i}+R_{s}} A_{v_{L}}
\end{aligned}
$$

$$
=\frac{50 \mathrm{k} \Omega}{50 \mathrm{k} \Omega+1 \mathrm{k} \Omega}(-203.74)
$$

$$
=-199.75
$$

(c) $A_{i_{1}}=-A_{v_{1}} \frac{Z_{i_{1}}}{Z_{i_{2}}}$

$$
=-(0.984) \frac{(50 \mathrm{k} \Omega)}{1.2 \mathrm{k} \Omega}
$$

$$
=-41
$$

$$
A_{i_{2}}=-A_{v_{2}} \frac{Z_{i_{2}}}{R_{L}}
$$

$$
=-(-207.06) \frac{(1.2 \mathrm{k} \Omega)}{2.2 \mathrm{k} \Omega}
$$

$$
=112.94
$$

(d) $A_{i_{L}}=-A_{v_{L}} \frac{Z_{i_{1}}}{R_{L}}$

$$
\begin{aligned}
& =-(-203.74) \frac{(50 \mathrm{k} \Omega)}{2.2 \mathrm{k} \Omega} \\
& =\mathbf{4 . 6 3} \times \mathbf{1 0}^{\mathbf{3}}
\end{aligned}
$$

(e) A load on an emitter-follower configuration will contribute to the emitter resistance (in fact, lower the value) and therefore affect Z_{i} (reduce its magnitude).
(f) The fact that the second stage is a CE amplifier will isolate Z_{o} from the first stage and R_{s}.
(g) The emitter-follower has zero phase shift while the common-emitter amplifier has a 180° phase shift. The system, therefore, has a total phase shift of 180° as noted by the negative sign in front of the gain for $A_{v_{T}}$ in part b.
47. For each stage:

$$
\begin{aligned}
& V_{B}=\frac{6.2 \mathrm{k} \Omega}{24 \mathrm{k} \Omega+6.2 \mathrm{k} \Omega}(15 \mathrm{~V})=3.08 \mathrm{~V} \\
& V_{E}=V_{B}-0.7 \mathrm{~V}=3.08 \mathrm{~V}-0.7 \mathrm{~V}=2.38 \mathrm{~V} \\
& I_{E} \cong I_{C}=\frac{V_{E}}{R_{E}}=\frac{2.38 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=1.59 \mathrm{~mA} \\
& V_{C}=V_{C C}-I_{C} R_{C}=15 \mathrm{~V}-(1.59 \mathrm{~mA})(5.1 \mathrm{k} \Omega) \\
&=\mathbf{6 . 8 9 ~ V}
\end{aligned}
$$

48. $r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{1.59 \mathrm{~mA}}=16.35 \Omega$

$$
\begin{gathered}
R_{i_{2}}=R_{1}\left\|R_{2}\right\| \beta r_{e}=6.2 \mathrm{k} \Omega\|24 \mathrm{k} \Omega\|(150)(16.35 \Omega) \\
=1.64 \mathrm{k} \Omega \\
A_{v_{1}}=-\frac{R_{C} \| R_{i_{2}}}{r_{e}}=\frac{5.1 \mathrm{k} \Omega \| 1.64 \mathrm{k} \Omega}{16.35 \Omega}=\mathbf{- 7 5 . 8} \\
A_{v_{2}}=-\frac{R_{C}}{r_{e}}=\frac{-5.1 \mathrm{k} \Omega}{16.35 \Omega}=\mathbf{- 3 1 1 . 9} \\
A_{v}=A_{v_{1}} A_{v_{2}}=(-75.8)(-311.9)=\mathbf{2 3 , 6 4 2}
\end{gathered}
$$

49. $\quad V_{B_{1}}=\frac{3.9 \mathrm{k} \Omega}{3.9 \mathrm{k} \Omega+6.2 \mathrm{k} \Omega+7.5 \mathrm{k} \Omega}(20 \mathrm{~V})=4.4 \mathrm{~V}$
$V_{B_{2}}=\frac{6.2 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega}{3.9 \mathrm{k} \Omega+6.2 \mathrm{k} \Omega+7.5 \mathrm{k} \Omega}(20 \mathrm{~V})=\mathbf{1 1 . 4 8} \mathbf{V}$
$V_{E_{1}}=V_{B_{1}}-0.7 \mathrm{~V}=4.4 \mathrm{~V}-0.7 \mathrm{~V}=3.7 \mathrm{~V}$
$I_{C_{1}} \cong I_{E_{1}}=\frac{V_{E_{1}}}{R_{E}}=\frac{3.7 \mathrm{~V}}{1 \mathrm{k} \Omega}=3.7 \mathrm{~mA} \cong I_{E_{2}} \cong I_{C_{2}}$
$V_{C_{2}}=V_{C C}-I_{C} R_{C}=20 \mathrm{~V}-(3.7 \mathrm{~mA})(1.5 \mathrm{k} \Omega)$

$$
=14.45 \mathrm{~V}
$$

50. $r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{3.7 \mathrm{~mA}}=7 \Omega$

$$
\begin{aligned}
& A_{v_{1}}=-\frac{r_{e}}{r_{e}}=\mathbf{- 1} \\
& A_{v_{2}}=\frac{R_{E}}{r_{e}}=\frac{1.5 \mathrm{k} \Omega}{7 \Omega} \cong \mathbf{2 1 4} \\
& A_{v_{T}}=A_{v_{v_{1}}} A_{v_{2}}=(-1)(214)=\mathbf{- 2 1 4} \\
& V_{o}=A_{v_{T}} V_{i}=(-214)(10 \mathrm{mV})=\mathbf{- 2 . 1 4 ~ V}
\end{aligned}
$$

51. $R_{o}=R_{D}=1.5 \mathrm{k} \Omega \quad\left(V_{o}(\right.$ from problem 50$\left.)=-2.14 \mathrm{~V}\right)$
$V_{o}($ load $)=\frac{R_{L}}{R_{o}+R_{L}}\left(V_{o}\right)=\frac{10 \mathrm{k} \Omega}{10 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega}(-2.14 \mathrm{~V})$

$$
=-1.86 \mathrm{~V}
$$

52. $\quad I_{B}=\frac{V_{C C}-V_{B E}}{\beta_{D} R_{E}+R_{B}}=\frac{(16 \mathrm{~V}-1.6 \mathrm{~V})}{(6000)(510 \Omega)+2.4 \mathrm{M} \Omega}$

$$
\begin{aligned}
& \quad=\frac{14.4 \mathrm{~V}}{5.46 \mathrm{M} \Omega}=2.64 \mu \mathrm{~A} \\
& I_{C} \cong I_{E}=\beta_{D} I_{B}=6000(2.64 \mu \mathrm{~A})=\mathbf{1 5 . 8} \mathbf{~ m A} \\
& V_{E}=I_{E} R_{E}=(15.8 \mathrm{~mA})(510 \Omega)=\mathbf{8 . 0 6} \mathbf{~ V}
\end{aligned}
$$

53. From problem $69, I_{E}=15.8 \mathrm{~mA}$

$$
\begin{aligned}
& r_{e}=\frac{26}{I_{E}}=\frac{26 \mathrm{~V}}{15.8 \mathrm{~mA}}=1.65 \Omega \\
& A_{v}=\frac{R_{E}}{r_{e}+R_{E}}=\frac{510 \Omega}{1.65 \Omega+510 \Omega}=\mathbf{0 . 9 9 7} \approx 1
\end{aligned}
$$

54. dc: $\quad I_{B} \cong \frac{V_{C C}-V_{B E}}{R_{B}+\beta_{D} R_{E}}=\frac{16 \mathrm{~V}-1.6 \mathrm{~V}}{2.4 \mathrm{M} \Omega+(6000)(510 \Omega)}=2.64 \mu \mathrm{~A}$

$$
\begin{aligned}
& I_{C}=\beta_{D} I_{B}=(6000)(2.64 \mu \mathrm{~A})=15.84 \mathrm{~mA} \\
& r_{e_{2}}=\frac{26 \mathrm{mV}}{I_{E_{2}}}=\frac{26 \mathrm{mV}}{15.84 \mathrm{~mA}}=1.64 \Omega
\end{aligned}
$$

ac: $\quad Z_{i} \cong \beta_{D} r_{e_{2}}=(6000)(1.64 \Omega)=9.84 \mathrm{k} \Omega$

$$
\begin{aligned}
I_{b_{1}} & =\frac{V_{i}}{9.84 \mathrm{k} \Omega} \\
V_{o} & =\left(-\beta_{D} I_{b_{1}}\right)\left(R_{C}\right)=-(6000)\left(\frac{V_{i}}{9.84 \mathrm{k} \Omega}\right)(200 \Omega) \\
& =-121.95 \mathrm{Vi}
\end{aligned}
$$

and $A_{v}=\frac{V_{o}}{V_{i}} \cong \mathbf{- 1 2 1 . 9 5}$
55. $I_{B}=\frac{V_{C C}-V_{E B_{1}}}{R_{B}+\beta_{1} \beta_{2} R_{E}}=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}}{1.5 \mathrm{M} \Omega+(160)(200)(100 \Omega)}$

$$
=3.255 \mu \mathrm{~A}
$$

$$
I_{C} \cong \beta_{1} \beta_{2} I_{B}=(160)(200)(3.255 \mu \mathrm{~A}) \cong \mathbf{1 0 4 . 2} \mathbf{~ m A}
$$

$$
V_{C_{2}}=V_{C C}-I_{C} R_{C}=16 \mathrm{~V}-(104.2 \mathrm{~mA})(100 \Omega)=\mathbf{5 . 5 8} \mathbf{V}
$$

$$
V_{B_{1}}=I_{B} R_{B}=(3.255 \mu \mathrm{~A})(1.5 \mathrm{M} \Omega)=4.48 \mathrm{~V}
$$

56. From problem 55: $I_{E_{1}}=0.521 \mathrm{~mA}$

$$
\begin{aligned}
& r_{e_{1}}=\frac{26 \mathrm{mV}}{I_{E}(\mathrm{~mA})}=\frac{26 \mathrm{mV}}{0.521 \mathrm{~mA}}=49.9 \Omega \\
& R_{i_{1}}=\beta r_{e_{e}}=160(49.9 \Omega)=7.98 \mathrm{k} \Omega \\
& A_{\nu}=\frac{\beta_{1} \beta_{2} R_{C}}{\beta_{1} \beta_{2} R_{C}+R_{i_{1}}}=\frac{(160)(200)(100 \Omega)}{(160)(200)(100 \Omega)+7.98 \mathrm{k} \Omega} \\
& \quad=0.9925 \\
& V_{o}=A_{v} V_{i}=0.9975(120 \mathrm{mV}) \\
& \quad=\mathbf{1 1 9 . 7 ~ \mathbf { ~ m V }}
\end{aligned}
$$

57. $\quad r_{e}=\frac{26 \mathrm{mV}}{I_{E(\mathrm{dc})}}=\frac{26 \mathrm{mV}}{1.2 \mathrm{~mA}}=\mathbf{2 1 . 6 7 \Omega}$
$\beta r_{e}=(120)(21.67 \Omega)=\mathbf{2 . 6} \mathbf{~ k} \boldsymbol{\Omega}$
58. -
59. -
60. -
61. -
62. (a) $A_{v}=\frac{V_{o}}{V_{i}}=-160$

$$
V_{o}=-\mathbf{1 6 0} V_{i}
$$

(b) $I_{b}=\frac{V_{i}-h_{r e} V_{o}}{h_{i e}}=\frac{V_{i}-h_{r e} A_{v} V_{i}}{h_{i e}}=\frac{V_{i}\left(1-h_{r e} A_{v}\right)}{h_{i e}}$

$$
\begin{aligned}
& =\frac{V_{i}\left(1-\left(2 \times 10^{-4}\right)(160)\right)}{1 \mathrm{k} \Omega} \\
I_{b} & =\mathbf{9 . 6 8} \times \mathbf{1 0}^{-4} V_{i}
\end{aligned}
$$

(c) $I_{b}=\frac{V_{i}}{1 \mathrm{k} \Omega}=\mathbf{1} \times \mathbf{1 0}^{-3} \boldsymbol{V}_{\boldsymbol{i}}$
(d) $\%$ Difference $=\frac{1 \times 10^{-3} V_{i}-9.68 \times 10^{-4} V_{i}}{1 \times 10^{-3} V_{i}} \times 100 \%$

$$
=3.2 \%
$$

(e) Valid first approximation
63. $\%$ difference in total load $=\frac{R_{L}-R_{L} \| 1 / h_{o e}}{R_{L}} \times 100 \%$

$$
\begin{aligned}
& =\frac{2.2 \mathrm{k} \Omega-(2.2 \mathrm{k} \Omega \| 50 \mathrm{k} \Omega)}{2.2 \mathrm{k} \Omega} \times 100 \% \\
& =\frac{2.2 \mathrm{k} \Omega-2.1073 \mathrm{k} \Omega}{2.2 \mathrm{k} \Omega} \times 100 \% \\
& =4.2 \%
\end{aligned}
$$

In this case the effect of $1 / h_{o e}$ can be ignored.
64. (a) $V_{o}=\mathbf{- 1 8 0} V_{i} \quad\left(h_{i e}=4 \mathrm{k} \Omega, h_{r e}=4.05 \times 10^{-4}\right)$
(b) $I_{b}=\frac{V_{i}-\left(4.05 \times 10^{-4}\right)\left(180 V_{i}\right)}{4 \mathrm{k} \Omega}$

$$
=2.32 \times 10^{-4} V_{i}
$$

(c) $I_{b}=\frac{V_{i}}{h_{i e}}=\frac{V_{i}}{4 \mathrm{k} \Omega}=\mathbf{2 . 5} \times \mathbf{1 0}^{-4} V_{i}$
(d) $\%$ Difference $=\frac{2.5 \times 10^{-4} V_{i}-2.32 \times 10^{-4} V_{i}}{2.5 \times 10^{-4} V_{i}} \times 100 \%=7.2 \%$
(e) Yes, less than 10%
65. From Fig. 5.18

$$
\begin{array}{ll}
& \min \\
h_{o e}: & \max \\
1 \mu \mathrm{~S}
\end{array} \quad 30 \mu \mathrm{~S} \quad \mathrm{Avg}=\frac{(1+30) \mu \mathrm{S}}{2}=\mathbf{1 5 . 5} \mu \mathrm{S}
$$

66.

$$
\begin{aligned}
& \text { (a) } h_{f e}=\beta=\mathbf{1 2 0} \\
& h_{i e} \cong \beta r_{e}=(120)(4.5 \Omega)=\mathbf{5 4 0} \Omega \\
& h_{o e}=\frac{1}{r_{o}}=\frac{1}{40 \mathrm{k} \Omega}=\mathbf{2 5} \mu \mathbf{S} \\
& \text { (b) } r_{e} \cong \frac{h_{i e}}{\beta}=\frac{1 \mathrm{k} \Omega}{90}=\mathbf{1 1 . 1 1 \Omega} \\
& \beta=h_{f e}=90 \\
& r_{o}=\frac{1}{h_{o e}}=\frac{1}{20 \mu \mathrm{~S}} \\
& =50 \mathrm{k} \Omega
\end{aligned}
$$

67. (a) $r_{e}=\mathbf{8 . 3 1} \Omega$ (from problem 9)
(b) $h_{f e}=\beta=\mathbf{6 0}$
$h_{i e}=\beta r_{e}=(60)(8.31 \Omega)=498.6 \Omega$
(c) $Z_{i}=R_{B}\left\|h_{i e}=220 \mathrm{k} \Omega\right\| 498.6 \Omega=497.47 \Omega$
$Z_{o}=R_{C}=\mathbf{2 . 2} \mathbf{~ k} \Omega$
(d) $A_{v}=\frac{-h_{f e} R_{C}}{h_{i e}}=\frac{-(60)(2.2 \mathrm{k} \Omega)}{498.6 \Omega}=\mathbf{- 2 6 4 . 7 4}$
$A_{i} \cong h_{f e}=\mathbf{6 0}$
(e) $Z_{i}=497.47 \Omega$ (the same)

$$
\begin{aligned}
Z_{o} & =r_{o} \| R_{C}, r_{o}=\frac{1}{25 \mu \mathrm{~S}}=40 \mathrm{k} \Omega \\
& =40 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega \\
& =\mathbf{2 . 0 9} \mathbf{k} \Omega
\end{aligned}
$$

(f)

$$
\begin{aligned}
& A_{v}=\frac{-h_{f e}\left(r_{o} \| R_{C}\right)}{h_{i e}}=\frac{-(60)(2.085 \mathrm{k} \Omega)}{498.6 \Omega}=\mathbf{- 2 5 0 . 9 0} \\
& A_{i}=-A_{v} Z_{i} / R_{C}=-(-250.90)(497.47 \Omega) / 2.2 \mathrm{k} \Omega=\mathbf{5 6 . 7 3}
\end{aligned}
$$

68. (a) $68 \mathrm{k} \Omega \| 12 \mathrm{k} \Omega=10.2 \mathrm{k} \Omega$

$$
\begin{aligned}
Z_{i} & =10.2 \mathrm{k} \Omega\left\|h_{i e}=10.2 \mathrm{k} \Omega\right\| 2.75 \mathrm{k} \Omega \\
& =\mathbf{2 . 1 6 6} \mathbf{k} \boldsymbol{\Omega} \\
Z_{o} & =R_{C} \| r_{o} \\
& =2.2 \mathrm{k} \Omega \| 40 \mathrm{k} \Omega \\
& =\mathbf{2 . 0 8 5} \mathbf{~} \boldsymbol{\mathbf { }} \boldsymbol{\Omega}
\end{aligned}
$$

(b) $A_{v}=\frac{-h_{f e} R_{C}^{\prime}}{h_{i e}} \quad R_{C}^{\prime}=R_{C} \| r_{o}=2.085 \mathrm{k} \Omega$

$$
=\frac{-(180)(2.085 \mathrm{k} \Omega)}{2.75 \mathrm{k} \Omega}=\mathbf{- 1 3 6 . 5}
$$

$$
\begin{aligned}
A_{i} & =\frac{I_{o}}{I_{i}}=\frac{I_{o}}{I_{i}^{\prime}} \frac{I_{i}^{\prime}}{I_{i}} \\
& =\left(\frac{h_{f_{e}}}{1+h_{o e} R_{L}}\right)\left(\frac{10.2 \mathrm{k} \Omega}{10.2 \mathrm{k} \Omega+2.68 \mathrm{k} \Omega}\right) \\
& =\left(\frac{180}{1+(25 \mu \mathrm{~S})(2.2 \mathrm{k} \Omega)}\right)(0.792) \\
& =\mathbf{1 3 5 . 1 3}
\end{aligned}
$$

69. (a) $Z_{i}=R_{E} \| h_{i b}$

$$
\begin{aligned}
& =1.2 \mathrm{k} \Omega \| 9.45 \Omega \\
& =\mathbf{9 . 3 8} \Omega
\end{aligned}
$$

$Z_{o}=R_{C}\left\|\frac{1}{h_{o b}}=2.7 \mathrm{k} \Omega\right\| \frac{1}{1 \times 10^{-6} \frac{\mathrm{~A}}{\mathrm{~V}}}=2.7 \mathrm{k} \Omega \| 1 \mathrm{M} \Omega \cong \mathbf{2 . 7} \mathbf{~ k} \Omega$
(b) $A_{v}=\frac{-h_{f b}\left(R_{C} \| 1 / h_{o b}\right)}{h_{i b}}=\frac{-(-0.992)(\cong 2.7 \mathrm{k} \Omega)}{9.45 \Omega}$

$$
=284.43
$$

$A_{i} \cong-1$
(c) $\alpha=-h_{f b}=-(-0.992)=\mathbf{0 . 9 9 2}$
$\beta=\frac{\alpha}{1-\alpha}=\frac{0.992}{1-0.992}=\mathbf{1 2 4}$
$r_{e}=h_{i b}=9.45 \Omega$
$r_{o}=\frac{1}{h_{o b}}=\frac{1}{1 \mu \mathrm{~A} / \mathrm{V}}=\mathbf{1} \mathbf{M} \Omega$
70.

$$
\begin{aligned}
& \text { (a) } \begin{aligned}
Z_{i}^{\prime} & =h_{i e}-\frac{h_{f e} h_{r e} R_{L}}{1+h_{o e} R_{L}}=2.75 \mathrm{k} \Omega-\frac{(180)\left(2 \times 10^{-4}\right)(2.2 \mathrm{k} \Omega)}{(1+25 \mu \mathrm{~S})(2.2 \mathrm{k} \Omega)} \\
& =2.68 \mathrm{k} \Omega
\end{aligned} \\
& Z_{i}=10.2 \mathrm{k} \Omega \| Z_{i}^{\prime}=\mathbf{2 . 1 2 ~ \mathrm { k } \Omega} \\
& Z_{o}^{\prime}=\frac{1}{h_{o e}-\left(h_{f e} h_{r e} / h_{i e}\right)}=\frac{1}{25 \mu \mathrm{~S}-(180)\left(2 \times 10^{-4}\right) / 2.75 \mathrm{k} \Omega} \\
&=83.75 \mathrm{k} \Omega \\
& Z_{o}=2.2 \mathrm{k} \Omega \| 83.75 \mathrm{k} \Omega=\mathbf{2 . 1 4 ~ \mathrm { k } \Omega} \\
& \text { (b) } \quad \begin{aligned}
A_{v} & =\frac{-h_{f e} R_{L}}{h_{i e}+\left(h_{i e} h_{o e}-h_{f e} h_{r e}\right) R_{L}}=\frac{-(180)(2.2 \mathrm{k} \Omega)}{2.75 \mathrm{k} \Omega+\left((2.75 \mathrm{k} \Omega)(25 \mu \mathrm{~S})-(180)\left(2 \times 10^{-4}\right)\right) 2.2 \mathrm{k} \Omega} \\
& =-\mathbf{1 4 0 . 3}
\end{aligned}
\end{aligned}
$$

(c) $\quad A_{i}^{\prime}=\frac{h_{f e}}{1+h_{o e} R_{L}}=\frac{(180)}{1+(25 \mu \mathrm{~S})(2.2 \mathrm{k} \Omega)}=170.62$

$$
\begin{aligned}
A_{i}=\frac{I_{o}}{I_{i}} & =\frac{I_{o}}{I_{i}^{\prime}} \cdot \frac{I_{i}^{\prime}}{I_{i}}=(170.62)\left(\frac{10.2 \mathrm{k} \Omega}{10.2 \mathrm{k} \Omega+2.68 \mathrm{k} \Omega}\right) \\
& =\mathbf{1 3 5 . 1 3}
\end{aligned}
$$

71.

$$
\text { (a) } \begin{aligned}
Z_{i} & =h_{i e}=\frac{-h_{f e} h_{r e} R_{L}}{1+h_{o e} R_{L}} \\
& =0.86 \mathrm{k} \Omega-\frac{(140)\left(1.5 \times 10^{-4}\right)(2.2 \mathrm{k} \Omega)}{1+(25 \mu \mathrm{~S})(2.2 \mathrm{k} \Omega)} \\
& =0.86 \mathrm{k} \Omega-43.79 \Omega \\
& =816.21 \Omega \\
Z_{i}^{\prime} & =R_{B} \| Z_{i} \\
& =470 \mathrm{k} \Omega \| 816.21 \Omega \\
& =\mathbf{8 1 4 . 8} \Omega
\end{aligned}
$$

(b) $\quad A_{\nu}=\frac{-h_{f e} R_{L}}{h_{i e}+\left(h_{i e} h_{o e}-h_{f e} h_{r e}\right) R_{L}}$

$$
\begin{aligned}
& =\frac{-(140)(2.2 \mathrm{k} \Omega)}{0.86 \mathrm{k} \Omega+\left((0.86 \mathrm{k} \Omega)(25 \mu \mathrm{~S})-(140)\left(1.5 \times 10^{-4}\right)\right) 2.2 \mathrm{k} \Omega} \\
& =-\mathbf{3 5 7 . 6 8}
\end{aligned}
$$

(c) $A_{i}=\frac{I_{o}}{I_{i}}=\frac{h_{f e}}{1+h_{o e} R_{L}}=\frac{140}{1+(25 \mu \mathrm{~S})(2.2 \mathrm{k} \Omega)}$

$$
=132.70
$$

$$
\begin{aligned}
A_{i}^{\prime}=\frac{I_{o}}{I_{i}^{\prime}} & =\left(\frac{I_{o}}{I_{i}}\right)\left(\frac{I_{i}}{I_{i}^{\prime}}\right) & I_{i} & =\frac{470 \mathrm{k} \Omega I_{i}^{\prime}}{470 \mathrm{k} \Omega+0.816 \mathrm{k} \Omega} \\
& =(132.70)(0.998) & \frac{I_{i}}{I_{i}^{\prime}} & =0.998
\end{aligned}
$$

$$
=132.43
$$

(d) $Z_{o}=\frac{1}{h_{o e}-\left(h_{f e} h_{r e} /\left(h_{i e}+R_{s}\right)\right)}=\frac{1}{25 \mu \mathrm{~S}-\left((140)\left(1.5 \times 10^{-4}\right) /(0.86 \mathrm{k} \Omega+1 \mathrm{k} \Omega)\right)}$

$$
=\frac{1}{13.71 \mu \mathrm{~S}} \cong \mathbf{7 2 . 9} \mathbf{~ k} \Omega
$$

72.

$$
\text { (a) } \begin{aligned}
Z_{i}^{\prime}=h_{i b}-\frac{h_{f b} h_{r b} R_{L}}{1+h_{o b} R_{L}} & =9.45 \Omega-\frac{(-0.997)\left(1 \times 10^{-4}\right)(2.2 \mathrm{k} \Omega)}{1+(0.5 \mu \mathrm{~A} / \mathrm{V})(2.2 \mathrm{k} \Omega)} \\
& =9.67 \Omega \\
Z_{i}=1.2 \mathrm{k} \Omega \| Z_{i}^{\prime} & =1.2 \mathrm{k} \Omega \| 9.67 \Omega=\mathbf{9 . 5 9} \Omega
\end{aligned}
$$

(b) $A_{i}^{\prime}=\frac{h_{f b}}{1+h_{o b} R_{L}}=\frac{-0.997}{1+(0.5 \mu \mathrm{~A} / \mathrm{V})(2.2 \mathrm{k} \Omega)}=-0.996$

$$
\begin{aligned}
A_{i} & =\frac{I_{o}}{I_{i}^{\prime}} \cdot \frac{I_{i}^{\prime}}{I_{i}}=(-0.996)\left(\frac{1.2 \mathrm{k} \Omega}{1.2 \mathrm{k} \Omega+9.67 \mathrm{k} \Omega}\right) \\
& \cong-\mathbf{0 . 9 8 8}
\end{aligned}
$$

(c) $A_{v}=\frac{-h_{f b} R_{L}}{h_{i b}+\left(h_{i b} h_{o b}-h_{f b} h_{r b}\right) R_{L}}$

$$
\begin{aligned}
& =\frac{-(-0.997)(2.2 \mathrm{k} \Omega)}{9.45 \Omega+\left((9.45 \Omega)(0.5 \mu \mathrm{~A} / \mathrm{V})-(-0.997)\left(1 \times 10^{-4}\right)\right)(2.2 \mathrm{k} \Omega)} \\
& =\mathbf{2 2 6 . 6 1}
\end{aligned}
$$

(d) $\quad Z_{o}^{\prime}=\frac{1}{h_{o b}-\left[h_{f b} h_{r b} / h_{i b}\right]}$

$$
\begin{aligned}
= & \frac{1}{0.5 \mu \mathrm{~A} / \mathrm{V}-\left[(-0.997)\left(1 \times 10^{-4}\right) / 9.45 \Omega\right]} \\
& =90.5 \mathrm{k} \Omega \\
Z_{o}= & 2.2 \mathrm{k} \Omega \| Z_{o}^{\prime}=\mathbf{2 . 1 5} \mathbf{~ k} \Omega
\end{aligned}
$$

73. -
74. (a) $h_{f e}(0.2 \mathrm{~mA}) \cong 0.6$ (normalized) $h_{f e}(1 \mathrm{~mA})=1.0$

$$
\begin{aligned}
\% \text { change } & =\left|\frac{h_{f e}(0.2 \mathrm{~mA})-h_{f e}(1 \mathrm{~mA})}{h_{f e}(0.2 \mathrm{~mA})}\right| \times 100 \% \\
& =\left|\frac{0.6-1}{0.6}\right| \times 100 \% \\
& =\mathbf{6 6 . 7 \%}
\end{aligned}
$$

(b) $h_{f e}(1 \mathrm{~mA})=1.0$
$h_{f e}(5 \mathrm{~mA}) \cong 1.5$
$\%$ change $=\left|\frac{h_{f e}(1 \mathrm{~mA})-h_{f e}(5 \mathrm{~mA})}{h_{f e}(1 \mathrm{~mA})}\right| \times 100 \%$
$=\left|\frac{1-1.5}{1}\right| \times 100 \%$
$=\mathbf{5 0 \%}$
75. Log-log scale!
(a) $I_{c}=0.2 \mathrm{~mA}, h_{i e}=4$ (normalized)
$I_{c}=1 \mathrm{~mA}, h_{i e}=1$ (normalized)
$\%$ change $=\left|\frac{4-1}{4}\right| \times 100 \%=\mathbf{7 5 \%}$
(b) $I_{e}=5 \mathrm{~mA}, h_{i e}=0.3$ (normalized)
$\%$ change $=\left|\frac{1-0.3}{1}\right| \times 100 \%=\mathbf{7 0 \%}$
76. (a) $h_{o e}=20 \mu \mathrm{~S} @ 1 \mathrm{~mA}$
$I_{c}=0.2 \mathrm{~mA}, h_{o e}=0.2\left(h_{o e} @ 1 \mathrm{~mA}\right)$

$$
\begin{aligned}
& =0.2(20 \mu \mathrm{~S}) \\
& =4 \mu \mathrm{~S}
\end{aligned}
$$

(b) $r_{o}=\frac{1}{h_{o e}}=\frac{1}{4 \mu \mathrm{~S}}=250 \mathrm{k} \Omega \gg 6.8 \mathrm{k} \Omega$

Ignore $1 / h_{o e}$
77. (a) $I_{c}=10 \mathrm{~mA}, h_{o e}=10(20 \mu \mathrm{~S})=\mathbf{2 0 0} \mu \mathrm{S}$
(b) $r_{o}=\frac{1}{h_{o e}}=\frac{1}{200 \mu \mathrm{~S}}=5 \mathrm{k} \Omega$ vs. $8.6 \mathrm{k} \Omega$

Not a good approximation
78. (a) $h_{r e}(0.1 \mathrm{~mA})=4\left(h_{r e}(1 \mathrm{~mA})\right)$

$$
\begin{aligned}
& =4\left(2 \times 10^{-4}\right) \\
& =\mathbf{8} \times \mathbf{1 0}^{-4}
\end{aligned}
$$

(b) $h_{r e} V_{c e}=h_{r e} A_{v} \cdot V_{i}$ $=\left(8 \times 10^{-4}\right)(210) V_{i}$ $=0.168 V_{i}$
In this case $h_{r e} V_{c e}$ is too large a factor to be ignored.
79. (a) $h_{f e}$
(b) $h_{o e}$
(c) $h_{o e} \cong 30$ (normalized) to
$h_{o e} \cong 0.1$ (normalized) at low levels of I_{c}
(d) mid-region
80. (a) $h_{i e}$ is the most temperature-sensitive parameter of Fig. 5.33.
(b) $h_{o e}$ exhibited the smallest change.
(c) Normalized: $h_{f(\text { max })}=\mathbf{1 . 5}, h_{f(\text { min })}=\mathbf{0 . 5}$

For $h_{f e}=100$ the range would extend from 50 to 150 -certainly significant.
(d) On a normalized basis r_{e} increased from 0.3 at $-65^{\circ} \mathrm{C}$ to 3 at $200^{\circ} \mathrm{C}$-a significant change.
(e) The parameters show the least change in the region $0^{\circ} \rightarrow 100^{\circ} \mathrm{C}$.
81. (a) Test:
$\beta R_{E} \geq 10 R_{2}$
$70(1.5 \mathrm{k} \Omega) \geq 10(39 \mathrm{k} \Omega)$
?
$105 \mathrm{k} \Omega \geq 390 \mathrm{k} \Omega$
No!
$R_{T h}=39 \mathrm{k} \Omega \| 150 \mathrm{k} \Omega=30.95 \mathrm{k} \Omega$
$E_{T h}=\frac{39 \mathrm{k} \Omega(14 \mathrm{~V})}{39 \mathrm{k} \Omega+150 \mathrm{k} \Omega}=2.89 \mathrm{~V}$
$I_{B}=\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{2.89 \mathrm{~V}-0.7 \mathrm{~V}}{30.95 \mathrm{k} \Omega+(71)(1.5 \mathrm{k} \Omega)}$
$=15.93 \mu \mathrm{~A}$
$V_{B}=E_{T h}-I_{B} R_{\text {Th }}$
$=2.89 \mathrm{~V}-(15.93 \mu \mathrm{~A})(30.95 \mathrm{k} \Omega)$
$=2.397 \mathrm{~V}$
$V_{E}=2.397 \mathrm{~V}-0.7 \mathrm{~V}=1.697 \mathrm{~V}$
and $I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.697 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=1.13 \mathrm{~mA}$
$V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)$
$=14 \mathrm{~V}-1.13 \mathrm{~mA}(2.2 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega)$
$=9.819 \mathrm{~V}$
Biasing OK
(b) R_{2} not connected at base:
$I_{B}=\frac{V_{C C}-0}{R_{B}+(\beta+1) R_{E}}=\frac{14 \mathrm{~V}-0.7 \mathrm{~V}}{150 \mathrm{k} \Omega+(71)(1.5 \mathrm{k} \Omega)}=51.85 \mu \mathrm{~A}$
$V_{B}=V_{C C}-I_{B} R_{B}=14 \mathrm{~V}-(51.85 \mu \mathrm{~A})(150 \mathrm{k} \Omega)$
$=6.22 \mathrm{~V}$ as noted in Fig. 5.187.

Chapter 6

1. -
2. From Fig. 6.11:

$$
\begin{aligned}
& V_{G S}=0 \mathrm{~V}, I_{D}=\mathbf{8} \mathbf{~ m A} \\
& V_{G S}=-1 \mathrm{~V}, I_{D}=\mathbf{4 . 5} \mathbf{~ \mathbf { ~ A }} \\
& V_{G S}=-1.5 \mathrm{~V}, I_{D}=\mathbf{3 . 2 5} \mathbf{~ m A} \\
& V_{G S}=-1.8 \mathrm{~V}, I_{D}=\mathbf{2 . 5} \mathbf{~ m A} \\
& V_{G S}=-4 \mathrm{~V}, I_{D}=\mathbf{0} \mathbf{~ m A} \\
& V_{G S}=-6 \mathrm{~V}, I_{D}=\mathbf{0} \mathbf{~ m A}
\end{aligned}
$$

3. (a) $V_{D S} \cong \mathbf{1 . 4} \mathbf{V}$
(b) $r_{d}=\frac{V}{I}=\frac{1.4 \mathrm{~V}}{6 \mathrm{~mA}}=\mathbf{2 3 3 . 3 3} \Omega$
(c) $V_{D S} \cong \mathbf{1 . 6} \mathbf{~ V}$
(d) $r_{d}=\frac{V}{I}=\frac{1.6 \mathrm{~V}}{3 \mathrm{~mA}}=\mathbf{5 3 3 . 3 3} \Omega$
(e) $V_{D S} \cong \mathbf{1 . 4} \mathbf{~ V}$
(f) $\quad r_{d}=\frac{V}{I}=\frac{1.4 \mathrm{~V}}{1.5 \mathrm{~mA}}=\mathbf{9 3 3 . 3 3 \Omega}$
(g) $r_{o}=233.33 \Omega$
$r_{d}=\frac{r_{o}}{\left[1-V_{G S} / V_{P}\right]^{2}}=\frac{233.33 \Omega}{[1-(-1 \mathrm{~V}) /(-4 \mathrm{~V})]^{2}}=\frac{233.33 \Omega}{0.5625}$ $=414.81 \Omega$
(h) $r_{d}=\frac{233.33 \Omega}{[1-(-2 \mathrm{~V}) /(-4 \mathrm{~V})]^{2}}=\frac{233.33 \Omega}{0.25}=\mathbf{9 3 3 . 2 \Omega}$
(i) $\left.\begin{array}{l}533.33 \Omega \text { vs. } 414.81 \Omega \\ 933.33 \Omega \text { vs } 933.2 \Omega\end{array}\right\}$ Eq. (6.1) is valid!
4. (a) $V_{G S}=0 \mathrm{~V}, I_{D}=8 \mathrm{~mA}\left(\right.$ for $\left.V_{D S}>V_{P}\right)$
$V_{G S}=-1 \mathrm{~V}, I_{D}=4.5 \mathrm{~mA}$
$\Delta I_{D}=\mathbf{3 . 5} \mathbf{~ m A}$
(b) $V_{G S}=-1 \mathrm{~V}, I_{D}=4.5 \mathrm{~mA}$
$V_{G S}=-2 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$
$\Delta I_{D}=2.5 \mathrm{~mA}$
(c) $V_{G S}=-2 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$
$V_{G S}=-3 \mathrm{~V}, I_{D}=0.5 \mathrm{~mA}$
$\Delta I_{D}=1.5 \mathrm{~mA}$
(d) $V_{G S}=-3 \mathrm{~V}, I_{D}=0.5 \mathrm{~mA}$
$V_{G S}=-4 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$\Delta I_{D}=0.5 \mathrm{~mA}$
(e) As $V_{G S}$ becomes more negative, the change in I_{D} gets progressively smaller for the same change in $V_{G S}$.
(f) Non-linear. Even though the change in $V_{G S}$ is fixed at 1 V , the change in I_{D} drops from a maximum of 3.5 mA to a minimum of 0.5 mA -a $7: 1$ change in ΔI_{D}.
5. The collector characteristics of a BJT transistor are a plot of output current versus the output voltage for different levels of input current. The drain characteristics of a JFET transistor are a plot of the output current versus input voltage. For the BJT transistor increasing levels of input current result in increasing levels of output current. For JFETs, increasing magnitudes of input voltage result in lower levels of output current. The spacing between curves for a BJT are sufficiently similar to permit the use of a single beta (on an approximate basis) to represent the device for the dc and ac analysis. For JFETs, however, the spacing between the curves changes quite dramatically with increasing levels of input voltage requiring the use of Shockley's equation to define the relationship between I_{D} and $V_{G S} . V_{C_{\text {st }}}$ and V_{P} define the region of nonlinearity for each device.
6. (a) The input current I_{G} for a JFET is effectively zero since the JFET gate-source junction is reverse-biased for linear operation, and a reverse-biased junction has a very high resistance.
(b) The input impedance of the JFET is high due to the reverse-biased junction between the gate and source.
(c) The terminology is appropriate since it is the electric field established by the applied gate to source voltage that controls the level of drain current. The term "field" is appropriate due to the absence of a conductive path between gate and source (or drain).
7. $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=12 \mathrm{~mA}$
$V_{G S}=V_{P}=-6 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
Shockley's equation: $V_{G S}=-1 \mathrm{~V}, I_{D}=8.33 \mathrm{~mA} ; V_{G S}=-2 \mathrm{~V}, I_{D}=5.33 \mathrm{~mA} ; V_{G S}=-3 \mathrm{~V}$, $I_{D}=3 \mathrm{~mA} ; V_{G S}=-4 \mathrm{~V}, I_{D}=1.33 \mathrm{~mA} ; V_{G S}=-5 \mathrm{~V}, I_{D}=0.333 \mathrm{~mA}$.

8. For a p-channel JFET, all the voltage polarities in the network are reversed as compared to an n-channel device. In addition, the drain current has reversed direction.
9. (b) $I_{D S S}=\mathbf{1 0} \mathbf{~ m A}, V_{P}=\mathbf{6} \mathbf{~ V}$
10. $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=12 \mathrm{~mA}$
$V_{G S}=V_{P}=-4 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=\frac{V_{P}}{2}=-2 \mathrm{~V}, I_{D}=\frac{I_{D S S}}{4}=3 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.2 \mathrm{~V}, I_{D}=6 \mathrm{~mA}$
$V_{G S}=-3 \mathrm{~V}, I_{D}=0.75 \mathrm{~mA}$ (Shockley's equation)
11. (a) $I_{D}=I_{D S S}=\mathbf{9} \mathbf{~ m A}$
(b) $\quad I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$
$=9 \mathrm{~mA}(1-(-2 \mathrm{~V}) /(-3.5 \mathrm{~V}))^{2}$
$=1.653 \mathrm{~mA}$
(c) $V_{G S}=V_{P}=-3.5 \mathrm{~V}, I_{D}=\mathbf{0} \mathbf{~ m A}$
(d) $V_{G S}<V_{P}=-3.5 \mathrm{~V}, I_{D}=\mathbf{0} \mathbf{~ m A}$
12. $V_{G S}=\mathbf{0} \mathrm{V}, I_{D}=\mathbf{1 6} \mathbf{~ m A}$

$$
\begin{aligned}
& V_{G S}=0.3 V_{P}=0.3(-5 \mathrm{~V})=\mathbf{- 1 . 5} \mathbf{V}, I_{D}=I_{D S S} / 2=\mathbf{8} \mathbf{~ m A} \\
& V_{G S}=0.5 V_{P}=0.5(-5 \mathrm{~V})=\mathbf{- 2 . 5} \mathrm{V}, I_{D}=I_{D S S} / 4=\mathbf{4} \mathbf{~ m A} \\
& V_{G S}=V_{P}=\mathbf{- 5} \mathbf{V}, I_{D}=\mathbf{0} \mathbf{~ m A}
\end{aligned}
$$

13. $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=7.5 \mathbf{m A}$
$V_{G S}=0.3 V_{P}=(0.3)(4 \mathrm{~V})=1.2 \mathrm{~V}, I_{D}=I_{D S S} / 2=7.5 \mathrm{~mA} / 2=\mathbf{3 . 7 5} \mathbf{~ m A}$ $V_{G S}=0.5 V_{P}=(0.5)(4 \mathrm{~V})=2 \mathrm{~V}, I_{D}=I_{D S S} / 4=7.5 \mathrm{~mA} / 4=\mathbf{1 . 8 7 5} \mathbf{~ m A}$ $V_{G S}=V_{P}=4 \mathrm{~V}, I_{D}=\mathbf{0} \mathbf{m A}$
14. (a) $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}=6 \mathrm{~mA}(1-(-2 \mathrm{~V}) /(-4.5 \mathrm{~V}))^{2}$

$$
=1.852 \mathrm{~mA}
$$

$$
I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}=6 \mathrm{~mA}(1-(-3.6 \mathrm{~V}) /(-4.5 \mathrm{~V}))^{2}
$$

$$
=0.24 \mathrm{~mA}
$$

(b) $V_{G S}=V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)=(-4.5 \mathrm{~V})\left(1-\sqrt{\frac{3 \mathrm{~mA}}{6 \mathrm{~mA}}}\right)$

$$
=-1.318 \mathrm{~V}
$$

$$
V_{G S}=V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)=(-4.5 \mathrm{~V})\left(1-\sqrt{\frac{5.5 \mathrm{~mA}}{6 \mathrm{~mA}}}\right)
$$

$$
=-0.192 \mathrm{~V}
$$

15. $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$

$$
\begin{aligned}
& 3 \mathrm{~mA}=I_{D S S}(1-(-3 \mathrm{~V}) /(-6 \mathrm{~V}))^{2} \\
& 3 \mathrm{~mA}=I_{D S S}(0.25) \\
& I_{D S S}=\mathbf{1 2} \mathbf{~ m A}
\end{aligned}
$$

16. From Fig. 6.22:

$$
\begin{aligned}
& -0.5 \mathrm{~V}<V_{P}<-6 \mathrm{~V} \\
& 1 \mathrm{~mA}<I_{D S S}<5 \mathrm{~mA}
\end{aligned}
$$

For $I_{D S S}=5 \mathrm{~mA}$ and $V_{P}=-6 \mathrm{~V}$:
$V_{G S}=0 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.8 \mathrm{~V}, I_{D}=2.5 \mathrm{~mA}$
$V_{G S}=V_{P} / 2=-3 \mathrm{~V}, I_{D}=1.25 \mathrm{~mA}$
$V_{G S}=V_{P}=-6 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
For $I_{D S S}=1 \mathrm{~mA}$ and $V_{P}=-0.5 \mathrm{~V}$:
$V_{G S}=0 \mathrm{~V}, I_{D}=1 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-0.15 \mathrm{~V}, I_{D}=0.5 \mathrm{~mA}$
$V_{G S}=V_{P} / 2=-0.25 \mathrm{~V}, I_{D}=0.25 \mathrm{~mA}$
$V_{G S}=V_{P}=-0.5 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$

17. $V_{D S}=V_{D S_{\max }}=\mathbf{2 5} \mathrm{V}, I_{D}=\frac{P_{D_{\max }}}{V_{D S_{\max }}}=\frac{120 \mathrm{~mW}}{25 \mathrm{~V}}=\mathbf{4 . 8} \mathbf{~ m A}$
$I_{D}=I_{D S S}=\mathbf{1 0} \mathbf{m A}, V_{D S}=\frac{P_{D_{\max }}}{I_{D S S}}=\frac{120 \mathrm{~mW}}{10 \mathrm{~mA}}=\mathbf{1 2} \mathbf{V}$
$I_{D}=\mathbf{7} \mathbf{m A}, V_{D S}=\frac{P_{D_{\text {max }}}}{I_{D}}=\frac{120 \mathrm{~mW}}{7 \mathrm{~mA}}=\mathbf{1 7 . 1 4} \mathrm{V}$

18. $\left.\quad \begin{array}{l}V_{G S}=-0.5 \mathrm{~V}, I_{D}=6.5 \mathrm{~mA} \\ V_{G S}=-1 \mathrm{~V}, I_{D}=4 \mathrm{~mA}\end{array}\right\} 2.5 \mathrm{~mA}$

Determine ΔI_{D} above 4 mA line:

$$
\frac{2.5 \mathrm{~mA}}{0.5 \mathrm{~V}}=\frac{x}{0.3 \mathrm{~V}} \Rightarrow x=1.5 \mathrm{~mA}
$$

$I_{D}=4 \mathrm{~mA}+1.5 \mathrm{~mA}=\mathbf{5 . 5} \mathbf{~ m A}$ corresponding with values determined from a purely graphical approach.
19. Yes, all knees of $V_{G S}$ curves at or below $\left|V_{P}\right|=3 \mathrm{~V}$.
20. From Fig 6.25, $I_{D S S} \cong 9 \mathrm{~mA}$

At $V_{G S}=-1 \mathrm{~V}, I_{D}=4 \mathrm{~mA}$
$I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$
$\sqrt{\frac{I_{D}}{I_{D S S}}}=1-V_{G S} / V_{P}$
$\frac{V_{G S}}{V_{P}}=1-\sqrt{\frac{I_{D}}{I_{D S S}}}$
$\begin{aligned} V_{P} & =\frac{V_{G S}}{1-\sqrt{\frac{I_{D}}{I_{D S S}}}}=\frac{-1 \mathrm{~V}}{1-\sqrt{\frac{4 \mathrm{~mA}}{9 \mathrm{~mA}}}} \\ & =\mathbf{- 3} \mathbf{V}(\text { an exact match })\end{aligned}$
21. $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$
$=9 \mathrm{~mA}(1-(-1 \mathrm{~V}) /(-3 \mathrm{~V}))^{2}$
$=\mathbf{4} \mathbf{m A}$, which compares very well with the level obtained using Fig. 6.25.
22. (a) $V_{D S} \cong 0.7 \mathrm{~V} @ I_{D}=4 \mathrm{~mA}$ (for $V_{G S}=0 \mathrm{~V}$) $r=\frac{\Delta V_{D S}}{\Delta I_{D}}=\frac{0.7 \mathrm{~V}-0 \mathrm{~V}}{4 \mathrm{~mA}-0 \mathrm{~mA}}=\mathbf{1 7 5} \Omega$
(b) For $V_{G S}=-0.5 \mathrm{~V}$, @ $I_{D}=3 \mathrm{~mA}, V_{D S}=0.7 \mathrm{~V}$
$r=\frac{0.7 \mathrm{~V}}{3 \mathrm{~mA}}=\mathbf{2 3 3} \Omega$
(c) $r_{d}=\frac{r_{o}}{\left(1-V_{G S} / V_{P}\right)^{2}}=\frac{175 \Omega}{\left(1-(-0.5 \mathrm{~V}) /(-3 \mathrm{~V})^{2}\right.}$
$=\mathbf{2 5 2} \Omega$ vs. 233Ω from part (b)
23. -
24. The construction of a depletion-type MOSFET and an enchancement-type MOSFET are identical except for the doping in the channel region. In the depletion MOSFET the channel is established by the doping process and exists with no gate-to-source voltage applied. As the gate-to-source voltage increases in magnitude the channel decreases in size until pinch-off occurs. The enhancement MOSFET does not have a channel established by the doping sequence but relies on the gate-to-source voltage to create a channel. The larger the magnitude of the applied gate-to-source voltage, the larger the available channel.
25. -
26. At $V_{G S}=0 \mathrm{~V}, I_{D}=\mathbf{6} \mathbf{~ m A}$

At $V_{G S}=-1 \mathrm{~V}, I_{D}=6 \mathrm{~mA}(1-(-1 \mathrm{~V}) /(-3 \mathrm{~V}))^{2}=\mathbf{2 . 6 6} \mathbf{~ m A}$
At $V_{G S}=+1 \mathrm{~V}, I_{D}=6 \mathrm{~mA}(1-(+1 \mathrm{~V}) /(-3 \mathrm{~V}))^{2}=6 \mathrm{~mA}(1.333)^{2}=\mathbf{1 0 . 6 6 7} \mathbf{~ m A}$
At $V_{G S}=+2 \mathrm{~V}, I_{D}=6 \mathrm{~mA}(1-(+2 \mathrm{~V}) /(-3 \mathrm{~V}))^{2}=6 \mathrm{~mA}(1.667)^{2}=\mathbf{1 6 . 6 7} \mathbf{~ m A}$

$V_{G S}$	I_{D}	
-1 V	2.66 mA	$\} \Delta I_{D}=3.34 \mathrm{~mA}$
0	6.0 mA	$\} \Delta I_{D}=3.34 \mathrm{~mA}$
+1 V	10.67 mA	$\} \Delta I_{D}=4.67 \mathrm{~mA}$
+2 V	16.67 mA	\} $\Delta I_{D}=\mathbf{6 m A}$

From -1 V to $0 \mathrm{~V}, \Delta I_{D}=3.34 \mathrm{~mA}$
while from +1 V to $+2 \mathrm{~V}, \Delta I_{D}=6 \mathrm{~mA}$ - almost a 2:1 margin.
In fact, as $V_{G S}$ becomes more and more positive, I_{D} will increase at a faster and faster rate due to the squared term in Shockley's equation.
27. $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=12 \mathrm{~mA} ; V_{G S}=-8 \mathrm{~V}, I_{D}=0 \mathrm{~mA} ; V_{G S}=\frac{V_{P}}{2}=-4 \mathrm{~V}, I_{D}=3 \mathrm{~mA}$;
$V_{G S}=0.3 V_{P}=-2.4 \mathrm{~V}, I_{D}=6 \mathrm{~mA} ; V_{G S}=-6 \mathrm{~V}, I_{D}=0.75 \mathrm{~mA}$
28. From problem 20:

$$
\begin{aligned}
V_{P} & =\frac{V_{G S}}{1-\sqrt{\frac{I_{D}}{I_{D S S}}}}=\frac{+1 \mathrm{~V}}{1-\sqrt{\frac{14 \mathrm{~mA}}{9.5 \mathrm{~mA}}}}=\frac{+1 \mathrm{~V}}{1-\sqrt{1.473}}=\frac{+1 \mathrm{~V}}{1-1.21395} \\
& =\frac{1}{-0.21395} \cong \mathbf{- 4 . 6 7} \mathbf{~ V}
\end{aligned}
$$

29. $\quad I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$

$$
I_{D S S}=\frac{I_{D}}{\left(1-V_{G S} / V_{P}\right)^{2}}=\frac{4 \mathrm{~mA}}{(1-(-2 \mathrm{~V}) /(-5 \mathrm{~V}))^{2}}=\mathbf{1 1 . 1 1} \mathbf{~ m A}
$$

30. From problem 14(b):

$$
\begin{aligned}
V_{G S} & =V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)=(-5 \mathrm{~V})\left(1-\sqrt{\frac{20 \mathrm{~mA}}{2.9 \mathrm{~mA}}}\right) \\
& =(-5 \mathrm{~V})(1-2.626)=(-5 \mathrm{~V})(-1.626) \\
& =\mathbf{8 . 1 3} \mathbf{~ V}
\end{aligned}
$$

31. From Fig. 6.34, $P_{D_{\max }}=200 \mathrm{~mW}, I_{D}=8 \mathrm{~mA}$

$$
\begin{gathered}
P=V_{D S} I_{D} \\
\text { and } V_{D S}=\frac{P_{\max }}{I_{D}}=\frac{200 \mathrm{~mW}}{8 \mathrm{~mA}}=\mathbf{2 5} \mathbf{V}
\end{gathered}
$$

32. (a) In a depletion-type MOSFET the channel exists in the device and the applied voltage $V_{G S}$ controls the size of the channel. In an enhancement-type MOSFET the channel is not established by the construction pattern but induced by the applied control voltage $V_{G S}$.
(b) -
(c) Briefly, an applied gate-to-source voltage greater than V_{T} will establish a channel between drain and source for the flow of charge in the output circuit.
33. (a) $I_{D}=k\left(V_{G S}-V_{T}\right)^{2}=0.4 \times 10^{-3}\left(V_{G S}-3.5\right)^{2}$

$V_{G S}$	I_{D}
3.5 V	0
4 V	0.1 mA
5 V	0.9 mA
6 V	2.5 mA
7 V	4.9 mA
8 V	8.1 mA

(b) $I_{D}=0.8 \times 10^{-3}\left(V_{G S}-3.5\right)^{2}$

$V_{G S}$	I_{D}	
3.5 V	0	For same levels of $V_{G S}, I_{D}$ attains
4 V	0.2 mA	twice the current level as part (a).
5 V	1.8 mA	Transfer curve has steeper slope.
6 V	5.0 mA	For both curves, $I_{D}=0 \mathrm{~mA}$ for
7 V	9.8 mA	$V_{G S}<3.5 \mathrm{~V}$.
8 V	16.2 mA	

34.

(a) $k=\frac{I_{D(\text { on })}}{\left(V_{G S(\text { on })}-V_{T}\right)^{2}}=\frac{4 \mathrm{~mA}}{(6 \mathrm{~V}-4 \mathrm{~V})^{2}}=1 \mathrm{~mA} / \mathrm{V}^{2}$
$I_{D}=k\left(V_{G S}-V_{T}\right)^{2}=\mathbf{1} \times \mathbf{1 0}^{-3}\left(V_{G S}-\mathbf{4} \mathbf{V}\right)^{2}$
(b)
 For $V_{G S}<V_{T}=4 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$ $5 \mathrm{~V} \quad 1 \mathrm{~mA}$
$6 \mathrm{~V} \quad 4 \mathrm{~mA}$
$7 \mathrm{~V} \quad 9 \mathrm{~mA}$
$8 \mathrm{~V} \quad 16 \mathrm{~mA}$
(c)

$V_{G S}$	I_{D}
	0 V
5 V	0 mA
10 V	36 mA

35. From Fig. 6.58, $V_{T}=2.0 \mathrm{~V}$

$$
\text { At } I_{D}=6.5 \mathrm{~mA}, V_{G S}=5.5 \mathrm{~V}: \quad I_{D}=k\left(V_{G S}-V_{T}\right)^{2}, ~ \begin{aligned}
6.5 \mathrm{~mA} & =k(5.5 \mathrm{~V}-2 \mathrm{~V})^{2} \\
k & =\mathbf{5 . 3 1} \times \mathbf{1 0}^{-4}
\end{aligned}
$$

$$
I_{D}=5.31 \times 10^{-4}\left(V_{G S}-2\right)^{2}
$$

36. $I_{D}=k\left(V_{G S(\mathrm{on})}-V_{T}\right)^{2}$

$$
\begin{aligned}
& \text { and }\left(V_{G S(\mathrm{on})}-V_{T}\right)^{2}=\frac{I_{D}}{k} \\
& \qquad \begin{aligned}
& G S(\mathrm{on}) \\
&-V_{T}=\sqrt{\frac{I_{D}}{k}} \\
& V_{T}= V_{G S(\mathrm{on})}-\sqrt{\frac{I_{D}}{k}} \\
&= 4 \mathrm{~V}-\sqrt{\frac{3 \mathrm{~mA}}{0.4 \times 10^{-3}}}=4 \mathrm{~V}-\sqrt{7.5} \mathrm{~V} \\
&= 4 \mathrm{~V}-2.739 \mathrm{~V} \\
&= \mathbf{1 . 2 6 1 ~ V}
\end{aligned}
\end{aligned}
$$

37. $I_{D}=k\left(V_{G S}-V_{T}\right)^{2}$
$\frac{I_{D}}{k}=\left(V_{G S}-V_{T}\right)^{2}$
$\sqrt{\frac{I_{D}}{k}}=V_{G S}-V_{T}$
$V_{G S}=V_{T}+\sqrt{\frac{I_{D}}{k}}=5 \mathrm{~V}+\sqrt{\frac{30 \mathrm{~mA}}{0.06 \times 10^{-3}}}$ $=27.36 \mathrm{~V}$
38. Enhancement-type MOSFET:

$$
\begin{aligned}
& I_{D}=k\left(V_{G S}-V_{T}\right)^{2} \\
& \left.\frac{d I_{D}}{d V_{G S}}=2 k\left(V_{G S}-V_{T}\right)\left[\frac{d}{d V_{G S}} \not X_{G S}-V_{T}\right)\right] \\
& \frac{d I_{D}}{d V_{G S}}=\mathbf{2 k}\left(V_{G S}-V_{T}\right)
\end{aligned}
$$

Depletion-type MOSFET:

$$
\begin{aligned}
& I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2} \\
& \begin{aligned}
\frac{d I_{D}}{d V_{G S}} & =I_{D S S} \frac{d}{d V_{G S}}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2} \\
& =I_{D S S} 2[\underbrace{\left.1-\frac{V_{G S}}{V_{P}}\right] \frac{d}{d V_{G S}}\left[0-\frac{V_{G S}}{V_{P}}\right]}_{-\frac{1}{V_{P}}} \\
& =2 I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)\left(-\frac{1}{V_{P}}\right) \\
& =-\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S}}{V_{P}}\right) \\
& =-\frac{2 I_{D S S}}{V_{P}}\left(\frac{V_{P}}{V_{P}}\right)\left(1-\frac{V_{G S}}{V_{P}}\right) \\
\frac{d I_{D}}{d V_{G S}} & =\frac{\mathbf{2 I} I_{D S S}}{V_{P}^{2}}\left(V_{G S}-V_{P}\right)
\end{aligned}
\end{aligned}
$$

For both devices $\frac{d I_{D}}{d V_{G S}}=k_{1}\left(V_{G S}-K_{2}\right)$
revealing that the drain current of each will increase at about the same rate.
39. $I_{D}=k\left(V_{G S}-V_{T}\right)^{2}=0.45 \times 10^{-3}\left(V_{G S}-(-5 \mathrm{~V})\right)^{2}$

$$
=0.45 \times 10^{-3}\left(V_{G S}+5 \mathrm{~V}\right)^{2}
$$

$V_{G S}=-5 \mathrm{~V}, I_{D}=0 \mathrm{~mA} ; V_{G S}=-6 \mathrm{~V}, I_{D}=0.45 \mathrm{~mA} ; V_{G S}=-7 \mathrm{~V}, I_{D}=1.8 \mathrm{~mA} ;$
$V_{G S}=-8 \mathrm{~V}, I_{D}=4.05 \mathrm{~mA} ; V_{G S}=-9 \mathrm{~V}, I_{D}=7.2 \mathrm{~mA} ; V_{G S}=-10 \mathrm{~V}, I_{D}=11.25 \mathrm{~mA}$
41. -
42. (a) -
(b) For the "on" transistor: $R=\frac{V}{I}=\frac{0.1 \mathrm{~V}}{4 \mathrm{~mA}}=\mathbf{2 5} \mathbf{~ o h m s}$

For the "off" transistor: $R=\frac{V}{I}=\frac{4.9 \mathrm{~V}}{0.5 \mu \mathrm{~A}}=\mathbf{9 . 8} \mathbf{~ M} \boldsymbol{\Omega}$
Absolutely, the high resistance of the "off" resistance will ensure V_{o} is very close to 5 V .
43. -

Chapter 7

1. (a) $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=12 \mathrm{~mA}$
$V_{G S}=V_{P}=-4 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=V_{P} / 2=-2 \mathrm{~V}, I_{D}=I_{D S S} / 4=3 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.2 \mathrm{~V}, I_{D}=I_{D S S} / 2=6 \mathrm{~mA}$
(b)

(c) $I_{D_{Q}} \cong 4.7 \mathrm{~mA}$
$V_{D S_{Q}}=V_{D D}-I_{D_{Q}} R_{D}=12 \mathrm{~V}-(4.7 \mathrm{~mA})(1.2 \mathrm{k} \Omega)$

$$
=6.36 \mathrm{~V}
$$

(d) $\quad I_{D_{Q}}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}=12 \mathrm{~mA}(1-(-1.5 \mathrm{~V}) /(-4 \mathrm{~V}))^{2}$

$$
=4.69 \mathrm{~mA}
$$

$V_{D S_{Q}}=V_{D D}-I_{D_{Q}} R_{D}=12 \mathrm{~V}-(4.69 \mathrm{~mA})(1.2 \mathrm{k} \Omega)$

$$
=6.37 \mathrm{~V}
$$

excellent comparison
2. (a) $I_{D_{Q}}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$

$$
\begin{aligned}
& =10 \mathrm{~mA}(1-(-3 \mathrm{~V}) /(-4.5 \mathrm{~V}))^{2} \\
& =10 \mathrm{~mA}(0.333)^{2} \\
I_{D_{Q}} & =\mathbf{1 . 1 1} \mathbf{~ m A}
\end{aligned}
$$

(b) $V_{G S_{Q}}=\mathbf{- 3} \mathbf{V}$
(c) $V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$

$$
\begin{aligned}
& =16 \mathrm{~V}-(1.11 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =16 \mathrm{~V}-2.444 \mathrm{~V} \\
& =\mathbf{1 3 . 5 6} \mathbf{V} \\
V_{D} & =V_{D S}=\mathbf{1 3 . 5 6} \mathbf{~ V} \\
V_{G} & =V_{G S_{Q}}=\mathbf{- 3} \mathbf{V} \\
V_{S} & =\mathbf{0} \mathbf{V}
\end{aligned}
$$

3. (a) $I_{D_{Q}}=\frac{V_{D D}-V_{D}}{R_{D}}=\frac{14 \mathrm{~V}-9 \mathrm{~V}}{1.6 \mathrm{k} \Omega}=\mathbf{3 . 1 2 5} \mathbf{~ m A}$
(b) $V_{D S}=V_{D}-V_{S}=9 \mathrm{~V}-0 \mathrm{~V}=\mathbf{9} \mathbf{V}$
(c) $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2} \Rightarrow V_{G S}=V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)$

$$
\begin{aligned}
V_{G S} & =(-4 \mathrm{~V})\left(1-\sqrt{\frac{3.125 \mathrm{~mA}}{8 \mathrm{~mA}}}\right) \\
& =-1.5 \mathrm{~V} \\
\therefore V_{G G} & =\mathbf{1 . 5} \mathbf{V}
\end{aligned}
$$

4. $V_{G S_{\underline{Q}}}=0 \mathrm{~V}, I_{D}=I_{D S S}=5 \mathrm{~mA}$

$$
\begin{aligned}
V_{D} & =V_{D D}-I_{D} R_{D} \\
& =20 \mathrm{~V}-(5 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =20 \mathrm{~V}-11 \mathrm{~V} \\
& =\mathbf{9} \mathbf{V}
\end{aligned}
$$

5. $V_{G S}=V_{P}=-4 \mathrm{~V}$
$\therefore I_{D_{Q}}=0 \mathrm{~mA}$
and $V_{D}=V_{D D}-I_{D_{Q}} R_{D}=18 \mathrm{~V}-(0)(2 \mathrm{k} \Omega)$

$$
=18 \mathrm{~V}
$$

6. (a)(b) $V_{G S}=0 \mathrm{~V}, I_{D}=10 \mathrm{~mA}$

$$
\begin{aligned}
V_{G S} & =V_{P}=-4 \mathrm{~V}, I_{D}=0 \mathrm{~mA} \\
V_{G S} & =\frac{V_{P}}{2}=-2 \mathrm{~V}, I_{D}=2.5 \mathrm{~mA} \\
V_{G S} & =0.3 V_{P}=-1.2 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\
V_{G S} & =-I_{D} R_{S} \\
I_{D} & =5 \mathrm{~mA}: \\
V_{G S} & =-(5 \mathrm{~mA})(0.75 \mathrm{k} \Omega) \\
& =-3.75 \mathrm{~V}
\end{aligned}
$$

(c) $I_{D_{\underline{\varrho}}} \cong 2.7 \mathrm{~mA}$

$$
V_{G S_{Q}} \cong-1.9 \mathrm{~V}
$$

(d) $V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$

$$
\begin{aligned}
& =18 \mathrm{~V}-(2.7 \mathrm{~mA})(1.5 \mathrm{k} \Omega+0.75 \mathrm{k} \Omega) \\
& =\mathbf{1 1 . 9 3} \mathbf{~ V} \\
V_{D} & =V_{D D}-I_{D} R_{D} \\
& =18 \mathrm{~V}-(2.7 \mathrm{~mA})(1.5 \mathrm{k} \Omega) \\
& =\mathbf{1 3 . 9 5} \mathbf{V} \\
V_{G} & =\mathbf{0} \mathbf{V} \\
V_{S} & =I_{S} R_{S}=I_{D} R_{S} \\
& =(2.7 \mathrm{~mA})(0.75 \mathrm{k} \Omega) \\
& =\mathbf{2 . 0 3} \mathbf{V}
\end{aligned}
$$

7. $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}=I_{D S S}\left(1+\frac{2 I_{D} R_{S}}{V_{P}}+\frac{I_{D}^{2} R_{S}^{2}}{V_{P}^{2}}\right)$

$$
\left(\frac{I_{D S S} R_{S}^{2}}{V_{P}^{2}}\right) I_{D}^{2}+\left(\frac{2 I_{D S S} R_{S}}{V_{P}}-1\right) I_{D}+I_{D S S}=0
$$

Substituting: $351.56 I_{D}^{2}-4.75 I_{D}+10 \mathrm{~mA}=0$

$$
\begin{aligned}
I_{D} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=10.91 \mathrm{~mA}, 2.60 \mathrm{~mA} \\
I_{D_{Q}} & =\mathbf{2 . 6} \mathbf{~ m A}(\text { exact match } \# 6) \\
V_{G S} & =-I_{D} R_{S}=-(2.60 \mathrm{~mA})(0.75 \mathrm{k} \Omega) \\
& =-\mathbf{1 . 9 5} \mathbf{V} \text { vs. }-2 \mathrm{~V}(\# 6)
\end{aligned}
$$

8. $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=6 \mathrm{~mA}$
$V_{G S}=V_{P}=-6 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=\frac{V_{P}}{2}=-3 \mathrm{~V}, I_{D}=1.5 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.8 \mathrm{~V}, I_{D}=3 \mathrm{~mA}$
$V_{G S}=-I_{D} R_{S}$
$I_{D}=2 \mathrm{~mA}$:
$V_{G S}=-(2 \mathrm{~mA})(1.6 \mathrm{k} \Omega)$

$$
=-3.2 \mathrm{~V}
$$

(a) $I_{D_{Q}}=1.7 \mathrm{~mA}$

$$
V_{G S_{Q}}=\mathbf{- 2 . 8} \mathbf{~ V}
$$

(b) $V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$

$$
\begin{aligned}
& =12 \mathrm{~V}-(1.7 \mathrm{~mA})(2.2 \mathrm{k} \Omega+1.6 \mathrm{k} \Omega) \\
& =\mathbf{5 . 5 4} \mathbf{V} \\
V_{D} & =V_{D D}-I_{D} R_{D} \\
& =12 \mathrm{~V}-(1.7 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =\mathbf{8 . 2 6} \mathbf{V} \\
V_{G} & =\mathbf{0} \mathbf{~} \\
V_{S} & =I_{S} R_{S}=I_{D} R_{S} \\
& =(1.7 \mathrm{~mA})(1.6 \mathrm{k} \Omega) \\
& =\mathbf{2 . 7 2} \mathbf{V}\left(\text { vs. } 2.8 \mathrm{~V} \text { from } V_{S}=\left(V_{G S_{Q}}\right)\right)
\end{aligned}
$$

9. (a) $I_{D_{\underline{Q}}}=I_{S}=\frac{V_{S}}{R_{S}}=\frac{1.7 \mathrm{~V}}{0.51 \mathrm{k} \Omega}=\mathbf{3 . 3 3} \mathbf{~ m A}$
(b) $V_{G S_{Q}}=-I_{D_{Q}} R_{S}=-(3.33 \mathrm{~mA})(0.51 \mathrm{k} \Omega)$

$$
\cong-1.7 \mathrm{~V}
$$

(c) $\quad I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$

$$
3.33 \mathrm{~mA}=I_{D S S}(1-(-1.7 \mathrm{~V}) /(-4 \mathrm{~V}))^{2}
$$

$$
3.33 \mathrm{~mA}=I_{D S S}(0.331)
$$

$$
I_{D S S}=\mathbf{1 0 . 0 6} \mathbf{~ m A}
$$

(d) $V_{D}=V_{D D}-I_{D_{Q}} R_{D}$

$$
\begin{aligned}
& =18 \mathrm{~V}-(3.33 \mathrm{~mA})(2 \mathrm{k} \Omega)=18 \mathrm{~V}-6.66 \mathrm{~V} \\
& =\mathbf{1 1 . 3 4} \mathrm{V}
\end{aligned}
$$

(e) $V_{D S}=V_{D}-V_{S}=11.34 \mathrm{~V}-1.7 \mathrm{~V}$

$$
=9.64 \mathrm{~V}
$$

10. (a) $V_{G S}=0 \mathrm{~V}$

$$
\therefore I_{D}=I_{D S S}=4.5 \mathbf{m A}
$$

(b) $V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$

$$
\begin{aligned}
& =20 \mathrm{~V}-(4.5 \mathrm{~mA})(2.2 \mathrm{k} \Omega+0.68 \mathrm{k} \Omega) \\
& =20 \mathrm{~V}-12.96 \\
& =7.04 \mathrm{~V}
\end{aligned}
$$

(c) $V_{D}=V_{D D}-I_{D} R_{D}$

$$
=20 \mathrm{~V}-(4.5 \mathrm{~mA})(2.2 \mathrm{k} \Omega)
$$

$$
=10.1 \mathrm{~V}
$$

(d) $V_{S}=I_{S} R_{S}=I_{D} R_{S}$

$$
\begin{aligned}
& =(4.5 \mathrm{~mA})(0.68 \mathrm{k} \Omega) \\
& =\mathbf{3 . 0 6} \mathbf{V}
\end{aligned}
$$

11. Network redrawn:

$$
\begin{aligned}
& V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=6 \mathrm{~mA} \\
& V_{G S}=V_{P}=-6 \mathrm{~V}, I_{D}=0 \mathrm{~mA} \\
& V_{G S}=\frac{V_{P}}{2}=-3 \mathrm{~V}, I_{D}=1.5 \mathrm{~mA} \\
& V_{G S}=0.3 V_{P}=-1.8 \mathrm{~V}, I_{D}=3 \mathrm{~mA} \\
& V_{G S}=-I_{D} R_{S}=-I_{D}(0.39 \mathrm{k} \Omega) \\
& \text { For } I_{D}=5 \mathrm{~mA}, V_{G S}=-1.95 \mathrm{~V}
\end{aligned}
$$

From graph $I_{D_{Q}} \cong \mathbf{3 . 5 5} \mathbf{~ m A}$

$$
\begin{aligned}
V_{G S_{Q}} & \cong \mathbf{- 1 . 4 ~ \mathbf { V }} \\
V_{S}=-\left(V_{G S_{Q}}\right) & =-(-1.4 \mathrm{~V}) \\
& =+\mathbf{1 . 4} \mathbf{~ V}
\end{aligned}
$$

12.
(a) $\quad V_{G}=\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{110 \mathrm{k} \Omega(20 \mathrm{~V})}{910 \mathrm{k} \Omega+110 \mathrm{k} \Omega}$

$$
=2.16 \mathrm{~V}
$$

$V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=10 \mathrm{~mA}$
$V_{G S}=V_{P}=-3.5 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=\frac{V_{P}}{2}=-1.75 \mathrm{~V}, I_{D}=2.5 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.05 \mathrm{~V}, I_{D}=5 \mathrm{~mA}$
$V_{G S_{Q}}=V_{G}-I_{D} R_{S}$
$V_{G S_{Q}}=2.16-I_{D}(1.1 \mathrm{k} \Omega)$
$I_{D}=0: V_{G S_{Q}}=V_{G}=2.16 \mathrm{~V}$
$V_{G S_{Q}}=0 \mathrm{~V}, I_{D}=\frac{2.16 \mathrm{~V}}{1.1 \mathrm{k} \Omega}=1.96 \mathrm{~mA}$
(b) $I_{D_{Q}} \cong 3.3 \mathrm{~mA}$

$$
V_{G S_{2}} \cong-1.5 \mathrm{~V}
$$

(c) $\quad V_{D}=V_{D D}-I_{D_{Q}} R_{D}$

$$
\begin{aligned}
& =20 \mathrm{~V}-(3.3 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =\mathbf{1 2 . 7 4} \mathbf{V} \\
V_{S} & =I_{S} R_{S}=I_{D} R_{S} \\
& =(3.3 \mathrm{~mA})(1.1 \mathrm{k} \Omega) \\
& =\mathbf{3 . 6 3} \mathbf{~ V}
\end{aligned}
$$

(d) $V_{D S_{\varrho}}=V_{D D}-I_{D_{\varrho}}\left(R_{D}+R_{S}\right)$

$$
\begin{aligned}
& =20 \mathrm{~V}-(3.3 \mathrm{~mA})(2.2 \mathrm{k} \Omega+1.1 \mathrm{k} \Omega) \\
& =20 \mathrm{~V}-10.89 \mathrm{~V} \\
& =\mathbf{9 . 1 1 ~ V}
\end{aligned}
$$

13.

$$
\text { (a) } \begin{aligned}
& I_{D}=I_{D S S}=10 \mathrm{~mA}, V_{P}=-3.5 \mathrm{~V} \\
& V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=10 \mathrm{~mA} \\
& V_{G S}=V_{P}=-3.5 \mathrm{~V}, I_{D}=0 \mathrm{~mA}
\end{aligned} \left\lvert\, \begin{gathered}
V_{G}=\frac{110 \mathrm{k} \Omega(20 \mathrm{~V})}{110 \mathrm{k} \Omega+910 \mathrm{k} \Omega} \\
=\mathbf{2 . 1 6 \mathrm { V }} \\
V_{G S}=\frac{V_{P}}{2}=\frac{-3.5 \mathrm{~V}}{2}=-1.75 \mathrm{~V}, I_{D}=2.5 \mathrm{~mA} \\
V_{G S}=0.3 V_{P}=-1.05 \mathrm{~V}, I_{D}=5 \mathrm{~mA} \\
I_{D_{Q}} \cong \mathbf{5 . 8} \mathbf{~ m A} \text { vs. } 3.3 \mathrm{~mA}(\# 12) \\
V_{G S_{Q}} \cong-\mathbf{0 . 8 5} \mathrm{V} \text { vs. }-1.5 \mathrm{~V}(\# 12)
\end{gathered}\right.
$$

(b) As R_{S} decreases, the intersection on the vertical axis increases. The maximum occurs at $I_{D}=I_{D S S}=10 \mathrm{~mA}$.

$$
\therefore R_{S_{\text {min }}}=\frac{V_{G}}{I_{D S S}}=\frac{2.16 \mathrm{~V}}{10 \mathrm{~mA}}=\mathbf{2 1 6} \Omega
$$

14.

(a) $I_{D}=\frac{V_{R_{D}}}{R_{D}}=\frac{V_{D D}-V_{D}}{R_{D}}=\frac{18 \mathrm{~V}-9 \mathrm{~V}}{2 \mathrm{k} \Omega}=\frac{9 \mathrm{~V}}{2 \mathrm{k} \Omega}=4.5 \mathrm{~mA}$
(b) $V_{S}=I_{S} R_{S}=I_{D} R_{S}=(4.5 \mathrm{~mA})(0.68 \mathrm{k} \Omega)$

$$
=3.06 \mathrm{~V}
$$

$$
V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)
$$

$$
=18 \mathrm{~V}-(4.5 \mathrm{~mA})(2 \mathrm{k} \Omega+0.68 \mathrm{k} \Omega)
$$

$$
=18 \mathrm{~V}-12.06 \mathrm{~V}
$$

$$
=5.94 \mathrm{~V}
$$

(c) $\quad V_{G}=\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{91 \mathrm{k} \Omega(18 \mathrm{~V})}{750 \mathrm{k} \Omega+91 \mathrm{k} \Omega}=\mathbf{1 . 9 5} \mathrm{V}$
$V_{G S}=V_{G}-V_{S}=1.95 \mathrm{~V}-3.06 \mathrm{~V}=\mathbf{- 1 . 1 1 ~ V}$
(d) $V_{P}=\frac{V_{G S}}{1-\sqrt{\frac{I_{D}}{I_{D S S}}}}=\frac{-1.11 \mathrm{~V}}{1-\sqrt{\frac{4.5 \mathrm{~mA}}{8 \mathrm{~mA}}}}=-\mathbf{4 . 4 4 \mathrm { V }}$

$$
=-1.48 \mathrm{~V}
$$

15.

(a) $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=6 \mathrm{~mA}$
$V_{G S}=V_{P}=-6 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=V_{P} / 2=-3 \mathrm{~V}, I_{D}=1.5 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.8 \mathrm{~V}, I_{D}=3 \mathrm{~mA}$
$V_{G S}=V_{S S}-I_{D} R_{S}$
$V_{G S}=4 \mathrm{~V}-I_{D}(2.2 \mathrm{k} \Omega)$
$V_{G S}=0 \mathrm{~V}, I_{D}=\frac{4 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=1.818 \mathrm{~mA}$
$I_{D}=0 \mathrm{~mA}, V_{G S}=4 \mathrm{~V}$
$I_{D_{Q}} \cong 2.7 \mathbf{~ m A}$
$V_{G S_{Q}} \cong-\mathbf{2} \mathbf{V}$

(b) $V_{D S}=V_{D D}+V_{S S}-I_{D}\left(R_{D}+R_{S}\right)$

$$
=16 \mathrm{~V}+4 \mathrm{~V}-(2.7 \mathrm{~mA})(4.4 \mathrm{k} \Omega)
$$

$$
=8.12 \mathrm{~V}
$$

$V_{S}=-V_{S S}+I_{D} R_{S}=-4 \mathrm{~V}+(2.7 \mathrm{~mA})(2.2 \mathrm{k} \Omega)$

$$
=1.94 \mathrm{~V}
$$

or $V_{S}=-\left(V_{G S_{Q}}\right)=-(-2 \mathrm{~V})=\mathbf{+ 2} \mathbf{V}$
16.
(a) $I_{D}=\frac{V}{R}=\frac{V_{D D}+V_{S S}-V_{D S}}{R_{D}+R_{S}}=\frac{12 \mathrm{~V}+3 \mathrm{~V}-4 \mathrm{~V}}{3 \mathrm{k} \Omega+2 \mathrm{k} \Omega}=\frac{11 \mathrm{~V}}{5 \mathrm{k} \Omega}=\mathbf{2 . 2} \mathbf{~ m A}$
(b) $V_{D}=V_{D D}-I_{D} R_{D}=12 \mathrm{~V}-(2.2 \mathrm{~mA})(3 \mathrm{k} \Omega)$

$$
=5.4 \mathrm{~V}
$$

$$
V_{S}=I_{S} R_{S}+V_{S S}=I_{D} R_{S}+V_{S S}
$$

$$
=(2.2 \mathrm{~mA})(2 \mathrm{k} \Omega)+(-3 \mathrm{~V})
$$

$$
=4.4 \mathrm{~V}-3 \mathrm{~V}
$$

$$
=1.4 \mathrm{~V}
$$

(c) $\quad V_{G S}=V_{G}-V_{S}$

$$
\begin{aligned}
& =0 \mathrm{~V}-1.4 \mathrm{~V} \\
& =\mathbf{- 1 . 4 ~ V}
\end{aligned}
$$

17. (a) $I_{D_{Q}}=\mathbf{4} \mathbf{m A}$
(b) $V_{D_{Q}}=12 \mathrm{~V}-4 \mathrm{~mA}(1.8 \mathrm{k} \Omega)=12 \mathrm{~V}-7.2 \mathrm{~V}=4.8 \mathrm{~V}$
$V_{D S_{Q}}=4.8 \mathrm{~V}$
(c) $P_{s}=(12 \mathrm{~V})(4 \mathrm{~mA})=\mathbf{4 8} \mathbf{~ m W}$
$P_{d}=(4.8 \mathrm{~V})(4 \mathrm{~mA})=\mathbf{1 9 . 2} \mathbf{~ m W}$
18. $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=6 \mathrm{~mA}$
$V_{G S}=V_{P}=-4 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=V_{P} / 2=-2 \mathrm{~V}, I_{D}=I_{D S S} / 4=1.5 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=-1.2 \mathrm{~V}, I_{D}=I_{D S S} / 2=3 \mathrm{~mA}$

$$
V_{G S}=-I_{D} R_{S}=-I_{D}(0.43 \mathrm{k} \Omega)
$$

$I_{D}=4 \mathrm{~mA}, V_{G S}=-1.72 \mathrm{~V}$

(b) $V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)$

$$
=14 \mathrm{~V}-2.9 \mathrm{~mA}(1.2 \mathrm{k} \Omega+0.43 \mathrm{k} \Omega)
$$

$$
=9.27 \mathrm{~V}
$$

$$
V_{D}=V_{D D}-I_{D} R_{D}
$$

$$
=14 \mathrm{~V}-(2.9 \mathrm{~mA})(1.2 \mathrm{k} \Omega)
$$

$$
=10.52 \mathrm{~V}
$$

19.

$$
\text { (b) } \begin{aligned}
V_{D S} & =V_{D D}-I_{D}\left(R_{D}+R_{S}\right)+V_{S S} \\
& =18 \mathrm{~V}-9 \mathrm{~mA}(1.2 \mathrm{k} \Omega+0.39 \mathrm{k} \Omega)+4 \mathrm{~V} \\
& =22 \mathrm{~V}-14.31 \mathrm{~V} \\
& =\mathbf{7 . 6 9} \mathbf{V} \\
V_{S} & =-\left(V_{G S_{Q}}\right)=\mathbf{- 0 . 5} \mathbf{V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 20. } I_{D}=k\left(V_{G S}-V_{T}\right)^{2} \\
& \begin{array}{l|l}
I_{D}=k\left(V_{G S}-V_{T}\right)^{2} \\
k=\frac{I_{D(\mathrm{on})}}{\left(V_{G S(\mathrm{on})}-V_{T h}\right)^{2}}=\frac{5 \mathrm{~mA}}{(7 \mathrm{~V}-4 \mathrm{~V})^{2}}=\frac{5 \mathrm{~mA}}{9 \mathrm{~V}^{2}} & \begin{array}{l}
V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right) \\
V_{D S}=0 \mathrm{~V} ; I_{D}=\frac{V_{D D}}{R_{D}+R_{S}}
\end{array}
\end{array} \\
& K=0.556 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2} \\
& \text { and } I_{D}=0.556 \times 10^{-3}\left(V_{G S}-4 V\right)^{2} \\
& =\frac{22 \mathrm{~V}}{1.2 \mathrm{k} \Omega+0.51 \mathrm{k} \Omega} \\
& I_{D}=0 \mathrm{~mA}, V_{D S}=V_{D D} \\
& =22 \mathrm{~V}
\end{aligned}
$$

(c) $V_{D}=V_{D D}-I_{D} R_{D}$

$$
\begin{aligned}
& =22 \mathrm{~V}-(8.25 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
& =\mathbf{1 2 . 1} \mathbf{~ V} \\
V_{S} & =I_{S} R_{S}=I_{D} R_{S} \\
& =(8.25 \mathrm{~mA})(0.51 \mathrm{k} \Omega) \\
& =\mathbf{4 . 2 1} \mathbf{V}
\end{aligned}
$$

(d) $V_{D S}=V_{D}-V_{S}$

$$
\begin{aligned}
& =12.1 \mathrm{~V}-4.21 \mathrm{~V} \\
& =\mathbf{7 . 8 9} \mathrm{V}
\end{aligned}
$$

vs. 7.9 V obtained graphically
21.
(a) $V_{G}=\frac{R_{2}}{R_{1}+R_{2}} V_{D D}=\frac{6.8 \mathrm{M} \Omega}{10 \mathrm{M} \Omega+6.8 \mathrm{M} \Omega}(24 \mathrm{~V})=9.71 \mathrm{~V}$
$V_{G S}=V_{G}-I_{D} R_{S}$
$V_{G S}=9.71-I_{D}(0.75 \mathrm{k} \Omega)$
At $I_{D}=0 \mathrm{~mA}, V_{G S}=9.71 \mathrm{~V}$
At $V_{G S}=0 \mathrm{~V}, I_{D}=\frac{9.71 \mathrm{~V}}{0.75 \mathrm{k} \Omega}=12.95 \mathrm{~mA}$

$$
\begin{aligned}
& k=\frac{I_{D(\mathrm{n})}}{\left(V_{G S(\mathrm{~m})}-V_{G S(T h)}\right)^{2}}=\frac{5 \mathrm{~mA}}{(6 \mathrm{~V}-3 \mathrm{~V})^{2}}=\frac{5 \mathrm{~mA}}{(3 \mathrm{~V})^{2}} \\
&=0.556 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2} \\
& \therefore I_{D}=\mathbf{0 . 5 5 6} \times \mathbf{1 0}^{-3}\left(V_{G S}-\mathbf{3} \mathbf{~ V}\right)^{2}
\end{aligned}
$$

$V_{G S}$	I_{D}
3 V	0 mA
4 V	0.556 mA
5 V	2.22 mA
6 V	5 mA
7 V	8.9 mA

$$
\begin{aligned}
& I_{D_{Q}} \cong \mathbf{5} \mathbf{~ m A} \\
& V_{G S_{Q}} \cong \mathbf{6} \mathbf{V}
\end{aligned}
$$

(b) $V_{D}=V_{D D}-I_{D} R_{D}=24 \mathrm{~V}-(5 \mathrm{~mA})(2.2 \mathrm{k} \Omega)$

$$
=13 \mathrm{~V}
$$

$V_{S}=I_{S} R_{S}=I_{D} R_{S}$
$=(5 \mathrm{~mA})(0.75 \mathrm{k} \Omega)$
$=3.75 \mathrm{~V}$
22.
(a) $\quad V_{G}=\frac{R_{2}}{R_{1}+R_{2}} V_{C C}=\frac{18 \mathrm{k} \Omega}{91 \mathrm{k} \Omega+18 \mathrm{k} \Omega}(20 \mathrm{~V})$

$$
=3.3 \mathrm{~V}
$$

(b) $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=6 \mathrm{~mA}$
$V_{G S}=V_{P}=-6 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=\frac{V_{P}}{2}=-3 \mathrm{~V}, I_{D}=1.5 \mathrm{~mA}$
$V_{G S}=V_{P}=-1.8 \mathrm{~V}, I_{D}=3 \mathrm{~mA}$
$I_{D_{Q}} \cong \mathbf{3 . 7 5} \mathbf{~ m A}$
$V_{G S_{Q}} \cong \mathbf{- 1 . 2 5} \mathbf{V}$

(d) $I_{B}=\frac{I_{C}}{\beta}=\frac{3.75 \mathrm{~mA}}{160}=\mathbf{2 3 . 4 4} \boldsymbol{\mu} \mathbf{A}$
(e) $V_{D}=V_{E}=V_{B}-V_{B E}=V_{C C}-I_{B} R_{B}-V_{B E}=20 \mathrm{~V}-(23.44 \mu \mathrm{~A})(330 \mathrm{k} \Omega)-0.7 \mathrm{~V}$

$$
=11.56 \mathrm{~V}
$$

(f) $V_{C}=V_{C C}-I_{C} R_{C}=20 \mathrm{~V}-(3.75 \mathrm{~mA})(1.1 \mathrm{k} \Omega)$

$$
=15.88 \mathrm{~V}
$$

23. Testing:

$$
\beta R_{E} \geq 10 R_{2}
$$

$$
(100)(1.2 \mathrm{k} \Omega) \geq 10(10 \mathrm{k} \Omega)
$$

$$
120 \mathrm{k} \Omega>100 \mathrm{k} \Omega \text { (satisfied) }
$$

(a) $V_{B}=V_{G}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}}=\frac{10 \mathrm{k} \Omega(16 \mathrm{~V})}{40 \mathrm{k} \Omega+10 \mathrm{k} \Omega}$

$$
=3.2 \mathrm{~V}
$$

(b) $V_{E}=V_{B}-V_{B E}=3.2 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{2 . 5} \mathbf{V}$
(c) $I_{E}=\frac{V_{E}}{R_{E}}=\frac{2.5 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=\mathbf{2 . 0 8} \mathbf{~ m A}$
$I_{C} \cong I_{E}=\mathbf{2 . 0 8} \mathbf{~ m A}$
$I_{D}=I_{C}=\mathbf{2 . 0 8} \mathbf{~ m A}$
(d) $I_{B}=\frac{I_{C}}{\beta}=\frac{2.08 \mathrm{~mA}}{100}=\mathbf{2 0 . 8} \boldsymbol{\mu} \mathbf{A}$
(e) $\quad V_{C}=V_{G}-V_{G S}$

$$
\begin{aligned}
V_{G S} & =V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right) \\
& =(-6 \mathrm{~V})\left(1-\sqrt{\frac{2.08 \mathrm{~mA}}{6 \mathrm{~mA}}}\right) \\
& =-2.47 \mathrm{~V} \\
V_{C} & =3.2-(-2.47 \mathrm{~V}) \\
& =\mathbf{5 . 6 7} \mathbf{~} \\
V_{S} & =V_{C}=\mathbf{5 . 6 7} \mathbf{V} \\
V_{D} & =V_{D D}-I_{D} R_{D} \\
& =16 \mathrm{~V}-(2.08 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =\mathbf{1 1 . 4 2} \mathbf{V}
\end{aligned}
$$

(f) $V_{C E}=V_{C}-V_{E}=5.67 \mathrm{~V}-2.5 \mathrm{~V}$

$$
=3.17 \mathrm{~V}
$$

(g) $V_{D S}=V_{D}-V_{S}=11.42 \mathrm{~V}-5.67 \mathrm{~V}$

$$
=5.75 \mathrm{~V}
$$

24. $\quad V_{G S}=V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)=(-6 \mathrm{~V})\left(1-\sqrt{\frac{4 \mathrm{~mA}}{8 \mathrm{~mA}}}\right)$

$$
=-1.75 \mathrm{~V}
$$

$$
V_{G S}=-I_{D} R_{S}: \quad R_{S}=-\frac{V_{G S}}{I_{D}}=\frac{-(-1.75 \mathrm{~V})}{4 \mathrm{~mA}}=\mathbf{0 . 4 4} \mathbf{~ k} \boldsymbol{\Omega}
$$

$$
R_{D}=3 R_{S}=3(0.44 \mathrm{k} \Omega)=\mathbf{1 . 3 2} \mathbf{~ k} \Omega
$$

Standard values: $R_{S}=0.43 \mathbf{k} \Omega$

$$
R_{D}=1.3 \mathbf{k} \boldsymbol{\Omega}
$$

25. $\quad V_{G S}=V_{P}\left(1-\sqrt{\frac{I_{D}}{I_{D S S}}}\right)=(-4 \mathrm{~V})\left(1-\sqrt{\frac{2.5 \mathrm{~mA}}{10 \mathrm{~mA}}}\right)$

$$
=-2 \mathrm{~V}
$$

$V_{G S}=V_{G}-V_{S}$
and $V_{S}=V_{G}-V_{G S}=4 \mathrm{~V}-(-2 \mathrm{~V})$

$$
=6 \mathrm{~V}
$$

$R_{S}=\frac{V_{S}}{I_{D}}=\frac{6 \mathrm{~V}}{2.5 \mathrm{~mA}}=\mathbf{2 . 4} \mathbf{~ k} \boldsymbol{\Omega}$ (a standard value)
$R_{D}=2.5 R_{S}=2.5(2.4 \mathrm{k} \Omega)=6 \mathrm{k} \Omega \Rightarrow$ use $6.2 \mathrm{k} \Omega$
$V_{G}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}} \Rightarrow 4 \mathrm{~V}=\frac{R_{2}(24 \mathrm{~V})}{22 \mathrm{M} \Omega+R_{2}} \Rightarrow 88 \mathrm{M} \Omega+4 R_{2}=24 R_{2}, ~=88 \mathrm{M} \Omega$,
26. $I_{D}=k\left(V_{G S}-V_{T}\right)^{2}$
$\frac{I_{D}}{k}=\left(V_{G S}-V_{T}\right)^{2}$
$\sqrt{\frac{I_{D}}{k}}=V_{G S}-V_{T}$
and $V_{G S}=V_{T}+\sqrt{\frac{I_{D}}{k}}=4 \mathrm{~V}+\sqrt{\frac{6 \mathrm{~mA}}{0.5 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2}}}=7.46 \mathrm{~V}$
$R_{D}=\frac{V_{R_{D}}}{I_{D}}=\frac{V_{D D}-V_{D S}}{I_{D}}=\frac{V_{D D}-V_{G S}}{I_{D}}=\frac{16 \mathrm{~V}-7.46 \mathrm{~V}}{6 \mathrm{~mA}}=\frac{8.54 \mathrm{~V}}{6 \mathrm{~mA}}$

$$
=1.42 \mathrm{k} \Omega
$$

Standard value: $R_{D}=\mathbf{0 . 7 5} \mathbf{k} \boldsymbol{\Omega}$

$$
R_{G}=\mathbf{1 0} \mathbf{M} \Omega
$$

27.

(a) $I_{D}=I_{S}=\frac{V_{S}}{R_{S}}=\frac{4 \mathrm{~V}}{1 \mathrm{k} \Omega}=4 \mathrm{~mA}$

$$
\begin{aligned}
V_{D S} & =V_{D D}-I_{D}\left(R_{D}+R_{S}\right)=12 \mathrm{~V}-(4 \mathrm{~mA})(2 \mathrm{k} \Omega+1 \mathrm{k} \Omega) \\
& =12 \mathrm{~V}-(4 \mathrm{~mA})(3 \mathrm{k} \Omega) \\
& =12 \mathrm{~V}-12 \mathrm{~V} \\
& =0 \mathrm{~V}
\end{aligned}
$$

JFET in saturation!
(b) $V_{S}=0 \mathrm{~V}$ reveals that the JFET is nonconducting and the JFET is either defective or an open-circuit exists in the output circuit. V_{S} is at the same potential as the grounded side of the $1 \mathrm{k} \Omega$ resistor.
(c) Typically, the voltage across the $1 \mathrm{M} \Omega$ resistor is $\cong 0 \mathrm{~V}$. The fact that the voltage across the $1 \mathrm{M} \Omega$ resistor is equal to $V_{D D}$ suggests that there is a short-circuit connection from gate to drain with $I_{D}=0 \mathrm{~mA}$. Either the JFET is defective or an improper circuit connection was made.
28. $V_{G}=\frac{75 \mathrm{k} \Omega(20 \mathrm{~V})}{75 \mathrm{k} \Omega+330 \mathrm{k} \Omega}=3.7 \mathrm{~V}$ (seems correct!)
$V_{G S}=3.7 \mathrm{~V}-6.25 \mathrm{~V}=-2.55 \mathrm{~V}$ (possibly okay)
$I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$
$=10 \mathrm{~mA}(1-(-2.55 \mathrm{~V}) /(-6 \mathrm{~V}))^{2}$
$=3.3 \mathrm{~mA}$ (reasonable)

$$
\text { However, } \begin{aligned}
I_{S} & =\frac{V_{S}}{R_{S}}=\frac{6.25 \mathrm{~V}}{1 \mathrm{k} \Omega}=6.25 \mathrm{~mA} \neq 3.3 \mathrm{~mA} \\
V_{R_{D}} & =I_{D} R_{D}=I_{S} R_{D}=(6.25 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =13.75 \mathrm{~V}
\end{aligned}
$$

$$
\text { and } V_{R_{S}}+V_{R_{D}}=6.25 \mathrm{~V}+13.75 \mathrm{~V}
$$

$$
\therefore V_{D S}=0 \mathrm{~V}
$$

$$
=\mathbf{2 0} \mathbf{V}=V_{D D}
$$

1. Possible short-circuit from D-S.
2. Actual $I_{D S S}$ and/or V_{P} may be larger in magnitude than specified.
3. $I_{D}=I_{S}=\frac{V_{S}}{R_{S}}=\frac{6.25 \mathrm{~V}}{1 \mathrm{k} \Omega}=6.25 \mathrm{~mA}$

$$
\begin{aligned}
V_{D S} & =V_{D D}-I_{D}\left(R_{D}+R_{S}\right) \\
& =20 \mathrm{~V}-(6.25 \mathrm{~mA})(2.2 \mathrm{k} \Omega+1 \mathrm{k} \Omega) \\
& =20 \mathrm{~V}-20 \mathrm{~V} \\
& =0 \mathrm{~V} \text { (saturation condition) }
\end{aligned}
$$

$$
\begin{aligned}
V_{G} & =\frac{R_{2} V_{D D}}{R_{1}+R_{2}}=\frac{75 \mathrm{k} \Omega(20 \mathrm{~V})}{330 \mathrm{k} \Omega+75 \mathrm{k} \Omega}=3.7 \mathrm{~V}(\text { as it should be }) \\
V_{G S} & =V_{G}-V_{S}=3.7 \mathrm{~V}-6.25 \mathrm{~V}=-2.55 \mathrm{~V} \\
I_{D} & =I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}=10 \mathrm{~mA}(1-(-2.55 \mathrm{~V}) /(6 \mathrm{~V}))^{2} \\
& =3.3 \mathrm{~mA} \neq 6.25 \mathrm{~mA}
\end{aligned}
$$

In all probability, an open-circuit exists between the voltage divider network and the gate terminal of the JFET with the transistor exhibiting saturation conditions.
30.

(c) $V_{D}=V_{D D}-I_{D} R_{D}$

$$
=-18 \mathrm{~V}-(3 \mathrm{~mA})(2.2 \mathrm{k} \Omega)
$$

$$
=-11.4 \mathrm{~V}
$$

(a) $V_{G S}=0 \mathrm{~V}, I_{D}=I_{D S S}=8 \mathrm{~mA}$
$V_{G S}=V_{P}=+4 \mathrm{~V}, I_{D}=0 \mathrm{~mA}$
$V_{G S}=\frac{V_{P}}{2}=+2 \mathrm{~V}, I_{D}=2 \mathrm{~mA}$
$V_{G S}=0.3 V_{P}=1.2 \mathrm{~V}, I_{D}=4 \mathrm{~mA}$
$V_{G S}=I_{D} R_{S}$
$I_{D}=4 \mathrm{~mA}$;
$V_{G S}=(4 \mathrm{~mA})(0.51 \mathrm{k} \Omega)$
$=2.04 \mathrm{~V}$
$I_{D_{Q}}=\mathbf{3} \mathrm{mA}, V_{G S_{Q}}=1.55 \mathrm{~V}$
(b) $V_{D S}=V_{D D}+I_{D}\left(R_{D}+R_{S}\right)$
$=-18 \mathrm{~V}+(3 \mathrm{~mA})(2.71 \mathrm{k} \Omega)$
$=-9.87 \mathrm{~V}$
31. $k=\frac{I_{D(\mathrm{on})}}{\left(V_{G S(\mathrm{on})}-V_{G S(T h)}\right)^{2}}=\frac{4 \mathrm{~mA}}{(-7 \mathrm{~V}-(-3 \mathrm{~V}))^{2}}=\frac{4 \mathrm{~mA}}{(-4 \mathrm{~V})^{2}}$
$=0.25 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2}$
$I_{D}=0.25 \times 10^{-3}\left(V_{G S}+\mathbf{3 ~ V}\right)^{2}$

$V_{G S}$	I_{D}	
-3 V	0 mA	$V_{G S}=V_{D S}=V_{D D}+I_{D} R_{D}$
-4 V	0.25 mA	At $I_{D}=0 \mathrm{~mA}, V_{G S}=V_{D D}=-16 \mathrm{~V}$
-5 V	1 mA	At $V_{G S}=0 \mathrm{~V}, I_{D}=\frac{V_{D D}}{R_{D}}=\frac{16 \mathrm{~V}}{2 \mathrm{k} \Omega}=8 \mathrm{~mA}$
-6 V	2.25 mA	
-7 V	4 mA	
-8 V	6.25 mA	

(b) $V_{D S}=V_{G S}=-7.25 \mathrm{~V}$
(c) $V_{D}=V_{D S}=-7.25 \mathrm{~V}$

$$
\text { or } \begin{aligned}
V_{D S} & =V_{D D}+I_{D} R_{D} \\
& =-16 \mathrm{~V}+(4.4 \mathrm{~mA})(2 \mathrm{k} \Omega) \\
& =-16 \mathrm{~V}+8.8 \mathrm{~V} \\
V_{D S} & =-7.2 \mathrm{~V}=V_{D}
\end{aligned}
$$

32. $\frac{V_{G S}}{\left|V_{P}\right|}=\frac{-1.5 \mathrm{~V}}{4 \mathrm{~V}}=-0.375$

Find -0.375 on the horizontal axis.
Then move vertically to the $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$ curve.
Finally, move horizontally from the intersection with the curve to the left to the $I_{D} / I_{D S S}$ axis.

$$
\begin{aligned}
\frac{I_{D}}{I_{D S S}} & =0.39 \\
\text { and } I_{D} & =0.39(12 \mathrm{~mA})=\mathbf{4 . 6 8} \mathbf{~ m A} \text { vs. } 4.69 \mathrm{~mA}(\# 1) \\
V_{D S_{Q}} & =V_{D D}-I_{D} R_{D}=12 \mathrm{~V}-(4.68 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
& =\mathbf{6 . 3 8} \mathbf{V} \text { vs. } 6.37 \mathrm{~V}(\# 1)
\end{aligned}
$$

33. $m=\frac{\left|V_{P}\right|}{I_{D S S} R_{S}}=\frac{4 \mathrm{~V}}{(10 \mathrm{~mA})(0.75 \mathrm{k} \Omega)}$

$$
=0.533
$$

$M=m \frac{V_{G G}}{\left|V_{P}\right|}=\frac{0.533(0)}{4 \mathrm{~V}}$
$=0$
Draw a straight line from $M=0$ through $m=0.533$ until it crosses the normalized curve of I_{D} $=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}$. At the intersection with the curve drop a line down to determine

$$
\frac{V_{G S}}{\left|V_{P}\right|}=-0.49
$$

so that $V_{G S_{\varrho}}=-0.49 V_{P}=-0.49(4 \mathrm{~V})$

$$
=-1.96 \mathrm{~V}(\text { vs. }-1.9 \mathrm{~V} \# 6)
$$

If a horizontal line is drawn from the intersection to the left vertical axis we find

$$
\frac{I_{D}}{I_{D S S}}=0.27
$$

and $I_{D}=0.27\left(I_{D S S}\right)=0.27(10 \mathrm{~mA})=\mathbf{2 . 7} \mathbf{~ m A}$
(vs. 2.7 mA from \#6)
(a) $V_{G S_{\underline{Q}}}=-\mathbf{1 . 9 6 ~ V}, I_{D_{Q}}=2.7 \mathrm{~mA}$
(b) -
(c) -
(d) $V_{D S}=V_{D D}-I_{D}\left(R_{D}+R_{S}\right)=11.93 \mathrm{~V}$ (like \#6)

$$
V_{D}=V_{D D}-I_{D} R_{D}=13.95 \mathrm{~V} \text { (like \#6) }
$$

$$
V_{G}=0 \mathrm{~V}, V_{S}=I_{D} R_{S}=2.03 \mathrm{~V}(\text { like \#6 })
$$

34. $V_{G G}=\frac{R_{2} V_{D D}}{R_{1}+R_{2}}=\frac{110 \mathrm{k} \Omega(20 \mathrm{~V})}{110 \mathrm{k} \Omega+910 \mathrm{k} \Omega}=2.16 \mathrm{~V}$
$m=\frac{\left|V_{P}\right|}{I_{D S S} R_{S}}=\frac{3.5 \mathrm{~V}}{(10 \mathrm{~mA})(1.1 \mathrm{k} \Omega)}=0.318$
$M=m \times \frac{V_{G G}}{\left|V_{P}\right|}=0.318 \frac{(2.16 \mathrm{~V})}{3.5}=0.196$
Find 0.196 on the vertical axis labeled M and mark the location. Move horizontally to the vertical axis labeled m and then add $m=0.318$ to the vertical height ($\cong 1.318$ in total)—mark the spot. Draw a straight line through the two points located above, as shown below.

Continue the line until it intersects the $I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$ curve. At the intersection move horizontally to obtain the $I_{D} / I_{D S S}$ ratio and move down vertically to obtain the $V_{G S} /\left|V_{p}\right|$ ratio.

$$
\begin{aligned}
& \frac{I_{D}}{I_{D S S}}=0.33 \text { and } I_{D_{Q}}=0.33(10 \mathrm{~mA})=\mathbf{~} \mathbf{3 . 3 \mathbf { ~ m A }} \\
& \text { vs. } 3.3 \mathrm{~mA}(\# 12) \\
& \begin{aligned}
\frac{V_{G S}}{\left|V_{P}\right|}=-0.425 \text { and } V_{G S_{Q}} & =-0.425(3.5 \mathrm{~V}) \\
& =\mathbf{- 1 . 4 9 \mathbf { V }} \\
& \text { vs. } 1.5 \mathrm{~V}(\# 12)
\end{aligned}
\end{aligned}
$$

35. $m=\frac{\left|V_{P}\right|}{I_{D S S} R_{S}}=\frac{6 \mathrm{~V}}{(6 \mathrm{~mA})(2.2 \mathrm{k} \Omega)}$

$$
=0.4545
$$

$$
M=m \frac{V_{G G}}{\left|V_{P}\right|}=0.4545 \frac{(4 \mathrm{~V})}{(6 \mathrm{~V})}
$$

$$
=0.303
$$

Find 0.303 on the vertical M axis.
Draw a horizontal line from $M=0.303$ to the vertical m axis.
Add 0.4545 to the vertical location on the m axis defined by the horizontal line.
Draw a straight line between $M=0.303$ and the point on the m axis resulting from the addition of $m=0.4545$.
Continue the straight line as shown below until it crosses the normalized
$I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}$ curve:

At the intersection drop a vertical line to determine

$$
\begin{aligned}
& \frac{V_{G S}}{\left|V_{P}\right|}=-0.34 \\
&\text { and } \left.\begin{array}{rl}
V_{G S_{Q}} & =-0.34(6 \mathrm{~V}) \\
& =\mathbf{- 2 . 0 4} \mathbf{V}(\text { vs. }-2 \mathrm{~V} \text { from problem } 15)
\end{array} .=\begin{array}{l}
\text { (}
\end{array}\right)
\end{aligned}
$$

At the intersection draw a horizontal line to the $I_{D} / I_{D S S}$ axis to determine
(a) $I_{D_{Q}}=\mathbf{2 . 7 6} \mathbf{~ m A}, V_{G S_{Q}}=\mathbf{- 2 . 0 4} \mathrm{V}$
(b) $V_{D S}=V_{D D}+V_{S S}-I_{D}\left(R_{D}+R_{S}\right)$

$$
=16 \mathrm{~V}+4 \mathrm{~V}-(2.76 \mathrm{~mA})(4.4 \mathrm{k} \Omega)
$$

$$
=7.86 \mathrm{~V} \text { (vs. } 8.12 \mathrm{~V} \text { from problem } 15 \text {) }
$$

$$
\begin{aligned}
V_{S} & =-V_{S S}+I_{D} R_{S}=-4 \mathrm{~V}+(2.76 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\
& =-4 \mathrm{~V}+6.07 \mathrm{~V} \\
& =\mathbf{2 . 0 7} \mathrm{V}(\text { vs. } 1.94 \mathrm{~V} \text { from problem } 15)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{I_{D}}{I_{\text {DSS }}}=0.46 \\
& \text { and } I_{D_{Q}}=0.46(6 \mathrm{~mA}) \\
& =\mathbf{2 . 7 6} \mathbf{~ m A} \text { (vs. } 2.7 \mathrm{~mA} \text { from problem } 15 \text {) }
\end{aligned}
$$

Chapter 8

1. $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(15 \mathrm{~mA})}{|-5 \mathrm{~V}|}=6 \mathbf{m S}$
2. $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|} \Rightarrow\left|V_{P}\right|=\frac{2 I_{D S S}}{g_{m 0}}=\frac{2(12 \mathrm{~mA})}{10 \mathrm{mS}}=2.4 \mathrm{~V}$

$$
V_{P}=-\mathbf{2 . 4} \mathrm{V}
$$

3. $\quad g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|} \Rightarrow I_{D S S}=\frac{\left(g_{m O}\right)\left(\left|V_{P}\right|\right)}{2}=\frac{5 \mathrm{mS}(3.5 \mathrm{~V})}{2}=8.75 \mathrm{~mA}$
4. $g_{m}=g_{m 0}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(12 \mathrm{~mA})}{|-3 \mathrm{~V}|}\left(1-\frac{-1 \mathrm{~V}}{-3 \mathrm{~V}}\right)=\mathbf{5 . 3} \mathbf{~ m S}$
5. $g_{m}=\frac{2 I_{D S S}}{\left|V_{P}\right|}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)$

$$
\begin{aligned}
& 6 \mathrm{mS}=\frac{2 I_{D S S}}{2.5 \mathrm{~V}}\left(1-\frac{-1 \mathrm{~V}}{-2.5 \mathrm{~V}}\right) \\
& I_{D S S}=\mathbf{1 2 . 5} \mathbf{~ m A}
\end{aligned}
$$

6. $g_{m}=g_{m 0} \sqrt{\frac{I_{D}}{I_{D S S}}}=\frac{2 I_{D S S}}{\left|V_{P}\right|} \sqrt{\frac{I_{D S S} / 4}{I_{D S S}}}=\frac{2(10 \mathrm{~mA})}{5 \mathrm{~V}} \sqrt{\frac{1}{4}}$

$$
=\frac{20 \mathrm{~mA}}{5 \mathrm{~V}}\left(\frac{1}{2}\right)=\mathbf{2} \mathrm{mS}
$$

7. $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(8 \mathrm{~mA})}{5 \mathrm{~V}}=3.2 \mathrm{mS}$
$g_{m}=g_{m 0}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=3.2 \mathrm{mS}\left(1-\frac{V_{P} / 4}{V_{P}}\right)=3.2 \mathrm{mS}\left(1-\frac{1}{4}\right)=3.2 \mathrm{mS}\left(\frac{3}{4}\right)$

$$
=2.4 \mathrm{mS}
$$

8. (a) $g_{m}=y_{f s}=4.5 \mathrm{mS}$
(b) $r_{d}=\frac{1}{y_{o s}}=\frac{1}{25 \mu \mathrm{~S}}=40 \mathrm{k} \Omega$
9. $\quad g_{m}=y_{f s}=4.5 \mathrm{mS}$
$r_{d}=\frac{1}{y_{o s}}=\frac{1}{25 \mu \mathrm{~S}}=40 \mathrm{k} \Omega$
$Z_{o}=r_{d}=40 \mathrm{k} \Omega$
$A_{v}(\mathrm{FET})=-g_{m} r_{d}=-(4.5 \mathrm{mS})(40 \mathrm{k} \Omega)=\mathbf{- 1 8 0}$
10. $A_{v}=-g_{m} r_{d} \Rightarrow g_{m}=\frac{-A_{v}}{r_{d}}=-\frac{(-200)}{(100 \mathrm{k} \Omega)}=\mathbf{2} \mathbf{~ m S}$
11. (a) $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(10 \mathrm{~mA})}{5 \mathrm{~V}}=4 \mathrm{mS}$
(b) $g_{m}=\frac{\Delta I_{D}}{\Delta V_{G S}}=\frac{6.4 \mathrm{~mA}-3.6 \mathrm{~mA}}{2 \mathrm{~V}-1 \mathrm{~V}}=\mathbf{2 . 8} \mathbf{~ m S}$
(c) Eq. 8.6: $g_{m}=g_{m 0}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=4 \mathrm{mS}\left(1-\frac{-1.5 \mathrm{~V}}{-5 \mathrm{~V}}\right)=\mathbf{2 . 8} \mathbf{~ m S}$
(d) $g_{m}=\frac{\Delta I_{D}}{\Delta V_{G S}}=\frac{3.6 \mathrm{~mA}-1.6 \mathrm{~mA}}{3 \mathrm{~V}-2 \mathrm{~V}}=\mathbf{2} \mathbf{~ m S}$
(e) $g_{m}=g_{m 0}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=4 \mathrm{mS}\left(1-\frac{-2.5 \mathrm{~V}}{-5 \mathrm{~V}}\right)=\mathbf{2} \mathbf{~ m S}$
12. (a) $r_{d}=\left.\frac{\Delta V_{D S}}{\Delta I_{D}}\right|_{V_{G S} \text { constant }}=\frac{(15 \mathrm{~V}-5 \mathrm{~V})}{(9.1 \mathrm{~mA}-8.8 \mathrm{~mA})}=\frac{10 \mathrm{~V}}{0.3 \mathrm{~mA}}=\mathbf{3 3 . 3 3} \mathbf{~ k} \boldsymbol{\Omega}$
(b) At $V_{D S}=10 \mathrm{~V}, I_{D}=9 \mathrm{~mA}$ on $V_{G S}=0 \mathrm{~V}$ curve

$$
\therefore g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(9 \mathrm{~mA})}{4 \mathrm{~V}}=4.5 \mathrm{mS}
$$

13. From 2N4220 data:

$$
\begin{aligned}
& g_{m}=y_{f s}=750 \mu \mathrm{~S}=\mathbf{0 . 7 5} \mathbf{~ m S} \\
& r_{d}=\frac{1}{y_{o s}}=\frac{1}{10 \mu \mathrm{~S}}=\mathbf{1 0 0} \mathbf{k} \Omega
\end{aligned}
$$

14. (a) $g_{m}\left(@ V_{G S}=-6 \mathrm{~V}\right)=\mathbf{0}, g_{m}\left(@ V_{G S}=0 \mathrm{~V}\right)=g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(8 \mathrm{~mA})}{6 \mathrm{~V}}=\mathbf{2 . 6 7} \mathbf{~ m S}$
(b) $g_{m}\left(@ I_{D}=0 \mathrm{~mA}\right)=\mathbf{0}, g_{m}\left(@ I_{D}=I_{D S S}=8 \mathrm{~mA}\right)=g_{m 0}=\mathbf{2 . 6 7} \mathbf{~ m S}$
15. $g_{m}=y_{f s}=\mathbf{5 . 6} \mathbf{~ m S}, r_{d}=\frac{1}{y_{o s}}=\frac{1}{15 \mu \mathrm{~S}}=\mathbf{6 6 . 6 7} \mathbf{~ k} \boldsymbol{\Omega}$
16. $g_{m}=\frac{2 I_{D S S}}{\left|V_{P}\right|}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(10 \mathrm{~mA})}{4 \mathrm{~V}}\left(1-\frac{-2 \mathrm{~V}}{-4 \mathrm{~V}}\right)=\mathbf{2} .5 \mathbf{~ m S}$
$r_{d}=\frac{1}{y_{o s}}=\frac{1}{25 \mu \mathrm{~S}}=\mathbf{4 0} \mathbf{k} \boldsymbol{\Omega}$
17. Graphically, $V_{G S_{Q}}=-1.5 \mathrm{~V}$

$$
\begin{aligned}
g_{m} & =\frac{2 I_{D S S}}{\left|V_{P}\right|}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(10 \mathrm{~mA})}{4 \mathrm{~V}}\left(1-\frac{-1.5 \mathrm{~V}}{-4 \mathrm{~V}}\right)=3.125 \mathrm{mS} \\
Z_{i} & =R_{G}=\mathbf{1} \mathbf{M} \Omega \\
Z_{o} & =R_{D}\left\|r_{d}=1.8 \mathrm{k} \Omega\right\| 40 \mathrm{k} \Omega=\mathbf{1 . 7 2} \mathbf{~ k} \Omega \\
A_{v} & =-g_{m}\left(R_{D} \| r_{d}\right)=-(3.125 \mathrm{mS})(1.72 \mathrm{k} \Omega) \\
& =-\mathbf{5 . 3 7 5}
\end{aligned}
$$

18. $V_{G S_{Q}}=-1.5 \mathrm{~V}$

$$
\begin{aligned}
g_{m} & =\frac{2 I_{D S S}}{\left|V_{P}\right|}\left(1-\frac{V_{G S_{o}}}{V_{P}}\right)=\frac{2(12 \mathrm{~mA})}{6 \mathrm{~V}}\left(1-\frac{-1.5 \mathrm{~V}}{-6 \mathrm{~V}}\right)=3 \mathrm{mS} \\
Z_{i} & =R_{G}=\mathbf{1} \mathbf{M} \Omega \\
Z_{o} & =R_{D} \| r_{d}, r_{d}=\frac{1}{y_{o s}}=\frac{1}{40 \mu \mathrm{~S}}=25 \mathrm{k} \Omega \\
& =1.8 \mathrm{k} \Omega \| 25 \mathrm{k} \Omega \\
& =\mathbf{1 . 6 8} \mathbf{k} \Omega \\
A_{v} & =-g_{m}\left(R_{D} \| r_{d}\right)=-(3 \mathrm{mS})(1.68 \mathrm{k} \Omega)=\mathbf{- 5 . 0 4}
\end{aligned}
$$

19. $g_{m}=y_{f s}=3000 \mu \mathrm{~S}=3 \mathrm{mS}$
$r_{d}=\frac{1}{y_{o s}}=\frac{1}{50 \mu \mathrm{~S}}=20 \mathrm{k} \Omega$
$Z_{i}=R_{G}=\mathbf{1 0} \mathbf{M} \Omega$
$Z_{o}=r_{d}\left\|R_{D}=20 \mathrm{k} \boldsymbol{\Omega}\right\| 3.3 \mathrm{k} \boldsymbol{\Omega}=\mathbf{2 . 8 3} \mathbf{~ k} \boldsymbol{\Omega}$
$A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)$
$=-(3 \mathrm{mS})(2.83 \mathrm{k} \Omega)$
$=-8.49$
20. $V_{G S_{Q}}=0 \mathrm{~V}, g_{m}=g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(6 \mathrm{~mA})}{6 \mathrm{~V}}=2 \mathrm{mS}, r_{d}=\frac{1}{y_{o s}}=\frac{1}{40 \mu \mathrm{~S}}=25 \mathrm{k} \Omega$
$Z_{i}=\mathbf{1} \mathbf{M} \Omega$
$\mathrm{Z}_{o}=r_{d}\left\|R_{D}=25 \mathrm{k} \Omega\right\| 2 \mathrm{k} \Omega=\mathbf{1 . 8 5 2} \mathbf{~ k} \boldsymbol{\Omega}$
$A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)=-(2 \mathrm{mS})(1.852 \mathrm{k} \Omega) \cong \mathbf{- 3 . 7}$
21. $g_{m}=3 \mathrm{mS}, r_{d}=20 \mathrm{k} \Omega$

$$
Z_{i}=10 \mathrm{M} \Omega
$$

$$
\begin{aligned}
Z_{o} & =\frac{R_{D}}{1+g_{m} R_{S}+\frac{R_{D}+R_{S}}{r_{d}}}=\frac{3.3 \mathrm{k} \Omega}{1+(3 \mathrm{mS})(1.1 \mathrm{k} \Omega)+\frac{3.3 \mathrm{k} \Omega+1.1 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}} \\
& =\frac{3.3 \mathrm{k} \Omega}{1+3.3+0.22}=\frac{3.3 \mathrm{k} \Omega}{4.52}=\mathbf{7 3 0} \Omega
\end{aligned}
$$

$$
\begin{aligned}
A_{v} & =\frac{-g_{m} R_{D}}{1+g_{m} R_{S}+\frac{R_{D}+R_{S}}{r_{d}}}=\frac{-(3 \mathrm{mS})(3.3 \mathrm{k} \Omega)}{1+(3 \mathrm{mS})(1.1 \mathrm{k} \Omega)+\frac{3.3 \mathrm{k} \Omega+1.1 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}} \\
& =\frac{-9.9}{1+3.3+0.22}=-\frac{9.9}{4.52}=\mathbf{- 2 . 1 9}
\end{aligned}
$$

22. $g_{m}=y_{f s}=3000 \mu \mathbf{S}=3 \mathrm{mS}$
$r_{d}=\frac{1}{y_{o s}}=\frac{1}{10 \mu \mathrm{~S}}=100 \mathrm{k} \Omega$
$Z_{i}=R_{G}=\mathbf{1 0} \mathbf{M} \boldsymbol{\Omega}$ (the same)
$Z_{o}=r_{d}\left\|R_{D}=100 \mathrm{k} \Omega\right\| 3.3 \mathrm{k} \Omega=\mathbf{3 . 1 9 5} \mathbf{~ k} \Omega$ (higher)
$A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)$
$=-(3 \mathrm{mS})(3.195 \mathrm{k} \Omega)$
$=-9.59$ (higher)
23. $V_{G S_{0}}=-0.95 \mathrm{~V}$
$g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)$

$$
=\frac{2(12 \mathrm{~mA})}{3 \mathrm{~V}}\left(1-\frac{-0.95 \mathrm{~V}}{-3 \mathrm{~V}}\right)
$$

$$
=5.47 \mathrm{mS}
$$

$Z_{i}=82 \mathrm{M} \Omega \| 11 \mathrm{M} \Omega=\mathbf{9 . 7} \mathbf{~ M} \Omega$
$Z_{o}=r_{d}\left\|R_{D}=100 \mathrm{k} \Omega\right\| 2 \mathrm{k} \Omega=\mathbf{1 . 9 6} \mathbf{~ k} \boldsymbol{\Omega}$
$A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)=-(5.47 \mathrm{mS})(1.96 \mathrm{k} \Omega)=\mathbf{- 1 0 . 7 2}$
$V_{o}=A_{v} V_{i}=(-10.72)(20 \mathrm{mV})=\mathbf{- 2 1 4 . 4} \mathbf{~ m V}$
24. $V_{G S_{\ell}}=-0.95 \mathrm{~V}$ (as before), $g_{m}=5.47 \mathrm{mS}$ (as before)
$Z_{i}=\mathbf{9 . 7} \mathbf{M} \Omega$ as before
$Z_{o}=\frac{R_{D}}{1+g_{m} R_{S}+\frac{R_{D}+R_{S}}{r_{d}}}$
but $r_{d} \geq 10\left(R_{D}+R_{S}\right)$

$$
\begin{aligned}
\therefore Z_{o} & =\frac{R_{D}}{1+g_{m} R_{S}}=\frac{2 \mathrm{k} \Omega}{1+(5.47 \mathrm{mS})(0.61 \mathrm{k} \Omega)}=\frac{2 \mathrm{k} \Omega}{1+3.337}=\frac{2 \mathrm{k} \Omega}{4.337} \\
& =\mathbf{4 6 1 . 1} \Omega
\end{aligned} \quad \begin{aligned}
A_{v} & =\frac{-g_{m} R_{D}}{1+g_{m} R_{S}} \text { since } r_{d} \geq 10\left(R_{D}+R_{S}\right) \\
= & \frac{-(5.47 \mathrm{mS})(2 \mathrm{k} \Omega)}{4.337(\text { from above })}=-\frac{10.94}{4.337}=\mathbf{- 2 . 5 2} \text { (a big reduction) }
\end{aligned} \quad \begin{aligned}
& V_{o}= \\
& A_{v} V_{i}=(-2.52)(20 \mathrm{mV})=\mathbf{- 5 0 . 4 0} \mathbf{~ m V} \text { (compared to }-214.4 \mathrm{mV} \text { earlier) }
\end{aligned}
$$

25. $V_{G S_{Q}}=-0.95 \mathrm{~V}, g_{m}($ problem 23$)=5.47 \mathrm{mS}$
$Z_{i}($ the same $)=9.7 \mathbf{M} \Omega$
$Z_{o}($ reduced $)=r_{d}\left\|R_{D}=20 \mathrm{k} \Omega\right\| 2 \mathrm{k} \Omega=\mathbf{1 . 8 2} \mathbf{k} \Omega$
$A_{v}($ reduced $)=-g_{m}\left(r_{d} \| R_{D}\right)=-(5.47 \mathrm{mS})(1.82 \mathrm{k} \Omega)=\mathbf{- 9 . 9 4}$
$V_{o}($ reduced $)=A_{\nu} V_{i}=(-9.94)(20 \mathrm{mV})=\mathbf{- 1 9 8 . 8} \mathbf{~ m V}$
26. $V_{G S_{\varrho}}=-0.95 \mathrm{~V}$ (as before), $g_{m}=5.47 \mathrm{mS}$ (as before)
$Z_{i}=\mathbf{9 . 7} \mathbf{M} \Omega$ as before

$$
\begin{aligned}
Z_{o} & =\frac{R_{D}}{1+g_{m} R_{S}+\frac{R_{D}+R_{S}}{r_{d}}} \text { since } r_{d}<10\left(R_{D}+R_{S}\right) \\
& =\frac{2 \mathrm{k} \Omega}{1+(5.47 \mathrm{mS})(0.61 \mathrm{k} \Omega)+\frac{2 \mathrm{k} \Omega+0.61 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}} \\
& =\frac{2 \mathrm{k} \Omega}{1+3.33+0.13}=\frac{2 \mathrm{k} \Omega}{4.46}
\end{aligned}
$$

$=448.4 \Omega$ (slightly less than 461.1Ω obtained in problem 24)
$A_{v}=\frac{-g_{m} R_{D}}{1+g_{m} R_{S}+\frac{R_{D}+R_{S}}{r_{d}}}$
$=\frac{-(5.47 \mathrm{mS})(2 \mathrm{k} \Omega)}{1+(5.47 \mathrm{mS})(0.61 \mathrm{k} \Omega)+\frac{2 \mathrm{k} \Omega+0.61 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}}$
$=\frac{-10.94}{1+3.33+0.13}=\frac{-10.94}{4.46}=\mathbf{- 2 . 4 5}$ slightly less than -2.52 obtained in problem 24)
27. $V_{G S_{Q}}=-2.85 \mathrm{~V}, g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(9 \mathrm{~mA})}{4.5 \mathrm{~V}}\left(1-\frac{-2.85 \mathrm{~V}}{-4.5 \mathrm{~V}}\right)=1.47 \mathrm{mS}$
$Z_{i}=R_{G}=\mathbf{1 0} \mathbf{M} \Omega$
$Z_{o}=r_{d}\left\|R_{S}\right\| 1 / g_{m}=40 \mathrm{k} \Omega\|2.2 \mathrm{k} \Omega\| \underbrace{1 / 1.47 \mathrm{mS}}_{680.27 \Omega}=\mathbf{5 1 2 . 9} \boldsymbol{\Omega}$
$A_{v}=\frac{g_{m}\left(r_{d} \| R_{S}\right)}{1+g_{m}\left(r_{d} \| R_{S}\right)}=\frac{(1.47 \mathrm{mS})(40 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega)}{1+(1.47 \mathrm{mS})(40 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega)}=\frac{3.065}{1+3.065}$
$=0.754$
28. $V_{G S_{\varrho}}=-2.85 \mathrm{~V}, g_{m}=1.47 \mathrm{mS}$

$$
\begin{aligned}
Z_{i} & =\mathbf{1 0} \mathbf{M} \Omega(\text { as in problem 27) } \\
Z_{o} & =r_{d}\left\|R_{S}\right\| 1 / g_{m}=\underbrace{20 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega}_{1.982 \mathrm{k} \Omega} \| 680.27 \Omega=\mathbf{5 0 6 . 4} \Omega<512.9 \Omega(\# 27) \\
A_{v} & =\frac{g_{m}\left(r_{d} \| R_{S}\right)}{1+g_{m}\left(r_{d} \| R_{S}\right)}=\frac{1.47 \mathrm{mS}(20 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega)}{1+1.47 \mathrm{mS}(20 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega)}=\frac{2.914}{1+2.914} \\
& =\mathbf{0 . 7 4 5 < 0 . 7 5 4 (\# 2 7)}
\end{aligned}
$$

29. $V_{G S_{\underline{g}}}=-3.8 \mathrm{~V}$
$g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(6 \mathrm{~mA})}{6 \mathrm{~V}}\left(1-\frac{-3.8 \mathrm{~V}}{-6 \mathrm{~V}}\right)=0.733 \mathrm{mS}$

The network now has the format examined in the text and

$$
\begin{aligned}
Z_{i} & =R_{G}=\mathbf{1 0 ~ M} \Omega \quad r_{d}^{\prime}=r_{d}+R_{D}=30 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega=33.3 \mathrm{k} \Omega \\
Z_{o} & =r_{d}^{\prime}\left\|R_{S}\right\| 1 / g_{m}^{\prime}=\quad g_{m}^{\prime}=\frac{g_{m} r_{d}}{r_{d}+R_{D}}=\frac{(0.733 \mathrm{mS})(30 \mathrm{k} \Omega)}{30 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}=\frac{21.99}{33.3 \mathrm{k} \Omega}=0.66 \mathrm{mS} \\
& =33.3 \mathrm{k} \Omega\|3.3 \mathrm{k} \Omega\| 1 / 0.66 \mathrm{mS} \\
& =3 \mathrm{k} \Omega \| 1.52 \mathrm{k} \Omega \\
& \cong \mathbf{1} \mathbf{k} \Omega \\
A_{v} & =\frac{g_{m}^{\prime}\left(r_{d}^{\prime} \| R_{S}\right)}{1+g_{m}^{\prime}\left(r_{d}^{\prime} \| R_{S}\right)}=\frac{0.66 \mathrm{mS}(3 \mathrm{k} \Omega)}{1+0.66 \mathrm{mS}(3 \mathrm{k} \Omega)}=\frac{1.98}{1+1.98}=\frac{1.98}{2.98} \\
& =\mathbf{0 . 6 6}
\end{aligned}
$$

30. $V_{G S_{Q}}=-1.75 \mathrm{~V}, g_{m}=2.14 \mathrm{mS}$

$$
\begin{aligned}
r_{d} \geq 10 R_{D}, \therefore Z_{i} \cong R_{S} \| 1 / g_{m} & =1.5 \mathrm{k} \Omega \| 1 / 2.14 \mathrm{mS} \\
& =1.5 \mathrm{k} \Omega \| 467.29 \Omega \\
& =\mathbf{3 5 6 . 3} \Omega
\end{aligned}
$$

$r_{d} \geq 10 R_{D}, \therefore Z_{o} \cong R_{D}=\mathbf{3 . 3} \mathbf{~ k} \Omega$
$r_{d} \geq 10 R_{D}, \therefore A_{v} \cong g_{m} R_{D}=(2.14 \mathrm{mS})(3.3 \mathrm{k} \Omega)=7.06$
$V_{o}=A_{v} V_{i}=(7.06)(0.1 \mathrm{mV})=\mathbf{0 . 7 0 6} \mathbf{~ m V}$
31. $V_{G S_{Q}}=-1.75 \mathrm{~V}, g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(8 \mathrm{~mA})}{2.8 \mathrm{~V}}\left(1-\frac{-1.75 \mathrm{~V}}{-2.8 \mathrm{~V}}\right)=2.14 \mathrm{mS}$

$$
Z_{i}=R_{S}\left\|\left[\frac{r_{d}+R_{D}}{1+g_{m} r_{d}}\right]=1.5 \mathrm{k} \Omega\right\|\left[\frac{25 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega}{1+(2.14 \mathrm{mS})(25 \mathrm{k} \Omega)}\right]=1.5 \mathrm{k} \Omega \| \frac{28.3 \mathrm{k} \Omega}{54.5}
$$

$$
=1.5 \mathrm{k} \Omega \| 0.52 \mathrm{k} \Omega=386.1 \Omega
$$

$$
Z_{o}=R_{D}\left\|r_{d}=3.3 \mathrm{k} \Omega\right\| 25 \mathrm{k} \boldsymbol{\Omega}=\mathbf{2 . 9 2} \mathbf{~ k} \boldsymbol{\Omega}
$$

$$
A_{v}=\frac{g_{m} R_{D}+R_{D} / r_{d}}{1+R_{D} / r_{d}}=\frac{(2.14 \mathrm{mS})(3.3 \mathrm{k} \Omega)+3.3 \mathrm{k} \Omega / 25 \mathrm{k} \Omega}{1+3.3 \mathrm{k} \Omega / 25 \mathrm{k} \Omega}
$$

$$
=\frac{7.062+0.132}{1+0.132}=\frac{7.194}{1.132}=6.36
$$

$$
V_{o}=A_{v} V_{i}=(6.36)(0.1 \mathrm{mV})=\mathbf{0 . 6 3 6} \mathbf{~ m V}
$$

32. $V_{G S_{\ell}} \cong-1.2 \mathrm{~V}, g_{m}=2.63 \mathrm{mS}$

$$
\begin{aligned}
r_{d} \geq 10 R_{D}, \therefore & Z_{i} \cong R_{S}\left\|1 / g_{m}=1 \mathrm{k} \Omega\right\| 1 / 2.63 \mathrm{mS}=1 \mathrm{k} \Omega \| 380.2 \Omega=\mathbf{2 7 5 . 5} \Omega \\
& Z_{o} \cong R_{D}=\mathbf{2 . 2} \mathbf{k} \boldsymbol{\Omega} \\
& A_{v} \cong g_{m} R_{D}=(2.63 \mathrm{mS})(2.2 \mathrm{k} \Omega)=\mathbf{5 . 7 9}
\end{aligned}
$$

33. $r_{d}=\frac{1}{y_{o s}}=\frac{1}{20 \mu \mathrm{~S}}=50 \mathrm{k} \Omega, V_{G S_{Q}}=0 \mathrm{~V}$

$$
g_{m}=g_{m 0}=\frac{2 I_{D S S}}{V_{P}}=\frac{2(8 \mathrm{~mA})}{3}=5.33 \mathrm{mS}
$$

$$
A_{v}=-g_{m} R_{D}=-(5.33 \mathrm{mS})(1.1 \mathrm{k} \Omega)=-5.863
$$

$$
V_{o}=A_{V} V_{i}=(-5.863)(2 \mathrm{mV})=\mathbf{1 1 . 7 3} \mathbf{~ m V}
$$

34. $V_{G S_{Q}}=-0.75 \mathrm{~V}, g_{m}=5.4 \mathrm{mS}$
$Z_{i}=\mathbf{1 0} \mathrm{M} \Omega$
$r_{o} \geq 10 R_{D}, \therefore \quad Z_{o} \cong R_{D}=\mathbf{1 . 8} \mathbf{~ k} \Omega$
$r_{o} \geq 10 R_{D}, \therefore \quad A_{v} \cong-g_{m} R_{D}=-(5.4 \mathrm{mS})(1.8 \mathrm{k} \Omega)$

$$
=-9.72
$$

35. $Z_{i}=\mathbf{1 0} \mathbf{M} \Omega$
$Z_{o}=r_{d}\left\|R_{D}=25 \mathrm{k} \Omega\right\| 1.8 \mathrm{k} \Omega=\mathbf{1 . 6 8} \mathbf{~ k} \Omega$

$$
A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)
$$

$$
g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{o}}}{V_{P}}\right)=\frac{2(12 \mathrm{~mA})}{3.5 \mathrm{~V}}\left(1-\frac{-0.75 \mathrm{~V}}{-3.5 \mathrm{~V}}\right)=5.4 \mathrm{mS}
$$

$A_{v}=-(5.4 \mathrm{mS})(1.68 \mathrm{k} \Omega)$

$$
=-9.07
$$

36. $g_{m}=y_{f s}=6000 \mu \mathrm{~S}=6 \mathrm{mS}$

$$
r_{d}=\frac{1}{y_{o s}}=\frac{1}{35 \mu \mathrm{~S}}=28.57 \mathrm{k} \Omega
$$

$$
r_{d} \leq 10 R_{D}, \therefore A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)
$$

$$
=-(6 \mathrm{mS})(\underbrace{28.57 \mathrm{k} \Omega \| 6.8}_{5.49 \mathrm{k} \Omega} \mathrm{k} \Omega)
$$

$$
=-32.94
$$

$$
V_{o}=A_{v} V_{i}=(-32.94)(4 \mathrm{mV})
$$

$$
=-131.76 \mathrm{mV}
$$

37. $Z_{i}=10 \mathrm{M} \Omega \| 91 \mathrm{M} \Omega \cong \mathbf{9} \mathbf{M} \boldsymbol{\Omega}$
38. $g_{m}=2 k\left(V_{G S_{Q}}-V_{G S(T h)}\right)$

$$
\begin{aligned}
& =2\left(0.3 \times 10^{-3}\right)(8 \mathrm{~V}-3 \mathrm{~V}) \\
& =\mathbf{3} \mathbf{~ m S}
\end{aligned}
$$

39. $V_{G S_{\varrho}}=6.7 \mathrm{~V}$

$$
\begin{aligned}
g_{m} & =2 k\left(V_{G S_{Q}}-V_{T}\right)=2\left(0.3 \times 10^{-3}\right)(6.7 \mathrm{~V}-3 \mathrm{~V})=2.22 \mathrm{mS} \\
Z_{i} & =\frac{R_{F}+r_{d} \| R_{D}}{1+g_{m}\left(r_{d} \| R_{D}\right)}=\frac{10 \mathrm{M} \Omega+100 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega}{1+(2.22 \mathrm{mS})(100 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega)} \\
& =\frac{10 \mathrm{M} \Omega+2.15 \mathrm{k} \Omega}{1+2.22 \mathrm{mS}(2.15 \mathrm{k} \Omega)} \cong \mathbf{1 . 7 3} \mathbf{M} \Omega \\
Z_{o} & =R_{F}\left\|r_{d}\right\| R_{D}=10 \mathrm{M} \Omega\|100 \mathrm{k} \Omega\| 2.2 \mathrm{k} \Omega=\mathbf{2 . 1 5} \mathrm{k} \Omega \\
A_{v} & =-g_{m}\left(R_{F}\left\|r_{d}\right\| R_{D}\right)=-2.22 \mathrm{mS}(2.15 \mathrm{k} \Omega)=\mathbf{- 4 . 7 7}
\end{aligned}
$$

$$
\begin{aligned}
& g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(12 \mathrm{~mA})}{3 \mathrm{~V}}\left(1-\frac{-1.45 \mathrm{~V}}{-3 \mathrm{~V}}\right)=4.13 \mathrm{mS} \\
& Z_{o}=r_{d}\left\|R_{S}\right\| 1 / g_{m}=45 \mathrm{k} \Omega\|1.1 \mathrm{k} \Omega\| 1 / 4.13 \mathrm{mS} \\
& =1.074 \mathrm{k} \Omega| | 242.1 \Omega \\
& =197.6 \Omega \\
& A_{v}=\frac{g_{m}\left(r_{d} \| R_{S}\right)}{1+g_{m}\left(r_{d} \| R_{S}\right)}=\frac{(4.13 \mathrm{mS})(45 \mathrm{k} \Omega \| 1.1 \mathrm{k} \Omega)}{1+(4.13 \mathrm{mS})(45 \mathrm{k} \Omega \| 1.1 \mathrm{k} \Omega)} \\
& =\frac{(4.13 \mathrm{mS})(1.074 \mathrm{k} \Omega)}{1+(4.13 \mathrm{mS})(1.074 \mathrm{k} \Omega)}=\frac{4.436}{1+4.436} \\
& =0.816
\end{aligned}
$$

40. $g_{m}=2 k\left(V_{G S_{Q}}-V_{T}\right)=2\left(0.2 \times 10^{-3}\right)(6.7 \mathrm{~V}-3 \mathrm{~V})$

$$
=1.48 \mathrm{mS}
$$

$$
Z_{i}=\frac{R_{F}+r_{d} \| R_{D}}{1+g_{m}\left(r_{d} \| R_{D}\right)}=\frac{10 \mathrm{M} \Omega+100 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega}{1+(1.48 \mathrm{mS})(100 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega)}
$$

$$
=\frac{10 \mathrm{M} \Omega+2.15 \mathrm{k} \Omega}{1+(1.48 \mathrm{mS})(2.15 \mathrm{k} \Omega)}=\mathbf{2 . 3 9} \mathrm{M} \Omega>1.73 \mathrm{M} \Omega(\# 39)
$$

$Z_{o}=R_{F}\left\|r_{d}\right\| R_{D}=\mathbf{2 . 1 5} \mathbf{~ k} \boldsymbol{\Omega}=2.15 \mathrm{k} \Omega$ (\#39)
$A_{v}=-g_{m}\left(R_{F}\left\|r_{d}\right\| R_{D}\right)=-(1.48 \mathrm{mS})(2.15 \mathrm{k} \Omega)$

$$
=-\mathbf{3 . 1 8 2}<-4.77(\# 39)
$$

41. $V_{G S_{Q}}=5.7 \mathrm{~V}, g_{m}=2 k\left(V_{G S_{Q}}-V_{T}\right)=2\left(0.3 \times 10^{-3}\right)(5.7 \mathrm{~V}-3.5 \mathrm{~V})$

$$
=1.32 \mathrm{mS}
$$

$r_{d}=\frac{1}{30 \mu \mathrm{~S}}=33.33 \mathrm{k} \Omega$
$A_{v}=-g_{m}\left(R_{F}\left\|r_{d}\right\| R_{D}\right)=-1.32 \mathrm{mS}(22 \mathrm{M} \Omega\|33.33 \mathrm{k} \Omega\| 10 \mathrm{k} \Omega)$

$$
=-10.15
$$

$V_{o}=A_{v} V_{i}=(-10.15)(20 \mathrm{mV})=\mathbf{- 2 0 3} \mathbf{~ m V}$
42. $I_{D}=k\left(V_{G S}-V_{T}\right)^{2}$

$$
\begin{aligned}
\therefore k & =\frac{I_{D(\mathrm{on})}}{\left(V_{G S(\mathrm{on})}-V_{T}\right)^{2}}=\frac{4 \mathrm{~mA}}{(7 \mathrm{~V}-4 \mathrm{~V})^{2}}=0.444 \times 10^{-3} \\
g_{m} & =2 k\left(V_{G S_{Q}}-V_{G S(T h)}\right)=2\left(0.444 \times 10^{-3}\right)(7 \mathrm{~V}-4 \mathrm{~V}) \\
& =2.66 \mathrm{mS}
\end{aligned}
$$

$$
A_{v}=-g_{m}\left(R_{F}\left\|r_{d}\right\| R_{D}\right)=-(2.66 \mathrm{mS})(22 \mathrm{M} \Omega \| \underbrace{50 \mathrm{k} \Omega \| 10 \mathrm{k} \Omega})=-22.16
$$

$$
\underbrace{8.33}_{\cong 8.33 \mathrm{k} \Omega} \mathrm{k} \Omega
$$

$$
V_{o}=A_{v} V_{i}=(-22.16)(4 \mathrm{mV})=\mathbf{- 8 8 . 6 4} \mathbf{~ m V}
$$

43. $\quad V_{G S_{Q}}=4.8 \mathrm{~V}, g_{m}=2 k\left(V_{G S_{Q}}-V_{G S_{\left(T T_{1}\right)}}\right)=2\left(0.4 \times 10^{-3}\right)(4.8 \mathrm{~V}-3 \mathrm{~V})=1.44 \mathrm{mS}$

$$
A_{v}=-g_{m}\left(r_{d} \| R_{D}\right)=-(1.44 \mathrm{mS})(40 \mathrm{k} \Omega \| 3.3 \mathrm{k} \Omega)=-4.39
$$

$V_{o}=A_{v} V_{i}=(-4.39)(0.8 \mathrm{mV})=\mathbf{- 3 . 5 1} \mathbf{~ m V}$
44. $r_{d}=\frac{1}{y_{o s}}=\frac{1}{25 \mu \mathrm{~S}}=40 \mathrm{k} \Omega$

$$
V_{G S_{Q}}=0 \mathrm{~V}, \therefore g_{m}=g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(8 \mathrm{~mA})}{2.5 \mathrm{~V}}=6.4 \mathrm{mS}
$$

$$
\left|A_{v}\right|=g_{m}\left(r_{d} \| R_{D}\right)
$$

$$
8=(6.4 \mathrm{mS})\left(40 \mathrm{k} \Omega \| R_{D}\right)
$$

$$
\frac{8}{6.4 \mathrm{mS}}=1.25 \mathrm{k} \Omega=\frac{40 \mathrm{k} \Omega \cdot R_{D}}{40 \mathrm{k} \Omega+R_{D}}
$$

$$
\text { and } R_{D}=1.29 \mathrm{k} \Omega
$$

$$
\text { Use } R_{D}=1.3 \mathbf{k} \Omega
$$

45. $\quad V_{G S_{Q}}=\frac{1}{3} V_{P}=\frac{1}{3}(-3 \mathrm{~V})=-1 \mathrm{~V}$
$I_{D_{Q}}=I_{D S S}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)^{2}=12 \mathrm{~mA}\left(1-\frac{-1 \mathrm{~V}}{-3 \mathrm{~V}}\right)^{2}=5.33 \mathrm{~mA}$
$R_{S}=\frac{V_{S}}{I_{D_{Q}}}=\frac{1 \mathrm{~V}}{5.33 \mathrm{~mA}}=187.62 \Omega \therefore$ Use $R_{S}=\mathbf{1 8 0} \Omega$
$g_{m}=\frac{2 I_{D S S}}{V_{P}}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=\frac{2(12 \mathrm{~mA})}{3 \mathrm{~V}}\left(1-\frac{-1 \mathrm{~V}}{-3 \mathrm{~V}}\right)=5.33 \mathrm{mS}$
$A_{v}=-g_{m}\left(R_{D} \| r_{d}\right)=-10$
or $R_{D} \| 40 \mathrm{k} \Omega=\frac{-10}{5.33 \mathrm{mS}}=1.876 \mathrm{k} \Omega$
$\frac{R_{D} \cdot 40 \mathrm{k} \Omega}{R_{D}+40 \mathrm{k} \Omega}=1.876 \mathrm{k} \Omega$
$40 \mathrm{k} \Omega R_{D}=1.876 \mathrm{k} \Omega R_{D}+75.04 \mathrm{k} \Omega^{2}$
$38.124 R_{D}=75.04 \mathrm{k} \Omega$

$$
R_{D}=1.97 \mathrm{k} \Omega \Rightarrow R_{D}=\mathbf{2} \mathbf{~ k} \Omega
$$

Chapter 9

1. (a) $\mathbf{3}, \mathbf{1 . 6 9 9}, \mathbf{- 1 . 1 5 1}$
(b) $6.908,3.912,-0.347$
(c) results differ by magnitude of 2.3
2. (a) $\log _{10} 2.2 \times 10^{3}=\mathbf{3 . 3 4 2 4}$
(b) $\log _{e}\left(2.2 \times 10^{3}\right)=2.3 \log _{10}\left(2.2 \times 10^{3}\right)=\mathbf{7 . 6 9 6 2}$
(c) $\log _{e}\left(2.2 \times 10^{3}\right)=\mathbf{7 . 6 9 6 2}$
3. (a) same $\mathbf{1 3 . 9 8}$
(b) same $\mathbf{- 1 3 . 0 1}$
(c) same $\mathbf{0 . 6 9 9}$
4. (a) $\mathrm{dB}=10 \log _{10} \frac{P_{o}}{P_{i}}=10 \log _{10} \frac{100 \mathrm{~W}}{5 \mathrm{~W}}=10 \log _{10} 20=10(1.301)$

$$
=13.01 \mathrm{~dB}
$$

(b) $\mathrm{dB}=10 \log _{10} \frac{100 \mathrm{~mW}}{5 \mathrm{~mW}}=10 \log _{10} 20=10(1.301)$

$$
=13.01 \mathrm{~dB}
$$

(c) $\mathrm{dB}=10 \log _{10} \frac{100 \mu \mathrm{~W}}{20 \mu \mathrm{~W}}=10 \log _{10} 5=10(0.6987)$

$$
=6.9897 \mathrm{~dB}
$$

5. $\quad G_{\mathrm{dBm}}=\left.10 \log _{10} \frac{P_{2}}{1 \mathrm{~mW}}\right|_{600 \Omega}=\left.10 \log _{10} \frac{25 \mathrm{~W}}{1 \mathrm{~mW}}\right|_{600 \Omega}$

$$
=43.98 \mathrm{dBm}
$$

6. $\quad G_{\mathrm{dB}}=20 \log _{10} \frac{V_{2}}{V_{1}}=20 \log _{10} \frac{100 \mathrm{~V}}{25 \mathrm{~V}}=20 \log _{10} 4=20(0.6021)$

$$
=12.04 \mathrm{~dB}
$$

7. $G_{\mathrm{dB}}=20 \log _{10} \frac{V_{2}}{V_{1}}=20 \log _{10} \frac{25 \mathrm{~V}}{10 \mathrm{mV}}=20 \log _{10} 2500$

$$
=20(3.398)=\mathbf{6 7 . 9 6} \mathbf{~ d B}
$$

8. (a) Gain of stage $1=\mathrm{AdB}$

Gain of stage $2=2 \mathrm{~A} \mathrm{~dB}$
Gain of stage $3=2.7 \mathrm{~A} \mathrm{~dB}$
$\mathrm{A}+2 \mathrm{~A}+2.7 \mathrm{~A}=120$

$$
\mathrm{A}=\mathbf{2 1 . 0 5} \mathrm{dB}
$$

(b) Stage 1: $A_{v_{1}}=21.05 \mathrm{~dB}=20 \log _{10} \frac{V_{o_{1}}}{V_{i_{1}}}$

$$
\begin{aligned}
& \frac{21.05}{20}=1.0526=\log _{10} \frac{V_{o_{1}}}{V_{i_{1}}} \\
& 10^{1.0526}=\frac{V_{o_{1}}}{V_{i_{1}}}
\end{aligned}
$$

$$
\text { and } \quad \frac{V_{o_{1}}}{V_{i_{1}}}=\mathbf{1 1 . 2 8 8}
$$

Stage 2: $A_{v_{2}}=42.1 \mathrm{~dB}=20 \log _{10} \frac{V_{o_{2}}}{V_{i_{2}}}$

$$
\begin{aligned}
& 2.105=\log _{10} \frac{V_{o_{2}}}{V_{i_{2}}} \\
& 10^{2.105}=\frac{V_{o_{2}}}{V_{i_{2}}}
\end{aligned}
$$

$$
\text { and } \frac{V_{o_{2}}}{V_{i_{2}}}=\mathbf{1 2 7 . 3 5}
$$

Stage 3: : $A_{v_{3}}=56.835 \mathrm{~dB}=20 \log _{10} \frac{V_{o_{3}}}{V_{i_{3}}}$

$$
\begin{aligned}
& 2.8418=\log _{10} \frac{V_{o_{3}}}{V_{i_{3}}} \\
& 10^{2.8418}=\frac{V_{o_{3}}}{V_{i_{3}}}
\end{aligned}
$$

and $\frac{V_{o_{3}}}{V_{i_{3}}}=\mathbf{6 9 4 . 6 2 4}$
$A_{v_{T}}=A_{v_{1}} \cdot A_{v_{2}} \cdot A_{V_{3}}=(11.288)(127.35)(694.624)=\mathbf{9 9}, \mathbf{8 5 4 1 . 1}$
?
$A_{T}=120 \mathrm{~dB}=20 \log _{10} 99,8541.1$
$120 \mathrm{~dB} \cong 119.99 \mathrm{~dB}$ (difference due to level of accuracy carried through calculations)
9. (a) $G_{\mathrm{dB}}=20 \log _{10} \frac{P_{2}}{P_{1}}=10 \log _{10} \frac{48 \mathrm{~W}}{5 \mu \mathrm{~W}}=\mathbf{6 9 . 8 3} \mathbf{~ d B}$
(b) $G_{v}=20 \log _{10} \frac{V_{o}}{V_{i}}=20 \log _{10} \frac{\sqrt{P_{o} R_{o}}}{V_{i}}=\frac{20 \log _{10} \sqrt{(48 \mathrm{~W})(40 \mathrm{k} \Omega)}}{100 \mathrm{mV}}$

$$
=82.83 \mathrm{~dB}
$$

(c) $R_{i}=\frac{V_{i}^{2}}{P}=\frac{(100 \mathrm{mV})^{2}}{5 \mu \mathrm{~W}}=\mathbf{2} \mathbf{k} \boldsymbol{\Omega}$
(d) $P_{o}=\frac{V_{o}^{2}}{R_{o}} \Rightarrow V_{o}=\sqrt{P_{o} R_{o}}=\sqrt{(48 \mathrm{~W})(40 \mathrm{k} \Omega)}=\mathbf{1 3 8 5 . 6 4} \mathrm{V}$
10. (a) Same shape except $A_{v}=190$ is now level of 1 . In fact, all levels of A_{v} are divided by 190 to obtain normalized plot.
$0.707(190)=\mathbf{1 3 4 . 3 3}$ defining cutoff frequencies
at low end $f_{1} \cong \mathbf{2 3 0 ~ H z}$ (remember this is a log scale)
at high end $f_{2} \cong \mathbf{1 6 0} \mathbf{~ k H z}$
(b)

11.
(a) $\left|A_{v}\right|=\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\sqrt{1+\left(f_{1} / f\right)^{2}}}$

$$
\begin{aligned}
f_{I} & =\frac{1}{2 \pi R C}=\frac{1}{2 \pi(1.2 \mathrm{k} \Omega)(0.068 \mu \mathrm{~F})} \\
& =1950.43 \mathrm{~Hz}
\end{aligned}
$$

$$
\left|A_{v}\right|=\frac{1}{\sqrt{1+\left(\frac{1950.43 \mathrm{~Hz}}{f}\right)^{2}}}
$$

(b)

		$A_{V_{\text {di }}}$
100 Hz :	$\left\|A_{v}\right\|=0.051$	-25.8
1 kHz :	$\left\|A_{v}\right\|=0.456$	-6.81
2 kHz :	$\left\|A_{v}\right\|=0.716$	-2.90
5 kHz :	$\left\|A_{v}\right\|=0.932$	-0.615
10 kHz :	$\left\|A_{v}\right\|=0.982$	-0.162

(c) $f_{1} \cong \mathbf{1 9 5 0} \mathbf{~ H z}$
(d)(e)

12. (a) $f_{1}=\frac{1}{2 \pi R C}=1.95 \mathrm{kHz}$

$$
\theta=\tan ^{-1} \frac{f_{1}}{f}=\tan ^{-1} \frac{1.95 \mathrm{kHz}}{f}
$$

(b)

f	$\theta=\tan ^{-1} \frac{1.95 \mathrm{kHz}}{f}$
100 Hz	87.06°
1 kHz	62.85°
2 kHz	44.27°
5 kHz	21.3°
10 kHz	11.03°

(c) $f_{1}=\frac{1}{2 \pi R C}=1.95 \mathrm{kHz}$
(d) First find $\theta=45^{\circ}$ at $f_{1}=1.95 \mathrm{kHz}$. Then sketch an approach to 90° at low frequencies and 0° at high frequencies. Use an expected shape for the curve noting that the greatest change in θ occurs near f_{1}. The resulting curve should be quite close to that plotted above.
13. (a) $\mathbf{1 0} \mathbf{~ k H z}$
(b) $\mathbf{1} \mathbf{~ k H z}$
(c) $20 \mathrm{kHz} \rightarrow 10 \mathrm{kHz} \rightarrow \mathbf{5} \mathbf{~ k H z}$
(d) $1 \mathrm{kHz} \rightarrow 10 \mathrm{kHz} \rightarrow \mathbf{1 0 0} \mathbf{~ k H z}$
14. From example 9.9, $r_{e}=15.76 \Omega$

$$
\begin{aligned}
A_{v} & =\frac{-R_{C}\left\|R_{L}\right\| r_{o}}{r_{e}}=\frac{-4 \mathrm{k} \Omega\|2.2 \mathrm{k} \Omega\| 40 \mathrm{k} \Omega}{15.76 \Omega} \\
& =-86.97(\text { vs. }-90 \text { for Ex. } 9.9)
\end{aligned}
$$

$f_{L_{s}}: r_{o}$ does not affect $R_{i} \therefore f_{L_{s}}=\frac{1}{2 \pi\left(R_{s}+R_{i}\right) C_{S}}$ the same $\cong \mathbf{6 . 8 6} \mathbf{~ H z}$
$f_{L_{C}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}}=\frac{1}{2 \pi\left(R_{C} \| r_{o}+R_{L}\right) C_{C}}$
$R_{C}\left\|r_{o}=4 \mathrm{k} \Omega\right\| 40 \mathrm{k} \Omega=5.636 \mathrm{k} \Omega$
$f_{L_{C}}=\frac{1}{2 \pi(5.636 \mathrm{k} \Omega+2 \mathrm{k} \Omega)(1 \mu \mathrm{~F})}$
$=\mathbf{2 8 . 2 3} \mathrm{Hz}$ (vs. 25.68 Hz for Ex. 9.9)
$f_{L_{E}}: R_{e}$ not affected by r_{o}, therefore, $f_{L_{E}}=\frac{1}{2 \pi R_{e} C_{E}} \cong \mathbf{3 2 7} \mathbf{~ H z}$ is the same.
In total, the effect of r_{o} on the frequency response was to slightly reduce the mid-band gain.
15. (a) $\beta R_{E} \geq 10 R_{2}$
$(120)(1.2 \mathrm{k} \Omega) \geq 10(10 \mathrm{k} \Omega)$
$144 \mathrm{k} \Omega \geq 100 \mathrm{k} \Omega$ (checks!)
$V_{B}=\frac{10 \mathrm{k} \Omega(14 \mathrm{~V})}{10 \mathrm{k} \Omega+68 \mathrm{k} \Omega}=1.795 \mathrm{~V}$
$V_{E}=V_{B}-V_{B E}=1.795 \mathrm{~V}-0.7 \mathrm{~V}$
$=1.095 \mathrm{~V}$
$I_{E}=\frac{V_{E}}{R_{E}}=\frac{1.095 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=0.913 \mathrm{~mA}$
$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{0.913 \mathrm{~mA}}=\mathbf{2 8 . 4 8} \boldsymbol{\Omega}$
(b) $A_{V_{\text {mid }}}=-\frac{\left(R_{L} \| R_{C}\right)}{r_{e}}=\frac{-(3.3 \mathrm{k} \Omega \| 5.6 \mathrm{k} \Omega)}{28.48 \Omega}$

$$
=-72.91
$$

(c) $\quad Z_{i}=R_{1}\left\|R_{2}\right\| \beta r_{e}$

$$
=68 \mathrm{k} \Omega\|10 \mathrm{k} \Omega\|(\underbrace{120)(28.48 \Omega}_{3.418 \mathrm{k} \Omega})
$$

$=2.455 \mathrm{k} \Omega$
(d) $A_{v_{s}}=\frac{V_{o}}{V_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}$

$$
\begin{aligned}
\frac{V_{i}}{V_{s}} & =\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{2.455 \mathrm{k} \Omega}{2.455 \mathrm{k} \Omega+0.82 \mathrm{k} \Omega} \\
& =0.75 \\
A_{v_{s}} & =(-72.91)(0.75) \\
& =\mathbf{5 4 . 6 8}
\end{aligned}
$$

(e) $f_{L_{s}}=\frac{1}{2 \pi\left(R_{s}+R_{i}\right) C_{s}}=\frac{1}{2 \pi(0.82 \mathrm{k} \Omega+2.455 \mathrm{k} \Omega)(0.47 \mu \mathrm{~F})}$

$$
\begin{aligned}
& =\mathbf{1 0 3 . 4} \mathbf{~ H z} \\
f_{L_{C}} & =\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}}=\frac{1}{2 \pi(5.6 \mathrm{k} \Omega+3.3 \mathrm{k} \Omega)(0.47 \mu \mathrm{~F})} \\
& =\mathbf{3 8 . 0 5 ~ H z}
\end{aligned}
$$

$$
f_{L_{E}}=\frac{1}{2 \pi R_{e} C_{E}}: R_{e}=R_{E} \|\left(\frac{R_{s}^{\prime}}{\beta}+r_{e}\right)
$$

$$
R_{s}^{\prime}=R_{s}\left\|R_{1}\right\| R_{2}=0.82 \mathrm{k} \Omega\|68 \mathrm{k} \Omega\| 10 \mathrm{k} \Omega
$$

$$
=749.51 \Omega
$$

$$
R_{e}=1.2 \mathrm{k} \Omega \|\left(\frac{749.51 \Omega}{120}+28.48 \Omega\right)
$$

$$
=1.2 \mathrm{k} \Omega \| 34.73 \Omega
$$

$$
=33.75 \Omega
$$

$$
f_{L_{E}}=\frac{1}{2 \pi R_{e} C_{E}}=\frac{1}{2 \pi(33.75 \Omega)(20 \mu \mathrm{~F})}
$$

$$
=235.79 \mathrm{~Hz}
$$

(f) $f_{1} \cong \boldsymbol{f}_{L_{E}}=235.79 \mathrm{~Hz}$

16. (a) $I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{470 \mathrm{k} \Omega+(111)(0.91 \mathrm{k} \Omega)}=\frac{19.3 \mathrm{~V}}{470 \mathrm{k} \Omega+101.01 \mathrm{k} \Omega}$

$$
=33.8 \mu \mathrm{~A}
$$

$$
I_{E}=(\beta+1) I_{B}=(111)(33.8 \mu \mathrm{~A})
$$

$$
=3.752 \mathrm{~mA}
$$

$r_{e}=\frac{26 \mathrm{mV}}{3.752 \mathrm{~mA}}=\mathbf{6 . 9 3} \Omega$
(b) $A_{v_{\text {mid }}}=\frac{V_{o}}{V_{i}}=\frac{-\left(R_{C} \| R_{L}\right)}{r_{e}}=\frac{-(3 \mathrm{k} \Omega \| 4.7 \mathrm{k} \Omega)}{6.93 \Omega}=\frac{-1.831 \mathrm{k} \Omega}{6.93 \Omega}$

$$
=-264.24
$$

(c) $Z_{i}=R_{B}\left\|\beta r_{e}=470 \mathrm{k} \Omega\right\|(110)(6.93 \Omega)=470 \mathrm{k} \Omega \| 762.3 \Omega$

$$
=761.07 \Omega
$$

(d) $A_{v_{s \text { midi }}}=\frac{Z_{i}}{Z_{i}+R_{s}} A_{v_{\text {mid }}}=\frac{761.07 \Omega}{761.07 \Omega+0.6 \mathrm{k} \Omega}(-264.24)$

$$
=-147.76
$$

(e) $f_{L_{S}}=\frac{1}{2 \pi\left(R_{S}+Z_{i}\right) C_{S}}=\frac{1}{2 \pi(600 \Omega+761.07 \Omega)(1 \mu \mathrm{~F})}$

$$
=116.93 \mathrm{~Hz}
$$

$$
\begin{array}{rlrl}
f_{L_{C}} & =\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}}=\frac{1}{2 \pi(3 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega)(1 \mu \mathrm{~F})} \\
& =\mathbf{2 0 . 6 7 \mathbf { H z }} & R_{e} & =R_{E} \|\left(\frac{R_{s}^{\prime}}{\beta}+r_{e}\right) \\
f_{L_{E}} & =\frac{1}{2 \pi R_{e} C_{E}} & & =0.91 \mathrm{k} \Omega \|\left(\frac{R_{s} \| R_{B}}{\beta}+r_{e}\right) \\
& =\frac{1}{2 \pi(12.21 \Omega)(6.8 \mu \mathrm{~F})} & & =0.91 \mathrm{k} \Omega \|\left(\frac{0.6 \mathrm{k} \Omega \| 470 \mathrm{k} \Omega}{110}+6.93 \Omega\right) \\
& =\mathbf{1 . 9 1 7 \mathbf { k H z }} & & \\
\text { (f) } f_{1} \cong f_{L_{E}} & =\mathbf{1 . 9 1 7} \mathbf{~ k H z} & & =12.21 \Omega
\end{array}
$$

(g, h)

17. (a) $\beta R_{E} \geq 10 R_{2}$
$(100)(2.2 \mathrm{k} \Omega) \geq 10(30 \mathrm{k} \Omega)$
$220 \mathrm{k} \Omega \nsucceq 300 \mathrm{k} \Omega$ (No!)
$R_{T h}=R_{1}\left\|R_{2}=120 \mathrm{k} \Omega\right\| 30 \mathrm{k} \Omega=24 \mathrm{k} \Omega$
$E_{T h}=\frac{30 \mathrm{k} \Omega(14 \mathrm{~V})}{30 \mathrm{k} \Omega+120 \mathrm{k} \Omega}=2.8 \mathrm{~V}$
$I_{B}=\frac{E_{T h}-V_{B E}}{R_{T h}+(\beta+1) R_{E}}=\frac{2.8 \mathrm{~V}-0.7 \mathrm{~V}}{24 \mathrm{k} \Omega+222.2 \mathrm{k} \Omega}$
$=8.53 \mu \mathrm{~A}$
$I_{E}=(\beta+1) I_{B}=(101)(8.53 \mu \mathrm{~A})$
$=0.86 \mathrm{~mA}$
$r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{0.86 \mathrm{~mA}}=\mathbf{3 0 . 2 3} \Omega$
(b) $\quad A_{v_{\text {mid }}}=\frac{R_{E} \| R_{L}}{r_{e}+R_{E} \| R_{L}}$

$$
\begin{aligned}
& =\frac{2.2 \mathrm{k} \Omega \| 8.2 \mathrm{k} \Omega}{30.23 \Omega+2.2 \mathrm{k} \Omega \| 8.2 \mathrm{k} \Omega} \\
& =\mathbf{0 . 9 8 3}
\end{aligned}
$$

(c) $Z_{i}=R_{1}\left\|R_{2}\right\| \beta\left(r_{e}+R_{E}^{\prime}\right) \quad R_{E}^{\prime}=R_{E}\left\|R_{L}=2.2 \mathrm{k} \Omega\right\| 8.2 \mathrm{k} \Omega=1.735 \mathrm{k} \Omega$

$$
=120 \mathrm{k} \Omega\|30 \mathrm{k} \Omega\|(100)(30.23 \Omega+1.735 \mathrm{k} \Omega)
$$

$$
=21.13 \mathrm{k} \Omega
$$

(d) $A_{v_{s}}=\frac{V_{o}}{V_{s}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}} \quad \frac{V_{i}}{V_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{21.13 \mathrm{k} \Omega}{21.13 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=0.955$
(e) $f_{L_{s}}=\frac{1}{2 \pi\left(R_{s}+R_{i}\right) C_{s}}$
$=\frac{1}{2 \pi(1 \mathrm{k} \Omega+21.13 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F})}$
$=71.92 \mathrm{~Hz}$
$f_{L_{C}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}}$
$R_{o}=R_{E} \|\left(\frac{R_{s}^{\prime}}{\beta}+r_{e}\right)$
$R_{s}^{\prime}=R_{s}\left\|R_{1}\right\| R_{2}$ $=1 \mathrm{k} \Omega\|120 \mathrm{k} \Omega\| 30 \mathrm{k} \Omega$ $=0.96 \mathrm{k} \Omega$
$=(2.2 \mathrm{k} \Omega) \|\left(\frac{0.96 \mathrm{k} \Omega}{100}+30.23 \Omega\right)$
$=39.12 \Omega$
$f_{L_{C}}=\frac{1}{2 \pi(39.12 \Omega+8.2 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F})}$
$=193.16 \mathrm{~Hz}$
(f) $\quad f_{1_{\text {low }}} \cong \mathbf{1 9 3 . 1 6 ~ H z}$

18. (a) $I_{E}=\frac{V_{E E}-V_{E B}}{R_{E}}=\frac{4 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=2.75 \mathrm{~mA}$

$$
r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.75 \mathrm{~mA}}=9.45 \Omega
$$

(b) $A_{v_{\text {mid }}}=\frac{R_{C} \| R_{L}}{r_{e}}=\frac{3.3 \mathrm{k} \Omega \| 4.7 \mathrm{k} \Omega}{9.45 \Omega}$
$=205.1$
(c) $Z_{i}=R_{E}\left\|r_{e}=1.2 \mathrm{k} \Omega\right\| 9.45 \Omega$

$$
=9.38 \Omega
$$

(d) $A_{v_{s(\text { mid })}}=\frac{Z_{i}}{Z_{i}+R_{s}} A_{v_{\text {mid }}}=\frac{9.38 \Omega(205.1)}{9.38 \Omega+100 \Omega}$

$$
=17.59
$$

(e) $f_{L_{s}}=\frac{1}{2 \pi\left(R_{s}+Z_{i}\right) C_{s}}=\frac{1}{2 \pi(100 \Omega+9.38 \Omega)(10 \mu \mathrm{~F})}$

$$
=145.5 \mathrm{~Hz}
$$

$$
f_{L_{C}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{E}}=\frac{1}{2 \pi(3.3 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega)(10 \mu \mathrm{~F})}
$$

$$
=1.989 \mathrm{~Hz}
$$

(f) $f=f_{L_{s}} \cong \mathbf{1 4 5 . 5} \mathbf{~ H z}$
(g, h)

19. (a) $V_{G S}=-I_{D} R_{S}$

$$
\left.I_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{P}}\right)^{2}\right\} \begin{gathered}
V_{G S_{Q}} \cong \mathbf{- 2 . 4 5 ~ V} \\
I_{D_{Q}} \cong \mathbf{2 . 1} \mathbf{~ m A}
\end{gathered}
$$

(b) $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(6 \mathrm{~mA})}{6 \mathrm{~V}}=\mathbf{2} \mathbf{~ m S}$

$$
\begin{aligned}
g_{m} & =g_{m 0}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=2 \mathrm{mS}\left(1-\frac{(-2.45 \mathrm{~V})}{(-6 \mathrm{~V})}\right) \\
& =\mathbf{1 . 1 8} \mathbf{~ m S}
\end{aligned}
$$

(c) $A_{v_{\text {mid }}}=-g_{m}\left(R_{D} \| R_{L}\right)$

$$
\begin{aligned}
& =-1.18 \mathrm{mS}(3 \mathrm{k} \Omega \| 3.9 \mathrm{k} \Omega)=-1.18 \mathrm{mS}(1.6956 \mathrm{k} \Omega) \\
& =-\mathbf{2}
\end{aligned}
$$

(d) $Z_{i}=R_{G}=\mathbf{1} \mathbf{M} \Omega$
(e) $A_{v_{s}}=A_{v}=\mathbf{- 2}$
(f) $f_{L_{G}}=\frac{1}{2 \pi\left(R_{\text {sig }}+R_{i}\right) C_{G}}=\frac{1}{2 \pi(1 \mathrm{k} \Omega+1 \mathrm{M} \Omega)(0.1 \mu \mathrm{~F})}$

$$
=1.59 \mathrm{~Hz}
$$

$$
\begin{aligned}
f_{L_{C}} & =\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}} \\
& =\frac{1}{2 \pi(3 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega)(4.7 \mu \mathrm{~F})} \\
& =4.91 \mathrm{~Hz}
\end{aligned}
$$

$$
\begin{array}{rlrl}
f_{L_{s}} & =\frac{1}{2 \pi R_{\mathrm{eq}} C_{S}} & R_{\mathrm{eq}}=R_{S}\left\|\frac{1}{g_{m}}=1.2 \mathrm{k} \Omega\right\| \frac{1}{1.18 \mathrm{mS}}=1.2 \mathrm{k} \Omega \| 847.46 \Omega \\
& =\frac{1}{2 \pi(496.69 \Omega)(10 \mu \mathrm{~F})} & & =496.69 \Omega \\
& =\mathbf{3 2 . 0 4 ~ H z} & &
\end{array}
$$

(g) $f_{1} \cong f_{L_{S}} \cong \mathbf{3 2} \mathbf{~ H z}$
(h, i)

20. (a) same as problem 19

$$
V_{G S_{Q}} \cong \mathbf{- 2 . 4 5} \mathrm{~V}, I_{D_{Q}} \cong \mathbf{2 . 1} \mathbf{~ m A}
$$

(b) $g_{m 0}=\mathbf{2} \mathbf{~ m S}, g_{m}=\mathbf{1 . 1 8} \mathbf{~ m S}$ (r_{d} has no effect!)
(c) $\quad A_{v_{\text {mid }}}=-g_{m}\left(R_{D}\left\|R_{L}\right\| r_{d}\right)$
$=-1.18 \mathrm{mS}(3 \mathrm{k} \Omega| | 3.9 \mathrm{k} \Omega| | 100 \mathrm{k} \Omega)$
$=-1.18 \mathrm{mS}(1.67 \mathrm{k} \Omega)$
$=\mathbf{- 1 . 9 7 1}($ vs. -2 for problem 19)
(d) $Z_{i}=R_{G}=1 \mathrm{M} \Omega$ (the same)
(e) $\quad A_{v_{s(\text { mid })}}=\frac{Z_{i}}{Z_{i}+R_{\text {sig }}}\left(A_{v_{\text {mid }}}\right)=\frac{1 \mathrm{M} \Omega}{1 \mathrm{M} \Omega+1 \mathrm{k} \Omega}(-1.971)$
$=\mathbf{- 1 . 9 6 9}$ vs. -2 for problem 19
(f) $f_{L_{G}}=\mathbf{1 . 5 9 ~ H z}$ (no effect)
$f_{L_{C}}: R_{o}=R_{D}\left\|r_{d}=3 \mathrm{k} \Omega\right\| 100 \mathrm{k} \Omega=2.91 \mathrm{k} \Omega$

$$
f_{L_{C}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}}=\frac{1}{2 \pi(2.91 \mathrm{k} \Omega+3.9 \mathrm{k} \Omega)(4.7 \mu \mathrm{~F})}
$$

$=4.97 \mathrm{~Hz}$ vs. 4.91 Hz for problem 19

$$
\begin{aligned}
f_{L_{S}}: R_{\mathrm{eq}} & =\frac{R_{S}}{1+R_{S}\left(1+g_{m} r_{d}\right) /\left(r_{d}+\left(R_{D} \| R_{L}\right)\right)} \\
& =\frac{1.2 \mathrm{k} \Omega}{1+(1.2 \mathrm{k} \Omega)(1+(1.18 \mathrm{mS})(100 \mathrm{k} \Omega)) /(100 \mathrm{k} \Omega+3 \mathrm{k} \Omega \| 3.9 \mathrm{k} \Omega)} \\
& =\frac{1.2 \mathrm{k} \Omega}{1+1.404} \\
& \cong 499.2 \Omega \\
f_{L_{S}} & :=\frac{1}{2 \pi R_{\mathrm{eq}} C_{S}}=\frac{1}{2 \pi(499.2 \Omega)(10 \mu \mathrm{~F})}
\end{aligned}
$$

$=\mathbf{3 1 . 8 8} \mathrm{Hz}$ vs. 32.04 for problem 19.
Effect of $r_{d}=100 \mathrm{k} \Omega$ insignificant!
21.
(a) $V_{G}=\frac{68 \mathrm{k} \Omega(20 \mathrm{~V})}{68 \mathrm{k} \Omega+220 \mathrm{k} \Omega}=4.72 \mathrm{~V}$

$$
\left.\begin{array}{l}
V_{G S}=V_{G}-I_{D} R_{S} \\
V_{G S}=4.72 \mathrm{~V}-I_{D}(2.2 \mathrm{k} \Omega) \\
I_{D}=I_{D S S}\left(1-V_{G S} / V_{P}\right)^{2}
\end{array}\right\} \begin{aligned}
& V_{G Q_{Q}} \cong \mathbf{- 2 . 5 5} \mathbf{~ V} \\
& I_{D_{Q}} \cong \mathbf{3 . 3} \mathbf{~ m A}
\end{aligned}
$$

(b) $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(10 \mathrm{~mA})}{6 \mathrm{~V}}=3.33 \mathrm{mS}$

$$
\begin{aligned}
g_{m} & =g_{m 0}\left(1-\frac{V_{G S}}{V_{P}}\right)=3.33 \mathrm{mS}\left(1-\frac{(-2.55 \mathrm{~V})}{-6 \mathrm{~V}}\right) \\
& =1.91 \mathbf{~ m S}
\end{aligned}
$$

(c) $A_{v_{\text {mid }}}=-g_{m}\left(R_{D} \| R_{L}\right)$

$$
\begin{aligned}
& =-(1.91 \mathrm{mS})(3.9 \mathrm{k} \Omega \| 5.6 \mathrm{k} \Omega) \\
& =-\mathbf{4 . 3 9}
\end{aligned}
$$

(d) $Z_{i}=68 \mathrm{k} \Omega \| 220 \mathrm{k} \boldsymbol{\beta}=\mathbf{5 1 . 9 4} \mathbf{k} \boldsymbol{\Omega}$
(e) $\quad A_{V_{s(\text { mid })}}=\frac{V_{o}}{V_{i}} \cdot \frac{V_{i}}{V_{s}}$
$\frac{V_{i}}{V_{s}}=\frac{Z_{i}}{Z_{i}+R_{s}}=\frac{51.94 \mathrm{k} \Omega}{51.94 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega}=0.972$
$A_{v_{s(\text { mid })}}=(-4.39)(0.972)=\mathbf{- 4 . 2 7}$
(f) $f_{L_{G}}=\frac{1}{2 \pi\left(R_{\text {sig }}+R_{i}\right) C_{G}}=\frac{1}{2 \pi(1.5 \mathrm{k} \Omega+51.94 \mathrm{k} \Omega)(1 \mu \mathrm{~F})}$
$=2.98 \mathrm{~Hz}$

$$
f_{L_{C}}=\frac{1}{2 \pi\left(R_{o}+R_{L}\right) C_{C}}=\frac{1}{2 \pi(3.9 \mathrm{k} \Omega+5.6 \mathrm{k} \Omega)(6.8 \mu \mathrm{~F})}
$$

$$
=2.46 \mathrm{~Hz}
$$

$$
\begin{aligned}
f_{L_{S}} & =\frac{1}{2 \pi R_{\mathrm{eq}} C_{S}} \\
& =\frac{1}{2 \pi(388.1 \Omega)(10 \mu \mathrm{~F})} \\
& =\mathbf{4 1} \mathbf{~ H z}
\end{aligned}
$$

(g) $f_{1} \cong f_{L_{s}}=41 \mathrm{~Hz}$
(h, i)

22.

$$
\text { (a) } \begin{align*}
f_{H_{i}} & =\frac{1}{2 \pi R_{T h_{1}} C_{i}} \\
& =\frac{1}{2 \pi(614.56 \Omega)(931.92 \mathrm{pF})} \\
& =\mathbf{2 7 7 . 8 9} \mathbf{~ k H z} \\
f_{H_{o}} & =\frac{1}{2 \pi R_{T k_{2}} C_{o}} \tag{个Prob. 15}\\
& =\frac{1}{2 \pi(2.08 \mathrm{k} \Omega)(28 \mathrm{pF})} \\
& =\mathbf{2 . 7 3} \mathbf{~ M H z}
\end{align*}
$$

(b) $f_{\beta} \cong \frac{1}{2 \pi \beta_{\text {mid }_{e}} r_{e}\left(C_{b e}+C_{b c}\right)}=\frac{1}{2 \pi(120)(28.48 \Omega)(40 \mathrm{pF}+12 \mathrm{pF})}$

$$
\begin{aligned}
& =\mathbf{8 9 5 . 5 6} \mathbf{~ k H z} \\
f_{T} & =\beta f_{\beta}=(120)(895.56 \mathrm{kHz}) \\
& =\mathbf{1 0 7 . 4 7} \mathbf{~ M H z}
\end{aligned}
$$

$$
\uparrow \text { Prob. } 15
$$

(c)
23. (a) $f_{H_{i}}=\frac{1}{2 \pi R_{T k_{1}} C_{i}}$

$$
\begin{aligned}
& R_{T h_{1}}=R_{s}\left\|R_{B}\right\| R_{i} \\
& \begin{aligned}
R_{i}: I_{B} & =\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{470 \mathrm{k} \Omega+(111)(0.91 \mathrm{k} \Omega)} \\
& =33.8 \mu \mathrm{~A}
\end{aligned}
\end{aligned}
$$

$$
I_{E}=(\beta+1) I_{B}=(110+1)(33.8 \mu \mathrm{~A})
$$

$$
=3.75 \mathrm{~mA}
$$

$$
r_{e}=\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{3.75 \mathrm{~mA}}=6.93 \Omega
$$

$$
R_{i}=\beta r_{e}=(110)(6.93 \Omega)
$$

$$
=762.3 \Omega
$$

$$
R_{T h_{1}}=R_{s}\left\|R_{B}\right\| R_{i}=0.6 \mathrm{k} \Omega\|470 \mathrm{k} \Omega\| 762.3 \Omega
$$

$$
=335.50 \Omega
$$

$$
\begin{aligned}
& R_{T h_{1}}=R_{s}\left\|R_{1}\right\| R_{2} \| R_{i} \\
& =\underbrace{0.82 \mathrm{k} \Omega \| 68 \mathrm{k} \Omega} \| \underbrace{10 \mathrm{k} \Omega \| 3.418 \mathrm{k} \Omega} \\
& \begin{array}{c}
=0.81 \mathrm{k} \Omega \quad 2.547 \mathrm{k} \Omega
\end{array} \\
& =614.56 \Omega \\
& C_{i}=C_{W_{1}}+C_{b e}+C_{b c}\left(1-A_{v}\right) \\
& =5 \mathrm{pF}+40 \mathrm{pF}+12 \mathrm{pF}(1-(-72.91)) \\
& =931.92 \mathrm{pF} \\
& R_{T h_{2}}=R_{C}\left\|R_{L}=5.6 \mathrm{k} \Omega\right\| 3.3 \mathrm{k} \Omega \\
& =2.08 \mathrm{k} \Omega \\
& C_{o}=C_{W_{o}}+C_{c e}+C_{M_{o}} \\
& =8 \mathrm{pF}+8 \mathrm{pF}+12 \mathrm{pF} \\
& =28 \mathrm{pF}
\end{aligned}
$$

$$
f_{H_{i}}=\frac{1}{2 \pi(335.50 \Omega)\left(C_{i}\right)}
$$

$$
C_{i}: C_{i}=C_{W_{i}}+C_{b e}+\left(1-A_{v}\right) C_{b c}
$$

$$
A_{v}: \quad A_{v_{\operatorname{mid}}}=\frac{-\left(R_{L} \| R_{C}\right)}{r_{e}}=\frac{-(4.7 \mathrm{k} \Omega \| 3 \mathrm{k} \Omega)}{6.93 \Omega}
$$

$$
=-264.2
$$

$$
C_{i}=7 \mathrm{pF}+20 \mathrm{pF}+(1-(-264.2) 6 \mathrm{pF}
$$

$$
=1.62 \mathrm{nF}
$$

$$
f_{H_{i}}=\frac{1}{2 \pi(335.50 \Omega)(1.62 \mathrm{nF})}
$$

$$
\cong 293 \mathrm{kHz}
$$

$$
\begin{aligned}
& f_{H_{o}}=\frac{1}{2 \pi R_{T k_{2}} C_{o}} \\
& \quad R_{T k_{2}}=R_{C}\left\|R_{L}=3 \mathrm{k} \Omega\right\| 4.7 \mathrm{k} \Omega=1.831 \mathrm{k} \Omega
\end{aligned}
$$

$$
C_{o}=C_{W_{o}}+C_{c e}+\underbrace{C_{f}=C_{b c}}_{\underbrace{}_{M_{o}}}
$$

$$
=11 \mathrm{pF}+10 \mathrm{pF}+6 \mathrm{pF}
$$

$$
=27 \mathrm{pF}
$$

$$
f_{H_{o}}=\frac{1}{2 \pi(1.831 \mathrm{k} \Omega)(27 \mathrm{pF})}
$$

$$
=3.22 \mathrm{MHz}
$$

(b) $f_{\beta}=\frac{1}{2 \pi \beta_{\text {mid }} r_{e}\left(C_{b e}+C_{b c}\right)}$

$$
\begin{aligned}
& =\frac{1}{2 \pi(110)(6.93 \Omega)(20 \mathrm{pF}+6 \mathrm{pF})} \\
& =\mathbf{8 . 0 3} \mathbf{~ M H z}
\end{aligned}
$$

$$
\begin{aligned}
f_{T} & =\beta_{\mathrm{mid}} f_{\beta}=(110)(8.03 \mathrm{MHz}) \\
& =\mathbf{8 8 3 . 3} \mathbf{~ M H z}
\end{aligned}
$$

(c)

24.

$$
\text { (a) } \begin{aligned}
f_{H_{i}} & =\frac{1}{2 \pi R_{T h_{1}} C_{i}} \\
& =\frac{1}{2 \pi(955 \Omega)(58 \mathrm{pF})} \\
& =2.87 \mathrm{MHz}
\end{aligned}
$$

$$
\begin{aligned}
f_{H_{o}} & =\frac{1}{2 \pi R_{T k_{2}} C_{o}} \\
& =\frac{1}{2 \pi(38.94 \Omega)(32 \mathrm{pF})} \\
& =\mathbf{1 2 7 . 7 2} \mathbf{~ M H z}
\end{aligned}
$$

$$
\begin{aligned}
& R_{T h_{1}}=R_{s}\left\|R_{1}\right\| R_{2} \| Z_{b} \\
& Z_{b}=\beta r_{e}+(\beta+1)\left(R_{E} \| R_{L}\right) \\
&=(100)(30.23 \Omega)+(101)(2.2 \mathrm{k} \Omega \| 8.2 \mathrm{k} \Omega) \\
&=3.023 \mathrm{k} \Omega+175.2 \mathrm{k} \Omega \\
&=178.2 \mathrm{k} \Omega \\
& R_{T h_{1}}=1 \mathrm{k} \Omega\|120 \mathrm{k} \Omega\| 30 \mathrm{k} \Omega \| 178.2 \mathrm{k} \Omega \\
&=955 \Omega \\
& \begin{aligned}
C_{i} & = \\
& =C_{W_{i}}+C_{b e}+C_{b c}(\mathrm{No} \text { Miller effect }) \\
& =58 \mathrm{pF}+30 \mathrm{pF}+20 \mathrm{pF} \\
& \\
R_{T h_{2}} & =R_{E}\left\|R_{L}\right\|(\underbrace{}_{e}+\underbrace{\beta}_{R_{1}\left\|R_{2}\right\| R_{3}}) \\
& =2.2 \mathrm{k} \Omega\|8.2 \mathrm{k} \Omega\|\left(30.23 \Omega+\frac{24 \mathrm{k} \Omega \| 1 \mathrm{k} \Omega}{100}\right) \\
& =1.735 \mathrm{k} \Omega \|(30.23 \Omega+9.6 \Omega) \\
& =1.735 \mathrm{k} \Omega \| 39.83 \Omega \\
& =38.94 \Omega \\
C_{o} & =C_{W_{o}}+C_{c e} \\
& =10 \mathrm{pF}+12 \mathrm{pF} \\
& =32 \mathrm{pF}
\end{aligned}
\end{aligned}
$$

(b) $f_{\beta}=\frac{1}{2 \pi \beta_{\text {mid }} r_{e}\left(C_{b e}+C_{b c}\right)}$

$$
=\frac{1}{2 \pi(100)(30.23 \Omega)(30 \mathrm{pF}+20 \mathrm{pF})}
$$

$$
=1.05 \mathrm{MHz}
$$

$$
f_{T}=\beta_{\operatorname{mid}} f_{\beta}=100(1.05 \mathrm{MHz})=\mathbf{1 0 5} \mathbf{~ M H z}
$$

25. (a) $f_{H_{i}}=\frac{1}{2 \pi R_{T h_{1}} C_{i}}$

$$
\begin{aligned}
R_{T h_{1}} & =R_{s}\left\|R_{E}\right\| R_{i} \\
R_{i}: I_{E} & =\frac{V_{E E}-V_{B E}}{R_{E}}=\frac{4 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=2.75 \mathrm{~mA} \\
r_{e} & =\frac{26 \mathrm{mV}}{I_{E}}=\frac{26 \mathrm{mV}}{2.75 \mathrm{~mA}}=9.45 \Omega \\
R_{i} & =R_{E}\left\|r_{e}=1.2 \mathrm{k} \Omega\right\| 9.45 \Omega \\
& =9.38 \Omega
\end{aligned}
$$

$C_{i}: C_{i}=C_{W_{i}}+C_{b e}$ (no Miller cap-noninverting!)

$$
=8 \mathrm{pF}+24 \mathrm{pF}
$$

$$
=32 \mathrm{pF}
$$

$$
R_{i}=0.1 \mathrm{k} \Omega\|1.2 \mathrm{k} \Omega\| 9.38 \Omega=8.52 \Omega
$$

$$
f_{H_{i}}=\frac{1}{2 \pi(8.52 \Omega)(32 \mathrm{pF})} \cong \mathbf{5 8 4} \mathbf{~ M H z}
$$

$$
f_{H_{o}}=\frac{1}{2 \pi R_{T h_{2}} C_{o}} \quad R_{T k_{2}}=R_{C}\left\|R_{L}=3.3 \mathrm{k} \Omega\right\| 4.7 \mathrm{k} \Omega=1.94 \mathrm{k} \Omega
$$

$$
C_{o}=C_{W_{o}}+C_{b c}+(\text { no Miller })
$$

$$
=10 \mathrm{pF}+18 \mathrm{pF}
$$

$$
=28 \mathrm{pF}
$$

$$
f_{H_{o}}=\frac{1}{2 \pi(1.94 \mathrm{k} \Omega)(28 \mathrm{pF})}
$$

$$
=2.93 \mathrm{MHz}
$$

(b) $f_{\beta}=\frac{1}{2 \pi \beta_{\text {mid }} r_{e}\left(C_{b e}+C_{b c}\right)}$

$$
=\frac{1}{2 \pi(80)(9.45 \Omega)(24 \mathrm{pF}+18 \mathrm{pF})}
$$

$$
=5.01 \mathrm{MHz}
$$

$f_{T}=\beta_{\text {mid }} f_{\beta}=(80)(5.01 \mathrm{MHz})$
$=400.8 \mathrm{MHz}$

26. (a) From problem $19 \quad g_{m 0}=\mathbf{2} \mathbf{~ m S}, g_{m}=\mathbf{1 . 1 8} \mathbf{~ m S}$
(b) From problem $19 \quad A_{v_{\text {mid }}} \cong A_{v_{s}(\text { mid })}=\mathbf{- 2}$
(c)

$$
\begin{aligned}
& f_{H_{i}}=\frac{1}{2 \pi R_{T h_{1}} C_{i}} \\
& f_{H_{i}}=\frac{1}{2 \pi(999 \Omega)(21 \mathrm{pF})} \\
& =7.59 \mathrm{MHz} \\
& R_{T h_{1}}=R_{\text {sig }} \| R_{G} \\
& =1 \mathrm{k} \Omega \| 1 \mathrm{M} \Omega \\
& =999 \Omega \\
& C_{i}=C_{W_{i}}+C_{g s}+C_{M_{i}} \\
& C_{M_{i}}=\left(1-A_{v}\right) C_{g d} \\
& =(1-(-2) 4 \mathrm{pF} \\
& =12 \mathrm{pF} \\
& C_{i}=3 \mathrm{pF}+6 \mathrm{pF}+12 \mathrm{pF} \\
& =21 \mathrm{pF} \\
& f_{H_{o}}=\frac{1}{2 \pi R_{T k_{2}} C_{o}} \\
& R_{T h_{2}}=R_{D} \| R_{L} \\
& =3 \mathrm{k} \Omega| | 3.9 \mathrm{k} \Omega \\
& =1.696 \mathrm{k} \Omega \\
& =\frac{1}{2 \pi(1.696 \mathrm{k} \Omega)(12 \mathrm{pF})} \\
& C_{o}=C_{W_{o}}+C_{d s}+C_{M_{o}} \\
& =7.82 \mathrm{MHz} \\
& C_{M_{o}}=\left(1-\frac{1}{-2}\right) 4 \mathrm{pF} \\
& =(1.5)(4 \mathrm{pF}) \\
& =6 \mathrm{pF} \\
& C_{o}=5 \mathrm{pF}+1 \mathrm{pF}+6 \mathrm{pF} \\
& =12 \mathrm{pF}
\end{aligned}
$$

(d)

27.
(a) $g_{m 0}=\frac{2 I_{D S S}}{\left|V_{P}\right|}=\frac{2(10 \mathrm{~mA})}{6 \mathrm{~V}}=\mathbf{3 . 3 3} \mathrm{mS}$

From problem \#21 $V_{G S_{Q}} \cong \mathbf{- 2 . 5 5} \mathbf{V}, I_{D_{Q}} \cong \mathbf{3 . 3} \mathbf{~ m A}$

$$
g_{m}=g_{m 0}\left(1-\frac{V_{G S_{Q}}}{V_{P}}\right)=3.33 \mathrm{mS}\left(1-\frac{-2.55 \mathrm{~V}}{-6 \mathrm{~V}}\right)=\mathbf{1 . 9 1} \mathbf{~ m S}
$$

(b) $A_{v_{\text {mid }}}=-g_{m}\left(R_{D} \| R_{L}\right)$

$$
\begin{aligned}
& =-(1.91 \mathrm{mS})(3.9 \mathrm{k} \Omega \| 5.6 \mathrm{k} \Omega) \\
& =-4.39
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{rl}
Z_{i}=68 \mathrm{k} \Omega \| 220 \mathrm{k} \Omega=51.94 \mathrm{k} \Omega \\
\frac{V_{i}}{V_{s}} & =\frac{Z_{i}}{Z_{i}+R_{\text {sig }}}=\frac{51.94 \mathrm{k} \Omega}{51.94 \mathrm{k} \Omega+1.5 \mathrm{k} \Omega}=0.972 \\
\begin{array}{rl}
A_{\left.v_{s} \text { (mid) }\right)} & =(-4.39)(0.972) \\
& =-4.27
\end{array}
\end{array} . \begin{array}{l}
\\
\end{array}\right)
\end{aligned}
$$

(c) $f_{H_{i}}=\frac{1}{2 \pi R_{T T_{1}} C_{i}}$

$$
\begin{aligned}
R_{T h_{1}} & =R_{\text {sig }}\left\|R_{1}\right\| R_{2} \\
& =1.5 \mathrm{k} \Omega \| 51.94 \mathrm{k} \Omega \\
& =1.46 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
C_{i} & =C_{W_{i}}+C_{g s}+\left(1-A_{v}\right) C_{g d} \\
& =4 \mathrm{pF}+12 \mathrm{pF}+(1-(-4.39)) 8 \mathrm{pF} \\
& =59.12 \mathrm{pF}
\end{aligned}
$$

$$
f_{H_{i}}=\frac{1}{2 \pi(1.46 \mathrm{k} \Omega)(59.12 \mathrm{pF})}
$$

$$
=1.84 \mathrm{MHz}
$$

$$
\begin{aligned}
f_{H_{o}}=\frac{1}{2 \pi R_{T k_{2}} C_{o}} & \quad \begin{aligned}
R_{T k_{2}} & =R_{D}\left\|R_{L}=3.9 \mathrm{k} \Omega\right\| 5.6 \mathrm{k} \Omega \\
& =2.3 \mathrm{k} \Omega
\end{aligned}
\end{aligned}
$$

$$
C_{o}=C_{W_{o}}+C_{d s}+\left(1-\frac{1}{A_{v}}\right) C_{g d}
$$

$$
=6 \mathrm{pF}+3 \mathrm{pF}+\left(1-\frac{1}{(-4.39)}\right) 8 \mathrm{pF}
$$

$$
=18.82 \mathrm{pF}
$$

$$
\begin{aligned}
f_{H_{o}} & =\frac{1}{2 \pi(2.3 \mathrm{k} \Omega)(18.82 \mathrm{pF})} \\
& =\mathbf{3 . 6 8} \mathbf{~ M H z}
\end{aligned}
$$

(d)

28. $\quad A_{v_{T}}=A_{v_{1}} \cdot A_{v_{2}} \cdot A_{v_{3}} \cdot A_{v_{4}}$

$$
\begin{aligned}
& =A_{v}{ }^{4} \\
& =(20)^{4}
\end{aligned}
$$

$$
=16 \times 10^{4}
$$

29. $\quad f_{2}^{\prime}=\left(\sqrt{2^{1 / n}-1}\right) f_{2}$

$$
\begin{aligned}
& =(\underbrace{\sqrt{2^{1 / 4}-1}}_{1.18})(2.5 \mathrm{MHz}) \\
& =0.435(2.5 \mathrm{MHz}) \\
& =\mathbf{1 . 0 9} \mathbf{~ M H z}
\end{aligned}
$$

30. $f_{1}^{\prime}=\frac{f_{1}}{\sqrt{2^{1 / n}-1}}=\frac{40 \mathrm{~Hz}}{\sqrt{2^{1 / 4}-1}}$

$$
=\frac{40 \mathrm{~Hz}}{0.435}
$$

$$
=91.96 \mathrm{~Hz}
$$

31.

(b) $B W \cong \frac{0.35}{t_{r}}$

At 90% or $81 \mathrm{mV}, t \cong 0.75 \mu \mathrm{~s}$
At 10% or $9 \mathrm{mV}, t \cong 0.05 \mu \mathrm{~s}$

$$
\begin{aligned}
& \cong \frac{0.35}{0.7 \mu \mathrm{~s}} \quad t_{r} \cong 0.75 \mu \mathrm{~s}-0.05 \mu \mathrm{~s}=0.7 \mu \mathrm{~s} \\
& \cong 500 \mathrm{kHz}
\end{aligned}
$$

(c) $P=\frac{V-V^{\prime}}{V}=\frac{90 \mathrm{mV}-80 \mathrm{mV}}{90 \mathrm{mV}}=0.111$

$$
f_{L_{o}}=\frac{P}{\pi} f_{s}=\frac{(0.111)(100 \mathrm{kHz})}{\pi} \cong \mathbf{3 . 5 3} \mathbf{~ k H z}
$$

$$
\begin{aligned}
& \text { (a) } v=\frac{4}{\pi} V_{m}\left[\sin 2 \pi f_{s} t+\frac{1}{3} \sin 2 \pi\left(3 f_{s}\right) t+\frac{1}{5} \sin 2 \pi\left(5 f_{s}\right) t\right. \\
& \left.+\frac{1}{7} \sin 2 \pi\left(7 f_{s}\right) t+\frac{1}{9} \sin 2 \pi\left(9 f_{s}\right) t+\ldots\right] \\
& =12.73 \times 10^{-3}\left(\sin 2 \pi\left(100 \times 10^{3}\right) t+\frac{1}{3} \sin 2 \pi\left(300 \times 10^{3}\right) t\right. \\
& \left.+\frac{1}{5} \sin 2 \pi\left(500 \times 10^{3}\right) t+\frac{1}{7} \sin 2 \pi\left(700 \times 10^{3}\right) t+\frac{1}{9} \sin 2 \pi\left(900 \times 10^{3}\right) t\right)
\end{aligned}
$$

Chapter 10

1. $V_{o}=-\frac{R_{F}}{R_{1}} V_{1}=-\frac{250 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}(1.5 \mathrm{~V})=\mathbf{- 1 8 . 7 5} \mathrm{V}$
2. $A_{v}=\frac{V_{o}}{V_{i}}=-\frac{R_{F}}{R_{1}}$

For $R_{1}=10 \mathrm{k} \Omega$:

$$
A_{v}=-\frac{500 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}=-\mathbf{5 0}
$$

For $R_{1}=20 \mathrm{k} \Omega$:

$$
A_{v}=-\frac{500 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}=\mathbf{- 2 5}
$$

3. $V_{o}=-\frac{R_{f}}{R_{1}} V_{1}=-\left(\frac{1 \mathrm{M} \Omega}{20 \mathrm{k} \Omega}\right) V_{1}=2 \mathrm{~V}$

$$
V_{1}=\frac{2 \mathrm{~V}}{-50}=-40 \mathrm{mV}
$$

4. $\quad V_{o}=-\frac{R_{F}}{R_{1}} V_{1}=-\frac{200 \mathrm{k} \Omega}{20 \mathrm{k} \Omega} V_{1}=-10 V_{1}$

For $V_{1}=0.1 \mathrm{~V}$:

$$
V_{o}=-10(0.1 \mathrm{~V})=\mathbf{- 1} \mathbf{V} \quad V_{o} \text { ranges }
$$

For $V_{1}=0.5 \mathrm{~V}$:
from
$\left.V_{o}=-10(0.5 \mathrm{~V})=-\mathbf{5} \mathrm{V}\right\}-\mathbf{1} \mathrm{V}$ to $-\mathbf{5} \mathrm{V}$
5. $\quad V_{\mathrm{o}}=\left(1+\frac{R_{F}}{R_{1}}\right) V_{1}=\left(1+\frac{360 \mathrm{k} \Omega}{12 \mathrm{k} \Omega}\right)(-0.3 \mathrm{~V})$

$$
=31(-0.3 \mathrm{~V})=\mathbf{- 9 . 3} \mathbf{V}
$$

6. $V_{o}=\left(1+\frac{R_{F}}{R_{1}}\right) V_{1}=\left(1+\frac{360 \mathrm{k} \Omega}{12 \mathrm{k} \Omega}\right) V_{1}=2.4 \mathrm{~V}$

$$
V_{1}=\frac{2.4 \mathrm{~V}}{31}=\mathbf{7 7 . 4 2} \mathbf{~ m V}
$$

7. $V_{o}=\left(1+\frac{R_{F}}{R_{1}}\right) V_{1}$

For $R_{1}=10 \mathrm{k} \Omega$:

$$
V_{o}=\left(1+\frac{200 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)(0.5 \mathrm{~V})=21(0.5 \mathrm{~V})=\mathbf{1 0 . 5} \mathbf{V}
$$

For $R_{1}=20 \mathrm{k} \Omega$:

$$
V_{\mathrm{o}}=\left(1+\frac{200 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}\right)(0.5 \mathrm{~V})=11(0.5 \mathrm{~V})=\mathbf{5 . 5} \mathbf{V}
$$

V_{o} ranges from 5.5 V to 10.5 V .
8. $V_{o}=-\left[\frac{R_{f}}{R_{1}} V_{1}+\frac{R_{f}}{R_{2}} V_{2}+\frac{R_{f}}{R_{3}} V_{3}\right]$

$$
\begin{aligned}
& =-\left[\frac{330 \mathrm{k} \Omega}{33 \mathrm{k} \Omega}(0.2 \mathrm{~V})+\frac{330 \mathrm{k} \Omega}{22 \mathrm{k} \Omega}(-0.5 \mathrm{~V})+\frac{330 \mathrm{k} \Omega}{12 \mathrm{k} \Omega}(0.8 \mathrm{~V})\right] \\
& =-[10(0.2 \mathrm{~V})+15(-0.5 \mathrm{~V})+27.5(0.8 \mathrm{~V})] \\
& =-[2 \mathrm{~V}+(-7.5 \mathrm{~V})+2.2 \mathrm{~V}] \\
& =-[24 \mathrm{~V}-7.5 \mathrm{~V}]=-\mathbf{1 6 . 5} \mathrm{V}
\end{aligned}
$$

9. $V_{o}=-\left[\frac{R_{F}}{R_{1}} V_{1}+\frac{R_{F}}{R_{2}} V_{2}+\frac{R_{F}}{R_{3}} V_{3}\right]$

$$
\begin{aligned}
& =-\left[\frac{68 \mathrm{k} \Omega}{33 \mathrm{k} \Omega}(0.2 \mathrm{~V})+\frac{68 \mathrm{k} \Omega}{22 \mathrm{k} \Omega}(-0.5 \mathrm{~V})+\frac{68 \mathrm{k} \Omega}{12 \mathrm{k} \Omega}(+0.8 \mathrm{~V})\right] \\
& =-[0.41 \mathrm{~V}-1.55 \mathrm{~V}+4.53 \mathrm{~V}] \\
& =-\mathbf{3 . 3 9} \mathrm{V}
\end{aligned}
$$

10. $\quad v_{o}(t)=-\frac{1}{R C} \int v_{1}(t) d t$

$$
\begin{aligned}
& =-\frac{1}{(200 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F})} \int 1.5 d t \\
& =-50(1.5 t)=-75 t
\end{aligned}
$$

11. $V_{o}=V_{1}=+\mathbf{0 . 5} \mathbf{~ V}$
12. $V_{o}=-\frac{R_{f}}{R_{1}} V_{1}=-\frac{100 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}(1.5 \mathrm{~V})$

$$
=-5(1.5 \mathrm{~V})=-7.5 \mathrm{~V}
$$

13. $V_{2}=-\left[\frac{200 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}\right](0.2 \mathrm{~V})=\mathbf{- 2} \mathbf{V}$

$$
V_{3}=\left(1+\frac{200 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)(0.2 \mathrm{~V})=+4.2 \mathrm{~V}
$$

14. $V_{o}=\left(1+\frac{400 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}\right)(0.1 \mathrm{~V}) \cdot\left(\frac{-100 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}\right)+\left(-\frac{100 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)(0.1 \mathrm{~V})$

$$
=(2.1 \mathrm{~V})(-5)+(-10)(0.1 \mathrm{~V})
$$

$$
=-10.5 \mathrm{~V}-1 \mathrm{~V}=-\mathbf{1 1 . 5} \mathrm{V}
$$

15. $V_{o}=-\left[\frac{600 \mathrm{k} \Omega}{15 \mathrm{k} \Omega}(25 \mathrm{mV})+\frac{600 \mathrm{k} \Omega}{30 \mathrm{k} \Omega}(-20 \mathrm{mV})\right]\left(-\frac{300 \mathrm{k} \Omega}{30 \mathrm{k} \Omega}\right)$

$$
+\left[-\left(\frac{300 \mathrm{k} \Omega}{15 \mathrm{k} \Omega}\right)(-20 \mathrm{mV})\right]
$$

$$
=-[40(25 \mathrm{mV})+(20)(-20 \mathrm{mV})](-10)+(-20)(-20 \mathrm{mV})
$$

$$
=-[1 \mathrm{~V}-0.4 \mathrm{~V}](-10)+0.4 \mathrm{~V}
$$

$$
=6 \mathrm{~V}+0.4 \mathrm{~V}=6.4 \mathbf{V}
$$

16. $V_{o}=\left(1+\frac{R_{f}}{R_{1}}\right) V_{I o}+I_{I o} R_{f}$

$$
\begin{aligned}
& =\left(1+\frac{200 \mathrm{k} \Omega}{2 \mathrm{k} \Omega}\right)(6 \mathrm{mV})+(120 \mathrm{nA})(200 \mathrm{k} \Omega) \\
& =101(6 \mathrm{mV})+24 \mathrm{mV} \\
& =606 \mathrm{mV}+24 \mathrm{mV}=\mathbf{6 3 0} \mathbf{~ m V}
\end{aligned}
$$

17. $I_{I B}^{+}=I_{I B^{+}}+\frac{I_{I o}}{2}=20 \mathrm{nA}+\frac{4 \mathrm{nA}}{2}=\mathbf{2 2} \mathbf{n A}$

$$
I_{I B}^{-}=I_{I B^{-}}-\frac{I_{I o}}{2}=20 \mathrm{nA}-\frac{4 \mathrm{nA}}{2}=\mathbf{1 8} \mathbf{n A}
$$

18. $f_{1}=800 \mathrm{kHz}$

$$
f_{c}=\frac{f_{1}}{A_{v_{2}}}=\frac{800 \mathrm{kHz}}{150 \times 10^{3}}=\mathbf{5 . 3} \mathbf{~ H z}
$$

19. $A_{C L}=\frac{S R}{\Delta V_{i} / \Delta t}=\frac{2.4 \mathrm{~V} / \mu \mathrm{s}}{0.3 \mathrm{~V} / 10 \mu \mathrm{~s}}=\mathbf{8 0}$
20. $A_{C L}=\frac{R_{f}}{R_{1}}=\frac{200 \mathrm{k} \Omega}{2 \mathrm{k} \Omega}=100$

$$
K=A_{C L} V_{i}=100(50 \mathrm{mV})=5 \mathrm{~V}
$$

$$
w_{s} \leq \frac{S R}{K}=\frac{0.4 \mathrm{~V} / \mu \mathrm{s}}{5 \mathrm{~V}}=\mathbf{8 0} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{~ r a d} / \mathbf{s}
$$

$$
f_{s}=\frac{w_{s}}{2 \pi}=\frac{80 \times 10^{3}}{2 \pi}=\mathbf{1 2 . 7 3} \mathbf{~ k H z}
$$

21. $V_{I o}=1 \mathrm{mV}$, typical $I_{I o}=20 \mathrm{nA}$, typical

$$
\begin{aligned}
V_{o}(\mathrm{offset}) & =\left(1+\frac{R_{f}}{R_{1}}\right) V_{I o}+I_{I o} R_{f} \\
& =\left(1+\frac{200 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}\right)(1 \mathrm{mV})+(200 \mathrm{k} \Omega)(20 \mathrm{nA}) \\
& =101(1 \mathrm{mV})+4000 \times 10^{-6} \\
& =101 \mathrm{mV}+4 \mathrm{mV}=\mathbf{1 0 5} \mathbf{~ m V}
\end{aligned}
$$

22. Typical characteristics for 741
$R_{o}=25 \Omega, A=200 \mathrm{~K}$
(a) $A_{C L}=-\frac{R_{f}}{R_{1}}=-\frac{200 \mathrm{k} \Omega}{2 \mathrm{k} \Omega}=\mathbf{- 1 0 0}$
(b) $Z_{i}=R_{1}=\mathbf{2} \mathbf{k} \Omega$
(c) $Z_{o}=\frac{R_{o}}{1+\beta A}=\frac{25 \Omega}{1+\frac{1}{100}(200,000)}$

$$
=\frac{25 \Omega}{2001}=\mathbf{0 . 0 1 2 5 \Omega}
$$

23. $A_{d}=\frac{V_{o}}{V_{d}}=\frac{120 \mathrm{mV}}{1 \mathrm{mV}}=120$
$A_{c}=\frac{V_{o}}{V_{c}}=\frac{20 \mu \mathrm{~V}}{1 \mathrm{mV}}=20 \times 10^{-3}$
Gain (dB) $=20 \log \frac{A_{d}}{A_{c}}=20 \log \frac{120}{20 \times 10^{-3}}$

$$
=20 \log \left(6 \times 10^{3}\right)=75.56 \mathbf{d B}
$$

24. $V_{d}=V_{i 1}-V_{i 2}=200 \mu \mathrm{~V}-140 \mu \mathrm{~V}=60 \mu \mathrm{~V}$

$$
V_{c}=\frac{V_{i 1}+V_{i 2}}{2}=\frac{(200 \mu \mathrm{~V}+140 \mu \mathrm{~V})}{2}=170 \mu \mathrm{~V}
$$

(a) $\quad \mathrm{CMRR}=\frac{A_{d}}{A_{c}}=200$

$$
A_{c}=\frac{A_{d}}{200}=\frac{6000}{200}=\mathbf{3 0}
$$

(b) $\quad \mathrm{CMRR}=\frac{A_{d}}{A_{c}}=10^{5}$

$$
A_{c}=\frac{A_{d}}{10^{5}}=\frac{6000}{10^{5}}=0.06=\mathbf{6 0} \times \mathbf{1 0}^{-3}
$$

Using $V_{o}=A_{d} V_{d}\left[1+\frac{1}{\operatorname{CMRR}} \frac{V_{c}}{V_{d}}\right]$
(a) $V_{o}=6000(60 \mu \mathrm{~V})\left[1+\frac{1}{200} \frac{170 \mu \mathrm{~V}}{60 \mu \mathrm{~V}}\right]=\mathbf{3 6 5 . 1} \mathbf{~ m V}$
(b) $\quad V_{o}=6000(60 \mu \mathrm{~V})\left[1+\frac{1}{10^{5}} \frac{170 \mu \mathrm{~V}}{60 \mu \mathrm{~V}}\right]=\mathbf{3 6 0 . 0 1} \mathbf{~ m V}$

Chapter 11

1. $V_{o}=-\frac{R_{F}}{R_{1}} V_{1}=-\frac{180 \mathrm{k} \Omega}{3.6 \mathrm{k} \Omega}(3.5 \mathrm{mV})=\mathbf{- 1 7 5} \mathbf{~ m V}$
2. $V_{o}=\left(1+\frac{R_{F}}{R_{1}}\right) V_{1}=\left(1+\frac{750 \mathrm{k} \Omega}{36 \mathrm{k} \Omega}\right)(150 \mathrm{mV}, \mathrm{rms})$

$$
=\mathbf{3 . 2 7 5} \mathrm{V}, \mathrm{rms} \angle 0^{\circ}
$$

3. $V_{o}=\left(1+\frac{510 \mathrm{k} \Omega}{18 \mathrm{k} \Omega}\right)(20 \mu \mathrm{~V})\left[-\frac{680 \mathrm{k} \Omega}{22 \mathrm{k} \Omega}\right]\left[-\frac{750 \mathrm{k} \Omega}{33 \mathrm{k} \Omega}\right]$

$$
\begin{aligned}
& =(29.33)(-30.91)(-22.73)(20 \mu \mathrm{~V}) \\
& =\mathbf{4 1 2} \mathbf{~ m V}
\end{aligned}
$$

4.

$$
\begin{array}{lll}
\left(1+\frac{420 \mathrm{k} \Omega}{R_{1}}\right)=+15 & -\frac{420 \mathrm{k} \Omega}{R_{2}}=-22 & \frac{420 \mathrm{k} \Omega}{R_{2}}=-30 \\
R_{1}=\frac{420 \mathrm{k} \Omega}{14} & R_{2}=\frac{420 \mathrm{k} \Omega}{22} & R_{3}=\frac{420 \mathrm{k} \Omega}{30} \\
\boldsymbol{R}_{\mathbf{1}}=\mathbf{7 1 . 4} \mathbf{~ k} \boldsymbol{\Omega} & \boldsymbol{R}_{\mathbf{2}}=\mathbf{1 9 . 1} \mathbf{~ k} \boldsymbol{\Omega} & \boldsymbol{R}_{\mathbf{3}}=\mathbf{1 4} \mathbf{~ k} \boldsymbol{\Omega}
\end{array}
$$

$$
V_{o}=(+15)(-22)(-30) V_{1}=9000(80 \mu \mathrm{~V})=792 \mathrm{mV}
$$

5.

6. $\quad V_{o}=-\left[\frac{R_{F}}{R_{1}} V_{1}+\frac{R_{F}}{R_{2}} V_{2}\right]=-\left[\frac{470 \mathrm{k} \Omega}{47 \mathrm{k} \Omega}(40 \mathrm{mV})+\frac{470 \mathrm{k} \Omega}{12 \mathrm{k} \Omega}(20 \mathrm{mV})\right]$

$$
=-[400 \mathrm{mV}+783.3 \mathrm{mV}]=\mathbf{- 1 . 1 8} \mathbf{V}
$$

7. $V_{o}=\left(\frac{10 \mathrm{k} \Omega}{10 \mathrm{k} \Omega+10 \mathrm{k} \Omega}\right)\left(\frac{150 \mathrm{k} \Omega+300 \mathrm{k} \Omega}{150 \mathrm{k} \Omega}\right) V_{1}-\frac{300 \mathrm{k} \Omega}{150 \mathrm{k} \Omega} V_{2}$

$$
=0.5(3)(1 \mathrm{~V})-2(2 \mathrm{~V})=1.5 \mathrm{~V}-4 \mathrm{~V}=\mathbf{- 2 . 5} \mathrm{V}
$$

8. $V_{o}=-\left\{\left[\frac{330 \mathrm{k} \Omega}{33 \mathrm{k} \Omega}(12 \mathrm{mV})\right]\left(\frac{470 \mathrm{k} \Omega}{47 \mathrm{k} \Omega}\right)+\frac{470 \mathrm{k} \Omega}{47 \mathrm{k} \Omega}(18 \mathrm{mV})\right\}$

$$
\begin{aligned}
& =-[(-120 \mathrm{mV})(10)+180 \mathrm{mV}]=-[-1.2 \mathrm{~V}+0.18 \mathrm{~V}] \\
& =+\mathbf{1 . 0 2} \mathbf{~ V}
\end{aligned}
$$

9.

10.

11. $I_{L}=\frac{V_{1}}{R_{1}}=\frac{12 \mathrm{~V}}{2 \mathrm{k} \Omega}=\mathbf{6} \mathbf{~ m A}$
12. $V_{o}=-I_{1} R_{1}=-(2.5 \mathrm{~mA})(10 \mathrm{k} \Omega)=\mathbf{- 2 5} \mathbf{V}$
13. $\frac{I_{o}}{V_{1}}=\frac{R_{F}}{R_{1}}\left(\frac{1}{R_{s}}\right)$

$$
I_{o}=\frac{100 \mathrm{k} \Omega}{200 \mathrm{k} \Omega}\left(\frac{1}{10 \Omega}\right)(10 \mathrm{mV})=\mathbf{0 . 5} \mathbf{~ m A}
$$

14. $V_{o}=\left(1+\frac{2 R}{R_{p}}\right)\left[V_{2}-V_{1}\right]$

$$
=\left(1+\frac{2(5000)}{1000}\right)[1 \mathrm{~V}-3 \mathrm{~V}]=\mathbf{- 2 2} \mathrm{V}
$$

15. $f_{O H}=\frac{1}{2 \pi R_{1} C_{1}}=\frac{1}{2 \pi(2.2 \mathrm{k} \Omega)(0.05 \mu \mathrm{~F})}$

$$
=1.45 \mathrm{kHz}
$$

16. $f_{O L}=\frac{1}{2 \pi R_{1} C_{1}}=\frac{1}{2 \pi(20 \mathrm{k} \Omega)(0.02 \mu \mathrm{~F})}$

$$
=397.9 \mathrm{~Hz}
$$

17. $f_{O L}=\frac{1}{2 \pi R_{1} C_{1}}=\frac{1}{2 \pi(10 \mathrm{k} \Omega)(0.05 \mu \mathrm{~F})}=\mathbf{3 1 8 . 3} \mathbf{~ H z}$

$$
\begin{aligned}
f_{O H}=\frac{1}{2 \pi R_{2} C_{2}} & =\frac{1}{2 \pi(20 \mathrm{k} \Omega)(0.02 \mu \mathrm{~F})} \\
& =\mathbf{3 9 7 . 9 ~ H z}
\end{aligned}
$$

Chapter 12

1. $I_{B_{Q}}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{18 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega}=14.42 \mathrm{~mA}$

$$
I_{C_{Q}}=\beta I_{B_{Q}}=40(14.42 \mathrm{~mA})=576.67 \mathrm{~mA}
$$

$$
P_{i}=V_{C C} I_{\mathrm{dc}} \cong V_{C C} I_{C_{Q}}=(18 \mathrm{~V})(576.67 \mathrm{~mA})
$$

$$
\cong 10.4 \mathrm{~W}
$$

$$
\begin{aligned}
I_{C}(\mathrm{rms}) & =\beta I_{B}(\mathrm{rms}) \\
& =40(5 \mathrm{~mA})=200 \mathrm{~mA}
\end{aligned}
$$

$$
P_{o}=I_{C}^{2}(\mathrm{rms}) R_{C}=(200 \mathrm{~mA})^{2}(16 \Omega)=\mathbf{6 4 0} \mathbf{~ m W}
$$

2. $I_{B_{Q}}=\frac{V_{C C}-V_{B E}}{R_{B}}=\frac{18 \mathrm{~V}-0.7 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=11.5 \mathrm{~mA}$

$$
I_{C_{Q}}=\beta I_{B_{Q}}=40(11.5 \mathrm{~mA})=460 \mathrm{~mA}
$$

$$
P_{i}(\mathrm{dc})=V_{C C} I_{\mathrm{dc}}=V_{C C}\left(I_{C_{Q}}+I_{B_{\underline{Q}}}\right)
$$

$$
=18 \mathrm{~V}(460 \mathrm{~mA}+11.5 \mathrm{~mA})
$$

$$
=8.5 \mathrm{~W}
$$

$$
\left[P_{i} \approx V_{C C} I_{C_{Q}}=18 \mathrm{~V}(460 \mathrm{~mA})=8.3 \mathrm{~W}\right]
$$

3. From problem 2: $I_{C_{\varrho}}=460 \mathrm{~mA}, P_{i}=8.3 \mathrm{~W}$.

For maximum efficiency of 25% :
$\% \eta=100 \% \times \frac{P_{o}}{P_{i}}=\frac{P_{o}}{8.3 \mathrm{~W}} \times 100 \%=25 \%$
$P_{o}=0.25(8.3 \mathrm{~W})=\mathbf{2 1} \mathbf{~ W}$
[If dc bias condition also is considered:

$$
V_{C}=V_{C C}-I_{C_{Q}} R_{C}=18 \mathrm{~V}-(460 \mathrm{~mA})(16 \Omega)=10.64 \mathrm{~V}
$$

collector may vary $\pm 7.36 \mathrm{~V}$ about Q-point, resulting in maximum output power:

$$
P_{o}=\frac{V_{C E}^{2}(P)}{2 R_{C}}=\frac{(7.36 \mathrm{~V})^{2}}{2(16)}=\mathbf{1 . 6 9} \mathbf{~ W}
$$

4. Assuming maximum efficiency of 25% with $P_{o}(\max)=1.5 \mathrm{~W}$
$\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%$

$$
P_{i}=\frac{1.5 \mathrm{~W}}{0.25}=6 \mathrm{~W}
$$

Assuming dc bias at mid-point, $V_{C}=9 \mathrm{~V}$

$$
\begin{aligned}
I_{C_{Q}}=\frac{V_{C C}-V_{C}}{R_{C}} & =\frac{18 \mathrm{~V}-9 \mathrm{~V}}{16 \Omega}=0.5625 \mathrm{~A} \\
P_{i}(\mathrm{dc})=V_{C C} I_{C_{Q}} & =(18 \mathrm{~V})(0.5625 \mathrm{~A}) \\
& =\mathbf{1 0 . 3 8} \mathbf{~ W}
\end{aligned}
$$

at this input:

$$
\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{1.5 \mathrm{~W}}{10.38 \mathrm{~W}} \times 100 \%=\mathbf{1 4 . 4 5 \%}
$$

5. $R_{p}=\left(\frac{N_{1}}{N_{2}}\right)^{2} R_{s}=\left(\frac{25}{1}\right)^{2}(4 \Omega)=\mathbf{2} .5 \mathbf{k} \Omega$
6. $R_{2}=a^{2} R_{1}$

$$
\begin{aligned}
& a^{2}=\frac{R_{2}}{R_{1}}=\frac{8 \mathrm{k} \Omega}{8 \Omega}=1000 \\
& a=\sqrt{1000}=\mathbf{3 1 . 6}
\end{aligned}
$$

7. $R_{2}=a^{2} R_{1}$
$8 \mathrm{k} \Omega=a^{2}(4 \Omega)$
$a^{2}=\frac{8 \mathrm{k} \Omega}{4 \Omega}=2000$
$a=\sqrt{2000}=44.7$
8. (a) $P_{p r i}=P_{L}=\mathbf{2} \mathbf{W}$
(b) $P_{L}=\frac{V_{L}^{2}}{R_{L}}$

$$
V_{L}=\sqrt{P_{L} R_{L}}=\sqrt{(2 \mathrm{~W})(16 \Omega)}
$$

$$
=\sqrt{32}=5.66 \mathrm{~V}
$$

(c) $R_{2}=a^{2} R_{1}=(3.87)^{2}(16 \Omega)=\mathbf{2 3 9 . 6} \Omega$

$$
P_{p r i}=\frac{V_{p r i}^{2}}{R_{p r i}}=2 \mathrm{~W}
$$

$$
V_{p r i}^{2}=(2 \mathrm{~W})(239.6 \Omega)
$$

$$
V_{p r i}=\sqrt{479.2}=\mathbf{2 1 . 8 9} \mathbf{V}
$$

$$
\left[\mathrm{or}, V_{p r i}=a V_{L}=(3.87)(5.66 \mathrm{~V})=21.9 \mathrm{~V}\right]
$$

(d) $P_{L}=I_{L}^{2} R_{L}$

$$
\begin{aligned}
& I_{L}=\sqrt{\frac{P_{L}}{R_{L}}}=\sqrt{\frac{2 \mathrm{~W}}{16 \Omega}}=\mathbf{3 5 3 . 5 5} \mathbf{~ m A} \\
& P_{p r i}=2 \mathrm{~W}=I_{p r i}^{2} R_{p r i}=(239.6 \Omega) I_{p r i}^{2} \\
& I_{p r i}=\sqrt{\frac{2 \mathrm{~W}}{239.6 \Omega}}=\mathbf{9 1 . 3 6} \mathbf{~ m A} \\
& \text { or, } I_{p r i}=\frac{I_{L}}{a}=\frac{353.55 \mathrm{~mA}}{3.87}=\mathbf{9 1 . 3 6} \mathbf{~ m A}
\end{aligned}
$$

9. $\quad I_{\mathrm{dc}}=I_{C_{Q}}=150 \mathrm{~mA}$

$$
P_{i}=V_{C C} I_{C_{Q}}=(36 \mathrm{~V})(150 \mathrm{~mA})=5.4 \mathrm{~W}
$$

$$
\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{2 \mathrm{~W}}{5.4 \mathrm{~W}} \times 100 \%=\mathbf{3 7 \%}
$$

10.

11.

12. (a) $P_{i}=V_{C C} I_{\mathrm{dc}}=(25 \mathrm{~V})(1.75 \mathrm{~A})=43.77 \mathrm{~W}$

Where, $I_{\mathrm{dc}}=\frac{2}{\pi} I_{p}=\frac{2}{\pi} \frac{V_{p}}{R_{L}}=\frac{2}{\pi} \cdot \frac{22 \mathrm{~V}}{8 \Omega}=1.75 \mathrm{~A}$
(b) $P_{o}=\frac{V_{p}^{2}}{2 R_{L}}=\frac{(22 \mathrm{~V})^{2}}{2(8 \Omega)}=\mathbf{3 0 . 2 5} \mathbf{~ W}$
(c) $\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{30.75 \mathrm{~W}}{43.77 \mathrm{~W}} \times 100 \%=\mathbf{6 9 \%}$
13. (a) $\max P_{i}=V_{C C} I_{\mathrm{dc}}$

$$
\begin{aligned}
& =V_{C C} \cdot\left(\frac{2}{\pi} \cdot \frac{V_{C C}}{R_{L}}\right)=(25 \mathrm{~V})\left[\frac{2}{\pi} \cdot \frac{25 \mathrm{~V}}{8 \Omega}\right] \\
& =49.74 \mathrm{~W}
\end{aligned}
$$

(b) $\max P_{o}=\frac{V_{C C}^{2}}{2 R_{L}}=\frac{(25 \mathrm{~V})^{2}}{2(8 \Omega)}=\mathbf{3 9 . 0 6} \mathbf{~ W}$
(c) $\max \% \eta=\frac{\max P_{o}}{\max P_{i}} \times 100 \%=\frac{39.06 \mathrm{~W}}{49.74 \mathrm{~W}} \times 100 \%$

$$
=78.5 \%
$$

14. (a) $V_{L_{\text {(pak) }}}=20 \mathrm{~V}$

$$
\begin{aligned}
P_{i}=V_{C C} I_{\mathrm{dc}} & =V_{C C}\left[\frac{2}{\pi} \cdot \frac{V_{L}}{R_{L}}\right] \\
& =(22 \mathrm{~V})\left[\frac{2}{\pi} \cdot \frac{20 \mathrm{~V}}{4 \Omega}\right]=70 \mathrm{~W}
\end{aligned}
$$

$$
P_{o}=\frac{V_{L}^{2}}{2 R_{L}}=\frac{(20 \mathrm{~V})^{2}}{2(4 \Omega)}=50 \mathrm{~W}
$$

$$
\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{50 \mathrm{~W}}{70 \mathrm{~W}} \times 100 \%=\mathbf{7 1 . 4 \%}
$$

(b) $P_{i}=(22 \mathrm{~V})\left[\frac{2}{\pi} \cdot \frac{4 \mathrm{~V}}{4 \Omega}\right]=14 \mathrm{~W}$

$$
P_{o}=\frac{(4)^{2}}{2(4)}=2 \mathrm{~W}
$$

$$
\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{2 \mathrm{~W}}{14 \mathrm{~W}} \times 100 \%=\mathbf{1 4 . 3 \%}
$$

15.

16. (a) $\max P_{o}(\mathrm{ac})$ for $V_{L_{\text {pak }}}=30 \mathrm{~V}$:

$$
\max P_{o}(\mathrm{ac})=\frac{V_{L}^{2}}{2 R_{L}}=\frac{(30 \mathrm{~V})^{2}}{2(8 \Omega)}=\mathbf{5 6 . 2 5} \mathbf{~ W}
$$

(b) $\max P_{i}(\mathrm{dc})=V_{C C} I_{\mathrm{dc}}=V_{C C}\left[\frac{2}{\pi} \cdot \frac{V_{o}}{R_{L}}\right]=V_{C C}\left[\frac{2}{\pi} \cdot \frac{30 \mathrm{~V}}{8 \Omega}\right]=71.62 \mathrm{~W}$
(c) $\max \% \eta=\frac{\max P_{o}}{\max P_{i}} \times 100 \%=\frac{56.25 \mathrm{~W}}{71.62 \mathrm{~W}} \times 100 \%$

$$
=78.54 \%
$$

(d) $\max P_{Z_{Q}}=\frac{2}{\pi^{2}} \cdot \frac{V_{C C}^{2}}{R_{L}}=\frac{2}{\pi^{2}} \cdot \frac{(30)^{2}}{8}=\mathbf{2 2 . 8} \mathbf{W}$
17. (a) $P_{i}(\mathrm{dc})=V_{C C} I_{\mathrm{dc}}=V_{C C} \cdot \frac{2}{\pi}\left(\frac{V_{o}}{R_{L}}\right)$

$$
=30 \mathrm{~V} \cdot \frac{2}{\pi}\left[\frac{\sqrt{2} \cdot 8}{8}\right]=\mathbf{2 7} \mathbf{W}
$$

(b) $P_{o}(\mathrm{ac})=\frac{V_{L}^{2}(\mathrm{rms})}{R_{L}}=\frac{(8 \mathrm{~V})^{2}}{8 \Omega}=\mathbf{8} \mathbf{W}$
(c) $\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{8 \mathrm{~W}}{27 \mathrm{~W}} \times 100 \%=\mathbf{2 9 . 6 \%}$
(d) $P_{2 Q}=P_{i}-P_{o}=27 \mathrm{~W}-8 \mathrm{~W}=19 \mathrm{~W}$
18. (a) $P_{o}(\mathrm{ac})=\frac{V_{L}^{2}(\mathrm{rms})}{R_{L}}=\frac{(18 \mathrm{~V})^{2}}{8 \Omega}=\mathbf{4 0 . 5 ~ W}$
(b) $P_{i}(\mathrm{dc})=V_{C C} I_{\mathrm{dc}}=V_{C C}\left[\frac{2}{\pi} \cdot \frac{V_{L_{\text {peak }}}}{R_{L}}\right]$

$$
=(40 \mathrm{~V})\left[\frac{2}{\pi} \cdot \frac{18 \sqrt{2} \mathrm{~V}}{8 \Omega}\right]=\mathbf{8 1} \mathbf{~ W}
$$

(c) $\% \eta=\frac{P_{o}}{P_{i}} \times 100 \%=\frac{40.5 \mathrm{~W}}{81 \mathrm{~W}} \times 100 \%=\mathbf{5 0 \%}$
(d) $P_{2_{Q}}=P_{i}-P_{o}=81 \mathrm{~W}-40.5 \mathrm{~W}=40.5 \mathrm{~W}$
19. $\quad \% D_{2}=\left|\frac{A_{2}}{A_{1}}\right| \times 100 \%=\left|\frac{0.3 \mathrm{~V}}{2.1 \mathrm{~V}}\right| \times 100 \% \cong \mathbf{1 4 . 3 \%}$
$\% D_{3}=\left|\frac{A_{3}}{A_{1}}\right| \times 100 \%=\frac{0.1 \mathrm{~V}}{2.1 \mathrm{~V}} \times 100 \% \cong \mathbf{4 . 8 \%}$
$\% D_{4}=\left|\frac{A_{4}}{A_{1}}\right| \times 100 \%=\frac{0.05 \mathrm{~V}}{2.1 \mathrm{~V}} \times 100 \% \cong \mathbf{2 . 4 \%}$
20. $\quad \% T H D=\sqrt{D_{2}^{2}+D_{3}^{2}+D_{4}^{2}} \times 100 \%$

$$
=\sqrt{(0.143)^{2}+(0.048)^{2}+(0.024)^{2}} \times 100 \%
$$

$$
=15.3 \%
$$

21. $D_{2}=\left|\frac{\frac{1}{2}\left(V_{C E_{\max }}+V_{C E_{\min }}\right)}{V_{C E_{\max }}-V_{C E_{\min }}}\right| \times 100 \%$
$=\left|\frac{\frac{1}{2}(20 \mathrm{~V}+2.4 \mathrm{~V})-10 \mathrm{~V}}{20 \mathrm{~V}-2.4 \mathrm{~V}}\right| \times 100 \%$
$=\frac{1.2 \mathrm{~V}}{17.6 \mathrm{~V}} \times 100 \%=\mathbf{6 . 8 \%}$
22. $T H D=\sqrt{D_{2}^{2}+D_{3}^{2}+D_{4}^{2}}=\sqrt{(0.15)^{2}+(0.01)^{2}+(0.05)^{2}}$ $\cong 0.16$
$P_{l}=\frac{I_{1}^{2} R_{C}}{2}=\frac{(3.3 \mathrm{~A})^{2}(4 \Omega)}{2}=\mathbf{2 1 . 8} \mathbf{~ W}$
$\left.P=\left(1+T H D^{2}\right) P_{1}=\left[1+(0.16)^{2}\right)\right] 21.8 \mathrm{~W}$ $=22.36 \mathrm{~W}$
23. $\quad P_{D}\left(150^{\circ} \mathrm{C}\right)=P_{D}\left(25^{\circ} \mathrm{C}\right)-\left(T_{150}-T_{25}\right)$ (Derating Factor)

$$
\begin{aligned}
& =100 \mathrm{~W}-\left(150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\left(0.6 \mathrm{~W} /{ }^{\circ} \mathrm{C}\right) \\
& =100 \mathrm{~W}-125(0.6)=100-75 \\
& =\mathbf{2 5} \mathbf{W}
\end{aligned}
$$

24. $P_{D}=\frac{T_{J}-T_{A}}{\theta_{J C}+\theta_{C S}+\theta_{S A}}=\frac{200^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}}{0.5^{\circ} \mathrm{C} / \mathrm{W}+0.8^{\circ} \mathrm{C} / \mathrm{W}+1.5^{\circ} \mathrm{C} / \mathrm{W}}$

$$
=\frac{120^{\circ} \mathrm{C}}{2.8^{\circ} \mathrm{C} / \mathrm{W}}=42.9 \mathrm{~W}
$$

25. $\quad P_{D}=\frac{T_{J}-T_{A}}{\theta_{J A}}$

$$
\begin{aligned}
& =\frac{200^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}}{\left(40^{\circ} \mathrm{C} / \mathrm{W}\right)}=\frac{120^{\circ} \mathrm{C}}{40^{\circ} \mathrm{C} / \mathrm{W}} \\
& =\mathbf{3} \mathbf{~ W}
\end{aligned}
$$

Chapter 13

1.

2.

3.

4.
+5 V
0 V
\square

5.

7. Circuit operates as a window detector.

Output goes low for input above $\frac{9.1 \mathrm{k} \Omega}{9.1 \mathrm{k} \Omega+6.2 \mathrm{k} \Omega}(+12 \mathrm{~V})=7.1 \mathrm{~V}$
Output goes low for input below $\frac{1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+6.2 \mathrm{k} \Omega}(+12 \mathrm{~V})=\mathbf{1 . 7} \mathrm{V}$
Output is high for input between +1.7 V and +7.1 V .
8.

9. $\quad \frac{11010}{2^{5}}(16 \mathrm{~V})=\frac{26}{32}(16 \mathrm{~V})=\mathbf{1 3} \mathrm{V}$
10. Resolution $=\frac{V_{R E F}}{2^{n}}=\frac{10 \mathrm{~V}}{2^{12}}=\frac{10 \mathrm{~V}}{4096}=\mathbf{2 . 4} \mathbf{~ m V} /$ count
11. See section 13.3.
12. Maximum number of count steps $=2^{12}=4096$
13. $2^{12}=4096$ steps at $T=\frac{1}{f}=\frac{1}{20 \mathrm{MHz}}=50 \mathrm{~ns} /$ count

Period $=4096$ counts $\times 50 \frac{\mathrm{~ns}}{\text { count }}=\mathbf{2 0 4 . 8} \boldsymbol{\mu} \mathrm{s}$
14.

$$
f=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}=350 \mathrm{kHz}
$$

$$
C=\frac{1.44}{7.5 \mathrm{k} \Omega+2(7.5 \mathrm{k} \Omega)(350 \mathrm{kHz})}
$$

$$
\cong 183 \mathrm{pF}
$$

15.

 input
16. $T=\frac{1}{f}=\frac{1}{10 \mathrm{kHz}}=100 \mu \mathrm{~s}$
$T=1.1 R_{A} C=1.1(5.1 \mathrm{k} \Omega)(5 \mathrm{nF})=\mathbf{2 8} \boldsymbol{\mu} \mathbf{s}$

17. $f_{o}=\frac{2}{R_{1} C_{1}}\left(\frac{V^{+}-V_{C}}{V^{+}}\right)$

$$
\begin{aligned}
& V^{+}=12 \mathrm{~V} \\
& V_{C}=\frac{R_{3}}{R_{2}+R_{3}}\left(V^{+}\right)=\frac{11 \mathrm{k} \Omega}{1.8 \mathrm{k} \Omega+11 \mathrm{k} \Omega}(+12 \mathrm{~V})=10.3 \mathrm{~V}
\end{aligned}
$$

$$
f_{o}=\frac{2}{(4.7 \mathrm{k} \Omega)(0.001 \mu \mathrm{~F})}\left[\frac{12 \mathrm{~V}-10.3 \mathrm{~V}}{12 \mathrm{~V}}\right]
$$

$$
=60.3 \times 10^{3} \cong \mathbf{6 0} \mathbf{~ k H z}
$$

18. With potentiometer set at top:

$$
V_{C}=\frac{R_{3}+R_{4}}{R_{2}+R_{3}+R_{4}} V^{+}=\frac{5 \mathrm{k} \Omega+18 \mathrm{k} \Omega}{510 \Omega+5 \mathrm{k} \Omega+18 \mathrm{k} \Omega}(12 \mathrm{~V})=11.74 \mathrm{~V}
$$

resulting in a lower cutoff frequency of

$$
\begin{aligned}
f_{o}=\frac{2}{R_{1} C_{1}}\left(\frac{V^{+}-V_{C}}{V^{+}}\right) & =\frac{2}{\left(10 \times 10^{3}\right)(0.001 \mu \mathrm{~F})}\left(\frac{12 \mathrm{~V}-11.74 \mathrm{~V}}{12 \mathrm{~V}}\right) \\
& =\mathbf{4 . 3} \mathbf{~ k H z}
\end{aligned}
$$

With potentiometer set at bottom:

$$
\begin{aligned}
V_{C}=\frac{R_{4}}{R_{2}+R_{3}+R_{4}} V^{+} & =\frac{18 \mathrm{k} \Omega}{510 \Omega+5 \mathrm{k} \Omega+18 \mathrm{k} \Omega}(12 \mathrm{~V}) \\
& =9.19 \mathrm{~V}
\end{aligned}
$$

resulting in a higher cutoff frequency of

$$
\begin{aligned}
f_{o}=\frac{2}{R_{1} C_{1}}\left(\frac{V^{+}-V_{C}}{V^{+}}\right) & =\frac{2}{(10 \mathrm{k} \Omega)(0.001 \mu \mathrm{~F})}\left[\frac{12 \mathrm{~V}-9.19 \mathrm{~V}}{12 \mathrm{~V}}\right] \\
& =\mathbf{6 1 . 2} \mathbf{~ k H z}
\end{aligned}
$$

19. $V^{+}=12 \mathrm{~V}$

$$
V_{C}=\frac{R_{3}}{R_{2}+R_{3}} V^{+}=\frac{10 \mathrm{k} \Omega}{1.5 \mathrm{k} \Omega+10 \mathrm{k} \Omega}(12 \mathrm{~V})=10.4 \mathrm{~V}
$$

$$
f_{o}=\frac{2}{R_{1} C_{1}}\left(\frac{V^{+}-V_{C}}{V^{+}}\right)=\frac{2}{10 \mathrm{k} \Omega\left(C_{1}\right)}\left(\frac{12 \mathrm{~V}-10.4 \mathrm{~V}}{12 \mathrm{~V}}\right)
$$

$$
=200 \mathrm{kHz}
$$

$$
C_{1}=\frac{2}{10 \mathrm{k} \Omega(200 \mathrm{kHz})}(0.133)
$$

$$
=133 \times 10^{-12}=\mathbf{1 3 3} \mathbf{~ p F}
$$

20. $f_{o}=\frac{0.3}{R_{1} C_{1}}=\frac{0.3}{(4.7 \mathrm{k} \Omega)(0.001 \mu \mathrm{~F})}$

$$
=63.8 \mathrm{kHz}
$$

21. $C_{1}=\frac{0.3}{R_{1} f}=\frac{0.3}{(10 \mathrm{k} \Omega)(100 \mathrm{kHz})}=\mathbf{3 0 0} \mathbf{~ p F}$
22. $f_{L}= \pm \frac{8 f_{o}}{V}$

$$
\begin{array}{rlrl}
= \pm \frac{8\left(63.8 \times 10^{3}\right)}{6 \mathrm{~V}} & {\left[f_{o}=\frac{0.3}{R_{1} C_{1}}\right.} & \left.=\frac{0.3}{4.7 \mathrm{k} \Omega(0.001 \mu \mathrm{~F})}\right] \\
& =\mathbf{8 5 . 1} \mathbf{~ k H z} & & =63.8 \mathrm{kHz}
\end{array}
$$

23. For current loop: mark $=20 \mathrm{~mA}$

$$
\text { space }=0 \mathrm{~mA}
$$

For $R S-232 C: \quad$ mark $=-12 \mathrm{~V}$

$$
\text { space }=+12 \mathrm{~V}
$$

24. A line (or lines) onto which data bits are connected.
25. Open-collector is active-LOW only.

Tri-state is active-HIGH or active-LOW.

Chapter 14

1. $A_{f}=\frac{A}{1+\beta A}=\frac{-2000}{1+\left(-\frac{1}{10}\right)(-2000)}=\frac{-2000}{201}=\mathbf{- 9 . 9 5}$
2. $\frac{d A_{f}}{A_{f}}=\frac{1}{\beta A} \frac{d A}{A}=\frac{1}{\left(-\frac{1}{20}\right)(-1000)}(10 \%)=\mathbf{0 . 2 \%}$
3. $A_{f}=\frac{A}{1+\beta A}=\frac{-300}{1+\left(-\frac{1}{15}\right)(-300)}=\frac{-300}{21}=\mathbf{- 1 4 . 3}$

$$
R_{i f}=(1+\beta A) R_{i}=21(1.5 \mathrm{k} \Omega)=\mathbf{3 1 . 5} \mathbf{~ k} \Omega
$$

$$
R_{o f}=\frac{R_{o}}{1+\beta A}=\frac{50 \mathrm{k} \Omega}{21}=\mathbf{2 . 4} \mathbf{~ k} \Omega
$$

4. $\quad R_{L}=\frac{R_{o} R_{D}}{R_{o}+R_{D}}=40 \mathrm{k} \Omega \| 8 \mathrm{k} \Omega=6.7 \mathrm{k} \Omega$

$$
A=-g_{m} R_{L}=-\left(5000 \times 10^{-6}\right)\left(6.7 \times 10^{3}\right)=-\mathbf{3 3 . 5}
$$

$$
\beta=\frac{-R_{2}}{R_{1}+R_{2}}=\frac{-200 \mathrm{k} \Omega}{200 \mathrm{k} \Omega+800 \mathrm{k} \Omega}=-\mathbf{0 . 2}
$$

$$
A_{f}=\frac{A}{1+\beta A}=\frac{-33.5}{1+(-0.2)(-33.5)}=\frac{-33.5}{7.7}
$$

$$
=-4.4
$$

5. DC bias:

$$
\begin{aligned}
I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1) R_{E}} & =\frac{16 \mathrm{~V}-0.7 \mathrm{~V}}{600 \mathrm{k} \Omega+76(1.2 \mathrm{k} \Omega)} \\
& =\frac{15.3 \mathrm{~V}}{691.2 \mathrm{k} \Omega}=22.1 \mu \mathrm{~A}
\end{aligned}
$$

$$
I_{E}=(1+\beta) I_{B}
$$

$$
=76(22.1 \mu \mathrm{~A})=1.68 \mathrm{~mA}
$$

$$
\left[V_{C E}=V_{C C}-I_{C}\left(R_{C}+R_{E}\right)=16 \mathrm{~V}-1.68 \mathrm{~mA}(4.7 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega) \cong 6.1 \mathrm{~V}\right]
$$

$r_{e}=\frac{26 \mathrm{mV}}{I_{E}(\mathrm{~mA})}=\frac{26 \mathrm{mV}}{1.68 \mathrm{~mA}} \cong 15.5 \Omega$
$h_{i e}=(1+\beta) r_{e}=76(15.5 \Omega)=\mathbf{1 . 1 8} \mathbf{k} \boldsymbol{\Omega}=Z_{i}$
$Z_{o}=R_{C}=4.7 \mathrm{k} \Omega$
without feedback (R_{E} bypassed):

$$
A_{v}=\frac{-R_{C}}{r_{e}}=-\frac{4.7 \mathrm{k} \Omega}{15.5 \Omega}=\mathbf{- 3 0 3 . 2}
$$

6. $\quad C=\frac{1}{2 \pi R f \sqrt{6}}=\frac{1}{2 \pi\left(10 \times 10^{3}\right)\left(2.5 \times 10^{3}\right) \sqrt{6}}$

$$
=2.6 \times 10^{-9}=\mathbf{2 6 0 0} \mathbf{p F}=0.0026 \mu \mathrm{~F}
$$

7. $f_{o}=\frac{1}{2 \pi R C} \cdot \frac{1}{\sqrt{6+4\left(\frac{R_{c}}{R}\right)}}$

$$
=\frac{1}{2 \pi\left(6 \times 10^{3}\right)\left(1500 \times 10^{-12}\right)} \cdot \frac{1}{\sqrt{6+4\left(18 \times 10^{3} / 6 \times 10^{3}\right)}}
$$

$$
=4.17 \mathrm{kHz} \cong 4.2 \mathrm{kHz}
$$

8. $f_{o}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi\left(10 \times 10^{3}\right)\left(2400 \times 10^{-12}\right)}$

$$
=6.6 \mathrm{kHz}
$$

9. $\quad C_{\mathrm{eq}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\frac{(750 \mathrm{pF})(2000 \mathrm{pF})}{750 \mathrm{pF}+2000 \mathrm{pF}}=577 \mathrm{pF}$

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C_{\mathrm{eq}}}}=\frac{1}{2 \pi \sqrt{\left.40 \times 10^{-6}\right)\left(577 \times 10^{-12}\right)}}
$$

$$
=1.05 \mathrm{MHz}
$$

10. $f_{o}=\frac{1}{2 \pi \sqrt{L C_{\mathrm{eq}}}}$,

$$
\begin{aligned}
& =\frac{1}{2 \pi \sqrt{(100 \mu \mathrm{H})(3300 \mathrm{pF})}} \\
& =\mathbf{2 7 7} \mathbf{~ k H z}
\end{aligned}
$$

$$
\begin{aligned}
& A_{v}=\frac{-h_{f e}}{h_{i e}+R_{E}}=\frac{-75}{1.18 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega}=-31.5 \times 10^{-3} \\
& \beta=R_{E}=-1.2 \times 10^{3} \\
& (1+\beta A)=1+\left(-1.2 \times 10^{3}\right)\left(-31.5 \times 10^{-3}\right) \\
& =38.8 \\
& A_{f}=\frac{A_{v}}{1+\beta A_{v}}=\frac{-31.5 \times 10^{-3}}{38.8}=811.86 \times 10^{-6} \\
& A_{v_{f}}=-A_{f} R_{C}=-\left(811.86 \times 10^{-6}\right)\left(4.7 \times 10^{3}\right)=-\mathbf{3 . 8 2} \\
& Z_{i_{f}}=\left(1+\beta A_{v}\right) Z_{i}=(38.8)(1.18 \mathrm{k} \Omega)=45.8 \mathbf{k} \Omega \\
& Z_{o_{f}}=\left(1+\beta A_{v}\right) Z_{o}=(38.8)(4.7 \mathrm{k} \Omega)=\mathbf{1 8 2 . 4} \mathbf{~ k} \Omega
\end{aligned}
$$

11. $f_{o}=\frac{1}{2 \pi \sqrt{L_{\mathrm{eq}} C}}$,

$$
\begin{aligned}
L_{\mathrm{eq}} & =L_{1}+L_{2}+2 \mathrm{M} \\
& =1.5 \mathrm{mH}+1.5 \mathrm{mH}+2(0.5 \mathrm{mH}) \\
& =4 \mathrm{mH}
\end{aligned}
$$

$$
=\frac{1}{2 \pi \sqrt{\left(4 \times 10^{-3}\right)\left(250 \times 10^{-12}\right)}}
$$

$$
=159.2 \mathrm{kHz}
$$

12. $f_{o}=\frac{1}{2 \pi \sqrt{L C_{\mathrm{eq}}}}$,

$$
\begin{aligned}
& =\frac{1}{2 \pi \sqrt{(1800 \mu \mathrm{H})(150 \mathrm{pF})}} \\
& =306.3 \mathrm{kHz}
\end{aligned}
$$

where $L_{\text {eq }}=L_{1}+L_{2}+2 \mathrm{M}$
$=750 \mu \mathrm{H}+750 \mu \mathrm{H}+2(150 \mu \mathrm{H})$ $=1800 \mu \mathrm{H}$
13. See Fig. 14.33a and Fig. 14.34.
14. $f_{o}=\frac{1}{R_{T} C_{T} \ln (1 /(1-\eta))}$
for $\eta=0.5$:

$$
f_{o} \cong \frac{1.5}{R_{T} C_{T}}
$$

(a) Using $R_{T}=1 \mathrm{k} \Omega$

$$
C_{T}=\frac{1.5}{R_{T} f_{o}}=\frac{1.5}{(1 \mathrm{k} \Omega)(1 \mathrm{kHz})}=\mathbf{1 . 5} \boldsymbol{\mu} \mathbf{F}
$$

(b) Using $R_{T}=10 \mathrm{k} \Omega$

$$
C_{T}=\frac{1.5}{R_{T} f_{o}}=\frac{1.5}{(10 \mathrm{k} \Omega)(150 \mathrm{kHz})}=\mathbf{1 0 0 0} \mathbf{~ p F}
$$

Chapter 15

1. ripple factor $=\frac{V_{r}(\mathrm{rms})}{V_{\mathrm{dc}}}=\frac{2 \mathrm{~V} / \sqrt{2}}{50 \mathrm{~V}}=\mathbf{0 . 0 2 8}$
2. $\% V R=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100 \%=\frac{28 \mathrm{~V}-25 \mathrm{~V}}{25 \mathrm{~V}} \times 100 \%=\mathbf{1 2} \%$
3. $V_{\mathrm{dc}}=0.318 V_{m}$
$V_{m}=\frac{V_{\mathrm{dc}}}{0.318}=\frac{20 \mathrm{~V}}{0.318}=62.89 \mathrm{~V}$
$V_{r}=0.385 V_{m}=0.385(62.89 \mathrm{~V})=\mathbf{2 4 . 2} \mathbf{V}$
4. $V_{\mathrm{dc}}=0.636 V_{m}$
$V_{m}=\frac{V_{\mathrm{dc}}}{0.636}=\frac{8 \mathrm{~V}}{0.636}=12.6 \mathrm{~V}$
$V_{r}=0.308 V_{m}=0.308(12.6 \mathrm{~V})=\mathbf{3 . 8 8} \mathbf{~ V}$
5. $\quad \% r=\frac{V_{r}(\mathrm{rms})}{V_{\mathrm{dc}}} \times 100 \%$
$V_{r}(\mathrm{rms})=r V_{\mathrm{dc}}=\frac{8.5}{100} \times 14.5 \mathrm{~V}=\mathbf{1 . 2} \mathbf{V}$
6. $V_{N L}=V_{m}=18 \mathrm{~V}$
$V_{F L}=17 \mathrm{~V}$

$$
\% V R=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100 \%=\frac{18 \mathrm{~V}-17 \mathrm{~V}}{17 \mathrm{~V}} \times 100 \%
$$

$$
=5.88 \%
$$

7. $V_{m}=18 \mathrm{~V}$
$C=400 \mu \mathrm{~F}$

$$
\begin{aligned}
& V_{r}=\frac{2.4 I_{\mathrm{dc}}}{C}=\frac{2.4(100)}{400} \\
&=0.6 \mathrm{~V}, \mathrm{rms} \\
& V_{\mathrm{dc}}=V_{m}-\frac{4.17 I_{\mathrm{dc}}}{C} \\
&=18 \mathrm{~V}-\frac{4.17(100)}{400} \\
&=\mathbf{1 6 . 9 6} \mathbf{V} \\
& \cong \mathbf{1 7} \mathbf{~ V}
\end{aligned}
$$

8. $V_{r}=\frac{2.4 I_{\mathrm{dc}}}{C}=\frac{2.4(120)}{200}=\mathbf{1 . 4 4 ~ V}$
9. $C=100 \mu \mathrm{~F}$
$\left.\begin{array}{l}V_{\mathrm{dc}}=12 \mathrm{~V} \\ R_{L}=2.4 \mathrm{k} \Omega\end{array}\right\} I_{\mathrm{dc}}=\frac{V_{\mathrm{dc}}}{R_{L}}=\frac{12 \mathrm{~V}}{2.4 \mathrm{k} \Omega}=5 \mathrm{~mA}$
$V_{r}(\mathrm{rms})=\frac{2.4 I_{\mathrm{dc}}}{C}=\frac{2.4(5)}{100}=\mathbf{0 . 1 2} \mathbf{V}$
10. $C=\frac{2.4 I_{\mathrm{dc}}}{r V_{\mathrm{dc}}}=\frac{2.4(150)}{(0.15)(24)}=\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{F}$
11. $C=500 \mu \mathrm{~F}$
$I_{\mathrm{dc}}=200 \mathrm{~mA}$
$R=8 \%=0.08$
Using $\quad r=\frac{2.4 I_{\mathrm{dc}}}{C V_{\mathrm{dc}}}$

$$
V_{\mathrm{dc}}=\frac{2.4 I_{\mathrm{dc}}}{r C}=\frac{2.4(200)}{0.08(500)}=12 \mathrm{~V}
$$

$V_{m}=V_{\mathrm{dc}}+\frac{4.17 I_{\mathrm{dc}}}{C}=12 \mathrm{~V}+\frac{(200)(4.17)}{500}$

$$
=12 \mathrm{~V}+1.7 \mathrm{~V}=13.7 \mathrm{~V}
$$

12. $C=\frac{2.4 I_{\mathrm{dc}}}{V_{r}}=\frac{2.4(200)}{(0.07)}=\mathbf{6 8 5 7} \mu \mathbf{F}$
13. $C=120 \mu \mathrm{~F}$
$I_{\mathrm{dc}}=80 \mathrm{~mA}$
$V_{m}=25 \mathrm{~V}$
$V_{\mathrm{dc}}=V_{m}-\frac{4.17 I_{\mathrm{dc}}}{C}=25 \mathrm{~V}-\frac{4.17(80)}{120}$

$$
=22.2 \mathrm{~V}
$$

$\% r=\frac{2.4 I_{\mathrm{dc}}}{C V_{\mathrm{dc}}} \times 100 \%=\frac{2.4(80)}{(120)(22.2)} \times 100 \%$

$$
=7.2 \%
$$

14. $\quad V_{r}^{\prime}=\frac{r \cdot V_{\mathrm{dc}}^{\prime}}{100}=\frac{2(80)}{100}=\mathbf{1 . 6} \mathbf{~ V}, \mathbf{r m s}$
15. $V_{r}=2 \mathrm{~V}$
$V_{\mathrm{dc}}=24 \mathrm{~V}$
$R=\mathbf{3 3} \Omega, C=120 \mu \mathrm{~F}$

$$
\% r=\frac{V_{r}}{V_{\mathrm{dc}}} \times 100 \%=\frac{2 \mathrm{~V}}{24 \mathrm{~V}} \times 100 \%
$$

$X_{C}=\frac{1.3}{C}=\frac{1.3}{120}=10.8 \Omega$
$=8.3 \%$
$V_{r}^{\prime}=\frac{X_{C}}{R} V_{r}=\frac{10.8}{33}(2 \mathrm{~V})=0.65 \mathrm{~V}$
$V_{\mathrm{dc}}^{\prime}=V_{\mathrm{dc}}-I_{\mathrm{dc}} R=24 \mathrm{~V}-33 \Omega(100 \mathrm{~mA})$

$$
=20.7 \mathrm{~V}
$$

$\% r^{\prime}=\frac{V_{r}^{\prime}}{V_{\mathrm{dc}}^{\prime}} \times 100 \%=\frac{0.65 \mathrm{~V}}{20.7 \mathrm{~V}} \times 100 \%=\mathbf{3 . 1 \%}$
16.

$$
\begin{aligned}
V_{\mathrm{dc}}^{\prime} & =\frac{R_{L}}{R+R_{L}} V_{\mathrm{dc}} \\
& =\frac{500}{50+500}(40 \mathrm{~V}) \\
& =36.4 \mathrm{~V} \\
I_{\mathrm{dc}} & =\frac{V_{\mathrm{dc}}^{\prime}}{R_{L}}=\frac{36.4 \mathrm{~V}}{500 \Omega}=\mathbf{7 2 . 8} \mathbf{~ m A}
\end{aligned}
$$

17.

$$
\begin{aligned}
X_{C} & =\frac{1.3}{C}=\frac{1.3}{100}=13 \Omega \\
V_{r}^{\prime}=\frac{X_{C}}{R} V_{r} & =\frac{13}{100}(2.5 \mathrm{~V}) \\
& =\mathbf{0 . 3 2 5} \mathbf{V}, \mathbf{~ r m s}
\end{aligned}
$$

18. $V_{N L}=60 \mathrm{~V}$
$V_{F L}=\frac{R_{L}}{R+R_{L}} V_{\mathrm{dc}}=\frac{1 \mathrm{k} \Omega}{100 \Omega+1 \mathrm{k} \Omega}(50 \mathrm{~V})=45.46 \mathrm{~V}$
$\% V R=\frac{V_{N L}-V_{F L}}{V_{F L}} \times 100 \%=\frac{50 \mathrm{~V}-45.46 \mathrm{~V}}{45.46 \mathrm{~V}} \times 100 \%$ $=10 \%$
19. $V_{o}=V_{Z}-V_{B E}=8.3 \mathrm{~V}-0.7 \mathrm{~V}=7.6 \mathrm{~V}$
$V_{C E}=V_{i}-V_{o}=15 \mathrm{~V}-7.6 \mathrm{~V}=7.4 \mathrm{~V}$
$I_{R}=\frac{V_{i}-V_{Z}}{R}=\frac{15 \mathrm{~V}-8.3 \mathrm{~V}}{1.8 \mathrm{k} \Omega}=3.7 \mathrm{~mA}$
$I_{L}=\frac{V_{o}}{R_{L}}=\frac{7.6 \mathrm{~V}}{2 \mathrm{k} \Omega}=3.8 \mathrm{~mA}$
$I_{B}=\frac{I_{C}}{\beta}=\frac{3.8 \mathrm{~mA}}{100}=38 \mu \mathrm{~A}$
$I_{Z}=I_{R}-I_{B}=3.7 \mathrm{~mA}-38 \mu \mathrm{~A}=\mathbf{3 . 6 6} \mathbf{m A}$
20. $\quad V_{o}=\frac{R_{1}+R_{2}}{R_{2}}\left(V_{z}+V_{B E_{2}}\right)$

$$
\begin{aligned}
& =\frac{33 \mathrm{k} \Omega+22 \mathrm{k} \Omega}{22 \mathrm{k} \Omega}(10 \mathrm{~V}+0.7 \mathrm{~V}) \\
& =\mathbf{2 6 . 7 5} \mathbf{~}
\end{aligned}
$$

21. $V_{o}=\left(1+\frac{R_{1}}{R_{2}}\right) V_{Z}=\left(1+\frac{12 \mathrm{k} \Omega}{8.2 \mathrm{k} \Omega}\right) 10 \mathrm{~V}$

$$
=24.6 \mathrm{~V}
$$

22. $V_{o}=V_{L}=10 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{1 0 . 7} \mathrm{V}$
23.

24. $I_{L}=250 \mathrm{~mA}$

$$
V_{m}=V_{r}(\mathrm{rms}) \cdot \sqrt{2}=\sqrt{2}(20 \mathrm{~V})=28.3 \mathrm{~V}
$$

$$
V_{r_{\text {patk }}}=\sqrt{3} V_{r}(\mathrm{rms})=\sqrt{3}\left(\frac{2.4 I_{\mathrm{dc}}}{C}\right)
$$

$$
=\sqrt{3}\left(\frac{2.4(250)}{500}\right)=2.1 \mathrm{~V}
$$

$V_{\mathrm{dc}}=V_{m}-V_{r_{\text {pak }}}=28.3 \mathrm{~V}-2.1 \mathrm{~V}=26.2 \mathrm{~V}$
$V_{i}($ low $)=V_{\mathrm{dc}}-V_{r_{\text {peak }}}=26.2 \mathrm{~V}-2.1 \mathrm{~V}=\mathbf{2 4 . 1} \mathrm{V}$
25. To maintain $V_{i}(\min) \geq 7.3 \mathrm{~V}$ (see Table 15.1)
$V_{\text {rpak }} \leq V_{m}-V_{i}(\min)=12 \mathrm{~V}-7.3 \mathrm{~V}=4.7 \mathrm{~V}$
so that
$V_{r}(\mathrm{rms})=\frac{V_{r_{\text {patk }}}}{\sqrt{3}}=\frac{4.7 \mathrm{~V}}{1.73}=2.7 \mathrm{~V}$
The maximum value of load current is then
$I_{\mathrm{dc}}=\frac{V_{r}(\mathrm{rms}) C}{2.4}=\frac{(2.7 \mathrm{~V})(200)}{2.4}=\mathbf{2 2 5} \mathbf{~ m A}$
26. $\quad V_{o}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {adj }} R_{L}$

$$
\begin{aligned}
& =1.25 \mathrm{~V}\left(1+\frac{1.8 \mathrm{k} \Omega}{240 \Omega}\right)+100 \mu \mathrm{~A}(2.4 \mathrm{k} \Omega) \\
& =1.25 \mathrm{~V}(8.5)+0.24 \mathrm{~V} \\
& =\mathbf{1 0 . 8 7} \mathrm{V}
\end{aligned}
$$

27. $V_{o}=V_{\text {ref }}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{\text {adj }} R_{2}$

$$
\begin{aligned}
& =1.25 \mathrm{~V}\left(1+\frac{1.5 \mathrm{k} \Omega}{220 \Omega}\right)+100 \mu \mathrm{~A}(1.5 \mathrm{k} \Omega) \\
& =9.9 \mathbf{V}
\end{aligned}
$$

Chapter 16

1. (a) The Schottky Barrier diode is constructed using an n-type semiconductor material and a metal contact to form the diode junction, while the conventional $p-n$ junction diode uses both p - and n-type semiconductor materials to form the junction.
(b) -
2. (a) In the forward-biased region the dynamic resistance is about the same as that for a p-n junction diode. Note that the slope of the curves in the forward-biased region is about the same at different levels of diode current.
(b) In the reverse-biased region the reverse saturation current is larger in magnitude than for a p - n junction diode, and the Zener breakdown voltage is lower for the Schottky diode than for the conventional $p-n$ junction diode.
3. $\frac{\Delta I_{R}}{\Delta{ }^{\circ} \mathrm{C}}=\frac{100 \mu \mathrm{~A}-0.5 \mu \mathrm{~A}}{75^{\circ} \mathrm{C}}=1.33 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
$\Delta I_{R}=\left(1.33 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}\right) \Delta \mathrm{C}=\left(1.33 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}\right)\left(25^{\circ} \mathrm{C}\right)=33.25 \mu \mathrm{~A}$
$I_{R}=0.5 \mu \mathrm{~A}+33.25 \mu \mathrm{~A}=\mathbf{3 3 . 7 5} \mu \mathrm{A}$
4. $\quad X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(1 \mathrm{MHz})(7 \mathrm{pF})}=\mathbf{2 2 . 7} \mathbf{~ k} \boldsymbol{\Omega}$
$R_{D C}=\frac{V_{F}}{I_{F}}=\frac{400 \mathrm{mV}}{10 \mathrm{~mA}}=\mathbf{4 0} \boldsymbol{\Omega}$
5. Temperature on linear scale
$\mathrm{T}(1 / 2$ power level of 100 mW$) \cong \mathbf{9 5}^{\circ} \mathbf{C}$
6. $\quad V_{F}$ a linear scale $\quad V_{F}\left(25^{\circ} \mathrm{C}\right) \cong 380 \mathrm{mV}=\mathbf{0 . 3 8} \mathbf{~ V}$

At $125^{\circ} \mathrm{C}, V_{F} \cong 280 \mathrm{mV}$

$$
\frac{\Delta V_{F}}{\Delta_{T}}=\frac{100 \mathrm{mV}}{100^{\circ} \mathrm{C}}=1 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

\therefore At $100^{\circ} \mathrm{C} \quad V_{F}=280 \mathrm{mV}+\left(1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)\left(25^{\circ} \mathrm{C}\right)$

$$
=280 \mathrm{mV}+25 \mathrm{mV}
$$

$$
=305 \mathrm{mV}
$$

Increase temperature and V_{F} drops.
7.

$$
\text { (a) } \begin{aligned}
C_{T}\left(V_{R}\right) & =\frac{C(0)}{\left(1+\left|V_{R} / V_{T}\right|\right)^{n}}=\frac{80 \mathrm{pF}}{\left(1+\frac{4.2 \mathrm{~V}}{0.7 \mathrm{~V}}\right)^{1 / 3}} \\
& =\frac{80 \mathrm{pF}}{1.912}=\mathbf{4 1 . 8 5} \mathbf{~ p F}
\end{aligned}
$$

(b) $k=C_{T}\left(V_{T}+V_{R}\right)^{n}$

$$
=41.85 \mathrm{pF}(0.7 \underbrace{\mathrm{~V}+4.2}_{1.698} \mathrm{~V})^{1 / 3}
$$

$$
\cong 71 \times 10^{-12}
$$

8. (a) At $-3 \mathrm{~V}, C=\mathbf{4 0} \mathbf{~ p F}$

$$
\text { At }-12 \mathrm{~V}, C=\mathbf{2 0} \mathbf{~ p F}
$$

$$
\Delta C=40 \mathrm{pF}-20 \mathrm{pF}=\mathbf{2 0} \mathbf{~ p F}
$$

(b) At $-8 \mathrm{~V}, \frac{\Delta C}{\Delta V_{R}}=\frac{40 \mathrm{pF}}{20 \mathrm{~V}}=\mathbf{2} \mathbf{~ p F} / \mathbf{V}$

$$
\text { At }-2 \mathrm{~V}, \frac{\Delta C}{\Delta V_{R}}=\frac{60 \mathrm{pF}}{9 \mathrm{~V}}=6.67 \mathrm{pF} / \mathrm{V}
$$

$$
\frac{\Delta C}{\Delta V_{R}} \text { increases at less negative values of } V_{R}
$$

9. Ratio $=\frac{C_{t}(-1 \mathrm{~V})}{C_{t}(-8 \mathrm{~V})}=\frac{92 \mathrm{pF}}{5.5 \mathrm{pF}}=\mathbf{1 6 . 7 3}$

$$
\frac{C_{t}(-1.25 \mathrm{~V})}{C_{t}(-7 \mathrm{~V})}=\mathbf{1 3}
$$

10. $C_{t} \cong 15 \mathrm{pF}$

$$
\begin{aligned}
Q & =\frac{1}{2 \pi f R_{s} C_{t}}=\frac{1}{2 \pi(10 \mathrm{MHz})(3 \Omega)(15 \mathrm{pF})} \\
& =\mathbf{3 5 4 . 6 1} \mathrm{vs} \mathbf{3 5 0} \text { on chart }
\end{aligned}
$$

11. $T C_{C}=\frac{\Delta C}{C_{o}\left(T_{1}-T_{0}\right)} \times 100 \% \Rightarrow T_{1}=\frac{\Delta C \times 100 \%}{T C_{C}\left(C_{o}\right)}+T_{o}$

$$
\begin{aligned}
& =\frac{(0.11 \mathrm{pF})(100)}{(0.02)(22 \mathrm{pF})}+25 \\
& =\mathbf{5 0} \mathbf{}
\end{aligned}
$$

12. V_{R} from -2 V to -8 V

$$
C_{t}(-2 \mathrm{~V})=60 \mathrm{pF}, C_{t}(-8 \mathrm{~V})=6 \mathrm{pF}
$$

Ratio $=\frac{C_{t}(-2 \mathrm{~V})}{C_{t}(-8 \mathrm{~V})}=\frac{60 \mathrm{pF}}{6 \mathrm{pF}}=\mathbf{1 0}$
13. $Q(-1 \mathrm{~V})=82, Q(-10 \mathrm{~V})=5000$

Ratio $=\frac{Q(-10 \mathrm{~V})}{\mathrm{Q}(-1 \mathrm{~V})}=\frac{5000}{82}=60.98$
$B W=\frac{f_{o}}{Q}=\frac{10 \times 10^{6} \mathrm{~Hz}}{82}=\mathbf{1 2 1 . 9 5} \mathbf{~ k H z}$
$B W=\frac{f_{o}}{Q}=\frac{10 \times 10^{6} \mathrm{~Hz}}{5000}=\mathbf{2} \mathbf{~ k H z}$
14. High-power diodes have a higher forward voltage drop than low-current devices due to larger $I R$ drops across the bulk and contact resistances of the diode. The higher voltage drops result in higher power dissipation levels for the diodes, which in turn may require the use of heat sinks to draw the heat away from the body of the structure.
15. The primary difference between the standard $p-n$ junction diode and the tunnel diode is that the tunnel diode is doped at a level from 100 to several thousand times the doping level of a $p-n$ junction diode, thus producing a diode with a "negative resistance" region in its characteristic curve.
16. At $1 \mathrm{MHz}: X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi\left(1 \times 10^{6} \mathrm{~Hz}\right)\left(5 \times 10^{-12} \mathrm{~F}\right)}$

$$
=31.83 \mathrm{k} \Omega
$$

$$
\text { At } 100 \mathrm{MHz}: \begin{aligned}
X_{C} & =\frac{1}{2 \pi\left(100 \times 10^{6} \mathrm{~Hz}\right)\left(5 \times 10^{-12} \mathrm{~F}\right)} \\
& =\mathbf{3 1 8 . 3 \Omega}
\end{aligned}
$$

At $1 \mathrm{MHz}: \quad X_{L_{s}}=2 \pi f L=2 \pi\left(1 \times 10^{6} \mathrm{~Hz}\right)\left(6 \times 10^{-9} \mathrm{H}\right)$

$$
=0.0337 \Omega
$$

At $100 \mathrm{MHz}: \quad X_{L_{S}}=2 \pi\left(100 \times 10^{6} \mathrm{~Hz}\right)\left(6 \times 10^{-9} \mathrm{H}\right)$

$$
=3.769 \Omega
$$

L_{s} effect is negligible!
R and C in parallel:
$f=1 \mathrm{MHz}$

$$
\begin{aligned}
Z_{T} & =\frac{\left(152 \Omega \angle 180^{\circ}\right)\left(31.83 \mathrm{k} \Omega \angle-90^{\circ}\right)}{-152 \Omega-j 31.83 \mathrm{k} \Omega} \\
& =-152.05 \Omega \angle 0.27^{\circ} \cong-152 \Omega \angle 0^{\circ}
\end{aligned}
$$

$f=100 \mathrm{MHz}$

$$
\begin{aligned}
Z_{T} & =\frac{\left(152 \Omega \angle 180^{\circ}\right)\left(318.3 \angle-90^{\circ}\right)}{-152 \Omega-j 318.3} \\
& =-137.16 \Omega \angle 25.52 \neq-152 \Omega \angle 0^{\circ}
\end{aligned}
$$

At very high frequencies X_{C} has some impact!
17. The heavy doping greatly reduces the width of the depletion region resulting in lower levels of Zener voltage. Consequently, small levels of reverse voltage can result in a significant current levels.
18. At $V_{T}=0.1 \mathrm{~V}$,
$I_{F} \cong 5.5 \mathrm{~mA}$
At $V_{T}=0.3 \mathrm{~V}$
$I_{F} \cong 2.3 \mathrm{~mA}$
$R=\frac{\Delta V}{\Delta I}=\frac{0.3 \mathrm{~V}-0.1 \mathrm{~V}}{2.3 \mathrm{~mA}-5.5 \mathrm{~mA}}$
$=\frac{0.2 \mathrm{~V}}{-3.2 \mathrm{~mA}}=\mathbf{- 6 2 . 5} \boldsymbol{\Omega}$
19. $I_{\text {sat }}=\frac{E}{R}=\frac{2 \mathrm{~V}}{0.39 \mathrm{k} \Omega} \cong 5.13 \mathrm{~mA}$

From graph: Stable operating points: $I_{T} \cong \mathbf{5} \mathbf{~ m A}, V_{T} \cong \mathbf{6 0} \mathbf{~ m V}$

$$
I_{T} \cong \mathbf{2 . 8} \mathbf{~ m A}, V_{T}=\mathbf{9 0 0} \mathbf{~ m V}
$$

20. $\quad I_{\text {sat }}=\frac{E}{R}=\frac{0.5 \mathrm{~V}}{51 \Omega}=9.8 \mathrm{~mA}$

Draw load line on characteristics.

21. $f_{s}=\left(\frac{1}{2 \pi \sqrt{L C}}\right) \sqrt{1-\frac{R_{l}^{2} C}{L}}$
$=\left(\frac{1}{2 \pi \sqrt{\left(5 \times 10^{-3} \mathrm{H}\right)\left(1 \times 10^{-6} \mathrm{~F}\right)}}\right) \sqrt{1-\frac{(10 \Omega)^{2}\left(1 \times 10^{-6} \mathrm{~F}\right)}{5 \times 10^{-3} \mathrm{H}}}$
$=(2250.79 \mathrm{~Hz})(0.9899)$
$\cong 2228 \mathrm{~Hz}$
22. $W=\left\langle\left\langle f=\not\left\langle\frac{v}{\lambda}=\frac{\left(6.624 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{(5000)\left(10^{-10} \mathrm{~m}\right)}\right.\right.\right.$

$$
=3.97 \times 10^{-19} \mathbf{J}
$$

$3.97 \times 10^{-19} \chi\left[\frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \gamma}\right]=\mathbf{2 . 4 8} \mathbf{~ e V}$
23. (a) Visible spectrum: $\mathbf{3 7 5 0} \mathbf{A} \rightarrow \mathbf{7 5 0 0}$
(b) Silicon, peak relative response $\cong \mathbf{8 4 0 0} \mathbf{A}$
(c) $B W=10,300 \mathrm{~A}-6100 \mathrm{~A}=\mathbf{4 2 0 0} \mathrm{A}$
24. $\frac{4 \times 10^{-9} \mathrm{~W} / \mathrm{m}^{2}}{1.609 \times 10^{-12}}=2,486 f_{c}$

From the intersection of $V_{A}=30 \mathrm{~V}$ and $2,486 f_{c}$ we find

$$
I_{\lambda} \cong \mathbf{4 4 0} \mu \mathbf{A}
$$

25. (a) Silicon
(b) $1 \AA=10^{-10} \mathrm{~m}, \frac{6 \times 10^{-7} \mathrm{~m}}{10^{-10} \mathrm{~m} / \AA} \Rightarrow 6000 \AA \rightarrow$ orange
26. Note that V_{λ} is given and not V.

At the intersection of $V_{\lambda}=25 \mathrm{~V}$ and $3000 f_{c}$ we find $I_{\lambda} \cong 500 \mu \mathrm{~A}$ and $V_{R}=I_{\lambda} R=\left(500 \times 10^{-6} \mathrm{~A}\right)\left(100 \times 10^{3} \Omega\right)=\mathbf{5 0} \mathbf{~ V}$
27. (a) Extending the curve:

$$
\begin{aligned}
& 0.1 \mathrm{k} \Omega \rightarrow 1000 f_{c}, 1 \mathrm{k} \Omega \rightarrow 25 f_{c} \\
& \frac{\Delta R}{\Delta f_{c}}=\frac{(1-0.1) \times 10^{3} \Omega}{(1000-25) f_{c}}=\mathbf{0 . 9 2} \Omega / \boldsymbol{f}_{c} \cong \mathbf{0 . 9} \Omega / f_{c}
\end{aligned}
$$

(b) $1 \mathrm{k} \Omega \rightarrow 25 f_{c}, 10 \mathrm{k} \Omega \rightarrow 1.3 f_{c}$

$$
\frac{\Delta R}{\Delta f_{c}}=\frac{(10-1) \times 10^{3} \Omega}{(25-1.3) f_{c}}=\mathbf{3 7 9 . 7 5} \Omega / f_{c} \cong \mathbf{3 8 0} \Omega / f_{c}
$$

(c) $10 \mathrm{k} \Omega \rightarrow 1.3 f_{c}, 100 \mathrm{k} \Omega \rightarrow 0.15 f_{c}$

$$
\frac{\Delta R}{\Delta f_{c}}=\frac{(100-10) \times 10^{3}}{(1.3-0.15) f_{c}}=\mathbf{7 8 , 2 6 0 . 8 7} \Omega / f_{c} \cong \mathbf{7 8} \times \mathbf{1 0}^{\mathbf{3}} \Omega / \boldsymbol{f}_{c}
$$

The greatest rate of change in resistance occurs in the low illumination region.
28. The "dark current" of a photodiode is the diode current level when no light is striking the diode. It is essentially the reverse saturation leakage current of the diode, comprised mainly of minority carriers.
29. $10 f_{c} \rightarrow R \cong 2 \mathrm{k} \Omega$

$$
\begin{aligned}
& V_{o}=6 \mathrm{~V}=\frac{\left(2 \times 10^{3} \Omega\right) V_{i}}{2 \times 10^{3} \Omega+5 \times 10^{3} \Omega} \\
& V_{i}=\mathbf{2 1} \mathbf{~}
\end{aligned}
$$

30.

Except for low illumination levels $\left(0.01 f_{c}\right)$ the $\%$ conductance curves appear above the 100% level for the range of temperature. In addition, it is interesting to note that for other than the low illumination levels the \% conductance is higher above and below room temperature $\left(25^{\circ} \mathrm{C}\right)$. In general, the $\%$ conductance level is not adversely affected by temperature for the illumination levels examined.
31.
(a)

(b)

(c) Increased levels of illumination result in reduced rise and decay times.
32. The highest $\%$ sensitivity occurs between 5250A and 5750A. Fig 16.20 reveals that the CdS unit would be most sensitive to yellow. The \% sensitivity of the CdS unit of Fig. 16.30 is at the 30% level for the range $4800 \AA \rightarrow 7000 \AA$. This range includes green, yellow, and orange in Fig. 16.20.
33. (a) $\cong \mathbf{5} \mathbf{~ m W}$ radiant flux
(b) $\cong 3.5 \mathrm{~mW} \quad \frac{3.5 \mathrm{~mW}}{1.496 \times 10^{-13} \mathrm{~W} / \mathrm{lm}}=\mathbf{2 . 3 4} \times \mathbf{1 0}^{\mathbf{1 0}} \mathbf{~} \mathbf{m s}$
34. (a) Relative radiant intensity $\cong \mathbf{0 . 8}$.
(b)

35. At $I_{F}=60 \mathrm{~mA}, \Phi \cong 4.4 \mathrm{~mW}$

At 5°, relative radiant intensity $=0.8$ $(0.8)(4.4 \mathrm{~mW})=\mathbf{3 . 5 2} \mathbf{~ m W}$
36. $6,7,8$
37. -
38. The LED generates a light source in response to the application of an electric voltage. The LCD depends on ambient light to utilize the change in either reflectivity or transmissivity caused by the application of an electric voltage.
39. The LCD display has the advantage of using approximately 1000 times less power than the LED for the same display, since much of the power in the LED is used to produce the light, while the LCD utilizes ambient light to see the display. The LCD is usually more visible in daylight than the LED since the sun's brightness makes the LCD easier to see. The LCD, however, requires a light source, either internal or external, and the temperature range of the LCD is limited to temperatures above freezing.
40. $\quad \eta \%=\frac{P_{\max }}{\left(A_{\mathrm{cm}^{2}}\right)\left(100 \mathrm{~mW} / \mathrm{cm}^{2}\right)} \times 100 \%$
$9 \%=\frac{P_{\max }}{\left(2 \mathrm{~cm}^{2}\right)\left(100 \mathrm{~mW} / \mathrm{cm}^{2}\right)} \times 100 \%$
$P_{\text {max }}=\mathbf{1 8} \mathbf{~ m W}$
41. The greatest rate of increase in power will occur at low illumination levels. At higher illumination levels, the change in $V_{O C}$ drops to nearly zero, while the current continues to rise linearly. At low illumination levels the voltage increases logarithmically with the linear increase in current.
42. (a) Fig. $16.48 \Rightarrow \mathbf{7 9} \mathbf{~ m W} / \mathbf{c m}^{2}$
(b) It is the maximum power density available at sea level.
(c) Fig. $16.48 \cong \mathbf{1 2 . 7} \mathbf{~ m A}$
43.

(c) The curve of I_{o} vs $P_{\text {density }}$ is quite linear while the curve of V_{o} vs $P_{\text {density }}$ is only linear in the region near the optimum power locus (Fig 16.48).
44. Since log scales are present, the differentials must be as small as possible.

From the above $150 \Omega /{ }^{\circ} \mathrm{C}: 0.05 \Omega /{ }^{\circ} \mathrm{C}=3000: 1$
Therefore, the highest rate of change occurs at lower temperatures such as $20^{\circ} \mathrm{C}$.
45. No. 1 Fenwall Electronics Thermistor material.

Specific resistance $\cong 10^{4}=10,000 \Omega \mathrm{~cm}$

$$
R=\frac{\rho \ell}{A} \underbrace{2 \mathrm{x}}_{\text {twice }} \quad \therefore R=2 \times(10,000 \Omega)=\mathbf{2 0} \mathbf{k} \boldsymbol{\Omega}
$$

46. (a) $\cong 10^{-5} \mathrm{~A}=\mathbf{1 0} \boldsymbol{\mu} \mathbf{A}$
(b) Power $\cong \mathbf{0 . 1} \mathbf{~ m W}, R \cong 10^{7} \Omega=\mathbf{1 0} \mathbf{M} \Omega$
(c) Log scale $\cong \mathbf{0 . 3} \mathbf{~ m W}$
47.

$$
\begin{aligned}
& V=I \tilde{R}+I R_{\text {unk }}+V_{m} \\
& V=I\left(\bar{k}+R_{\text {unk }}\right)+0 \mathrm{~V} \\
& R_{\mathrm{unk}}=\frac{V}{I}-P^{\boldsymbol{Z}} \\
& =\frac{0.2 \mathrm{~V}}{2 \mathrm{~mA}}-10 \Omega \\
& =100 \Omega-10 \Omega \\
& =90 \Omega
\end{aligned}
$$

Chapter 17

1. -
2. -
3. -
4. (a) $p-n$ junction diode
(b) The SCR will not fire once the gate current is reduced to a level that will cause the forward blocking region to extend beyond the chosen anode-to-cathode voltage. In general, as I_{G} decreases, the blocking voltage required for conduction increases.
(c) The SCR will fire once the anode-to-cathode voltage is less than the forward blocking region determined by the gate current chosen.
(d) The holding current increases with decreasing levels of gate current.
5. (a) Yes
(b) No
(c) No. As noted in Fig. 17.8b the minimum gate voltage required to trigger all units is 3 V .
(d) $V_{G}=6 \mathrm{~V}, I_{G}=800 \mathrm{~mA}$ is a good choice (center of preferred firing area).
$V_{G}=4 \mathrm{~V}, I_{G}=1.6 \mathrm{~A}$ is less preferable due to higher power dissipation in the gate. Not in preferred firing area.
6. In the conduction state, the SCR has characteristics very similar to those of a $p-n$ junction diode (where $V_{T}=0.7 \mathrm{~V}$).
7. The smaller the level of R_{1}, the higher the peak value of the gate current. The higher the peak value of the gate current the sooner the triggering level will be reached and conduction initiated.
8.

(a) $\quad V_{P}=\left(\frac{V_{\text {sec }}(\mathrm{rms})}{2}\right) \sqrt{2}$

$$
\begin{aligned}
= & \frac{117 \mathrm{~V}}{2}(\sqrt{2})=82.78 \mathrm{~V} \\
V_{D C} & =0.636(82.78 \mathrm{~V}) \\
& =\mathbf{5 2 . 6 5} \mathbf{V}
\end{aligned}
$$

(b) $V_{A K}=V_{D C}-V_{\text {Batt }}=52.65 \mathrm{~V}-11 \mathrm{~V}=\mathbf{4 1 . 6 5} \mathbf{V}$
(c) $V_{R}=V_{Z}+V_{G K}$

$$
=11 \mathrm{~V}+3 \mathrm{~V}
$$

$$
=14 \mathrm{~V}
$$

At $14 \mathrm{~V}, \mathrm{SCR}_{2}$ conducts and stops the charging process.
(d) At least 3 V to turn on SCR_{2}.
(e) $V_{2} \cong \frac{1}{2} V_{P}=\frac{1}{2}(82.78 \mathrm{~V})=\mathbf{4 1 . 3 9} \mathrm{V}$
9.
10. (a) Charge toward 200 V but will be limited by the development of a negative voltage $V_{G K}\left(=V_{Z}-V_{C_{1}}\right)$ that will eventually turn the GTO off.
(b) $\tau=R_{3} C_{1}=(20 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F})$ $=2 \mathrm{~ms}$
$5 \tau=\mathbf{1 0} \mathbf{~ m s}$
(c) $5 \tau^{\prime}=\frac{1}{2}(5 \tau)=5 \mathrm{~ms}=5 R_{G T O} C_{1}$

$$
R_{G T O}=\frac{5 \mathrm{~ms}}{5 C_{1}}=\frac{5 \mathrm{~ms}}{5\left(0.1 \times 10^{-6} \mathrm{~F}\right)}=\mathbf{1 0} \mathbf{~ k} \Omega\left(=\frac{1}{2}(20 \mathrm{k} \Omega-\text { above })\right)
$$

11. (a) $\cong 0.7 \mathbf{m W} / \mathbf{c m}^{2}$
(b) $0^{\circ} \mathrm{C} \rightarrow 0.82 \mathrm{~mW} / \mathrm{cm}^{2}$
$100^{\circ} \mathrm{C} \rightarrow 0.16 \mathrm{~mW} / \mathrm{cm}^{2}$ $\frac{0.82-0.16}{0.82} \times 100 \% \cong \mathbf{8 0 . 5 \%}$
12. $V_{C}=V_{B R}+V_{G K}=6 \mathrm{~V}+3 \mathrm{~V}=9 \mathrm{~V}$

$$
V_{C}=40\left(1-e^{-t / R C}\right)=9
$$

$$
40-40 e^{-t / R C}=9
$$

$$
40 e^{-t / R C}=31
$$

$$
e^{-t / R C}=31 / 40=0.775
$$

$$
R C=\left(10 \times 10^{3} \Omega\right)\left(0.2 \times 10^{-6} \mathrm{~F}\right)=2 \times 10^{-3} \mathrm{~s}
$$

$$
\log _{e}\left(e^{-t / R C}\right)=\log _{\mathrm{e}} 0.775
$$

$$
-t / R C=-t / 2 \times 10^{-3}=-0.255
$$

and $t=0.255\left(2 \times 10^{-3}\right)=\mathbf{0 . 5 1} \mathbf{~ m s}$
13. -
14. $V_{B R_{1}}=V_{B R_{2}} \pm 10 \% V_{B R_{2}}$

$$
=6.4 \mathrm{~V} \pm 0.64 \mathrm{~V} \Rightarrow \mathbf{5 . 7 6} \mathrm{~V} \rightarrow \mathbf{7 . 0 4} \mathrm{~V}
$$

15. -
16. $\frac{V-V_{P}}{I_{P}}>R_{1}$

$$
\begin{aligned}
& \frac{40 \mathrm{~V}-[0.6(40 \mathrm{~V})+0.7 \mathrm{~V}]}{10 \times 10^{-6}}=\mathbf{1 . 5 3} \mathbf{~ M} \boldsymbol{\Omega}>R_{1} \\
& \frac{V-V_{V}}{I_{V}}<R_{1} \Rightarrow \frac{40 \mathrm{~V}-1 \mathrm{~V}}{8 \mathrm{~mA}}=4.875 \mathrm{k} \boldsymbol{\Omega}<R_{1} \\
& \therefore \mathbf{1 . 5 3} \mathbf{~ M} \boldsymbol{\Omega}>\boldsymbol{R}_{\mathbf{1}}>\mathbf{4 . 8 7 5} \mathbf{~ k} \boldsymbol{\Omega}
\end{aligned}
$$

17. (a) $\eta=\frac{R_{B_{1}}}{R_{B_{1}}+\left.R_{B_{2}}\right|_{E_{E-0}}} \Rightarrow 0.65=\frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+R_{B_{2}}} \quad R_{B_{2}}=1.08 \mathrm{k} \Omega$
(b) $R_{B B}=\left.\left(R_{B_{1}}+R_{B_{2}}\right)\right|_{I_{E=0}}=2 \mathrm{k} \Omega+1.08 \mathrm{k} \Omega=\mathbf{3 . 0 8} \mathbf{k} \boldsymbol{\Omega}$
(c) $V_{R_{B_{1}}}=\eta V_{B B}=0.65(20 \mathrm{~V})=\mathbf{1 3} \mathrm{V}$
(d) $V_{P}=\eta V_{B B}+V_{D}=13 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{1 3 . 7} \mathbf{V}$
18. (a) $\eta=\left.\frac{R_{B_{1}}}{R_{B B}}\right|_{I_{\varepsilon}=0}$
$0.55=\frac{R_{B_{1}}}{10 \mathrm{k} \Omega}$
$R_{B_{1}}=5.5 \mathrm{k} \Omega$
$R_{B B}=R_{B_{1}}+R_{B_{2}}$
$10 \mathrm{k} \Omega=5.5 \mathrm{k} \Omega+R_{B_{2}}$
$R_{B_{2}}=4.5 \mathrm{k} \Omega$
(b) $V_{P}=\eta V_{B B}+V_{D}=(0.55)(20 \mathrm{~V})+0.7 \mathrm{~V}=11.7 \mathrm{~V}$
(c) $R_{1}<\frac{V-V_{P}}{I_{p}}=\frac{20 \mathrm{~V}-11.7 \mathrm{~V}}{50 \mu \mathrm{~A}}=166 \mathrm{k} \Omega$ ok: $68 \mathrm{k} \Omega<166 \mathrm{k} \Omega$
(d)

$$
\begin{aligned}
t_{1} & =R_{1} C \log _{e} \frac{V-V_{V}}{V-V_{P}}=\left(68 \times 10^{3}\right)\left(0.1 \times 10^{-6}\right) \log _{e} \frac{18.8}{8.3}=5.56 \mathrm{~ms} \\
t_{2} & =\left(R_{B_{1}}+R_{2}\right) C \log _{e} \frac{V_{P}}{V_{V}}=(0.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega)\left(0.1 \times 10^{-6}\right) \log _{e} \frac{11.7}{1.2} \\
& =0.546 \mathrm{~ms} \\
T & =t_{1}+t_{2}=6.106 \mathrm{~ms} \\
f & =\frac{1}{T}=\frac{1}{6.106 \mathrm{~ms}}=\mathbf{1 6 3 . 7 7 ~ H z}
\end{aligned}
$$

(e)

(f)

$$
\begin{aligned}
& =\frac{2.2 \mathrm{k} \Omega(11.7 \mathrm{~V}-0.7 \mathrm{~V})}{2.2 \mathrm{k} \Omega+0.2 \mathrm{k} \Omega} \\
& =10.08 \mathrm{~V}
\end{aligned}
$$

(g) $f \cong \frac{1}{R_{1} C \log _{e}(1 /(1-\eta))}=\frac{1}{(6.8 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F}) \log _{e} 2.22}=\mathbf{1 8 4 . 1 6 ~ H z}$
difference in frequency levels is partly due to the fact that $t_{2} \cong 10 \%$ of t_{1}.
19. $I_{B}=\mathbf{2 5} \mu \mathbf{A}$
$I_{C}=h_{f_{e}} I_{B}=(40)(25 \mu \mathrm{~A})=\mathbf{1} \mathbf{m A}$
20.

21.

$$
\text { (a) } \begin{aligned}
D_{F} & =\frac{\Delta I}{\Delta T} \\
& =\frac{0.95-0}{25-(-50)}=\frac{0.95}{75}=\mathbf{1 . 2 6 \%} /{ }^{\circ} \mathbf{C}
\end{aligned}
$$

(b) Yes, curve flattens after $25^{\circ} \mathrm{C}$.
22. (a) At $25^{\circ} \mathrm{C}, I_{\text {CEO }} \cong 2 \mathrm{nA}$ At $50^{\circ} \mathrm{C}, I_{C E O} \cong 30 \mathrm{nA}$

$$
\begin{aligned}
\frac{\Delta I_{C E O}}{\Delta T} & =\frac{(30-2) \times 10^{-9} \mathrm{~A}}{(50-25)^{\circ} \mathrm{C}}=\frac{28 \mathrm{nA}}{25^{\circ} \mathrm{C}}=\mathbf{1 . 1 2} \mathrm{nA} /{ }^{\circ} \mathrm{C} \\
I_{C E O}\left(35^{\circ} \mathrm{C}\right) & =I_{C E O}\left(25^{\circ} \mathrm{C}\right)+\left(1.12 \mathrm{nA} /{ }^{\circ} \mathrm{C}\right)\left(35^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \\
& =2 \mathrm{nA}+11.2 \mathrm{nA} \\
& =\mathbf{1 3 . 2} \mathbf{n A}
\end{aligned}
$$

From Fig. $17.55 I_{C E O}\left(35^{\circ} \mathrm{C}\right) \cong \mathbf{4} \mathbf{n A}$
Derating factors, therefore, cannot be defined for large regions of non-linear curves. Although the curve of Fig. 17.55 appears to be linear, the fact that the vertical axis is a \log scale reveals that $I_{C E O}$ and $T\left({ }^{\circ} \mathrm{C}\right)$ have a non-linear relationship.
23. $\frac{I_{o}}{I_{i}}=\frac{I_{C}}{I_{F}}=\frac{20 \mathrm{~mA}}{\cong 45 \mathrm{~mA}}=\mathbf{0 . 4 4}$

Yes, relatively efficient.
24.
(a) $P_{D}=V_{C E} I_{C}=200 \mathrm{~mW}$
$I_{C}=\frac{P_{D}}{V_{C E_{\max }}}=\frac{200 \mathrm{~mW}}{30 \mathrm{~V}}=6.67 \mathrm{~mA} @ V_{C E}=30 \mathrm{~V}$
$V_{C E}=\frac{P_{D}}{I_{C}}=\frac{200 \mathrm{~mW}}{10 \mathrm{~mA}}=20 \mathrm{~V} @ I_{C}=10 \mathrm{~mA}$
$I_{C}=\frac{P_{D}}{V_{C E}}=\frac{200 \mathrm{~mW}}{25 \mathrm{~V}}=8.0 \mathrm{~mA} @ V_{C E}=25 \mathrm{~V}$

Almost the entire area of Fig. 17.57 falls within the power limits.
(b) $\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{F}}=\frac{4 \mathrm{~mA}}{10 \mathrm{~mA}}=\mathbf{0 . 4}$, Fig. $17.56 \frac{I_{C}}{I_{F}} \cong \frac{4 \mathrm{~mA}}{10 \mathrm{~mA}}=\mathbf{0 . 4}$

The fact that the I_{F} characteristics of Fig. 17.57 are fairly horizontal reveals that the level of I_{C} is somewhat unaffected by the level of $V_{C E}$ except for very low or high values.
Therefore, a plot of I_{C} vs. I_{F} as shown in Fig. 17.56 can be provided without any reference to the value of $V_{C E}$. As noted above, the results are essentially the same.
25. (a) $I_{C} \geq \mathbf{3} \mathbf{~ m A}$
(b) At $I_{C}=6 \mathrm{~mA} ; R_{L}=1 \mathrm{k} \Omega, t=8.6 \mu \mathrm{~s}$

$$
R_{L}=100 \Omega ; t=2 \mu \mathrm{~s}
$$

$1 \mathrm{k} \Omega: 100 \Omega=10: 1$
$8.6 \mu \mathrm{~s}: 2 \mu \mathrm{~s}=4.3: 1$
$\Delta R: \Delta t \cong$ 2.3:1
26. $\quad \eta=\frac{3 R_{B_{2}}}{3 R_{B_{2}}+R_{B_{2}}}=\frac{3}{4}=\mathbf{0 . 7 5}, V_{G}=\eta V_{B B}=0.75(20 \mathrm{~V})=\mathbf{1 5} \mathrm{V}$
27. $V_{P}=8.7 \mathrm{~V}, I_{P}=100 \mu \mathrm{~A} \quad Z_{P}=\frac{V_{P}}{I_{P}}=\frac{8.7 \mathrm{~V}}{100 \mu \mathrm{~A}}=\mathbf{8 7} \mathbf{k} \boldsymbol{\Omega}$ (œ open)
$V_{V}=1 \mathrm{~V}, I_{V}=5.5 \mathrm{~mA} \quad Z_{V}=\frac{V_{V}}{I_{V}}=\frac{1 \mathrm{~V}}{5.5 \mathrm{~mA}}=\mathbf{1 8 1 . 8} \Omega$ (relatively low)
$87 \mathrm{k} \Omega: 181.8 \Omega=478.55: 1 \cong \mathbf{5 0 0 : 1}$
28. Eq. 17.23: $T=R C \log _{e}\left(\frac{V_{B B}}{V_{B B}-V_{P}}\right)=R C \log _{e}\left(\frac{V_{B B}}{V_{B B}-\left(\eta V_{B B}+V_{D}\right)}\right)$

$$
\begin{aligned}
& \text { Assuming } \eta V_{B B} \gg V_{D}, T=R C \log _{e}\left(\frac{V_{B B}}{V_{B B}(1-\eta)}\right)=R C \log _{e}(1 / 1-\eta)=R C \log _{e}\left(\frac{1}{1-\frac{R_{B_{1}}}{R_{B_{1}}+R_{B_{2}}}}\right) \\
& =R C \log _{e}\left(\frac{R_{B_{1}}+R_{B_{2}}}{R_{B_{2}}}\right)=R C \log _{e}\left(1+\frac{R_{B_{1}}}{R_{B_{2}}}\right) \text { Eq. } 17.24
\end{aligned}
$$

29. (a) Minimum $V_{B B}$:

$$
\begin{aligned}
R_{\max }=\frac{V_{B B}-V_{P}}{I_{P}} \geq 20 \mathrm{k} \Omega \\
\begin{aligned}
\frac{V_{B B}-\left(\eta V_{B B}+V_{D}\right)}{I_{P}} & =20 \mathrm{k} \Omega \\
V_{B B}-\eta V_{B B}-V_{D} & =I_{P} 20 \mathrm{k} \Omega \\
V_{B B}(1-\eta) & =I_{P} 20 \mathrm{k} \Omega+V_{D} \\
V_{B B} & =\frac{I_{P} 20 \mathrm{k} \Omega+V_{D}}{1-\eta} \\
& =\frac{(100 \mu \mathrm{~A})(20 \mathrm{k} \Omega)+0.7 \mathrm{~V}}{1-0.67} \\
& =\mathbf{8 . 1 8 ~ \mathbf { ~ V }}
\end{aligned}
\end{aligned}
$$

10 V OK
(b) $R<\frac{V_{B B}-V_{V}}{I_{V}}=\frac{12 \mathrm{~V}-1 \mathrm{~V}}{5.5 \mathrm{~mA}}=2 \mathrm{k} \Omega$

$$
R<\mathbf{2} \mathbf{k} \Omega
$$

(c) $T \cong R C \log _{e}\left(1+\frac{R_{B_{1}}}{R_{B_{2}}}\right)$

$$
2 \times 10^{-3}=R\left(1 \times 10^{-6}\right) \underbrace{\left(1+\frac{10 \mathrm{k} \Omega}{5 \mathrm{k} \Omega}\right)}_{\log _{e} 3=1.0986}
$$

$R=\frac{2 \times 10^{-3}}{\left(1 \times 10^{-6}\right)(1.0986)}$
$R=1.82 \mathrm{k} \Omega$

Solutions for Laboratory Manual to accompany

Electronic Devices and Circuit Theory

Tenth Edition

Prepared by
Franz J. Monssen

EXPERIMENT 1: OSCILLOSCOPE AND FUNCTION GENERATOR OPERATIONS

Part 1: The Oscilloscope
a. it focuses the beam on the screen
b. adjusts the brightness of the beam on the screen
c. allows the moving of trace in either screen direction
d. selects volts/screen division on y-axis
e. selects unit of time/screen division on x-axis
g. allows for ac or dc coupling of signal to scope and at GND position; establishes ground reference on screen
h. locates the trace if it is off screen
i. provide for the adjustment of scope from external reference source
k. determines mode of triggering of the sweep voltage
m . the input impedance of many scopes consists of the parallel combination of a 1 Meg resistance and a 30pf capacitor
n. measuring device which reduces loading of scope on a circuit and effectively increases input impedance of scope by a factor of 10 .

Part 2: The Function Generator
d. $\mathrm{T}=\mathrm{l} / \mathrm{f}=1 / 1000 \mathrm{~Hz}=1 \mathrm{~ms}$
e. (calculated): $1 \mathrm{~ms} *[l \mathrm{~cm} / .2 \mathrm{~ms}]=5 \mathrm{~cm}$
(measured): $5 \mathrm{~cm}=$ same
f. (calculated): $1 \mathrm{~ms} *[\mathrm{~cm} / .5 \mathrm{~ms}]=2 \mathrm{~cm}$
(measured): $2 \mathrm{~cm}=$ same
g. (calculated): $1 \mathrm{~ms} *[\mathrm{~cm} / 1 \mathrm{~ms}]=1 \mathrm{~cm}$ (measured): $1 \mathrm{~cm}=$ same
h. $.2 \mathrm{~ms} / \mathrm{cm}$ takes 5 boxes to display total wave $.5 \mathrm{~ms} / \mathrm{cm}$ takes 2 boxes to display total wave
$1 \mathrm{~ms} / \mathrm{cm}$ takes 1 box to display total wave
i. 1. adjust timebase to obtain one cycle of the wave
2. count the number of cm's occupied by the wave
3. note the timebase setting
4. multiply timebase setting by number of cm's occupied by wave. This is equal to the period of the wave.
5. obtain its reciprocal; that's the frequency.
j. (calculated): $2 \mathrm{~cm} *[2 \mathrm{~V} / \mathrm{cm}]=4 \mathrm{Vp}-\mathrm{p}$
k. $8 *[.5 \mathrm{~V} / \mathrm{cm}]=4 \mathrm{Vp}-\mathrm{p}$

1. the signal occupied full screen; the peak amplitude did not change with a change in the setting of the vertical sensitivity
m . no: there is no voltmeter built into function generator

Part 3: Exercises
a. chosen sensitivities:
Vert. Sens. = 1 V/cm
Hor. Sens. $=50 \mu \mathrm{~s} / \mathrm{cm}$
T (calculated): $4 \mathrm{~cm} *[50 \mu \mathrm{~s} / \mathrm{cm}$) $=200 \mu \mathrm{~s}$

Fig 1.1

b. chosen sensitivities:

Vert. Sens. = . $1 \mathrm{~V} / \mathrm{cm}$
Hor. Sens. $=1 \mathrm{~ms} / \mathrm{cm}$
T (calculated): $5 \mathrm{~cm} *[1 \mathrm{~ms} / \mathrm{cm}]=5 \mathrm{~ms}$
Fig 1.2

c. chosen sensitivities: Vert. Sens. $=1$ V/cm

Hor. Sens. $=1 \mu \mathrm{~s} / \mathrm{cm}$
T(calculated): $10 \mathrm{~cm} *[1 \mu \mathrm{~s} / \mathrm{cm}]=10 \mu \mathrm{~s}$
Fig 1.3

Part 4: Effect of DC Levels
a. $\quad \mathrm{V}_{(\mathrm{rms})}($ calculated $)=4 \mathrm{~V} * 1 / 2 * .707=1.41$ Volts
b. $\quad \mathrm{V}_{(\mathrm{rms})}($ measured $)=1.35$ Volts
c. $[(1.41-1.35) / 1.41) * 100=4.74 \%$
d. no trace on screen
e. signal is restored, adjust zero level
f. no shift observed; the shift is proportional to dc value of waveform
g. (measured) dc level: 1.45 Volts
h.

Fig 1.5

i. Switch AC-GND-DC switch, make copy of waveform above.

The vertical shift of the waveform was equal to the battery voltage.

The shape of the sinusoidal waveform was not affected by changing the positions of the AC-GND-DC coupling switch.
j. The signal shifted downward by an amount equal to the voltage of the battery.

Fig 1.6

Part 5: Problems

1. b. $f=2000 /(2 * 3.14)=318 \mathrm{~Hz}$
c. $T=1 / f=1 / 318=3.14 \mathrm{~ms}$
d. by inspection: $\mathrm{V}($ peak $)=20 \mathrm{~V}$
e. $\mathrm{V}($ peak-peak $)=2 *$ Vpeak $=40 \mathrm{~V}$
f. $\mathrm{V}(\mathrm{rms})=.707 * 20=14.1 \mathrm{~V}$
g. by inspection: $\mathrm{Vdc}=0 \mathrm{~V}$
2.

a. $f=2 * 3.14 * 4000 /(2 * 3.14 *)=4 \mathrm{KHz}$
c. $T=1 / f=1 / 4 \mathrm{Khz}=250 \mu \mathrm{~s}$
d. by inspection:Vpeak) $=8 \mathrm{mV}$
e. $\mathrm{V}($ peak-peak $)=2$ * $\mathrm{V}($ peak $)=16 \mathrm{mV}$
f. $\mathrm{V}(\mathrm{rms})=.707 * 8 \mathrm{mV}=5.66 \mathrm{mV}$
g. by inspection: $\mathrm{Vdc}=0 \mathrm{~V}$
3. $\mathrm{V}(\mathrm{t})=1.7 \sin (2.51 \mathrm{Kt})$ volts

Part 6: Computer Exercise
PSpice Simulation 1-1
See Probe Plot page 191.
** Profile: "SCHEMATIC1-2" [C:\Program Files \Orcadlite\My Documents \backslash Lab Revision PSpice $1-5 \backslash p s p i c e ~ . . . ~$
Date/Time run: 11/30/04 11:19:22
(A) pspice simulation 1-1-SCHEMATIC1-2 (active)

A1: $(3.1186 \mathrm{~m}, 1.6987) \mathrm{A} 2:(1.8588 \mathrm{~m},-1.6973) \quad \operatorname{DIFF}(\mathrm{A}):(1.2599 \mathrm{~m}, 3.3960)$
Date: November 30,2004

EXPERIMENT 2: DIODE CHARACTERISTICS

Part 1: Diode Test
diode testing scale
Table 2.1

Test	Si (mV)	$\mathrm{Ge}(\mathrm{mV})$
Forward	535	252
Reverse	OL	OL

Both diodes are in good working order.
Part 2. Forward-bias Diode characteristics
b.

Table 2.3

$V_{R}(\mathrm{~V})$.1	.2	.3	.4	.5	.6	.7	.8
$V_{D}(\mathrm{mV})$	453	481	498	512	528	532	539	546
$I_{D}(\mathrm{~mA})$.1	.2	.3	.4	.5	.6	.7	.8

$V_{R}(\mathrm{~V})$.9	1	2	3	4	5	6	7	8	9	10
$V_{D}(\mathrm{mV})$	551	559	580	610	620	630	640	650	650	660	660
$I_{D}(\mathrm{~mA})$.9	1	2	3	4	5	6	7	8	9	10

d.

Table 2.4

$V_{R}(\mathrm{~V})$.1	.2	.3	.4	.5	.6	.7	.8
$V_{D}(\mathrm{mV})$	156	187	206	217	229	239	247	254
$I_{D}(\mathrm{~mA})$.1	.2	.3	.4	.5	.6	.7	.8

$V_{R}(\mathrm{~V})$.9	1	2	3	4	5	6	7	8	9	10
$V_{D}(\mathrm{mV})$	260	266	300	330	340	360	370	380	390	400	400
$I_{D}(\mathrm{~mA})$.9	1	2	3	4	5	6	7	8	9	10

e.

Fig 2.5

f. Their shapes are similar, but for a given I_{D}, the potential V_{D} is greater for the silicon diode compared to the germanium diode. Also, the Si has a higher firing potential than the germanium diode.

Part 3: Reverse Bias

b. $R_{m}=9.9$ Mohms
$V_{R}($ measured $)=9.1 \mathrm{mV}$
$I_{S}($ calculated $)=8.21 \mathrm{nA}$
c. $\quad V_{R}($ measured $)=5.07 \mathrm{mV}$
$I_{s}($ calculated $)=4.58 \mu \mathrm{~A}$
d. The I_{S} level of the germanium diode is approximately 500 times as large as that of the silicon diode.
e. $\quad R_{D C}(\mathrm{Si})=2.44 * 10^{9}$ ohms
$R_{D C}(\mathrm{Ge})=3.28 \mathrm{M} * 10^{6}$ ohms
These values are effective open-circuits when compared to resistors in the kilohm range.
Part 4: DC Resistance
a.

Table 2.5

$I_{D}(\mathrm{~mA})$	$V_{D}(\mathrm{mV})$	$R_{D C}(\mathrm{ohms})$
.2	350	1750
1.0	559	559
5.0	630	126
10.0	660	66

b.

Table 2.6

$I_{D}(\mathrm{~mA})$	$V_{D}(\mathrm{mV})$	$R_{D C}($ ohms $)$
.2	80	400
1.0	180	180
5.0	340	68
10.0	400	40

Part 5: AC Resistance
a. (calculated) $r_{\mathrm{ac}}=3.4$ ohms
b. (calculated) $r_{\mathrm{ac}}=2.9$ ohms
c. (calculated) $r_{\mathrm{ac}}=27.0 \mathrm{ohms}$
d. (calculated) $r_{\text {ac }}=26.0$ ohms

Part 6: Firing Potential
$V_{T}($ silicon $)=540 \mathrm{mV}$
$V_{T}($ germanium $)=260 \mathrm{mV}$

Part 7: Temperature Effects

c. For an increase in temperature, the forward diode current will increase while the voltage V_{D} across the diode will decline. Since $R_{D}=V_{D} / I_{D}$, therefore, the resistance of a diode declines with increasing temperature.
d. As the temperature across a diode increases, so does the current. Therefore, relative to the diode current, the diode has a positive temperature coefficient.

Part 9: Computer Exercises
PSpice Simulation 2-1

1. See Probe plot page 195.
2. $R_{D 600 \mathrm{mV}}=658 \Omega$
$R_{D 700 \mathrm{mV}}=105 \Omega$
3. $\quad R_{D 60 \mathrm{mV}}=257 \Omega$
4. See Probe Plot V(D1) versus I(D1)
5. Silicon
6. See Probe plot page 196.
7. See Probe plot page 196.
8. See Probe plot page 196.
** Profile: "SCHEMATIC1-2" [C: \Documents and Settings \Owner \backslash My Documents \backslash Lab Revision PSpice $1-5 \backslash p s .$.
Date/Time run: $12 / 08 / 0415: 46: 21$

Date: December 08, 2004
** Profile: "SCHEMATIC1-3" [C: \Documents and Settings \Owner\My Documents\Lab Revision PSpice 1-5\ps... Temperature: 27.0, 100.0, 200.0

Date: December 02, 2004

EXPERIMENT 3: SERIES AND PARALLEL DIODE CONFIGURATIONS

Part 1: Threshold Voltage V_{T}
Fig 3.2
Firing voltage: Silicon: 595 mV Germanium: 310 mV
Part 2: Series Configuration
b. $V_{D}=.59 \mathrm{~V}$
$V_{O}($ calculated $)=5-.595=4.41 \mathrm{~V}$
$I_{D}=4.41 / 2.2 \mathrm{~K}=2 \mathrm{~mA}$
c. $\quad V_{D}($ measured $)=.59 \mathrm{~V}$
$V_{O}($ measured $)=4.4 \mathrm{~V}$
$I_{D}($ from measured $)=2 \mathrm{~mA}$
e. $\quad V_{D}=595 \mathrm{mV}$
$V_{o}($ calculated $)=(5-.595) 1 \mathrm{~K} /(1 \mathrm{~K}+2.2 \mathrm{~K})=1.33 \mathrm{~V}$
$I_{D}=1.36 \mathrm{~mA}$
f. $V_{D}=.57 \mathrm{~V}$
$V_{O}=1.36 \mathrm{~V}$
$I_{D}($ from measured $)=1.36 \mathrm{~V} / 1 \mathrm{~K}=1.36 \mathrm{~mA}$
g. $\quad V_{D}($ measured $)=5 \mathrm{~V}$
$V_{0}($ measured $)=0 \mathrm{~V}$
$I_{D}($ measured $)=0 \mathrm{~A}$
h. $\quad \begin{aligned} & V_{D}(\text { measured })=5 \mathrm{~V} \\ & \\ & \\ & \\ & \\ & \\ & I_{D}(\text { measured })=0 \mathrm{~V} \\ & \end{aligned}$
j. $\quad V_{1}($ calculated $)=.905 \mathrm{~V}$
$V_{o}($ calculated $)=4.1 \mathrm{~V}$
$I_{D}($ calculated $)=1.86 \mathrm{~mA}$
Part 7: Computer Exercise
PSpice Simulation 3-2

1. $\quad 638.0 \mathrm{mV}$

EXPERIMENT 4: HALF-WAVE AND FULL-WAVE RECTIFICATION

Part 1: Threshold Voltage
$V_{T}=.64 \mathrm{~V}$
Part 2: Half-wave Rectification
b. Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$

Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
c.

Fig 4.4

d. Both waveforms are in essential agreement.
e. $V_{\mathrm{dc}}=(4-.64) / 3.14=1.07 \mathrm{~V}$
f. $\quad V_{\mathrm{dc}}($ measured $)=.979 \mathrm{~V}$
$\%$ difference $=(1.07-.979) / 1.07 * 100=8.5 \%$
g. For an ac voltage with a dc value, shifting the coupling switch from its DC to AC position will make the waveform shift down in proportion to the dc value of the waveform.
h.

Fig 4.6

i. $\quad V_{\mathrm{dc}}($ calculated $)=-1.07 \mathrm{~V}$
$V_{\mathrm{dc}}($ measured $)=-.970 \mathrm{~V}$
Part 3: Half-Wave Rectification (continued)
b.

Fig 4.8

c.

Fig 4.9

The results are in reasonable agreement.
d. The significant difference is in the respective reversal of the two voltage waveforms. While in the former case the voltage peaked to a positive 3.4 volts, in the latter case, the voltage peaked negatively to the same voltage.
e. $\quad V_{\mathrm{DC}}=(.318) * 3.4=1.08$ Volts
f. \quad Difference $=[1.08-.979] / 1.08 * 100=9.35 \%$

Part 4: Half-Wave Rectification (continued)
b.

Fig 4.11

c.

Fig 4.12

There was a computed 2.1% difference between the two waveforms.
d.

Fig 4.13

We observe a reversal of the polarities of the two waveforms caused by the reversal of the diode in the circuit.

Part 5: Full-Wave Rectification (Bridge Configuration)
a. $\quad V_{\text {(secondary)rms }}=14 \mathrm{~V}$

This value differs by 1.4 V rms from the rated voltage of the secondary of the transformer.
b. $\quad V_{\text {(peak) }}=1.41 * 14=20 \mathrm{~V}$
c.

Fig 4.15

Vertical sensitivity: $\quad 5 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity: $2 \mathrm{~ms} / \mathrm{cm}$
d.

Fig 4.16

Again, the difference between expected and actual was very slight.
e. V_{dc} (calculated) $=(.6326) *(20)=12.7 \mathrm{~V}$
V_{dc} (measured) $\quad=11.36 \mathrm{~V}$
\% Difference $=-10.6 \%$
g. Vertical sensitivity $=5 \mathrm{~V} / \mathrm{cm}$

Horizontal sensitivity $=2 \mathrm{~ms} / \mathrm{cm}$
Fig 4.17

i. $\quad V_{\mathrm{dc}}($ calculated $)=(.636)^{*}(12)=7.63 \mathrm{~V}$
j $\quad V_{\mathrm{dc}}($ measured $)=7.05 \mathrm{~V}$
\% Difference $=-7.6 \%$
k. The effect was a reduction in the dc level of the output voltage.

Part 6: Full-Wave Center-tapped Configuration
a. $\quad V_{\text {rms }}($ measured $)=6.93 \mathrm{~V}$
$V_{\text {rms }}($ measured $)=6.97 \mathrm{~V}$
As is shown from the data, the difference for both halves of the center-tapped windings from the rated voltage is .6 volts.
b. Vertical sensitivity $=5 \mathrm{~V} / \mathrm{cm}$

Horizontal sensitivity $=2 \mathrm{~ms} / \mathrm{cm}$
c.

Fig 4.21

d. $\quad V_{\mathrm{dc}}($ calculated $)=3.5 \mathrm{~V}$
$V_{\mathrm{dc}}($ measured $)=3.04 \mathrm{~V}$

Part 7: Computer Exercise

PSpice Simulation 4-2

1. $V_{p}=8.47 \mathrm{~V}$; relative phase shift is equal to 180°
2. \quad PIV $=2 \mathrm{Vp}$
3. 180° out of phase
4. \quad See Probe plot page 204.

Its amplitude is 7.89 V
5. Yes
6. Reasonable agreement.

$\begin{array}{ll}\text { A1: (12.540m, 7.8859) A2:(0.000, }-212.6 \mathrm{E}-18) & \operatorname{DIFF}(\mathrm{A}):(12.540 \mathrm{~m}, 7.8859) \\ \text { Date: January } 10,2004 & \text { Page } 1\end{array}$

EXPERIMENT 5: CLIPPING CIRCUITS

Part 1: Threshold Voltage
$V_{\mathrm{T}}(\mathrm{Si})=.618 \mathrm{~V}$
$V_{\mathrm{T}}(\mathrm{Ge})=.299 \mathrm{~V}$
Part 2 Parallel Clippers
b. $\quad V_{\mathrm{O}}($ calculated $)=4 \mathrm{~V}$
c. $V_{\mathrm{O}}($ calculated $)=-1.5-.618=-2.2 \mathrm{~V}$
d.

Fig 5.2

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
e.

Fig 5.3

No measured differences appeared between expected and observed waveforms.
f. $\quad V_{O}($ calculated $)=4 \mathrm{~V}$
g. $\quad V_{O}($ calculated $)=.62 \mathrm{~V}$

Part 3: Parallel Clippers (continued)
b. $\quad V_{\mathrm{O}}($ calculated $)=.61 \mathrm{~V}$
c. $\quad V_{\mathrm{O}}($ calculated $)=.34 \mathrm{~V}$
d.

Fig 5.7

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$ Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
e.

Fig 5.8

The waveforms agree.
Part 4: Parallel Clippers (Sinusoidal Input)
b. V_{O} (calculated $)=4 \mathrm{~V} \quad$ when $V_{i}=4 \mathrm{~V}$
$V_{O}($ calculated $)=-2 \mathrm{~V} \quad$ when $V_{i}=-4 \mathrm{~V}$
$V_{o}($ calculated $)=0 \mathrm{~V} \quad$ when $V_{i}=0 \mathrm{~V}$

Fig 5.9

c. Waveforms agree within 6.5%.

Part 5: Series Clippers

b. $V_{O}($ calculated $)=2.5 \mathrm{~V}$ when $V_{i}=4 \mathrm{~V}$
c. $V_{o}($ calculated $)=0 \mathrm{~V}$ when $V_{i}=-4 \mathrm{~V}$
d.

Fig 5.12

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
e. agree within 5.1%
f. $V_{O}($ calculated $)=5.5 \mathrm{~V} \quad$ when $V_{i}=4 \mathrm{~V}$
g. $V_{O}($ calculated $)=0 \mathrm{~V}$ when $V_{i}=-4 \mathrm{~V}$
h.

Fig 5.14

Vertical sensitivity $=2 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
i. no major differences

Part 6: Series Clippers (Sinusoidal Input)
b. $\quad V_{o}$ (calculated) $=2 \mathrm{~V}$
when $V_{i}=4 \mathrm{~V}$
V_{0} (calculated) $=0 \mathrm{~V}$
when $V_{i}=-4 \mathrm{~V}$
$V_{0}($ calculated $)=0 \mathrm{~V}$ when $V_{i}=0 \mathrm{~V}$

Fig 5.16

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$

Part 7: Computer Exercises

PSpice Simulation 5-2

1. See Probe plot page 210.
2. $\quad V_{\text {OUT }}=4 \mathrm{~V}$
3. No
4. $V_{\text {OUT }}=-2.067 \mathrm{~V}$
5. Yes, $V_{\text {Out }}($ ideal $)=-1.5 \mathrm{~V}$
6. Reasonable agreement
7. No significant discrepancies
8. See Probe plot page 211.

PSpice Simulation 5-3

1. See Probe plot page 212.
2. In close agreement
3. No
4. For $V_{1}=4 \mathrm{~V} ; \quad V_{\text {out }}=V_{1}-V_{D 1}-1.5 \mathrm{~V}=4 \mathrm{~V}-.6-1.5 \mathrm{~V}=1.9 \mathrm{~V}$

For $V_{1}=-4 \mathrm{~V} ; I_{(\mathrm{D} 1)}=0 \mathrm{~A}, \therefore V_{\text {out }}=0 \mathrm{~V}$
5. See Probe plot page 213.
6. See Probe plot page 213.
7. See Probe plot page 213.
8. See Probe plot page 213.
9. Forward bias voltage of about 600 mV when "ON".

Reverse diode voltage of diode is $-4 \mathrm{~V}-1.5 \mathrm{~V}=-5.5 \mathrm{~V}$
** Profile: "SCHEMATIC1-1" [C: \Documents and Settings \Owner\My Documents \backslash Lab Revision PSpice $1-5 \backslash p s . .$.
Date/Time run: $12 / 03 / 0411: 10: 11$
5.0 V (A) pspice simulation 5-2-SCHEMATIC1-1 (active)

Time: 11:16:40 A1: $(748.869 \mathrm{u},-2.0663) \mathrm{A} 2:(0.000,-4.0000)$
Date: December 03,2004
** Profile: "SCHEMATIC1-1" [C: \Documents and Settings $\begin{aligned} & \text { Owner } \backslash \text { My Documents } \backslash \text { Lab Revision PSpice } 1-5 \backslash p s . . \\ & \text { Date/Time run: } 12 / 03 / 0411: 21: 17\end{aligned} \quad$ Temperature: 27.0

A1: $(766.968 \mathrm{u},-4.0000)$ A2: $(0.000,-4.0000) \quad \operatorname{DIFF}(\mathrm{A}):(766.968 \mathrm{u}, 31.471 \mathrm{u})$ Date: December 03, 2004

Time: 11:56:29
** Profile: "SCHEMATICl-1" [C: \Documents and Settings\Owner\My Documents Lab Revision PSpice 1-5\ps... Temperature: 27.0

EXPERIMENT 6: CLAMPING CIRCUITS

Part 1: Threshold Voltage
$V_{T}=.62 \mathrm{~V}$
Part 2: Clampers (R, C, Diode Combination)
b. $\quad V_{C}($ calculated $)=4-0.62=3.38 \mathrm{~V}$
$V_{O}($ calculated $)=0.62 \mathrm{~V}$
c. $\quad V_{O}($ calculated $)=-4-3.38 \mathrm{~V}=-7.38 \mathrm{~V}$
d.

Fig 6.2

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$

e.
f. $\quad V_{C}($ calculated $)=-3.38 \mathrm{~V}$
$V_{O}($ calculated $)=-0.62 \mathrm{~V}$
g. $\quad V_{O}($ calculated $)=7.38 \mathrm{~V}$

h.

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
Fig 6.3

Fig 6.4

i.

Fig 6.5

	-				
		7.3	V		
				-	
	-	\square	\square		
\square	-	\cdots	-		
			-		
	-	-	\cdots		
	\cdots	+1	+		
	\square		\square		
	\square				
			-		
	\square	-	\cdots		
	\square		.-.		
	\cdots	\cdots			
		1-1:	\square		
		+,	\square		
	T		\square		
0		. 510		1 mis	
		\square	-		

Part 3: Clampers with a DC battery
b. $\quad V_{C}($ calculated $)=1.88 \mathrm{~V}$
$V_{o}($ calculated $)=0.62 \mathrm{~V}+1.5 \mathrm{~V}=2.12 \mathrm{~V}$
c. $\quad V_{O}($ calculated $)=-1.88 \mathrm{~V}-4 \mathrm{~V}=-5.88 \mathrm{~V}$
d.

f. $\quad V_{C}($ calculated $)=4.88 \mathrm{~V}$
$V_{O}($ calculated $)=1.5 \mathrm{~V}-0.62 \mathrm{~V}=0.88 \mathrm{~V}$
g. $\quad V_{O}($ calculated $)=4 \mathrm{~V}+4.88 \mathrm{~V}=8.88 \mathrm{~V}$

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$ Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
e.

Fig 6.8

h.

Fig 6.9

Vertical sensitivity $=2 \mathrm{~V} / \mathrm{cm}$ Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$

Part 4: Clampers (Sinusoidal Input)
b. $\quad V_{o}($ calculated $)=0 \mathrm{~V}$
$V_{o}($ calculated $)=-2 \mathrm{~V}$
when $V_{i}=2 \mathrm{~V}$
$V_{O}($ calculated $)=-1.6 \mathrm{~V}$
when $V_{i}=-3.6 \mathrm{~V}$
when $V_{i}=0 \mathrm{~V}$

Fig 6.11

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$

Part 5: Clampers (Effect of R)

a. Tau(calculated) $=\mathrm{R}^{*} \mathrm{C}=103 \mathrm{~ms}$
b. T (calculated) $=1 / \mathrm{f}=1 \mathrm{~ms}$
$\mathrm{T} / 2$ (calculated) $=1 \mathrm{~ms} / 2=.5 \mathrm{~ms}$
c. 5 Tau(calculated) $=5^{*} 103 \mathrm{~ms}=515 \mathrm{~ms}$
d. otherwise the capacitor voltage will not remain constant
e. 5 Tau(calculated) $=5 \mathrm{~ms}$
f. $5 \mathrm{~ms} / .5 \mathrm{~ms}=10$
g.

Fig 6.13

Vertical sensitivity = $1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
i. 5 Tau $=.5 \mathrm{~ms}$
j. $.5 \mathrm{~ms} / .5 \mathrm{~ms}=1$
k.

Fig 6.14

Vertical sensitivity $=1 \mathrm{~V} / \mathrm{cm}$
Horizontal sensitivity $=.2 \mathrm{~ms} / \mathrm{cm}$
m. $5 \mathrm{Tau}=2.5 \mathrm{~T}$ or Tau $=1 / 2 \mathrm{~T}$

Part 6: Computer Exercise
PSpice Simulation 6-2

1. See Probe Plot page 220.
2. They are the same.
3. $\quad V_{O}$ (calculated) is close to $V(2)$ of Probe plot.
4. See Probe plot page 221.
5. $\quad V(1,2)$ remains at 2 V during the cycle of $V(1)$
6. It rises exponentially toward its final value of 2 V .
7. See Probe plot page 222.
** Profile: "SCHEMATIC1-1" [C: \Documents and Settings \Owner \backslash My Documents \backslash Lab Revision 6-10\pspice s...
Date/Time run: 12/03/04 13:36:15

** Profile: "SCHEMATIC1-1" [C: \Documents and Settings $\begin{aligned} & \text { Downer } \backslash \text { My Documents } \backslash \text { Lab Revision } 6-10 \backslash p s p i c e ~ s . . . ~\end{aligned}$ Temperature: 27.0
Date/Time run: 12/03/04 13:36:15

Time: 13:47:13

Time: 13:54:43

EXPERIMENT 7: LIGHT-EMITTING AND ZENER DIODES

Part 1: LED Characteristics
b. $\quad V_{D}($ measured $)=1.6 \mathrm{~V}$
$V_{R}($ measured $)=49.1 \mathrm{mV}$
$I_{D}($ calculated $)=49.1 \mathrm{mV} / 101.4$ ohms $=484 \mu \mathrm{~A}$
c. $\quad V_{D}($ measured $)=1.9 \mathrm{~V}$
$V_{R}($ measured $)=1.55 \mathrm{~V}$
$I_{D}($ calculated $)=1.55 \mathrm{~V} / 101.4$ ohms $=15.3 \mathrm{~mA}$
d.

$E(\mathrm{v})$	0	1	2	3	4	5	6
$V D(\mathrm{~V})$	0	1	1.71	1.84	1.93	2.01	2.08
$V R(\mathrm{~V})$	0	0	.34	1.2	2.2	3.1	3.9
$I D=V R / R(\mathrm{~mA})$	0	0	3.3	11.8	21.4	30.6	38.5

e.
_Fig 7.2

h. The reversed biased Si diode prevents any current from flowing through the circuit, hence, the LED will not light.
k. $\quad V_{R}(\mathrm{~V})=3.48 \mathrm{~V}$, therefore $I_{D}(\mathrm{~mA})=1.6 \mathrm{~mA}$ and LED is in the "good brightness" region.

Part 2: Zener Diode Characteristics
b. and c.

Table 7.2

$E(\mathrm{~V})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15															
$V_{Z}(\mathrm{~V})$	0	1	2	3	4	5	6	7	8	9	10	10	10.1	10.2	10.3
$V_{R}(\mathrm{~V})$	0	0	0	0	0	0	0	0	0	.1	.97	10.4			
$I_{Z}(\mathrm{~mA})$	0	0	0	0	0	0	0	0	0	.99	9.6	18.7	27.6	36.5	45.4

d.

Fig 7.5

e. $\quad V_{Z}(\mathrm{~V})$ (approximated) $=(10.4+9) / 2=9.7 \mathrm{~V}$
f. $\quad r_{\mathrm{av}}(\mathrm{ohms})=(10.4-9) /(.045-.0099)=39.9$ ohms
g. $R_{Z}($ ohms $)=39.9$ ohms
$V_{Z}(\mathrm{~V})=9.7 \mathrm{~V}$
Part 3: Zener Diode Regulation
a. $\quad R$ (meas) $=979$ ohms
R_{L} (meas) $=986$ ohms
$V_{Z}(\mathrm{~V})=10.2 \mathrm{~V}$
b. $V_{L}(\mathrm{~V})=986 * 15 /(979+986)=7.53 \mathrm{~V}$
$V_{R}(\mathrm{~V})=979 * 15 /(979+986)=7.47 \mathrm{~V}$
$I_{R}(\mathrm{~mA})=7.47 / 979=7.64 \mathrm{~mA}$
$I_{L}(\mathrm{~mA})=7.53 / 986=7.63 \mathrm{~mA}$
$I_{Z}(\mathrm{~mA})=I_{R}-I_{L}=10 \mu \mathrm{~A}$
c. $\quad V_{L}($ measured $)=7.5 \mathrm{~V}$
V_{R} (measured) 7.49 V
$I_{R}($ calculated $)=7.65 \mathrm{~mA}$
$I_{L}($ calculated $)=7.60 \mathrm{~mA}$
I_{Z} (calculated) $=50 \mu \mathrm{~A}$
d. $\quad V_{L}($ calculated $)=11.5 \mathrm{~V}$
V_{R} (calculated) 3.54 V
$I_{R}($ calculated $)=3.62 \mathrm{~mA}$
$I_{L}($ calculated $)=3.48 \mathrm{~mA}$
$I_{Z}($ calculated $)=.14 \mathrm{~mA}$
e. $\quad V_{L}($ measured $)=9.82 \mathrm{~V}$
$V_{R}($ measured $)=3.54 \mathrm{~V}$
$I_{R}($ calculated $)=3.54 \mathrm{~mA}$
$I_{L}($ calculated $)=2.98 \mathrm{~mA}$
$I_{Z}($ calculated $)=.56 \mathrm{~mA}$
The difference is expressed as a percent with calculated value as the standard of reference.

$$
\begin{array}{lll}
\text { percent change of: } & V_{L}= & -14.6 \% \\
& V_{R}= & 0 . \% \\
& I_{R}= & -2.21 \% \\
& I_{L}= & -14.4 \% \\
& I_{Z}= & 30.0 \%
\end{array}
$$

f. $\quad R_{\min }\left(\left(R_{\min }+979\right) * 15=9.82 \mathrm{~V}\right.$ $R_{L}($ calculated $)=1.86 \mathrm{Kohms}$
g. Since 2.2 Kohms $>R_{\min }=1.86$ Kohms, therefore, diode is in the "on" state.

Part 4: LED-Zener diode combination
b. $V_{D}=1.86 \mathrm{~V}$
$I_{D}=15.8 \mathrm{~mA}$
$V_{Z}=10.07 \mathrm{~V}$
$V_{a b}($ calculated $)=11.9 \mathrm{~V}$
c. $\quad V_{L}($ calculated $)=11.9 \mathrm{~V}$
$I_{L}($ calculated $)=5.41 \mathrm{~mA}$
e. E (calculated) $=V_{R}+V_{L}=6.93+11.9=18.9 \mathrm{~V}$
f. $\quad E($ measured $)=19.1 \mathrm{~V}$

The two values are in agreement within 1.06% using E (calculated) as reference.

Part 5: Computer Exercise
PSpice Simulation 7-1

1. - 8. See Circuit diagram

1. Yes

EXPERIMENT 8: BIPOLAR JUNCTION TRANSISTOR (BJT) CHARACTERISTICS
Part 2: The Collector Characteristics
d., f., g., h.

V_{RB}	I_{B}	V_{CE}
V	uA	V
3.3	10	2
3.3	10	4
3.3	10	6
3.3	10	8
3.3	10	10
3.3	10	12
3.3	10	14
3.3	10	16
6.6	20	2
6.6	20	4
6.6	20	6
6.6	20	8
6.6	20	10
6.6	20	12
6.6	20	14
9.9	30	2
9.9	30	4
9.9	30	6
9.9	30	8
9.9	30	10
13.2	40	2
13.2	40	4
13.2	40	6
13.2	40	8
16.5	50	2
16.5	50	4
16.5	50	6

i.

Table 8.3

V_{RC}	I_{C}	V_{BE}	I_{E}	ALPA	BETA
V	mA	V	${ }_{\mathrm{mA}}$		
1.18	1.21	.65	1.22	.99	124
1.19	1.22	.65	1.23	.99	125
1.21	1.24	.65	1.25	.99	125
1.22	1.24	.65	1.26	.99	125
1.23	1.26	.65	1.27	.99	125
1.25	1.28	.65	1.28	.99	125
1.26	1.29	.65	1.29	.99	125
1.27	1.30	.65	1.31	.99	125
2.39	2.45	.65	2.46	.99	125
2.42	2.48	.65	2.49	.99	125
2.45	2.51	.65	2.49	.99	125
2.48	2.54	.65	2.55	.99	127
2.52	2.58	.65	2.59	.99	127
2.56	2.62	.65	2.63	.99	127
2.59	2.65	.66	2.66	.99	127
4.28	4.38	.66	4.39	.99	138
4.31	4.41	.66	4.42	.99	144
4.36	4.46	.69	4.47	.99	149
4.41	4.51	.69	4.52	.99	149
4.48	4.59	.69	4.60	.99	150
5.82	5.96	.69	5.97	.99	152
5.94	6.08	.69	6.09	.99	152
6.01	6.15	.69	6.16	.99	154
6.17	6.32	.69	6.33	.99	153
7.20	7.37	.70	7.38	.99	147
7.33	7.50	.70	7.51	.99	150
7.48	7.66	.70	7.67	.99	153

Fig 8.3

Part 3: Variation of Alpha and Beta

b. The variations for Alpha and Beta for the tested transistor are not really significant, resulting in an almost ideal current source which is independent of the voltage $V_{C E}$.
c. The highest Beta's are found for relatively large values of I_{C} and $V_{C E}$. This is a generally well known factor.
d. Beta did increase with increasing levels of I_{C}.
e. Beta did increase with increasing levels of $V_{C E}$.

Part 5: Exercises

1. \quad Beta(average) $=141$

The arithmetic average occurred in the center of Fig 8.3.
2. $V_{B E \text { (average) }}=.678 \mathrm{~V}$

Given that .7 V differs by only 3.14% from .678 , and given that resistive circuit component can vary by as much as 20%, the assumption of a constant .7 V is entirely reasonable.
3. The Beta of the transistor is increasing. Table 8.3 does substantiate that conclusion. Beta would be a constant anywhere along that line.

Part 6: Computer Exercise
PSpice Simulation 8-1

1. See Circuit diagram.

2.

	Experimental	PSpice
α	.99	.99
β	150	208

EXPERIMENT 9: FIXED- AND VOLTAGE-DIVIDER BIAS OF BJTs

Part 1: Determining β
b. $\quad V_{B E}($ measured $)=.67 \mathrm{~V}$
$V_{R C}($ measured $)=4.9 \mathrm{~V}$
c. $\quad I_{\mathrm{B}}=\left(V_{C C}-V_{B E}\right) / R_{B}=(20-.67) / 1.108 \mathrm{M}=17.4 \mu \mathrm{~A}$
$I_{C}=V_{R C} / R_{C}=4.9 / 2.73 \mathrm{~K}=1.79 \mathrm{~mA}$
d. Beta $I_{C} / I_{B}=1.79 \mathrm{~mA} / 17.4 \mu \mathrm{~A}=105$

Part 2: Fixed-bias configuration
a. $\quad I_{B}($ calculated $)=17 \mu \mathrm{~A}$
$I_{C}($ calculated $)=1.79 \mathrm{~mA}$
b. $\quad V_{B}($ calculated $)=V_{C C}-I_{B} * R_{B}=.67 \mathrm{~V}$
$V_{C}($ calculated $)=V_{C C}-I_{C} * R_{C}=13.4 \mathrm{~V}$
$V_{E}($ calculated $)=0 \mathrm{~V}($ emitter is at ground $)$
$V_{C E}($ calculated $)=V_{C}-V_{E}=13.4 \mathrm{~V}$
c. $\quad V_{B}($ measured $)=.67 \mathrm{~V}$
$V_{C}($ measured $)=13.4 \mathrm{~V}$
$V_{E}($ measured $)=0 \mathrm{~V}$
$V_{C E}($ measured $)=13.34 \mathrm{~V}$
The difference between measured and calculated values in every case is less than 10%. It's almost too good to be true.
d. $\quad V_{B E}($ measured $)=.68 \mathrm{~V}$
$V_{R C}($ measured $)=16.7 \mathrm{~V}$
$I_{B}($ from measured $)=17.4 \mu \mathrm{~A}$
$I_{C}($ from measured $)=6.12 \mathrm{~mA}$
Beta(calculated) $=352$
Table 9.1

Transistor Type	$V_{C E}(\mathrm{~V})$	$I_{C}(\mathrm{~mA})$	$I_{B}(\mu \mathrm{~A})$	β
2N3904	13.34	1.79	17.4	105
2N4401	3.2	6.12	17.4	352

e.

Table 9.2

$\% \Delta \beta$	$\% \Delta I_{C}$	$\% \Delta V_{C E}$	$\% \Delta I_{B}$
242	242	-76.0	0

Part 3: Voltage-divider configuration
b.

Table 9.3

2N3904	$V_{B}(\mathrm{~V})$	$V_{E}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$
(calculated)	3.52	2.82	12.47	9.7
(measured)	3.3	2.6	12.9	10.1

2N3904	$I_{E}(\mathrm{~mA})$	$I_{C}(\mathrm{~mA})$	$\left.I_{B} \mu \mathrm{~A}\right)$
(calculated)	4.07	4.05	30
(measured)	3.76	3.87	36.5

c. The agreement between measured and calculated values fall entirely within reasonable limits.
d. and e.

Table 9.4

Transistor Type	$V_{C E}(\mathrm{~V})$	$I_{C}(\mathrm{~mA})$	$I_{B}(\mu \mathrm{~A})$	Beta
2N3904	10.1	3.87	36.5	103
2N4401	9.6	4.03	17.2	234

f.

Table 9.5

$\% \Delta \beta$	$\% \Delta I_{C}$	$\% \Delta V_{C E}$	$\% \Delta I_{B}$
56	41	4.9	53

Part 4: Computer Exercises
PSpice Simulation 9-1
1.-3. See circuit diagram.

4. See circuit diagram.

5. 8.24%
6. $\% \Delta I_{B}=0.05 \%$
$\% \Delta I_{C}=8.2 \%$
$\% \Delta I_{E}=8.15 \%$
7. $\% \Delta V_{C E}=-6.57 \%$
8. $S(\beta)=.995$

PSpice Simulation 9-2
1.-3. See circuit diagram.

PSpice Simulation 9-2

4. See circuit diagram.

5. $\% \Delta \beta=8.24 \%$
6. $\% \Delta I_{B}=-6.47 \%$
$\% \Delta I_{C}=1.13 \%$
$\% \Delta I_{E}=1.10 \%$
7. $\% \Delta V_{C E}=-0.94 \%$
8. $S(\beta)=\frac{1.13 \%}{8.24 \%}=0.13$
9. Circuit with Q2N2222.
10. Same as \#9.
11. Same as \#9.

Part 5: Problems and Exercises

1. a. $\quad I_{C \text { (sat, fixed bias) }}=20 / 2.73 \mathrm{~K}=7.33 \mathrm{~mA}$
b. $\quad I_{C \text { (sat, volt-divider bias) }}=20 /(1.86 \mathrm{~K}+692)=7.83 \mathrm{~mA}$
c. The saturation currents are not sensitive to the Beta's in either bias configuration.
2. In the case of the 2N4401 transistor, which had a higher Beta than the 2N3904 transistor, the Q point of the former shifted higher up the loadline toward saturation. (See data in Table 9.4).
3. a.

Table 9.6

Fixed bias	$\% \Delta I_{C}$	$\% \Delta V_{C E}$	$\% \Delta I_{B}$
	$\% \Delta \beta$	$\% \Delta \beta$	$\% \Delta \beta$
	1	.314	0
Volt-divider	.732	.087	.94

The ideal circuit has Beta independence when the ratio of $\% \Delta I_{C} \% \Delta \beta$ is equal to 0 . Thus, the smaller the ratio, the more Beta independent is the circuit. Using this as a criterion of stability, it becomes apparent that the voltage divider bias circuit is the more stable of the two.
4. a. $\quad I_{C}=\beta\left(V_{C C}-.67\right) / R_{B} \mathrm{~mA}$
b. $\quad I_{C}=\left[R_{2} /\left(R_{1}+R_{2}\right)^{*} V_{C C}-.7\right] /\left[\left(R_{1} \| R_{2}\right) / \beta+R_{E}\right] \mathrm{mA}$
c. In equation 4a, the Beta factor cannot be eliminated by a judicious choice of circuit components. In 4b however, if the quantity $R_{1} \| R_{2} / \beta$ is made much smaller than R_{E}, then I_{C} is no longer dependent upon Beta. In particular:

$$
I_{C}=\left[R_{2} /\left(R_{1}+R_{2}\right) * V_{C C}-.7\right] / R_{E} \mathrm{~mA}
$$

In that case, we have achieved Beta independent biasing.

EXPERIMENT 10: EMITTER AND COLLECTOR FEEDBACK BIAS OF BJTs

Part 1: Determination of β
b. $\quad V_{B}$ (measured) $=5.04 \mathrm{~V}$
$V_{R C}($ measured $)=4.04 \mathrm{~V}$
c. $\quad I_{B}($ from measured $)=(20-5.41) / 1.1 \mathrm{M}=13.6 \mu \mathrm{~A}$ $I_{C}($ from measured $)=4.04 / 2.2 \mathrm{~K}=1.84 \mathrm{~mA}$
d. $\beta=1.84 \mathrm{~mA} / 13.6 \mu \mathrm{~A}=135$

Part 2: Emitter-bias configuration
a. Using KVL:

$$
\begin{array}{ll}
-20+I_{C} * & (1.01 \mathrm{M} / \beta)+.67 \mathrm{~V}+I_{C} *(2.23 \mathrm{~K})=0 \mathrm{~V} \\
\text { therefore: } & I_{C}=(20-.67) / 9.1 \mathrm{~K}=2.1 \mathrm{~mA} \\
& I_{B}=2.1 \mathrm{~mA} / 135=15 \mu \mathrm{~A}
\end{array}
$$

b. and c.

Table 10.1

Calculated Values					
Transistor type	$V_{B}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{E}(\mathrm{~V})$	$V_{B E}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$
2N3904	5.4	15.3	4.7	. 70	10.6
2N4401	8.2	12.6	7.4	. 8	5.2
Transistor type	$I_{B}(\mu \mathrm{~A})$	$I_{C}(\mathrm{~mA})$			
2N3904	15.0	2.1			
2N4401	11.7	3.3			
Measured Values					
Transistor type	$V_{B}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{E}(\mathrm{~V})$	$V_{B E}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$
2N3904	4.75	15.9	4.2	. 66	11.8
2N4401	8.0	12.5	7.6	. 62	4.8
Transistor type	$I_{B}(\mu \mathrm{~A})$	$I_{C}(\mathrm{~mA})$	Beta		
2N3904	14.7	2.2	150		
2N4401	11.9	3.4	286		

d. See Table 10.1.
e. See Table 10.1.
f. In every case, the difference between calculated and measured values were less than 10% apart.
g.

Table 10.3

$\% \Delta \beta$	$\% \Delta I_{C}$	$\% \Delta V_{C E}$	$\% \Delta I_{B}$
90.7	54.5	-58.5	-19

Part 3: Collector Feedback Configuration ($R_{E}=0$ ohms)
b. Using KVL:
$-20+I_{C}(3.2 \mathrm{~K})+I_{C}(395 \mathrm{~K}) / 150+.7 \mathrm{~V}=0 \mathrm{~V}$
from which: $I_{B}=21 \mu \mathrm{~A}$ and $I_{C}=3.4 \mathrm{~mA}$
Table 10.4

Calculated Values						
Transistor type	$V_{B}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$	$I_{B}(\mu \mathrm{~A})$	$I_{C}(\mathrm{~mA})$	
2N3904	.62	9.1	9.1	21.2	3.4	
2N4401	.55	6.2	6.2	14.4	4.3	

Table 10.5

Measured Values						
Transistor type	$V_{B}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$	$I_{B}(\mu \mathrm{~A})$	$I_{C}(\mathrm{~mA})$	
2N3904	.68	9.6	9.6	22.4	3.6	
2N4401	.63	5.8	5.8	15.1	4.4	

Table 10.6

$\% \Delta \beta$	$\% \Delta I_{C}$	$\% \Delta V_{C E}$	$\% \Delta I_{B}$
83	22.8	-39.9	-33

Part 4: Collector Feedback Configuration (with R_{E})
a. For 2N3904:
$-20+I_{C}(3.2 \mathrm{~K})+I_{C}(395 \mathrm{~K} / 150)+I_{C}(2.2 \mathrm{~K})=0 \mathrm{~V}$
from which: $I_{B}=15 \mu \mathrm{~A}$ and $I_{C}=2.4 \mathrm{~mA}$
for 2N4401:
$-20+I_{C}(3.2 \mathrm{~K})+I_{C}(395 \mathrm{~K} / 286)+I_{C}(2.2 \mathrm{~K})=0 \mathrm{~V}$
from which: $I_{B}=9.7 \mu \mathrm{~A}$ and $I_{C}=2.8 \mathrm{~mA}$
b. See Table 10.7.
c. See Table 10.8.
d. See Table 10.7.
e. See Table 10.8.
f.

Table 10.7

Calculated Values							
Transistor	$V_{B}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{E}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$	$I_{C}(\mathrm{~mA})$	$I_{E}(\mathrm{~mA})$	$I_{B}(\mu \mathrm{~A})$
2N3904	6.2	12.1	5.4	6.7	2.45	2.5	15
2N4401	6.9	10.8	6.3	4.5	2.8	2.9	9.7

Table 10.8

Measured Values							
Transistor	$V_{B}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$	$V_{E}(\mathrm{~V})$	$V_{C E}(\mathrm{~V})$	$I_{C}(\mathrm{~mA})$	$I_{E}(\mathrm{~mA})$	$I_{B}(\mu \mathrm{~A})$
2N3904	5.9	12.6	5.2	7.4	2.3	2.4	19
2N4401	7.0	10.8	6.5	4.3	2.8	2.9	9.2

Table 10.9

$\% \Delta \beta$	$\% \Delta I_{C}$	$\% \Delta V_{C E}$	$\% \Delta I_{B}$
83.2	23.8	-41.2	-50.3

Part 5: Computer Exercises
PSpice Simulation 10-1
1-6. See Circuit diagram.

7. See Circuit diagram.

8. $\% \Delta \beta=8.87 \%$
9. $\% \Delta I_{B}=-2.18 \%$
$\% \Delta I_{C}=6.50 \%$
$\% \Delta I_{E}=6.42 \%$
10. $\% \Delta V_{C E}=-7.43 \%$
11. $S(\beta)=.73$
12. $\quad P(\mathrm{Q} 2 \mathrm{~N} 3904)=46.41 \mathrm{~mW}$ $P($ Q2N2222 $)=49.40 \mathrm{~mW}$
Yes
13. Yes, see circuit diagram above.
14. Yes, see circuit diagram above.

PSpice Simulation 10-2
1-6. See Circuit diagram.

7. See Circuit diagram.

8. $\% \Delta \beta=8.64 \%$
9. $\% \Delta I_{B}=-5.43 \%$
$\% \Delta I_{C}=2.75 \%$
$\% \Delta I_{E}=2.69 \%$
10. $\% \Delta V_{C E}=-4.96 \%$
11. $S(\beta)=.32$

12-14. See circuit diagrams above.
Part 6: Problems and Exercises

1. a. $\quad I_{C(\text { sat) })} 20 /(2.2 \mathrm{~K}+2.2 \mathrm{~K})=4.55 \mathrm{~mA}$
b. $\quad I_{C(\text { sat })}=20 / 3 \mathrm{~K}=6.67 \mathrm{~mA}$
c. $\quad I_{C(\text { sat })}=20 / 5.2 \mathrm{~K}=3.85 \mathrm{~mA}$
d. Beta does not enter into the calculations.
2. The Q point shifts toward saturation along the loadline.
3. a.

Table 10.10
Emitter bias
$\frac{\% \Delta I_{C}}{\% \Delta \beta} \frac{\% \Delta V_{C E}}{\% \Delta \beta} \quad \frac{\% \Delta I_{B}}{\% \Delta \beta}$
b. The smaller that ratio, the better is the Beta stability of a particular circuit. Looking at the results, which were computed from measured data, it appears that the collector feedback circuit with $R_{E}=0$ ohms is the most stable. This is counter to expectations.
Theoretically, the most stable of the two collector feedback circuits should be the one with a finite R_{E}. Since the stability figures of both of those circuits are so small, the apparent greater stability of the collector feedback circuit without R_{E} is probably the result of measurement variability.
4. Using KVL:
$-V_{C C}+I_{C} / \beta^{*} R_{B}+V_{B E}+I_{C}{ }^{*} R_{E}=0 \mathrm{~V}$
from this:
$I_{C}=\left(V_{C C}-V_{B E}\right) /\left(R_{B} / \beta+R_{E}\right) \mathrm{mA}$
This division results in:

$$
\begin{gathered}
I_{C}=\beta\left(V_{C C}-V_{B E}\right) /\left(R_{B}+\beta^{*} R_{E}\right) \mathrm{mA} \\
\text { If } \beta^{*} R_{E} \gg R_{B} \text { then } I_{C}=\left(V_{C C}-V_{B E}\right) / R_{E} \mathrm{~mA}
\end{gathered}
$$

5. Using KVL:
$-V_{C C}+I_{C} * R_{C}+I_{C} / \beta^{*} R_{B}+V_{B E}=0 \mathrm{~V}$
from this:
$I_{C}=\left(V_{C C}-V_{B E}\right) /\left(R_{C}+R_{B} / \beta\right)$
if $R_{C} \gg R_{B} / \beta$ then $I_{C}=\left(V_{C C}-V_{B E}\right) / R_{C} \mathrm{~mA}$
6. Using KVL:
$-V_{C C}+I_{C} * R_{C}+I_{C} / \beta^{*} R_{B}+V_{B E}+I_{C}{ }^{*} R_{E}=0 \mathrm{~V}$
from this:
$I_{C}=\left(V_{C C}-V_{B E}\right) /\left(R_{C}+R_{E}+R_{B} / \beta\right) \mathrm{mA}$
if $\left(R_{C}+R_{E}\right) \gg R_{B} / \beta$ then $I_{C}=\left(V_{C C}-V_{B E}\right) /\left(R_{C}+R_{E}\right) \mathrm{mA}$

EXPERIMENT 11: DESIGN OF BJT BIAS CIRCUITS

Part 1: Collector-Feedback Configuration

a. $\quad R_{C}=(15-7.5) \mathrm{V} / 5 \mathrm{~mA}=1.5$ Kohms $R_{C}($ commercial $)=1.5$ ohms
d. $\quad V_{R C}($ measured $)=5.14 \mathrm{~V}$
$V_{C E Q}($ measured $)=7.7 \mathrm{~V}$
$I_{C Q}($ from measured $)=3.4 \mathrm{~mA}$
$\beta($ calculated $)=104$
e. The most critical values for proper operation of this design is the voltage $V_{\text {CEQ }}$ measured at 7.7 V. It being within 2.7% of the design makes this a workable design.
f. $\quad R_{B}\left(\beta^{*} R_{C}\right)=214 \mathrm{~K} /\left(104^{*} 1.5 \mathrm{~K}\right)=1.37$
g. $R_{F 1}+R_{F 2}=189 \mathrm{~K}$
R_{B} (commercial) +214 K
h. No, the value of R_{B} is fixed both by $V_{C C}$ and $V_{B E}$, neither of which changed.
i. $\quad V_{R C}($ measured $)=5.64 \mathrm{~V}$
$V_{\text {CEQ }}($ measured $)=9.27 \mathrm{~V}$
$I_{C Q}($ from measured $)=3.76 \mathrm{~mA}$
β (calculated) $=3.73 \mathrm{~mA} /([9.27-.7) / 214 \mathrm{~K}]=108$
j. The measured voltage $V_{C E}$ is somewhat high due to the measured current I_{C} being below its design value. In general, the lowest I_{C} which will yield proper $V_{C E}$ is preferable since it keeps power losses down. For the given specifications, this design, for small signal operation, will probably work since most likely no clipping will be experienced.
k. $\quad R_{B} /\left(\beta^{*} R_{C}\right)$ (calculated) $=214 \mathrm{~K} /(108 * 1.5 \mathrm{~K})=1.4$
$R_{B} /\left(\beta^{*} R_{C}\right)$ (calculated) $=1.34$ (see above)
The parameters of the circuit do not change significantly with a change of transistor. Thus, the design is relatively stable in regard to any Beta variation.

1. $S(\beta)=3.76 \mathrm{~mA}-3.4 \mathrm{~mA}) / 3.4 \mathrm{~mA}=.8$

Part 2: Emitter-bias Configuration
a. $\quad R_{C}($ calculated $)=\left[\left(V_{C C}-(7.5+1.5)\right] \mathrm{V} / 5 \mathrm{~mA}=1.2 \mathrm{~K}\right.$ $R_{C}($ commercial $)=1.2 \mathrm{~K}$
b. $\quad R_{E}($ calculated $)=1.5 \mathrm{~V} / 5 \mathrm{~mA}=300$ ohms $R_{E}($ commercial $)=285$ ohms
d. $\quad R_{B}($ measured $)=R_{1}+R_{2}=392 \mathrm{~K}$
$R_{B}($ commercial $)=394 \mathrm{~K}$
e. $\quad V_{R C}($ measured $)=6.04 \mathrm{~V}$
$V_{C E}($ measured $)=7.55 \mathrm{~V}$
$I_{C}($ from measured $)=4.7 \mathrm{~mA}$
$\beta($ calculated $)=144$
f. All measured values are well within a 10% tolerance of the design parameters. This is acceptable.
g. $\quad R_{B} /\left(\beta^{*} R_{E}\right)=9.6$
h. $\quad R_{B}$ (calculated) $=950 \mathrm{~K}$
$R_{B}($ commercial $)=1 \mathrm{M}$
i. Yes, it changed from 214 K to a value of 950 K . The increase in Beta was compensated for by the increase in R_{B} in such a way that $I_{C Q}$, and consequently $V_{C}, V_{C E Q}$ and V_{E} remained constant. Hence, so did R_{C} and R_{E}.
j. $\quad V_{R C}($ measured $)=5.2 \mathrm{~V}$
$V_{C E Q}($ measured $)=8.6 \mathrm{~V}$
$I_{C Q}($ calculated $)=4.2 \mathrm{~mA}$
$\beta($ calculated $)=372$
k. The important voltage $V_{C E Q}$ was measured at 8.61 V while it was specified at 7.5 V . Thus, it was larger by about 12%. This is probably the largest deviation to be tolerated. If the design is used for small signal amplification, it is probably OK; however, should the design be used for Class A, large signal operation, undesirable cut-off clipping may result.
l. The magnitude of the Beta of a transistor is a property of the device, not of the circuit. All the circuit design does is to minimize the effect of a changing Beta in a circuit. That the Betas differed in this case came as no surprise.
m. (calculated) $R_{B} /\left(\beta^{*} R_{E}\right)_{(2 \mathrm{~N} 3904)}=10.4$
(calculated) $R_{B} /\left(\beta^{*} R_{E}\right)_{(2 \mathrm{~N} 4401)}=9.6$
n. $\quad S(\beta)=.66$

Part 3: Voltage-divider Configuration

a. $\quad R_{C}($ calculated $)=[25-(1.5+7.5)] \mathrm{V} / 5 \mathrm{~mA}=1.2 \mathrm{~K}$
$R_{C}($ commercial $)=1.25 \mathrm{~K}$
b. $\quad R_{E}=1.5 \mathrm{~V} / 5 \mathrm{~mA}=300 \mathrm{ohms}$
$R_{E}($ commercial $)=285$ ohms
d. $\quad R_{2}$ (calculated) $=2.94 \mathrm{~K}$
R_{2} (commercial) $=3.2 \mathrm{~K}$
$R_{1}($ calculated $)=17.1 \mathrm{~K}$
$R_{1}($ commercial $)=18.2 \mathrm{VK}$
e. $\quad V_{R C}($ measured $)=6.47 \mathrm{~V}$
$V_{\text {CEQ }}($ measured $)=7.09 \mathrm{~V}$
$I_{C Q}($ calculated $)=5.2 \mathrm{~mA}$
$\beta($ calculated $)=144$
The difference between the calculated and the measured values of $I_{C Q}$ and $V_{C E Q}$ are insignificant for the operation of this circuit.
f. $\quad R_{1} \| R_{2} /\left(\beta^{*} R_{E}\right)=.066$
g. $\quad V_{R C}($ measured $)=6.98 \mathrm{~V}$
$V_{\text {CEQ }}($ measured $)=6.47 \mathrm{~V}$
$I_{C Q}($ calculated $)=5.6 \mathrm{~mA}$
$\beta($ calculated $)=368$
h. The measured values of the previous part show that the circuit design is relatively independent of Beta.
i. The Betas are about the same.
j. $\quad R_{1} \| R_{2} /\left(\beta^{*} R_{E}\right)_{(\text {(2N401) }}=.026$
$R_{1} \| R_{2}\left(\beta^{*} R_{E}\right)_{(2 \mathrm{~N} 3904)}=.066$
k. $S(\beta)=.051$

Part 4: Problems and Exercises
1.

Table 11.1

Configuration	$I_{C Q}(\mathrm{~mA})$	$V_{\text {CEQ }}(\mathrm{V})$
Collector-feedback	3.4	7.7
Emitter-bias	4.7	7.5
Voltage-divider	5.2	7.1

The critical parameter for this design is the voltage $V_{C E Q}$. Given that its variation for the various designs is less than 10%, the results are satisfying.
2.

Table 11.2

Configuration	Stability factors	
	$R_{B} /\left(\beta R_{C}\right)$	$S(\beta)$
Collector-feedback	1.4	.8
Emitter-bias	0.6	.66
Voltage-divider	.06	.051

The data in adjacent columns is consistent.
The voltage-divider bias configuration was the least sensitive to variations in Beta. This is expected since the resistor R_{2}, while decreasing the current gain of the circuit, stabilized the circuit in regard to any current changes.
3. Using KVL:
$-V_{C C}+I_{C}{ }^{*} R_{C}+I_{C} / \beta^{*} R_{B}+V_{B E}=0 \mathrm{~V}$
from which: $\left.I_{C}=\left(V_{C C}-V_{B E}\right) /\left(R_{C}+R_{B}\right) / \beta\right) \mathrm{mA}$
for stable operation, make: $R_{C} \gg R_{B} / \beta$
4. Using KVL:
$-V_{C C}+I_{C} / \beta^{*} R_{B}+I_{C} * R_{E}+V_{B E}=0 \mathrm{~V}$
from which: $\left.I_{C}=\left(V_{C C}-V_{B E}\right) /\left(R_{E}+R_{B}\right) / \beta\right) \mathrm{mA}$ for stable operation, make: $R_{E} \gg R_{B} / \beta$
5. Using KVL:
$-V_{B B}+I_{C} /$ Beta $* R_{1} \| R_{2}+V_{B E}+I_{C}{ }^{*} R_{E}=0 \mathrm{~V}$
where: $V_{B B}=R_{1} /\left(R_{1}+R_{2}\right)^{*} V_{C C}$
from which: $I_{C}=\left(V_{B B}-V_{B E}\right) /\left(R_{E}+R_{1} \| R_{2} / \beta\right) \mathrm{mA}$
for stable operation: make $R_{E} \gg R_{1} \| R_{2} / \beta$
Part 5: Computer Exercises
PSpice simulation 11-1

1. See Circuit diagram.

> PSpice Simulation 11-1

2. $\beta=170.5$
3. $S=1.095$
4. Yes
5. See Circuit diagram above.

PSpice simulation 11-2

1. See Circuit diagram.

PSpice Simulation 11-2: The "bad" design.

2. $\beta=170.96$
3. $\quad S=0.08$
4. No
5. See Circuit diagram.

PSpice Simulation 11-2: The "good" design.

6. Yes
7. Not needed
8. See circuit diagram above.

EXPERIMENT 12: JFET CHARACTERISTICS

Part 1: Measurement of the Saturation Current $I_{D S S}$ and Pinch-off Voltage V_{P}
c. $\quad V_{R}($ measured $)=.754 \mathrm{~V}$
d. $\quad I D_{S S}=7.44 \mathrm{~mA}$
e. $\quad V_{p}($ measured $)=-2.53 \mathrm{~V}$
f.

1. $I D_{S S}=8.3 \mathrm{~mA}, V_{p}=-3.1 \mathrm{~V}$
2. $I D_{S S}=9.1 \mathrm{~mA} \quad V_{p}=-3.9 \mathrm{~V}$

It is extremely unlikely that two 2N4416 ever have the same saturation current and pinch-off voltage.

Fig 12.1

Part 2: Drain-Source Characteristics
a. through d.

Table 12.1

$V_{G S}(\mathrm{~V})$	0	-1.0	-2.0
$V_{D S}(\mathrm{~V})$	$\mathrm{I}_{D}(\mathrm{~mA})$	$I_{D}(\mathrm{~mA})$	$I_{D}(\mathrm{~mA})$
0.0	0.0	0.0	0.0
1.0	4.63	2.1	.25
2.0	5.61	2.6	.28
3.0	7.32	3.06	.34
4.0	7.40	3.1	.36
5.0	7.43	3.2	.39
6.0	7.5	3.16	.42
7.0	7.5	3.31	.43
8.0	7.5	3.33	.44
9.0	7.3	3.36	.46
10.0	7.3	3.36	.50
11.0	7.1	3.36	.50
12.0	6.81	3.36	.51
13.0	6.76	3.36	.52
14.0	6.71	3.36	.53

Fig 12.3

$I D_{S S}($ Fig 12.3 $)=7.5 \mathrm{~mA}$
$I D_{S S}($ Part 1$)=7.44 \mathrm{~mA}$
$V_{P}($ Fig 12.3 $)=-3 \mathrm{~V}$
$V_{P}($ Part 1 $)=-2.53 \mathrm{~V}$
Part 3: Transfer Characteristics
a. b.

Table 12.2

$V_{D S}(\mathrm{~V})$	3 V	6 V	9 V	12 V
$V_{G S}(\mathrm{~V})$	$I_{D}(\mathrm{~mA})$	$I_{D}(\mathrm{~mA})$	$I_{D}(\mathrm{~mA})$	$I_{D}(\mathrm{~mA})$
0	7.32	7.5	7.4	6.81
-1	3.06	3.26	3.36	3.36
-2	.34	.42	.46	.51

d. Given that the various variables in the above Table vary by less than 10%, it is reasonable that the curves can be replaced on an approximate basis by a single curve defined by Shockley's equation if the average values of both $I D_{S S}$ and $V_{G S(\text { off })}$ are used.

Part 5: Problems and Exercises

1. Shockley's equation involves four parameters. Given two of them, such as I_{D} and $V_{G S}$, an infinite number of curves can be drawn through their interception all of which can satisfy Shockley's equation for particular $I D_{S S}$ and V_{P}.
2. $V_{G}=V_{P} *\left[1-\left(I_{D} / I D_{S S}\right)^{1 / 2}\right] \mathrm{V}$
3. For: $I D_{S S}=10 \mathrm{~mA} ; V_{P}=-5 \mathrm{~V}$; and $I_{D}=4 \mathrm{~mA}$

$$
V_{G S}(\text { calculated })=(-5) *\left[(.4)^{1 / 2}\right]=-3.16 \mathrm{~V}
$$

a. $\quad g m_{O}($ calculated $)=2 *(7.44 \mathrm{~mA}) / 2.53=5.88 \mathrm{~ms}$
b. The slope of the Shockley curve is maximum at $V_{G S}=0 \mathrm{~V}$.
c. $\quad g m($ calculated $)=g m_{O}\left(1-V_{P} / V_{P}\right)=0 \mathrm{~S}$ when $V_{G S}=V_{P}$.

The slope of the transfer curve at $V_{G S}=V_{P}=0 \mathrm{~S}$
d.

$V_{G S} / V_{P}=1 / 4$	$V_{G S} / V_{P}=1 / 2$	$V_{G S} / V_{P}=3 / 4$
$g_{m} \quad 4.41 \mathrm{mS}$	2.94 mS	1.47 mS
Note: $g m_{0}=5.88 \mathrm{mS}$		

e. The slope is a constant value.
f. It is proportional to the derivative of Shockley's equation.

Part 6: Computer Exercises
PSpice Simulation 12-1
1-4. See Circuit diagram.
PSpice Simulation 12-1

PSpice Simulation 12-2
Part A
4. See Probe Plot page 247.
5. $I_{D S S}=16 \mathrm{~mA}$
6. $V_{P}=-1.5 \mathrm{~V}$

Part B
4. See Probe plot page 248.
5. $\quad I_{D S S}=18.2 \mathrm{~mA}$
$V_{P}=-1.4 \mathrm{~V}$
** Profile: "SCHEMATIC1-1" [C: \Program Files $\begin{aligned} & \text { OrcadLite } \backslash \text { My Documents } \backslash \text { Lab Revision PSpice } 11-15 \backslash p s p i c . . \\ & \text { Date/Time run: } 11 / 22 / 0412: 18: 52\end{aligned}$
Temperature: 27.0

$-\quad-\quad$

\square OT:
OA
OV
ID (J1)
** Profile: "SCHEMATIC1-2" [C: \Program Files \OrcadLite \backslash My Documents \backslash Lab Revision PSpice 11-15\pspic...
Date/Time run: $11 / 23 / 0411: 28: 15$

EXPERIMENT 13: JFET BIAS CIRCUITS

Part 1: Fixed-Bias Network
b. $\quad I D_{S S}=12 \mathrm{~mA}$
c. $\quad V_{P}($ measured $)=-6 \mathrm{~V}$
e. $I_{D}=12^{-3}(1-1 / 6)^{1 / 2}=8.33 \mathrm{~mA}$
f. $\quad V_{R D}($ measured $)=8 \mathrm{~V}$
$I_{D Q}($ measured $)=8.2 \mathrm{~mA}$
$R_{D}($ measured $)=976$ ohms

Part 2: Self-Bias Network
b. $\quad I_{D Q}=2.64 \mathrm{~mA}$
$V_{G S Q}=-3.3 \mathrm{~V}$
c. $\quad V_{G S}($ calculated $)=-3.3 \mathrm{~V}$
$V_{D}($ calculated $)=12.4 \mathrm{~V}$
$V_{S}($ calculated $)=3.1 \mathrm{~V}$
$V_{D S}($ calculated $)=9.3 \mathrm{~V}$
$V_{G}($ calculated $)=0 \mathrm{~V}$
d. $\quad V_{G S}($ measured $)=-3.4 \mathrm{~V}$
$V_{D}($ measured $)=12.2 \mathrm{~V}$
$V_{S}($ measured $)=2.1 \mathrm{~V}$
$V_{D S}($ measured $)=9.1 \mathrm{~V}$
$V_{G}($ measured $)=0 \mathrm{~V}$
The percent differences are determined with the calculated values as the reference.
$V_{G S}($ calculated $\%)=3.1 \%$
$V_{D}($ calculated $\%)=-1.6 \%$
$V_{S}($ calculated $\%)=-.64 \%$
$V_{D S}($ calculated $\%)=-2.3 \%$
$V_{G}($ calculated $\%)=0 \%$
Part 3: Voltage Divider-Bias Network
b. For voltage divider-bias-line see Fig. 13.2
c. $\quad I_{D Q}($ calculated $)=4.8 \mathrm{~mA}$
$V_{G S}($ calculated $)=-2.4 \mathrm{~V}$
d. $\quad V_{D}($ calculated $)=10.3 \mathrm{~V}$
$V_{S}($ calculated $)=5.2 \mathrm{~V}$
$V_{D S}($ calculated $=5.1 \mathrm{~V}$
e. $V_{G S Q}($ measured $)=-2.3 \mathrm{~V}$
$V_{D}($ measured $)=10.4 \mathrm{~V}$
$V_{S}($ measured $)=5.3 \mathrm{~V}$
$V_{D S}($ measured $)=5.1 \mathrm{~V}$
f. The percent differences are determined with calculated values as the reference.
$V_{G S}($ calculated $\%)=-4.2 \%$
$V_{D}($ calculated \%) $=.97 \%$
$V_{S}($ calculated $\%$) $=1.9 \%$
$V_{D S}($ calculated $\%)=1.2 \%$
g. $I_{D Q}($ measured $)=4.8 \mathrm{~mA}$
$I_{D Q}($ calculated $\%)=.4 \%$
Part 4: Computer Exercises
PSpice Simulation 13-1

1. $\quad 928 \mu \mathrm{~A}$
2. $\quad 12.96 \mathrm{~V}$
3. -1.114 V
4. $\quad 13.92 \mathrm{~mW}$
5. See Circuit diagram.

PSpice Simulation 13-1: Self-bias circuit

6. Negligible due to back bias of gate-source function
7. $\quad 12.03 \mathrm{~mW}$
8. No

PSpice Simulation 13-2
1-8. See circuit diagram.
PSpice Simulation 13-2:Voltage-divider-bias circuit.

9. No

EXPERIMENT 14: DESIGN OF JFET BIAS CIRCUITS

Part 1: Determining $I D_{S S}$ and V_{P}
b. $\quad I D_{s S}($ measured $)=10.8 \mathrm{~mA}$
c. $\quad V_{P}($ measured $)=-6 \mathrm{~V}$

Part 2: Self-bias Circuit Design
a. $\quad I D_{Q}$ (calculated) $=5.4 \mathrm{~mA}$
$V_{D S Q}($ calculated $)=15 \mathrm{~V}$
$V_{D D}($ calculated $)=30 \mathrm{~V}$
d. $R_{S}($ calculated $)=1 / \mathrm{g}_{m}=333 \mathrm{ohms}$
$R_{S}($ commercial $)=330$ ohms
e. $\quad V_{R D}=V_{D D}-V_{D S Q}-V_{R S}=30-15-1.8=13.2 \mathrm{~V}$
$R_{D}=2.4 \mathrm{~K}$
f. $\quad V_{D S Q}($ measured $)=14.7 \mathrm{~V}$
$I_{D Q}($ measured $)=5.6 \mathrm{~mA}$
$V_{D S Q}($ calculated $)=15 \mathrm{~V}$
$I_{D Q}($ calculated $)=5.4 \mathrm{~mA}$
g. Agreements between calculated and measured values are within 10% of each other and thus are within acceptable limits.
h. $\quad V_{D S Q}($ measured $)=13.7 \mathrm{~V}$
$I_{D Q}($ measured $)=6 \mathrm{~mA}$
$I D_{S S}($ borrowed JFET $)=9.8 \mathrm{~mA}$
$V_{P}($ borrowed JFET$)=-5.1 \mathrm{~V}$
Even though in our case, the variations between JFETs was relatively small, such may not be the case in general. Thus, the values of the biasing resistors for the same bias design but employing different JFETs may differ considerably.

Best is not to use the arithmetic but the geometric average for the range of $I D_{S S}$ and V_{P}. Thus in our case, the geometric averages would be:
$I D_{S S}($ geometric average $)=$
$\left.\left[I D_{S S(\text { min })} * I D_{S S(\text { max })}\right]^{1 / 2}=[5 \mathrm{~mA} * 15 \mathrm{~mA})\right]^{1 / 2}=8.66 \mathrm{~mA}$
$V_{P}($ geometric average $)=[1 * 6]^{1 / 2}=2.45 \mathrm{~V}$
Statistically, these values are most likely the ones encountered.
Part 3: Voltage-divider Circuit Design
a. $\quad V_{G S}($ calculated $)=-2.6 \mathrm{~V}$
b. $R_{S}=\left(V_{G G}-V_{G S}\right) / I_{D Q}=(6-2.6) \mathrm{V} / 4 \mathrm{~mA}=850$ ohms
$R_{S}($ commercial value $)=820$ ohms
$V_{G}($ calculated $)=V_{G S}+I_{D} * R_{S}=2.6+4 \mathrm{~mA} * 820=5.85 \mathrm{~V}$
c. $\quad V_{R D}($ calculated $)=V_{D D}-V_{D S Q}-V_{R S}=20-8-3.28=8.72 \mathrm{~V}$ where $V_{R S}=I_{D Q} * R_{S}=4 \mathrm{~mA}^{*} 820=3.28 \mathrm{~V}$
$R_{D}=\left[V_{D D}-\left(V_{D S Q}+V_{R S}\right)\right] / I_{D}=[20-(8+3.28)]=2.18$ Kohms
$R_{D}($ commercial value $)=2$ Kohms
d. $R_{2}=10 * R_{S}=10 * 820=8.2$ Kohms
$R_{2}($ commercial value $)=10$ Kohms
Solving equation 14.3 for R_{1} we obtain:
$R_{1}=R_{2}^{*}\left(V_{D D}-V_{G}\right) / V_{G}=10 \mathrm{~K} *(20-5.85) / 5.85=24.2 \mathrm{Kohms}$ $R_{1}($ commercial value $)=22$ Kohms
e. $\quad V_{D S Q}($ measured $)=7.9 \mathrm{~V}$
$I D_{Q}($ measured $)=4.2 \mathrm{~mA}$
$V_{D S Q}($ specified $)=8 \mathrm{~V}$
$I_{D Q}($ specified $)=4 \mathrm{~mA}$
f. $\quad \% I_{D Q}($ calculated $)=5 \%$
$\% V_{D S Q}($ calculated $)=-1.25 \%$
Such relative small percent deviations are almost too good to be true.
The voltage divider bias line is parallel to the self-bias line. To shift the Q point in either direction, it is easiest to adjust the bias voltage V_{G} to bring the circuit parameters within an acceptable range of the circuit design.
g. In the present case, the percent differences for $I_{D Q}$ and $V_{D S Q}$ were well within the 10% tolerance allowed. If not, the easiest adjustment would be the moving of the voltagedivider bias line parallel to itself by means of raising or lowering of V_{G}. This could best be accomplished by a change of the voltage divider $R_{2} /\left(R_{1}+R_{2}\right) * V_{D D}$. Its value determines the voltage V_{G} which in turn determines the Q point for the design.
h. $\quad V_{D S Q}($ measured $)=13.7 \mathrm{~V}$
$I_{D Q}($ measured $)=3.68 \mathrm{~mA}$
$I_{D S S}($ borrowed JFET$)=9.8 \mathrm{~mA}$
$V_{P}($ borrowed $J F E T)=-5.1 \mathrm{~V}$

Part 4: Problems and Exercises

1. $R_{D}($ commercial value $)=2.7$ Kohms
$R_{S}($ commercial value $)=180$ ohms
2. $\quad R_{D}($ commercial value $)=2.4$ Kohms
$R_{S}($ commercial value $)=680$ ohms
$R_{1}($ commercial value $)=6.8 \mathrm{Kohms}$
$R_{2}($ commercial value $)=33$ Kohms
3. In the design, use the geometric mean of both the given ranges on IDSS and $V P$ for a given type JFET.

Part 5: Computer Exercises
PSpice Simulation 14-1
1-6. See circuit diagram.

PSpice Simulation 14-2

1. See circuit diagram.

PSpice Simulation 14-2: Voltage divider bias

2. See circuit diagram.

PSpice Simulation 14-2: Voltage divider bias

3. See above circuit diagrams.
4. $\quad \% V_{D S}=7.37 \%$
5. Yes

EXPERIMENT 15: COMPOUND CONFIGURATIONS

Part 1: Determining the $\operatorname{BJT}(\beta)$ amd JFET ($I_{D S S}$ and V_{P}) Parameters
a. $\quad R_{B}($ measured $)=982 \mathrm{Kohms}$ $R_{C}($ measured $)=2.6 \mathrm{Kohms}$

$$
\begin{aligned}
& I_{B}=\left(V_{C C}-V_{B E}\right) / R_{B}=(20-.7) / 982 \mathrm{~K}=19.7 \mu \mathrm{~A} \\
& V_{R C}(\text { measured })=6.45 \mathrm{~V} \\
& I_{C}=V_{R C} / R_{C}=6.45 / 2.6 \mathrm{~K}=2.48 \mathrm{~mA} \\
& \beta(\text { calculated })=1.48 \mathrm{~mA} / 19.7 \mu \mathrm{~A}=126
\end{aligned}
$$

Part 2: Capacitive-Coupled Multistage System with Voltage-Divider Bias
b. $\quad V_{B 1}=4.7 \mathrm{~K} /(4.7 \mathrm{~K}+15 \mathrm{~K}) * 20=4.8 \mathrm{~V}$
$V_{E 1}=4.8-.7=4.1 \mathrm{~V}$
$I_{E 1}=I_{C 1}=V_{E 1} / R_{E 1}=4.1 / 1 \mathrm{~K}=4.1 \mathrm{~mA}$
$V_{C 1}=V_{C C}-I_{C 1} * R_{C 1}=20-4.1 \mathrm{~mA} * 2.7 \mathrm{~K}=9.2 \mathrm{~V}$
$V_{B 2}=2.4 \mathrm{~K} /(2.4 \mathrm{~K}+15 \mathrm{~K}) * 20=2.8 \mathrm{~V}$
$V_{E 2}=2.8-.7=2.1 \mathrm{~V}$
$I_{E 2}=I_{C 2}=V_{E 2} / R_{E 2}=2.1 / 470=4.6 \mathrm{~mA}$
$V_{C 2}=V_{C C}-I_{C 2} * R_{C 2}=20-4.6 \mathrm{~mA} * 1.2 \mathrm{~K}=14.5 \mathrm{~V}$

Table 15.1

	$V_{B 1}(\mathrm{~V})$	$V_{C 1}(\mathrm{~V})$	$V_{B 2}(\mathrm{~V})$	$V_{C 2}(\mathrm{~V})$
Calculated Values	4.8	9.2	2.8	14.5
Measured values	4.7	9.1	2.7	14.2
\% Difference	-1.1	-1.1	-1.8	-2.1

As can be seen from the above data, the differences between the calculated and measured values were much less than 10%.
f. We note that the voltages $V_{C 1}$ and $V_{B 2}$ are not the same as they would be if the voltage across capacitor C_{C} was 0 Volts, indicating a short circuit across that capacitor.

Part 3: DC-Coupled Multistage Systems
Use the same equations to determine the circuit parameters as in Part 2 except that $V_{B 2}=V_{C 1}$.
b.

Table 15.2

	$V_{B 1}(\mathrm{~V})$	$V_{C 1}(\mathrm{~V})$	$V_{B 2}(\mathrm{~V})$	$V_{C 2}(\mathrm{~V})$
Calculated Values	4.8	9.2	9.2	13.0
Measured values	4.7	9.1	9.1	12.9
\% Difference	-1.7	-1.0	-1.0	-.8

Again, the percent differences between calculated and measured values are less than 10% in every instance.
f. The dc collector voltage of stage 1 determines the dc base voltage of stage 2 . Note that no biasing resistors are needed for stage 2 .

Part 4: A BJT-JFET Compound Configuration
b. $\quad V_{B}=4.7 \mathrm{~K} /(4.7 \mathrm{k}+15 \mathrm{k}) * 30=7.2 \mathrm{~V}$
$V_{E}=V_{B}-.7 \mathrm{~V}=6.5 \mathrm{~V}$
$I_{E}=I_{D}=6.5 \mathrm{~V} / 1.2 \mathrm{~K}=5.4 \mathrm{~mA}$
$V_{D}=V_{D D} * R_{D}=30-5.4 \mathrm{~mA} * 985=24.7 \mathrm{~V}$
For the JFET used: $\quad I D_{S S}=10.1 \mathrm{~mA}$

$$
V_{P}=-3.2 \mathrm{~V}
$$

determine $V_{G S}$:
$I_{D} / I D_{S S}=\left[1-V_{G S} / V_{P}\right]^{1 / 2} \mathrm{~mA}=5.4 \mathrm{~mA} / 10.1 \mathrm{~mA}=\left[1-V_{G S} / 3.2\right]^{1 / 2} \mathrm{~mA}$
therefore:

$$
\begin{aligned}
& {[5.4 \mathrm{~mA} / 10.1 \mathrm{~mA}]^{2}=\left[1-V_{G S} / 3.2\right]} \\
& .286=\left[1-V_{G S} / 3.2\right]
\end{aligned}
$$

from which: $V_{G S}=(1-.286) * 3.2=-2.28 \mathrm{~V}$
remember: $V_{G S}$ is a negative number:
$V_{C}=V_{B}-V_{G S}=7.2-(-2.28)=9.5 \mathrm{~V}$
Table 15.3

	$V_{B}(\mathrm{~V})$	$V_{D}(\mathrm{~V})$	$V_{C}(\mathrm{~V})$
Calculated Values	7.2	23.6	9.5
Measured values	7.1	24.4	8.7
\% Difference	-.56	3.4	-8.4

d. See Table 15.3.
e. Differences were less than 10%.
f. $\quad V_{G S}($ calculated from measured values $)=V_{B}-V_{C}=7.1-8.7=-1.6 \mathrm{~V}$
$V_{G S}($ measured $)=-1.7 \mathrm{~V}$
g. $\quad V_{R D}=V_{D D}-V_{D}=30-24.7=5.3 \mathrm{~V}$
$I_{D}=5.3 \mathrm{~V} / 985=5.4 \mathrm{~mA}$
$I_{D}($ measured $)=6.4 \mathrm{~mA}$
The percent difference between the measured and the calculated values of I_{D} was 18.5%, with the calculated value of I_{D} used as the standard of reference.

```
\(V_{E}(\) calculated \()=7.2-.7=6.5 \mathrm{~V}\)
\(I_{C}(\) calculated \()=6.5 \mathrm{~V} / 1.26 \mathrm{~K}=5.2 \mathrm{~mA}\)
\(I_{C}(\) measured \()=5.06 \mathrm{~mA}\)
```

The percent difference between the measured and the calculated values of I_{C} was -2.7%, with the calculated value of I_{D} used as the standard of reference.

Part 5: Problems and Exercises

1. a. There will be a change of V_{B} and V_{C} for the two stages if the two voltage divider configurations are interchanged.
b. The voltage divider configuration should make the circuit Beta independent, if it is well designed. Thus, there should not be much of a change in the voltage and current levels if the transistors are interchanged.
2. Again, depending on how good the design of the voltage divider bias circuit is, the changes in the circuit voltages and currents should be kept to a minimum.

Part 6: Computer Exercises
PSpice Simulation 15-1
1-11. See below.
PSpice Simulation 15-1: AC coupled multistage amplifier

PSpice Simulation 15-2
1-11. See below.
PSpice Simulation 15-2: DC coupled multistage amplifier

PSpice Simulation 15-2: DC coupled multistage amplifier
Stages interchanged

EXPERIMENT 16: MEASUREMENT TECHNIQUES

Part 1: AC and DC Voltage Amplitude Measurements DC MEASUREMENT

e. $\quad V_{o}($ calculated $)=2 \mathrm{~K} /(2 \mathrm{~K}+3.9 \mathrm{~K}) * 12=3.86 \mathrm{~V}$
f. $\quad V_{o}$ (measured) $=3.78 \mathrm{~V}$
\%Diff. (calculated) $=-2 \%$
g. $\quad V_{o}($ measured shift $)=3.8 \mathrm{~V}$

The shift was down from the center of the screen.
There is almost complete agreement between the two sets of measurements.
The measurement taken with the DMM is the more accurate of the two, especially for a DMM, since it reads to $1 / 100$ of a volt.

AC MEASUREMENTS

h. $\quad V_{i(\text { (rms })}($ calculated $)=8 / 2^{*} .707=2.82 \mathrm{~V}$
i. $\left.\quad V_{O(\text { rms }}\right)($ calculated $)=\left[(2 \mathrm{~K} \| 3.9 \mathrm{~K}+j 0)^{*}(2.82+j 0)\right] /(2.41 \mathrm{~K}-j 1.59 \mathrm{~K})=1.34 \angle 33.4 \mathrm{~V}$
j. $\quad V_{O}$ (measured) $=1.31 \mathrm{~V}$
\% diff. (calculated) $=-1.51 \%$
k. $\quad V_{O(p-p)}($ measured $)=3.72 \mathrm{~V}$
l. If we convert the measured rms value of V_{O} to peak value, we obtain 3.78 volts.

Comparing that to the measured peak value of V_{O} which was 3.72 V , we can be satisfied with the results.

Part 2: Measurements of the Periods and Fundamental Frequencies of Periodic Waveforms
b. Horizontal sensitivity $=100 \mu \mathrm{~s} / \mathrm{div}$
c. number of divisions $=5.6$
d. $\quad \operatorname{Period}(T)=100 \mu \mathrm{~s} / \operatorname{div} * 5.6 \mathrm{div}=560 \mu \mathrm{~s}$
e. \quad Frequency $(f)=1 / T=1 / 560 \mu \mathrm{~s}=1800 \mathrm{~Hz}$
f. $\quad f($ dial setting $)=1750 \mathrm{~Hz}$
g. The dial setting on the signal generator at best can only give an approximate setting of the frequency.
h. $f($ counter $)=1810 \mathrm{~Hz}$
i. Indeed it is, the difference between calculated and measured values is only 10 Hz using the counter, whereas the difference between signal generator setting and calculated values was 50 Hz . That measurement which is closest to that of the counter is the better measurement. In our case, the scope measures better than the signal generator.

Part 3: Phase-Shift Measurements
b. $\quad V_{i(\text { rms })}($ calculated $)=6 / 2 * .707=2.12 \mathrm{~V}$
c. $\quad V_{O(\mathrm{rms})}=(0-j 1.59 \mathrm{~K}) *(2.12+j 0) /(1 \mathrm{k}-j 1.59 \mathrm{~K})=1.81 \angle-31.6 \mathrm{~V}$
$V_{O(p-p)(\mathrm{rms})}=1.81 * 1.41 * 2=5.1 \mathrm{~V}$
f. $\quad A_{\text {(number of divisions) }}=.8$
g. $B_{\text {(number of divisions) }}=10$
h. angle $\theta($ calculated $)=-31.6$ degrees
j. The network is a lag network, i.e., the output voltage V_{O} lags the input voltage by the angle theta, in our case it lags it by -31.6 degrees.
k. $\quad V_{R(\text { rms })}($ calculated $)=1.1 \mathrm{~V}$
$\mathrm{V}_{R(p-p)}($ calculated $)=3.1 \mathrm{~V}$
angle theta $=58.4$ degrees
The output voltage V_{O} leads the input voltage by 58.4 degrees. Note that an angle of 58.4 degrees is the complement of an angle of 31.6 degrees.
l. $\quad V_{R(p-p)}($ measured $)=3 \mathrm{~V}$
angle $\theta=58$ degrees
It's a lead angle.
Part 4: Loading Effects
c. $\quad V_{O(p-p)}($ calculated $)=1 \mathrm{~K} /(1 \mathrm{~K}+1 \mathrm{~K}) * 8=4 \mathrm{~V}$
d. $\quad V_{O(p-p)}($ measured $)=3.98 \mathrm{~V}$
f. $\quad V_{O(p-p)}($ calculated $)=1 \mathrm{M} /(1 \mathrm{M}+1 \mathrm{M}) * 8=4 \mathrm{~V}$
$V_{O(p-p)}($ measured $)=2.7 \mathrm{~V}$
g. The real part of the input impedance of the scope is now in parallel with the R2 resistor and since for many scopes, that real part is about 1 Mohm, therefore, $R_{\text {scope }} \| R_{2}=500$ kohms.
Thus, V_{O} is considerably reduced.
h. $\quad R_{\text {(prime) }}=1 \mathrm{M} /\left[V i / V_{O}-1\right]=1 \mathrm{M} /[8 / 2.7-1]=588 \mathrm{kohms}$ $R_{\text {(scope) }}=-R_{\text {(prime) }} * R_{2} /\left[R_{\text {(prime) }}-R_{2}\right]=1.43$ Megohms

Most general purpose oscilloscopes have an input impedance consisting of a real part of 1 Megohms in parallel with a 30 pf capacitor. The result obtained for the real part of that impedance is reasonably close to that.
i. $\quad V_{O(p-p)}($ calculated $)=1 \mathrm{~K} /(1 \mathrm{~K}+1 \mathrm{M}) * 8=8 \mathrm{mV}$
j. $\quad V_{O(p-p)}($ measured) $=7.9 \mathrm{mV}$
k. The results agree within 1.25 percent.

Part 5: Problems and Exercises

1. No. for the frequency of operation, the capacitor represents an impedance of $1.59 \mathrm{k} \angle-90$ ohms. Therefore, in relationship to the existing resistors in the circuit, it cannot be neglected without making a serious error.
2. It depends upon the waveform. In case of sinusoidal voltages, the advantage is probably with the DMM. For more complex waveforms, the nod goes to the oscilloscope.
3. For measuring sinusoidal waves, the DMM gives a direct reading of the rms value of the measured waveform. However, for non-sinusoidal waves, a true rms DMM must be employed. The oscilloscope only gives peak-peak values, which, if one wants to obtain the power in an ac circuit, must be converted to rms.
4. $T=5 \mathrm{div}^{*} .1 \mathrm{~ms} / \mathrm{div}=.5 \mathrm{~ms}$
$f=1 / T=1 / .5 \mathrm{~ms}=2 \mathrm{KHz}$
5. angle theta $=1.5 / 8 * 360=67.5$ degrees

$$
V_{o} / V_{i}=R^{\prime} /\left(R^{\prime}+R_{1}\right)
$$

therefore: $\quad V_{i} / V_{O}=\left(R^{\prime}+R_{1}\right) / R^{\prime}$
solving for $R^{\prime}: \quad R^{\prime}\left(V_{i} / V_{O}\right)=R^{\prime}+R_{1}$ $R^{\prime}\left(V_{i} / V_{O}-1\right)=R_{1}$
Hence: $\quad R^{\prime}=R_{1} /\left(V_{i} / V_{O}-1\right)$ ohms

Part 6: Computer Exercises

PSpice Simulation 16-1

1. See Probe plot page 264.
2. See Probe plot page 264.
3. See Probe plot page 265.
4. See Probe plot page 265.
5. $\quad 33.74^{\circ}$
6. $\quad V_{\text {out }}$
7. See Probe plot page 266.

10 See Probe plot page 266.
11. $V_{\text {in(rms) }}=2.84 \mathrm{~V}$
$V_{\text {out(rms) }}=1.32 \mathrm{~V}$
12. Yes
13. See Probe plot page 267.
14. See Probe plot page 267.
15. $\quad V_{\text {out }}=\frac{R 3}{R 2+R 3}(12 \mathrm{~V})=\frac{2 \mathrm{~K}}{(212+3.9 \mathrm{~K})}(12 \mathrm{~V})$

$$
=4.067 \mathrm{~V}
$$

16. Agree
** Profile: "SCHEMATIC1-1" [C:\Program Files\OrcadLite\Lab Revision PSpice 16-20\pspice simulation \quad...
Date/Time run: 03/01/04 20:54:09

Date: March 01, 2004
** Profile: "SCHEMATIC1-1" ${ }^{\text {[C: C: } \backslash \text { Program Files } \backslash \text { OrcadLite } \backslash \text { Lab Revision PSpice } 16-20 \backslash \text { pspice simulation } . . .0}$ - Temperature: 27.0
 A1: $(906.280 \mathrm{u}, 0.000)$ A2: $(1.0000 \mathrm{~m}, 0.000) \operatorname{DIFF}(\mathrm{A}): \frac{(-93.725 \mathrm{u}, 0.000)}{\text { Page } 1}$
Date: March 01, 2004
** Profile: "SCHEMATIC1-1" [C: \Program Files \OrcadLite\Lab Revision PSpice 16-20\pspice simulation \quad...
Date/Time run: 03/01/04 20:41:27

15 ms
Time: 20:44:16
** Profile: "SCHEMATIC1-1" [C: \backslash Program Files \OrcadLite\Lab Revision PSpice 16-20\pspice simulation ...
Date/Time run: $03 / 01 / 0421: 15: 04$
 A1: $(10.166 \mathrm{~m}, 4.0700)$ A2: $(0.000,4.0678) \quad \operatorname{DIFF}(\mathrm{A}):(10.166 \mathrm{~m}, 2.1676 \mathrm{~m})$

PSpice Simulation 16-2

1. Using VOM, R2 $=100 \mathrm{k} \Omega$
2. Using DMM, R2 = $1 \mathrm{k} \Omega$
3. For R2 $=1 \mathrm{k} \Omega$
4. Both circuits
5. No

EXPERIMENT 17: COMMON-EMITTER TRANSISTOR AMPLIFIERS

Part 1: Common-Emitter DC Bias
b. $\quad V_{B B}=R_{2} /\left(R_{1}+R_{2}\right) * V_{C C}=10 \mathrm{~K} /(10 \mathrm{~K}+33 \mathrm{~K}) * 10=2.33 \mathrm{~V}$
$V_{E}=V_{B B}-.7=1.63 \mathrm{~V}$
$V_{C}=V_{C C}-I_{C} * R_{C}=10-1.63 \mathrm{~mA} * 3 \mathrm{~K}=5.1 \mathrm{~V}$
$I_{E}=V_{E} / R_{E}=1.63 / 1 \mathrm{~K}=1.63 \mathrm{~mA}$
$r_{e}=26 \mathrm{mV} / I_{E}=26 \mathrm{mV} / 1.63 \mathrm{~mA}=16 \mathrm{ohms}$
c. $\quad V_{B}($ measured $)=2.25 \mathrm{~V}$
$V_{E}($ measured $)=1.57 \mathrm{~V}$
$V_{C}($ measured $)=4.95 \mathrm{~V}$
$I_{E}=V_{E} / R_{E}=1.57 / 978=1.6 \mathrm{~mA}$
$r_{e}=26 \mathrm{mV} / 1.6 \mathrm{~mA}=16.2 \mathrm{ohms}$

The two values for r_{e} obtained are within .2 ohms.
This represents a 1.25 percent difference.
Part 2: Common-Emitter AC Voltage Gain
a. $\quad A_{V}($ no load $)=-R C / r e=3.2 \mathrm{~K} / 16=198$
b. $V_{\text {sig }}=8.3 \mathrm{mV}(\mathrm{rms})$
$V_{O}($ no load $)=1.47 \mathrm{~V}(\mathrm{rms})$
$A_{V}($ no load $)=177$
The two values of A_{V} agree within 10.6 percent of each other.
Part 3: AC Input Impedance, Z_{i}
$Z_{\text {in }}=R_{1} \| R_{2}| |$ Beta $* r_{e}=10 \mathrm{~K}| | 33 \mathrm{~K}| |(150 * 16)=1.8$ Kohms
V_{i} (measured) $=12 \mathrm{mV}$ (rms)
$V_{\mathrm{sig}}=20 \mathrm{mV}(\mathrm{rms})$
$Z_{\text {in }}=[12 \mathrm{mV} /(20 \mathrm{mV}-12 \mathrm{mV})] * 1 \mathrm{~K}=1.5 \mathrm{Kohms}$
The two values of the input impedance were within 18.9% of each other. This relatively large divergence is in part the result of using an assumed value of Beta for our transistor. For a 2N3904 transistor, the geometric average of Beta is closer to 126 .

Part 4: Output Impedance
a. $\quad Z_{O}($ calculated $)=R_{C}=3.2 \mathrm{Kohms}$
b. $\quad V_{\text {sig(rms) }}=10 \mathrm{mV}_{(\mathrm{rms})}$
$V_{O}($ no load $)(\mathrm{rms})=1.8 \mathrm{~V}(\mathrm{rms})$
$V_{O}($ loaded $)(\mathrm{rms})=.913 \mathrm{~V}(\mathrm{rms})$
$R_{L}=3.2 \mathrm{Kohms}$
$Z_{O}=\left[\left(V_{O}-V_{L}\right) / V_{L}\right] * R_{L}=[(1.8-.913) / .913] * 3.2 \mathrm{~K}=3.1 \mathrm{~K}$ The two values for Z_{O} are within 3.15% of each other.

Part 6: Computer Analysis
PSpice Simulation 17-1

1. See Circuit diagram.

PSpice Simulation 17-1: Common Emitter

2. $r_{e}=6.93 \Omega$
3. See Probe plot page 271.
4. See Probe plot page 271.
5. 180°
6. As $I(B)$ increases, so does $I(C)$.

As $I(C)$ increases, so does $V(R C)$ and $V(R E)$. Therefore $V(C)$ decreases.
7. $Z_{\text {in }}($ theoretical $)=937.3 \Omega$
8. See Probe plot page 272.
9. See Probe plot page 272.
10. $\quad Z_{\text {in }}($ PSpice $)=1.1323 \mathrm{k} \approx Z_{\text {in }}$ (theoretical)

Determining output impedance

1. $Z_{\text {out }} \approx R C=3 \mathrm{k}$
2. See Probe plot page 273.
3. See Probe plot page 273.
4. $\mathrm{Z}_{\text {out }}$ (PSpice $)=2.6392 \mathrm{k} \approx R C$

 Time: 12:06:53
Date/Time run: 12/30/04 12:13:57 C: \Program Files \orcadite\My Documents 3. 0 K (A) pspice simulativon $17-1-$ SCHEMATIC1-1 (active)
Time: 12:16:07

EXPERIMENT 18: COMMON-BASE AND EMITTER-FOLLOWER (COMMON-COLLECTOR TRANSISTOR AMPLIFIERS

Part 1: Common-Base DC Bias
a. $\quad V_{B}($ calculated $)=10 \mathrm{~K} /(10 \mathrm{~K}+33 \mathrm{~K}) * 10=2.33 \mathrm{~V}$
$V_{E}=V_{B}-.7 \mathrm{~V}=1.63 \mathrm{~V}$
$I_{E}=I_{C}=V_{E} / R_{E}=1.63 \mathrm{~V} / 1 \mathrm{~K}=1.63 \mathrm{~mA}$
$V_{C}=10-I_{C} * R_{C}=10-(1.63 \mathrm{~mA}) * 3 \mathrm{~K}=5.1 \mathrm{~V}$
$r_{e}=26 \mathrm{mV} / I_{E}=26 \mathrm{mV} / 1.63 \mathrm{~mA}=16 \mathrm{ohms}$
b. $\quad V_{B}($ measured $)=2.26 \mathrm{~V}$
$V_{E}($ measured $)=1.57 \mathrm{~V}$
$V_{C}($ measured $)=4.95 \mathrm{~V}$
$I_{E}($ from measured values $)=V_{E} / R_{E}=1.57 \mathrm{~V} / 978=1.6 \mathrm{~mA}$
$r_{e}($ from measured values $)=26 \mathrm{mV} / I_{E}=26 \mathrm{mV} / 1.6=16.3 \mathrm{ohms}$
In every case, the differences between the two sets of values are less than 10% apart. Such divergence is not excessive given the variability of electronic components.

Part 2: Common-Base AC Voltage Gain

a. $\quad A_{V}($ calculated $)=R_{C} / r_{e}=3.2 \mathrm{~K} / 16.3=197$
b. $V_{\text {sig }}=50 \mathrm{mV}$
$V_{O}=2.43 \mathrm{~V}$
$A_{V}=2.43 / V_{\text {sig }}=2.43 / 05=122$
The two gains differed by -38 percent with the calculated gain used as the standard of comparison.

Part 3: CB Input Impedance, Z_{i}
a. $Z_{i}=r_{e}=16.3$ ohms
b. $V_{\text {sig }}=50 \mathrm{mV}$
$V_{i}=9.9 \mathrm{mV}$
$R_{X}=100$ ohms
$\mathrm{Z}_{i}=\left[V_{i} /\left(V_{\text {sig }}-V_{i}\right)\right] * R_{X}=[9.9 \mathrm{mV} /(50 \mathrm{mV}-9.9 \mathrm{mV})] * 100=23.7$ ohms
The two values of the input impedance differed by 45 percent with the theoretical value of r_{e} (16.3 ohms) used as the standard of comparison.

Part 4: CB Output Impedance, Z_{O}
a. $\quad Z_{O}=R_{C}=3.2 \mathrm{~K}$
b. $V_{\text {sig }}=20 \mathrm{mV}$
$V_{o}($ measured, no load $)=2.43 \mathrm{~V}$
$V_{L}($ measured, loaded $)=1.22 \mathrm{~V}$
$Z_{O}=\left[\left(V_{O}-V_{L}\right) / V_{L}\right] * R_{L}=[(2.43-1.22) / 1.22] * 3 \mathrm{~K}=3.18$ Kohms
The agreement between the two values of the output impedance is within less than 1 percent.

Part 5: Emitter-Follower DC Bias
a. $\quad V_{B}($ calculated $)=2.33 \mathrm{~V}$
$V_{E}($ calculated $)=1.63 \mathrm{~V}$
$I_{E}($ calculated $)=1.63 \mathrm{~V}$
$V_{C}($ calculated $)=10 \mathrm{~V}$
$r_{e}($ calculated $)=26 \mathrm{mV} / I_{E}=26 \mathrm{mV} / 1.63 \mathrm{~mA}=16$ ohms
b. $\quad V_{B}($ measured $)=2.26 \mathrm{~V}$
$V_{E}($ measured $)=1.78 \mathrm{~V}$
$V_{C}($ measured $)=10.1 \mathrm{~V}$
$I_{E}=V_{E} / R_{E}=1.78 \mathrm{~V} / 1 \mathrm{~K}=1.78 \mathrm{~mA}$
$r_{e}=26 \mathrm{mV} / 1.78 \mathrm{~mA}=14.3 \mathrm{ohms}$

Part 6: Emitter-Follower AC Voltage Gain
a. $\quad A_{V}=R_{E} /\left(R_{E}+r_{e}\right)=1 \mathrm{~K} /(1 \mathrm{~K}+14.3)=.986$
b. $V_{\text {sig }}=1 \mathrm{~V}$
$V_{O}($ measured $)=.987 \mathrm{~V}$
$A_{V}=V_{O} / V_{\text {sig }}=.987 / 1=.987$
The two values of gain are within .1 percent of each other.
Part 7: Emitter Follower (EF) Input Impedance, Z_{i}
a. $\quad Z_{i}=R_{1}\left\|R_{2}\right\|\left(\right.$ Beta $*\left(1 \mathrm{~K}+r_{e}\right)=7.31 \mathrm{Kohms}$
b. $\quad V_{\text {sig }}=2 \mathrm{~V}$
$R_{X}=10$ Kohms
$f=1 \mathrm{KHz}$
$V_{i}($ measured $)=.85 \mathrm{~V}$ $Z_{i}=\left[V_{i} /\left(V_{\text {sig }}-V_{i}\right)\right] * R_{X}=[.85 /(2-.85)] * 10 \mathrm{~K}=7.39 \mathrm{Kohms}$

The input impedance calculated from measured values is within 1.1 percent of the theoretically calculated value of Z_{i}.

Part 8: Emitter Follower (EF) Output Impedance, Z_{O}
a. $\quad Z_{O}=r_{e}=16$ ohms
b. $\quad V_{O}($ measured $)=19.8 \mathrm{mV}$
$V_{L}($ measured $)=11.2 \mathrm{mV}$
$Z_{O}=\left[\left(V_{O}-V_{L}\right) / V_{L}\right] * R_{L}=[(19.8 \mathrm{mV}-11.2 \mathrm{mV}) / 11.2 \mathrm{mV}] * 100=76.8$ ohms
In the theoretical formulation, Z_{O} was equated with r_{e}, this is an approximation. A better expression for the output impedance is: $Z_{O}=r_{e}+\left(R_{\mathrm{G}}\left\|R_{1}\right\| R_{2}\right) /$ Beta. Thus it can be seen that the given formulation was actually a minimum value of the output impedance.

Part 9: Computer Analysis
PSpice Simulation 18-1
Bias Point Analysis

1. See Circuit diagram.

PSpice Simulation 18-1: Common Base Amplifier

2. See circuit diagram.
4. $r_{e}=16.71 \Omega$
5. $\quad A_{v}=179.53$
6. $\quad Z_{\text {in }}=r_{e}=16.71 \Omega$
7. $Z_{\text {out }}=3 \mathrm{k} \Omega$

Transient Analysis

1. See Probe plot page 277.
2. 38°
3. $\quad A_{v}=141.59$, see Probe plot page 278.

Input Impedance

1. $Z_{\text {in }}=20.7 \Omega$, see Probe plot page 279 .

Output Impedance

1. $Z_{\text {out }}=2.87 \mathrm{k} \Omega$, see Probe plot page 280.
** Profile: "SCHEMATIC1-1" [C: \Program Files \OrcadLite \backslash My Documents \backslash Lab Revision PSpice $16-20 \backslash p s p i c .$.
Date/Time run: $12 / 30 / 0414: 29: 31$ (A) pspice simulation 18-1-SCHEMATIC1-1 (active)

Time: 14:34:59
A1: $(968.224 \mathrm{u},-1.9774 \mathrm{~m})$
Date: $\mathrm{A} 2:(862.694 \mathrm{u},-395.480 \mathrm{~m})$
December 30,2004
DIFF $(\mathrm{A}):(105.530 \mathrm{u}, 393.503 \mathrm{~m})$
Page 1
** Profile: "SCHEMATIC1-1" [C:\Program Files\OrcadLite\My Documents\Lab Revision PSpice 16-20\pspic...
 *a .
** Profile: "SCHEMATIC1-1" [C: \Program Files \OrcadLite \backslash My Documents \backslash Lab Revision PSpice 16-20\pspic...
Date/Time run: $03 / 22 / 0411: 42: 05$

A1: $(9.4493 \mathrm{~m}, 20.692)$ A2: $(0.000,0.000) \operatorname{DIFF}(A):(9.4493 \mathrm{~m}, 20.692)$

** Profile: "SCHEMATIC1-1" [C: \Program Files \orcadLite \backslash My Documents \backslash Lab Revision PSpice 16-20\pspic...
Date/Time run: 03/22/04 11:55:06

PSpice Simulation 18-2
Bias Point Analysis

1. See Circuit diagram.

PSpice Simulation 18-2: Emitter Follower

2. See circuit diagram.
4. $r_{e}=16.65 \Omega$
5. $\quad A_{v}=0.98$
6. $\quad Z_{\text {in }}=7.31 \mathrm{k} \Omega$
7. $\quad Z_{\text {out }} \cong r_{e}=16.65 \mathrm{k} \Omega$

Transient Data

1. See Probe plot page 282.
2. 0.0°
3. 0.981

Input Impedance

1. $\quad 7.35 \mathrm{k} \Omega$

Output Impedance

1. 58.63Ω
** Profile: "SCHEMATIC1-1" [C: \Program Files \Orcadlite\MY Documents \backslash Lab Revision PSpice 16-20\pspic...
Date/Time run: 03/23/04 13:22:43 (A) pspice simulation $18-2$-SCHEMATIC1-1 (active)
 V1(Vsignal) V(OUT) Date: March 23, 2004

EXPERIMENT 19: DESIGN OF COMMON-EMITTER AMPLIFIERS

Part 2. Computer Analysis
PSpice Simulation 19-1

1. See Circuit diagram.

PSpice Simulation 19-1: Design of Common Emitter Amplfier

3. $\quad \beta=139.6$
4. $\quad V_{C E}=4.78 \mathrm{~V}$
5. Yes

Transient Analysis

1. $\quad A_{V}=147.9$
2. Yes
3. $Z_{\text {in }}=2.78 \mathrm{k} \Omega$
4. Yes
5. $\quad Z_{\text {out }}=3.893 \mathrm{k} \Omega$
6. Yes

Part 3: Build and Test CE Circuit
b. $\quad V_{B}($ measured $)=1.54 \mathrm{~V}$
$V_{E}($ measured $)=.87 \mathrm{~V}$
$V_{C}($ measured $)=7.15 \mathrm{~V}$
$I_{C}=I_{E}=V_{E} / R_{E}=.87 \mathrm{~V} / 979=.89 \mathrm{~mA}$
$r_{e}=26 \mathrm{mV} / \mathrm{I}_{E}=26 \mathrm{mV} / .89 \mathrm{~mA}=29.3 \mathrm{ohms}$
c. $V_{\text {sig }}=10 \mathrm{mV}$
$V_{L}($ measured $)=.815 \mathrm{~V}$
$A_{V}=\left(R_{C} \| R_{L}\right) / r_{e}=(3.2 \mathrm{~K} \mathrm{||} 10.2 \mathrm{~K}) / 29.3=80.7$
d. $V_{\text {sig }}=20.5 \mathrm{mV}$
$R_{X}=3.17$ Kohms
$V_{i}($ measured $)=8.8 \mathrm{mV}$
$Z_{i}=\left(R_{1}| | R_{2}| |\right.$ Beta $\left.^{*} r_{e}\right)=(100.2 \mathrm{~K}| | 21.6 \mathrm{~K}| | 100 * 29.3=2.4$ Kohms
e. $\quad V_{O}$ (measured) $=1.08 \mathrm{~V}$
$Z_{O}=\left(V_{O}-V_{L}\right) / V_{L} * R_{L}=(1.08-.82) / .82 * 10.2 \mathrm{~K}=3.25$ Kohms
f.
A_{V}
Z_{i} (Kohms)
Z_{O} (Kohms)
$V_{o} \max (\mathrm{p}-\mathrm{p})$

Design parameter
100 min .
1 Kmin.
10 Kmax.
3 Vp-p min.

Measured value
80.7
2.38 K
3.35 K
7.1 Vp-p

The design of the circuit was successful with all parameters, but the gain, meeting and even exceeding the design specification. The gain is about 20 percent below the expected value. To increase it, the supply voltage $V_{C C}$ could be increased. This would increase the quiescent current, lower the dynamic resistance r_{e} and consequently increase the gain of the amplifier.

EXPERIMENT 20: COMMON-SOURCE TRANSISTOR AMPLIFIERS

Part 1: Measurement of $I_{D S S}$ and V_{P}
a. $\quad I_{D S}=9.1 \mathrm{~mA}$
b. $V_{P}=-2.9 \mathrm{~V}$

Part 2: DC Bias of Common-Source Circuit
a. $\quad V_{G S}=-1.33 \mathrm{~V}$
$I_{D}=2.55 \mathrm{~mA}$
$V_{D}=V_{D D}-I_{D} * R_{D}=20-2.55 \mathrm{~mA} * 2.2 \mathrm{~K}=13.8 \mathrm{~V}$
c. $\quad V_{G}($ measured $)=0 \mathrm{~V}$
$V_{S}($ measured $)=1.46 \mathrm{~V}$
$V_{D}($ measured $)=13.8 \mathrm{~V}$
$V_{G S}($ measured $)=-1.37 \mathrm{~V}$
$I_{D}=V_{D} / R_{S}=13.8 / 488=2.99 \mathrm{~mA}$
The agreement between calculated and measured values was in most cases within 10 percent of each other, the exception being the 17.3 percent difference between the calculated and measured value of I_{D}.

Part 3: AC Voltage Gain of Common-Source Amplifier
a. $\quad A_{V}=-g_{m} R_{D}$
where
$g_{m}=I_{D S S}\left(2 *\left|V_{P}\right|\right) *\left(1-V_{G S} / V_{P}\right)^{2}=2 * 9.1 \mathrm{~mA} / 2.9 *(1-1.33 / 2.9)=3.4 \mathrm{mS}$
therefore: $A_{V}=-3.4 \mathrm{mS} * 2.2 \mathrm{~K}=7.48$
b. $\quad V_{\text {sig }}=10 \mathrm{mV}$
$f=1 \mathrm{KHz}$
$V_{O}($ measured $)=758 \mathrm{mV}$
$A_{V}=V_{o} / V_{\text {sig }}=758 \mathrm{mV} / 100 \mathrm{mV}=7.58$
The difference between the theoretical gain and the gain calculated from measured values was only 1.34 percent.

Part 4: Input and Output Impedance Measurements
a. $\quad Z_{i}=R_{G}$
Z_{i} (expected) $=1$ Megohm
b. $\quad Z_{O}=R_{D}$
$Z_{O}($ expected $)=2.25$ Kohms
c. $\quad V_{i}($ measured $)=37.2 \mathrm{mV}$
$Z_{i}($ calculated $)=V_{i} * R_{X}\left(V_{\text {sig }}-V_{i}\right)=592$ Kohms
d. $\quad V_{O}($ measured $)=760 \mathrm{mV}$
R_{L} (measured) $=9.9$ Kohms
V_{L} (measured) $=620 \mathrm{mV}$
$Z_{O}=\left(V_{O}-V_{L}\right) * R_{L} / V_{L}=(760 \mathrm{mV}-620 \mathrm{mV}) * 9.9 \mathrm{~K} / 620 \mathrm{mV}=2.24 \mathrm{Kohms}$
The infinite input impedance of the JFET is predicated upon the assumption of the zero reverse gate current. Such may not be entirely true. Hence, we observe a 41 percent difference between the theoretical input impedance and the input impedance calculated from measured values.

The two values of the output impedance are in far better agreement. They differ only by .44 percent.

Part 5: Computer Exercises
PSpice Simulation 20-1

1. See Circuit diagram.

PSpice Simulation 20-1: Common Source amplifier

3. $g_{m o}=21.15 \mathrm{mS} ; g_{m}=7.48 \mathrm{mS}$
4. $\quad A_{\nu}=-17.9$
6. $\quad A_{v}=-19.47$
8. $Z_{\text {in }}=954.64 \mathrm{k} \Omega$
11. $Z_{\text {out }}=2.34 \mathrm{k} \Omega$
13. A_{v}
14. $\left.\quad A_{v}\right|_{R_{D}}=4 \mathrm{k} \Omega=21.93$

EXPERIMENT 21: MULTISTAGE AMPLIFERS: RC COUPLING

Part 1: Measurement of $I_{D S S}$ and V_{P}

$$
I_{D S S}=10.4 \mathrm{~mA}
$$

$$
V_{P}=-3.2 \mathrm{~V}
$$

Part 2: DC Bias of Common-Source Circuit
a. $\quad V_{G S 1}($ calculated $)=-1.36 \mathrm{~V}$
$I_{D 1}($ calculated $)=3.1 \mathrm{~mA}$
$V_{D 1}($ calculated $)=V_{D D}-I_{D 1} * R_{D 1}=20 \mathrm{~V}-3.1 \mathrm{~mA} * 2.2 \mathrm{~K}=13.2 \mathrm{~V}$
$V_{G S 2}($ calculated $)=-1.38 \mathrm{~V}$
$I_{D 2}($ calculated $)=3.54 \mathrm{~mA}$
$V_{D 2}$ (calculated) $=V_{D D}-I_{D 2} * R_{D 2}=20 \mathrm{~V}-3.54 \mathrm{~mA} * 2.2 \mathrm{~K}=12.2 \mathrm{~V}$
c. $\quad V_{G 1}($ measured $)=0 \mathrm{~V}$
$V_{S_{1}}($ measured $)=1.49$
$V_{D 1}($ measured $)=13.81 \mathrm{~V}$
$V_{G S 1}($ measured $)=-1.04 \mathrm{~V}$
$I_{D 1}=V_{S 1} / R_{S 1}=1.49 \mathrm{~V} / 496=3 \mathrm{~mA}$
$V_{G 2}($ measured $)=0 \mathrm{~V}$
$V_{S_{2}}($ measured $)=1.52 \mathrm{~V}$
$V_{D 2}($ measured $)=11.3 \mathrm{~V}$
$V_{G S 2}($ measured $)=-.8 \mathrm{~V}$
$I_{D 2}=V_{S 2} / R_{S 2}=1.52 \mathrm{~V} / 468=3.25 \mathrm{~mA}$
The theoretical and the measured bias values were consistently in close agreement.
Part 3: AC Voltage Gain of Amplifier
a. For stage 2:

$$
A_{V 2}=-g_{m 2}\left(R_{D 2} \| R_{L}\right)=(-3.64 \mathrm{mS})(2.2 \mathrm{~K} \| 10 \mathrm{~K})=6.6
$$

For stage 1:
$A_{V 1}=-g_{m 1}\left(R_{D 1} \| Z_{i 2}\right)=(-3.51 \mathrm{mS})(2.2 \mathrm{~K}| | 1 \mathrm{M})=7.72$
note: $Z_{i 2}=R_{G 2}=1$ Megohm

$$
A_{V}=A_{V 1} * A_{V 2}=6.6 * 7.72=50.7
$$

b. $\quad V_{\text {sig }}($ measured $)=20 \mathrm{mV}$
$V_{L}($ measured $)=945 \mathrm{mV}$
$A_{V}=V_{L} / V_{\text {sig }}=945 \mathrm{mV} / 20 \mathrm{mV}=47.3$
$V_{O_{1}}($ measured $)=145 \mathrm{mV}$
$V_{\text {sig }}($ measured $)=20 \mathrm{mV}$
$A_{V 1}=V_{O 1} / V_{\text {sig }}=145 \mathrm{mV} / 20 \mathrm{mV}=7.25$
$A_{V 2}=V_{L} / V_{O 1}=945 \mathrm{mV} / 145 \mathrm{mV}=6.52$
The voltage gains differed by less than 10 percent from each other.

Part 4: Input and Output Impedance Measurements
a. $\quad Z_{i}=R_{G 1}=1$ Megohm
b. $Z_{O}=R_{D 2}=2.2 \mathrm{Kohms}$
c. $\quad V_{i 1}($ measured $)=7.5 \mathrm{mV}$
$V_{\text {sig }}=20 \mathrm{mV}$
$R_{X}=1$ Megohm
$Z_{i}=V_{i 1} * R_{X} /\left(V_{\text {sig }}-V_{i 1}\right)=7.5 \mathrm{mV} * 1 \mathrm{M} /(20 \mathrm{mV}-7.5 \mathrm{mV})=600$ Kohms
d. $\quad V_{L}($ measured $)=330 \mathrm{mV}$
$V_{O}($ measured $)=410 \mathrm{mV}$
$Z_{O}=\left(V_{O}-V_{L}\right) * R_{L} / V_{L}=(410 \mathrm{mV}-330 \mathrm{mV}) * 10 \mathrm{~K} / 330 \mathrm{mV}=2.42 \mathrm{Kohms}$
Again, the input impedance calculated from measured values is about 40 percent below that which we expected from the assumption that the JFET was ideal and had no reverse gate current. This seems not to be the case in actuality. There is a reverse leakage current at the gate which reduces the effective input impedance below that of R_{G} by being in parallel with it.

The output impedances again are in reasonable agreement, differing by no more than 9 percent from each other.

Part 5: Computer Exercise
Pspice Simulation 21-1

1. See circuit diagram.

2. $g_{\text {mo }}=21.15 \mathrm{mS}$
$g_{m J 1}=7.48 \mathrm{mS}$
$g_{m J 2}=7.48 \mathrm{mS}$
3. $\quad A_{V 1}=17.95 \quad A_{v 2}=7.48$
4. $\quad A_{v 1}=19.498$
5. $A_{v 2}=8.275$
6. $\quad\left(A_{\nu 1}\right)\left(A_{\nu 2}\right)=161.35$
7. $\quad\left(A_{\nu 1}\right)\left(A_{v 2}\right)=161.35$
8. Yes
9. Interchange J1 with J2
10. $Z_{\text {in }}=956.89 \mathrm{k} \Omega$
11. $\quad Z_{\text {out }}=989.74 \Omega$

EXPERIMENT 22: CMOS CIRCUITS

Part 1: CMOS Inverter Circuit

Table 22.1	
IN	OUT
0V	5 V
5V	.3 V

Part 2: CMOS Gate

Table 22.3

A	B	OUTPUT
0 V	0 V	5 V
0 V	5 V	0 V
5 V	0 V	0 V
5 V	5 V	0 V

Part 3: CMOS Input-Output Characteristics
a.

IN (V)	0.0	.2	.4	.6	.8	1.0	1.2	1.4	1.8
OUT (V)	5.0	5.0	5.0	5.0	4.9	4.8	4.8	4.7	4.4
IN (V)	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	
OUT (V)	3.9	3.4	1.6	1.1	.75	.6	.4	.3	
IN (V)	3.8	4.0	4.2	4.4	4.6	4.8	5.0		
OUT (V)	.1	.1	.08	.02	.02	.005	0		

Part 4: Computer Exercise

1. See Probe plot page 291.
2. No

VPlot data

1. See Probe plot page 292.

[^0]** Profile: "SCHEMATIC1-1" [C:\Program Files \OrcadLite\My Documents \backslash Lab Revision PSpice $21-25 \backslash p s p i c .$.

EXPERIMENT 23: DARLINGTON AND CASCODE AMPLIFIER CIRCUITS

Part 1: Darlington Emitter-Follower Circuit
a. $\quad V_{B}($ calculated $)=2.21 \mathrm{~V}$
V_{E} (calculated) $=1.01 \mathrm{~V}$
$A_{V}=R_{E} /\left(R_{E}+r_{e}\right)=47 /(47+10)=.83$
b. $\quad V_{B}($ measured $)=5.9 \mathrm{~V}$
$V_{E}($ measured $)=4.94 \mathrm{~V}$
$I_{B}($ calculated $)=199 \mu \mathrm{~A}$
$I_{E}($ calculated $)=106 \mathrm{~mA}$
β (calculated $)=106 \mathrm{~mA} / 199 \mu \mathrm{~A}=535$
c. $\quad V_{i}($ measured $)=350 \mathrm{mV}$
$V_{O}($ measured $)=340 \mathrm{mV}$
$A_{V}=V_{O} / V_{i}=340 \mathrm{mV} / 350 \mathrm{mV}=.97$
Part 2: Darlington Input and Output Impedance
a. $\quad Z_{i}$ (calculated) $=20.6 \mathrm{~K} \|(535 * 47)=11.3$ Kohms
$Z_{O}=r_{e}+\left(R_{G} \| R_{B}\right) / \beta=9$ ohms
b. $\quad V_{\text {sig }}=500 \mathrm{mV}$
$V_{i}($ measured $)=55.6 \mathrm{mV}$
$Z_{i}=\left[V_{i} /\left(V_{\text {sig }}-V_{i}\right) * R x=[55.6 \mathrm{mV} /(500 \mathrm{mV}-55.6 \mathrm{mV})] * 100 \mathrm{~K}=12.5 \mathrm{Kohms}\right.$
c. $\quad V_{o}($ measured $)=492 \mathrm{mV}$
$V_{L}($ measured $)=476 \mathrm{mV}$
$R_{L}=100$ ohms
$Z_{O}=\left[\left(V_{O}-V_{L}\right) / V_{L}\right] * R_{L}=[(492 \mathrm{mV}-476 \mathrm{mV}) / 476 \mathrm{mV}] * 100=4.2$ ohms
The two values of the input impedance differed by about 10.6 percent while the two values of the output impedance differed by 53 percent. It is to be noted however that with such small values the difference in just one ohm manifests itself as a large percent change. Given the tolerances of electronic circuit due to their components and that of the Darlington chip, the results are quite satisfactory.

Part 3: Cascode Circuit
a. $\quad V_{B 1}$ (calculated) $=5.5 \mathrm{~V}$
$V_{E 1}($ calculated $)=4.8 \mathrm{~V}$
$V_{C 1}($ calculated $)=11 \mathrm{~V}$
$V_{B 2}($ calculated $)=12 \mathrm{~V}$
$V_{E 2}($ calculated $)=11.3 \mathrm{~V}$
$V_{C 2}($ calculated $)=12.5 \mathrm{~V}$
$I_{E 1}=V_{E 1} / R_{E 1}=4.8 \mathrm{~V} / 1 \mathrm{k}=4.8 \mathrm{~mA}$
$I_{E 2}=11.3 / 1.8 \mathrm{~K}=6.24 \mathrm{~mA}$
$r_{e 1}=26 \mathrm{mV} / I_{E 1}=26 \mathrm{mV} / 4.8 \mathrm{~mA}=5.4$ ohms
$r_{e 2}=26 \mathrm{mV} / I_{E 2}=26 \mathrm{mV} / 6.24 \mathrm{~mA}=4.2 \mathrm{ohms}$
b. $\quad V_{B 1}($ measured $)=4.69 \mathrm{~V}$
$V_{E 1}($ measured $)=4.0 \mathrm{~V}$

$$
\begin{aligned}
& V_{C 1}(\text { measured })=10.7 \mathrm{~V} \\
& V_{B 2}(\text { measured })=12.0 \mathrm{~V} \\
& V_{E 2}(\text { measured })=10.5 \mathrm{~V} \\
& V_{C 2}(\text { measured })=12.3 \mathrm{~V} \\
& I_{E 1}(\text { calculated })=V_{E 1} / R_{E 1}=4 \mathrm{~V} / 1 \mathrm{~K}=4 \mathrm{~mA} \\
& I_{E 2}(\text { calculated })=V_{E 2} / R_{E 2}=10.5 / 1.8 \mathrm{~K}=5.2 \mathrm{~mA} \\
& r_{e 1}=26 \mathrm{mV} / I_{E 1}=26 \mathrm{mV} / 4 \mathrm{~mA}=6 \mathrm{ohms} \\
& r_{e 2}=26 \mathrm{mV} / I_{E 2}=26 \mathrm{mV} / 5.2 \mathrm{mV}=5 \mathrm{ohms}
\end{aligned}
$$

c. $\quad A_{V 1}=-1$ (as per equation 23.5)

$$
A_{V 2}=R_{C} / r_{e 2}=1.8 \mathrm{~K} / 5=360
$$

d. $\quad V_{\text {sig }}=10 \mathrm{mV}$
$V_{i}($ measured $)=8 \mathrm{mV}$
$V_{O 2}($ measured $)=7.91 \mathrm{mV}$
$V_{O 1}($ measured $)=948 \mathrm{mV}$
$A_{V 1}($ calculated $)=-V_{O 1} / V_{i}=7.91 / 8 \mathrm{mV}=-.98$
$A_{V 2}($ calculated $)=V_{O 2} / V_{O 1}=948 \mathrm{mV} / 7.91 \mathrm{mV}=120$
$A_{V}=V_{O 2} / V_{i}=-948 \mathrm{mV} / 8 \mathrm{mV}=-119$
The voltage gains for stage 1 were within 2 percent of each other, while the overall theoretical gain of 180 differs from the calculated gain from measured values by 34 percent.

Part 4: Computer Exercises
PSpice Simulation 23-1

1. See circuit diagram.

2. $r_{e}=249 \Omega$
3. See Probe plot page 295.
4. See Probe plot page 295.
5. See Probe plot page 295.
6. $\quad A_{V}=0.787$
7. $\quad Z_{\text {in }}=47.123 \mathrm{k} \Omega$
$Z_{\text {out }}=2.04 \mathrm{k} \Omega$
** Profile: "SCHEMATIC1-2" [C: \Program Files $\begin{aligned} & \text { OrcadLite\My Documents } \backslash \text { Lab Revision PSpice } 21-25 \backslash p s p i c . . . ~ \\ & \text { Date/Time run: 11/26/04 14:48:06 }\end{aligned}$
Temperature: 27.0
I. VV

PSpice Simulation 23-2

1. See circuit diagram.

PSpice Simulation 23-2: Cascode Amplifier

2. $r_{e_{01}}=5.63 \Omega \quad r_{e_{Q 2}}=5.6 \Omega$
5. See Probe plot page 297.
7. See Probe plot page 298.
8. For $Q_{1} ; A_{V}=\frac{R_{C}}{r_{e}}=\frac{1.8 \mathrm{k}}{5.63 \Omega}=319$

For $Q_{2} ; \quad A_{V}=\frac{r_{e}}{r_{e}}=\frac{5.6 \Omega}{5.6 \Omega}=1$
** Profile: "SCHEMATIC1-1" [C: \Program Files $\begin{aligned} & \text { OrcadLite } \backslash \text { My Documents } \backslash \text { Lab Revision PSpice } 21-25 \backslash p s p i c . . . ~ \\ & \text { Date/Time run: } 11 / 29 / 0409: 37: 44\end{aligned}$

EXPERIMENT 24: CURRENT SOURCE AND CURRENT MIRROR CIRCUITS

Part 1: JFET Current Source
a. $\quad V_{D S}($ measured $)=9.64 \mathrm{~V}$
b. $\quad I_{L}=\left(V_{D D}-V_{D S}\right) / R_{L}=(10-9.64) / 51.2=7.03 \mathrm{~mA}$
c.

Table 24.1

R_{L} (ohms)	20	51	82	100	150
$V_{D S}$ (Volts)	9.88	9.64	9.44	9.34	8.85
$I_{L}(\mathrm{~mA})$	6.1	7.03	6.83	6.60	7.57

Part 2: BJT Current Source
a. $\quad I_{L}=1.9 \mathrm{~mA}$
b. $\quad V_{E}($ measured $)=-.68 \mathrm{~V}$
$V_{C}($ measured $)=.404 \mathrm{~V}$
c. $\quad I_{E}($ calculated $)=2.13 \mathrm{~mA}$
$I_{L}($ calculated $)=1.88 \mathrm{~mA}$
d.

Table 24.2

R_{L} (kohms)	3.6	4.3	5.1
V_{E} (Volts)	-.68	-.67	-.68
V_{C} (Volts)	3.03	1.74	.404
$I_{E}(\mathrm{~mA})$	2.14	2.17	2.13
$I_{L}(\mathrm{~mA})$	1.94	1.92	1.88

Part 3: Current Mirror
a. $\quad I_{X}=.9 \mathrm{~mA}$
b. $\quad V_{B 1}=.669 \mathrm{~V}$
$V_{C 2}=2.24 \mathrm{~V}$
$I_{X}=.89 \mathrm{~mA}$
$I_{L}=1.0 \mathrm{~mA}$
c. $\quad I_{X}($ calculated $)=1 \mathrm{~mA}$
$V_{B 1}($ measured $)=.669 \mathrm{~V}$
$V_{C 2}($ measured $)=4.1 \mathrm{~V}$
$I_{X}=.9 \mathrm{~mA}$
$I_{L}=1.5 \mathrm{~mA}$

Part 4: Multiple Current Mirrors

a. $\quad I_{X}$ (calculated) $=1 \mathrm{~mA}$
b. $\quad V_{B 1}($ measured $)=.672 \mathrm{~V}$
$V_{C 2}($ measured $)=1.67 \mathrm{~V}$
$V_{C 3}($ measured $)=1.65 \mathrm{~V}$
$I_{X}=1.01 \mathrm{~mA}$
$I_{L 1}=1.58 \mathrm{~mA}$
$I_{L 2}=1.78 \mathrm{~mA}$
c. $\quad I_{X}$ (calculated) $=1 \mathrm{~mA}$
$V_{B 1}($ measured $)=.672 \mathrm{~V}$
$V_{C 2}($ measured $)=3.81 \mathrm{~V}$
$V_{C 3}$ (measured) $=2.87 \mathrm{~V}$
$I_{X}=1.02 \mathrm{~mA}$
$I_{L 1}=1.73 \mathrm{~mA}$
$I_{L 2}=1.44 \mathrm{~mA}$
Part 5: Computer Exercise
PSpice Simulation 24-1

1. See circuit diagram.

2. $\quad I\left(R_{X}\right)=933.6 \mu \mathrm{~A}$
$I\left(R_{L}\right)=1.020 \mathrm{~mA}$
3. Yes
4. See Circuit diagram.

PSpice Simulation 24-1: Current Mirror

5. $\quad I\left(R_{X}\right)=933.6 \mu \mathrm{~A}$
$I\left(R_{L}\right)=991.3 \mu \mathrm{~A}$
6. Yes
8. Yes
10. Yes
11. No
12. Yes

EXPERIMENT 25: FREQUENCY RESPONSE OF COMMON-EMITTER AMPLIFIERS

Résumé

$$
\begin{aligned}
& f_{L, 1}=1 /(2 * 3.24 * 1.39 \mathrm{~K} * 10 \mu \mathrm{f})=11.5 \mathrm{~Hz} \\
& f_{L, 2}=1 /(2 * 3.24 * 6.1 \mathrm{~K} * 1 \mu \mathrm{f})=26 \mathrm{~Hz} \\
& f_{L, E}=1 /(2 * 3.14 * 2.2 \mathrm{~K} * 20 \mu \mathrm{f})=3.62 \mathrm{~Hz} \\
& f_{H, i}=1 /(2 * 3.14 * 1.68 \mathrm{~K} * 960 \mu \mathrm{f})=98.7 \mathrm{KHz} \\
& f_{H, O}=1 /(2 * 3.14 * 1.43 \mathrm{~K} * 45 \mathrm{pf})=2.43 \mathrm{MHz}
\end{aligned}
$$

Part 1: Low-Frequency Response Calculations
a. $\quad C_{b e}($ specified $)=100 \mathrm{pf}$
$C_{b c}($ specified $)=10 \mathrm{pf}$
$\mathrm{C}_{c e}($ specified $)=15 \mathrm{pf}$
$C_{W, i}$ (approximated) $=20 \mathrm{pf}$
$C_{W, o}($ approximated $)=30 \mathrm{pf}$
b. $\quad \beta($ measured $)=126$
c. $\quad V_{B}($ calculated $)=4.08 \mathrm{~V}$
V_{E} (calculated) $=3.38 \mathrm{~V}$
$V_{C}($ calculated $)=14 \mathrm{~V}$
I_{E} (calculated) $=1.54 \mathrm{~mA}$
$r_{e}=26 \mathrm{mV} / I_{E}=26 \mathrm{mV} / 1.54 \mathrm{~mA}=16.9 \mathrm{ohms}$
d. $\quad A_{V}(\mathrm{mid})=\left(R_{C} \| R_{L}\right) / r_{e}=(3.9 \mathrm{~K} \| 2.2 \mathrm{~K}) / 16.9=83.2$
e. $f_{L, 1}$ (calculated) $=11.5 \mathrm{~Hz}$
$f_{L, 2}$ (calculated) $=26.2 \mathrm{~Hz}$
$f_{L, E}($ calculated $)=3.62 \mathrm{~Hz}$
Part 2: Low Frequency Response Measurements
b. $\quad V_{\text {sig }}($ measured $)=30 \mathrm{mV}$
$V_{O}($ measured $)=2.1 \mathrm{~V}$
$A_{V}(\mathrm{mid})=70$

$f(\mathrm{~Hz})$	50	100	200	400	600	800	1 K	2 K	3 K	5 K	10 K
$V_{O(p-p)}$. 4	. 5	. 9	1.6	1.8	1.9	2.0	2.1	2.1	2.1	2.2
Table 25.2											
$f(\mathrm{~Hz})$	50	100	200	400	600	800	1 K	2 K	3 K	5 K	10 K
A_{V}	13.2	16.7	30	53.3	60	63.3	66.7	70	70	70	73.3

Part 3: High Frequency Response Calculations
a. $f_{\mathrm{H}, \mathrm{I}}($ calculated $)=98.7 \mathrm{KHz}$
$f_{H, O}($ calculated $)=2.47 \mathrm{MHz}$
b.

$f(\mathrm{KHz})$	10	50	100	300	500	600	700	900	1000	2000
$V_{O(p-p)}$	2.2	2.2	2.1	1.9	1.6	1.5	1.4	1.3	1.3	. 8
Table 25.4										
$f(\mathrm{KHz})$	10	50	100	300	500	600	700	900	1000	2000
A_{V}	73	73	70	63	53	20	46	40	40	27

Part 4: Plotting Bode Plot and Frequency Response
Fig 25.2

from plot: $f_{1}=400 \mathrm{~Hz}$
$f_{2}=500 \mathrm{~Hz}$
Part 5: Computer Exercise
PSpice Simulation 25-1

1. See circuit diagram.

PSpice Simulation 25-1: Frequency Response of Common Emitter Amplifier

2. $\quad r_{e}=17.2 \Omega ; A_{V \text { mid }}=81.3$
4. See Probe plot 346.
5. Almost identical
6. See Probe plot page 346.
7. See Probe plot page 347.
8. $20 \log (78.028)=37.84 \quad$ both gains agree
** Profile: "SCHEMATIC1-2" [C: \Program Files \backslash OrcadLite \backslash My Documents \backslash Lab Revision PSpice $21-25 \backslash p s p i c .$.
Date/Time run: $01 / 05 / 0513: 43: 16$

A1: $(44.479 \mathrm{M}, 55.367) \mathrm{A} 2:(460.082,55.367) \quad \mathrm{DIFF}(\mathrm{A}):(44.478 \mathrm{M}, 0.000)$ Date: January 05, 2005
** Profile: "SCHEMATIC1-2" [C: \Program Files \backslash OrcadLite \backslash My Documents \backslash Lab Revision PSpice 21-25\pspic...
Date/Time run: 01/05/05 13:43:16
(A) pspice simulation 25-1-SCHEMATIC1-2 (active)

Time: 14:02:47

EXPERIMENT 26: CLASS A AND CLASS B POWER AMPLIFIERS

Part 1: Class A Amplifier: DC Bias
a. $\quad V_{B}($ calculated $)=1.53 \mathrm{~V}$
$V_{E}($ calculated $)=.83 \mathrm{~V}$
$I_{E}($ calculated $)=I_{C}=V_{E} / R_{E}=.83 / 20=41 \mathrm{~mA}$
$V_{C}($ calculated $)=5.1 \mathrm{~V}$
b. $\quad V_{B}($ measured $)=1.59 \mathrm{~V}$
$V_{E}($ measured $)=.88 \mathrm{~V}$
$V_{C}($ measured $)=5.3 \mathrm{~V}$
$I_{E}($ calculated $)=I_{C}=V_{E} / R_{E}=.88 / 20=44 \mathrm{~mA}$

Part 2: Class-A Amplifier: AC Operation
a. $\quad P_{i}($ calculated $)=400 \mathrm{~mW}$
$V_{O}($ calculated $)=5.3 \mathrm{Vp}-\mathrm{p}$
$P_{O}($ calculated $)=29.3 \mathrm{~mW}$
$\%$ efficiency $($ calculated $)=7.3$ percent
b. $\quad V_{i}($ measured $)=65 \mathrm{mV}$
$V_{o}($ measured $)=5 \mathrm{Vp}-\mathrm{p}$
c. $\quad P_{i}=400 \mathrm{~mW}$
$P_{O}=26 \mathrm{~mW}$
\% efficiency (calculated) $=6.5$ percent
While the values for the power and the efficiency are fairly consistent between the theoretical and those calculated from measured values, the low efficiency of the amplifier is an undesirable feature. In general, Class A amplifiers operate close to a 25 percent efficiency. This circuit would need to be redesigned to make it a practical circuit.
d. $\quad V_{i}$ (measured) $=32.5 \mathrm{mVp}-\mathrm{p}$
$V_{O}($ measured $)=3 \mathrm{Vp}-\mathrm{p}$
e. $\quad P_{i}($ calculated $)=400 \mathrm{~mW}$
$P_{O}($ calculated $)=9.38 \mathrm{~mW}$
\% efficiency $($ calculated $)=2.3$ percent
f. $\quad P_{i}=400 \mathrm{~mW}$
$P_{O}=93 \mathrm{~mW}$
\% efficiency $=2.3$ percent
As stated previously, while the data is consistent, the values of the efficiency makes this not a practical circuit.

Part 3: Class-B Amplifier Operation

a. for $V_{O}=1 \mathrm{~V}_{\text {peak }}$
P_{i} (calculated) $=1.59 \mathrm{~W}$
$P_{O}($ calculated $)=50 \mathrm{~mW}$
\% efficiency $($ calculated $)=3.1$ percent
for $V_{O}=2 \mathrm{~V}_{\text {peak }}$
$P_{i}=1.59 \mathrm{~W}$
$P_{O}=200 \mathrm{~mW}$
\% efficiency $($ calculated $)=12.6$ percent
b. $\quad V_{i}($ measured $)=2.9 \mathrm{Vp}-\mathrm{p}$
$V_{O}($ measured $)=2.7 \mathrm{Vp}-\mathrm{p}$
$P_{i}=890 \mathrm{~mW}$
$P_{O}=91 \mathrm{~mW}$
\% efficiency $=10.2 \%$
c. $\quad V_{i}($ measured $)=5 \mathrm{Vp}-\mathrm{p}$
$V_{O}($ measured $)=4 \mathrm{Vp}-\mathrm{p}$
$I_{\mathrm{dc}}($ measured $)=159 \mathrm{~mA}$
$P_{i}=1.27 \mathrm{~W}$
$P_{O}=637 \mathrm{~mW}$
\% efficiency $=50.2 \%$

Note that the efficiency of the Class B amplifier increases with increasing input signal and consequent increasing output signal. Also observe that the two stages of the Class B amplifier shown in Figure 26.2 are in the emitter follower configuration. Thus, the voltage gain for each stage is near unity. This is what the data of the input and the output voltages show. Note also, that as the output voltage approaches its maximum value that the efficiency of the device approaches its theoretical efficiency of about 78 percent.

Part 4: Computer Exercises
PSpice Simulation 26-1

1. See Circuit diagram.

PSpice Simulation 26-1: Class- A Amplifier

2. Yes.
3. $\quad V_{C E}=5.709 \mathrm{~V}-0.719 \mathrm{~V}=4.98 \mathrm{~V} \sqcup \frac{1}{2}(10 \mathrm{~V})$
4. $\quad 442.7 \mathrm{~mW}$
5. Q_{1}
7. See Probe plot page 309.
8. Yes
9. No
10. 180°
11. $\quad P_{o}(\mathrm{AC})=4.59 \mathrm{~mW}$
12. $\% \eta=1.04 \%$
13. DC values remain the same
$P_{o}(\mathrm{AC})=1.16 \mathrm{~mW}$
$\% \eta=0.26 \%$
See Probe plot page 310.
** Profile: "SCHEMATIC1-1" [C:\Program Files \OrcadLite \backslash My Documents \backslash Lab Revision PSpice $21-25 \backslash p s p i c . .$. (Time run: 01/06/05 13:43:31

** Profile: "SCHEMATIC1-1" [C:\Program Files \OrcadLite\My Documents \backslash Lab Revision PSpice 21-25\pspic... Date/Time run: 01/06/05 14:18:39

PSpice Simulation 26-2

1. See circuit diagram.
$P_{i}(\mathrm{DC})=372.1 \mathrm{~mW}$
Spice Simulation 26-2: Class B Amplifier

2. Q_{1} and Q_{2}
3. Yes.
4. $\quad V(E 2)=4.947 \mathrm{~V} \sqcup \frac{1}{2}(10 \mathrm{~V})$
5. $\quad V(B E)_{Q 1}=0.77 \mathrm{~V}$
$V(B E)_{Q 2}=-0.81 \mathrm{~V}$
6. Maintain proper bias across Q_{1} and Q_{2}.
7. 0.7 V
8. See Probe plot page 312.
9. $\quad V(\mathrm{OUT})_{p-\mathrm{p}}=4.077 \mathrm{~V}$
10. $\% \eta=55.8 \%$
11. $\quad V(\mathrm{OUT})_{p-p}=2.187 \mathrm{~V}$
$\% \eta=16.1 \%$
** Profile: "SCHEMATIC1-2" [C: \Program Files ${ }^{*}$ (OrcadLite \backslash My Documents \backslash PSpice Revision II\Lab Revision...
Date/Time run: 01/06/05 14:50:49

Time: 15:04:05

EXPERIMENT 27: DIFFERENTIAL AMPLIFIER CIRCUITS

Part 1: DC Bias of BJT Differential Amplifier
a. $\quad V_{B}($ calculated $)=0 V$
$V_{E}($ calculated $)=-.7 \mathrm{~V}$
$V_{C}($ calculated $)=5.43 \mathrm{~V}$
$I_{E}($ calculated $)=457 \mu \mathrm{~A}$
$r_{e}($ calculated $)=57$ ohms
b.

	$Q 1$	$Q 2$
V_{B} (measured)	-.10 V	0 V
V_{E} (measured)	-.65 V	-.65 V
V_{C} (measured)	5.10 V	4.9 V
I_{E} (calculated)	$490 \mu \mathrm{~A}$	$510 \mu \mathrm{~A}$
r_{e}	53 ohms	51 ohms

Part 2: AC Operation of BJT Differential Amplifier
a. $\quad A_{V, d}($ calculated $)=179$
$A_{V, c}$ (calculated) $=.5$
b. $\quad V_{O 1}($ measured $)=1.48 \mathrm{~V}$
$V_{O 2}($ measured $)=1.43 \mathrm{~V}$
$V_{O, d}=\left(V_{O, 1}+V_{O, 2}\right) / 2=(1.48+1.43) / 2=1.46 \mathrm{~V}$
$A_{V, d}=V_{O, d} / V_{i}=72.8$
c. $\quad V_{O, c}($ measured $)=.55 \mathrm{~V}$
$A_{V, c}=V_{O, c} / V_{i}=.55$
Part 3: DC Bias of BJT Differential Amplifier with Current Source
a. For either $Q 1$ or $Q 2$:
$V_{B}($ calculated $)=0 \mathrm{~V}$
$V_{E}($ calculated $)=-.7 \mathrm{~V}$
$V_{C}($ calculated $)=9 \mathrm{~V}$
$I_{E}($ calculated $)=.5 \mathrm{~mA}$
$r_{e}($ calculated $)=52$ ohms
For Q3:
$V_{B}($ calculated $)=-5 \mathrm{~V}$
$V_{E}($ calculated $)=-5.7 \mathrm{~V}$
$V_{C}($ calculated $)=-.7 \mathrm{~V}$
$I_{E}($ calculated $)=1 \mathrm{~mA}$
$r_{e}($ calculated $)=26$ ohms
b. For Q1, Q2, and Q3:

	Q_{1}	Q_{2}	Q_{3}
V_{B} (measured)	47 mV	0 mV	-4.69 V
V_{E} (measured)	-.64 V	-.64 V	-5.35 V
V_{C} (measured)	7.91 V	2.97 V	-.64 V
I_{E} (calculated)	$110 \mu \mathrm{~A}$	$612 \mu \mathrm{~A}$	$783 \mu \mathrm{~A}$
r_{e} (calculated)	236 ohms	42.5 ohms	33.2 ohms

Part 4: AC Operation of Differential Amplifier with Transistor Current Source
a. $\quad \mathrm{A}_{V, d}=R_{C} /\left(2 * r_{e}\right)=10 \mathrm{~K} /(2 * 57.8)=173$

Part 5: JEFT Differential Amplifier
a. For Q1: $\quad I_{D S S}=7.9 \mathrm{~mA}$

$$
V_{P}=-3.1 \mathrm{~V}
$$

For Q2: $\quad I_{\text {DSS }}=8.1 \mathrm{~mA}$ $V_{P}=-3.4 \mathrm{~V}$

For Q3: $\quad I_{D S S}=11.2 \mathrm{~mA}$ $V_{P}=-4.2 \mathrm{~V}$
b. $\quad V_{D, 1}($ calculated $)=9.84 \mathrm{~V}$
$V_{D, 2}($ calculated $)=9.84 \mathrm{~V}$
$V_{S, 1}($ calculated $0=.845 \mathrm{~V}$
c. $\quad V_{G, 1}($ measured $)=0 \mathrm{~V}$
$V_{D, 1}($ measured $)=9.71 \mathrm{~V}$
$V_{D, 2}($ measured $)=9.72 \mathrm{~V}$
$V_{D, 3}($ measured $)=.84 \mathrm{~V}$
d. $A_{V, d}=.184$
e. $\quad V_{O, 1}($ measured $)=50 \mathrm{mV}$
$V_{0,2}($ measured $)=46 \mathrm{mV}$
$A_{V 1, d}=.5$
$A_{V 2, d}=4.6$

Part 6: Computer Exercises
Pspice Simulations 27-1

1. See circuit diagram.
$P(\mathrm{DC})_{V C C}=9.283 \mathrm{~mW}$
$P(\mathrm{DC})_{V E E}=9.356 \mathrm{~mW}$

2. Practically yes
3. $\quad V(C E)_{Q_{1}}=V(C E)_{Q_{2}}=6 \mathrm{~V}$
4. Yes.
5. $I\left(Q_{1}\right)=464.2 \mu \mathrm{~A}$
$I\left(Q_{2}\right)=464.2 \mu \mathrm{~A}$
6. Yes
7. See Probe plot page 316.
8. (VOUT1) $)_{p-p}=(\text { VOUT2 })_{p-p}=3.23 \mathrm{~V}$
phase shift $=180^{\circ}$
9. See Probe plot page 317.
$A_{V}=114$
10. See Probe plot page 318.
11. (VOUT1) $)_{p-p}=(\text { VOUT2 })_{p-p}=0.98 \mathrm{~V}$ phase shift $=0^{\circ}$
12. See Probe plot page 319.
$A_{V}=0$
** Profile: "SCHEMATIC1-1" [C: \Program Files \Orcadlite\MY Documents \backslash Lab Revision PSpice 26-30\pspic...
Date/Time run: $06 / 01 / 0411: 18: 04$

 Time: 11:21:41 Aage 1
** Profile: "SCHEMATIC1-1" [C: \backslash Program Files ${ }^{\text {* }}$ (OrcadLite \backslash My Documents \backslash PSpice Revision II\Lab Revision...
Date/Time run: 01/07/05 13:03:28

** Profile: "SCHEMATIC1-1" [C: \Program Files \Orcadlite \backslash MY Documents \backslash Lab Revision PSpice 26-30\pspic...
Date/Time run: 06/01/04 11:29:36
 150us

200us
Time: 11:11:51

Pspice Simulations 27-2

1. See circuit diagram.
$P(\mathrm{DC})_{V C C}=9.853 \mathrm{~mW}$
$P(\mathrm{DC})_{V E E}=14.97 \mathrm{~mW}$
PSpice Simulation 27-2: Differential Amplifier with Current Source

2. $\quad V(C)_{Q_{1}}=5.074 \mathrm{~V}$
$V(C)_{Q_{2}}=5.074 \mathrm{~V}$
Yes
3. $I\left(Q_{1}\right)=492.6 \mu \mathrm{~A}$
$I\left(Q_{2}\right)=492.6 \mu \mathrm{~A}$
$I\left(Q_{3}(=993.0 \mu \mathrm{~A}\right.$
4. $\quad\left|I\left(Q_{1}\right)\right|=\left|I\left(Q_{2}\right)\right|$
$\left|I\left(Q_{3}\right)\right|=2\left|I\left(Q_{1}\right)\right|=2\left|I\left(Q_{2}\right)\right|$
5. See Probe plot page 322.
6. Both voltages are $1.7602 \mathrm{~V}_{p-p}$
phase shift $=180^{\circ}$
7. See Probe plot page 323. $A_{V}=125$
8. See Probe plot page 324.
9. $1.6 \mathrm{mV}_{p-p}$ phase shift $=0^{\circ}$
10. See probe plot page 325.
$A_{V}=0$
** Profile: "SCHEMATIC1-2" [C: \backslash Program Files \OrcadLite \backslash My Documents \backslash PSpice Revision II $\begin{aligned} & \text { Lab Revision... } \\ & \text { Date/Time run: 01/07/05 14:31:05 }\end{aligned}$
Temperature: 27.0

Date: January 07, 2005
** Profile: "SCHEMATIC1-2" [C: \Program Files \OrcadLite\My Documents \backslash PSpice Revision II \Lab Revision... Date/Time run: 01/07/05 14:31:05 (A) pspice simulation 27-2-SCHEMATIC1-2 (active)

Time: 14:47:34
A1: $(175.116 \mathrm{u}, 1.7605) \mathrm{A} 2:(124.424 \mathrm{u},-1.7589) \quad$ DIFF $(\mathrm{A}):(50.692 \mathrm{u}, 3.5193)$
Date: January 07,2005
** Profile: "SCHEMATIC1-2" [C: \Program Files \OrcadLite \backslash My Documents \backslash PSpice Revision II Lab Revision...
Date/Time run: 01/07/05 15:19:46

$\mathrm{A} 1:(170.777 \mathrm{u}, 5.0746) \quad \mathrm{A} 2:(124.661 \mathrm{u}, 5.0729) \quad \operatorname{DIFF}(\mathrm{A}):(46.115 \mathrm{u}, 1.6750 \mathrm{~m})$ Date: January 07, 2005
** Profile: "SCHEMATIC1-2" [C: \backslash Program Files \backslash OrcadLite \backslash My Documents \backslash PSpice Revision II\Lab Revision...
Date/Time run: $01 / 07 / 0515: 35: 28$

EXPERIMENT 28: OP-AMP CHARACTERISTICS

Part 1: Determining the Slew Rate
f. 5 V p-p
g. 12 us
h. $0.41 \mathrm{~V} / \mathrm{us}$

Part 2: Determining the Common Mode Rejection Ratio
g. Vout(rms) $=0.263 \mathrm{~V} \quad$ Vin(rms) $=8.7 \mathrm{~V}$
h. $\quad \mathrm{A}(\mathrm{cm})=\mathrm{V}($ out $) / \mathrm{V}(\mathrm{in})=0.0302$
i. $\quad \mathrm{A}(\mathrm{dif})=\mathrm{R} 1 / \mathrm{R} 2=1000$
j. $\quad C M R(d B)=90.4 d B$
k. Published values: 90-95 dB

Part 3: Computer Exercises
PSpice Simulation: Determining the Slew Rate
b. V (Vout) max $=5 \mathrm{~V} \quad \mathrm{~V}$ (Vout)min $=0 \mathrm{~V}$
c. Time interval = 12 us
d. $\quad \mathrm{SR}=0.40$ us
e. Published values: 0.3-0.7 us

PSpice Simulation: Determining the Common Mode Rejection Ratio
b. $\quad \mathrm{A}(\mathrm{cm})=\mathrm{V}($ out $) / \mathrm{V}(\mathrm{in})=0.26 \mathrm{~V} / 8.7 \mathrm{~V}=0.03$
c. $\mathrm{A}(\mathrm{dif})=\mathrm{R} 1 / \mathrm{R} 2=1000$
d. $\quad C M R(d B)=90.4$
e. Published values: 90-95 dB

EXPERIMENT 29: LINEAR OP-AMP CIRCUITS

Part 1: Inverting Amplifier
a. $\quad V_{O} / V_{i}($ calculated $)=-R_{O} / R_{i}=100 \mathrm{~K} / 20 \mathrm{~K}=-5$
b. $\quad V_{O}($ measured $)=-4.87$
$A_{V}=-V_{O} / V_{i}=4.87 / 1=-4.87$
c. $\quad V_{O} / V_{i}$ (calculated) $=-R_{O} / R_{i}=-100 \mathrm{~K} / 100 \mathrm{~K}=-1$
$V_{O}($ measured $)=1 \mathrm{~V}$
$A_{V}=-V_{O} / V_{i}=-1.06 / 1=-1.06$
d.

Fig 29.6

Part 2: Noninverting Amplifier
a. $\quad A_{V}($ calculated $)=\left(1+R_{O} / R_{i}\right)=(1+100 \mathrm{~K} / 20 \mathrm{~K})=6$
b. $\quad V_{O}($ measured $)=5.24 \mathrm{~V}$
$A_{V}=V_{O} / V_{i}=5.25 / 1=5.25$
The two gains are within 12.5 percent of agreement.
c. $\quad A_{V}($ calculated $)=(1+100 \mathrm{~K} / 100 \mathrm{~K})=2$
$V_{O}($ measured $)=2.17 \mathrm{~V}$
$V_{o} / V_{i}=2.17$
The two gains are within 8.5 percent of agreement.
Part 3: Unity-Gain Follower
a. $\quad V_{i}($ measured $)=2.06 \mathrm{~V}$
$V_{O}($ measured $)=2.05 \mathrm{~V}$
The ratio of the computed gain from measured values is equal to .995 , which is practically identical to the theoretical unity gain.

Part 4: Summing Amplifier
a. $\quad V_{O}($ calculated $)=-[100 \mathrm{~K} / 100 \mathrm{~K} * 1+100 \mathrm{~K} / 20 \mathrm{~K} * 1]=-6 \mathrm{~V}$
b. $\quad V_{O}($ measured $)=-5.02 \mathrm{~V}$

The difference between the two values of V_{O} is equal to 16.3 percent.
c. $\quad V_{O}($ calculated $)=-[100 \mathrm{~K} / 100 \mathrm{~K} * 1+100 \mathrm{~K} / 100 \mathrm{~K} * 1]=-2 \mathrm{~V}$
$V_{O}($ measured $)=-2.01 \mathrm{~V}$
The difference between the two values of V_{O} is equal to .5 percent.

Part 5: Computer Exercises

PSpice Simulation 29-1

1. See Probe plot page 329.
2. $(\text { VOUT })_{\text {peak }}=5 \mathrm{~V}$
$(\text { VIN })_{\text {peak }}=1 \mathrm{~V}$
3. $A_{V}=\frac{V_{o}}{V_{\text {in }}}=-\frac{R_{\text {out }}}{R_{\text {in }}}=-5$
4. $\frac{\text { VOUT }}{\text { VIN }}=-\frac{5 \mathrm{~V}}{1 \mathrm{~V}}=-5$
5. Yes
6. 180°
7. Yes
** Profile: "SCHEMATIC1-1" [C: \Program Files \Orcadlite \backslash MY Documents \backslash Lab Revision PSpice 26-30\pspic...
Date/Time run: $06 / 10 / 0421: 46: 35$

 $\begin{array}{l:l} \\ \vdots & \vdots \\ & \\ \end{array}$ 200us Time: 21:48:17

PSpice Simulation 29-2

1. See Probe plot page 331.
2. $(\text { VOUT })_{\text {peak }}=6 \mathrm{~V}$
$(\mathrm{VIN})_{\text {peak }}=1 \mathrm{~V}$
3. $\frac{V_{o}}{V_{\text {in }}}=\left(1+\frac{R_{\text {out }}}{R_{\text {in }}}\right)=\left(1+\frac{100 \mathrm{k} \Omega}{20 \mathrm{k} \Omega}\right)=6$
4. $\quad \frac{V_{\text {out }}}{\mathrm{V}_{\text {in }}}=\frac{6 \mathrm{~V}}{1 \mathrm{~V}}=6$
5. Yes
6. 0°
7. Yes
** Profile: "SCHEMATIC1-1" [C: \Program Files \Orcadlite \backslash MY Documents \backslash Lab Revision PSpice 26-30\pspic...
Tate/Time run: $06 / 15 / 0410: 49: 45$

Time: 10:51:53
Page 1
Date: June 15, 2004

EXPERIMENT 30: ACTIVE FILTER CIRCUITS

Part 1: Low-Pass Active Filter
a. $\quad f_{L}($ calculated $)=1 /(2 * 3.14 * 10 \mathrm{~K} * .001 \mu \mathrm{~F})=15.9 \mathrm{KHz}$
b.

Table 30.1 Low Pass Filter

$f(\mathrm{~Hz})$	100	500	1 K	2 K	5 K	10 K	15 K	20 K	30 K
$V_{O}(\mathrm{~V})$	1.0	1.0	1.0	.99	.95	.85	.74	.59	.52

c.

Fig 30.4

d. $\quad f_{L}($ from graph $)=15 \mathrm{KHz}$

Part 2: High-Pass Filter
a. $\quad f_{H}=1 /\left(2 * 3.14 * R_{2} * C_{2}\right)=1 /(2 * 3.14 * 10 \mathrm{~K} * .001 \mu \mathrm{~F})=15.9 \mathrm{KHz}$
b.

$f(\mathrm{~Hz})$	1 K	2 K	5 K	10 K	20 K	30 K	50 K	100 K	300 K
$V_{O}(\mathrm{~V})$.06	.13	.31	.54	.78	.94	1.0	1.0	1.0

C.

Fig. 30.5

d. $f_{H}($ from graph $)=15 \mathrm{KHz}$

Part 3: Band-Pass Active Filter
c.

Table 30.3 Band-Pass Filter

$f(\mathrm{~Hz})$	100	500	1 K	2 K	5 K	10 K	15 K	20 K	30 K
$V_{O}(\mathrm{~V})$.01	.035	.07	.15	.32	.51	.57	.57	.49
$f(\mathrm{~Hz})$	50 K	100 K	200 K	300 K					
$V_{O}(\mathrm{~V})$.35	.10							
d.									

Fig 30.6

Part 4: Computer Exercises
PSpice Simulation 30-1
1-2. See Probe plot page 334.
3-4. See Probe plot page 335.
5. Slight variance due to PSpice cursor position.
6. $\quad f_{C}$ (calculated) $=15.923 \mathrm{KHz}$
$f_{C}($ numeric gain $)=15.937 \mathrm{KHz}$
$f_{C}($ log. gain $)=15.848 \mathrm{KHz}$
** Profile: "SCHEMATIC1-1" ${ }^{[}$C:\Program Files \backslash Orcadlite \backslash MY Documents \backslash Lab Revision PSpice 26-30\pspic...
Date/Time run: $06 / 18 / 0419: 22: 27$

Time: 13:53:45
** Profile: "SCHEMATIC1-1" [C: \backslash Program Files ${ }^{*}$ (Orcadlite \backslash MY Documents \backslash Lab Revision PSpice $26-30 \backslash$ pspic...
Date/Time run: $06 / 18 / 0419: 22: 27$

A1: $(15.849 \mathrm{~K},-2.9961) \quad \mathrm{A} 2:(1.0000,-2.8759 \mathrm{~m}) \quad \operatorname{DIFF}(\mathrm{A}):(15.848 \mathrm{~K},-2.9932)$
Date: January 11,2005

PSpice Simulation 30-2
1-5. See Probe plot page 337.
6-8. See Probe plot page 338.
9.

Numeric	Logarithmic
f_{C} (low): 6.5151 KHz	6.6408 KHz
f_{C} (high): 38.826 KHz	38.214 KHz
Bandwidth: 32.311 KHz	31.573 KHz

10. See tabulation in \#9.
** Profile: "SCHEMATIC1-1" [C: \Program Files \Orcadlite\MY Documents \Lab Revision PSpice 26-30\pspic...
 Date: June 18, 2004
** Profile: "SCHEMATIC1-1" [C: \Program Files\Orcadlite\MY Documents \backslash Lab Revision PSpice $26-30 \backslash p s p i c . .$.

[^1]A1: $(38.214 \mathrm{~K},-9.0302)$ A2: $(6.6408 \mathrm{~K},-9.0136) \quad \operatorname{DIFF}(\mathrm{A}):(31.573 \mathrm{~K},-16.646 \mathrm{~m})$
Date: January 11,2005
Page 1

EXPERIMENT 31: COMPARATOR CIRCUITS OPERATION

Part 1: Comparator with 74IC Used as a Level Detector
a. $\quad R_{3}=10$ Kohms, $V_{\text {ref }}=5 \mathrm{~V}$
$R_{3}=20$ Kohms, $\quad V_{\text {ref }}=6.7 \mathrm{~V}$
c. $\quad V_{\text {ref }}($ measured $)=4.97 \mathrm{~V}$
d. $\quad V_{i}($ measured $)($ LED goes on $)=5.01 \mathrm{~V}$
V_{i} (measured) (LED goes off) $=4.98 \mathrm{~V}$
e. $\quad V_{\text {ref }}($ measured $)=6.63 \mathrm{~V}$
$V_{i}($ measured $)($ LED goes on $)=6.65 \mathrm{~V}$
$V_{i}($ mesasured $)($ LED goes off $)=6.61 \mathrm{~V}$
All values of voltages measured and calculated relative to a particular R_{3} are in very close agreement.

Part 2: Comparator IC Used as a Level Detector
a. $\quad R_{3}=10 \mathrm{Kohms} \quad V_{\text {ref }}($ calculated $)=4.98 \mathrm{~V}$
$R_{3}=20$ Kohms $\quad V_{\text {ref }}($ calculated $)=6.63 \mathrm{~V}$
c. $\quad V_{\text {ref }}($ measured $)=4.97 \mathrm{~V}\left(R_{3}=10 \mathrm{Kohms}\right)$
d. $\quad V_{i}($ measured $)($ LED goes on $)=5.01 \mathrm{~V}$
$V_{i}($ measured $)($ LED goes off $)=4.97 \mathrm{~V}$
e. Replace R_{1} with 20 Kohm resistor.
$V_{\text {ref }}($ measured $)=6.67\left(R_{3}=20 \mathrm{Kohms}\right)$
V_{i} (measured) (LED goes on) $=6.69 \mathrm{~V}$
$V_{i}($ measured $)($ LED $)$ goes off) $=6.65 \mathrm{~V}$
f. $\quad V_{i}$ (measured) (LED goes on) $=6.65 \mathrm{~V}$
$V_{i}($ measured $)($ LED goes off $)=6.67 \mathrm{~V}$
The agreement between calculated and measured values in every case was near perfect.
Part 3: Window Comparator
a. $V^{+}($pin5, calculated $)=7.5 \mathrm{~V}$
$V^{-}($pin6, calculated $)=2.5 \mathrm{~V}$
c. $\quad V_{i}($ pin1, measured $)=7.6 \mathrm{~V}$
$V^{+}($pin5, measured $)=7.36 \mathrm{~V}$
$V($ pin6, measured $)=2.3 \mathrm{~V}$
d. $\quad V_{\mathrm{i}}($ measured $)($ LED goes on $)=7.6 \mathrm{~V}$
$V_{i}($ measured $)($ LED goes off $)=2.6 \mathrm{~V}$
e. $\quad V_{i}$ (measured) (LED goes on) $=7.46 \mathrm{~V}$
$V_{i}($ measured $)($ LED goes off $)=2.2 \mathrm{~V}$
f. $\quad V_{i}$ (measured) (LED goes on) $=7.46 \mathrm{~V}$
$V_{i}($ measured $)($ LED goes off $)=5.01 \mathrm{~V}$
Again as in the previous case, the agreement between measured and calculated values was excellent.

Part 4: Computer Exercises
PSpice Simulation 31-1

1. See circuit diagram.

PSpice Simulation 31-1: Comparator Circuit

2. $\quad V_{\text {in }}=6 \mathrm{~V} ; V_{\text {ref }}=5 \mathrm{~V}$
3. Yes. $I(\mathrm{D} 1)=9.006 \mathrm{~mA}$

4-6. See circuit diagram.

8. $\quad V_{\text {in }}=4 \mathrm{~V} ; V_{\text {ref }}=5 \mathrm{~V}$
9. $\quad \mathrm{No}, \mathrm{I}(\mathrm{D} 1)<8 \mathrm{~mA} ; I(\mathrm{D} 1)=118.8 \mu \mathrm{~A}$

PSpice Simulation 31-2
1-3. See Probe plot page 342.
** Profile: "SCHEMATIC1-1" [C: \backslash Program Files \OrcadLite \backslash My Documents \backslash PSpice Revision II ILab Revision...
Date/Time run: $02 / 01 / 0511: 33: 57$

EXPERIMENT 32: OSCILLATOR CIRCUITS 1: THE PHASE-SHIFT OSCILLATOR

Part 1: Determining Vout
d. $f($ theoretical $)=650 \mathrm{~Hz}$
f. Estimated setting of RPot $=3$ kohm
g. Vout (peak-peak) $=29 \mathrm{~V}$
h. Period $=1.54 \mathrm{~ms}$
i. $f($ experimental $)=649.4 \mathrm{~Hz}$
j. Calculated \% difference $=0.15$
k. \quad RPot $+\mathrm{Rf}=29.5$ kohm

1. Open-loop gain $=29.5$
m. Calculated $\%$ difference $=7.8 \%$

Part 2: PSpice Simulation
b. $\quad \operatorname{Vout}($ peak-peak $)=28.8 \mathrm{~V}$
c. $\operatorname{Vout}($ period $)=1.54 \mathrm{~ms}$
d. $\operatorname{Vout}($ frequency $)=649.4 \mathrm{~Hz}$
e. $\operatorname{Vout}($ peak-peak $)=19.1 \mathrm{~V}$
f. $\operatorname{Vout}($ frequency $)=646.5 \mathrm{~Hz}$
j. $\quad \mathrm{P}(\mathrm{V}($ feedback $)=-89.9$ degrees
$P(V(V O U T)=89.4$ degrees
$\mathrm{P}(\mathrm{V}($ VOUT $)-\mathrm{P}(\mathrm{V}($ feedback $)=180$ degrees

EXPERIMENT 33: OSCILLATOR CIRCUITS 2

Part 1: Wien Bridge Oscillator
c. $\quad T($ measured $)=305 \mu \mathrm{~s}$
d. $f=1 / T=1 / 305 \mu s=3.28 \mathrm{KHz}$
e. $\quad T$ (measured, $C=0.01 \mu \mathrm{~F}$) $=3 \mathrm{~ms}$
$f($ calculated, $C=0.01 \mu \mathrm{~F})=328 \mathrm{~Hz}$
f. $\quad f$ (calculated, $C=.001 \mu \mathrm{~F}$) $=3.12 \mathrm{KHz}$
$f($ calculated, $C=.01 \mu \mathrm{~F})=312 \mathrm{~Hz}$
Again, the agreement between the two sets of values was well within 10 percent.
Part 2: 555 Timer Oscillator
c. $\quad T($ measured $)=20.1 \mu \mathrm{~s}$
d. $f=1 / T=49.3 \mathrm{KHz}$
e. $\quad T$ (measured, $C=0.01 \mu \mathrm{~F})=203 \mu \mathrm{~s}$ $f=1 / T=4.93 \mathrm{KHz}$
f. $k=f R C=.48$
$f=4.91 \mathrm{KHz}$
The agreement between the two values differed by only .4 percent.
Part 3: Schmitt-trigger Oscillator
c. $\quad T$ (measured $)=21 \mu \mathrm{~s}$
d. $f=1 / T=46.9 \mathrm{KHz}$
e. $\quad T$ (measured, $C=0.01 \mu \mathrm{~F}$) $=210 \mu \mathrm{~s}$ $f=1 / T=4.69 \mathrm{KHz}$
f. $\quad f$ (calculated, $C=0.001 \mu \mathrm{~F}$) $=46 \mathrm{KHz}$ $f($ calculated, $C=0.01 \mu \mathrm{~F})=4.6 \mathrm{KHz}$

The measured and calculated values of the frequency for each capacitor were within 2 percent of each other.
** Profile: "SCHEMATIC1-1" [C: \Program Files $\begin{aligned} & \text { OrcadLite } \backslash \text { My Documents } \backslash \text { Lab Revision } 31-35 \backslash p s p i c e ~ s i m u l . . . ~\end{aligned}$
Date/Time run: $07 / 01 / 0411: 35: 00$

PSpice Simulation 33-1

1. See Probe plot page 347.
(VOUT) min $=0 \mathrm{~V}$
$(\text { VOUT })_{\text {max }}=10 \mathrm{~V}$
2. Yes.
3. $\quad 15.87 \mu \mathrm{~s}$
4. $\quad \mathrm{PW}=8.63 \mu \mathrm{~s}$
5. $f=63.2 \mathrm{KHz}$
6. See Probe plot page 348.
7. Yes
8. No
9. $\quad P=31.115 \mu \mathrm{~s}$
10. $\quad P W=23.993 \mu \mathrm{~s}$
11. $f=41.67 \mathrm{KHz}$
12. Yes

** Profile: "SCHEMATIC1-2" [C: \Program Files\Orcadlite\My Documents\Lab Revision 31-35\pspice simul...
 A1:(64.196u, 5.9322$) \quad \mathrm{A} 2:(40.203 \mathrm{u}, 5.9322) \quad$ DIFF(A):(23.993u, 0.000$)$
Date: November 29, 2004

EXPERIMENT 34: VOLTAGE REGULATION—POWER SUPPLIES

Note: The data obtained in this experiment was based on the use of a 10 volt Zener diode.
Part 1: Series Voltage Regulator
a. $V_{L}=V_{Z}-V_{B E}=10 \mathrm{~V}-.7 \mathrm{~V}=9.3 \mathrm{~V}$
b. $\quad V_{O}($ measured $)=9.3 \mathrm{~V}$

Table 34.1

$V_{i}(\mathrm{~V})$	10	11	12	13	14	15	16
$V_{O}(\mathrm{~V})$	9.25	9.26	9.28	9.30	9.32	9.33	9.35

The voltage regulation of the system was -.54 percent.
Part 2: Improved Series Regulator
a. $A=1+R_{1} / R_{2}=1+1 \mathrm{~K} / 2 \mathrm{~K}=1.5$
$V_{L}=A_{V Z}$
V_{L} (calculated) $=15 \mathrm{~V}$
b.

Table 34.2

$V_{i}(\mathrm{~V})$	10	12	13	14	16	18	20	22	24
$V_{L}(\mathrm{~V})$	9.44	9.44	9.60	9.64	14.7	14.8	14.9	14.9	14.9

Upon coming near the nominal voltage level, the regulation of the system was -2 percent.
Part 3: Shunt Voltage Regulator
a. $\quad V_{L}=\left(R_{1}+R_{2}\right) * V_{Z} / R_{1}=3 \mathrm{~K} / 2 \mathrm{~K} * 10 \mathrm{~V}=15 \mathrm{~V}$
b. $\quad V_{L}($ measured $)=14.7 \mathrm{~V}$

Table 34.3							
$V_{i}(\mathrm{~V})$	24	26	28	30	32	34	36
$V_{O}(\mathrm{~V})$	14.3	14.4	14.5	14.7	14.7	14.9	15.1

The regulation of this system was 2.7 percent.
Part 4: Computer Exercises
PSpice Simulation 34-1

1. See Probe plot page 350.
2. $\quad V_{\text {in }}$ is swept linearly from 2 V to 8 V in 1 V increments.
3. $\quad V(V 2)=4.68 \mathrm{~V}$
$V(\mathrm{OUT})=4 \mathrm{~V}$
4. \quad Approx. at $V(\mathrm{VIN}))=6.5 \mathrm{~V}$
5. $\quad 0.68 \mathrm{~V}$
6. Yes
7. $V_{L}=4.68 \mathrm{~V}-0.68 \mathrm{~V}=4 \mathrm{~V}$
** Profile: "SCHEMATIC1-2" [C: \Program Files \Orcadlite\My Documents \Lab Revision 31-35\pspice simul...
Date/Time run: 07/09/04 19:27:54

A1: $(8.0000,3.9748)$ A2: $(2.0000,2.0000) \quad \operatorname{DIFF}(\mathrm{A}):\left(\frac{(6.0000,1.9748)}{\text { Page } 1}\right.$

PSpice Simulation 34-2

1. See Probe plot page 352.
2. $\quad V(\mathrm{IN})$ increases linearly from 6 V to 16 V in 0.5 V increments.
3. $V_{L}=V($ OUT $)=\frac{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}(4.68 \mathrm{~V})=9.36 \mathrm{~V}$
4. $\quad V\left(\right.$ OUT $\left.\right|_{\text {theor. }}=9.36 \mathrm{~V}$
$\left.V(\mathrm{OUT})\right|_{\text {Pspice }}=8.9197 \mathrm{~V}$
5. $\quad V(V 2)=4.68 \mathrm{~V}$
$V($ VOUT $)=8.9197 \mathrm{~V}$
** Profile: "SCHEMATIC1-2" [C: \Program Files \OrcadLite\My Documents \backslash Lab Revision $31-35 \backslash p s p i c e ~ s i m u l . . . ~$
Temperature: 27.0

EXPERIMENT 35: ANALYSIS OF AND, NAND, AND INVERTER LOGIC GATES

Part 1: The AND Gate: Computer Simulation
a.

Table 35-1

Input terminal 1	Input terminal 2	Output terminal 3
1	1	1
0	1	0
1	0	0
0	0	0

Traces U1A:A and U1A:B are the inputs to the gate.
Trace U1A: \mathbf{Y} is the output of the gate.
b. The output is at a logical HIGH if and only if both inputs are HIGH.
c. Over the period investigated, the Off state is the prevalent one.
d.

Terminal	25 ms	125 ms	375 ms
1	1	1	0
2	1	1	0
3	1	0	0

Part 2. The AND Gate: Experimental Determination of Logic States
a. Ideally, the same.
b. 10 Hz
c. Should be the same as that for the simulation.
d. The amplitude of the TTL pulses are about 5 volts, that of the Output terminal 3 is about 3.5 volts.
e. The internal voltage drop of across the gate causes the difference between these voltage levels.

Part 3: Logic States versus Voltage Levels
b. Example of a calculation: assume: $\mathrm{V}(\mathrm{V} 1 \mathrm{~A}: \mathrm{Y})=3.5$ volts, $\mathrm{VY}=3.4$ volts

$$
\text { \%deviation }=\frac{3.5 \mathrm{~V}-3.4 \mathrm{~V}}{3.5 \mathrm{~V}} * 100=2.86 \text { percent }
$$

c. For this particular example, the calculated percent deviation falls well within the permissible range.

Part 4: Propagation delay
a. For the current case, the propagation delay at the lagging edge of the applied TTL pulse should be identical to that at the leading edge of that pulse. Thus, it should measure about 18 nanoseconds.
b. Ideally, the propagation delays determined by the simulation should be identical to that determined in the laboratory.
c. From Laboratory data, determine the percent deviation using the same procedure as before.

Part 5: NOT-AND Logic
A. Computer Simulation
a.

Table 35-2

Input1(7408)	Input 2(7408)	Input1(7404)	Output(7404)
1	1	1	0
0	1	0	1
1	0	0	1
0	0	0	1

Traces U1A: A and U1A:B are the inputs to the 7408 gate, U1A:Y its output trace. Trace U2A:Y is the output of the 7404 gate.
b. The Output of the 7404 gate will be HIGH if and only if the input to both terminals of the 7408 gate are HIGH, otherwise, the output of the 7404 gate will be LOW.
c. The most prevalent state of the Output terminal of the 7404 gate is HIGH.
d. The PSpice cursor was used to determine the logic states at the requested times. The logic states are indicated at the left margin. At $t=25$ milliseconds:

At $t=125$ milliseconds

At $t=375$ milliseconds

B. Experimental Determination of Logic States
a. They should be relatively close to each other.
b. They are identical.
c. The output of the 7404 gate is the negation of the output of the 7408 gate.

Part 6: The 7400 NAND Gate
A. Computer Simulation

Table 35-3
a.

Input terminal 1	Input terminal 2	Output terminal 3
1	1	0
0	1	1
1	0	1
0	0	1

b.

B. Experimental Determination of Logic States

Table 35-4

Input terminal 1	Input terminal 2	Output terminal 3
1	1	0
0	1	1
1	0	1
0	0	1

EXPERIMENT 36: ANALYSIS OF OR, NOR AND XOR LOGIC GATES

Part 1: The OR Gate: Computer Simulation
a.

Table 36-1

Input terminal 1	Input terminal 2	Output terminal 3
1	1	1
0	1	1
1	0	1
0	0	0

Traces U1A:A and U1A:b are the inputs to the gate.
Trace U1A:Y is the output of the gate.
b. The output is a logical LOW if and only if both inputs are LOW, otherwise the output is HIGH.
c. Over the period investigated, the ON, or HIGH, state is the prevalent one. This differs from that of the AND gate. Its prevalent state was the OFF or LOW state.
d. The PSpice cursor was used to determine the logic states at the requested times. The logic states are indicated at the left margin.
At $t=25$ milliseconds:

At $t=125$ milliseconds

At $t=375$ milliseconds

Part 2: The OR Gate: Experimental Determination of Logic States
a. The pulse of 100 milliseconds of the TTL pulse is identical to that of the simulation pulse.
b. The frequency of 10 Hz of the TTL pulse is identical to that of the simulation pulse.
c. They were determined to be the same at the indicated times.
d. The voltage of the TTL pulse was 5 volts. The voltage at the output terminal was 3.5 volts.
e. The difference in these two voltages is caused by the internal voltage drop across the 7432 gate.

Part 3: Logic States versus Voltage Levels
a. The PSpice simulation produced the identical traces as shown on the PROBE plot for Figure 36-2.
b. Example of a calculation: assume $\mathrm{V}(\mathrm{V} 1 \mathrm{~A}: \mathrm{Y})=3.6$ volts, $\mathrm{VY}=3.4$ volts

$$
\text { \%deviation }=\frac{3.6 \mathrm{~V}-3.4 \mathrm{~V}}{3.6 \mathrm{~V}} * 100=5.56 \text { percent }
$$

a. It is larger by (5.56-2.86) $=2.7$ percent.

Part 4: Combining AND with OR Logic
A. Computer Simulation
a.

Table 36-2

U1A:A	U1A:B	U1A:Y	U2A:A	U2A:B	U2A:Y	U3A:A	U3A:B	U3A:Y
1	1	1	1	1	1	1	1	1
0	1	0	0	1	0	0	0	0
1	0	0	1	1	1	0	1	1
0	0	0	0	1	0	0	0	0

c.

At $t=25$ milliseconds

At $t=125$ milliseconds

At $t=375$ milliseconds

b. The output of the 7432 gate, U3A:Y, is evenly divided between the ON state and the OFF state during the simulation.
B. Experimental Determination of Logic States
a. The logic states of the simulation and those experimentally determined are identical.
b. The logic state of the output terminal U3A:Y is identical to that of the TTL clock.
c. The logic state of the output terminal U3A:Y is identical to that of the output terminal U2A:Y of the U2A gate.

Part 5: NOR and XOR Logic combined
A. Computer Simulation
a.

The output trace of the 7402 NOR gate, U1A:Y and the output trace of the XOR gate, $\mathrm{U} 2 \mathrm{~A}: \mathrm{Y}$ are both shown in the above plot.
b.

Table 36-3

U1A:A	U1A:B	U1A:Y	U2A:A	U2A:B	U2A:Y
1	1	0	1	1	0
0	1	0	0	1	1
1	0	0	1	0	1
0	0	1	0	0	0

c. The output of the 7402 gate, U1A:Y is HIGH if and only if both inputs are LOW, otherwise the output is LOW.
d. This is a logical inversion of the OR gate.
c. The output of the 7486 gate is HIGH if and only if the two inputs U2A:A and U2A:B are at opposite logic levels.
f. The logic state of the OR gate is HIGH if both inputs are at opposite logic levels and if both inputs are HIGH.
B. Experimental Determination of Logic States
a. The experimental data is identical to that obtained from the simulation.
b. Refer to the data in Table 36-3.
c. Refer to the data in Table 36-3.
d. Refer to the data in Table 36-3.
e. The output of the 7486 XOR gate is HIGH if and only if its input terminals have opposite logic levels, otherwise, its output is at a LOW.
f. For an OR gate, its output is HIGH if both, or at least one input terminal, is HIGH. Its output will be LOW if both inputs are LOW. For an XOR gate, its output is HIGH if and only if both input terminals are at opposite logic levels, otherwise, the output will be LOW.
g. The output of an XOR gate will be HIGH when both input terminals are at opposite logic levels. Otherwise, its output is at a logical LOW.

EXPERIMENT 37: ANALYSIS OF INTEGRATED CIRCUITS

Part 1: Positive Edge-Triggered D Flip-Flop

A. Computer Simulation
a. The PROBE data shows the flip flop to be in the SET condition.
b. The flip flop goes to RESET at 200 milliseconds because the D input terminal goes negative. The flip flop goes to SET at 400 milliseconds because both the CLOCK input and the \mathbf{D} input are positive.
c. The importance to note is that the \mathbf{D} input can be negative and positive during the time that the \mathbf{Q} output is low.
d. After the initial SET condition of the flip flop, and after a RESET state of 200 milliseconds, the flip flop returns to its SET condition because at 400 milliseconds, both the CLOCK and the \mathbf{D} inputs are positive.
e. Starting from a SET condition, a transition to RESET will occur when the D input is negative and the CLOCK pulse goes positive. The flip flop will SET again when the \mathbf{D} input is positive and the CLOCK goes positive.
f. The conditions stated in previous answer define a positive edge triggered flip flop as defined in the first paragraph of Part 1.
g. See above answers.
h.

i. Let us assume that D is high when a positive CLOCK pulse goes high. This will SET the flip flop. This SET will be stored, or remembered, until \mathbf{D} is negative and the CLOCK triggers positive again. At that time, the flip flop will RESET. This RESET will be stored, or remembered, until D is positive and the CLOCK triggers positive again. At that time the flip flop will SET. Events repeat themselves after this.
B. Experimental Determination of Logic States
a. Both input terminals are held at 5 volts during the experiment.
b. The amplitude of the voltage of the TTL pulse is 5 volts.
c. The amplitude of the output voltage at the \mathbf{Q} terminal is 3.5 volts.
d. The difference between the input voltages and the output voltage is caused by the voltage drop through the flip flop.
e. The experimental and the simulation transition states occur at the same times.
A. Computer Simulation

Answer all questions below with reference to the following PROBE plot.

a. The frequency at the $\mathbf{U 1 A}: \mathbf{Q}$ terminal is 5 Hz .
b. The frequency at the $\mathbf{U 1 A}: \mathbf{Q}$ terminal is one-half that of the $\mathbf{U 1 A}: \mathbf{C L K}$ terminal.
c. The frequency at the $\mathbf{U} \mathbf{2 A}: \mathbf{Q}$ terminal is 2.5 Hz .
d. The frequency of the U2A:Q terminal is one-half that of the U2A:CLK terminal.
e. The overall frequency reduction of the output pulse $\mathbf{U} 2 \mathbf{A}: \mathbf{Q}$ relative to the input pulse U1A:CLK is one-fourth.
f. Each flip flop reduced its input frequency by a factor of two.
g. It would take four 74107 flip-flops.
B. Experimental Determination of Logic States.
a. The \mathbf{J} and $\mathbf{C L R}$ terminals of both flip flops are kept at 5 volts during the experiment.
b. The voltage level of the U1A:CLK terminal is 5 volts. The voltage level of the U2A:CLK terminal is 3.5 volts. The voltage level of the $\mathbf{U} 2 \mathbf{A}: \mathbf{Q}$ terminal is 3 volts.
c. Refer to the above PROBE plot.
d.

Pulse	Frequency
U1A:CLK	10.0 Hz
U1A:Q	5.0 Hz
U2A:CLK	5.0 Hz
U2A:Q	2.5 Hz

e. They are identical.

Part 3: An Asynchronous Counter: the 7493A Integrated Circuit
A. Computer Simulation
a.

b. See PROBE plot above.
d. $t=175$ milliseconds. There is one clock pulse to the left of the cursor.

e. $\quad t=375$ milliseconds. There are three clock pulses to the left of the cursor.

f. $t=575$ milliseconds. There are five clock pulses to the left of the cursor.

g. $t=1.075$ seconds. There are ten clock pulses to the left of the cursor.

h. At $t=1.075$ milliseconds, the output terminals, $\mathbf{Q A}, \mathbf{Q B}, \mathbf{Q C}$ and $\mathbf{Q D}$ have resumed their initial states.
i. The MOD 10 counts to ten in binary code after which it recycles to its original condition.
j. The output terminal QA represents the most significant digit.
k. The indicated propagation delay is about 12.2 nanoseconds.

B. Experimental Determination of Logic States
a. The logic states of the output terminals were equal to the number of the TTL pulses.
b. The experimental data is equal to that obtained from the simulation.
c. The propagation delay measured was about 13 nanoseconds.
d. The difference in the experimentally determined propagation delay was 13 nanoseconds compared to a propagation delay of 12 nanoseconds as obtained from the simulation data.

[^0]: $0 Z: \varepsilon \tau: \not \subset \tau:$ วurtu

 Page 1
 $\mathrm{A} 1:(1.7341 \mathrm{~m}), 1 \quad \mathrm{~A} 2:(0.000), 0 \quad \operatorname{DIFF}(\mathrm{~A}):(1.7341 \mathrm{~m})$

[^1]: Time: 14:42:50

