
www.it-ebooks.info

http://www.it-ebooks.info/


Spark for Python Developers

A concise guide to implementing Spark big data 
analytics for Python developers and building a real-time 
and insightful trend tracker data-intensive app

Amit Nandi

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/


Spark for Python Developers

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1171215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-969-6

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/


Credits

Author
Amit Nandi

Reviewers
Manuel Ignacio Franco Galeano

Rahul Kavale

Daniel Lemire

Chet Mancini

Laurence Welch

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Sonali Vernekar

Content Development Editor
Merint Thomas Mathew

Technical Editor
Naveenkumar Jain

Copy Editor
Roshni Banerjee

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=e712ac1e-0f67-c021-b70d-5314241f2966
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=c5f31a3e-5777-6d64-83fa-53db7d2a8a5e
https://epic.packtpub.com/index.php?module=Users&action=DetailView&record=a156f537-9916-4318-2e9f-5608d78c15de
http://www.it-ebooks.info/


About the Author

Amit Nandi studied physics at the Free University of Brussels in Belgium, 
where he did his research on computer generated holograms. Computer generated 
holograms are the key components of an optical computer, which is powered by 
photons running at the speed of light. He then worked with the university Cray 
supercomputer, sending batch jobs of programs written in Fortran. This gave him 
a taste for computing, which kept growing. He has worked extensively on large 
business reengineering initiatives, using SAP as the main enabler. He focused for the 
last 15 years on start-ups in the data space, pioneering new areas of the information 
technology landscape. He is currently focusing on large-scale data-intensive 
applications as an enterprise architect, data engineer, and software developer.  
He understands and speaks seven human languages. Although Python is his 
computer language of choice, he aims to be able to write fluently in seven  
computer languages too.

www.it-ebooks.info

http://www.it-ebooks.info/


Acknowledgment

I want to express my profound gratitude to my parents for their unconditional love 
and strong support in all my endeavors.

This book arose from an initial discussion with Richard Gall, an acquisition 
editor at Packt Publishing. Without this initial discussion, this book would never 
have happened. So, I am grateful to him. The follow ups on discussions and the 
contractual terms were agreed with Rebecca Youe. I would like to thank her for her 
support. I would also like to thank Merint Mathew, a content editor who helped me 
bring this book to the finish line. I am thankful to Merint for his subtle persistence 
and tactful support during the write ups and revisions of this book.

We are standing on the shoulders of giants. I want to acknowledge some of the 
giants who helped me shape my thinking. I want to recognize the beauty, elegance, 
and power of Python as envisioned by Guido van Rossum. My respectful gratitude 
goes to Matei Zaharia and the team at Berkeley AMP Lab and Databricks for 
developing a new approach to computing with Spark and Mesos. Travis Oliphant, 
Peter Wang, and the team at Continuum.io are doing a tremendous job of keeping 
Python relevant in a fast-changing computing landscape. Thank you to you all.

www.it-ebooks.info

http://www.it-ebooks.info/


About the Reviewers

Manuel Ignacio Franco Galeano is a software developer from Colombia. He 
holds a computer science degree from the University of Quindío. At the moment of 
publication of this book, he was studying to get his MSc in computer science from 
University College Dublin, Ireland. He has a wide range of interests that include 
distributed systems, machine learning, micro services, and so on. He is looking for 
a way to apply machine learning techniques to audio data in order to help people 
learn more about music.

Rahul Kavale works as a software developer at TinyOwl Ltd. He is interested in 
multiple technologies ranging from building web applications to solving big data 
problems. He has worked in multiple languages, including Scala, Ruby, and Java, 
and has worked on Apache Spark, Apache Storm, Apache Kafka, Hadoop, and Hive. 
He enjoys writing Scala. Functional programming and distributed computing are his 
areas of interest. He has been using Spark since its early stage for varying use cases. 
He has also helped with the review for the Pragmatic Scala book.

www.it-ebooks.info

http://www.it-ebooks.info/


Daniel Lemire has a BSc and MSc in mathematics from the University of Toronto 
and a PhD in engineering mathematics from the Ecole Polytechnique and the 
Université de Montréal. He is a professor of computer science at the Université du 
Québec. He has also been a research officer at the National Research Council of 
Canada and an entrepreneur. He has written over 45 peer-reviewed publications, 
including more than 25 journal articles. He has held competitive research grants for 
the last 15 years. He has been an expert on several committees with funding agencies 
(NSERC and FQRNT). He has served as a program committee member on leading 
computer science conferences (for example, ACM CIKM, ACM WSDM, ACM SIGIR, 
and ACM RecSys). His open source software has been used by major corporations 
such as Google and Facebook. His research interests include databases, information 
retrieval and high-performance programming. He blogs regularly on computer 
science at http://lemire.me/blog/.

Chet Mancini is a data engineer at Intent Media, Inc in New York, where he 
works with the data science team to store and process terabytes of web travel data 
to build predictive models of shopper behavior. He enjoys functional programming, 
immutable data structures, and machine learning. He writes and speaks on topics 
surrounding data engineering and information architecture.

He is a contributor to Apache Spark and other libraries in the Spark ecosystem.  
Chet has a master's degree in computer science from Cornell University.

www.it-ebooks.info

http://lemire.me/blog/
http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.it-ebooks.info/


[ i ]

Table of Contents
Preface v
Chapter 1: Setting Up a Spark Virtual Environment 1

Understanding the architecture of  
data-intensive applications 3

Infrastructure layer 4
Persistence layer 4
Integration layer 4
Analytics layer 5
Engagement layer 6

Understanding Spark 6
Spark libraries 7

PySpark in action 7
The Resilient Distributed Dataset 8

Understanding Anaconda 10
Setting up the Spark powered environment 12

Setting up an Oracle VirtualBox with Ubuntu 13
Installing Anaconda with Python 2.7 13
Installing Java 8 14
Installing Spark 15
Enabling IPython Notebook 16

Building our first app with PySpark 17
Virtualizing the environment with Vagrant 22
Moving to the cloud 24

Deploying apps in Amazon Web Services 24
Virtualizing the environment with Docker 24

Summary 26

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ ii ]

Chapter 2: Building Batch and Streaming Apps with Spark 27
Architecting data-intensive apps 28

Processing data at rest 29
Processing data in motion 30
Exploring data interactively 31

Connecting to social networks 31
Getting Twitter data 32
Getting GitHub data 34
Getting Meetup data 34

Analyzing the data 35
Discovering the anatomy of tweets 35

Exploring the GitHub world 40
Understanding the community through Meetup 42

Previewing our app 47
Summary 48

Chapter 3: Juggling Data with Spark 49
Revisiting the data-intensive app architecture 50
Serializing and deserializing data 51
Harvesting and storing data 51

Persisting data in CSV 52
Persisting data in JSON 54
Setting up MongoDB 55

Installing the MongoDB server and client 55
Running the MongoDB server 56
Running the Mongo client 57
Installing the PyMongo driver 58
Creating the Python client for MongoDB 58

Harvesting data from Twitter 59
Exploring data using Blaze 63

Transferring data using Odo 67
Exploring data using Spark SQL 68

Understanding Spark dataframes 69
Understanding the Spark SQL query optimizer 72
Loading and processing CSV files with Spark SQL 75
Querying MongoDB from Spark SQL 77

Summary 81

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Chapter 4: Learning from Data Using Spark 83
Contextualizing Spark MLlib in the app architecture 84
Classifying Spark MLlib algorithms 85

Supervised and unsupervised learning 86
Additional learning algorithms 88

Spark MLlib data types 90
Machine learning workflows and data flows 92

Supervised machine learning workflows 92
Unsupervised machine learning workflows 94

Clustering the Twitter dataset 95
Applying Scikit-Learn on the Twitter dataset 96
Preprocessing the dataset 103
Running the clustering algorithm 107
Evaluating the model and the results 108

Building machine learning pipelines 113
Summary 114

Chapter 5: Streaming Live Data with Spark 115
Laying the foundations of streaming architecture 116

Spark Streaming inner working 118
Going under the hood of Spark Streaming 120
Building in fault tolerance 124

Processing live data with TCP sockets 124
Setting up TCP sockets 124
Processing live data 125

Manipulating Twitter data in real time 128
Processing Tweets in real time from the Twitter firehose 128

Building a reliable and scalable streaming app 131
Setting up Kafka 133

Installing and testing Kafka 134
Developing producers 137
Developing consumers 139
Developing a Spark Streaming consumer for Kafka 140

Exploring flume 142
Developing data pipelines with Flume, Kafka, and Spark 143

Closing remarks on the Lambda and Kappa architecture 146
Understanding the Lambda architecture 147
Understanding the Kappa architecture 148

Summary 149

www.it-ebooks.info

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Chapter 6: Visualizing Insights and Trends 151
Revisiting the data-intensive apps architecture 151
Preprocessing the data for visualization 154
Gauging words, moods, and memes at a glance 160

Setting up wordcloud 160
Creating wordclouds 162

Geo-locating tweets and mapping meetups 165
Geo-locating tweets 165
Displaying upcoming meetups on Google Maps 172

Summary 178
Index 179

www.it-ebooks.info

http://www.it-ebooks.info/


[ v ]

Preface
Spark for Python Developers aims to combine the elegance and flexibility of Python 
with the power and versatility of Apache Spark. Spark is written in Scala and runs 
on the Java virtual machine. It is nevertheless polyglot and offers bindings and APIs 
for Java, Scala, Python, and R. Python is a well-designed language with an extensive 
set of specialized libraries. This book looks at PySpark within the PyData ecosystem. 
Some of the prominent PyData libraries include Pandas, Blaze, Scikit-Learn, 
Matplotlib, Seaborn, and Bokeh. These libraries are open source. They are developed, 
used, and maintained by the data scientist and Python developers community. 
PySpark integrates well with the PyData ecosystem, as endorsed by the Anaconda 
Python distribution. The book puts forward a journey to build data-intensive apps 
along with an architectural blueprint that covers the following steps: first, set up the 
base infrastructure with Spark. Second, acquire, collect, process, and store the data. 
Third, gain insights from the collected data. Fourth, stream live data and process it in 
real time. Finally, visualize the information.

The objective of the book is to learn about PySpark and PyData libraries by building 
apps that analyze the Spark community's interactions on social networks. The focus 
is on Twitter data.

What this book covers
Chapter 1, Setting Up a Spark Virtual Environment, covers how to create a segregated 
virtual machine as our sandbox or development environment to experiment with 
Spark and PyData libraries. It covers how to install Spark and the Python Anaconda 
distribution, which includes PyData libraries. Along the way, we explain the key 
Spark concepts, the Python Anaconda ecosystem, and build a Spark word count app.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ vi ]

Chapter 2, Building Batch and Streaming Apps with Spark, lays the foundation of the 
Data Intensive Apps Architecture. It describes the five layers of the apps architecture 
blueprint: infrastructure, persistence, integration, analytics, and engagement. We 
establish API connections with three social networks: Twitter, GitHub, and Meetup. 
This chapter provides the tools to connect to these three nontrivial APIs so that you 
can create your own data mashups at a later stage.

Chapter 3, Juggling Data with Spark, covers how to harvest data from Twitter and 
process it using Pandas, Blaze, and SparkSQL with their respective implementations 
of the dataframe data structure. We proceed with further investigations and 
techniques using Spark SQL, leveraging on the Spark dataframe data structure.

Chapter 4, Learning from Data Using Spark, gives an overview of the ever expanding 
library of algorithms of Spark MLlib. It covers supervised and unsupervised 
learning, recommender systems, optimization, and feature extraction algorithms.  
We put the Twitter harvested dataset through a Python Scikit-Learn and Spark 
MLlib K-means clustering in order to segregate the Apache Spark relevant tweets.

Chapter 5, Streaming Live Data with Spark, lays down the foundation of streaming 
architecture apps and describes their challenges, constraints, and benefits. We 
illustrate the streaming concepts with TCP sockets, followed by live tweet ingestion 
and processing directly from the Twitter firehose. We also describe Flume, a reliable, 
flexible, and scalable data ingestion and transport pipeline system. The combination 
of Flume, Kafka, and Spark delivers unparalleled robustness, speed, and agility in an 
ever-changing landscape. We end the chapter with some remarks and observations 
on two streaming architectural paradigms, the Lambda and Kappa architectures.

Chapter 6, Visualizing Insights and Trends, focuses on a few key visualization 
techniques. It covers how to build word clouds and expose their intuitive power 
to reveal a lot of the key words, moods, and memes carried through thousands of 
tweets. We then focus on interactive mapping visualizations using Bokeh. We build 
a world map from the ground up and create a scatter plot of critical tweets. Our final 
visualization is to overlay an actual Google map of London, highlighting upcoming 
meetups and their respective topics.

What you need for this book
You need inquisitiveness, perseverance, and passion for data, software engineering, 
application architecture and scalability, and beautiful succinct visualizations. The 
scope is broad and wide.

You need a good understanding of Python or a similar language with object-oriented 
and functional programming capabilities. Preliminary experience of data wrangling 
with Python, R, or any similar tool is helpful.

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ vii ]

You need to appreciate how to conceive, build, and scale data applications.

Who this book is for
The target audience includes the following:

• Data scientists are the primary interested parties. This book will help you 
unleash the power of Spark and leverage your Python, R, and machine 
learning background.

• Software developers with a focus on Python will readily expand their skills 
to create data-intensive apps using Spark as a processing engine and Python 
visualization libraries and web frameworks.

• Data architects who can create rapid data pipelines and build the famous 
Lambda architecture that encompasses batch and streaming processing 
to render insights on data in real time, using the Spark and Python rich 
ecosystem, will also benefit from this book.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows 
"Launch PySpark with IPYNB in directory examples/AN_Spark where the Jupyter or 
IPython Notebooks are stored".

A block of code is set as follows:

# Word count on 1st Chapter of the Book using PySpark

# import regex module
import re
# import add from operator module
from operator import add

# read input file
file_in = sc.textFile('/home/an/Documents/A00_Documents/Spark4Py 
20150315')

www.it-ebooks.info

http://www.it-ebooks.info/


Preface

[ viii ]

Any command-line input or output is written as follows:

# install anaconda 2.x.x

bash Anaconda-2.x.x-Linux-x86[_64].sh

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "After 
installing VirtualBox, let's open the Oracle VM VirtualBox Manager and click the 
New button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/


Preface

[ ix ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ 1 ]

Setting Up a Spark Virtual 
Environment

In this chapter, we will build an isolated virtual environment for development 
purposes. The environment will be powered by Spark and the PyData libraries 
provided by the Python Anaconda distribution. These libraries include Pandas, 
Scikit-Learn, Blaze, Matplotlib, Seaborn, and Bokeh. We will perform the  
following activities:

• Setting up the development environment using the Anaconda Python 
distribution. This will include enabling the IPython Notebook environment 
powered by PySpark for our data exploration tasks.

• Installing and enabling Spark, and the PyData libraries such as Pandas, 
Scikit- Learn, Blaze, Matplotlib, and Bokeh.

• Building a word count example app to ensure that everything is  
working fine.

The last decade has seen the rise and dominance of data-driven behemoths such as 
Amazon, Google, Twitter, LinkedIn, and Facebook. These corporations, by seeding, 
sharing, or disclosing their infrastructure concepts, software practices, and data 
processing frameworks, have fostered a vibrant open source software community. 
This has transformed the enterprise technology, systems, and software architecture.

This includes new infrastructure and DevOps (short for development and 
operations), concepts leveraging virtualization, cloud technology, and  
software-defined networks.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 2 ]

To process petabytes of data, Hadoop was developed and open sourced, taking 
its inspiration from the Google File System (GFS) and the adjoining distributed 
computing framework, MapReduce. Overcoming the complexities of scaling while 
keeping costs under control has also led to a proliferation of new data stores. 
Examples of recent database technology include Cassandra, a columnar  
database; MongoDB, a document database; and Neo4J, a graph database.

Hadoop, thanks to its ability to process huge datasets, has fostered a vast ecosystem 
to query data more iteratively and interactively with Pig, Hive, Impala, and Tez. 
Hadoop is cumbersome as it operates only in batch mode using MapReduce. Spark 
is creating a revolution in the analytics and data processing realm by targeting the 
shortcomings of disk input-output and bandwidth-intensive MapReduce jobs.

Spark is written in Scala, and therefore integrates natively with the Java Virtual 
Machine (JVM) powered ecosystem. Spark had early on provided Python API and 
bindings by enabling PySpark. The Spark architecture and ecosystem is inherently 
polyglot, with an obvious strong presence of Java-led systems.

This book will focus on PySpark and the PyData ecosystem. Python is one of the 
preferred languages in the academic and scientific community for data-intensive 
processing. Python has developed a rich ecosystem of libraries and tools in data 
manipulation with Pandas and Blaze, in Machine Learning with Scikit-Learn, and in 
data visualization with Matplotlib, Seaborn, and Bokeh. Hence, the aim of this book 
is to build an end-to-end architecture for data-intensive applications powered by 
Spark and Python. In order to put these concepts in to practice, we will analyze social 
networks such as Twitter, GitHub, and Meetup. We will focus on the activities and 
social interactions of Spark and the Open Source Software community by tapping 
into GitHub, Twitter, and Meetup.

Building data-intensive applications requires highly scalable infrastructure, polyglot 
storage, seamless data integration, multiparadigm analytics processing, and efficient 
visualization. The following paragraph describes the data-intensive app architecture 
blueprint that we will adopt throughout the book. It is the backbone of the book.  
We will discover Spark in the context of the broader PyData ecosystem.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/


Chapter 1

[ 3 ]

Understanding the architecture of  
data-intensive applications
In order to understand the architecture of data-intensive applications, the following 
conceptual framework is used. The is architecture is designed on the following  
five layers:

• Infrastructure layer
• Persistence layer
• Integration layer
• Analytics layer
• Engagement layer

The following screenshot depicts the five layers of the Data Intensive  
App Framework:

From the bottom up, let's go through the layers and their main purpose.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 4 ]

Infrastructure layer
The infrastructure layer is primarily concerned with virtualization, scalability, 
and continuous integration. In practical terms, and in terms of virtualization, we 
will go through building our own development environment in a VirtualBox and 
virtual machine powered by Spark and the Anaconda distribution of Python. If 
we wish to scale from there, we can create a similar environment in the cloud. The 
practice of creating a segregated development environment and moving into test 
and production deployment can be automated and can be part of a continuous 
integration cycle powered by DevOps tools such as Vagrant, Chef, Puppet, and 
Docker. Docker is a very popular open source project that eases the installation and 
deployment of new environments. The book will be limited to building the virtual 
machine using VirtualBox. From a data-intensive app architecture point of view, we 
are describing the essential steps of the infrastructure layer by mentioning scalability 
and continuous integration beyond just virtualization.

Persistence layer
The persistence layer manages the various repositories in accordance with data needs 
and shapes. It ensures the set up and management of the polyglot data stores. It 
includes relational database management systems such as MySQL and PostgreSQL; 
key-value data stores such as Hadoop, Riak, and Redis; columnar databases such as 
HBase and Cassandra; document databases such as MongoDB and Couchbase; and 
graph databases such as Neo4j. The persistence layer manages various filesystems 
such as Hadoop's HDFS. It interacts with various storage systems from native hard 
drives to Amazon S3. It manages various file storage formats such as csv, json, and 
parquet, which is a column-oriented format.

Integration layer
The integration layer focuses on data acquisition, transformation, quality, 
persistence, consumption, and governance. It is essentially driven by the  
following five Cs: connect, collect, correct, compose, and consume.

The five steps describe the lifecycle of data. They are focused on how to acquire the 
dataset of interest, explore it, iteratively refine and enrich the collected information, 
and get it ready for consumption. So, the steps perform the following operations:

• Connect: Targets the best way to acquire data from the various data sources, 
APIs offered by these sources, the input format, input schemas if they exist, 
the rate of data collection, and limitations from providers

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 5 ]

• Correct: Focuses on transforming data for further processing and also 
ensures that the quality and consistency of the data received are maintained

• Collect: Looks at which data to store where and in what format, to ease data 
composition and consumption at later stages

• Compose: Concentrates its attention on how to mash up the various data sets 
collected, and enrich the information in order to build a compelling data-
driven product

• Consume: Takes care of data provisioning and rendering and how the right 
data reaches the right individual at the right time

• Control: This sixth additional step will sooner or later be required as the  
data, the organization, and the participants grow and it is about ensuring 
data governance

The following diagram depicts the iterative process of data acquisition and 
refinement for consumption:

Analytics layer
The analytics layer is where Spark processes data with the various models, 
algorithms, and machine learning pipelines in order to derive insights. For our 
purpose, in this book, the analytics layer is powered by Spark. We will delve 
deeper in subsequent chapters into the merits of Spark. In a nutshell, what makes 
it so powerful is that it allows multiple paradigms of analytics processing in a 
single unified platform. It allows batch, streaming, and interactive analytics. Batch 
processing on large datasets with longer latency periods allows us to extract patterns 
and insights that can feed into real-time events in streaming mode. Interactive and 
iterative analytics are more suited for data exploration. Spark offers bindings and 
APIs in Python and R. With its SparkSQL module and the Spark Dataframe, it offers 
a very familiar analytics interface.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 6 ]

Engagement layer
The engagement layer interacts with the end user and provides dashboards, 
interactive visualizations, and alerts. We will focus here on the tools provided by  
the PyData ecosystem such as Matplotlib, Seaborn, and Bokeh.

Understanding Spark
Hadoop scales horizontally as the data grows. Hadoop runs on commodity 
hardware, so it is cost-effective. Intensive data applications are enabled by scalable, 
distributed processing frameworks that allow organizations to analyze petabytes of 
data on large commodity clusters. Hadoop is the first open source implementation 
of map-reduce. Hadoop relies on a distributed framework for storage called HDFS 
(Hadoop Distributed File System). Hadoop runs map-reduce tasks in batch jobs. 
Hadoop requires persisting the data to disk at each map, shuffle, and reduce  
process step. The overhead and the latency of such batch jobs adversely impact  
the performance.

Spark is a fast, distributed general analytics computing engine for large-scale data 
processing. The major breakthrough from Hadoop is that Spark allows data sharing 
between processing steps through in-memory processing of data pipelines.

Spark is unique in that it allows four different styles of data analysis and processing. 
Spark can be used in:

• Batch: This mode is used for manipulating large datasets, typically 
performing large map-reduce jobs

• Streaming: This mode is used to process incoming information in near  
real time

• Iterative: This mode is for machine learning algorithms such as a gradient 
descent where the data is accessed repetitively in order to reach convergence

• Interactive: This mode is used for data exploration as large chunks of data 
are in memory and due to the very quick response time of Spark

The following figure highlights the preceding four processing styles:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 7 ]

Spark operates in three modes: one single mode, standalone on a single machine and 
two distributed modes on a cluster of machines—on Yarn, the Hadoop distributed 
resource manager, or on Mesos, the open source cluster manager developed at 
Berkeley concurrently with Spark:

Spark offers a polyglot interface in Scala, Java, Python, and R.

Spark libraries
Spark comes with batteries included, with some powerful libraries:

• SparkSQL: This provides the SQL-like ability to interrogate structured data 
and interactively explore large datasets

• SparkMLLIB: This provides major algorithms and a pipeline framework for 
machine learning

• Spark Streaming: This is for near real-time analysis of data using micro 
batches and sliding widows on incoming streams of data

• Spark GraphX: This is for graph processing and computation on complex 
connected entities and relationships

PySpark in action
Spark is written in Scala. The whole Spark ecosystem naturally leverages the JVM 
environment and capitalizes on HDFS natively. Hadoop HDFS is one of the many 
data stores supported by Spark. Spark is agnostic and from the beginning interacted 
with multiple data sources, types, and formats.

PySpark is not a transcribed version of Spark on a Java-enabled dialect of Python 
such as Jython. PySpark provides integrated API bindings around Spark and enables 
full usage of the Python ecosystem within all the nodes of the cluster with the pickle 
Python serialization and, more importantly, supplies access to the rich ecosystem of 
Python's machine learning libraries such as Scikit-Learn or data processing such  
as Pandas.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 8 ]

When we initialize a Spark program, the first thing a Spark program must do is to 
create a SparkContext object. It tells Spark how to access the cluster. The Python 
program creates a PySparkContext. Py4J is the gateway that binds the Python 
program to the Spark JVM SparkContext. The JVM SparkContextserializes  
the application codes and the closures and sends them to the cluster for execution.  
The cluster manager allocates resources and schedules, and ships the closures to 
the Spark workers in the cluster who activate Python virtual machines as required. 
In each machine, the Spark Worker is managed by an executor that controls 
computation, storage, and cache.

Here's an example of how the Spark driver manages both the PySpark context and 
the Spark context with its local filesystems and its interactions with the Spark worker 
through the cluster manager:

The Resilient Distributed Dataset
Spark applications consist of a driver program that runs the user's main function, 
creates distributed datasets on the cluster, and executes various parallel operations 
(transformations and actions) on those datasets.

Spark applications are run as an independent set of processes, coordinated by a 
SparkContext in a driver program.

The SparkContext will be allocated system resources (machines, memory, CPU) 
from the Cluster manager.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 9 ]

The SparkContext manages executors who manage workers in the cluster.  
The driver program has Spark jobs that need to run. The jobs are split into tasks 
submitted to the executor for completion. The executor takes care of computation, 
storage, and caching in each machine.

The key building block in Spark is the RDD (Resilient Distributed Dataset). A 
dataset is a collection of elements. Distributed means the dataset can be on any node 
in the cluster. Resilient means that the dataset could get lost or partially lost without 
major harm to the computation in progress as Spark will re-compute from the data 
lineage in memory, also known as the DAG (short for Directed Acyclic Graph) of 
operations. Basically, Spark will snapshot in memory a state of the RDD in the cache. 
If one of the computing machines crashes during operation, Spark rebuilds the RDDs 
from the cached RDD and the DAG of operations. RDDs recover from node failure.

There are two types of operation on RDDs:

• Transformations: A transformation takes an existing RDD and leads to a 
pointer of a new transformed RDD. An RDD is immutable. Once created, it 
cannot be changed. Each transformation creates a new RDD. Transformations 
are lazily evaluated. Transformations are executed only when an action 
occurs. In the case of failure, the data lineage of transformations rebuilds  
the RDD.

• Actions: An action on an RDD triggers a Spark job and yields a value. An 
action operation causes Spark to execute the (lazy) transformation operations 
that are required to compute the RDD returned by the action. The action 
results in a DAG of operations. The DAG is compiled into stages where each 
stage is executed as a series of tasks. A task is a fundamental unit of work.

Here's some useful information on RDDs:

• RDDs are created from a data source such as an HDFS file or a DB query.  
There are three ways to create an RDD:

 ° Reading from a datastore
 ° Transforming an existing RDD
 ° Using an in-memory collection

• RDDs are transformed with functions such as map or filter, which yield  
new RDDs.

• An action such as first, take, collect, or count on an RDD will deliver the 
results into the Spark driver. The Spark driver is the client through which  
the user interacts with the Spark cluster.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 10 ]

The following diagram illustrates the RDD transformation and action:

 

Understanding Anaconda
Anaconda is a widely used free Python distribution maintained by Continuum 
(https://www.continuum.io/). We will use the prevailing software stack provided 
by Anaconda to generate our apps. In this book, we will use PySpark and the 
PyData ecosystem. The PyData ecosystem is promoted, supported, and maintained 
by Continuum and powered by the Anaconda Python distribution. The Anaconda 
Python distribution essentially saves time and aggravation in the installation of 
the Python environment; we will use it in conjunction with Spark. Anaconda has 
its own package management that supplements the traditional pip install and 
easy-install. Anaconda comes with batteries included, namely some of the most 
important packages such as Pandas, Scikit-Learn, Blaze, Matplotlib, and Bokeh. An 
upgrade to any of the installed library is a simple command at the console:

$ conda update

www.it-ebooks.info

https://www.continuum.io/
http://www.it-ebooks.info/


Chapter 1

[ 11 ]

A list of installed libraries in our environment can be obtained with command:

$ conda list

The key components of the stack are as follows:

• Anaconda: This is a free Python distribution with almost 200 Python 
packages for science, math, engineering, and data analysis.

• Conda: This is a package manager that takes care of all the dependencies 
of installing a complex software stack. This is not restricted to Python and 
manages the install process for R and other languages.

• Numba: This provides the power to speed up code in Python with  
high-performance functions and just-in-time compilation.

• Blaze: This enables large scale data analytics by offering a uniform and 
adaptable interface to access a variety of data providers, which include 
streaming Python, Pandas, SQLAlchemy, and Spark.

• Bokeh: This provides interactive data visualizations for large and  
streaming datasets.

• Wakari: This allows us to share and deploy IPython Notebooks and other 
apps on a hosted environment.

The following figure shows the components of the Anaconda stack:

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 12 ]

Setting up the Spark powered 
environment
In this section, we will learn to set up Spark:

• Create a segregated development environment in a virtual machine running 
on Ubuntu 14.04, so it does not interfere with any existing system.

• Install Spark 1.3.0 with its dependencies, namely.
• Install the Anaconda Python 2.7 environment with all the required libraries 

such as Pandas, Scikit-Learn, Blaze, and Bokeh, and enable PySpark, so it can 
be accessed through IPython Notebooks.

• Set up the backend or data stores of our environment. We will use MySQL as 
the relational database, MongoDB as the document store, and Cassandra as 
the columnar database.

Each storage backend serves a specific purpose depending on the nature of the 
data to be handled. The MySQL RDBMs is used for standard tabular processed 
information that can be easily queried using SQL. As we will be processing a lot of 
JSON-type data from various APIs, the easiest way to store them is in a document. 
For real-time and time-series-related information, Cassandra is best suited as a 
columnar database.

The following diagram gives a view of the environment we will build and use 
throughout the book:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

Setting up an Oracle VirtualBox with Ubuntu
Setting up a clean new VirtualBox environment on Ubuntu 14.04 is the safest way to 
create a development environment that does not conflict with existing libraries and 
can be later replicated in the cloud using a similar list of commands.

In order to set up an environment with Anaconda and Spark, we will create a 
VirtualBox virtual machine running Ubuntu 14.04.

Let's go through the steps of using VirtualBox with Ubuntu:

1. Oracle VirtualBox VM is free and can be downloaded from  
https://www.virtualbox.org/wiki/Downloads. The installation  
is pretty straightforward.

2. After installing VirtualBox, let's open the Oracle VM VirtualBox Manager 
and click the New button.

3. We'll give the new VM a name, and select Type Linux and Version Ubuntu 
(64 bit).

4. You need to download the ISO from the Ubuntu website and allocate 
sufficient RAM (4 GB recommended) and disk space (20 GB recommended). 
We will use the Ubuntu 14.04.1 LTS release, which is found here: http://
www.ubuntu.com/download/desktop.

5. Once the installation completed, it is advisable to install the VirtualBox 
Guest Additions by going to (from the VirtualBox menu, with the new VM 
running) Devices | Insert Guest Additions CD image. Failing to provide the 
guest additions in a Windows host gives a very limited user interface with 
reduced window sizes.

6. Once the additional installation completes, reboot the VM, and it will be 
ready to use. It is helpful to enable the shared clipboard by selecting the VM 
and clicking Settings, then go to General | Advanced | Shared Clipboard 
and click on Bidirectional.

Installing Anaconda with Python 2.7
PySpark currently runs only on Python 2.7. (There are requests from the community 
to upgrade to Python 3.3.) To install Anaconda, follow these steps:

1. Download the Anaconda Installer for Linux 64-bit Python 2.7 from  
http://continuum.io/downloads#all.

www.it-ebooks.info

https://www.virtualbox.org/wiki/Downloads
http://www.ubuntu.com/download/desktop
http://www.ubuntu.com/download/desktop
http://continuum.io/downloads#all
http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 14 ]

2. After downloading the Anaconda installer, open a terminal and navigate to 
the directory or folder where the installer has been saved. From here, run the 
following command, replacing the 2.x.x in the command with the version 
number of the downloaded installer file:
# install anaconda 2.x.x

bash Anaconda-2.x.x-Linux-x86[_64].sh

3. After accepting the license terms, you will be asked to specify the install 
location (which defaults to ~/anaconda).

4. After the self-extraction is finished, you should add the anaconda binary 
directory to your PATH environment variable:

# add anaconda to PATH

bash Anaconda-2.x.x-Linux-x86[_64].sh

Installing Java 8
Spark runs on the JVM and requires the Java SDK (short for Software Development 
Kit) and not the JRE (short for Java Runtime Environment), as we will build apps 
with Spark. The recommended version is Java Version 7 or higher. Java 8 is the most 
suitable, as it includes many of the functional programming techniques available 
with Scala and Python.

To install Java 8, follow these steps:

1. Install Oracle Java 8 using the following commands:
# install oracle java 8

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:webupd8team/java

$ sudo apt-get update

$ sudo apt-get install oracle-java8-installer

2. Set the JAVA_HOME environment variable and ensure that the Java program is 
on your PATH.

3. Check that JAVA_HOME is properly installed:

# 

$ echo JAVA_HOME

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

Installing Spark
Head over to the Spark download page at http://spark.apache.org/downloads.
html.

The Spark download page offers the possibility to download earlier versions of 
Spark and different package and download types. We will select the latest release, 
pre-built for Hadoop 2.6 and later. The easiest way to install Spark is to use a Spark 
package prebuilt for Hadoop 2.6 and later, rather than build it from source. Move the 
file to the directory ~/spark under the root directory.

Download the latest release of Spark—Spark 1.5.2, released on November 9, 2015:

1. Select Spark release 1.5.2 (Nov 09 2015),
2. Chose the package type Prebuilt for Hadoop 2.6 and later,
3. Chose the download type Direct Download,
4. Download Spark: spark-1.5.2-bin-hadoop2.6.tgz,
5. Verify this release using the 1.3.0 signatures and checksums,

This can also be accomplished by running:

# download spark

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-1.5.2-bin-hadoop2.6.tgz

Next, we'll extract the files and clean up:

# extract, clean up, move the unzipped files under the spark directory

$ tar -xf spark-1.5.2-bin-hadoop2.6.tgz

$ rm spark-1.5.2-bin-hadoop2.6.tgz

$ sudo mv spark-* spark

Now, we can run the Spark Python interpreter with:

# run spark

$ cd ~/spark

./bin/pyspark

www.it-ebooks.info

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 16 ]

You should see something like this:

Welcome to

      ____              __

     / __/__  ___ _____/ /__

    _\ \/ _ \/ _ `/ __/  '_/

   /__ / .__/\_,_/_/ /_/\_\   version 1.5.2

      /_/

Using Python version 2.7.6 (default, Mar 22 2014 22:59:56)

SparkContext available as sc.

>>> 

The interpreter will have already provided us with a Spark context object, sc,  
which we can see by running:

>>> print(sc)

<pyspark.context.SparkContext object at 0x7f34b61c4e50>

Enabling IPython Notebook
We will work with IPython Notebook for a friendlier user experience than  
the console.

You can launch IPython Notebook by using the following command:

$ IPYTHON_OPTS="notebook --pylab inline"  ./bin/pyspark

Launch PySpark with IPYNB in the directory examples/AN_Spark where Jupyter or 
IPython Notebooks are stored:

# cd to  /home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark

# launch command using python 2.7 and the spark-csv package:

$ IPYTHON_OPTS='notebook' /home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/
pyspark --packages com.databricks:spark-csv_2.11:1.2.0

# launch command using python 3.4 and the spark-csv package:

$ IPYTHON_OPTS='notebook' PYSPARK_PYTHON=python3

 /home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/pyspark --packages com.
databricks:spark-csv_2.11:1.2.0

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 17 ]

Building our first app with PySpark
We are ready to check now that everything is working fine. The obligatory word 
count will be put to the test in processing a word count on the first chapter of  
this book.

The code we will be running is listed here:

# Word count on 1st Chapter of the Book using PySpark

# import regex module
import re
# import add from operator module
from operator import add

# read input file
file_in = sc.textFile('/home/an/Documents/A00_Documents/Spark4Py 
20150315')

# count lines
print('number of lines in file: %s' % file_in.count())

# add up lengths of each line
chars = file_in.map(lambda s: len(s)).reduce(add)
print('number of characters in file: %s' % chars)

# Get words from the input file
words =file_in.flatMap(lambda line: re.split('\W+', line.lower().
strip()))
# words of more than 3 characters
words = words.filter(lambda x: len(x) > 3)
# set count 1 per word
words = words.map(lambda w: (w,1))
# reduce phase - sum count all the words
words = words.reduceByKey(add)

In this program, we are first reading the file from the directory /home/an/
Documents/A00_Documents/Spark4Py 20150315 into file_in.

We are then introspecting the file by counting the number of lines and the number of 
characters per line.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 18 ]

We are splitting the input file in to words and getting them in lower case. For our 
word count purpose, we are choosing words longer than three characters in order to 
avoid shorter and much more frequent words such as the, and, for to skew the count 
in their favor. Generally, they are considered stop words and should be filtered out 
in any language processing task.

At this stage, we are getting ready for the MapReduce steps. To each word, we map a 
value of 1 and reduce it by summing all the unique words.

Here are illustrations of the code in the IPython Notebook. The first 10 cells  
are preprocessing the word count on the dataset, which is retrieved from the  
local file directory.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 19 ]

Swap the word count tuples in the format (count, word) in order to sort by count, 
which is now the primary key of the tuple:

# create tuple (count, word) and sort in descending
words = words.map(lambda x: (x[1], x[0])).sortByKey(False)

# take top 20 words by frequency
words.take(20)

In order to display our result, we are creating the tuple (count, word) and 
displaying the top 20 most frequently used words in descending order:

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 20 ]

Let's create a histogram function:

# create function for histogram of most frequent words

% matplotlib inline
import matplotlib.pyplot as plt
#

def histogram(words):
    count = map(lambda x: x[1], words)
    word = map(lambda x: x[0], words)
    plt.barh(range(len(count)), count,color = 'grey')
    plt.yticks(range(len(count)), word)

# Change order of tuple (word, count) from (count, word) 
words = words.map(lambda x:(x[1], x[0]))
words.take(25)

# display histogram
histogram(words.take(25))

Here, we visualize the most frequent words by plotting them in a bar chart. We have 
to first swap the tuple from the original (count, word) to (word, count):

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 1

[ 21 ]

So here you have it: the most frequent words used in the first chapter are Spark, 
followed by Data and Anaconda.

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 22 ]

Virtualizing the environment with Vagrant
In order to create a portable Python and Spark environment that can be easily shared 
and cloned, the development environment can be built with a vagrantfile.

We will point to the Massive Open Online Courses (MOOCs) delivered by Berkeley 
University and Databricks:

• Introduction to Big Data with Apache Spark, Professor Anthony D. Joseph can 
be found at https://www.edx.org/course/introduction-big-data-
apache-spark-uc-berkeleyx-cs100-1x

• Scalable Machine Learning, Professor Ameet Talwalkar can be found at https://
www.edx.org/course/scalable-machine-learning-uc-berkeleyx-
cs190-1x

The course labs were executed on IPython Notebooks powered by PySpark. They can 
be found in the following GitHub repository: https://github.com/spark-mooc/
mooc-setup/.

Once you have set up Vagrant on your machine, follow these instructions to get 
started: https://docs.vagrantup.com/v2/getting-started/index.html.

Clone the spark-mooc/mooc-setup/ github repository in your work directory  
and launch the command $ vagrant up, within the cloned directory:

Be aware that the version of Spark may be outdated as the vagrantfile may not be 
up-to-date.

You will see an output similar to this:

C:\Programs\spark\edx1001\mooc-setup-master>vagrant up
Bringing machine 'sparkvm' up with 'virtualbox' provider...
==> sparkvm: Checking if box 'sparkmooc/base' is up to date...
==> sparkvm: Clearing any previously set forwarded ports...
==> sparkvm: Clearing any previously set network interfaces...
==> sparkvm: Preparing network interfaces based on configuration...
    sparkvm: Adapter 1: nat
==> sparkvm: Forwarding ports...
    sparkvm: 8001 => 8001 (adapter 1)
    sparkvm: 4040 => 4040 (adapter 1)
    sparkvm: 22 => 2222 (adapter 1)
==> sparkvm: Booting VM...
==> sparkvm: Waiting for machine to boot. This may take a few minutes...
    sparkvm: SSH address: 127.0.0.1:2222
    sparkvm: SSH username: vagrant
    sparkvm: SSH auth method: private key

www.it-ebooks.info

https://www.edx.org/course/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x 
https://www.edx.org/course/introduction-big-data-apache-spark-uc-berkeleyx-cs100-1x 
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x
https://www.edx.org/course/scalable-machine-learning-uc-berkeleyx-cs190-1x
https://github.com/spark-mooc/mooc-setup/
https://github.com/spark-mooc/mooc-setup/
https://docs.vagrantup.com/v2/getting-started/index.html
http://www.it-ebooks.info/


Chapter 1

[ 23 ]

    sparkvm: Warning: Connection timeout. Retrying...
    sparkvm: Warning: Remote connection disconnect. Retrying...
==> sparkvm: Machine booted and ready!
==> sparkvm: Checking for guest additions in VM...
==> sparkvm: Setting hostname...
==> sparkvm: Mounting shared folders...
    sparkvm: /vagrant => C:/Programs/spark/edx1001/mooc-setup-master
==> sparkvm: Machine already provisioned. Run `vagrant provision` or use 
the `--provision`
==> sparkvm: to force provisioning. Provisioners marked to run always 
will still run.

C:\Programs\spark\edx1001\mooc-setup-master>

This will launch the IPython Notebooks powered by PySpark on localhost:8001:

www.it-ebooks.info

http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 24 ]

Moving to the cloud
As we are dealing with distributed systems, an environment on a virtual machine 
running on a single laptop is limited for exploration and learning. We can move to 
the cloud in order to experience the power and scalability of the Spark distributed 
framework.

Deploying apps in Amazon Web Services
Once we are ready to scale our apps, we can migrate our development environment 
to Amazon Web Services (AWS).

How to run Spark on EC2 is clearly described in the following page:  
https://spark.apache.org/docs/latest/ec2-scripts.html.

We emphasize five key steps in setting up the AWS Spark environment:

1. Create an AWS EC2 key pair via the AWS console http://aws.amazon.com/
console/.

2. Export your key pair to your environment:
export AWS_ACCESS_KEY_ID=accesskeyid

export AWS_SECRET_ACCESS_KEY=secretaccesskey

3. Launch your cluster:
~$ cd $SPARK_HOME/ec2

ec2$ ./spark-ec2 -k <keypair> -i <key-file> -s <num-slaves> launch 
<cluster-name>

4. SSH into a cluster to run Spark jobs:
ec2$ ./spark-ec2 -k <keypair> -i <key-file> login <cluster-name>

5. Destroy your cluster after usage:

ec2$ ./spark-ec2 destroy <cluster-name>

Virtualizing the environment with Docker
In order to create a portable Python and Spark environment that can be easily shared 
and cloned, the development environment can be built in Docker containers.

We wish capitalize on Docker's two main functions:

• Creating isolated containers that can be easily deployed on different 
operating systems or in the cloud.

www.it-ebooks.info

https://spark.apache.org/docs/latest/ec2-scripts.html
http://aws.amazon.com/console/
http://aws.amazon.com/console/
http://www.it-ebooks.info/


Chapter 1

[ 25 ]

• Allowing easy sharing of the development environment image with all its 
dependencies using The DockerHub. The DockerHub is similar to GitHub. 
It allows easy cloning and version control. The snapshot image of the 
configured environment can be the baseline for further enhancements.

The following diagram illustrates a Docker-enabled environment with Spark, 
Anaconda, and the database server and their respective data volumes.

Docker offers the ability to clone and deploy an environment from the Dockerfile.

You can find an example Dockerfile with a PySpark and Anaconda setup at the 
following address: https://hub.docker.com/r/thisgokeboysef/pyspark-
docker/~/dockerfile/.

www.it-ebooks.info

https://hub.docker.com/r/thisgokeboysef/pyspark-docker/~/dockerfile/
https://hub.docker.com/r/thisgokeboysef/pyspark-docker/~/dockerfile/
http://www.it-ebooks.info/


Setting Up a Spark Virtual Environment

[ 26 ]

Install Docker as per the instructions provided at the following links:

• http://docs.docker.com/mac/started/ if you are on Mac OS X
• http://docs.docker.com/linux/started/ if you are on Linux
• http://docs.docker.com/windows/started/ if you are on Windows

Install the docker container with the Dockerfile provided earlier with the  
following command:

$ docker pull thisgokeboysef/pyspark-docker

Other great sources of information on how to dockerize your environment can be seen 
at Lab41. The GitHub repository contains the necessary code:

https://github.com/Lab41/ipython-spark-docker

The supporting blog post is rich in information on thought processes involved in 
building the docker environment: http://lab41.github.io/blog/2015/04/13/
ipython-on-spark-on-docker/.

Summary
We set the context of building data-intensive apps by describing the overall 
architecture structured around the infrastructure, persistence, integration, analytics, 
and engagement layers. We also discussed Spark and Anaconda with their respective 
building blocks. We set up an environment in a VirtualBox with Anaconda and 
Spark and demonstrated a word count app using the text content of the first chapter 
as input.

In the next chapter, we will delve more deeply into the architecture blueprint for 
data-intensive apps and tap into the Twitter, GitHub, and Meetup APIs to get a feel 
of the data we will be mining with Spark.

www.it-ebooks.info

http://docs.docker.com/mac/started/
http://docs.docker.com/linux/started/
http://docs.docker.com/windows/started/
https://github.com/Lab41/ipython-spark-docker
http://lab41.github.io/blog/2015/04/13/ipython-on-spark-on-docker/
http://lab41.github.io/blog/2015/04/13/ipython-on-spark-on-docker/
http://www.it-ebooks.info/


[ 27 ]

Building Batch and Streaming 
Apps with Spark

The objective of the book is to teach you about PySpark and the PyData libraries 
by building an app that analyzes the Spark community's interactions on social 
networks. We will gather information on Apache Spark from GitHub, check the 
relevant tweets on Twitter, and get a feel for the buzz around Spark in the broader 
open source software communities using Meetup.

In this chapter, we will outline the various sources of data and information. We will 
get an understanding of their structure. We will outline the data processing pipeline, 
from collection to batch and streaming processing.

In this section, we will cover the following points:

• Outline data processing pipelines from collection to batch and stream 
processing, effectively depicting the architecture of the app we are planning 
to build.

• Check out the various data sources (GitHub, Twitter, and Meetup), their data 
structure (JSON, structured information, unstructured text, geo-location, 
time series data, and so on), and their complexities. We also discuss the tools 
to connect to three different APIs, so you can build your own data mashups. 
The book will focus on Twitter in the following chapters.

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 28 ]

Architecting data-intensive apps
We defined the data-intensive app framework architecture blueprint in the previous 
chapter. Let's put back in context the various software components we are going 
to use throughout the book in our original framework. Here's an illustration of 
the various components of software mapped in the data-intensive architecture 
framework:

Spark is an extremely efficient, distributed computing framework. In order to exploit 
its full power, we need to architect our solution accordingly. For performance 
reasons, the overall solution needs to also be aware of its usage in terms of CPU, 
storage, and network.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 29 ]

These imperatives drive the architecture of our solution:

• Latency: This architecture combines slow and fast processing. Slow 
processing is done on historical data in batch mode. This is also called data 
at rest. This phase builds precomputed models and data patterns that will 
be used by the fast processing arm once live continuous data is fed into the 
system. Fast processing of data or real-time analysis of streaming data refers 
to data in motion. Data at rest is essentially processing data in batch mode 
with a longer latency. Data in motion refers to the streaming computation of 
data ingested in real time.

• Scalability: Spark is natively linearly scalable through its distributed in-
memory computing framework. Databases and data stores interacting with 
Spark need to be also able to scale linearly as data volume grows.

• Fault tolerance: When a failure occurs due to hardware, software, or network 
reasons, the architecture should be resilient enough and provide availability 
at all times.

• Flexibility: The data pipelines put in place in this architecture can be adapted 
and retrofitted very quickly depending on the use case.

Spark is unique as it allows batch processing and streaming analytics on the same 
unified platform.

We will consider two data processing pipelines:

• The first one handles data at rest and is focused on putting together the 
pipeline for batch analysis of the data

• The second one, data in motion, targets real-time data ingestion and 
delivering insights based on precomputed models and data patterns

Processing data at rest
Let's get an understanding of the data at rest or batch processing pipeline. The 
objective in this pipeline is to ingest the various datasets from Twitter, GitHub, and 
Meetup; prepare the data for Spark MLlib, the machine learning engine; and derive 
the base models that will be applied for insight generation in batch mode or in  
real time.

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 30 ]

The following diagram illustrates the data pipeline in order to enable processing data 
at rest:

Processing data in motion
Processing data in motion introduces a new level of complexity, as we are 
introducing a new possibility of failure. If we want to scale, we need to consider 
bringing in distributed message queue systems such as Kafka. We will dedicate a 
subsequent chapter to understanding streaming analytics.

The following diagram depicts a data pipeline for processing data in motion:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 31 ]

Exploring data interactively
Building a data-intensive app is not as straightforward as exposing a database 
to a web interface. During the setup of both the data at rest and data in motion 
processing, we will capitalize on Spark's ability to analyse data interactively and 
refine the data richness and quality required for the machine learning and streaming 
activities. Here, we will go through an iterative cycle of data collection, refinement, 
and investigation in order to get to the dataset of interest for our apps.

Connecting to social networks
Let's delve into the first steps of the data-intensive app architecture's integration 
layer. We are going to focus on harvesting the data, ensuring its integrity and 
preparing for batch and streaming data processing by Spark at the next stage. This 
phase is described in the five process steps: connect, correct, collect, compose, and 
consume. These are iterative steps of data exploration that will get us acquainted with 
the data and help us refine the data structure for further processing.

The following diagram depicts the iterative process of data acquisition and 
refinement for consumption:

We connect to the social networks of interest: Twitter, GitHub, and Meetup. We 
will discuss the mode of access to the APIs (short for Application Programming 
Interface) and how to create a RESTful connection with those services while 
respecting the rate limitation imposed by the social networks. REST (short for 
Representation State Transfer) is the most widely adopted architectural style on the 
Internet in order to enable scalable web services. It relies on exchanging messages 
predominantly in JSON (short for JavaScript Object Notation). RESTful APIs and 
web services implement the four most prevalent verbs GET, PUT, POST, and DELETE. 
GET is used to retrieve an element or a collection from a given URI. PUT updates a 
collection with a new one. POST allows the creation of a new entry, while DELETE 
eliminates a collection.

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 32 ]

Getting Twitter data
Twitter allows access to registered users to its search and streaming tweet services 
under an authorization protocol called OAuth that allows API applications to 
securely act on a user's behalf. In order to create the connection, the first step is to 
create an application with Twitter at https://apps.twitter.com/app/new.

Once the application has been created, Twitter will issue the four codes that will 
allow it to tap into the Twitter hose:

CONSUMER_KEY = 'GetYourKey@Twitter'
CONSUMER_SECRET = ' GetYourKey@Twitter'
OAUTH_TOKEN = ' GetYourToken@Twitter'
OAUTH_TOKEN_SECRET = ' GetYourToken@Twitter'

www.it-ebooks.info

https://apps.twitter.com/app/new
http://www.it-ebooks.info/


Chapter 2

[ 33 ]

If you wish to get a feel for the various RESTful queries offered, you can explore 
the Twitter API on the dev console at https://dev.twitter.com/rest/tools/
console:

We will make a programmatic connection on Twitter using the following code, 
which will activate our OAuth access and allows us to tap into the Twitter API  
under the rate limitation. In the streaming mode, the limitation is for a GET request.

www.it-ebooks.info

https://dev.twitter.com/rest/tools/console
https://dev.twitter.com/rest/tools/console
http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 34 ]

Getting GitHub data
GitHub uses a similar authentication process to Twitter. Head to the developer  
site and retrieve your credentials after duly registering with GitHub at  
https://developer.github.com/v3/:

Getting Meetup data
Meetup can be accessed using the token issued in the developer resources to 
members of Meetup.com. The necessary token or OAuth credential for Meetup API 
access can be obtained on their developer's website at https://secure.meetup.
com/meetup_api:

www.it-ebooks.info

https://developer.github.com/v3/
https://secure.meetup.com/meetup_api
https://secure.meetup.com/meetup_api
http://www.it-ebooks.info/


Chapter 2

[ 35 ]

Analyzing the data
Let's get a first feel for the data extracted from each of the social networks and get an 
understanding of the data structure from each these sources.

Discovering the anatomy of tweets
In this section, we are going to establish connection with the Twitter API. Twitter 
offers two connection modes: the REST API, which allows us to search historical 
tweets for a given search term or hashtag, and the streaming API, which delivers  
real-time tweets under the rate limit in place.

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 36 ]

In order to get a better understanding of how to operate with the Twitter API, we 
will go through the following steps:

1. Install the Twitter Python library.
2. Establish a connection programmatically via OAuth, the authentication 

required for Twitter.
3. Search for recent tweets for the query Apache Spark and explore the results 

obtained.
4. Decide on the key attributes of interest and retrieve the information from the 

JSON output.

Let's go through it step-by-step:

1. Install the Python Twitter library. In order to install it, you need to write pip 
install twitter from the command line:
$ pip install twitter

2. Create the Python Twitter API class and its base methods for authentication, 
searching, and parsing the results. self.auth gets the credentials from 
Twitter. It then creates a registered API as self.api. We have implemented 
two methods: the first one to search Twitter with a given query and the 
second one to parse the output to retrieve relevant information such as the 
tweet ID, the tweet text, and the tweet author. The code is as follows:
import twitter
import urlparse
from pprint import pprint as pp

class TwitterAPI(object):
    """
    TwitterAPI class allows the Connection to Twitter via OAuth
    once you have registered with Twitter and receive the 
    necessary credentiials 
    """

# initialize and get the twitter credentials
     def __init__(self): 
        consumer_key = 'Provide your credentials'
        consumer_secret = 'Provide your credentials'
        access_token = 'Provide your credentials'
        access_secret = 'Provide your credentials'
     
        self.consumer_key = consumer_key
        self.consumer_secret = consumer_secret

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 37 ]

        self.access_token = access_token
        self.access_secret = access_secret

#
# authenticate credentials with Twitter using OAuth
        self.auth = twitter.oauth.OAuth(access_token, access_
secret, consumer_key, consumer_secret)
    # creates registered Twitter API
        self.api = twitter.Twitter(auth=self.auth)
#
# search Twitter with query q (i.e. "ApacheSpark") and max. result
    def searchTwitter(self, q, max_res=10,**kwargs):
        search_results = self.api.search.tweets(q=q, count=10, 
**kwargs)
        statuses = search_results['statuses']
        max_results = min(1000, max_res)

        for _ in range(10): 
            try:
                next_results = search_results['search_metadata']
['next_results']
            except KeyError as e: 
                break

            next_results = urlparse.parse_qsl(next_results[1:])
            kwargs = dict(next_results)
            search_results = self.api.search.tweets(**kwargs)
            statuses += search_results['statuses']

            if len(statuses) > max_results: 
                break
        return statuses
#
# parse tweets as it is collected to extract id, creation 
# date, user id, tweet text
    def parseTweets(self, statuses):
        return [ (status['id'], 
                  status['created_at'], 
                  status['user']['id'],
                  status['user']['name'], 
                  status['text'], url['expanded_url']) 
                        for status in statuses 
                            for url in status['entities']['urls'] 
]

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 38 ]

3. Instantiate the class with the required authentication:
t= TwitterAPI()

4. Run a search on the query term Apache Spark:
q="ApacheSpark"
tsearch = t.searchTwitter(q)

5. Analyze the JSON output:
pp(tsearch[1])

{u'contributors': None,
 u'coordinates': None,
 u'created_at': u'Sat Apr 25 14:50:57 +0000 2015',
 u'entities': {u'hashtags': [{u'indices': [74, 86], u'text': 
u'sparksummit'}],
               u'media': [{u'display_url': u'pic.twitter.com/
WKUMRXxIWZ',
                           u'expanded_url': u'http://twitter.com/
bigdata/status/591976255831969792/photo/1',
                           u'id': 591976255156715520,
                           u'id_str': u'591976255156715520',
                           u'indices': [143, 144],
                           u'media_url': 
...(snip)... 
 u'text': u'RT @bigdata: Enjoyed catching up with @ApacheSpark 
users &amp; leaders at #sparksummit NYC: video clips are out 
http://t.co/qrqpP6cG9s http://t\u2026',
 u'truncated': False,
 u'user': {u'contributors_enabled': False,
           u'created_at': u'Sat Apr 04 14:44:31 +0000 2015',
           u'default_profile': True,
           u'default_profile_image': True,
           u'description': u'',
           u'entities': {u'description': {u'urls': []}},
           u'favourites_count': 0,
           u'follow_request_sent': False,
           u'followers_count': 586,
           u'following': False,
           u'friends_count': 2,
           u'geo_enabled': False,
           u'id': 3139047660,
           u'id_str': u'3139047660',
           u'is_translation_enabled': False,
           u'is_translator': False,

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 39 ]

           u'lang': u'zh-cn',
           u'listed_count': 749,
           u'location': u'',
           u'name': u'Mega Data Mama',
           u'notifications': False,
           u'profile_background_color': u'C0DEED',
           u'profile_background_image_url': u'http://abs.twimg.
com/images/themes/theme1/bg.png',
           u'profile_background_image_url_https': u'https://abs.
twimg.com/images/themes/theme1/bg.png',
           ...(snip)... 
           u'screen_name': u'MegaDataMama',
           u'statuses_count': 26673,
           u'time_zone': None,
           u'url': None,
           u'utc_offset': None,
           u'verified': False}}

6. Parse the Twitter output to retrieve key information of interest:

tparsed = t.parseTweets(tsearch)
pp(tparsed)

[(591980327784046592,
  u'Sat Apr 25 15:01:23 +0000 2015',
  63407360,
  u'Jos\xe9 Carlos Baquero',
  u'Big Data systems are making a difference in the fight against 
cancer. #BigData #ApacheSpark http://t.co/pnOLmsKdL9',
  u'http://tmblr.co/ZqTggs1jHytN0'),
 (591977704464875520,
  u'Sat Apr 25 14:50:57 +0000 2015',
  3139047660,
  u'Mega Data Mama',
  u'RT @bigdata: Enjoyed catching up with @ApacheSpark users &amp; 
leaders at #sparksummit NYC: video clips are out http://t.co/
qrqpP6cG9s http://t\u2026',
  u'http://goo.gl/eF5xwK'),
 (591977172589539328,
  u'Sat Apr 25 14:48:51 +0000 2015',
  2997608763,
  u'Emma Clark',
  u'RT @bigdata: Enjoyed catching up with @ApacheSpark users &amp; 
leaders at #sparksummit NYC: video clips are out http://t.co/
qrqpP6cG9s http://t\u2026',
  u'http://goo.gl/eF5xwK'),

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 40 ]

 ... (snip)...  
 (591879098349268992,
  u'Sat Apr 25 08:19:08 +0000 2015',
  331263208,
  u'Mario Molina',
  u'#ApacheSpark speeds up big data decision-making http://t.
co/8hdEXreNfN',
  u'http://www.computerweekly.com/feature/Apache-Spark-speeds-up-
big-data-decision-making')]

Exploring the GitHub world
In order to get a better understanding on how to operate with the GitHub API, we 
will go through the following steps:

1. Install the GitHub Python library.
2. Access the API by using the token provided when we registered in the 

developer website.
3. Retrieve some key facts on the Apache foundation that is hosting the  

spark repository.

Let's go through the process step-by-step:

1. Install the Python PyGithub library. In order to install it, you need to pip 
install PyGithub from the command line:
pip install PyGithub

2. Programmatically create a client to instantiate the GitHub API:
from github import Github

# Get your own access token

ACCESS_TOKEN = 'Get_Your_Own_Access_Token'

# We are focusing our attention to User = apache and Repo = spark

USER = 'apache'
REPO = 'spark'

g = Github(ACCESS_TOKEN, per_page=100)
user = g.get_user(USER)
repo = user.get_repo(REPO)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 41 ]

3. Retrieve key facts from the Apache User. There are 640 active Apache 
repositories in GitHub:
repos_apache = [repo.name for repo in g.get_user('apache').get_
repos()]
len(repos_apache)
640

4. Retrieve key facts from the Spark repository, The programing languages 
used in the Spark repo are given here under:
pp(repo.get_languages())

{u'C': 1493,
 u'CSS': 4472,
 u'Groff': 5379,
 u'Java': 1054894,
 u'JavaScript': 21569,
 u'Makefile': 7771,
 u'Python': 1091048,
 u'R': 339201,
 u'Scala': 10249122,
 u'Shell': 172244}

5. Retrieve a few key participants of the wide Spark GitHub repository 
network. There are 3,738 stargazers in the Apache Spark repository at the 
time of writing. The network is immense. The first stargazer is Matei Zaharia, 
the cofounder of the Spark project when he was doing his PhD in Berkeley.

stargazers = [ s for s in repo.get_stargazers() ]
print "Number of stargazers", len(stargazers)
Number of stargazers 3738

[stargazers[i].login for i in range (0,20)]
[u'mateiz',
 u'beyang',
 u'abo',
 u'CodingCat',
 u'andy327',
 u'CrazyJvm',
 u'jyotiska',
 u'BaiGang',
 u'sundstei',
 u'dianacarroll',
 u'ybotco',
 u'xelax',

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 42 ]

 u'prabeesh',
 u'invkrh',
 u'bedla',
 u'nadesai',
 u'pcpratts',
 u'narkisr',
 u'Honghe',
 u'Jacke']

Understanding the community through 
Meetup
In order to get a better understanding of how to operate with the Meetup API,  
we will go through the following steps:

1. Create a Python program to call the Meetup API using an  
authentication token.

2. Retrieve information of past events for meetup groups such as  
London Data Science.

3. Retrieve the profile of the meetup members in order to analyze their 
participation in similar meetup groups.

Let's go through the process step-by-step:

1. As there is no reliable Meetup API Python library, we will programmatically 
create a client to instantiate the Meetup API:
import json
import mimeparse
import requests
import urllib
from pprint import pprint as pp

MEETUP_API_HOST = 'https://api.meetup.com'
EVENTS_URL = MEETUP_API_HOST + '/2/events.json'
MEMBERS_URL = MEETUP_API_HOST + '/2/members.json'
GROUPS_URL = MEETUP_API_HOST + '/2/groups.json'
RSVPS_URL = MEETUP_API_HOST + '/2/rsvps.json'
PHOTOS_URL = MEETUP_API_HOST + '/2/photos.json'
GROUP_URLNAME = 'London-Machine-Learning-Meetup'
# GROUP_URLNAME = 'London-Machine-Learning-Meetup' # 'Data-
Science-London'

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 43 ]

class Mee
tupAPI(object):
    """
    Retrieves information about meetup.com
    """
    def __init__(self, api_key, num_past_events=10, http_
timeout=1,
                 http_retries=2):
        """
        Create a new instance of MeetupAPI
        """
        self._api_key = api_key
        self._http_timeout = http_timeout
        self._http_retries = http_retries
        self._num_past_events = num_past_events

    def get_past_events(self):
        """
        Get past meetup events for a given meetup group
        """
        params = {'key': self._api_key,
                  'group_urlname': GROUP_URLNAME,
                  'status': 'past',
                  'desc': 'true'}
        if self._num_past_events:
            params['page'] = str(self._num_past_events)

        query = urllib.urlencode(params)
        url = '{0}?{1}'.format(EVENTS_URL, query)
        response = requests.get(url, timeout=self._http_timeout)
        data = response.json()['results']
        return data

    def get_members(self):
        """
        Get meetup members for a given meetup group
        """
        params = {'key': self._api_key,
                  'group_urlname': GROUP_URLNAME,
                  'offset': '0',
                  'format': 'json',
                  'page': '100',
                  'order': 'name'}
        query = urllib.urlencode(params)

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 44 ]

        url = '{0}?{1}'.format(MEMBERS_URL, query)
        response = requests.get(url, timeout=self._http_timeout)
        data = response.json()['results']
        return data

    def get_groups_by_member(self, member_id='38680722'):
        """
        Get meetup groups for a given meetup member
        """
        params = {'key': self._api_key,
                  'member_id': member_id,
                  'offset': '0',
                  'format': 'json',
                  'page': '100',
                  'order': 'id'}
        query = urllib.urlencode(params)
        url = '{0}?{1}'.format(GROUPS_URL, query)
        response = requests.get(url, timeout=self._http_timeout)
        data = response.json()['results']
        return data

2. Then, we will retrieve past events from a given Meetup group:
m = MeetupAPI(api_key='Get_Your_Own_Key')
last_meetups = m.get_past_events()
pp(last_meetups[5])

{u'created': 1401809093000,
 u'description': u"<p>We are hosting a joint meetup between Spark 
London and Machine Learning London. Given the excitement in the 
machine learning community around Spark at the moment a joint 
meetup is in order!</p> <p>Michael Armbrust from the Apache Spark 
core team will be flying over from the States to give us a talk in 
person.\xa0Thanks to our sponsors, Cloudera, MapR and Databricks 
for helping make this happen.</p> <p>The first part of the talk 
will be about MLlib, the machine learning library for Spark,\
xa0and the second part, on\xa0Spark SQL.</p> <p>Don't sign up if 
you have already signed up on the Spark London page though!</p> 
<p>\n\n\nAbstract for part one:</p> <p>In this talk, we\u2019ll 
introduce Spark and show how to use it to build fast, end-to-end 
machine learning workflows. Using Spark\u2019s high-level API, we 
can process raw data with familiar libraries in Java, Scala or 
Python (e.g. NumPy) to extract the features for machine learning. 
Then, using MLlib, its built-in machine learning library, we can 
run scalable versions of popular algorithms. We\u2019ll also cover 
upcoming development work including new built-in algorithms and 
R bindings.</p> <p>\n\n\n\nAbstract for part two:\xa0</p> <p>In 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 45 ]

this talk, we'll examine Spark SQL, a new Alpha component that is 
part of the Apache Spark 1.0 release. Spark SQL lets developers 
natively query data stored in both existing RDDs and external 
sources such as Apache Hive. A key feature of Spark SQL is the 
ability to blur the lines between relational tables and RDDs, 
making it easy for developers to intermix SQL commands that query 
external data with complex analytics. In addition to Spark SQL, 
we'll explore the Catalyst optimizer framework, which allows 
Spark SQL to automatically rewrite query plans to execute more 
efficiently.</p>",
 u'event_url': u'http://www.meetup.com/London-Machine-Learning-
Meetup/events/186883262/',
 u'group': {u'created': 1322826414000,
            u'group_lat': 51.52000045776367,
            u'group_lon': -0.18000000715255737,
            u'id': 2894492,
            u'join_mode': u'open',
            u'name': u'London Machine Learning Meetup',
            u'urlname': u'London-Machine-Learning-Meetup',
            u'who': u'Machine Learning Enthusiasts'},
 u'headcount': 0,
 u'id': u'186883262',
 u'maybe_rsvp_count': 0,
 u'name': u'Joint Spark London and Machine Learning Meetup',
 u'rating': {u'average': 4.800000190734863, u'count': 5},
 u'rsvp_limit': 70,
 u'status': u'past',
 u'time': 1403200800000,
 u'updated': 1403450844000,
 u'utc_offset': 3600000,
 u'venue': {u'address_1': u'12 Errol St, London',
            u'city': u'EC1Y 8LX',
            u'country': u'gb',
            u'id': 19504802,
            u'lat': 51.522533,
            u'lon': -0.090934,
            u'name': u'Royal Statistical Society',
            u'repinned': False},
 u'visibility': u'public',
 u'waitlist_count': 84,
 u'yes_rsvp_count': 70}

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 46 ]

3. Get information about the Meetup members:

members = m.get_members()

{u'city': u'London',
  u'country': u'gb',
  u'hometown': u'London',
  u'id': 11337881,
  u'joined': 1421418896000,
  u'lat': 51.53,
  u'link': u'http://www.meetup.com/members/11337881',
  u'lon': -0.09,
  u'name': u'Abhishek Shivkumar',
  u'other_services': {u'twitter': {u'identifier': u'@
abhisemweb'}},
  u'photo': {u'highres_link': u'http://photos3.meetupstatic.com/
photos/member/9/6/f/3/highres_10898643.jpeg',
             u'photo_id': 10898643,
             u'photo_link': u'http://photos3.meetupstatic.com/
photos/member/9/6/f/3/member_10898643.jpeg',
             u'thumb_link': u'http://photos3.meetupstatic.com/
photos/member/9/6/f/3/thumb_10898643.jpeg'},
  u'self': {u'common': {}},
  u'state': u'17',
  u'status': u'active',
  u'topics': [{u'id': 1372, u'name': u'Semantic Web', u'urlkey': 
u'semweb'},
              {u'id': 1512, u'name': u'XML', u'urlkey': u'xml'},
              {u'id': 49585,
               u'name': u'Semantic Social Networks',
               u'urlkey': u'semantic-social-networks'},
              {u'id': 24553,
               u'name': u'Natural Language Processing',
...(snip)...
               u'name': u'Android Development',
               u'urlkey': u'android-developers'}],
  u'visited': 1429281599000}

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2

[ 47 ]

Previewing our app
Our challenge is to make sense of the data retrieved from these social networks, 
finding the key relationships and deriving insights. Some of the elements of interest 
are as follows:

• Visualizing the top influencers: Discover the top influencers in  
the community:

 ° Heavy Twitter users on Apache Spark
 ° Committers in GitHub
 ° Leading Meetup presentations

• Understanding the Network: Network graph of GitHub committers, 
watchers, and stargazers

• Identifying the Hot Locations: Locating the most active location for Spark

The following screenshot provides a preview of our app:

www.it-ebooks.info

http://www.it-ebooks.info/


Building Batch and Streaming Apps with Spark

[ 48 ]

Summary
In this chapter, we laid out the overall architecture of our app. We explained the 
two main paradigms of processing data: batch processing, also called data at rest, 
and streaming analytics, referred to as data in motion. We proceeded to establish 
connections to three social networks of interest: Twitter, GitHub, and Meetup.  
We sampled the data and provided a preview of what we are aiming to build. The 
remainder of the book will focus on the Twitter dataset. We provided here the tools 
and API to access three social networks, so you can at a later stage create your own 
data mashups. We are now ready to investigate the data collected, which will be the 
topic of the next chapter.

In the next chapter, we will delve deeper into data analysis, extracting the key 
attributes of interest for our purposes and managing the storage of the information  
for batch and stream processing.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 49 ]

Juggling Data with Spark
As per the batch and streaming architecture laid out in the previous chapter, we  
need data to fuel our applications. We will harvest data focused on Apache Spark 
from Twitter. The objective of this chapter is to prepare data to be further used by  
the machine learning and streaming applications. This chapter focuses on how  
to exchange code and data across the distributed network. We will get practical 
insights into serialization, persistence, marshaling, and caching. We will get to  
grips with on Spark SQL, the key Spark module to interactively explore structured 
and semi-structured data. The fundamental data structure powering Spark SQL 
is the Spark dataframe. The Spark dataframe is inspired by the Python Pandas 
dataframe and the R dataframe. It is a powerful data structure, well understood  
and appreciated by data scientists with a background in R or Python.

In this chapter, we will cover the following points:

• Connect to Twitter, collect the relevant data, and then persist it in various 
formats such as JSON and CSV and data stores such as MongoDB

• Analyze the data using Blaze and Odo, a spin-off library from Blaze, in order 
to connect and transfer data from various sources and destinations

• Introduce Spark dataframes as the foundation for data interchange between 
the various Spark modules and explore data interactively using Spark SQL

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 50 ]

Revisiting the data-intensive app 
architecture
Let's first put in context the focus of this chapter with respect to the data-intensive 
app architecture. We will concentrate our attention on the integration layer and 
essentially run through iterative cycles of the acquisition, refinement, and persistence 
of the data. This cycle was termed the five Cs. The five Cs stand for connect, collect, 
correct, compose, and consume. They are the essential processes we run through in the 
integration layer in order to get to the right quality and quantity of data retrieved 
from Twitter. We will also delve deeper in the persistence layer and set up a data 
store such as MongoDB to collect our data for processing later.

We will explore the data with Blaze, a Python library for data manipulation, and 
Spark SQL, the interactive module of Spark for data discovery powered by the Spark 
dataframe. The dataframe paradigm is shared by Python Pandas, Python Blaze, and 
Spark SQL. We will get a feel for the nuances of the three dataframe flavors.

The following diagram sets the context of the chapter's focus, highlighting the 
integration layer and the persistence layer:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 51 ]

Serializing and deserializing data
As we are harvesting data from web APIs under rate limit constraints, we need to 
store them. As the data is processed on a distributed cluster, we need consistent 
ways to save state and retrieve it for later usage.

Let's now define serialization, persistence, marshaling, and caching or memorization.

Serializing a Python object converts it into a stream of bytes. The Python object needs 
to be retrieved beyond the scope of its existence, when the program is shut. The 
serialized Python object can be transferred over a network or stored in a persistent 
storage. Deserialization is the opposite and converts the stream of bytes into the 
original Python object so the program can carry on from the saved state. The most 
popular serialization library in Python is Pickle. As a matter of fact, the PySpark 
commands are transferred over the wire to the worker nodes via pickled data.

Persistence saves a program's state data to disk or memory so that it can carry on 
where it left off upon restart. It saves a Python object from memory to a file or a 
database and loads it later with the same state.

Marshalling sends Python code or data over a network TCP connection in a 
multicore or distributed system.

Caching converts a Python object to a string in memory so that it can be used  
as a dictionary key later on. Spark supports pulling a dataset into a cluster-wide,  
in-memory cache. This is very useful when data is accessed repeatedly such as  
when querying a small reference dataset or running an iterative algorithm such  
as Google PageRank.

Caching is a crucial concept for Spark as it allows us to save RDDs in memory or 
with a spillage to disk. The caching strategy can be selected based on the lineage of 
the data or the DAG (short for Directed Acyclic Graph) of transformations applied 
to the RDDs in order to minimize shuffle or cross network heavy data exchange. In 
order to achieve good performance with Spark, beware of data shuffling. A good 
partitioning policy and use of RDD caching, coupled with avoiding unnecessary 
action operations, leads to better performance with Spark.

Harvesting and storing data
Before delving into database persistent storage such as MongoDB, we will look at 
some useful file storages that are widely used: CSV (short for comma-separated 
values) and JSON (short for JavaScript Object Notation) file storage. The enduring 
popularity of these two file formats lies in a few key reasons: they are human 
readable, simple, relatively lightweight, and easy to use.

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 52 ]

Persisting data in CSV
The CSV format is lightweight, human readable, and easy to use. It has delimited 
text columns with an inherent tabular schema.

Python offers a robust csv library that can serialize a csv file into a Python 
dictionary. For the purpose of our program, we have written a python class  
that manages to persist data in CSV format and read from a given CSV.

Let's run through the code of the class IO_csv object. The __init__ section of the 
class basically instantiates the file path, the filename, and the file suffix (in this case, 
.csv):

class IO_csv(object):

    def __init__(self, filepath, filename, filesuffix='csv'):
        self.filepath = filepath       # /path/to/file without the /' 
at the end
        self.filename = filename       # FILE_NAME
        self.filesuffix = filesuffix

The save method of the class uses a Python named tuple and the header fields of  
the csv file in order to impart a schema while persisting the rows of the CSV. If the 
csv file already exists, it will be appended and not overwritten otherwise; it will  
be created:

    def save(self, data, NTname, fields):
        # NTname = Name of the NamedTuple
        # fields = header of CSV - list of the fields name
        NTuple = namedtuple(NTname, fields)
        
        if os.path.isfile('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix)):
            # Append existing file
            with open('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix), 'ab') as f:
                writer = csv.writer(f)
                # writer.writerow(fields) # fields = header of CSV
                writer.writerows([row for row in map(NTuple._make, 
data)])
                # list comprehension using map on the NamedTuple._
make() iterable and the data file to be saved
                # Notice writer.writerows and not writer.writerow 
(i.e. list of multiple rows sent to csv file
        else:
            # Create new file

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 53 ]

            with open('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix), 'wb') as f:
                writer = csv.writer(f)
                writer.writerow(fields) # fields = header of CSV - 
list of the fields name
                writer.writerows([row for row in map(NTuple._make, 
data)])
                #  list comprehension using map on the NamedTuple._
make() iterable and the data file to be saved
                # Notice writer.writerows and not writer.writerow 
(i.e. list of multiple rows sent to csv file

The load method of the class also uses a Python named tuple and the header fields 
of the csv file in order to retrieve the data using a consistent schema. The load 
method is a memory-efficient generator to avoid loading a huge file in memory: 
hence we use yield in place of return:

    def load(self, NTname, fields):
        # NTname = Name of the NamedTuple
        # fields = header of CSV - list of the fields name
        NTuple = namedtuple(NTname, fields)
        with open('{0}/{1}.{2}'.format(self.filepath, self.filename, 
self.filesuffix),'rU') as f:
            reader = csv.reader(f)
            for row in map(NTuple._make, reader):
                # Using map on the NamedTuple._make() iterable and the 
reader file to be loaded
                yield row 

Here's the named tuple. We are using it to parse the tweet in order to save or retrieve 
them to and from the csv file:

fields01 = ['id', 'created_at', 'user_id', 'user_name', 'tweet_text', 
'url']
Tweet01 = namedtuple('Tweet01',fields01)

def parse_tweet(data):
    """
    Parse a ``tweet`` from the given response data.
    """
    return Tweet01(
        id=data.get('id', None),
        created_at=data.get('created_at', None),
        user_id=data.get('user_id', None),
        user_name=data.get('user_name', None),
        tweet_text=data.get('tweet_text', None),
        url=data.get('url')
    )

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 54 ]

Persisting data in JSON
JSON is one of the most popular data formats for Internet-based applications. All the 
APIs we are dealing with, Twitter, GitHub, and Meetup, deliver their data in JSON 
format. The JSON format is relatively lightweight compared to XML and human 
readable, and the schema is embedded in JSON. As opposed to the CSV format, 
where all records follow exactly the same tabular structure, JSON records can vary 
in their structure. JSON is semi-structured. A JSON record can be mapped into a 
Python dictionary of dictionaries.

Let's run through the code of the class IO_json object. The __init__ section of the 
class basically instantiates the file path, the filename, and the file suffix (in this case, 
.json):

class IO_json(object):
    def __init__(self, filepath, filename, filesuffix='json'):
        self.filepath = filepath        # /path/to/file without the /' 
at the end
        self.filename = filename        # FILE_NAME
        self.filesuffix = filesuffix
        # self.file_io = os.path.join(dir_name, .'.join((base_
filename, filename_suffix)))

The save method of the class uses utf-8 encoding in order to ensure read and write 
compatibility of the data. If the JSON file already exists, it will be appended and not 
overwritten; otherwise it will be created:

    def save(self, data):
        if os.path.isfile('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix)):
            # Append existing file
            with io.open('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix), 'a', encoding='utf-8') as f:
                f.write(unicode(json.dumps(data, ensure_ascii= 
False))) # In python 3, there is no "unicode" function 
                # f.write(json.dumps(data, ensure_ascii= False)) # 
create a \" escape char for " in the saved file        
        else:
            # Create new file
            with io.open('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix), 'w', encoding='utf-8') as f:
                f.write(unicode(json.dumps(data, ensure_ascii= 
False)))
                # f.write(json.dumps(data, ensure_ascii= False))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 55 ]

The load method of the class just returns the file that has been read. A further json.
loads function needs to be applied in order to retrieve the json out of the file read:

    def load(self):
        with io.open('{0}/{1}.{2}'.format(self.filepath, self.
filename, self.filesuffix), encoding='utf-8') as f:
            return f.read()

Setting up MongoDB
It is crucial to store the information harvested. Thus, we set up MongoDB as our 
main document data store. As all the information collected is in JSON format and 
MongoDB stores information in BSON (short for Binary JSON), it is therefore a 
natural choice.

We will run through the following steps now:

• Installing the MongoDB server and client
• Running the MongoDB server
• Running the Mongo client
• Installing the PyMongo driver
• Creating the Python Mongo client

Installing the MongoDB server and client
In order to install the MongoDB package, perform through the following steps:

1. Import the public key used by the package management system (in our  
case, Ubuntu's apt). To import the MongoDB public key, we issue the 
following command:
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 
7F0CEB10

2. Create a list file for MongoDB. To create the list file, we use the following 
command:
echo "deb http://repo.mongodb.org/apt/ubuntu "$("lsb_release 
-sc)"/ mongodb-org/3.0 multiverse" | sudo tee /etc/apt/sources.
list.d/mongodb-org-3.0.list

3. Update the local package database as sudo:
sudo apt-get update

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 56 ]

4. Install the MongoDB packages. We install the latest stable version of 
MongoDB with the following command:

sudo apt-get install -y mongodb-org

Running the MongoDB server
Let's start the MongoDB server:

1. To start MongoDB server, we issue the following command to start mongod:
sudo service mongodb start

2. To check whether mongod has started properly, we issue the command: 
an@an-VB:/usr/bin$ ps -ef | grep mongo

mongodb    967     1  4 07:03 ?        00:02:02 /usr/bin/mongod 
--config /etc/mongod.conf

an        3143  3085  0 07:45 pts/3    00:00:00 grep --color=auto 
mongo

In this case, we see that mongodb is running in process 967.

3. The mongod server sends a message to the effect that it is waiting for 
connection on port 27017. This is the default port for MongoDB.  
It can be changed in the configuration file.

4. We can check the contents of the log file at /var/log/mongod/mongod.log:
an@an-VB:/var/lib/mongodb$ ls -lru

total 81936

drwxr-xr-x 2 mongodb nogroup     4096 Apr 25 11:19 _tmp

-rw-r--r-- 1 mongodb nogroup       69 Apr 25 11:19 storage.bson

-rwxr-xr-x 1 mongodb nogroup        5 Apr 25 11:19 mongod.lock

-rw------- 1 mongodb nogroup 16777216 Apr 25 11:19 local.ns

-rw------- 1 mongodb nogroup 67108864 Apr 25 11:19 local.0

drwxr-xr-x 2 mongodb nogroup     4096 Apr 25 11:19 journal

5. In order to stop the mongodb server, just issue the following command:

sudo service mongodb stop

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 57 ]

Running the Mongo client
Running the Mongo client in the console is as easy as calling mongo, as highlighted in 
the following command:

an@an-VB:/usr/bin$ mongo

MongoDB shell version: 3.0.2

connecting to: test

Server has startup warnings: 

2015-05-30T07:03:49.387+0200 I CONTROL  [initandlisten] 

2015-05-30T07:03:49.388+0200 I CONTROL  [initandlisten] 

At the mongo client console prompt, we can see the databases with the  
following commands:

> show dbs
local  0.078GB
test   0.078GB

We select the test database using use test:

> use test
switched to db test

We display the collections within the test database:

> show collections
restaurants
system.indexes

We check a sample record in the restaurant collection listed previously:

> db.restaurants.find()
{ "_id" : ObjectId("553b70055e82e7b824ae0e6f"), "address : { "building 
: "1007", "coord" : [ -73.856077, 40.848447 ], "street : "Morris Park 
Ave", "zipcode : "10462 }, "borough : "Bronx", "cuisine : "Bakery", 
"grades : [ { "grade : "A", "score" : 2, "date" : ISODate("2014-
03-03T00:00:00Z") }, { "date" : ISODate("2013-09-11T00:00:00Z"), 
"grade : "A", "score" : 6 }, { "score" : 10, "date" : ISODate("2013-
01-24T00:00:00Z"), "grade : "A }, { "date" : ISODate("2011-11-
23T00:00:00Z"), "grade : "A", "score" : 9 }, { "date" : ISODate("2011-
03-10T00:00:00Z"), "grade : "B", "score" : 14 } ], "name : "Morris 
Park Bake Shop", "restaurant_id : "30075445" }

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 58 ]

Installing the PyMongo driver
Installing the Python driver with anaconda is easy. Just run the following command 
at the terminal:

conda install pymongo

Creating the Python client for MongoDB
We are creating a IO_mongo class that will be used in our harvesting and processing 
programs to store the data collected and retrieved saved information. In order to 
create the mongo client, we will import the MongoClient module from pymongo. We 
connect to the mongodb server on localhost at port 27017. The command is as follows:

from pymongo import MongoClient as MCli

class IO_mongo(object):
    conn={'host':'localhost', 'ip':'27017'}

We initialize our class with the client connection, the database (in this case, twtr_db), 
and the collection (in this case, twtr_coll) to be accessed:

    def __init__(self, db='twtr_db', coll='twtr_coll', **conn ):
        # Connects to the MongoDB server 
        self.client = MCli(**conn)
        self.db = self.client[db]
        self.coll = self.db[coll]

The save method inserts new records in the preinitialized collection and database:

    def save(self, data):
        # Insert to collection in db  
        return self.coll.insert(data)

The load method allows the retrieval of specific records according to criteria and 
projection. In the case of large amount of data, it returns a cursor:

    def load(self, return_cursor=False, criteria=None, 
projection=None):

            if criteria is None:
                criteria = {}

            if projection is None:
                cursor = self.coll.find(criteria)
            else:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 59 ]

                cursor = self.coll.find(criteria, projection)

            # Return a cursor for large amounts of data
            if return_cursor:
                return cursor
            else:
                return [ item for item in cursor ]

Harvesting data from Twitter
Each social network poses its limitations and challenges. One of the main obstacles 
for harvesting data is an imposed rate limit. While running repeated or long-running 
connections between rates limit pauses, we have to be careful to avoid collecting 
duplicate data.

We have redesigned our connection programs outlined in the previous chapter to 
take care of the rate limits.

In this TwitterAPI class that connects and collects the tweets according to the search 
query we specify, we have added the following:

• Logging capability using the Python logging library with the aim of 
collecting any errors or warning in the case of program failure

• Persistence capability using MongoDB, with the IO_mongo class exposed 
previously as well as JSON file using the IO_json class

• API rate limit and error management capability, so we can ensure more 
resilient calls to Twitter without getting barred for tapping into the firehose

Let's go through the steps:

1. We initialize by instantiating the Twitter API with our credentials:
class TwitterAPI(object):
    """
    TwitterAPI class allows the Connection to Twitter via OAuth
    once you have registered with Twitter and receive the 
    necessary credentials 
    """

    def __init__(self): 
        consumer_key = 'get_your_credentials'
        consumer_secret = get your_credentials'
        access_token = 'get_your_credentials'

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 60 ]

        access_secret = 'get your_credentials'
        self.consumer_key = consumer_key
        self.consumer_secret = consumer_secret
        self.access_token = access_token
        self.access_secret = access_secret
        self.retries = 3
        self.auth = twitter.oauth.OAuth(access_token, access_
secret, consumer_key, consumer_secret)
        self.api = twitter.Twitter(auth=self.auth)

2. We initialize the logger by providing the log level:
 ° logger.debug(debug message)
 ° logger.info(info message)
 ° logger.warn(warn message)
 ° logger.error(error message)
 ° logger.critical(critical message)

3. We set the log path and the message format:
        # logger initialisation
        appName = 'twt150530'
        self.logger = logging.getLogger(appName)
        #self.logger.setLevel(logging.DEBUG)
        # create console handler and set level to debug
        logPath = '/home/an/spark/spark-1.3.0-bin-hadoop2.4/
examples/AN_Spark/data'
        fileName = appName
        fileHandler = logging.FileHandler("{0}/{1}.log".
format(logPath, fileName))
        formatter = logging.Formatter('%(asctime)s - %(name)s - 
%(levelname)s - %(message)s')
        fileHandler.setFormatter(formatter)
        self.logger.addHandler(fileHandler) 
        self.logger.setLevel(logging.DEBUG)

4. We initialize the JSON file persistence instruction:
        # Save to JSON file initialisation
        jsonFpath = '/home/an/spark/spark-1.3.0-bin-hadoop2.4/
examples/AN_Spark/data'
        jsonFname = 'twtr15053001'
        self.jsonSaver = IO_json(jsonFpath, jsonFname)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 61 ]

5. We initialize the MongoDB database and collection for persistence:
        # Save to MongoDB Intitialisation
        self.mongoSaver = IO_mongo(db='twtr01_db', coll='twtr01_
coll')

6. The method searchTwitter launches the search according to the  
query specified:
    def searchTwitter(self, q, max_res=10,**kwargs):
        search_results = self.api.search.tweets(q=q, count=10, 
**kwargs)
        statuses = search_results['statuses']
        max_results = min(1000, max_res)
        
        for _ in range(10):
            try:
                next_results = search_results['search_metadata']
['next_results']
                # self.logger.info('info' in searchTwitter - next_
results:%s'% next_results[1:])
            except KeyError as e:
                self.logger.error('error' in searchTwitter: %s', 
%(e))
                break
            
            # next_results = urlparse.parse_qsl(next_results[1:]) 
# python 2.7
            next_results = urllib.parse.parse_qsl(next_
results[1:])
            # self.logger.info('info' in searchTwitter - next_
results[max_id]:', next_results[0:])
            kwargs = dict(next_results)
            # self.logger.info('info' in searchTwitter - next_
results[max_id]:%s'% kwargs['max_id'])
            search_results = self.api.search.tweets(**kwargs)
            statuses += search_results['statuses']
            self.saveTweets(search_results['statuses'])
            
            if len(statuses) > max_results:
                self.logger.info('info' in searchTwitter - got %i 
tweets - max: %i' %(len(statuses), max_results))
                break
        return statuses

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 62 ]

7. The saveTweets method actually saves the collected tweets in JSON and  
in MongoDB:
    def saveTweets(self, statuses):
        # Saving to JSON File
        self.jsonSaver.save(statuses)
        
        # Saving to MongoDB
        for s in statuses:
            self.mongoSaver.save(s)

8. The parseTweets method allows us to extract the key tweet information 
from the vast amount of information provided by the Twitter API:
    def parseTweets(self, statuses):
        return [ (status['id'], 
                  status['created_at'], 
                  status['user']['id'],
                  status['user']['name'] 
                  status['text''text'], 
                  url['expanded_url']) 
                        for status in statuses 
                            for url in status['entities']['urls'] 
]

9. The getTweets method calls the searchTwitter method described 
previously. The getTweets method ensures that API calls are made  
reliably whilst respecting the imposed rate limit. The code is as follows:
    def getTweets(self, q,  max_res=10):
        """
        Make a Twitter API call whilst managing rate limit and 
errors.
        """
        def handleError(e, wait_period=2, sleep_when_rate_
limited=True):
            if wait_period > 3600: # Seconds
                self.logger.error('Too many retries in getTweets: 
%s', %(e))
                raise e
            if e.e.code == 401:
                self.logger.error('error 401 * Not Authorised * in 
getTweets: %s', %(e))
                return None
            elif e.e.code == 404:
                self.logger.error('error 404 * Not Found * in 
getTweets: %s', %(e))

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 63 ]

                return None
            elif e.e.code == 429: 
                self.logger.error('error 429 * API Rate Limit 
Exceeded * in getTweets: %s', %(e))
                if sleep_when_rate_limited:
                    self.logger.error('error 429 * Retrying in 15 
minutes * in getTweets: %s', %(e))
                    sys.stderr.flush()
                    time.sleep(60*15 + 5)
                    self.logger.info('error 429 * Retrying now * 
in getTweets: %s', %(e))
                    return 2
                else:
                    raise e # Caller must handle the rate limiting 
issue
            elif e.e.code in (500, 502, 503, 504):
                self.logger.info('Encountered %i Error. Retrying 
in %i seconds' % (e.e.code, wait_period))
                time.sleep(wait_period)
                wait_period *= 1.5
                return wait_period
            else:
                self.logger.error('Exit - aborting - %s', %(e))
                raise e

10. Here, we are calling the searchTwitter API with the relevant query based 
on the parameters specified. If we encounter any error such as rate limitation 
from the provider, this will be processed by the handleError method:

        while True:
            try:
                self.searchTwitter( q, max_res=10)
            except twitter.api.TwitterHTTPError as e:
                error_count = 0 
                wait_period = handleError(e, wait_period)
                if wait_period is None:
                    return

Exploring data using Blaze
Blaze is an open source Python library, primarily developed by Continuum.io, 
leveraging Python Numpy arrays and Pandas dataframe. Blaze extends to  
out-of-core computing, while Pandas and Numpy are single-core.

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 64 ]

Blaze offers an adaptable, unified, and consistent user interface across various 
backends. Blaze orchestrates the following:

• Data: Seamless exchange of data across storages such as CSV, JSON, HDF5, 
HDFS, and Bcolz files.

• Computation: Using the same query processing against computational 
backends such as Spark, MongoDB, Pandas, or SQL Alchemy.

• Symbolic expressions: Abstract expressions such as join, group-by, filter, 
selection, and projection with a syntax similar to Pandas but limited in scope. 
Implements the split-apply-combine methods pioneered by the R language.

Blaze expressions are lazily evaluated and in that respect share a similar processing 
paradigm with Spark RDDs transformations.

Let's dive into Blaze by first importing the necessary libraries: numpy, pandas,  
blaze and odo. Odo is a spin-off of Blaze and ensures data migration from  
various backends. The commands are as follows:

import numpy as np
import pandas as pd
from blaze import Data, by, join, merge
from odo import odo
BokehJS successfully loaded.

We create a Pandas Dataframe by reading the parsed tweets saved in a CSV file, 
twts_csv:

twts_pd_df = pd.DataFrame(twts_csv_read, columns=Tweet01._fields)
twts_pd_df.head()

Out[65]:
id    created_at    user_id    user_name    tweet_text    url
1   598831111406510082   2015-05-14 12:43:57   14755521  
   raulsaeztapia    RT @pacoid: Great recap of @StrataConf EU in L...   
http://www.mango-solutions.com/wp/2015/05/the-...
2   598831111406510082   2015-05-14 12:43:57   14755521  
   raulsaeztapia    RT @pacoid: Great recap of @StrataConf EU in L...   
http://www.mango-solutions.com/wp/2015/05/the-...
3   98808944719593472   2015-05-14 11:15:52   14755521  
   raulsaeztapia   RT @alvaroagea: Simply @ApacheSpark http://t.c...    
http://www.webex.com/ciscospark/
4   598808944719593472   2015-05-14 11:15:52   14755521  
   raulsaeztapia   RT @alvaroagea: Simply @ApacheSpark http://t.c...   
http://sparkjava.com/

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 65 ]

We run the Tweets Panda Dataframe to the describe() function to get some overall 
information on the dataset:

twts_pd_df.describe()
Out[66]:
id    created_at    user_id    user_name    tweet_text    url
count  19  19  19  19  19  19
unique    7  7   6   6     6   7
top    598808944719593472    2015-05-14 11:15:52    14755521  
    raulsaeztapia    RT @alvaroagea: Simply @ApacheSpark http://t.c...    
http://bit.ly/1Hfd0Xm
freq    6    6    9    9    6    6

We convert the Pandas dataframe into a Blaze dataframe by simply passing it 
through the Data() function:

#
# Blaze dataframe
#
twts_bz_df = Data(twts_pd_df)

We can retrieve the schema representation of the Blaze dataframe by passing the 
schema function:

twts_bz_df.schema
Out[73]:
dshape("""{
  id: ?string,
  created_at: ?string,
  user_id: ?string,
  user_name: ?string,
  tweet_text: ?string,
  url: ?string
  }""")

The .dshape function gives a record count and the schema:

twts_bz_df.dshape
Out[74]: 
dshape("""19 * {
  id: ?string,
  created_at: ?string,
  user_id: ?string,
  user_name: ?string,
  tweet_text: ?string,
  url: ?string
  }""")

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 66 ]

We can print the Blaze dataframe content:

twts_bz_df.data
Out[75]:
id    created_at    user_id    user_name    tweet_text    url
1    598831111406510082    2015-05-14 12:43:57   14755521  
   raulsaeztapia    RT @pacoid: Great recap of @StrataConf EU in L...    
http://www.mango-solutions.com/wp/2015/05/the-...
2    598831111406510082    2015-05-14 12:43:57    14755521  
    raulsaeztapia    RT @pacoid: Great recap of @StrataConf EU in L...    
http://www.mango-solutions.com/wp/2015/05/the-...
... 
18   598782970082807808    2015-05-14 09:32:39    1377652806  
    embeddedcomputer.nl    RT @BigDataTechCon: Moving Rating 
Prediction w...    http://buff.ly/1QBpk8J
19   598777933730160640     2015-05-14 09:12:38   294862170    Ellen 
Friedman   I'm still on Euro time. If you are too check o... 
    http://bit.ly/1Hfd0Xm

We extract the column tweet_text and take the unique values:

twts_bz_df.tweet_text.distinct()
Out[76]:
    tweet_text
0   RT @pacoid: Great recap of @StrataConf EU in L...
1   RT @alvaroagea: Simply @ApacheSpark http://t.c...
2   RT @PrabhaGana: What exactly is @ApacheSpark a...
3   RT @Ellen_Friedman: I'm still on Euro time. If...
4   RT @BigDataTechCon: Moving Rating Prediction w...
5   I'm still on Euro time. If you are too check o...

We extract multiple columns ['id', 'user_name','tweet_text'] from the 
dataframe and take the unique records:

twts_bz_df[['id', 'user_name','tweet_text']].distinct()
Out[78]:
  id   user_name   tweet_text
0   598831111406510082   raulsaeztapia   RT @pacoid: Great recap of @
StrataConf EU in L...
1   598808944719593472   raulsaeztapia   RT @alvaroagea: Simply @
ApacheSpark http://t.c...
2   598796205091500032   John Humphreys   RT @PrabhaGana: What exactly 
is @ApacheSpark a...
3   598788561127735296   Leonardo D'Ambrosi   RT @Ellen_Friedman: I'm 
still on Euro time. If...
4   598785545557438464   Alexey Kosenkov   RT @Ellen_Friedman: I'm 
still on Euro time. If...

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 67 ]

5   598782970082807808   embeddedcomputer.nl   RT @BigDataTechCon: 
Moving Rating Prediction w...
6   598777933730160640   Ellen Friedman   I'm still on Euro time. If 
you are too check o...

Transferring data using Odo
Odo is a spin-off project of Blaze. Odo allows the interchange of data. Odo ensures 
the migration of data across different formats (CSV, JSON, HDFS, and more) and 
across different databases (SQL databases, MongoDB, and so on) using a very  
simple predicate:

Odo(source, target)

To transfer to a database, the address is specified using a URL. For example, for a 
MongoDB database, it would look like this: 

mongodb://username:password@hostname:port/database_name::collection_
name

Let's run some examples of using Odo. Here, we illustrate odo by reading a CSV file 
and creating a Blaze dataframe:

filepath   = csvFpath
filename   = csvFname
filesuffix = csvSuffix
twts_odo_df = Data('{0}/{1}.{2}'.format(filepath, filename, 
filesuffix))

Count the number of records in the dataframe:

twts_odo_df.count()
Out[81]:
19

Display the five initial records of the dataframe:

twts_odo_df.head(5)
Out[82]:
  id   created_at   user_id   user_name   tweet_text   url
0   598831111406510082   2015-05-14 12:43:57   14755521   
raulsaeztapia   RT @pacoid: Great recap of @StrataConf EU in L...   
http://www.mango-solutions.com/wp/2015/05/the-...
1   598831111406510082   2015-05-14 12:43:57   14755521   
raulsaeztapia   RT @pacoid: Great recap of @StrataConf EU in L...   
http://www.mango-solutions.com/wp/2015/05/the-...
2   598808944719593472   2015-05-14 11:15:52   14755521   
raulsaeztapia   RT @alvaroagea: Simply @ApacheSpark http://t.c...   

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 68 ]

http://www.webex.com/ciscospark/
3   598808944719593472   2015-05-14 11:15:52   14755521   
raulsaeztapia   RT @alvaroagea: Simply @ApacheSpark http://t.c...   
http://sparkjava.com/
4   598808944719593472   2015-05-14 11:15:52   14755521   
raulsaeztapia   RT @alvaroagea: Simply @ApacheSpark http://t.c...   
https://www.sparkfun.com/

Get dshape information from the dataframe, which gives us the number of records 
and the schema:

twts_odo_df.dshape
Out[83]:
dshape("var * {
  id: int64,
  created_at: ?datetime,
  user_id: int64,
  user_name: ?string,
  tweet_text: ?string,
  url: ?string
  }""")

Save a processed Blaze dataframe into JSON:

odo(twts_odo_distinct_df, '{0}/{1}.{2}'.format(jsonFpath, jsonFname, 
jsonSuffix))
Out[92]:
<odo.backends.json.JSONLines at 0x7f77f0abfc50>

Convert a JSON file to a CSV file:

odo('{0}/{1}.{2}'.format(jsonFpath, jsonFname, jsonSuffix), '{0}/{1}.
{2}'.format(csvFpath, csvFname, csvSuffix))
Out[94]:
<odo.backends.csv.CSV at 0x7f77f0abfe10>

Exploring data using Spark SQL
Spark SQL is a relational query engine built on top of Spark Core. Spark SQL uses a 
query optimizer called Catalyst.

Relational queries can be expressed using SQL or HiveQL and executed against 
JSON, CSV, and various databases. Spark SQL gives us the full expressiveness of 
declarative programing with Spark dataframes on top of functional programming 
with RDDs.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 69 ]

Understanding Spark dataframes
Here's a tweet from @bigdata announcing Spark 1.3.0, the advent of Spark SQL 
and dataframes. It also highlights the various data sources in the lower part of the 
diagram. On the top part, we can notice R as the new language that will be gradually 
supported on top of Scala, Java, and Python. Ultimately, the Data Frame philosophy 
is pervasive between R, Python, and Spark.

Spark dataframes originate from SchemaRDDs. It combines RDD with a schema 
that can be inferred by Spark, if requested, when registering the dataframe. It allows 
us to query complex nested JSON data with plain SQL. Lazy evaluation, lineage, 
partitioning, and persistence apply to dataframes.

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 70 ]

Let's query the data with Spark SQL, by first importing SparkContext and 
SQLContext:

from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext, Row
In [95]:
sc
Out[95]:
<pyspark.context.SparkContext at 0x7f7829581890>
In [96]:
sc.master
Out[96]:
u'local[*]'
''In [98]:
# Instantiate Spark  SQL context
sqlc =  SQLContext(sc)

We read in the JSON file we saved with Odo:

twts_sql_df_01 = sqlc.jsonFile ("/home/an/spark/spark-1.3.0-bin-
hadoop2.4/examples/AN_Spark/data/twtr15051401_distinct.json")
In [101]:
twts_sql_df_01.show()
created_at           id                 tweet_text           user_id    
user_name          
2015-05-14T12:43:57Z 598831111406510082 RT @pacoid: Great... 14755521   
raulsaeztapia      
2015-05-14T11:15:52Z 598808944719593472 RT @alvaroagea: S... 14755521   
raulsaeztapia      
2015-05-14T10:25:15Z 598796205091500032 RT @PrabhaGana: W... 48695135   
John Humphreys     
2015-05-14T09:54:52Z 598788561127735296 RT @Ellen_Friedma... 
2385931712 Leonardo D'Ambrosi
2015-05-14T09:42:53Z 598785545557438464 RT @Ellen_Friedma... 461020977  
Alexey Kosenkov    
2015-05-14T09:32:39Z 598782970082807808 RT @BigDataTechCo... 
1377652806 embeddedcomputer.nl
2015-05-14T09:12:38Z 598777933730160640 I'm still on Euro... 294862170  
Ellen Friedman     

We print the schema of the Spark dataframe:

twts_sql_df_01.printSchema()
root
 |-- created_at: string (nullable = true)
 |-- id: long (nullable = true)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 71 ]

 |-- tweet_text: string (nullable = true)
 |-- user_id: long (nullable = true)
 |-- user_name: string (nullable = true)

We select the user_name column from the dataframe:

twts_sql_df_01.select('user_name').show()
user_name          
raulsaeztapia      
raulsaeztapia      
John Humphreys     
Leonardo D'Ambrosi
Alexey Kosenkov    
embeddedcomputer.nl
Ellen Friedman     

We register the dataframe as a table, so we can execute a SQL query on it:

twts_sql_df_01.registerAsTable('tweets_01')

We execute a SQL statement against the dataframe:

twts_sql_df_01_selection = sqlc.sql("SELECT * FROM tweets_01 WHERE 
user_name = 'raulsaeztapia'")
In [109]:
twts_sql_df_01_selection.show()
created_at           id                 tweet_text           user_id  
user_name    
2015-05-14T12:43:57Z 598831111406510082 RT @pacoid: Great... 14755521 
raulsaeztapia
2015-05-14T11:15:52Z 598808944719593472 RT @alvaroagea: S... 14755521 
raulsaeztapia

Let's process some more complex JSON; we read the original Twitter JSON file:

tweets_sqlc_inf = sqlc.jsonFile(infile)

Spark SQL is able to infer the schema of a complex nested JSON file:

tweets_sqlc_inf.printSchema()
root
 |-- contributors: string (nullable = true)
 |-- coordinates: string (nullable = true)
 |-- created_at: string (nullable = true)
 |-- entities: struct (nullable = true)
 |    |-- hashtags: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 72 ]

 |    |    |    |-- indices: array (nullable = true)
 |    |    |    |    |-- element: long (containsNull = true)
 |    |    |    |-- text: string (nullable = true)
 |    |-- media: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)
 |    |    |    |-- display_url: string (nullable = true)
 |    |    |    |-- expanded_url: string (nullable = true)
 |    |    |    |-- id: long (nullable = true)
 |    |    |    |-- id_str: string (nullable = true)
 |    |    |    |-- indices: array (nullable = true)
... (snip) ...
|    |-- statuses_count: long (nullable = true)
 |    |-- time_zone: string (nullable = true)
 |    |-- url: string (nullable = true)
 |    |-- utc_offset: long (nullable = true)
 |    |-- verified: boolean (nullable = true)

We extract the key information of interest from the wall of data by selecting specific 
columns in the dataframe (in this case, ['created_at', 'id', 'text', 'user.
id', 'user.name', 'entities.urls.expanded_url']):

tweets_extract_sqlc = tweets_sqlc_inf[['created_at', 'id', 'text', 
'user.id', 'user.name', 'entities.urls.expanded_url']].distinct()
In [145]:
tweets_extract_sqlc.show()
created_at           id                 text                 id         
name                expanded_url        
Thu May 14 09:32:... 598782970082807808 RT @BigDataTechCo... 
1377652806 embeddedcomputer.nl ArrayBuffer(http:...
Thu May 14 12:43:... 598831111406510082 RT @pacoid: Great... 14755521   
raulsaeztapia       ArrayBuffer(http:...
Thu May 14 12:18:... 598824733086523393 @rabbitonweb spea... 

...   
Thu May 14 12:28:... 598827171168264192 RT @baandrzejczak... 20909005   
Paweł Szulc         ArrayBuffer()       

Understanding the Spark SQL query optimizer
We execute a SQL statement against the dataframe:

tweets_extract_sqlc_sel = sqlc.sql("SELECT * from Tweets_xtr_001 WHERE 
name='raulsaeztapia'")

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 73 ]

We get a detailed view of the query plans executed by Spark SQL:

• Parsed logical plan
• Analyzed logical plan
• Optimized logical plan
• Physical plan

The query plan uses Spark SQL's Catalyst optimizer. In order to generate the 
compiled bytecode from the query parts, the Catalyst optimizer runs through 
logical plan parsing and optimization followed by physical plan evaluation and 
optimization based on cost.

This is illustrated in the following tweet:

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 74 ]

Looking back at our code, we call the .explain function on the Spark SQL query 
we just executed, and it delivers the full details of the steps taken by the Catalyst 
optimizer in order to assess and optimize the logical plan and the physical plan and 
get to the result RDD:

tweets_extract_sqlc_sel.explain(extended = True)
== Parsed Logical Plan ==
'Project [*]
 'Filter ('name = raulsaeztapia)'name'  'UnresolvedRelation' [Tweets_
xtr_001], None
== Analyzed Logical Plan ==
Project [created_at#7,id#12L,text#27,id#80L,name#81,expanded_url#82]
 Filter (name#81 = raulsaeztapia)
  Distinct 
   Project [created_at#7,id#12L,text#27,user#29.id AS id#80L,user#29.
name AS name#81,entities#8.urls.expanded_url AS expanded_url#82]
    Relation[contributors#5,coordinates#6,created_
at#7,entities#8,favorite_count#9L,favorited#10,geo#11,id#12L,id_
str#13,in_reply_to_screen_name#14,in_reply_to_status_id#15,in_reply_
to_status_id_str#16,in_reply_to_user_id#17L,in_reply_to_user_id_str#
18,lang#19,metadata#20,place#21,possibly_sensitive#22,retweet_count#2
3L,retweeted#24,retweeted_status#25,source#26,text#27,truncated#28,us
er#29] JSONRelation(/home/an/spark/spark-1.3.0-bin-hadoop2.4/examples/
AN_Spark/data/twtr15051401.json,1.0,None)
== Optimized Logical Plan ==
Filter (name#81 = raulsaeztapia)
 Distinct 
  Project [created_at#7,id#12L,text#27,user#29.id AS id#80L,user#29.
name AS name#81,entities#8.urls.expanded_url AS expanded_url#82]
   Relation[contributors#5,coordinates#6,created_
at#7,entities#8,favorite_count#9L,favorited#10,geo#11,id#12L,id_
str#13,in_reply_to_screen_name#14,in_reply_to_status_id#15,in_reply_
to_status_id_str#16,in_reply_to_user_id#17L,in_reply_to_user_id_str#
18,lang#19,metadata#20,place#21,possibly_sensitive#22,retweet_count#2
3L,retweeted#24,retweeted_status#25,source#26,text#27,truncated#28,us
er#29] JSONRelation(/home/an/spark/spark-1.3.0-bin-hadoop2.4/examples/
AN_Spark/data/twtr15051401.json,1.0,None)
== Physical Plan ==
Filter (name#81 = raulsaeztapia)
 Distinct false
  Exchange (HashPartitioning [created_at#7,id#12L,text#27,id#80L,name#
81,expanded_url#82], 200)
   Distinct true
    Project [created_at#7,id#12L,text#27,user#29.id AS id#80L,user#29.
name AS name#81,entities#8.urls.expanded_url AS expanded_url#82]
     PhysicalRDD [contributors#5,coordinates#6,created_
at#7,entities#8,favorite_count#9L,favorited#10,geo#11,id#12L,id_

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 75 ]

str#13,in_reply_to_screen_name#14,in_reply_to_status_id#15,in_reply_
to_status_id_str#16,in_reply_to_user_id#17L,in_reply_to_user_id_str#
18,lang#19,metadata#20,place#21,possibly_sensitive#22,retweet_count#2
3L,retweeted#24,retweeted_status#25,source#26,text#27,truncated#28,us
er#29], MapPartitionsRDD[165] at map at JsonRDD.scala:41
Code Generation: false
== RDD ==

Finally, here's the result of the query:

tweets_extract_sqlc_sel.show()
created_at           id                 text                 id       
name          expanded_url        
Thu May 14 12:43:... 598831111406510082 RT @pacoid: Great... 14755521 
raulsaeztapia ArrayBuffer(http:...
Thu May 14 11:15:... 598808944719593472 RT @alvaroagea: S... 14755521 
raulsaeztapia ArrayBuffer(http:...
In [148]:

Loading and processing CSV files with Spark 
SQL
We will use the Spark package spark-csv_2.11:1.2.0. The command to be used 
to launch PySpark with the IPython Notebook and the spark-csv package should 
explicitly state the –packages argument:

$ IPYTHON_OPTS='notebook' /home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/
pyspark --packages com.databricks:spark-csv_2.11:1.2.0

This will trigger the following output; we can see that the spark-csv package is 
installed with all its dependencies:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark$ IPYTHON_
OPTS='notebook' /home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/pyspark 
--packages com.databricks:spark-csv_2.11:1.2.0

... (snip) ...
Ivy Default Cache set to: /home/an/.ivy2/cache
The jars for the packages stored in: /home/an/.ivy2/jars
:: loading settings :: url = jar:file:/home/an/spark/spark-1.5.0-bin-
hadoop2.6/lib/spark-assembly-1.5.0-hadoop2.6.0.jar!/org/apache/ivy/
core/settings/ivysettings.xml
com.databricks#spark-csv_2.11 added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
  confs: [default]
  found com.databricks#spark-csv_2.11;1.2.0 in central
  found org.apache.commons#commons-csv;1.1 in central

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 76 ]

  found com.univocity#univocity-parsers;1.5.1 in central
:: resolution report :: resolve 835ms :: artifacts dl 48ms
  :: modules in use:
  com.databricks#spark-csv_2.11;1.2.0 from central in [default]
  com.univocity#univocity-parsers;1.5.1 from central in [default]
  org.apache.commons#commons-csv;1.1 from central in [default]
  ----------------------------------------------------------------
  |               |          modules            ||   artifacts   |
  |    conf     | number| search|dwnlded|evicted|| number|dwnlded|
  ----------------------------------------------------------------
  |    default     |   3   |   0   |   0   |   0   ||   3   |   0   
  ----------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent
  confs: [default]
  0 artifacts copied, 3 already retrieved (0kB/45ms)

We are now ready to load our csv file and process it. Let's first import the 
SQLContext:

#
# Read csv in a Spark DF
#
sqlContext = SQLContext(sc)
spdf_in = sqlContext.read.format('com.databricks.spark.csv')\
                                    .options(delimiter=";").
options(header="true")\
                                    .options(header='true').load(csv_
in)

We access the schema of the dataframe created from the loaded csv:

In [10]:
spdf_in.printSchema()
root
 |-- : string (nullable = true)
 |-- id: string (nullable = true)
 |-- created_at: string (nullable = true)
 |-- user_id: string (nullable = true)
 |-- user_name: string (nullable = true)
 |-- tweet_text: string (nullable = true)

We check the columns of the dataframe:

In [12]:
spdf_in.columns
Out[12]:
['', 'id', 'created_at', 'user_id', 'user_name', 'tweet_text']

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 77 ]

We introspect the dataframe content:

In [13]:
spdf_in.show()
+---+------------------+--------------------+----------+--------------
----+--------------------+
|   |                id|          created_at|   user_id|         user_
name|          tweet_text|
+---+------------------+--------------------+----------+--------------
----+--------------------+
|  0|638830426971181057|Tue Sep 01 21:46:...|3276255125|     True 
Equality|ernestsgantt: Bey...|
|  1|638830426727911424|Tue Sep 01 21:46:...|3276255125|     True 
Equality|ernestsgantt: Bey...|
|  2|638830425402556417|Tue Sep 01 21:46:...|3276255125|     True 
Equality|ernestsgantt: Bey...|
... (snip) ...
| 41|638830280988426250|Tue Sep 01 21:46:...| 951081582|      Jack 
Baldwin|RT @cloudaus: We ...|
| 42|638830276626399232|Tue Sep 01 21:46:...|   6525302|Masayoshi 
Nakamura|PynamoDB使使使使使使使  |
+---+------------------+--------------------+----------+--------------
----+--------------------+
only showing top 20 rows

Querying MongoDB from Spark SQL
There are two major ways to interact with MongoDB from Spark: the first is  
through the Hadoop MongoDB connector, and the second one is directly from  
Spark to MongoDB.

The first approach to interact with MongoDB from Spark is to set up a Hadoop 
environment and query through the Hadoop MongoDB connector. The connector 
details are hosted on GitHub at https://github.com/mongodb/mongo-hadoop/
wiki/Spark-Usage. An actual use case is described in the series of blog posts  
from MongoDB:

• Using MongoDB with Hadoop & Spark: Part 1 - Introduction & Setup (https://
www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-1-
introduction-setup)

• Using MongoDB with Hadoop and Spark: Part 2 - Hive Example (https://www.
mongodb.com/blog/post/using-mongodb-hadoop-spark-part-2-hive-
example)

• Using MongoDB with Hadoop & Spark: Part 3 - Spark Example & Key Takeaways 
(https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-
part-3-spark-example-key-takeaways)

www.it-ebooks.info

https://github.com/mongodb/mongo-hadoop/wiki/Spark-Usage
https://github.com/mongodb/mongo-hadoop/wiki/Spark-Usage
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-1-introduction-setup
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-1-introduction-setup
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-1-introduction-setup
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-2-hive-example
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-2-hive-example
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-2-hive-example
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-3-spark-example-key-takeaways
https://www.mongodb.com/blog/post/using-mongodb-hadoop-spark-part-3-spark-example-key-takeaways
http://www.it-ebooks.info/


Juggling Data with Spark

[ 78 ]

Setting up a full Hadoop environment is bit elaborate. We will favor the second 
approach. We will use the spark-mongodb connector developed and maintained 
by Stratio. We are using the Stratio spark-mongodb package hosted at spark.
packages.org. The packages information and version can be found in spark.
packages.org:

Releases
Version: 0.10.1 ( 8263c8 | zip | jar ) / Date: 2015-11-18 / License: 
Apache-2.0 / Scala version: 2.10
(http://spark-packages.org/package/Stratio/spark-
mongodb)

The command to launch PySpark with the IPython Notebook and the  
spark-mongodb package should explicitly state the packages argument:

$ IPYTHON_OPTS='notebook' /home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/
pyspark --packages com.stratio.datasource:spark-mongodb_2.10:0.10.1

This will trigger the following output; we can see that the spark-mongodb package is 
installed with all its dependencies:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark$ IPYTHON_
OPTS='notebook' /home/an/spark/spark-1.5.0-bin-hadoop2.6/bin/pyspark 
--packages com.stratio.datasource:spark-mongodb_2.10:0.10.1
... (snip) ... 
Ivy Default Cache set to: /home/an/.ivy2/cache
The jars for the packages stored in: /home/an/.ivy2/jars
:: loading settings :: url = jar:file:/home/an/spark/spark-1.5.0-bin-
hadoop2.6/lib/spark-assembly-1.5.0-hadoop2.6.0.jar!/org/apache/ivy/
core/settings/ivysettings.xml
com.stratio.datasource#spark-mongodb_2.10 added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0
  confs: [default]
  found com.stratio.datasource#spark-mongodb_2.10;0.10.1 in central
[W 22:10:50.910 NotebookApp] Timeout waiting for kernel_info reply 
from 764081d3-baf9-4978-ad89-7735e6323cb6
  found org.mongodb#casbah-commons_2.10;2.8.0 in central
  found com.github.nscala-time#nscala-time_2.10;1.0.0 in central
  found joda-time#joda-time;2.3 in central
  found org.joda#joda-convert;1.2 in central
  found org.slf4j#slf4j-api;1.6.0 in central
  found org.mongodb#mongo-java-driver;2.13.0 in central
  found org.mongodb#casbah-query_2.10;2.8.0 in central
  found org.mongodb#casbah-core_2.10;2.8.0 in central
downloading https://repo1.maven.org/maven2/com/stratio/datasource/
spark-mongodb_2.10/0.10.1/spark-mongodb_2.10-0.10.1.jar ...

www.it-ebooks.info

http://spark-packages.org/package/Stratio/spark-mongodb
http://spark-packages.org/package/Stratio/spark-mongodb
http://www.it-ebooks.info/


Chapter 3

[ 79 ]

  [SUCCESSFUL ] com.stratio.datasource#spark-
mongodb_2.10;0.10.1!spark-mongodb_2.10.jar (3130ms)
downloading https://repo1.maven.org/maven2/org/mongodb/casbah-
commons_2.10/2.8.0/casbah-commons_2.10-2.8.0.jar ...
  [SUCCESSFUL ] org.mongodb#casbah-commons_2.10;2.8.0!casbah-
commons_2.10.jar (2812ms)
downloading https://repo1.maven.org/maven2/org/mongodb/casbah-
query_2.10/2.8.0/casbah-query_2.10-2.8.0.jar ...
  [SUCCESSFUL ] org.mongodb#casbah-query_2.10;2.8.0!casbah-query_2.10.
jar (1432ms)
downloading https://repo1.maven.org/maven2/org/mongodb/casbah-
core_2.10/2.8.0/casbah-core_2.10-2.8.0.jar ...
  [SUCCESSFUL ] org.mongodb#casbah-core_2.10;2.8.0!casbah-core_2.10.
jar (2785ms)
downloading https://repo1.maven.org/maven2/com/github/nscala-time/
nscala-time_2.10/1.0.0/nscala-time_2.10-1.0.0.jar ...
  [SUCCESSFUL ] com.github.nscala-time#nscala-time_2.10;1.0.0!nscala-
time_2.10.jar (2725ms)
downloading https://repo1.maven.org/maven2/org/slf4j/slf4j-api/1.6.0/
slf4j-api-1.6.0.jar ...
  [SUCCESSFUL ] org.slf4j#slf4j-api;1.6.0!slf4j-api.jar (371ms)
downloading https://repo1.maven.org/maven2/org/mongodb/mongo-java-
driver/2.13.0/mongo-java-driver-2.13.0.jar ...
  [SUCCESSFUL ] org.mongodb#mongo-java-driver;2.13.0!mongo-java-
driver.jar (5259ms)
downloading https://repo1.maven.org/maven2/joda-time/joda-time/2.3/
joda-time-2.3.jar ...
  [SUCCESSFUL ] joda-time#joda-time;2.3!joda-time.jar (6949ms)
downloading https://repo1.maven.org/maven2/org/joda/joda-convert/1.2/
joda-convert-1.2.jar ...
  [SUCCESSFUL ] org.joda#joda-convert;1.2!joda-convert.jar (548ms)
:: resolution report :: resolve 11850ms :: artifacts dl 26075ms
  :: modules in use:
  com.github.nscala-time#nscala-time_2.10;1.0.0 from central in 
[default]
  com.stratio.datasource#spark-mongodb_2.10;0.10.1 from central in 
[default]
  joda-time#joda-time;2.3 from central in [default]
  org.joda#joda-convert;1.2 from central in [default]
  org.mongodb#casbah-commons_2.10;2.8.0 from central in [default]
  org.mongodb#casbah-core_2.10;2.8.0 from central in [default]
  org.mongodb#casbah-query_2.10;2.8.0 from central in [default]
  org.mongodb#mongo-java-driver;2.13.0 from central in [default]
  org.slf4j#slf4j-api;1.6.0 from central in [default]
  -------------------------------------------------------------------
--

www.it-ebooks.info

http://www.it-ebooks.info/


Juggling Data with Spark

[ 80 ]

  |                  |            modules            ||   artifacts   
|
  |       conf       | number| search|dwnlded|evicted|| 
number|dwnlded|
  -------------------------------------------------------------------
--
  |      default     |   9   |   9   |   9   |   0   ||   9   |   9   
|
  -------------------------------------------------------------------
--
:: retrieving :: org.apache.spark#spark-submit-parent
  confs: [default]
  9 artifacts copied, 0 already retrieved (2335kB/51ms)
... (snip) ... 

We are now ready to query MongoDB on localhost:27017 from the collection 
twtr01_coll in the database twtr01_db.

We first import the SQLContext:

In [5]:
from pyspark.sql import SQLContext
sqlContext.sql("CREATE TEMPORARY TABLE tweet_table USING com.stratio.
datasource.mongodb OPTIONS (host 'localhost:27017', database 'twtr01_
db', collection 'twtr01_coll')")
sqlContext.sql("SELECT * FROM tweet_table where id=598830778269769728 
").collect()

Here's the output of our query:

Out[5]:
[Row(text=u'@spark_io is now @particle - awesome news - now I can 
enjoy my Particle Cores/Photons + @sparkfun sensors + @ApacheSpark 
analytics :-)', _id=u'55aa640fd770871cba74cb88', contributors=None, 
retweeted=False, user=Row(contributors_enabled=False, created_at=u'Mon 
Aug 25 14:01:26 +0000 2008', default_profile=True, default_profile_
image=False, description=u'Building open source tools for and teaching 
enterprise software developers', entities=Row(description=Row(ur
ls=[]), url=Row(urls=[Row(url=u'http://t.co/TSHp13EWeu', indices=[0, 
22], 

... (snip) ...

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3

[ 81 ]

 9], name=u'Spark is Particle', screen_name=u'spark_io'), 
Row(id=487010011, id_str=u'487010011', indices=[17, 26], 
name=u'Particle', screen_name=u'particle'), Row(id=17877351, 
id_str=u'17877351', indices=[88, 97], name=u'SparkFun 
Electronics', screen_name=u'sparkfun'), Row(id=1551361069, id_
str=u'1551361069', indices=[108, 120], name=u'Apache Spark', screen_
name=u'ApacheSpark')]), is_quote_status=None, lang=u'en', quoted_
status_id_str=None, quoted_status_id=None, created_at=u'Thu May 
14 12:42:37 +0000 2015', retweeted_status=None, truncated=False, 
place=None, id=598830778269769728, in_reply_to_user_id=3187046084, 
retweet_count=0, in_reply_to_status_id=None, in_reply_to_screen_
name=u'spark_io', in_reply_to_user_id_str=u'3187046084', source=u'<a 
href="http://twitter.com" rel="nofollow">Twitter Web Client</a>', 
id_str=u'598830778269769728', coordinates=None, metadata=Row(iso_
language_code=u'en', result_type=u'recent'), quoted_status=None)]
#

Summary
In this chapter, we harvested data from Twitter. Once the data was acquired, we 
explored the information using Continuum.io's Blaze and Odo libraries. Spark SQL 
is an important module for interactive data exploration, analysis, and transformation, 
leveraging the Spark dataframe datastructure. The dataframe concept originates 
from R and then was adopted by Python Pandas with great success. The dataframe 
is the workhorse of the data scientist. The combination of Spark SQL and dataframe 
creates a powerful engine for data processing.

We are now gearing up for extracting the insights from the datasets using machine 
learning from Spark MLlib.

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


[ 83 ]

Learning from Data  
Using Spark

As we have laid the foundation for data to be harvested in the previous chapter, we 
are now ready to learn from the data. Machine learning is about drawing insights 
from data. Our objective is to give an overview of the Spark MLlib (short for 
Machine Learning library) and apply the appropriate algorithms to our dataset 
in order to derive insights. From the Twitter dataset, we will be applying an 
unsupervised clustering algorithm in order to distinguish between Apache  
Spark-relevant tweets versus the rest. We have as initial input a mixed bag of  
tweets. We first need to preprocess the data in order to extract the relevant  
features, then apply the machine learning algorithm to our dataset, and finally 
evaluate the results and the performance of our model.

In this chapter, we will cover the following points:

• Providing an overview of the Spark MLlib module with its algorithms and 
the typical machine learning workflow.

• Preprocessing the Twitter harvested dataset to extract the relevant features, 
applying an unsupervised clustering algorithm to identify Apache Spark-
relevant tweets. Then, evaluating the model and the results obtained.

• Describing the Spark machine learning pipeline.

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 84 ]

Contextualizing Spark MLlib in the app 
architecture
Let's first contextualize the focus of this chapter on data-intensive app architecture. 
We will concentrate our attention on the analytics layer and more precisely  
machine learning. This will serve as a foundation for streaming apps as we  
want to apply the learning from the batch processing of data as inference  
rules for the streaming analysis.

The following diagram sets the context of the chapter's focus, highlighting  
the machine learning module within the analytics layer while using tools for 
exploratory data analysis, Spark SQL, and Pandas.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 85 ]

Classifying Spark MLlib algorithms
Spark MLlib is a rapidly evolving module of Spark with new algorithms added with 
each release of Spark.

The following diagram provides a high-level overview of Spark MLlib algorithms 
grouped in the traditional broad machine learning techniques and following the 
categorical or continuous nature of the data:

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 86 ]

We categorize the Spark MLlib algorithms in two columns, categorical or continuous, 
depending on the type of data. We distinguish between data that is categorical or 
more qualitative in nature versus continuous data, which is quantitative in nature. 
An example of qualitative data is predicting the weather; given the atmospheric 
pressure, the temperature, and the presence and type of clouds, the weather will 
be sunny, dry, rainy, or overcast. These are discrete values. On the other hand, let's 
say we want to predict house prices, given the location, square meterage, and the 
number of beds; the real estate value can be predicted using linear regression.  
In this case, we are talking about continuous or quantitative values.

The horizontal grouping reflects the types of machine learning method used. 
Unsupervised versus supervised machine learning techniques are dependent on 
whether the training data is labeled. In an unsupervised learning challenge, no labels 
are given to the learning algorithm. The goal is to find the hidden structure in its 
input. In the case of supervised learning, the data is labeled. The focus is on making 
predictions using regression if the data is continuous or classification if the data  
is categorical.

An important category of machine learning is recommender systems, which leverage 
collaborative filtering techniques. The Amazon web store and Netflix have very 
powerful recommender systems powering their recommendations.

Stochastic Gradient Descent is one of the machine learning optimization techniques 
that is well suited for Spark distributed computation.

For processing large amounts of text, Spark offers crucial libraries for feature 
extraction and transformation such as TF-IDF (short for Term Frequency – Inverse 
Document Frequency), Word2Vec, standard scaler, and normalizer.

Supervised and unsupervised learning
We delve more deeply here in to the traditional machine learning algorithms offered 
by Spark MLlib. We distinguish between supervised and unsupervised learning 
depending on whether the data is labeled. We distinguish between categorical or 
continuous depending on whether the data is discrete or continuous.

The following diagram explains the Spark MLlib supervised and unsupervised 
machine learning algorithms and preprocessing techniques:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 87 ]

The following supervised and unsupervised MLlib algorithms and preprocessing 
techniques are currently available in Spark:

• Clustering: This is an unsupervised machine learning technique where the 
data is not labeled. The aim is to extract structure from the data:

 ° K-Means: This partitions the data in K distinct clusters
 ° Gaussian Mixture: Clusters are assigned based on the maximum 

posterior probability of the component
 ° Power Iteration Clustering (PIC): This groups vertices of a graph 

based on pairwise edge similarities
 ° Latent Dirichlet Allocation (LDA): This is used to group collections 

of text documents into topics
 ° Streaming K-Means: This means clusters dynamically streaming 

data using a windowing function on the incoming data

• Dimensionality Reduction: This aims to reduce the number of features 
under consideration. Essentially, this reduces noise in the data and focuses 
on the key features:

 ° Singular Value Decomposition (SVD): This breaks the matrix that 
contains the data into simpler meaningful pieces. It factorizes the 
initial matrix into three matrices.

 ° Principal Component Analysis (PCA): This approximates a high 
dimensional dataset with a low dimensional sub space.

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 88 ]

• Regression and Classification: Regression predicts output values using 
labeled training data, while Classification groups the results into classes. 
Classification has dependent variables that are categorical or unordered 
whilst Regression has dependent variables that are continuous and ordered:

 ° Linear Regression Models (linear regression, logistic regression, 
and support vector machines): Linear regression algorithms can be 
expressed as convex optimization problems that aim to minimize 
an objective function based on a vector of weight variables. The 
objective function controls the complexity of the model through the 
regularized part of the function and the error of the model through 
the loss part of the function.

 ° Naive Bayes: This makes predictions based on the conditional 
probability distribution of a label given an observation. It assumes 
that features are mutually independent of each other.

 ° Decision Trees: This performs recursive binary partitioning of 
the feature space. The information gain at the tree node level is 
maximized in order to determine the best split for the partition.

 ° Ensembles of trees (Random Forests and Gradient-Boosted Trees): 
Tree ensemble algorithms combine base decision tree models in order 
to build a performant model. They are intuitive and very successful 
for classification and regression tasks.

• Isotonic Regression: This minimizes the mean squared error between given 
data and observed responses.

Additional learning algorithms
Spark MLlib offers more algorithms than the supervised and unsupervised learning 
ones. We have broadly three more additional types of machine learning methods: 
recommender systems, optimization algorithms, and feature extraction.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 89 ]

The following additional MLlib algorithms are currently available in Spark:

• Collaborative filtering: This is the basis for recommender systems. It creates 
a user-item association matrix and aims to fill the gaps. Based on other users 
and items along with their ratings, it recommends an item that the target 
user has no ratings for. In distributed computing, one of the most successful 
algorithms is ALS (short for Alternating Least Square):

 ° Alternating Least Squares: This matrix factorization technique 
incorporates implicit feedback, temporal effects, and confidence 
levels. It decomposes the large user item matrix into a lower 
dimensional user and item factors. It minimizes a quadratic loss 
function by fixing alternatively its factors.

• Feature extraction and transformation: These are essential techniques for 
large text document processing. It includes the following techniques:

 ° Term Frequency: Search engines use TF-IDF to score and rank 
document relevance in a vast corpus. It is also used in machine 
learning to determine the importance of a word in a document or 
corpus. Term frequency statistically determines the weight of a term 
relative to its frequency in the corpus. Term frequency on its own can 
be misleading as it overemphasizes words such as the, of, or and that 
give little information. Inverse Document Frequency provides the 
specificity or the measure of the amount of information, whether the 
term is rare or common across all documents in the corpus.

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 90 ]

 ° Word2Vec: This includes two models, Skip-Gram and Continuous 
Bag of Word. The Skip-Gram predicts neighboring words given a 
word, based on sliding windows of words, while Continuous Bag of 
Words predicts the current word given the neighboring words.

 ° Standard Scaler: As part of preprocessing, the dataset must often be 
standardized by mean removal and variance scaling. We compute 
the mean and standard deviation on the training data and apply the 
same transformation to the test data.

 ° Normalizer: We scale the samples to have unit norm. It is useful for 
quadratic forms such as the dot product or kernel methods.

 ° Feature selection: This reduces the dimensionality of the vector space 
by selecting the most relevant features for the model.

 ° Chi-Square Selector: This is a statistical method to measure the 
independence of two events.

• Optimization: These specific Spark MLlib optimization algorithms focus 
on various techniques of gradient descent. Spark provides very efficient 
implementation of gradient descent on a distributed cluster of machines. It 
looks for the local minima by iteratively going down the steepest descent. It 
is compute-intensive as it iterates through all the data available:

 ° Stochastic Gradient Descent: We minimize an objective function 
that is the sum of differentiable functions. Stochastic Gradient 
Descent uses only a sample of the training data in order to update 
a parameter in a particular iteration. It is used for large-scale and 
sparse machine learning problems such as text classification.

• Limited-memory BFGS (L-BFGS): As the name says, L-BFGS uses limited 
memory and suits the distributed optimization algorithm implementation of 
Spark MLlib.

Spark MLlib data types
MLlib supports four essential data types: local vector, labeled point, local matrix, 
and distributed matrix. These data types are widely used in Spark MLlib algorithms:

• Local vector: This resides in a single machine. It can be dense or sparse:
 ° Dense vector is a traditional array of doubles. An example of dense 

vector is [5.0, 0.0, 1.0, 7.0].
 ° Sparse vector uses integer indices and double values. So the sparse 

representation of the vector [5.0, 0.0, 1.0, 7.0] would be (4, 
[0, 2, 3], [5.0, 1.0, 7.0]), where represent the dimension of 
the vector.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 91 ]

Here's an example of local vector in PySpark:

import numpy as np
import scipy.sparse as sps
from pyspark.mllib.linalg import Vectors

# NumPy array for dense vector.
dvect1 = np.array([5.0, 0.0, 1.0, 7.0])
# Python list for dense vector.
dvect2 = [5.0, 0.0, 1.0, 7.0]
# SparseVector creation
svect1 = Vectors.sparse(4, [0, 2, 3], [5.0, 1.0, 7.0])
# Sparse vector using a single-column SciPy csc_matrix
svect2 = sps.csc_matrix((np.array([5.0, 1.0, 7.0]), np.array([0, 
2, 3])), shape = (4, 1))

• Labeled point. A labeled point is a dense or sparse vector with a label 
used in supervised learning. In the case of binary labels, 0.0 represents the 
negative label whilst 1.0 represents the positive value.
Here's an example of a labeled point in PySpark:

from pyspark.mllib.linalg import SparseVector
from pyspark.mllib.regression import LabeledPoint

# Labeled point with a positive label and a dense feature vector.
lp_pos = LabeledPoint(1.0, [5.0, 0.0, 1.0, 7.0])

# Labeled point with a negative label and a sparse feature vector.
lp_neg = LabeledPoint(0.0, SparseVector(4, [0, 2, 3], [5.0, 1.0, 
7.0]))

• Local Matrix: This local matrix resides in a single machine with integer-type 
indices and values of type double.
Here's an example of a local matrix in PySpark:

from pyspark.mllib.linalg import Matrix, Matrices

# Dense matrix ((1.0, 2.0, 3.0), (4.0, 5.0, 6.0))
dMatrix = Matrices.dense(2, 3, [1, 2, 3, 4, 5, 6])

# Sparse matrix ((9.0, 0.0), (0.0, 8.0), (0.0, 6.0))
sMatrix = Matrices.sparse(3, 2, [0, 1, 3], [0, 2, 1], [9, 6, 8])

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 92 ]

• Distributed Matrix: Leveraging the distributed mature of the RDD, 
distributed matrices can be shared in a cluster of machines. We 
distinguish four distributed matrix types: RowMatrix, IndexedRowMatrix, 
CoordinateMatrix, and BlockMatrix:

 ° RowMatrix: This takes an RDD of vectors and creates a distributed 
matrix of rows with meaningless indices, called RowMatrix, from the 
RDD of vectors.

 ° IndexedRowMatrix: In this case, row indices are meaningful. First, 
we create an RDD of indexed rows using the class IndexedRow and 
then create an IndexedRowMatrix.

 ° CoordinateMatrix: This is useful to represent very large and very 
sparse matrices. CoordinateMatrix is created from RDDs of the 
MatrixEntry points, represented by a tuple of type (long, long, or 
float)

 ° BlockMatrix: These are created from RDDs of sub-matrix blocks, 
where a sub-matrix block is ((blockRowIndex, blockColIndex), 
sub-matrix).

Machine learning workflows and data 
flows
Beyond algorithms, machine learning is also about processes. We will discuss  
the typical workflows and data flows of supervised and unsupervised  
machine learning.

Supervised machine learning workflows
In supervised machine learning, the input training dataset is labeled. One of the  
key data practices is to split input data into training and test sets, and validate the 
mode accordingly.

We typically go through a six-step process flow in supervised learning:

• Collect the data: This step essentially ties in with the previous chapter and 
ensures we collect the right data with the right volume and granularity in 
order to enable the machine learning algorithm to provide reliable answers.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 93 ]

• Preprocess the data: This step is about checking the data quality by 
sampling, filling in the missing values if any, scaling and normalizing the 
data. We also define the feature extraction process. Typically, in the case 
of large text-based datasets, we apply tokenization, stop words removal, 
stemming, and TF-IDF.
In the case of supervised learning, we separate the input data into a training 
and test set. We can also implement various strategies of sampling and 
splitting the dataset for cross-validation purposes.

• Ready the data: In this step, we get the data in the format or data type 
expected by the algorithms. In the case of Spark MLlib, this includes local 
vector, dense or sparse vectors, labeled points, local matrix, distributed 
matrix with row matrix, indexed row matrix, coordinate matrix, and  
block matrix.

• Model: In this step, we apply the algorithms that are suitable for the problem 
at hand and get the results for evaluation of the most suitable algorithm 
in the evaluate step. We might have multiple algorithms suitable for the 
problem; their respective performance will be scored in the evaluate step 
to select the best preforming ones. We can implement an ensemble or 
combination of models in order to reach the best results.

• Optimize: We may need to run a grid search for the optimal parameters of 
certain algorithms. These parameters are determined during training, and 
fine-tuned during the testing and production phase.

• Evaluate: We ultimately score the models and select the best one in terms 
of accuracy, performance, reliability, and scalability. We move the best 
performing model to test with the held out test data in order to ascertain the 
prediction accuracy of our model. Once satisfied with the fine-tuned model, 
we move it to production to process live data.

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 94 ]

The supervised machine learning workflow and dataflow are represented in the 
following diagram:

Unsupervised machine learning workflows
As opposed to supervised learning, our initial data is not labeled in the case of 
unsupervised learning, which is most often the case in real life. We will extract the 
structure from the data by using clustering or dimensionality reduction algorithms. 
In the unsupervised learning case, we do not split the data into training and test, as 
we cannot make any prediction because the data is not labeled. We will train the data 
along six steps similar to those in supervised learning. Once the model is trained, we 
will evaluate the results and fine-tune the model and then release it for production.

Unsupervised learning can be a preliminary step to supervised learning. Namely, we 
look at reducing the dimensionality of the data prior to attacking the learning phase.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 95 ]

The unsupervised machine learning workflows and dataflow are represented  
as follows:

Clustering the Twitter dataset
Let's first get a feel for the data extracted from Twitter and get an understanding 
of the data structure in order to prepare and run it through the K-Means clustering 
algorithms. Our plan of attack uses the process and dataflow depicted earlier for 
unsupervised learning. The steps are as follows:

1. Combine all tweet files into a single dataframe.
2. Parse the tweets, remove stop words, extract emoticons, extract URL, and 

finally normalize the words (for example, mapping them to lowercase and 
removing punctuation and numbers).

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 96 ]

3. Feature extraction includes the following:
 ° Tokenization: This breaks down the parsed tweet text into individual 

words or tokens
 ° TF-IDF: This applies the TF-IDF algorithm to create feature vectors 

from the tokenized tweet texts
 ° Hash TF-IDF: This applies a hashing function to the token vectors

4. Run the K-Means clustering algorithm.
5. Evaluate the results of the K-Means clustering:

 ° Identify tweet membership to clusters
 ° Perform dimensionality reduction to two dimensions with the Multi-

Dimensional Scaling or the Principal Component Analysis algorithm
 ° Plot the clusters

6. Pipeline:

 ° Fine-tune the number of relevant clusters K
 ° Measure the model cost
 ° Select the optimal model

Applying Scikit-Learn on the Twitter dataset
Python's own Scikit-Learn machine learning library is one of the most reliable, 
intuitive, and robust tools around. Let's run through a preprocessing and unsupervised 
learning using Pandas and Scikit-Learn. It is often beneficial to explore a sample of the 
data using Scikit-Learn before spinning off clusters with Spark MLlib.

We have a mixed bag of 7,540 tweets. It contains tweets related to Apache Spark, 
Python, the upcoming presidential election with Hillary Clinton and Donald Trump 
as protagonists, and some tweets related to fashion and music with Lady Gaga and 
Justin Bieber. We are running the K-Means clustering algorithm using Python  
Scikit-Learn on the Twitter dataset harvested. We first load the sample data into  
a Pandas dataframe:

import pandas as pd

csv_in = 'C:\\Users\\Amit\\Documents\\IPython Notebooks\\AN00_Data\\
unq_tweetstxt.csv'
twts_df01 = pd.read_csv(csv_in, sep =';', encoding='utf-8')

In [24]:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 97 ]

twts_df01.count()
Out[24]:
Unnamed: 0    7540
id            7540
created_at    7540
user_id       7540
user_name     7538
tweet_text    7540
dtype: int64

#
# Introspecting the tweets text
#
In [82]:

twtstxt_ls01[6910:6920]
Out[82]:
['RT @deroach_Ismoke: I am NOT voting for #hilaryclinton http://t.co/
jaZZpcHkkJ',
 'RT @AnimalRightsJen: #HilaryClinton What do Bernie Sanders and 
Donald Trump Have in Common?: He has so far been th... http://t.co/
t2YRcGCh6…',
 'I understand why Bill was out banging other chicks........I mean 
look at what he is married to.....\n@HilaryClinton',
 '#HilaryClinton What do Bernie Sanders and Donald Trump Have in 
Common?: He has so far been th... http://t.co/t2YRcGCh67 #Tcot 
#UniteBlue']

We first perform a feature extraction from the tweets' text. We apply a sparse 
vectorizer to the dataset using a TF-IDF vectorizer with 10,000 features and  
English stop words:

In [37]:

print("Extracting features from the training dataset using a sparse 
vectorizer")
t0 = time()
Extracting features from the training dataset using a sparse 
vectorizer
In [38]:

vectorizer = TfidfVectorizer(max_df=0.5, max_features=10000,
                                 min_df=2, stop_words='english',
                                 use_idf=True)
X = vectorizer.fit_transform(twtstxt_ls01)
#

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 98 ]

# Output of the TFIDF Feature vectorizer
#
print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X.shape)
print()
done in 5.232165s
n_samples: 7540, n_features: 6638

As the dataset is now broken into a 7540 sample with vectors of 6,638 features, we 
are ready to feed this sparse matrix to the K-Means clustering algorithm. We will 
choose seven clusters and 100 maximum iterations initially:

In [47]:

km = KMeans(n_clusters=7, init='k-means++', max_iter=100, n_init=1,
            verbose=1)

print("Clustering sparse data with %s" % km)
t0 = time()
km.fit(X)
print("done in %0.3fs" % (time() - t0))

Clustering sparse data with KMeans(copy_x=True, init='k-means++', max_
iter=100, n_clusters=7, n_init=1,
    n_jobs=1, precompute_distances='auto', random_state=None, 
tol=0.0001,
    verbose=1)
Initialization complete
Iteration  0, inertia 13635.141
Iteration  1, inertia 6943.485
Iteration  2, inertia 6924.093
Iteration  3, inertia 6915.004
Iteration  4, inertia 6909.212
Iteration  5, inertia 6903.848
Iteration  6, inertia 6888.606
Iteration  7, inertia 6863.226
Iteration  8, inertia 6860.026
Iteration  9, inertia 6859.338
Iteration 10, inertia 6859.213
Iteration 11, inertia 6859.102
Iteration 12, inertia 6859.080
Iteration 13, inertia 6859.060
Iteration 14, inertia 6859.047
Iteration 15, inertia 6859.039
Iteration 16, inertia 6859.032

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 99 ]

Iteration 17, inertia 6859.031
Iteration 18, inertia 6859.029
Converged at iteration 18
done in 1.701s

The K-Means clustering algorithm converged after 18 iterations. We see in the 
following results the seven clusters with their respective key words. Clusters 0 and 
6 are about music and fashion with Justin Bieber and Lady Gaga-related tweets. 
Clusters 1 and 5 are related to the U.S.A. presidential elections with Donald Trump-
and Hilary Clinton-related tweets. Clusters 2 and 3 are the ones of interest to us as 
they are about Apache Spark and Python. Cluster 4 contains Thailand-related tweets:

#
# Introspect top terms per cluster
#

In [49]:

print("Top terms per cluster:")
order_centroids = km.cluster_centers_.argsort()[:, ::-1]
terms = vectorizer.get_feature_names()
for i in range(7):
    print("Cluster %d:" % i, end='')
    for ind in order_centroids[i, :20]:
        print(' %s' % terms[ind], end='')
    print()
Top terms per cluster:
Cluster 0: justinbieber love mean rt follow thank hi https 
whatdoyoumean video wanna hear whatdoyoumeanviral rorykramer happy lol 
making person dream justin
Cluster 1: donaldtrump hilaryclinton rt https trump2016 
realdonaldtrump trump gop amp justinbieber president clinton emails 
oy8ltkstze tcot like berniesanders hilary people email
Cluster 2: bigdata apachespark hadoop analytics rt spark training 
chennai ibm datascience apache processing cloudera mapreduce data sap 
https vora transforming development
Cluster 3: apachespark python https rt spark data amp databricks using 
new learn hadoop ibm big apache continuumio bluemix learning join open
Cluster 4: ernestsgantt simbata3 jdhm2015 elsahel12 phuketdailynews 
dreamintentions beyhiveinfrance almtorta18 civipartnership 9_a_6 
25whu72ep0 k7erhvu7wn fdmxxxcm3h osxuh2fxnt 5o5rmb0xhp jnbgkqn0dj 
ovap57ujdh dtzsz3lb6x sunnysai12345 sdcvulih6g
Cluster 5: trump donald donaldtrump starbucks trumpquote 
trumpforpresident oy8ltkstze https zfns7pxysx silly goy stump 
trump2016 news jeremy coffee corbyn ok7vc8aetz rt tonight
Cluster 6: ladygaga gaga lady rt https love follow horror cd story 
ahshotel american japan hotel human trafficking music fashion diet 
queen ahs

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 100 ]

We will visualize the results by plotting the cluster. We have 7,540 samples  
with 6,638 features. It will be impossible to visualize that many dimensions.  
We will use the Multi-Dimensional Scaling (MDS) algorithm to bring down the 
multidimensional features of the clusters into two tractable dimensions to be able to 
picture them:

import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.manifold import MDS

MDS()

#
# Bring down the MDS to two dimensions (components) as we will plot 
# the clusters
#
mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1)

pos = mds.fit_transform(dist)  # shape (n_components, n_samples)

xs, ys = pos[:, 0], pos[:, 1]

In [67]:

#
# Set up colors per clusters using a dict
#
cluster_colors = {0: '#1b9e77', 1: '#d95f02', 2: '#7570b3', 3: 
'#e7298a', 4: '#66a61e', 5: '#9990b3', 6: '#e8888a'}

#
#set up cluster names using a dict
#
cluster_names = {0: 'Music, Pop', 
                 1: 'USA Politics, Election', 
                 2: 'BigData, Spark', 
                 3: 'Spark, Python',
                 4: 'Thailand', 
                 5: 'USA Politics, Election', 
                 6: 'Music, Pop'}
In [115]:
#
# ipython magic to show the matplotlib plots inline
#

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 101 ]

%matplotlib inline 

#
# Create data frame which includes MDS results, cluster numbers and 
tweet texts to be displayed
#
df = pd.DataFrame(dict(x=xs, y=ys, label=clusters, txt=twtstxt_ls02_
utf8))
ix_start = 2000
ix_stop  = 2050
df01 = df[ix_start:ix_stop]

print(df01[['label','txt']])
print(len(df01))
print()

# Group by cluster

groups = df.groupby('label')
groups01 = df01.groupby('label')

# Set up the plot

fig, ax = plt.subplots(figsize=(17, 10)) 
ax.margins(0.05) 

#
# Build the plot object
#
for name, group in groups01:
    ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, 
            label=cluster_names[name], color=cluster_colors[name], 
            mec='none')
    ax.set_aspect('auto')
    ax.tick_params(\
        axis= 'x',         # settings for x-axis
        which='both',      # 
        bottom='off',      # 
        top='off',         # 
        labelbottom='off')
    ax.tick_params(\
        axis= 'y',         # settings for y-axis
        which='both',      # 

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 102 ]

        left='off',        # 
        top='off',         # 
        labelleft='off')
    
ax.legend(numpoints=1)     #
#
# Add label in x,y position with tweet text
#
for i in range(ix_start, ix_stop):
    ax.text(df01.ix[i]['x'], df01.ix[i]['y'], df01.ix[i]['txt'], 
size=10)  
    
plt.show()                 # Display the plot

      label       text
2000      2       b'RT @BigDataTechCon: '
2001      3       b"@4Quant 's presentat"
2002      2       b'Cassandra Summit 201'

Here's a plot of Cluster 2, Big Data and Spark., represented by blue dots along with 
Cluster 3, Spark and Python, represented by red dots, and some sample tweets related 
to the respective clusters:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 103 ]

We have gained some good insights into the data with the exploration and 
processing done with Scikit-Learn. We will now focus our attention on Spark  
MLlib and take it for a ride on the Twitter dataset.

Preprocessing the dataset
Now, we will focus on feature extraction and engineering in order to ready the  
data for the clustering algorithm run. We instantiate the Spark Context and read  
the Twitter dataset into a Spark dataframe. We will then successively tokenize the 
tweet text data, apply a hashing Term frequency algorithm to the tokens, and finally 
apply the Inverse Document Frequency algorithm and rescale the data. The code is 
as follows:

In [3]:
#
# Read csv in a Panda DF
#
#
import pandas as pd
csv_in = '/home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/
data/unq_tweetstxt.csv'
pddf_in = pd.read_csv(csv_in, index_col=None, header=0, sep=';', 
encoding='utf-8')

In [4]:

sqlContext = SQLContext(sc)

In [5]:

#
# Convert a Panda DF to a Spark DF
#
#

spdf_02 = sqlContext.createDataFrame(pddf_in[['id', 'user_id', 'user_
name', 'tweet_text']])

In [8]:

spdf_02.show()

In [7]:

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 104 ]

spdf_02.take(3)

Out[7]:

[Row(id=638830426971181057, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 9_A_6: 
dreamintentions: elsahel12: simbata3: JDHM2015: almtorta18: 
dreamintentions:\u2026 http://t.co/VpD7FoqMr0'),
 Row(id=638830426727911424, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews: dreamintentions: elsahel12: simbata3: JDHM2015: 
almtorta18: CiviPa\u2026 http://t.co/VpD7FoqMr0'),
 Row(id=638830425402556417, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 9_A_6: 
ernestsgantt: elsahel12: simbata3: JDHM2015: almtorta18: 
CiviPartnership: dr\u2026 http://t.co/EMDOn8chPK')]

In [9]:

from pyspark.ml.feature import HashingTF, IDF, Tokenizer

In [10]:

#
# Tokenize the tweet_text 
#
tokenizer = Tokenizer(inputCol="tweet_text", outputCol="tokens")
tokensData = tokenizer.transform(spdf_02)

In [11]:

tokensData.take(1)

Out[11]:

[Row(id=638830426971181057, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 
9_A_6: dreamintentions: elsahel12: simbata3: JDHM2015: 
almtorta18: dreamintentions:\u2026 http://t.co/VpD7FoqMr0', 
tokens=[u'ernestsgantt:', u'beyhiveinfrance:', u'9_a_6:', 
u'dreamintentions:', u'elsahel12:', u'simbata3:', u'jdhm2015:', 
u'almtorta18:', u'dreamintentions:\u2026', u'http://t.co/
vpd7foqmr0'])]

In [14]:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 105 ]

#
# Apply Hashing TF to the tokens
#
hashingTF = HashingTF(inputCol="tokens", outputCol="rawFeatures", 
numFeatures=2000)
featuresData = hashingTF.transform(tokensData)

In [15]:

featuresData.take(1)

Out[15]:

[Row(id=638830426971181057, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 
9_A_6: dreamintentions: elsahel12: simbata3: JDHM2015: 
almtorta18: dreamintentions:\u2026 http://t.co/VpD7FoqMr0', 
tokens=[u'ernestsgantt:', u'beyhiveinfrance:', u'9_a_6:', 
u'dreamintentions:', u'elsahel12:', u'simbata3:', u'jdhm2015:', 
u'almtorta18:', u'dreamintentions:\u2026', u'http://t.co/vpd7foqmr0'], 
rawFeatures=SparseVector(2000, {74: 1.0, 97: 1.0, 100: 1.0, 160: 1.0, 
185: 1.0, 742: 1.0, 856: 1.0, 991: 1.0, 1383: 1.0, 1620: 1.0}))]

In [16]:

#
# Apply IDF to the raw features and rescale the data
#
idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featuresData)
rescaledData = idfModel.transform(featuresData)

for features in rescaledData.select("features").take(3):
  print(features)

In [17]:

rescaledData.take(2)

Out[17]:

[Row(id=638830426971181057, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 
9_A_6: dreamintentions: elsahel12: simbata3: JDHM2015: 
almtorta18: dreamintentions:\u2026 http://t.co/VpD7FoqMr0', 
tokens=[u'ernestsgantt:', u'beyhiveinfrance:', u'9_a_6:', 

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 106 ]

u'dreamintentions:', u'elsahel12:', u'simbata3:', u'jdhm2015:', 
u'almtorta18:', u'dreamintentions:\u2026', u'http://t.co/vpd7foqmr0'], 
rawFeatures=SparseVector(2000, {74: 1.0, 97: 1.0, 100: 1.0, 160: 
1.0, 185: 1.0, 742: 1.0, 856: 1.0, 991: 1.0, 1383: 1.0, 1620: 1.0}), 
features=SparseVector(2000, {74: 2.6762, 97: 1.8625, 100: 2.6384, 160: 
2.9985, 185: 2.7481, 742: 5.5269, 856: 4.1406, 991: 2.9518, 1383: 
4.694, 1620: 3.073})),
 Row(id=638830426727911424, user_id=3276255125, user_name=u'True 
Equality', tweet_text=u'ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews: dreamintentions: elsahel12: simbata3: 
JDHM2015: almtorta18: CiviPa\u2026 http://t.co/VpD7FoqMr0', 
tokens=[u'ernestsgantt:', u'beyhiveinfrance:', u'phuketdailynews:', 
u'dreamintentions:', u'elsahel12:', u'simbata3:', u'jdhm2015:', 
u'almtorta18:', u'civipa\u2026', u'http://t.co/vpd7foqmr0'], 
rawFeatures=SparseVector(2000, {74: 1.0, 97: 1.0, 100: 1.0, 160: 
1.0, 185: 1.0, 460: 1.0, 987: 1.0, 991: 1.0, 1383: 1.0, 1620: 1.0}), 
features=SparseVector(2000, {74: 2.6762, 97: 1.8625, 100: 2.6384, 
160: 2.9985, 185: 2.7481, 460: 6.4432, 987: 2.9959, 991: 2.9518, 1383: 
4.694, 1620: 3.073}))]

In [21]:

rs_pddf = rescaledData.toPandas()

In [22]:

rs_pddf.count()

Out[22]:

id             7540
user_id        7540
user_name      7540
tweet_text     7540
tokens         7540
rawFeatures    7540
features       7540
dtype: int64

In [27]:

feat_lst = rs_pddf.features.tolist()

In [28]:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 107 ]

feat_lst[:2]

Out[28]:

[SparseVector(2000, {74: 2.6762, 97: 1.8625, 100: 2.6384, 160: 2.9985, 
185: 2.7481, 742: 5.5269, 856: 4.1406, 991: 2.9518, 1383: 4.694, 1620: 
3.073}),
 SparseVector(2000, {74: 2.6762, 97: 1.8625, 100: 2.6384, 160: 2.9985, 
185: 2.7481, 460: 6.4432, 987: 2.9959, 991: 2.9518, 1383: 4.694, 1620: 
3.073})]

Running the clustering algorithm
We will use the K-Means algorithm against the Twitter dataset. As an unlabeled  
and shuffled bag of tweets, we want to see if the Apache Spark tweets are grouped  
in a single cluster. From the previous steps, the TF-IDF sparse vector of features  
is converted into an RDD that will be the input to the Spark MLlib program.  
We initialize the K-Means model with 5 clusters, 10 iterations of 10 runs:

In [32]:

from pyspark.mllib.clustering import KMeans, KMeansModel
from numpy import array
from math import sqrt

In [34]:

# Load and parse the data

in_Data = sc.parallelize(feat_lst)

In [35]:

in_Data.take(3)

Out[35]:

[SparseVector(2000, {74: 2.6762, 97: 1.8625, 100: 2.6384, 160: 2.9985, 
185: 2.7481, 742: 5.5269, 856: 4.1406, 991: 2.9518, 1383: 4.694, 1620: 
3.073}),
 SparseVector(2000, {74: 2.6762, 97: 1.8625, 100: 2.6384, 160: 2.9985, 
185: 2.7481, 460: 6.4432, 987: 2.9959, 991: 2.9518, 1383: 4.694, 1620: 
3.073}),

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 108 ]

 SparseVector(2000, {20: 4.3534, 74: 2.6762, 97: 1.8625, 100: 5.2768, 
185: 2.7481, 856: 4.1406, 991: 2.9518, 1039: 3.073, 1620: 3.073, 1864: 
4.6377})]

In [37]:

in_Data.count()

Out[37]:

7540

In [38]:

# Build the model (cluster the data)

clusters = KMeans.train(in_Data, 5, maxIterations=10,
        runs=10, initializationMode="random")

In [53]:

# Evaluate clustering by computing Within Set Sum of Squared Errors

def error(point):
    center = clusters.centers[clusters.predict(point)]
    return sqrt(sum([x**2 for x in (point - center)]))

WSSSE = in_Data.map(lambda point: error(point)).reduce(lambda x, y: x 
+ y)
print("Within Set Sum of Squared Error = " + str(WSSSE))

Evaluating the model and the results
One way to fine-tune the clustering algorithm is by varying the number of clusters 
and verifying the output. Let's check the clusters and get a feel for the clustering 
results so far:

In [43]:

cluster_membership = in_Data.map(lambda x: clusters.predict(x))

In [54]:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 109 ]

cluster_idx = cluster_membership.zipWithIndex()

In [55]:

type(cluster_idx)

Out[55]:

pyspark.rdd.PipelinedRDD

In [58]:

cluster_idx.take(20)

Out[58]:

[(3, 0),
 (3, 1),
 (3, 2),
 (3, 3),
 (3, 4),
 (3, 5),
 (1, 6),
 (3, 7),
 (3, 8),
 (3, 9),
 (3, 10),
 (3, 11),
 (3, 12),
 (3, 13),
 (3, 14),
 (1, 15),
 (3, 16),
 (3, 17),
 (1, 18),
 (1, 19)]

In [59]:

cluster_df = cluster_idx.toDF()

In [65]:

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 110 ]

pddf_with_cluster = pd.concat([pddf_in, cluster_pddf],axis=1)

In [76]:

pddf_with_cluster._1.unique()

Out[76]:

array([3, 1, 4, 0, 2])

In [79]:

pddf_with_cluster[pddf_with_cluster['_1'] == 0].head(10)

Out[79]:
  Unnamed: 0   id   created_at   user_id   user_name   tweet_text   _1   
_2
6227   3   642418116819988480   Fri Sep 11 19:23:09 +0000 2015   
49693598   Ajinkya Kale   RT @bigdata: Distributed Matrix Computations 
i...   0   6227
6257   45   642391207205859328   Fri Sep 11 17:36:13 +0000 2015   
937467860   Angela Bassa   [Auto] I'm reading ""Distributed Matrix 
Comput...   0   6257
6297   119   642348577147064320   Fri Sep 11 14:46:49 +0000 
2015   18318677   Ben Lorica   Distributed Matrix Computations in @
ApacheSpar...   0   6297
In [80]:

pddf_with_cluster[pddf_with_cluster['_1'] == 1].head(10)

Out[80]:
  Unnamed: 0   id   created_at   user_id   user_name   tweet_text   _1   
_2
6   6   638830419090079746   Tue Sep 01 21:46:55 +0000 2015   
2241040634   Massimo Carrisi   Python:Python: Removing \xa0 from 
string? - I ...   1   6
15   17   638830380578045953   Tue Sep 01 21:46:46 +0000 2015   
57699376   Rafael Monnerat   RT @ramalhoorg: Noite de autógrafos do 
Fluent ...   1   15
18   41   638830280988426250   Tue Sep 01 21:46:22 +0000 2015   
951081582   Jack Baldwin   RT @cloudaus: We are 3/4 full! 2-day @
swcarpen...   1   18
19   42   638830276626399232   Tue Sep 01 21:46:21 +0000 2015   
6525302   Masayoshi Nakamura   PynamoDB #AWS #DynamoDB #Python 
http://...   1   19

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 111 ]

20   43   638830213288235008   Tue Sep 01 21:46:06 +0000 2015   
3153874869   Baltimore Python   Flexx: Python UI tookit based on web 
technolog...   1   20
21   44   638830117645516800   Tue Sep 01 21:45:43 +0000 2015   
48474625   Radio Free Denali   Hmm, emerge --depclean wants to remove 
somethi...   1   21
22   46   638829977014636544   Tue Sep 01 21:45:10 +0000 2015   
154915461   Luciano Ramalho   Noite de autógrafos do Fluent Python no 
Garoa ...   1   22
23   47   638829882928070656   Tue Sep 01 21:44:47 +0000 2015   
917320920   bsbafflesbrains   @DanSWright Harper channeling Monty 
Python. "...   1   23
24   48   638829868679954432   Tue Sep 01 21:44:44 +0000 2015   
134280898   Lannick Technology   RT @SergeyKalnish: I am #hiring: 
Senior Back e...   1   24
25   49   638829707484508161   Tue Sep 01 21:44:05 +0000 2015   
2839203454   Joshua Jones   RT @LindseyPelas: Surviving Monty Python 
in Fl...   1   25
In [81]:

pddf_with_cluster[pddf_with_cluster['_1'] == 2].head(10)

Out[81]:
  Unnamed: 0   id   created_at   user_id   user_name   tweet_text   _1   
_2
7280   688   639056941592014848   Wed Sep 02 12:47:02 +0000 2015   
2735137484   Chris   A true gay icon when will @ladygaga @Madonna @...   
2   7280
In [82]:

pddf_with_cluster[pddf_with_cluster['_1'] == 3].head(10)

Out[82]:
  Unnamed: 0   id   created_at   user_id   user_name   tweet_text   _1   
_2
0   0   638830426971181057   Tue Sep 01 21:46:57 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 9_A_6: 
dreamint...   3   0
1   1   638830426727911424   Tue Sep 01 21:46:57 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...   3   1
2   2   638830425402556417   Tue Sep 01 21:46:56 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 9_A_6: 
ernestsg...   3   2
3   3   638830424563716097   Tue Sep 01 21:46:56 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...   3   3

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 112 ]

4   4   638830422256816132   Tue Sep 01 21:46:56 +0000 2015   
3276255125   True Equality   ernestsgantt: elsahel12: 9_A_6: 
dreamintention...   3   4
5   5   638830420159655936   Tue Sep 01 21:46:55 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...   3   5
7   7   638830418330980352   Tue Sep 01 21:46:55 +0000 2015   
3276255125   True Equality   ernestsgantt: elsahel12: 9_A_6: 
dreamintention...   3   7
8   8   638830397648822272   Tue Sep 01 21:46:50 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...   3   8
9   9   638830395375529984   Tue Sep 01 21:46:49 +0000 2015   
3276255125   True Equality   ernestsgantt: elsahel12: 9_A_6: 
dreamintention...   3   9
10   10   638830392389177344   Tue Sep 01 21:46:49 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...   3   10
In [83]:

pddf_with_cluster[pddf_with_cluster['_1'] == 4].head(10)

Out[83]:
  Unnamed: 0   id   created_at   user_id   user_name   tweet_text   _1   
_2
1361   882   642648214454317056   Sat Sep 12 10:37:28 +0000 2015   
27415756   Raymond Enisuoh   LA Chosen For US 2024 Olympic Bid - 
LA2016 See...   4   1361
1363   885   642647848744583168   Sat Sep 12 10:36:01 +0000 2015   
27415756   Raymond Enisuoh   Prison See: https://t.co/x3EKAExeFi … … … 
… … ...   4   1363
5412   11   640480770369286144   Sun Sep 06 11:04:49 +0000 2015   
3242403023   Donald Trump 2016   " igiboooy! @ Starbucks https://t.
co/97wdL...   4   5412
5428   27   640477140660518912   Sun Sep 06 10:50:24 +0000 2015   
3242403023   Donald Trump 2016   "  @ Starbucks https://t.co/
wsEYFIefk7 " - D...   4   5428
5455   61   640469542272110592   Sun Sep 06 10:20:12 +0000 2015   
3242403023   Donald Trump 2016   " starbucks @ Starbucks Mam Plaza 
https://t.co...   4   5455
5456   62   640469541370372096   Sun Sep 06 10:20:12 +0000 2015   
3242403023   Donald Trump 2016   " Aaahhh the pumpkin spice latte is 
back, fall...   4   5456
5457   63   640469539524898817   Sun Sep 06 10:20:12 +0000 2015   
3242403023   Donald Trump 2016   " RT kayyleighferry: Oh my goddd 
Harry Potter ...   4   5457
5458   64   640469537176031232   Sun Sep 06 10:20:11 +0000 2015   
3242403023   Donald Trump 2016   " Starbucks https://t.co/3xYYXlwNkf 
" - Donald...   4   5458

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4

[ 113 ]

5459   65   640469536119070720   Sun Sep 06 10:20:11 +0000 2015   
3242403023   Donald Trump 2016   " A Starbucks is under construction 
in my neig...   4   5459
5460   66   640469530435813376   Sun Sep 06 10:20:10 +0000 2015   
3242403023   Donald Trump 2016   " Babam starbucks'tan fotogtaf atıyor 
bende du...   4   5460

We map the 5 clusters with some sample tweets. Cluster 0 is about Spark. Cluster 1 
is about Python. Cluster 2 is about Lady Gaga. Cluster 3 is about Thailand's Phuket 
News. Cluster 4 is about Donald Trump.

Building machine learning pipelines
We want to compose the feature extraction, preparatory activities, training, testing, 
and prediction activities while optimizing the best tuning parameter to get the best 
performing model.

The following tweet captures perfectly in five lines of code a powerful machine 
learning Pipeline implemented in Spark MLlib:

www.it-ebooks.info

http://www.it-ebooks.info/


Learning from Data Using Spark

[ 114 ]

The Spark ML pipeline is inspired by Python's Scikit-Learn and creates a succinct, 
declarative statement of the successive transformations to the data in  
order to quickly deliver a tunable model.

Summary
In this chapter, we got an overview of Spark MLlib's ever-expanding library of 
algorithms Spark MLlib. We discussed supervised and unsupervised learning, 
recommender systems, optimization, and feature extraction algorithms. We then put 
the harvested data from Twitter into the machine learning process, algorithms, and 
evaluation to derive insights from the data. We put the Twitter-harvested dataset 
through a Python Scikit-Learn and Spark MLlib K-means clustering in order to 
segregate the tweets relevant to Apache Spark. We also evaluated the performance  
of the model.

This gets us ready for the next chapter, which will cover Streaming Analytics using 
Spark. Let's jump right in.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 115 ]

Streaming Live Data  
with Spark

In this chapter, we will focus on live streaming data flowing into Spark and 
processing it. So far, we have discussed machine learning and data mining with 
batch processing. We are now looking at processing continuously flowing data and 
detecting facts and patterns on the fly. We are navigating from a lake to a river.

We will first investigate the challenges arising from such a dynamic and ever 
changing environment. After laying the grounds on the prerequisite of a streaming 
application, we will investigate various implementations using live sources of data 
such as TCP sockets to the Twitter firehose and put in place a low latency, high 
throughput, and scalable data pipeline combining Spark, Kafka and Flume.

In this chapter, we will cover the following points:

• Analyzing a streaming application's architectural challenges, constraints,  
and requirements

• Processing live data from a TCP socket with Spark Streaming
• Connecting to the Twitter firehose directly to parse tweets in quasi real time
• Establishing a reliable, fault tolerant, scalable, high throughput, low latency 

integrated application using Spark, Kafka, and Flume
• Closing remarks on Lambda and Kappa architecture paradigms

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 116 ]

Laying the foundations of streaming 
architecture
As customary, let's first go back to our original drawing of the data-intensive apps 
architecture blueprint and highlight the Spark Streaming module that will be the 
topic of interest.

The following diagram sets the context by highlighting the Spark Streaming module 
and interactions with Spark SQL and Spark MLlib within the overall data-intensive 
apps framework.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 117 ]

Data flows from stock market time series, enterprise transactions, interactions, 
events, web traffic, click streams, and sensors. All events are time-stamped 
data and urgent. This is the case for fraud detection and prevention, mobile 
cross-sell and upsell, or traffic alerts. Those streams of data require immediate 
processing for monitoring purposes, such as detecting anomalies, outliers, spam, 
fraud, and intrusion; and also for providing basic statistics, insights, trends, and 
recommendations. In some cases, the summarized aggregated information is 
sufficient to be stored for later usage. From an architecture paradigm perspective,  
we are moving from a service-oriented architecture to an event-driven architecture.

Two models emerge for processing streams of data:

• Processing one record at a time as they come in. We do not buffer the 
incoming records in a container before processing them. This is the case of 
Twitter's Storm, Yahoo's S4, and Google's MillWheel.

• Micro-batching or batch computations on small intervals as performed by 
Spark Streaming and Storm Trident. In this case, we buffer the incoming 
records in a container according to the time window prescribed in the  
micro-batching settings.

Spark Streaming has often been compared against Storm. They are two different 
models of streaming data. Spark Streaming is based on micro-batching. Storm is 
based on processing records as they come in. Storm also offers a micro-batching 
option, with its Storm Trident option.

The driving factor in a streaming application is latency. Latency varies from the 
milliseconds range in the case of RPC (short for Remote Procedure Call) to several 
seconds or minutes for micro batching solution such as Spark Streaming.

RPC allows synchronous operations between the requesting programs waiting 
for the results from the remote server's procedure. Threads allow concurrency of 
multiple RPC calls to the server.

An example of software implementing a distributed RPC model is Apache Storm.

Storm implements stateless sub millisecond latency processing of unbounded tuples 
using topologies or directed acyclic graphs combining spouts as source of data 
streams and bolts for operations such as filter, join, aggregation, and transformation. 
Storm also implements a higher level abstraction called Trident which, similarly to 
Spark, processes data streams in micro batches.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 118 ]

So, looking at the latency continuum, from sub millisecond to second, Storm is a 
good candidate. For seconds to minutes scale, Spark Streaming and Storm Trident 
are excellent fits. For several minutes onward, Spark and a NoSQL database such as 
Cassandra or HBase are adequate solutions. For ranges beyond the hour and with 
high volume of data, Hadoop is the ideal contender.

Although throughput is correlated to latency, it is not a simple inversely linear 
relationship. If processing a message takes 2 ms, which determines the latency, 
then one would assume the throughput is limited to 500 messages per sec. Batching 
messages allows for higher throughput if we allow our messages to be buffered for 8 
ms more. With a latency of 10 ms, the system can buffer up to 10,000 messages. For a 
bearable increase in latency, we have substantially increased throughput. This is the 
magic of micro-batching that Spark Streaming exploits.

Spark Streaming inner working
The Spark Streaming architecture leverages the Spark core architecture. It  
overlays on the SparkContext a StreamingContext as the entry point to the  
Stream functionality. The Cluster Manager will dedicate at least one worker node as 
Receiver, which will be an executor with a long task to process the incoming stream. 
The Executor creates Discretized Streams or DStreams from input data stream and 
replicates by default, the DStream to the cache of another worker. One receiver 
serves one input data stream. Multiple receivers improve parallelism and generate 
multiple DStreams that Spark can unite or join Resilient Distributed Datasets (RDD).

The following diagram gives an overview of the inner working of Spark Streaming. 
The client interacts with the Spark Cluster via the cluster manager, while Spark 
Streaming has a dedicated worker with a long running task ingesting the input 
data stream and transforming it into discretized streams or DStreams. The data is 
collected, buffered and replicated by a receiver and then pushed to a stream  
of RDDs.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 119 ]

Spark receivers can ingest data from many sources. Core input sources range from 
TCP socket and HDFS/Amazon S3 to Akka Actors. Additional sources include 
Apache Kafka, Apache Flume, Amazon Kinesis, ZeroMQ, Twitter, and custom or 
user-defined receivers.

We distinguish between reliable resources that acknowledges receipt of data to the 
source and replication for possible resend, versus unreliable receivers who do not 
acknowledge receipt of the message. Spark scales out in terms of the number of 
workers, partition and receivers.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 120 ]

The following diagram gives an overview of Spark Streaming with the possible 
sources and the persistence options:

Going under the hood of Spark Streaming
Spark Streaming is composed of Receivers and powered by Discretized Streams and 
Spark Connectors for persistence.

As for Spark Core, the essential data structure is the RDD, the fundamental 
programming abstraction for Spark Streaming is the Discretized Stream or DStream.

The following diagram illustrates the Discretized Streams as continuous sequences of 
RDDs. The batch intervals of DStream are configurable.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 121 ]

DStreams snapshots the incoming data in batch intervals. Those time steps typically 
range from 500 ms to several seconds. The underlying structure of a DStream is  
an RDD.

A DStream is essentially a continuous sequence of RDDs. This is powerful 
as it allows us to leverage from Spark Streaming all the traditional functions, 
transformations and actions available in Spark Core and allows us to dialogue with 
Spark SQL, performing SQL queries on incoming streams of data and Spark MLlib. 
Transformations similar to those on generic and key-value pair RDDs are applicable. 
The DStreams benefit from the inner RDDs lineage and fault tolerance. Additional 
transformation and output operations exist for discretized stream operations. Most 
generic operations on DStream are transform and foreachRDD.

The following diagram gives an overview of the lifecycle of DStreams. From creation 
of the micro-batches of messages materialized to RDDs on which transformation 
function and actions that trigger Spark jobs are applied. Breaking down the steps 
illustrated in the diagram, we read the diagram top down:

1. In the Input Stream, the incoming messages are buffered in a container 
according to the time window allocated for the micro-batching.

2. In the discretized stream step, the buffered micro-batches are transformed  
as DStream RDDs.

3. The Mapped DStream step is obtained by applying a transformation 
function to the original DStream. These first three steps constitute the 
transformation of the original data received in predefined time windows. As 
the underlying data structure is the RDD, we conserve the data lineage of the 
transformations.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 122 ]

4. The final step is an action on the RDD. It triggers the Spark job.

Transformation can be stateless or stateful. Stateless means that no state is maintained 
by the program, while stateful means the program keeps a state, in which case 
previous transactions are remembered and may affect the current transaction.  
A stateful operation modifies or requires some state of the system, and a stateless 
operation does not.

Stateless transformations process each batch in a DStream at a time. Stateful 
transformations process multiple batches to obtain results. Stateful transformations 
require the checkpoint directory to be configured. Check pointing is the main 
mechanism for fault tolerance in Spark Streaming to periodically save data and 
metadata about an application.

There are two types of stateful transformations for Spark Streaming: 
updateStateByKey and windowed transformations.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 123 ]

updateStateByKey are transformations that maintain state for each key in a stream 
of Pair RDDs. It returns a new state DStream where the state for each key is updated 
by applying the given function on the previous state of the key and the new values  
of each key. An example would be a running count of given hashtags in a stream  
of tweets.

Windowed transformations are carried over multiple batches in a sliding window. 
A window has a defined length or duration specified in time units. It must be a 
multiple of a DStream batch interval. It defines how many batches are included in  
a windowed transformation.

A window has a sliding interval or sliding duration specified in time units. It must 
be a multiple of a DStream batch interval. It defines how many batches to slide a 
window or how frequently to compute a windowed transformation.

The following schema depicts the windowing operation on DStreams to derive 
window DStreams with a given length and sliding interval:

A sample function is countByWindow (windowLength, slideInterval). It returns 
a new DStream in which each RDD has a single element generated by counting the 
number of elements in a sliding window over this DStream. An illustration in this 
case would be a running count of given hashtags in a stream of tweets every 60 
seconds. The window time frame is specified.

Minute scale window length is reasonable. Hour scale window length is not 
recommended as it is compute and memory intensive. It would be more  
convenient to aggregate the data in a database such as Cassandra or HBase.

Windowed transformations compute results based on window length and window 
slide interval. Spark performance is primarily affected by on window length, 
window slide interval, and persistence.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 124 ]

Building in fault tolerance
Real-time stream processing systems must be operational 24/7. They need to be 
resilient to all sorts of failures in the system. Spark and its RDD abstraction are 
designed to seamlessly handle failures of any worker nodes in the cluster.

Main Spark Streaming fault tolerance mechanisms are check pointing, automatic 
driver restart, and automatic failover. Spark enables recovery from driver failure 
using check pointing, which preserves the application state.

Write ahead logs, reliable receivers, and file streams guarantees zero data loss  
as of Spark Version 1.2. Write ahead logs represent a fault tolerant storage for 
received data.

Failures require recomputing results. DStream operations have exactly-one 
semantics. Transformations can be recomputed multiple times but will yield the 
same result. DStream output operations have at least once semantics. Output 
operations may be executed multiple times.

Processing live data with TCP sockets
As a stepping stone to the overall understanding of streaming operations, we will 
first experiment with TCP socket. TCP socket establishes two-way communication 
between client and server, and it can exchange data through the established 
connection. WebSocket connections are long lived, unlike typical HTTP connections. 
HTTP is not meant to keep an open connection from the server to push continuously 
data to the web browsers. Most web applications hence resorted to long polling 
via frequent Asynchronous JavaScript (AJAX) and XML requests. WebSockets, 
standardized and implemented in HTML5, are moving beyond web browsers and 
are becoming a cross-platform standard for real-time communication between client 
and server.

Setting up TCP sockets
We create a TCP Socket Server by running netcat, a small utility found in most 
Linux systems, as a data server with the command > nc -lk 9999, where 9999 is 
the port where we are sending data:

#
# Socket Server
#
an@an-VB:~$ nc -lk 9999

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 125 ]

hello world
how are you
hello  world
cool it works

Once netcat is running, we will open a second console with our Spark Streaming 
client to receive the data and process. As soon as the Spark Streaming client console 
is listening, we start typing the words to be processed, that is, hello world.

Processing live data
We will be using the example program provided in the Spark bundle for Spark 
Streaming called network_wordcount.py. It can be found on the GitHub repository 
under https://github.com/apache/spark/blob/master/examples/src/main/
python/streaming/network_wordcount.py. The code is as follows:

"""
 Counts words in UTF8 encoded, '\n' delimited text received from the 
network every second.
 Usage: network_wordcount.py <hostname> <port>
   <hostname> and <port> describe the TCP server that Spark Streaming 
would connect to receive data.
 To run this on your local machine, you need to first run a Netcat 
server
    `$ nc -lk 9999`
 and then run the example
    `$ bin/spark-submit examples/src/main/python/streaming/network_
wordcount.py localhost 9999`
"""
from __future__ import print_function

import sys

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: network_wordcount.py <hostname> <port>", 
file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingNetworkWordCount")
    ssc = StreamingContext(sc, 1)

www.it-ebooks.info

https://github.com/apache/spark/blob/master/examples/src/main/python/streaming/network_wordcount.py
https://github.com/apache/spark/blob/master/examples/src/main/python/streaming/network_wordcount.py
http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 126 ]

    lines = ssc.socketTextStream(sys.argv[1], int(sys.argv[2]))
    counts = lines.flatMap(lambda line: line.split(" "))\
                  .map(lambda word: (word, 1))\
                  .reduceByKey(lambda a, b: a+b)
    counts.pprint()

    ssc.start()
    ssc.awaitTermination()

Here, we explain the steps of the program:

1. The code first initializes a Spark Streaming Context with the command:
ssc = StreamingContext(sc, 1)

2. Next, the streaming computation is set up.
3. One or more DStream objects that receive data are defined to connect to 

localhost or 127.0.0.1 on port 9999:
stream = ssc.socketTextStream("127.0.0.1", 9999)

4. The DStream computation is defined: transformations and output operations:
stream.map(x: lambda (x,1))
.reduce(a+b)
.print()

5. Computation is started:
ssc.start()

6. Program termination is pending manual or error processing completion:
ssc.awaitTermination()

7. Manual completion is an option when a completion condition is known:

ssc.stop()

We can monitor the Spark Streaming application by visiting the Spark monitoring 
home page at localhost:4040.

Here's the result of running the program and feeding the words on the netcat 
4server console:

#
# Socket Client
# an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$ ./bin/spark-submit 
examples/src/main/python/streaming/network_wordcount.py localhost 9999

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 127 ]

Run the Spark Streaming network_count program by connecting to the socket 
localhost on port 9999:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$ ./bin/spark-submit examples/
src/main/python/streaming/network_wordcount.py localhost 9999

-------------------------------------------

Time: 2015-10-18 20:06:06

-------------------------------------------

(u'world', 1)

(u'hello', 1)

-------------------------------------------

Time: 2015-10-18 20:06:07

-------------------------------------------

. . .

-------------------------------------------

Time: 2015-10-18 20:06:17

-------------------------------------------

(u'you', 1)

(u'how', 1)

(u'are', 1)

-------------------------------------------

Time: 2015-10-18 20:06:18

-------------------------------------------

. . .

-------------------------------------------

Time: 2015-10-18 20:06:26

-------------------------------------------

(u'', 1)

(u'world', 1)

(u'hello', 1)

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 128 ]

-------------------------------------------

Time: 2015-10-18 20:06:27

-------------------------------------------

. . .

-------------------------------------------

Time: 2015-10-18 20:06:37

-------------------------------------------

(u'works', 1)

(u'it', 1)

(u'cool', 1)

-------------------------------------------

Time: 2015-10-18 20:06:38

-------------------------------------------

Thus, we have established connection through the socket on port 9999,  
streamed the data sent by the netcat server, and performed a word count  
on the messages sent.

Manipulating Twitter data in real time
Twitter offers two APIs. One search API that essentially allows us to retrieve past 
tweets based on search terms. This is how we have been collecting our data from 
Twitter in the previous chapters of the book. Interestingly, for our current purpose, 
Twitter offers a live streaming API which allows to ingest tweets as they are emitted 
in the blogosphere.

Processing Tweets in real time from the 
Twitter firehose
The following program connects to the Twitter firehose and processes the incoming 
tweets to exclude deleted or invalid tweets and parses on the fly only the relevant 
ones to extract screen name, the actual tweet, or tweet text, retweet count, geo-
location information. The processed tweets are gathered into an RDD Queue by 
Spark Streaming and then displayed on the console at a one-second interval:

"""
Twitter Streaming API Spark Streaming into an RDD-Queue to process 
tweets live
 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 129 ]

 Create a queue of RDDs that will be mapped/reduced one at a time in
 1 second intervals.

 To run this example use
    '$ bin/spark-submit examples/AN_Spark/AN_Spark_Code/s07_
twitterstreaming.py'

"""
#
import time
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
import twitter
import dateutil.parser
import json

# Connecting Streaming Twitter with Streaming Spark via Queue
class Tweet(dict):
    def __init__(self, tweet_in):
        super(Tweet, self).__init__(self)
        if tweet_in and 'delete' not in tweet_in:
            self['timestamp'] = dateutil.parser.parse(tweet_
in[u'created_at']
                                ).replace(tzinfo=None).isoformat()
            self['text'] = tweet_in['text'].encode('utf-8')
            #self['text'] = tweet_in['text']
            self['hashtags'] = [x['text'].encode('utf-8') for x in 
tweet_in['entities']['hashtags']]
            #self['hashtags'] = [x['text'] for x in tweet_
in['entities']['hashtags']]
            self['geo'] = tweet_in['geo']['coordinates'] if tweet_
in['geo'] else None
            self['id'] = tweet_in['id']
            self['screen_name'] = tweet_in['user']['screen_name'].
encode('utf-8')
            #self['screen_name'] = tweet_in['user']['screen_name']
            self['user_id'] = tweet_in['user']['id']

def connect_twitter():
    twitter_stream = twitter.TwitterStream(auth=twitter.OAuth(
        token = "get_your_own_credentials",
        token_secret = "get_your_own_credentials",
        consumer_key = "get_your_own_credentials",
        consumer_secret = "get_your_own_credentials"))

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 130 ]

    return twitter_stream

def get_next_tweet(twitter_stream):
    stream = twitter_stream.statuses.sample(block=True)
    tweet_in = None
    while not tweet_in or 'delete' in tweet_in:
        tweet_in = stream.next()
        tweet_parsed = Tweet(tweet_in)
    return json.dumps(tweet_parsed)

def process_rdd_queue(twitter_stream):
    # Create the queue through which RDDs can be pushed to
    # a QueueInputDStream
    rddQueue = []
    for i in range(3):
        rddQueue += [ssc.sparkContext.parallelize([get_next_
tweet(twitter_stream)], 5)]

    lines = ssc.queueStream(rddQueue)
    lines.pprint()
    
if __name__ == "__main__":
    sc = SparkContext(appName="PythonStreamingQueueStream")
    ssc = StreamingContext(sc, 1)
    
    # Instantiate the twitter_stream
    twitter_stream = connect_twitter()
    # Get RDD queue of the streams json or parsed
    process_rdd_queue(twitter_stream)
    
    ssc.start()
    time.sleep(2)
    ssc.stop(stopSparkContext=True, stopGraceFully=True)

When we run this program, it delivers the following output:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$ bin/spark-submit examples/
AN_Spark/AN_Spark_Code/s07_twitterstreaming.py

-------------------------------------------

Time: 2015-11-03 21:53:14

-------------------------------------------

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 131 ]

{"user_id": 3242732207, "screen_name": "cypuqygoducu", "timestamp": 
"2015-11-03T20:53:04", "hashtags": [], "text": "RT @VIralBuzzNewss: 
Our Distinctive Edition Holiday break Challenge Is In this article! 
Hooray!... -  https://t.co/9d8wumrd5v https://t.co/\u2026", "geo": null, 
"id": 661647303678259200}

-------------------------------------------

Time: 2015-11-03 21:53:15

-------------------------------------------

{"user_id": 352673159, "screen_name": "melly_boo_orig", "timestamp": 
"2015-11-03T20:53:05", "hashtags": ["eminem"], "text": "#eminem 
https://t.co/GlEjPJnwxy", "geo": null, "id": 661647307847409668}

-------------------------------------------

Time: 2015-11-03 21:53:16

-------------------------------------------

{"user_id": 500620889, "screen_name": "NBAtheist", "timestamp": "2015-11-
03T20:53:06", "hashtags": ["tehInterwebbies", "Nutters"], "text": "See? 
That didn't take long or any actual effort. This is #tehInterwebbies 
... #Nutters Abound! https://t.co/QS8gLStYFO", "geo": null, "id": 
661647312062709761}

So, we got an example of streaming tweets with Spark and processing them on  
the fly.

Building a reliable and scalable 
streaming app
Ingesting data is the process of acquiring data from various sources and storing it for 
processing immediately or at a later stage. Data consuming systems are dispersed 
and can be physically and architecturally far from the sources. Data ingestion is often 
implemented manually with scripts and rudimentary automation. It actually calls for 
higher level frameworks like Flume and Kafka.

The challenges of data ingestion arise from the fact that the sources are physically 
spread out and are transient which makes the integration brittle. Data production 
is continuous for weather, traffic, social media, network activity, shop floor sensors, 
security, and surveillance. Ever increasing data volumes and rates coupled with ever 
changing data structure and semantics makes data ingestion ad hoc and error prone.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 132 ]

The aim is to become more agile, reliable, and scalable. Agility, reliability, and 
scalability of the data ingestion determine the overall health of the pipeline. Agility 
means integrating new sources as they arise and incorporating changes to existing 
sources as needed. In order to ensure safety and reliability, we need to protect  
the infrastructure against data loss and downstream applications from silent  
data corruption at ingress. Scalability avoids ingest bottlenecks while keeping  
cost tractable.

Ingest Mode Description Example
Manual or Scripted File copy using command line 

interface or GUI interface
HDFS Client, Cloudera 
Hue

Batch Data 
Transport

Bulk data transport using tools DistCp, Sqoop

Micro Batch Transport of small batches of data Sqoop, Sqoop2
Storm

Pipelining Flow like transport of event streams Flume Scribe
Message Queue Publish Subscribe message bus of 

events
Kafka, Kinesis

In order to enable an event-driven business that is able to ingest multiple streams 
of data, process it in flight, and make sense of it all to get to rapid decisions, the key 
driver is the Unified Log.

A Unified Log is a centralized enterprise structured log available for real-time 
subscription. All the organization's data is put in a central log for subscription. 
Records are numbered beginning with zero in the order that they are written. It is 
also known as a commit log or journal. The concept of the Unified Log is the central 
tenet of the Kappa architecture.

The properties of the Unified Log are as follows:

• Unified: There is a single deployment for the entire organization
• Append only: Events are immutable and are appended
• Ordered: Each event has a unique offset within a shard
• Distributed: For fault tolerance purpose, the Unified Log is distributed 

redundantly on a cluster of computers
• Fast: The systems ingests thousands of messages per second

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 133 ]

Setting up Kafka
In order to isolate downstream particular consumption of data from the vagaries 
of upstream emission of data, we need to decouple the providers of data from the 
receivers or consumers of data. As they are living in two different worlds with 
different cycles and constraints, Kafka decouples the data pipelines.

Apache Kafka is a distributed publish subscribe messaging system rethought as a 
distributed commit log. The messages are stored by topic.

Apache Kafka has the following properties. It supports:

• High throughput for high volume of events feeds
• Real-time processing of new and derived feeds
• Large data backlogs and persistence for offline consumption
• Low latency as enterprise wide messaging system
• Fault tolerance thanks to its distributed nature

Messages are stored in partition with a unique sequential ID called offset. 
Consumers track their pointers via tuple of (offset, partition, topic).

Let's dive deeper in the anatomy of Kafka.

Kafka has essentially three components: producers, consumers and brokers. Producers 
push and write data to brokers. Consumers pull and read data from brokers. Brokers 
do not push messages to consumers. Consumers pull message from brokers. The 
setup is distributed and coordinated by Apache Zookeeper.

The brokers manage and store the data in topics. Topics are split in replicated 
partitions. The data is persisted in the broker, but not removed upon consumption, 
but until retention period. If a consumer fails, it can always go back to the broker to 
fetch the data.

Kafka requires Apache ZooKeeper. ZooKeeper is a high-performance coordination 
service for distributed applications. It centrally manages configuration, registry or 
naming service, group membership, lock, and synchronization for coordination 
between servers. It provides a hierarchical namespace with metadata, monitoring 
statistics, and state of the cluster. ZooKeeper can introduce brokers and consumers 
on the fly and then rebalances the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 134 ]

Kafka producers do not need ZooKeeper. Kafka brokers use ZooKeeper to provide 
general state information as well elect leader in case of failure. Kafka consumers use 
ZooKeeper to track message offset. Newer versions of Kafka will save the consumers 
to go through ZooKeeper and can retrieve the Kafka special topics information. 
Kafka provides automatic load balancing for producers.

The following diagram gives an overview of the Kafka setup:

Installing and testing Kafka
We will download the Apache Kafka binaries from the dedicated web page at 
http://kafka.apache.org/downloads.html and install the software in our 
machine using the following steps:

1. Download the code.
2. Download the 0.8.2.0 release and un-tar it:

> tar -xzf kafka_2.10-0.8.2.0.tgz

> cd kafka_2.10-0.8.2.0

www.it-ebooks.info

http://kafka.apache.org/downloads.html
http://www.it-ebooks.info/


Chapter 5

[ 135 ]

3. Start zooeeper. Kafka uses ZooKeeper so we need to first start a ZooKeeper 
server. We will use the convenience script packaged with Kafka to get a 
single-node ZooKeeper instance.
> bin/zookeeper-server-start.sh config/zookeeper.properties

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$ bin/zookeeper-server-start.sh 
config/zookeeper.properties

[2015-10-31 22:49:14,808] INFO Reading configuration from: 
config/zookeeper.properties (org.apache.zookeeper.server.quorum.
QuorumPeerConfig)

[2015-10-31 22:49:14,816] INFO autopurge.snapRetainCount set to 3 
(org.apache.zookeeper.server.DatadirCleanupManager)...

4. Now launch the Kafka server:
> bin/kafka-server-start.sh config/server.properties

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$ bin/kafka-server-start.sh 
config/server.properties

[2015-10-31 22:52:04,643] INFO Verifying properties (kafka.utils.
VerifiableProperties)

[2015-10-31 22:52:04,714] INFO Property broker.id is overridden to 
0 (kafka.utils.VerifiableProperties)

[2015-10-31 22:52:04,715] INFO Property log.cleaner.enable is 
overridden to false (kafka.utils.VerifiableProperties)

[2015-10-31 22:52:04,715] INFO Property log.dirs is overridden to 
/tmp/kafka-logs (kafka.utils.VerifiableProperties) [2013-04-22 
15:01:47,051] INFO Property socket.send.buffer.bytes is overridden 
to 1048576 (kafka.utils.VerifiableProperties)

5. Create a topic. Let's create a topic named test with a single partition and only 
one replica:
> bin/kafka-topics.sh --create --zookeeper localhost:2181 
--replication-factor 1 --partitions 1 --topic test

6. We can now see that topic if we run the list topic command:
> bin/kafka-topics.sh --list --zookeeper localhost:2181

Test

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$ bin/kafka-topics.sh --create 
--zookeeper localhost:2181 --replication-factor 1 --partitions 1 
--topic test

Created topic "test".

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 136 ]

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$ bin/kafka-topics.sh --list 
--zookeeper localhost:2181

test

7. Check the Kafka installation by creating a producer and consumer. We first 
launch a producer and type a message in the console:
an@an-VB:~/kafka/kafka_2.10-0.8.2.0$ bin/kafka-console-producer.sh 
--broker-list localhost:9092 --topic test

[2015-10-31 22:54:43,698] WARN Property topic is not valid (kafka.
utils.VerifiableProperties)

This is a message

This is another message

8. We then launch a consumer to check that we receive the message:

an@an-VB:~$ cd kafka/

an@an-VB:~/kafka$ cd kafka_2.10-0.8.2.0/

an@an-VB:~/kafka/kafka_2.10-0.8.2.0$ bin/kafka-console-consumer.sh 
--zookeeper localhost:2181 --topic test --from-beginning

This is a message

This is another message

The messages were appropriately received by the consumer:

1. Check Kafka and Spark Streaming consumer. We will be using the Spark 
Streaming Kafka word count example provided in the Spark bundle. A word 
of caution: we have to bind the Kafka packages, --packages org.apache.
spark:spark-streaming-kafka_2.10:1.5.0, when we submit the Spark 
job. The command is as follows:
./bin/spark-submit --packages org.apache.spark:spark-streaming-
kafka_2.10:1.5.0 \ examples/src/main/python/streaming/kafka_
wordcount.py \

localhost:2181 test

2. When we launch the Spark Streaming word count program with Kafka, we 
get the following output:
an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$ ./bin/spark-submit 
--packages org.apache.spark:spark-streaming-kafka_2.10:1.5.0 
examples/src/main/python/streaming/kafka_wordcount.py 
localhost:2181 test

-------------------------------------------

Time: 2015-10-31 23:46:33

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 137 ]

-------------------------------------------

(u'', 1)

(u'from', 2)

(u'Hello', 2)

(u'Kafka', 2)

-------------------------------------------

Time: 2015-10-31 23:46:34

-------------------------------------------

-------------------------------------------

Time: 2015-10-31 23:46:35

-------------------------------------------

3. Install the Kafka Python driver in order to be able to programmatically 
develop Producers and Consumers and interact with Kafka and Spark using 
Python. We will use the road-tested library from David Arthur, aka, Mumrah 
on GitHub (https://github.com/mumrah). We can pip install it as follows:

> pip install kafka-python

an@an-VB:~$ pip install kafka-python

Collecting kafka-python

  Downloading kafka-python-0.9.4.tar.gz (63kB)

...

Successfully installed kafka-python-0.9.4

Developing producers
The following program creates a Simple Kafka Producer that will emit the message 
this is a message sent from the Kafka producer: five times, followed by a time stamp 
every second:

#
# kafka producer
#
#
import time
from kafka.common import LeaderNotAvailableError
from kafka.client import KafkaClient
from kafka.producer import SimpleProducer

www.it-ebooks.info

https://github.com/mumrah
http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 138 ]

from datetime import datetime

def print_response(response=None):
    if response:
        print('Error: {0}'.format(response[0].error))
        print('Offset: {0}'.format(response[0].offset))

def main():
    kafka = KafkaClient("localhost:9092")
    producer = SimpleProducer(kafka)
    try:
        time.sleep(5)
        topic = 'test'
        for i in range(5):
            time.sleep(1)
            msg = 'This is a message sent from the kafka producer: ' \
                  + str(datetime.now().time()) + ' -- '\
                  + str(datetime.now().strftime("%A, %d %B %Y  
                    %I:%M%p"))
            print_response(producer.send_messages(topic, msg))
    except LeaderNotAvailableError:
        # https://github.com/mumrah/kafka-python/issues/249
        time.sleep(1)
        print_response(producer.send_messages(topic, msg))
 
    kafka.close()
 
if __name__ == "__main__":
    main()

When we run this program, the following output is generated:

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_Spark_
Code$ python s08_kafka_producer_01.py

Error: 0

Offset: 13

Error: 0

Offset: 14

Error: 0

Offset: 15

Error: 0

Offset: 16

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 139 ]

Error: 0

Offset: 17

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_Spark_
Code$

It tells us there were no errors and gives the offset of the messages given by the 
Kafka broker.

Developing consumers
To fetch the messages from the Kafka brokers, we develop a Kafka consumer:

# kafka consumer
# consumes messages from "test" topic and writes them to console.
#
from kafka.client import KafkaClient
from kafka.consumer import SimpleConsumer

def main():
  kafka = KafkaClient("localhost:9092")
  print("Consumer established connection to kafka")
  consumer = SimpleConsumer(kafka, "my-group", "test")
  for message in consumer:
    # This will wait and print messages as they become available
    print(message)

if __name__ == "__main__":
    main()

When we run this program, we effectively confirm that the consumer received all  
the messages:

an@an-VB:~$ cd ~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_
Spark_Code/

an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/AN_Spark_
Code$ python s08_kafka_consumer_01.py

Consumer established connection to kafka

OffsetAndMessage(offset=13, message=Message(magic=0, attributes=0, 
key=None, value='This is a message sent from the kafka producer: 
11:50:17.867309Sunday, 01 November 2015 11:50AM'))

...

OffsetAndMessage(offset=17, message=Message(magic=0, attributes=0, 
key=None, value='This is a message sent from the kafka producer: 
11:50:22.051423Sunday, 01 November 2015 11:50AM'))

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 140 ]

Developing a Spark Streaming consumer for Kafka
Based on the example code provided in the Spark Streaming bundle, we will create 
a Spark Streaming consumer for Kafka and perform a word count on the messages 
stored with the brokers:

#
# Kafka Spark Streaming Consumer    
#
from __future__ import print_function

import sys

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils

if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: kafka_spark_consumer_01.py <zk> <topic>", 
file=sys.stderr)
        exit(-1)

    sc = SparkContext(appName="PythonStreamingKafkaWordCount")
    ssc = StreamingContext(sc, 1)

    zkQuorum, topic = sys.argv[1:]
    kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-
consumer", {topic: 1})
    lines = kvs.map(lambda x: x[1])
    counts = lines.flatMap(lambda line: line.split(" ")) \
        .map(lambda word: (word, 1)) \
        .reduceByKey(lambda a, b: a+b)
    counts.pprint()

    ssc.start()
    ssc.awaitTermination()

Run this program with the following Spark submit command:

./bin/spark-submit --packages org.apache.spark:spark-streaming-
kafka_2.10:1.5.0 examples/AN_Spark/AN_Spark_Code/s08_kafka_spark_
consumer_01.py localhost:2181 test

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 141 ]

We get the following output:

an@an-VB:~$ cd spark/spark-1.5.0-bin-hadoop2.6/
an@an-VB:~/spark/spark-1.5.0-bin-hadoop2.6$ ./bin/spark-submit \
>     --packages org.apache.spark:spark-streaming-kafka_2.10:1.5.0 \
>     examples/AN_Spark/AN_Spark_Code/s08_kafka_spark_consumer_01.py 
localhost:2181 test
...
:: retrieving :: org.apache.spark#spark-submit-parent
  confs: [default]
  0 artifacts copied, 10 already retrieved (0kB/18ms)
-------------------------------------------
Time: 2015-11-01 12:13:16
-------------------------------------------

-------------------------------------------
Time: 2015-11-01 12:13:17
-------------------------------------------

-------------------------------------------
Time: 2015-11-01 12:13:18
-------------------------------------------

-------------------------------------------
Time: 2015-11-01 12:13:19
-------------------------------------------
(u'a', 5)
(u'the', 5)
(u'11:50AM', 5)
(u'from', 5)
(u'This', 5)
(u'11:50:21.044374Sunday,', 1)
(u'message', 5)
(u'11:50:20.036422Sunday,', 1)
(u'11:50:22.051423Sunday,', 1)
(u'11:50:17.867309Sunday,', 1)
...

-------------------------------------------
Time: 2015-11-01 12:13:20
-------------------------------------------

-------------------------------------------
Time: 2015-11-01 12:13:21
-------------------------------------------

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 142 ]

Exploring flume
Flume is a continuous ingestion system. It was originally designed to be a log 
aggregation system, but it evolved to handle any type of streaming event data.

Flume is a distributed, reliable, scalable, and available pipeline system for efficient 
collection, aggregation, and transport of large volumes of data. It has built-in support 
for contextual routing, filtering replication, and multiplexing. It is robust and fault 
tolerant, with tunable reliability mechanisms and many failover and recovery 
mechanisms. It uses a simple extensible data model that allows for real time analytic 
application.

Flume offers the following:

• Guaranteed delivery semantics
• Low latency reliable data transfer
• Declarative configuration with no coding required
• Extendable and customizable settings
• Integration with most commonly used end-points

The anatomy of Flume contains the following elements:

• Event: An event is the fundamental unit of data that is transported by Flume 
from source to destination. It is like a message with a byte array payload 
opaque to Flume and optional headers used for contextual routing.

• Client: A client produces and transmits events. A client decouples Flume 
from the data consumers. It is an entity that generates events and sends them 
to one or more agents. Custom client or Flume log4J append program or 
embedded application agent can be client.

• Agent: An agent is a container hosting sources, channels, sinks, and other 
elements that enable the transportation of events from one place to the other. 
It provides configuration, life cycle management and monitoring for hosted 
components. An agent is a physical Java virtual machine running Flume.

• Source: Source is the entity through which Flume receives events. Sources 
require at least one channel to function in order to either actively poll data 
or passively wait for data to be delivered to them. A variety of sources allow 
data to be collected, such as log4j logs and syslogs.

• Sink: Sink is the entity that drains data from the channel and delivers it to 
the next destination. A variety of sinks allow data to be streamed to a range 
of destinations. Sinks support serialization to user's format. One example is 
the HDFS sink that writes events to HDFS.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 143 ]

• Channel: Channel is the conduit between the source and the sink that buffers 
incoming events until drained by sinks. Sources feed events into the channel 
and the sinks drain the channel. Channels decouple the impedance of 
upstream and downstream systems. Burst of data upstream is damped by the 
channels. Failures downstream are transparently absorbed by the channels. 
Sizing the channel capacity to cope with these events is key to realizing these 
benefits. Channels offer two levels of persistence: either memory channel, 
which is volatile if the JVM crashes, or File channel backed by Write Ahead 
Log that stores the information to disk. Channels are fully transactional.

Let's illustrate all these concepts:

Developing data pipelines with Flume, Kafka, 
and Spark
Building resilient data pipeline leverages the learnings from the previous sections. 
We are plumbing together data ingestion and transport with Flume, data brokerage 
with a reliable and sophisticated publish and subscribe messaging system such as 
Kafka, and finally process computation on the fly using Spark Streaming.

The following diagram illustrates the composition of streaming data pipelines as 
sequence of connect, collect, conduct, compose, consume, consign, and control activities. 
These activities are configurable based on the use case:

• Connect establishes the binding with the streaming API.
• Collect creates collection threads.
• Conduct decouples the data producers from the consumers by creating a 

buffer queue or publish-subscribe mechanism.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 144 ]

• Compose is focused on processing the data.
• Consume provisions the processed data for the consuming systems.  

Consign takes care of the data persistence.
• Control caters to governance and monitoring of the systems, data,  

and applications.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 145 ]

The following diagram illustrates the concepts of the streaming data pipelines with 
its key components: Spark Streaming, Kafka, Flume, and low latency databases. In 
the consuming or controlling applications, we are monitoring our systems in real 
time (depicted by a monitor) or sending real-time alerts (depicted by red lights) in 
case certain thresholds are crossed.

The following diagram illustrates Spark's unique ability to process in a single 
platform data in motion and data at rest while seamlessly interfacing with multiple 
persistence data stores as per the use case requirement.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 146 ]

This diagram brings in one unified whole all the concepts discussed up to now. The 
top part describes the streaming processing pipeline. The bottom part describes the 
batch processing pipeline. They both share a common persistence layer in the middle 
of the diagram depicting the various modes of persistence and serialization.

Closing remarks on the Lambda and 
Kappa architecture
Two architecture paradigms are currently in vogue: the Lambda and  
Kappa architectures.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 147 ]

Lambda is the brainchild of the Storm creator and main committer, Nathan Marz. It 
essentially advocates building a functional architecture on all data. The architecture 
has two branches. The first is a batch arm envisioned to be powered by Hadoop, 
where historical, high-latency, high-throughput data are pre-processed and made 
ready for consumption. The real-time arm is envisioned to be powered by Storm, 
and it processes incrementally streaming data, derives insights on the fly, and feeds 
aggregated information back to the batch storage.

Kappa is the brainchild of one the main committer of Kafka, Jay Kreps, and his 
colleagues at Confluent (previously at LinkedIn). It is advocating a full streaming 
pipeline, effectively implementing, at the enterprise level, the unified log enounced 
in the previous pages.

Understanding Lambda architecture
Lambda architecture combines batch and streaming data to provide a unified query 
mechanism on all available data. Lambda architecture envisions three layers: a batch 
layer where precomputed information are stored, a speed layer where real-time 
incremental information is processed as data streams, and finally the serving layer 
that merges batch and real-time views for ad hoc queries. The following diagram 
gives an overview of the Lambda architecture:

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 148 ]

Understanding Kappa architecture
The Kappa architecture proposes to drive the full enterprise in streaming mode. 
The Kappa architecture arose from a critique from Jay Kreps and his colleagues at 
LinkedIn at the time. Since then, they moved and created Confluent with Apache 
Kafka as the main enabler of the Kappa architecture vision. The basic tenet is to  
move in all streaming mode with a Unified Log as the main backbone of the 
enterprise information architecture.

A Unified Log is a centralized enterprise structured log available for real-time 
subscription. All the organization's data is put in a central log for subscription. 
Records are numbered beginning with zero so that they are written. It is also known 
as a commit log or journal. The concept of the Unified Log is the central tenet of the 
Kappa architecture.

The properties of the unified log are as follows:

• Unified: There is a single deployment for the entire organization
• Append only: Events are immutable and are appended
• Ordered: Each event has a unique offset within a shard
• Distributed: For fault tolerance purpose, the unified log is distributed 

redundantly on a cluster of computers
• Fast: The systems ingests thousands of messages per second

The following screenshot captures the moment Jay Kreps announced his reservations 
about the Lambda architecture. His main reservation about the Lambda architecture 
is implementing the same job in two different systems, Hadoop and Storm, with each 
of their specific idiosyncrasies, and with all the complexities that come along with it. 
Kappa architecture processes the real-time data and reprocesses historical data  
in the same framework powered by Apache Kafka.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 149 ]

Summary
In this chapter, we laid out the foundations of streaming architecture apps and 
described their challenges, constraints, and benefits. We went under the hood and 
examined the inner working of Spark Streaming and how it fits with Spark Core and 
dialogues with Spark SQL and Spark MLlib. We illustrated the streaming concepts 
with TCP sockets, followed by live tweet ingestion and processing directly from the 
Twitter firehose. We discussed the notions of decoupling upstream data publishing 
from downstream data subscription and consumption using Kafka in order to 
maximize the resilience of the overall streaming architecture. We also discussed 
Flume—a reliable, flexible, and scalable data ingestion and transport pipeline system. 
The combination of Flume, Kafka, and Spark delivers unparalleled robustness, 
speed, and agility in an ever changing landscape. We closed the chapter with some 
remarks and observations on two streaming architectural paradigms, the Lambda 
and Kappa architectures.

www.it-ebooks.info

http://www.it-ebooks.info/


Streaming Live Data with Spark

[ 150 ]

The Lambda architecture combines batch and streaming data in a common query 
front-end. It was envisioned with Hadoop and Storm in mind initially. Spark has 
its own batch and streaming paradigms, and it offers a single environment with 
common code base to effectively bring this architecture paradigm to life.

The Kappa architecture promulgates the concept of the unified log, which creates 
an event-oriented architecture where all events in the enterprise are channeled in a 
centralized commit log that is available to all consuming systems in real time.

We are now ready for the visualization of the data collected and processed so far.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 151 ]

Visualizing Insights  
and Trends

So far, we have focused on the collection, analysis, and processing of data  
from Twitter. We have set the stage to use our data for visual rendering and 
extracting insights and trends. We will give a quick lay of the land about 
visualization tools in the Python ecosystem. We will highlight Bokeh as a  
powerful tool for rendering and viewing large datasets. Bokeh is part of the  
Python Anaconda Distribution ecosystem.

In this chapter, we will cover the following points:

• Gauging the key words and memes within a social network community 
using charts and wordcloud

• Mapping the most active location where communities are growing around 
certain themes or topics

Revisiting the data-intensive apps 
architecture
We have reached the final layer of the data-intensive apps architecture: the 
engagement layer. This layer focuses on how to synthesize, emphasize, and visualize 
the key context relevant information for the data consumers. A bunch of numbers in 
a console will not suffice to engage with end-users. It is critical to present the mass of 
information in a rapid, digestible, and attractive fashion.

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 152 ]

The following diagram sets the context of the chapter's focus highlighting the 
engagement layer.

For Python plotting and visualizations, we have quite a few tools and libraries.  
The most interesting and relevant ones for our purpose are the following:

• Matplotlib is the grandfather of the Python plotting libraries. Matplotlib was 
originally the brainchild of John Hunter who was an open source software 
proponent and established Matplotlib as one of the most prevalent plotting 
libraries both in the academic and the data scientific communities. Matplotlib 
allows the generation of plots, histograms, power spectra, bar charts, error 
charts, scatterplots, and so on. Examples can be found on the Matplotlib 
dedicated website at http://matplotlib.org/examples/index.html.

www.it-ebooks.info

http://matplotlib.org/examples/index.html
http://www.it-ebooks.info/


Chapter 6

[ 153 ]

• Seaborn, developed by Michael Waskom, is a great library to quickly 
visualize statistical information. It is built on top of Matplotlib and integrates 
seamlessly with Pandas and the Python data stack, including Numpy. 
A gallery of graphs from Seaborn at http://stanford.edu/~mwaskom/
software/seaborn/examples/index.html shows the potential of  
the library.

• ggplot is relatively new and aims to offer the equivalent of the famous 
ggplot2 from the R ecosystem for the Python data wranglers. It has the 
same look and feel of ggplot2 and uses the same grammar of graphics as 
expounded by Hadley Wickham. The ggplot the Python port is developed 
by the team at yhat. More information can be found at http://ggplot.
yhathq.com.

• D3.js is a very popular, JavaScript library developed by Mike Bostock. D3 
stands for Data Driven Documents and brings data to life on any modern 
browser leveraging HTML, SVG, and CSS. It delivers dynamic, powerful, 
interactive visualizations by manipulating the DOM, the Document 
Object Model. The Python community could not wait to integrate D3 with 
Matplotlib. Under the impulse of Jake Vanderplas, mpld3 was created with 
the aim of bringing matplotlib to the browser. Examples graphics are 
hosted at the following address: http://mpld3.github.io/index.html.

• Bokeh aims to deliver high-performance interactivity over very large or 
streaming datasets whilst leveraging lot of the concepts of D3.js without 
the burden of writing some intimidating javascript and css code. Bokeh 
delivers dynamic visualizations on the browser with or without a server. 
It integrates seamlessly with Matplotlib, Seaborn and ggplot and renders 
beautifully in IPython notebooks or Jupyter notebooks. Bokeh is actively 
developed by the team at Continuum.io and is an integral part of the 
Anaconda Python data stack.

Bokeh server provides a full-fledged, dynamic plotting engine that materializes a 
reactive scene graph from JSON. It uses web sockets to keep state and update the 
HTML5 canvas using Backbone.js and Coffee-script under the hoods. Bokeh, as it is 
fueled by data in JSON, creates easy bindings for other languages such as R, Scala, 
and Julia.

This gives a high-level overview of the main plotting and visualization library.  
It is not exhaustive. Let's move to concrete examples of visualizations.

www.it-ebooks.info

http://stanford.edu/~mwaskom/software/seaborn/examples/index.html
http://stanford.edu/~mwaskom/software/seaborn/examples/index.html
http://ggplot.yhathq.com
http://ggplot.yhathq.com
http://mpld3.github.io/index.html
http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 154 ]

Preprocessing the data for visualization
Before jumping into the visualizations, we will do some preparatory work on the 
data harvested:

In [16]:
# Read harvested data stored in csv in a Panda DF
import pandas as pd
csv_in = '/home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/
data/unq_tweetstxt.csv'
pddf_in = pd.read_csv(csv_in, index_col=None, header=0, sep=';', 
encoding='utf-8')
In [20]:
print('tweets pandas dataframe - count:', pddf_in.count())
print('tweets pandas dataframe - shape:', pddf_in.shape)
print('tweets pandas dataframe - colns:', pddf_in.columns)
('tweets pandas dataframe - count:', Unnamed: 0    7540
id            7540
created_at    7540
user_id       7540
user_name     7538
tweet_text    7540
dtype: int64)
('tweets pandas dataframe - shape:', (7540, 6))
('tweets pandas dataframe - colns:', Index([u'Unnamed: 0', 
u'id', u'created_at', u'user_id', u'user_name', u'tweet_text'], 
dtype='object'))

For the purpose of our visualization activity, we will use a dataset of 7,540 tweets. 
The key information is stored in the tweet_text column. We preview the data 
stored in the dataframe calling the head() function on the dataframe:

In [21]:
pddf_in.head()
Out[21]:
  Unnamed: 0   id   created_at   user_id   user_name   tweet_text
0   0   638830426971181057   Tue Sep 01 21:46:57 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 9_A_6: 
dreamint...
1   1   638830426727911424   Tue Sep 01 21:46:57 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...
2   2   638830425402556417   Tue Sep 01 21:46:56 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 9_A_6: 
ernestsg...

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 155 ]

3   3   638830424563716097   Tue Sep 01 21:46:56 +0000 2015   
3276255125   True Equality   ernestsgantt: BeyHiveInFrance: 
PhuketDailyNews...
4   4   638830422256816132   Tue Sep 01 21:46:56 +0000 2015   
3276255125   True Equality   ernestsgantt: elsahel12: 9_A_6: 
dreamintention...

We will now create some utility functions to clean up the tweet text and parse the 
twitter date. First, we import the Python regular expression regex library re and the 
time library to parse dates and time:

In [72]:
import re
import time

We create a dictionary of regex that will be compiled and then passed as function:

• RT: The first regex with key RT looks for the keyword RT at the beginning of 
the tweet text:

re.compile(r'^RT'),

• ALNUM: The second regex with key ALNUM looks for words including 
alphanumeric characters and underscore sign preceded by the @ symbol in 
the tweet text:

re.compile(r'(@[a-zA-Z0-9_]+)'),

• HASHTAG: The third regex with key HASHTAG looks for words including 
alphanumeric characters preceded by the # symbol in the tweet text:
re.compile(r'(#[\w\d]+)'),

• SPACES: The fourth regex with key SPACES looks for blank or line space 
characters in the tweet text:
re.compile(r'\s+'), 

• URL: The fifth regex with key URL looks for url addresses including 
alphanumeric characters preceded with https:// or http:// markers  
in the tweet text:

re.compile(r'([https://|http://]?[a-zA-Z\d\/]+[\.]+[a-zA-
Z\d\/\.]+)')
In [24]:
regexp = {"RT": "^RT", "ALNUM": r"(@[a-zA-Z0-9_]+)",
          "HASHTAG": r"(#[\w\d]+)", "URL": 
r"([https://|http://]?[a-zA-Z\d\/]+[\.]+[a-zA-Z\d\/\.]+)",
          "SPACES":r"\s+"}

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 156 ]

regexp = dict((key, re.compile(value)) for key, value in regexp.
items())
In [25]:
regexp
Out[25]:
{'ALNUM': re.compile(r'(@[a-zA-Z0-9_]+)'),
 'HASHTAG': re.compile(r'(#[\w\d]+)'),
 'RT': re.compile(r'^RT'),
 'SPACES': re.compile(r'\s+'),
 'URL': re.compile(r'([https://|http://]?[a-zA-Z\d\/]+[\.]+[a-zA-
Z\d\/\.]+)')}

We create a utility function to identify whether a tweet is a retweet or an  
original tweet:

In [77]:
def getAttributeRT(tweet):
    """ see if tweet is a RT """
    return re.search(regexp["RT"], tweet.strip()) != None

Then, we extract all user handles in a tweet:

def getUserHandles(tweet):
    """ given a tweet we try and extract all user handles"""
    return re.findall(regexp["ALNUM"], tweet)

We also extract all hashtags in a tweet:

def getHashtags(tweet):
    """ return all hashtags"""
    return re.findall(regexp["HASHTAG"], tweet)

Extract all URL links in a tweet as follows:

def getURLs(tweet):
    """ URL : [http://]?[\w\.?/]+"""
    return re.findall(regexp["URL"], tweet)

We strip all URL links and user handles preceded by @ sign in a tweet text. This 
function will be the basis of the wordcloud we will build soon:

def getTextNoURLsUsers(tweet):
    """ return parsed text terms stripped of URLs and User Names in 
tweet text
        ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\
S+)"," ",x).split()) """
    return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\
w+:\/\/\S+)|(RT)"," ", tweet).lower().split())

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 157 ]

We label the data so we can create groups of datasets for the wordcloud:

def setTag(tweet):
    """ set tags to tweet_text based on search terms from tags_list"""
    tags_list = ['spark', 'python', 'clinton', 'trump', 'gaga', 
'bieber']
    lower_text = tweet.lower()
    return filter(lambda x:x.lower() in lower_text,tags_list)

We parse the twitter date in the yyyy-mm-dd hh:mm:ss format:

def decode_date(s):
    """ parse Twitter date into format yyyy-mm-dd hh:mm:ss"""
    return time.strftime('%Y-%m-%d %H:%M:%S', time.strptime(s,'%a %b 
%d %H:%M:%S +0000 %Y'))

We preview the data prior to processing:

In [43]:
pddf_in.columns
Out[43]:
Index([u'Unnamed: 0', u'id', u'created_at', u'user_id', u'user_name', 
u'tweet_text'], dtype='object')
In [45]:
# df.drop([Column Name or list],inplace=True,axis=1)
pddf_in.drop(['Unnamed: 0'], inplace=True, axis=1)
In [46]:
pddf_in.head()
Out[46]:
  id   created_at   user_id   user_name   tweet_text
0   638830426971181057   Tue Sep 01 21:46:57 +0000 2015   3276255125   
True Equality   ernestsgantt: BeyHiveInFrance: 9_A_6: dreamint...
1   638830426727911424   Tue Sep 01 21:46:57 +0000 2015   3276255125   
True Equality   ernestsgantt: BeyHiveInFrance: PhuketDailyNews...
2   638830425402556417   Tue Sep 01 21:46:56 +0000 2015   3276255125   
True Equality   ernestsgantt: BeyHiveInFrance: 9_A_6: ernestsg...
3   638830424563716097   Tue Sep 01 21:46:56 +0000 2015   3276255125   
True Equality   ernestsgantt: BeyHiveInFrance: PhuketDailyNews...
4   638830422256816132   Tue Sep 01 21:46:56 +0000 2015   3276255125   
True Equality   ernestsgantt: elsahel12: 9_A_6: dreamintention...

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 158 ]

We create new dataframe columns by applying the utility functions described. We 
create a new column for htag, user handles, URLs, the text terms stripped from 
URLs, and unwanted characters and the labels. We finally parse the date:

In [82]:
pddf_in['htag'] = pddf_in.tweet_text.apply(getHashtags)
pddf_in['user_handles'] = pddf_in.tweet_text.apply(getUserHandles)
pddf_in['urls'] = pddf_in.tweet_text.apply(getURLs)
pddf_in['txt_terms'] = pddf_in.tweet_text.apply(getTextNoURLsUsers)
pddf_in['search_grp'] = pddf_in.tweet_text.apply(setTag)
pddf_in['date'] = pddf_in.created_at.apply(decode_date)

The following code gives a quick snapshot of the newly generated dataframe:

In [83]:
pddf_in[2200:2210]
Out[83]:
  id   created_at   user_id   user_name   tweet_text   htag   urls   
ptxt   tgrp   date   user_handles   txt_terms   search_grp
2200   638242693374681088   Mon Aug 31 06:51:30 +0000 2015   19525954   
CENATIC   El impacto de @ApacheSpark en el procesamiento...   
[#sparkSpecial]   [://t.co/4PQmJNuEJB]   el impacto de en el 
procesamiento de datos y e...   [spark]   2015-08-31 06:51:30   [@
ApacheSpark]   el impacto de en el procesamiento de datos y e...   
[spark]
2201   638238014695575552   Mon Aug 31 06:32:55 +0000 2015   51115854   
Nawfal   Real Time Streaming with Apache Spark\nhttp://...   [#IoT, 
#SmartMelboune, #BigData, #Apachespark]   [://t.co/GW5PaqwVab]   real 
time streaming with apache spark iot smar...   [spark]   2015-08-
31 06:32:55   []   real time streaming with apache spark iot smar...   
[spark]
2202   638236084124516352   Mon Aug 31 06:25:14 +0000 2015   62885987   
Mithun Katti   RT @differentsachin: Spark the flame of digita...   
[#IBMHackathon, #SparkHackathon, #ISLconnectIN...   []   spark 
the flame of digital india ibmhackathon ...   [spark]   2015-08-
31 06:25:14   [@differentsachin, @ApacheSpark]   spark the flame of 
digital india ibmhackathon ...   [spark]
2203   638234734649176064   Mon Aug 31 06:19:53 +0000 2015   140462395   
solaimurugan v   Installing @ApacheMahout with @ApacheSpark 1.4...   
[]   [1.4.1, ://t.co/3c5dGbfaZe.]   installing with 1 4 1 got many 
more issue whil...   [spark]   2015-08-31 06:19:53   [@ApacheMahout, 
@ApacheSpark]   installing with 1 4 1 got many more issue whil...   
[spark]

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 159 ]

2204   638233517307072512   Mon Aug 31 06:15:02 +0000 2015   
2428473836   Ralf Heineke   RT @RomeoKienzler: Join me @velocityconf 
on #m...   [#machinelearning, #devOps, #Bl]   [://t.co/U5xL7pYEmF]   
join me on machinelearning based devops operat...   [spark]   2015-08-
31 06:15:02   [@RomeoKienzler, @velocityconf, @ApacheSpark]   join me 
on machinelearning based devops operat...   [spark]
2205   638230184848687106   Mon Aug 31 06:01:48 +0000 2015   289355748   
Akim Boyko   RT @databricks: Watch live today at 10am PT is...   
[]   [1.5, ://t.co/16cix6ASti]   watch live today at 10am pt is 1 
5 presented b...   [spark]   2015-08-31 06:01:48   [@databricks, @
ApacheSpark, @databricks, @pwen...   watch live today at 10am pt is 1 
5 presented b...   [spark]
2206   638227830443110400   Mon Aug 31 05:52:27 +0000 2015   145001241   
sachin aggarwal   Spark the flame of digital India @ #IBMHackath...   
[#IBMHackathon, #SparkHackathon, #ISLconnectIN...   [://t.co/
C1AO3uNexe]   spark the flame of digital india ibmhackathon ...   
[spark]   2015-08-31 05:52:27   [@ApacheSpark]   spark the flame of 
digital india ibmhackathon ...   [spark]
2207   638227031268810752   Mon Aug 31 05:49:16 +0000 2015   145001241   
sachin aggarwal   RT @pravin_gadakh: Imagine, innovate and Igni...   
[#IBMHackathon, #ISLconnectIN2015]   []   gadakh imagine innovate 
and ignite digital ind...   [spark]   2015-08-31 05:49:16   [@pravin_
gadakh, @ApacheSpark]   gadakh imagine innovate and ignite digital 
ind...   [spark]
2208   638224591920336896   Mon Aug 31 05:39:35 +0000 2015   494725634   
IBM Asia Pacific   RT @sachinparmar: Passionate about Spark?? Hav...   
[#IBMHackathon, #ISLconnectIN]   [India..]   passionate about spark 
have dreams of clean sa...   [spark]   2015-08-31 05:39:35   [@
sachinparmar]   passionate about spark have dreams of clean sa...   
[spark]
2209   638223327467692032   Mon Aug 31 05:34:33 +0000 2015   
3158070968   Open Source India   "Game Changer" #ApacheSpark speeds up 
#bigdata...   [#ApacheSpark, #bigdata]   [://t.co/ieTQ9ocMim]   game 
changer apachespark speeds up bigdata pro...   [spark]   2015-08-
31 05:34:33   []   game changer apachespark speeds up bigdata pro...   
[spark]

We save the processed information in a CSV format. We have 7,540 records and 13 
columns. In your case, the output will vary according to the dataset you chose:

In [84]:
f_name = '/home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/
data/unq_tweets_processed.csv'
pddf_in.to_csv(f_name, sep=';', encoding='utf-8', index=False)
In [85]:
pddf_in.shape
Out[85]:
(7540, 13)

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 160 ]

Gauging words, moods, and memes at a 
glance
We are now ready to proceed with building the wordclouds which will give us a 
sense of the important words carried in those tweets. We will create wordclouds 
for the datasets harvested. Wordclouds extract the top words in a list of words 
and create a scatterplot of the words where the size of the word is correlated to its 
frequency. The more frequent the word in the dataset, the bigger will be the font 
size in the wordcloud rendering. They include three very different themes and two 
competing or analogous entities. Our first theme is obviously data processing and 
analytics, with Apache Spark and Python as our entities. Our second theme is the 
2016 presidential election campaign, with the two contenders: Hilary Clinton and 
Donald Trump. Our last theme is the world of pop music with Justin Bieber and 
Lady Gaga as the two exponents.

Setting up wordcloud
We will illustrate the programming steps by analyzing the spark related tweets.  
We load the data and preview the dataframe:

In [21]:
import pandas as pd
csv_in = '/home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/
data/spark_tweets.csv'
tspark_df = pd.read_csv(csv_in, index_col=None, header=0, sep=',', 
encoding='utf-8')
In [3]:
tspark_df.head(3)
Out[3]:
  id   created_at   user_id   user_name   tweet_text   htag   urls   
ptxt   tgrp   date   user_handles   txt_terms   search_grp
0   638818911773856000   Tue Sep 01 21:01:11 +0000 2015   2511247075   
Noor Din   RT @kdnuggets: R leads RapidMiner, Python catc...   [#KDN]   
[://t.co/3bsaTT7eUs]   r leads rapidminer python catches up big data 
...   [spark, python]   2015-09-01 21:01:11   [@kdnuggets]   r leads 
rapidminer python catches up big data ...   [spark, python]
1   622142176768737000   Fri Jul 17 20:33:48 +0000 2015   24537879   
IBM Cloudant   Be one of the first to sign-up for IBM Analyti...   
[#ApacheSpark, #SparkInsight]   [://t.co/C5TZpetVA6, ://t.co/
R1L29DePaQ]   be one of the first to sign up for ibm analyti...   
[spark]   2015-07-17 20:33:48   []   be one of the first to sign up 
for ibm analyti...   [spark]

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 161 ]

2   622140453069169000   Fri Jul 17 20:26:57 +0000 2015   515145898   
Arno Candel   Nice article on #apachespark, #hadoop and #dat...   
[#apachespark, #hadoop, #datascience]   [://t.co/IyF44pV0f3]   nice 
article on apachespark hadoop and datasci...   [spark]   2015-07-
17 20:26:57   [@h2oai]   nice article on apachespark hadoop and 
datasci...   [spark]

The wordcloud library we will use is the one developed by Andreas 
Mueller and hosted on his GitHub account at https://github.com/
amueller/word_cloud.

The library requires PIL (short for Python Imaging Library). PIL is easily installable 
by invoking conda install pil. PIL is a complex library to install and is not yet 
ported on Python 3.4, so we need to run a Python 2.7+ environment to be able to see 
our wordcloud:

#
# Install PIL (does not work with Python 3.4)
#
an@an-VB:~$ conda install pil

Fetching package metadata: ....
Solving package specifications: ..................
Package plan for installation in environment /home/an/anaconda:

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    libpng-1.6.17              |                0         214 KB
    freetype-2.5.5             |                0         2.2 MB
    conda-env-2.4.4            |           py27_0          24 KB
    pil-1.1.7                  |           py27_2         650 KB
    ------------------------------------------------------------
                                           Total:         3.0 MB

The following packages will be UPDATED:

    conda-env: 2.4.2-py27_0 --> 2.4.4-py27_0
    freetype:  2.5.2-0      --> 2.5.5-0     
    libpng:    1.5.13-1     --> 1.6.17-0    
    pil:       1.1.7-py27_1 --> 1.1.7-py27_2

Proceed ([y]/n)? y

www.it-ebooks.info

https://github.com/amueller/word_cloud
https://github.com/amueller/word_cloud
http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 162 ]

Next, we install the wordcloud library:

#
# Install wordcloud
# Andreas Mueller
# https://github.com/amueller/word_cloud/blob/master/wordcloud/
wordcloud.py
#

an@an-VB:~$ pip install wordcloud
Collecting wordcloud
  Downloading wordcloud-1.1.3.tar.gz (163kB)
    100% |████████████████████████████████| 163kB 548kB/s 
Building wheels for collected packages: wordcloud
  Running setup.py bdist_wheel for wordcloud
  Stored in directory: /home/an/.cache/pip/wheels/32/a9/74/58e379e5dc6
14bfd9dd9832d67608faac9b2bc6c194d6f6df5
Successfully built wordcloud
Installing collected packages: wordcloud
Successfully installed wordcloud-1.1.3

Creating wordclouds
At this stage, we are ready to invoke the wordcloud program with the generated list 
of terms from the tweet text.

Let's get started with the wordcloud program by first calling %matplotlib inline to 
display the wordcloud in our notebook:

In [4]:
%matplotlib inline
In [11]:

We convert the dataframe txt_terms column into a list of words. We make sure it 
is all converted into the str type to avoid any bad surprises and check the list's first 
four records:

len(tspark_df['txt_terms'].tolist())
Out[11]:
2024
In [22]:
tspark_ls_str = [str(t) for t in tspark_df['txt_terms'].tolist()]
In [14]:
len(tspark_ls_str)
Out[14]:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 163 ]

2024
In [15]:
tspark_ls_str[:4]
Out[15]:
['r leads rapidminer python catches up big data tools grow spark 
ignites kdn',
 'be one of the first to sign up for ibm analytics for apachespark 
today sparkinsight',
 'nice article on apachespark hadoop and datascience',
 'spark 101 running spark and mapreduce together in production 
hadoopsummit2015 apachespark altiscale']

We first call the Matplotlib and the wordcloud libraries:

import matplotlib.pyplot as plt
from wordcloud import WordCloud, STOPWORDS

From the input list of terms, we create a unified string of terms separated by a 
whitespace as the input to the wordcloud program. The wordcloud program 
removes stopwords:

# join tweets to a single string
words = ' '.join(tspark_ls_str)

# create wordcloud 
wordcloud = WordCloud(
                      # remove stopwords
                      stopwords=STOPWORDS,
                      background_color='black',
                      width=1800,
                      height=1400
                     ).generate(words)

# render wordcloud image
plt.imshow(wordcloud)
plt.axis('off')

# save wordcloud image on disk
plt.savefig('./spark_tweets_wordcloud_1.png', dpi=300)

# display image in Jupyter notebook
plt.show()

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 164 ]

Here, we can visualize the wordclouds for Apache Spark and Python. Clearly, in  
the case of Spark, Hadoop, big data, and analytics are the memes, while Python recalls 
the root of its name Monty Python with a strong focus on developer, apache spark,  
and programming with some hints to java and ruby.

We can also get a glimpse in the following wordclouds of the words preoccupying 
the North American 2016 presidential election candidates: Hilary Clinton and 
Donald Trump. Seemingly Hilary Clinton is overshadowed by the presence of her 
opponents Donald Trump and Bernie Sanders, while Trump is heavily centered  
only on himself:

Interestingly, in the case of Justin Bieber and Lady Gaga, the word love appears. In 
the case of Bieber, follow and belieber are key words, while diet, weight loss, and fashion 
are the preoccupations for the Lady Gaga crowd.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 165 ]

Geo-locating tweets and mapping 
meetups
Now, we will dive into the creation of interactive maps with Bokeh. First, we create 
a world map where we geo-locate sample tweets and, on moving our mouse over 
these locations, we can see the users and their respective tweets in a hover box.

The second map is focused on mapping upcoming meetups in London. It could 
be an interactive map that would act as a reminder of date, time, and location for 
upcoming meetups in a specific city.

Geo-locating tweets
The objective is to create a world map scatter plot of the locations of important 
tweets on the map, and the tweets and authors are revealed on hovering over  
these points. We will go through three steps to build this interactive visualization:

1. Create the background world map by first loading a dictionary of all  
the world country boundaries defined by their respective longitude  
and latitudes.

2. Load the important tweets we wish to geo-locate with their respective 
coordinates and authors.

3. Finally, scatter plot on the world map the tweets coordinates and activate the 
hover tool to visualize interactively the tweets and author on the highlighted 
dots on the map.

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 166 ]

In step one, we create a Python list called data that will contain all the world 
countries boundaries with their respective latitude and longitude:

In [4]:
#
# This module exposes geometry data for World Country Boundaries.
#
import csv
import codecs
import gzip
import xml.etree.cElementTree as et
import os
from os.path import dirname, join

nan = float('NaN')
__file__ = os.getcwd()

data = {}
with gzip.open(join(dirname(__file__), 'AN_Spark/data/World_Country_
Boundaries.csv.gz')) as f:
    decoded = codecs.iterdecode(f, "utf-8")
    next(decoded)
    reader = csv.reader(decoded, delimiter=',', quotechar='"')
    for row in reader:
        geometry, code, name = row
        xml = et.fromstring(geometry)
        lats = []
        lons = []
        for i, poly in enumerate(xml.findall('.//outerBoundaryIs/
LinearRing/coordinates')):
            if i > 0:
                lats.append(nan)
                lons.append(nan)
            coords = (c.split(',')[:2] for c in poly.text.split())
            lat, lon = list(zip(*[(float(lat), float(lon)) for lon, 
lat in
                coords]))
            lats.extend(lat)
            lons.extend(lon)
        data[code] = {
            'name'   : name,
            'lats'   : lats,
            'lons'   : lons,
        }

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 167 ]

In [5]:
len(data)
Out[5]:
235

In step two, we load a sample set of important tweets that we wish to visualize with 
their respective geo-location information:

In [69]:
# data
#
#
In [8]:
import pandas as pd
csv_in = '/home/an/spark/spark-1.5.0-bin-hadoop2.6/examples/AN_Spark/
data/spark_tweets_20.csv'
t20_df = pd.read_csv(csv_in, index_col=None, header=0, sep=',', 
encoding='utf-8')
In [9]:
t20_df.head(3)
Out[9]:
    id  created_at  user_id     user_name   tweet_text  htag    urls    
ptxt    tgrp    date    user_handles    txt_terms   search_grp  lat     
lon
0   638818911773856000  Tue Sep 01 21:01:11 +0000 2015  2511247075  
Noor Din    RT @kdnuggets: R leads RapidMiner, Python catc...   [#KDN]  
[://t.co/3bsaTT7eUs]    r leads rapidminer python catches up big data 
...   [spark, python]     2015-09-01 21:01:11     [@kdnuggets]    r 
leads rapidminer python catches up big data ...   [spark, python]     
37.279518   -121.867905
1   622142176768737000  Fri Jul 17 20:33:48 +0000 2015  24537879    
IBM Cloudant    Be one of the first to sign-up for IBM Analyti...   
[#ApacheSpark, #SparkInsight]   [://t.co/C5TZpetVA6, ://t.co/
R1L29DePaQ]    be one of the first to sign up for ibm analyti...   
[spark]     2015-07-17 20:33:48     []  be one of the first to sign up 
for ibm analyti...   [spark]     37.774930   -122.419420
2   622140453069169000  Fri Jul 17 20:26:57 +0000 2015  515145898   
Arno Candel     Nice article on #apachespark, #hadoop and #dat...   
[#apachespark, #hadoop, #datascience]   [://t.co/IyF44pV0f3]    nice 
article on apachespark hadoop and datasci...   [spark]     2015-07-
17 20:26:57     [@h2oai]    nice article on apachespark hadoop and 
datasci...   [spark]     51.500130   -0.126305
In [98]:
len(t20_df.user_id.unique())
Out[98]:
19
In [17]:

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 168 ]

t20_geo = t20_df[['date', 'lat', 'lon', 'user_name', 'tweet_text']]
In [24]:
# 
t20_geo.rename(columns={'user_name':'user', 'tweet_text':'text' }, 
inplace=True)
In [25]:
t20_geo.head(4)
Out[25]:
    date    lat     lon     user    text
0   2015-09-01 21:01:11     37.279518   -121.867905     Noor Din    RT 
@kdnuggets: R leads RapidMiner, Python catc...
1   2015-07-17 20:33:48     37.774930   -122.419420     IBM Cloudant    
Be one of the first to sign-up for IBM Analyti...
2   2015-07-17 20:26:57     51.500130   -0.126305   Arno Candel     
Nice article on #apachespark, #hadoop and #dat...
3   2015-07-17 19:35:31     51.500130   -0.126305   Ira Michael 
Blonder     Spark 101: Running Spark and #MapReduce togeth...
In [22]:
df = t20_geo
#

In step three, we first imported all the necessary Bokeh libraries. We will instantiate 
the output in the Jupyter Notebook. We get the world countries boundary 
information loaded. We get the geo-located tweet data. We instantiate the  
Bokeh interactive tools such as wheel and box zoom as well as the hover tool.

In [29]:
#
# Bokeh Visualization of tweets on world map
#
from bokeh.plotting import *
from bokeh.models import HoverTool, ColumnDataSource
from collections import OrderedDict

# Output in Jupiter Notebook
output_notebook()

# Get the world map
world_countries = data.copy()

# Get the tweet data
tweets_source = ColumnDataSource(df)

# Create world map 

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 169 ]

countries_source = ColumnDataSource(data= dict(
    countries_xs=[world_countries[code]['lons'] for code in world_
countries],
    countries_ys=[world_countries[code]['lats'] for code in world_
countries],
    country = [world_countries[code]['name'] for code in world_
countries],
))

# Instantiate the bokeh interactive tools 
TOOLS="pan,wheel_zoom,box_zoom,reset,resize,hover,save"

We are now ready to layer the various elements gathered into an object figure called 
p. Define the title, width, and height of p. Attach the tools. Create the world map 
background by patches with a light background color and borders. Scatter plot the 
tweets according to their respective geo-coordinates. Then, activate the hover tool 
with the users and their respective tweet. Finally, render the picture on the browser. 
The code is as follows:

# Instantiante the figure object
p = figure(
    title="%s tweets " %(str(len(df.index))),
    title_text_font_size="20pt",
    plot_width=1000,
    plot_height=600,
    tools=TOOLS)

# Create world patches background
p.patches(xs="countries_xs", ys="countries_ys", source = countries_
source, fill_color="#F1EEF6", fill_alpha=0.3,
        line_color="#999999", line_width=0.5)

# Scatter plots by longitude and latitude
p.scatter(x="lon", y="lat", source=tweets_source, fill_
color="#FF0000", line_color="#FF0000")
# 

# Activate hover tool with user and corresponding tweet information
hover = p.select(dict(type=HoverTool))
hover.point_policy = "follow_mouse"
hover.tooltips = OrderedDict([
    ("user", "@user"),
   ("tweet", "@text"),
])

# Render the figure on the browser

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 170 ]

show(p)
BokehJS successfully loaded.
    
inspect
    
#
#

The following code gives an overview of the world map with the red dots 
representing the locations of the tweets' origins:

We can hover on a specific dot to reveal the tweets in that location:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 171 ]

We can zoom into a specific location:

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 172 ]

Finally, we can reveal the tweets in the given zoomed-in location:

Displaying upcoming meetups on Google 
Maps
Now, our objective is to focus on upcoming meetups in London. We are mapping 
three meetups Data Science London, Apache Spark, and Machine Learning. We 
embed a Google Map within a Bokeh visualization and geo-locate the three meetups 
according to their coordinates and get information such as the name of the upcoming 
event for each meetup with a hover tool.

First, import all the necessary Bokeh libraries:

In [ ]:
#
# Bokeh Google Map Visualization of London with hover on specific 
points
#
#
from __future__ import print_function

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 173 ]

from bokeh.browserlib import view
from bokeh.document import Document
from bokeh.embed import file_html
from bokeh.models.glyphs import Circle
from bokeh.models import (
    GMapPlot, Range1d, ColumnDataSource,
    PanTool, WheelZoomTool, BoxSelectTool,
    HoverTool, ResetTool,
    BoxSelectionOverlay, GMapOptions)
from bokeh.resources import INLINE

x_range = Range1d()
y_range = Range1d()

We will instantiate the Google Map that will act as the substrate upon which our 
Bokeh visualization will be layered:

# JSON style string taken from: https://snazzymaps.com/style/1/pale-
dawn
map_options = GMapOptions(lat=51.50013, lng=-0.126305, map_
type="roadmap", zoom=13, styles="""
[{"featureType":"administrative","elementType":"all","stylers":[{"visi
bility":"on"},{"lightness":33}]},
 {"featureType":"landscape","elementType":"all","stylers":[{"color":"
#f2e5d4"}]},
 {"featureType":"poi.park","elementType":"geometry","stylers":[{"color
":"#c5dac6"}]},
 {"featureType":"poi.park","elementType":"labels","stylers":[{"visibil
ity":"on"},{"lightness":20}]},
 {"featureType":"road","elementType":"all","stylers":[{"lightne
ss":20}]},
 {"featureType":"road.highway","elementType":"geometry","stylers":[{"c
olor":"#c5c6c6"}]},
 {"featureType":"road.arterial","elementType":"geometry","stylers":[{"
color":"#e4d7c6"}]},
 {"featureType":"road.local","elementType":"geometry","stylers":[{"col
or":"#fbfaf7"}]},
 {"featureType":"water","elementType":"all","stylers":[{"visibility":"
on"},{"color":"#acbcc9"}]}]
""")

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 174 ]

Instantiate the Bokeh object plot from the class GMapPlot with the dimensions and 
map options from the previous step:

# Instantiate Google Map Plot
plot = GMapPlot(
    x_range=x_range, y_range=y_range,
    map_options=map_options,
    title="London Meetups"
)

Bring in the information from our three meetups we wish to plot and get the 
information by hovering above the respective coordinates:

source = ColumnDataSource(
    data=dict(
        lat=[51.49013, 51.50013, 51.51013],
        lon=[-0.130305, -0.126305, -0.120305],
        fill=['orange', 'blue', 'green'],
        name=['LondonDataScience', 'Spark', 'MachineLearning'],
        text=['Graph Data & Algorithms','Spark Internals','Deep 
Learning on Spark']
    )
)

Define the dots to be drawn on the Google Map:

circle = Circle(x="lon", y="lat", size=15, fill_color="fill", line_
color=None)
plot.add_glyph(source, circle)

Define the stings for the Bokeh tools to be used in this visualization:

# TOOLS="pan,wheel_zoom,box_zoom,reset,hover,save"
pan = PanTool()
wheel_zoom = WheelZoomTool()
box_select = BoxSelectTool()
reset = ResetTool()
hover = HoverTool()
# save = SaveTool()

plot.add_tools(pan, wheel_zoom, box_select, reset, hover)
overlay = BoxSelectionOverlay(tool=box_select)
plot.add_layout(overlay)

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 175 ]

Activate the hover tool with the information that will be carried:

hover = plot.select(dict(type=HoverTool))
hover.point_policy = "follow_mouse"
hover.tooltips = OrderedDict([
    ("Name", "@name"),
    ("Text", "@text"),
    ("(Long, Lat)", "(@lon, @lat)"),
])

show(plot)

Render the plot that gives a pretty good view of London:

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 176 ]

Once we hover on a highlighted dot, we can get the information of the given meetup:

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6

[ 177 ]

Full smooth zooming capability is preserved, as the following screenshot shows:

www.it-ebooks.info

http://www.it-ebooks.info/


Visualizing Insights and Trends

[ 178 ]

Summary
In this chapter, we focused on few visualization techniques. We saw how to build 
wordclouds and their intuitive power to reveal, at a glance, lots of the key words, 
moods, and memes carried through thousands of tweets.

We then discussed interactive mapping visualizations using Bokeh. We built a world 
map from the ground up and created a scatter plot of critical tweets. Once the map 
was rendered on the browser, we could interactively hover from dot to dot and 
reveal the tweets originating from different parts of the world.

Our final visualization was focused on mapping upcoming meetups in London on 
Spark, data science, and machine learning and their respective topics, making a 
beautiful interactive visualization with an actual Google Map.

www.it-ebooks.info

http://www.it-ebooks.info/


[ 179 ]

Index
A
Amazon Web Services (AWS)

about  24
apps, deploying with  24

Anaconda
defining  10, 11

Anaconda installer
URL  14

Anaconda stack
Anaconda  11
Blaze  11
Bokeh  11
Conda  11
Numba  11
Wakari  11

analytics layer  5
Apache Kafka

about  133
properties  133

Apache Spark  172
APIs (Application Programming  

Interface)  31
apps

deploying, with Amazon  
Web Services (AWS)  24

previewing  47
architecture, data-intensive applications

about  3
analytics layer  5
engagement layer  6
infrastructure layer  4
integration layer  4
persistence layer  4

Asynchronous JavaScript (AJAX)  124
AWS console

URL  24

B
Big Data, with Apache Spark

references  22
Blaze

used, for exploring data  63-66
BSON (Binary JSON)  55

C
Catalyst  68
Clustering

Gaussian Mixture  87
K-Means  87
Latent Dirichlet Allocation (LDA)  87
Power Iteration Clustering (PIC)  87

Cluster manager  8
comma-separated values (CSV)  51

D
D3.js

about  153
URL  153

DAG (Directed Acyclic Graph)  9, 51
data

deserializing  51
exploring, Blaze used  63-66
exploring, Spark SQL used  68
harvesting  51

www.it-ebooks.info

http://www.it-ebooks.info/


[ 180 ]

harvesting from Twitter  59-63
MongoDB, setting up  55
persisting, in CSV  52, 53
persisting, in JSON  54
preprocessing, for visualization  154-159
serializing  51
storing  51
transferring, Odo used  67, 68

data analysis
defining  35
Tweets anatomy, discovering  35-39

Data Driven Documents (D3)  153
data flows  92
data-intensive apps

about  151-153
architecture, defining  50
data at rest, processing  29
data, exploring  31
data in motion, processing  30
fault tolerance  29
flexibility  29
latency  29
scalability  29

data lifecycle
Collect  5
Compose  5
Connect  4
Consume  5
Control  5
Correct  5

data types, Spark MLlib
distributed matrix  92
labeled point  91
local matrix  91
local vector  90

Decision Trees  88
Dimensionality Reduction

Principal Component Analysis (PCA)  87
Singular Value Decomposition (SVD)  87

Docker
about  4
environment, virtualizing with  24-26
references  25

DStream (Discretized Stream)
defining  120, 121

E
elements, Flume

Channel  143
Client  142
Event  142
Sink  142
Source  142

engagement layer  6
environment

virtualizing, with Docker  24-26
virtualizing, with Vagrant  22, 23

F
first app

building, with PySpark  17-21
Flume

about  142
advantages  142
elements  142, 143

G
ggplot

about  153
URL  153

GitHub
about  40, 41
operating, with Meetup API  42-44
URL  34

Google File System (GFS)  2
Google Maps

upcoming meetups, displaying on  172-176

H
Hadoop MongoDB connector

URL  77
HDFS (Hadoop Distributed File System)  6

I
infrastructure layer  4
Ingest mode

Batch Data Transport  132

www.it-ebooks.info

http://www.it-ebooks.info/


[ 181 ]

Message Queue  132
Micro Batch  132
Pipelining  132

integration layer  4

J
Java 8

installing  14
Java Virtual Machine (JVM)  2
JRE (Java Runtime Environment)  14
JSON (JavaScript Object Notation)  31, 51

K
Kafka

consumers, developing  139
installing  134-137
producers, developing  137-139
setting up  133, 134
Spark Streaming consumer,  

developing for  140
testing  134-137
URL  134

Kappa architecture
defining  146-148

L
Lambda architecture

defining  146, 147
linear regression models  88

M
machine learning pipelines

building  113, 114
machine learning workflows  92
Massive Open Online Courses (MOOCs)  22
Matplotlib

about  152
URL  152

Meetup API
URL  34

meetups
mapping  165

MLlib algorithms
Collaborative filtering  89
feature extraction and transformation  89
Limited-memory BFGS (L-BFGS)  90
optimization  90

MLlib (Machine Learning library)  83
models

defining, for processing streams of data  117
MongoDB

about  4
Mongo client, running  57
MongoDB server and client, installing  55
MongoDB server, running  56
PyMongo driver, installing  58
Python client, creating for  58
references  77
setting up  55

MongoDB, from Spark SQL
URL  78

Mumrah, on GitHub
URL  137

MySQL  4

N
Neo4j  4
network_wordcount.py

URL  125

O
Odo

about  67
used, for transferring data  67, 68

operations, on RDDs
action  9
transformations  9

P
persistence layer  4
PIL (Python Imaging Library)  161
PostgreSQL  4
Puppet  4
PySpark

first app, building with  17-21

www.it-ebooks.info

http://www.it-ebooks.info/


[ 182 ]

R
RDD (Resilient Distributed  

Dataset)  8, 9, 118
REST (Representation State Transfer)  31
RPC (Remote Procedure Call)  117

S
SDK (Software Development Kit)  14
Seaborn

about  153
URL  153

social networks
connecting to  31
GitHub data, obtaining  34
Meetup data, obtaining  34
Twitter data, obtaining  32, 33

Spark
Batch  6
Clustering  87
defining  6
Dimensionality Reduction  87
Interactive  6
Isotonic Regression  88
Iterative  6
libraries  7
MLlib algorithms  89
Regression and Classification  88
Streaming  6
URL  15

Spark dataframes
defining  69-72

Spark libraries
PySpark, defining  7, 8
RDD (Resilient Distributed Dataset)  8, 9
Spark GraphX  7
SparkMLlib  7
SparkSQL  7
Spark Streaming  7

Spark MLlib
contextualizing, in app architecture  84
data types  90-92

Spark MLlib algorithms
additional learning algorithms  88-90
classifying  85, 86
supervised learning  86-88

unsupervised learning  86-88
Spark, on EC2

URL  24
Spark powered environment

Anaconda, installing with Python 2.7  13
IPython Notebook, enabling  16
Java 8, installing  14
Oracle VirtualBox, setting up  

with Ubuntu  13
setting up  12
Spark, installing  15

Spark SQL
about  68
CSV files, loading with  75, 76
CSV files, processing with  75, 76
MongoDB, querying from  77-80
used, for exploring data  68

Spark SQL query optimizer
defining  72-75

Spark streaming
building, in fault tolerance  124
defining  118-123

Stochastic Gradient Descent  86
streaming app

building  131, 132
data pipelines, developing  

with Flume  143-146
data pipelines, developing  

with Kafka  143-146
data pipelines, developing  

with Spark  143-146
flume, exploring  142, 143
Kafka, setting up  133, 134

streaming architecture  116, 117
supervised machine learning workflow  92

T
TCP sockets

live data, processing with  124-128
setting up  124, 125

tweets
geo-locating  165-172

Twitter
URL  32

Twitter API, on dev console
URL  33

www.it-ebooks.info

http://www.it-ebooks.info/


[ 183 ]

Twitter data
manipulating  128
tweets, processing from  

Twitter firehose  128-130
Twitter dataset

clustering  95, 96
clustering algorithm, running  107
dataset, preprocessing  103
model and results, evaluating  108-113
Scikit-Learn, applying on  96-103

U
Ubuntu 14.04.1 LTS release

URL  13
Unified Log

properties  132, 148
unsupervised machine  

learning workflow  94

V
Vagrant

about  4
environment, virtualizing with  22, 23
reference  22

VirtualBox VM
URL  13

visualization
data, preprocessing for  154-159

W
wordclouds

creating  160-164
setting up  160-162
URL  161

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Thank you for buying  
Spark for Python Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/


Machine Learning with Spark
ISBN: 978-1-78328-851-9              Paperback: 338 pages

Create scalable machine learning applications to 
power a modern data-driven business using Spark

1. A practical tutorial with real-world use cases 
allowing you to develop your own machine 
learning systems with Spark.

2. Combine various techniques and models  
into an intelligent machine learning system.

3. Use SparkTs powerful tools to load, analyze, 
clean, and transform your data.

Learning Real-time Processing 
with Spark Streaming
ISBN: 978-1-78398-766-5             Paperback: 202 pages

Building scalable and fault-tolerant streaming 
applications made easy with Spark streaming

1. Process live data streams more efficiently with 
better fault recovery using Spark Streaming.

2. Implement and deploy real-time log file 
analysis.

3. Learn about integration with Advance Spark 
Libraries – GraphX, Spark SQL, and MLib.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/


Spark Cookbook
ISBN: 978-1-78398-706-1            Paperback: 226 pages

Over 60 recipes on Spark, covering Spark Core, Spark 
SQL, Spark Streaming, MLlib, and GraphX libraries

1. Become an expert at graph processing using 
GraphX. 

2. Use Apache Spark as your single big data 
compute platform and master its libraries.

3. Learn with recipes that can be run on a single 
machine as well as on a production cluster  
of thousands of machines.

Practical Data Science Cookbook
ISBN: 978-1-78398-024-6             Paperback: 396 pages

89 hands-on recipes to help you complete real-world 
data science projects in R and Python

1. Learn about the data science pipeline and use  
it to acquire, clean, analyze, and visualize data.

2. Understand critical concepts in data science in 
the context of multiple projects.

3. Expand your numerical programming skills 
through step-by-step code examples  
and learn more about the robust features  
of R and Python.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up a Spark Virtual Environment

	Understanding the architecture of 
data-intensive applications
	Infrastructure layer
	Persistence layer
	Integration layer
	Analytics layer
	Engagement layer

	Understanding Spark
	Spark libraries
	PySpark in action
	Resilient Distributed Dataset


	Understanding Anaconda
	Setting up the Spark powered environment
	Setting up an Oracle VirtualBox with Ubuntu
	Installing Anaconda with Python 2.7
	Installing Java 8
	Installing Spark
	Enabling IPython Notebook

	Building our first app with PySpark
	Virtualizing the environment with Vagrant
	Moving to the cloud
	Deploying apps in Amazon Web Services
	Virtualizing the environment with Docker

	Summary

	Chapter 2: Building Batch and Streaming Apps with Spark

	Architecting data-intensive apps
	Processing data at rest
	Processing data in motion
	Exploring data interactively

	Connecting to social networks
	Getting Twitter data
	Getting GitHub data
	Getting Meetup data

	Analyzing the data
	Discovering the anatomy of tweets

	Exploring the GitHub world
	Understanding the community through Meetup

	Previewing our app
	Summary

	Chapter 3: Juggling Data with Spark

	Revisiting the data-intensive app architecture
	Serializing and deserializing data
	Harvesting and storing data
	Persisting data in CSV
	Persisting data in JSON
	Setting up MongoDB
	Installing the MongoDB server and client
	Running the MongoDB server
	Running the Mongo client
	Installing the PyMongo driver
	Creating the Python client for MongoDB

	Harvesting data from Twitter

	Exploring data using Blaze
	Transferring data using Odo

	Exploring data using Spark SQL
	Understanding Spark dataframes
	Understanding the Spark SQL query optimizer
	Loading and processing CSV files with Spark SQL
	Querying MongoDB from Spark SQL

	Summary

	Chapter 4: Learning from Data 
Using Spark

	Contextualizing Spark MLlib in the app architecture
	Classifying Spark MLlib algorithms
	Supervised and unsupervised learning
	Additional learning algorithms

	Spark MLlib data types
	Machine learning workflows and data flows
	Supervised machine learning workflows
	Unsupervised machine learning workflows

	Clustering the Twitter dataset
	Applying SciKit-Learn on the Twitter dataset
	Preprocessing the dataset
	Running the clustering algorithm
	Evaluating the model and the results

	Building machine learning pipelines
	Summary

	Chapter 5: Streaming Live Data 
with Spark

	Laying the foundations of streaming architecture
	Spark streaming inner working
	Going under the hood of Spark Streaming
	Building in fault tolerance

	Processing live data with TCP sockets
	Setting up TCP sockets
	Processing live data

	Manipulating Twitter data in real time
	Processing Tweets in real time from the Twitter firehose

	Building a reliable and scalable streaming app
	Setting up Kafka
	Installing and testing Kafka
	Developing producers
	Developing consumers
	Developing a Spark Streaming consumer for Kafka

	Exploring flume
	Developing data pipelines with Flume, Kafka, and Spark

	Closing remarks on Lambda, and Kappa architecture
	Understanding Lambda architecture
	Understanding Kappa architecture

	Summary

	Chapter 6: Visualizing Insights 
and Trends

	Revisiting the data-intensive apps architecture
	Pre-processing the data for visualization
	Gauging words, moods, and memes at a glance
	Setting up wordcloud
	Creating wordclouds

	Geo-locating tweets and mapping meetups
	Geo-locating tweets
	Displaying upcoming meetups on Google Maps

	Summary

	Index

