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Assembly From Parts 
If desired, all parts can be conveniently sourced through Kitspace: 

https://kitspace.org/boards/github.com/badenlab/spikeling/ 

When using this option, please be aware: 

1) Kitspace will almost certainly not find the cheapest Arduino Nano (clone). You should 

be able to get one for less than £3. Similarly, PCB manufacturing options suggested 

may also not be the cheapest. Google is your friend here! 

2) Kitspace will likely find some options where “packs” of components are listed (e.g. 

instead of the 2 optional screws to hold the optional battery pack in place, it may find 

a box of 100). So, when using the option, do carefully go through the suggested 

purchase list and edit as appropriate.  

3) Obviously, when buying in bulk, things can get a lot cheaper (potentially several-fold 

savings per unit). 

Solder all parts in place as per the below. An introduction to soldering is here: 

https://www.howtogeek.com/63630/how-to-use-a-soldering-iron-a-beginners-guide//.  

For details on parts, see Bill of materials (BOM). 

  

https://kitspace.org/boards/github.com/badenlab/spikeling/
https://www.howtogeek.com/63630/how-to-use-a-soldering-iron-a-beginners-guide/
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When complete, it should hopefully look like this: 

 

Note: If it doesn’t seem to work, 9 out of 10 times it’s because 1 of the following: 

1) Did you upload the Arduino script? If not sure how to do that, see below under getting 

started. 

2) Somewhere, 2 or more contacts that shouldn’t touch, so in fact touch and thus short-

circuit something. Carefully check the board (both sides, solder can leak through the 

holes and make unwanted contacts on the other side). To check, it can be instructive 

to “beep” the circuit with a multimeter (google that if unsure). If you have a short 

circuit, remove it. Usually, simply reheating the pad may do the trick, but if not, used 

a solder sucker. 

3) “Cold contacts”, i.e. an intended contact that are not actually connected. This can 

easily happen e.g. if the parts are slightly moved during soldering, such that in the 

last second, as the solder hardens, the pieces come apart. They may then “look” like 

they are fine, but don’t conduct. Check with multimeter, or simply re-heat all the 

dodgy looking contacts. 

4) Did you solder the oriented pieces the right way round? (see previous page) 

 

You will know if it works if you power it (Battery or USB cable), with all dials turned to mid-

point, if you then crank up dial 4 or hold it into the light, it should start to spike (audible clicks 

coupled to flashes from the LED). Congratulations, you have successfully built a Spikeling! 
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Getting Started 
Turn all dials to midpoint (you should feel a gentle “click”) and power the board (via USB, or 

via 9V Battery). The Arduino LEDs should come on. If the board is already on, press the small 

white reset button on the Arduino itself (not the big black button on the board). This will take a 

few seconds and puts Spikeling in “reset state” (i.e. mode 1, with all dials to midpoint). All 

instructions below assume you start from here.  

The reset state mimics the “average textbook neuron” - a vertebrate spiking neuron with a 

resting membrane potential around -70 mV and a spike threshold around -55 mV.  

 

To visualise and record the activity of Spikeling, there are several options but the best is via a 

serial connection to a PC through the USB connection on the Arduino.  Here we describe how 

to use the Serial-Oscilloscope software package provided (under creative commons from 

http://x-io.co.uk/serial-oscilloscope/). This lets you read all output parameters directly from the 

Spikeling board for display on the screen or for logging. There is also a YouTube video 

(https://www.youtube.com/watch?v=jgMG0UQ2_pc) demonstrating how to set up the 

oscilloscope. 

1) Make sure the Arduino IDE is installed as you need the driver (www.Arduino.cc). 

Note that if you are using an Arduino-clone, the standard drivers may not work. In 

this case, google for the correct ones and install those instead. 

2) Declare the serial port. When you plug the USB cable into the PC you may see a 

message telling you which “COM-port” is being used. This is the “serial port” which 

you need to set in the menu of the serial oscilloscope. It may just give one option 

which is then probably the correct one. The COM port is also found under the 

Device manager. 

3) Set the Baud Rate to 230400. 

4) The window should now produce a continuous stream of numbers. These are the 

output values from Spikeling. To plot them, open the oscilloscope(s) under the 

menu. Spikeling outputs 9 parameters in parallel, but each oscilloscope window 

can only display 3. If you need parameters further down the list, simply open a 

second oscilloscope. You can separately adjust the scale of each trace on the 

oscilloscope by first selecting it (click the “Beam” button) and then scaling it (left-

http://x-io.co.uk/serial-oscilloscope/
https://www.youtube.com/watch?v=jgMG0UQ2_pc
http://www.arduino.cc/
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most thin arrows) and off-setting it (big red arrows). You can also trigger the 

oscilloscope using the menu on the bottom right. 

5) To record data, click “log to file”. This will write a text file (comma and tab separated 

ASCII) with all numbers output from Spikeling. You can look at this output using 

any common data-analysis software (for example GNU-R, which is free, or Igor Pro 

or MATLAB, which are licensed).  

 

 

The output parameters of Spikeling are as follows: 

1) Membrane voltage Vm (in “mV“) 

2) Total input current Itotal (in arbitrary units). Itotal = IVm + IPD + ISyn1 + ISyn2+ IanalogIn 

3) Stimulus state of Synapse 1 port (see below, range 0-1) 

4) Synapse 1 state (see below, boolean 0-1 for nospike / spike in the input) 

5) Synapse 2 state (see below, boolean 0-1 for nospike / spike in the input) 

6) Total photodiode current IPD (in arbitrary units) 

7) Total Analog In current IanalogIn (in arbitrary units) 

8) Total Synaptic current ISyn (in arbitrary units) ISyn = ISyn1 + ISyn2 

9) System time since last reset (in microseconds) 

You can also read Spikeling’s Vm output via the BNC ports using a regular oscilloscope. Digital 

Out only carries the spikes (TTL 5V) while Analog Out on port 5 carries a version of the analog 

membrane voltage (in arbitrary units). (Note that this output is a pulse-width modulated (PWM) 

digital signal that is RC-filtered to produce and analog out: it will therefore display filtering 

artefacts). 

Note: If Spikeling is doing “weird things” that clearly does not align with this manual, chances 

are there is a bad solder contact somewhere – either connecting two pins that should not be 

connected, or not connecting pins that should be connected (e.g. due to cold solder contacts). 

Check all contacts carefully and redo them if necessary (i.e. heat them up briefly so they can 

resettle). It can be worthwhile checking connections with a Multimeter, if available.   
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Most of the time, simply displaying the 1st three outputs on oscilloscope 1 will be sufficient: 

 

200 ms per division 

Adjusting axes: 

 

Trigger mode: 

   

Membrane  
Voltage (Vm) 

I
total

 (a.u.) 

(Stimulus) 
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Visualising Spikeling Output with MATLAB 
The Serial Oscilloscope plotter saves recordings in comma-separated CSV files. These can 

be read by a wide range of software: open source possibilities include GNU-R (https://www.r-

project.org), Python (https://www.python.org) or Octave 

(https://www.gnu.org/software/octave/). To comply with software preinstalled on the teaching 

PCs available at the University of Sussex, we chose to use MATLAB (Mathworks).  MATLAB 

licenses are, however, costly and below we also provide instructions on the use of Python 

(free!) for visualising Spikeling output.  

After opening MATLAB, make sure you have the recorded data and the MATLAB scripts in 

the same folder. Navigate to that folder (alternatively, the scripts/data may be added to the 

path.) 
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Visualising Spikeling Output with Python 
We also provide similar scripts in Python (which is free) in the form of a Jupyter Notebook 

(http://jupyter.org) that reads the serial plotter’s logged csv file, detects spikes, aligns the data 

in different ways and plots the results in simple graphs. Here we provide a brief explanation of 

how to run the Python code, rather than a repeat of the detailed explanation of the plot 

functions. 

 

Getting started with Python 
While the Jupyter Notebook could principally also be executed directly from GitHub without 

installing Python, this would quickly generate issues with the way that the script provided loads 

the csv data. For simplicity and convenience, we therefore here give a brief account of how to 

execute and modify the script in Anaconda.  

1) Download Anaconda (it’s free). Navigate to https://conda.io/docs/user-guide/install/, 

pick the right version for your operating system and follow the install instructions given 

2) Once installed, launch a Jupyter Notebook, for example by executing the Anaconda 

Navigator and clicking “launch” under the corresponding tab. This will open a window 

in your web browser showing some folders on your home hard drive. Here, navigate 

to the folder containing the Jupyter script provided (Spikeling Analysis.ipynb) and open 

that script.  

http://jupyter.org)/
https://conda.io/docs/user-guide/install/
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3) Also copy whatever csv file recorded with Spikeling you want to analyse. In the 

example given below, this will be the file SlowSteps1.csv in the zipped Example Data 

provided. 

4) Your screen should now hopefully look something like this: 

 

 

Using the Juypter Notebook 
Jupyter notebooks are organised into “cells” (each grey area) which can be called individually. 

Alternatively, all cells can be called at once (in sequence) to execute the whole thing. 

Before doing so, make sure that the file name to be analysed is entered where it says: 

data = np.loadtxt(‘SlowSteps1.csv’, delimiter = ‘,’) 

i.e. if you wanted to read a file name “SomeNewData27.csv” that line should read: 

data = np.loadtxt(‘SomeNewData27.csv’, delimiter = ‘,’) 

Now, click on the topmost cell (i.e. where it reads “Load raw data”) and then click “run”. This 

will execute that one cell and jump to the next (which in this case it doesn’t do anything 

interesting). If you now keep clicking “run”, it will execute each cell of the script in sequence. 

To run the whole thing in sequence (not ideal as the bottom of the script has some optional 

bits) you can also press the >> button 3 steps to the right of “Run” 

Once you reach the first plot, it should open up a new tab that simply plots the raw data (and 

detected spike times). It should hopefully look something like this: 
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You can modify & save these plots by using the commands on the right. 

Note: Depending on your screen resolution, the bottom/right of the plot may be cut off. To fix 

this, change the declared size of the window(s) it opens in the plot routine. In the script: 

 

… the lines: 

Spike_plot = figure(plot_width=1200, plot_height = 100) 

Means that this part of the figure will be 1200 pixels wide and 100 high. Simply change those 

numbers and re-execute the cell. You will have to do this for each subplot, i.e. also for vm_plot 

= … etc. 
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Plotting Stimulus aligned data 
Following execution of the subsequent the “Analysis Open 1…” cells, a few cells further down, 

under heading “plot stimulus aligned data” it will generate the stimulus aligned plot. The 

dimensions of this can be altered in the same way as described above, if required. 

 

 

Plotting STAs 
Alternatively, if the data is a “noise sequence” generated to recover linear filters (spike 

triggered averages, STA), skip the whole part that says “Analysis Option 1…” and go straight 

to “Analysis Option 2: Spike triggered average (STA)”.. Executing this cell will give the STA: 

 

(here shows the result for the STA of the example data “Noise_Mode3.csv”) 
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Reprogramming Spikeling (Arduino) 
The “brain” of Spikeling is the Arduino-Nano microcontroller (the blue thing). By tweaking the 

code that is uploaded here (via the USB cable from the Arduino IDE) it is fairly straightforward 

to modify Spikeling behaviours, for example by modifying some of the “mode settings”. When 

opening the Arduino code, in the top there is a list of variables and arrays with some 

annotations. These should be the 1st point of contact when modifying the code. After each 

modification, the code needs to be saved and uploaded to the Arduino for the change to take 

effect. 

 

The screenshot above shows the main variables to tune if desired. For example, replacing the 

nosound variable currently set to “0” with a “1” will stop the clicking whenever it spikes (note it 

will also disable the Digi out port as these are on the same connector!).  

To modify an existing “mode”, you need to edit the corresponding entries in the 8 arrays listed 

below “Izhikevich model parameters”. For example, switching the first entry in 

Array_PD_polarity from currently “1” to “-1” will invert mode 1’s photo-response to make it an 

“Off-cell”. In the same way, changing the “1” to a “2” will double the gain of the photo-response, 

etc. 

To add new modes, or delete existing ones, simply set the nModes parameter to the new 

number of entries in each array (must be the same!) and modify the arrays accordingly. For a 

handy lookup of useful Izhikevich model parameters, scroll to the bottom of the code. 

Note: Due to space constraints on the PCB, two Spikeling ports/dials are double booked by 

two functions. These are: 

i) Synapse 1 & Stimulus out use the same port (1), and cannot operate at the same 

time. This is defined in the Array_DigiOutMode array. “0” enables Synapse 1, “1” 

enables the 50% duty cycle pulses digi out (default) and “2” enables the 50 Hz 

noise stimulus used for estimating linear filters (cf. Fig. 6). 
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ii) Analog In and Synapse 2 gain use the same dial (2). Usually this does not create 

a conflict as in most cases either Analog In and synapse 2 are not used at the 

same time. If a conflict arises, it is possible to switch off the Analog In gain using 

the AnalogInActive variable (set to 0). Advanced users may also choose to re-port 

these functions in the core code – this would involve resetting the port variables in 

“void setup” and checking that any use of these ports in the remainder of the code 

aligns with that change. 

 

Arduino Implementation of Izhikevich Model 
The Izhikevich model is implemented by iteratively computing voltage (v) based on two 

equations: 

(1) v = v + timestep_ms * (0.04 * v * v + 5*v + 140 – u + I_total); 

(2) u = u + timestep_ms * (Array_a[NeuronBehaviour] * (Array_b[NeuronBehaviour]*5 – 

u)); 

and two conditionals: 

(3) if (v>=30.0) {v=Array_c[NeuronBehaviour]; u+=Array_d[NeuronBehaviour];} 

(4) if (v>=-90) {v=-90.0);} 

 

In detail: 

Lines (1) and (2) are the main model implementations, where…  

…we first compute the new value for voltage (v) by adding a quadratic formula of v 

with recovery variable (u) subtracted, followed by the addition of a single number I_total that 

reflects the summed input currents (from static input current, photodiode, analog in, synaptic 

currents etc.) 

… and then we re-compute a new value of the recovery variable (u) based on Array 

entries Array_a and Array_b at position NeuronBehaviour (=the mode, switchable by the on-

board button). At default, NeuronBehaviour == 0, so the 1st entries in Array_a and Array_b are 

used, and when pressing the button NeuronBehaviour is incremented by +1 each time until it 

resets if it exceeds nModes (further up in the script). The Arrays are found near the top of the 

script, and reflect the original parameters a, b (& c, d, see below) from the model. Generally, 

a larger value of u hyperpolarises the model in the next computation of u, as it directly opposes 

I_total. 

In both lines (1) and (2), the increment to v and u is scaled by global variable timestep_ms 

(default = 0.1). This reflects the “intended” model refresh rate. So, if that set of equations were 

called 10 times per millisecond (i.e. at 10 kHz) the model would run at “real-time”. However, 

the actual call-rate is much lower, as the Arduino cannot execute the full script at 10 kHz. In 

standard configuration, it actually runs at only ~420 Hz.  Ways to increase speed are discussed 

below (“Spikeling Refresh Rate”).  

Next, lines (3) and (4) are two conditionals that are triggered as a spike occurs (3) or if 

membrane voltage drops too low (4). 



 16 

Line (3) is a carbon copy version of the original Izhikevich model, where upon execution of a 

spike (v exceeding 30 mV) the model resets the new value of v to be equal to 

Array_c[NeuronBehaviour] and resets the value of u according to Array_d[NeuronBehaviour].  

Line (4) is a custom addition to the model that stops it from hyperpolarising below -90 mV. 

This is non-essential, but stops the model from crashing if, for instance,I_total becomes too 

negative to drive unrealistically low membrane voltages. 

The functions of Array entries a, b, c and d are explained in detail in the original paper 

(Izhikevich 2003). The paper and later online additions also give a list of possible “useful 

combinations” of a, b, c and d that together give the model different “realistic” behaviours. For 

convenience they are also pasted into the bottom of the Arduino script. To implement them, 

simply take a specific behaviour’s 1st 4 numbers and add them to the four arrays in the top of 

the script: 
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Photodiode Adaptation Speed 
The photodiode is inherently noisy, so here we use a “buffered time-averaging” of its signal to 

ameliorate some of the noise. Instead of just reading it’s state on the corresponding AnalogIn 

Pin (1st line, PDVal) and sending that drive directly into the model as I_PD, we instead send 

each instance of PDVal into a buffer array PDVal_Array of size 10. Each time the buffer is full 

(after 10 instances of PDVal being stored in the buffer), we take its mean (PDVal_smoothed) 

and use that number to inform I_PD. 

Next, the Photodiode also has two gain factors (global scaling, and local gain) and two decay 

constants (time dependent) associated, which allows to have the PD current adapt over time, 

as it would in most sensory neurons.  

- PD_Scaling is global and set at the beginning of the script. This is a single number that 

scales the amplitude of all PD_related amplitude processes 

- PD_gain is the current gain of the PD system. At default, this is 1, but it falls below 1 if 

the PD in continuously driven, and recovers thereafter as a function of the time-

dependent variables, both of which are stored in Arrays at the top of the script and 

depend on the Mode variable NeuronBehaviour: 

o Array_PD_decay[NeuronBehaviour] 

o Array_PD_recovery[NeuronBehaviour] 

- PD_gain is limited at the top at 1 (full gain), and and the bottom at PD_min (default = 

0, which will also have I_PD at 0).  

- Finally, as I_PD is being used in the Izhikevich model (see previous section) it is 

multiplied by either 1 (no change) or -1 (invert), to allow flipping its polarity as a whole 

thus mimicking “On” and “Off” type behaviour, respectively. This flip is controlled by a 

third array: Array_PD_Polarity[NeuronBehaviour] 

 

Photodiode-related arrays at the top of the script: 
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Model Noise  
Spikeling allows adding synthetic noise to the model, to mimic noisiness in neurons. The noise 

is added to the I_total variable read in the Izhikevich model as I_Noise. The dial (3) controls 

the amplitude of the noise around 0 (NoiseAmpl), but has no impact on it’s temporal statistics. 

This noise function was added in a fairly simple way: At each model instance a single variable 

I_Noise is increased/decreased by a random amount as a function of NoiseAmpl, followed by 

a “dampening” step of multiplying the result by 0.9. The dampening step is used to ensure the 

Noise parameter slowly tends towards 0, as otherwise random noise fluctuations would 

accumulate to drive sustained de- or hyperpolarising current. Accordingly, the temporal 

statistics of the noise depend on model refresh rate (see corresponding paragraph below) and 

this arbitrary dampening factor. We found that a value of 0.9 produces “realistic-looking” noise. 

 

Spikeling Refresh Rate 
The Izhikevich model works by iteratively computing v and u as a function of each other and 

model parameters a, b, c and d (see corresponding paragraph above). Each time this set of 

equations is called, the model advances by one unit of time. Accordingly, the more frequently 

the main loop of Spikeling can execute (“void loop”), the faster the model can run. However, 

this main loop includes several pieces of code that execute “slowly” (100s of microseconds), 

limiting the refresh rate. In “standard configuration” (i.e. all parameters set as described in the 

paper and as provided in the Arduino sketch), the model executes at 420 Hz as 1 full execution 

round of the void loop takes ~2.4 ms. This leads to a potential conflict: if the Izhikevich time-

step parameter (timestep_ms, see above) were set to 2.4 ms to try to achieve maximum speed 

of the model, it would in fact fail because the model is set-up to mimic fast action potential 

generation in the mammalian central nervous system where a single spike typically lasts 1 ms 

at most.  

Instead, to get realistic (if slowed down) waveforms of action potentials and subthreshold 

events, the model should be executed at an intended model rate of ~10 KHz (i.e timestep_ms 

= 0.1, the default value). Although the model will be executed in 0.1 ms instances, these 

instances are only called every 2.4 ms so that the model runs ~24 times slower than intended. 

The waveforms of spikes and subthreshold events continue to look realistic to the observer, 

they are simply a bit slow. One way to think of this might be to consider Spikeling output as 

mimicking neurons of cold-blooded animals, where these types of kinetics are commonplace. 

 

Speeding up the model 
If desired, the user can speed up the execution of the model in several ways. Simply put, there 

are 2 main factors slowing down the loops: Serial Print operations and Analog Read/Write 

operations. Accordingly, reducing the number of these operations, or the frequency at which 

they are called will speed up the model.  

Serial Print operations are used at the end of the script to log model data via the USB 

connection to the computer. At default, it logs 9 parameters, in this order: 

- Voltage v 

- Total current I_Total 
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- Model Stimulus State Stim_State 

- Synapse 1 State (spikes in?) SpikeIn1State 

- Synapse 2 State (spikes in?) SpikeIn2State 

- Photodiode current I_PD 

- Analog input current I_AnalogIn 

- Total synaptic current (1+2) I_Synapse 

- System time in microseconds currentMicros 

Removing some of these from the data logging can increase model speed. If all are removed 

(no communication with computer), the model refresh rate more than doubles to ~1,000 Hz 

(loop time ~1 ms).For convenience, we pre-configured a simple option to remove them in 

several instances through the global variable FastMode near the top of the script. At default 

(=0), all 9 parameters are logged, and the model runs at ~420 Hz. If set to 1, 2, or 3 the model 

starts dropping the later parameters, as explained in the script itself (1.57, 1.22, 1.0ms, 

respectively, corresponding to 633, 819 and 1000 Hz) 

(Note: The analysis scripts (Python/Matlab) provided assume that system time, which is 

always needed for time-accurate plotting, is stored in the 9th column (i.e. 8, with 0 indexing). 

However, in FastMode=1 or =2, this jumps to column 4 and 2, respectively, so if these modes 

are used for logging the pre-processing scripts should be updated to reflect this.) 

Analog Read/Write operations are called several times within the main loop, either reading 

the state of a dial, the photodiode or the analog in port (3). Analog write operations drive the 

Analog out port (5) and the onboard LED. The user could choose to simply disable one or 

more of these functions. A short explanation how one might go about this is included in the 

sketch itself. Advanced users may also consider not disabling them, but rather calling them 

less frequently (e.g. only every 10th time the model loops). While this should principally work, 

note that it would selectively slow down the instances in which the call was executed, so the 

model would not run at a constant speed but instead jump a bit. However, this may not be a 

big problem depending on the intended use. Notably, in the Spikeling 2.0 version (see below) 

we already down-scaled the Analog read bit depth to 16 to speed them up a little (Using 

AnalogReadHelper) 

Timestep_ms. Finally, the user can also alter the timestep_ms global variable near 

the top of the script. Increasing this will speed up the Izhikevich model in a linear dependence 

(i.e. doubling timestep_ms will double model speed) but run risk that it skips spikes and 

generate weird-looking waveforms. Vice versa, decreasing it will generate “nicer” waveforms, 

but at further cost to speed. Notably, this will only affect the actual spike model, not the whole 

script. 

 

Spikeling 2.0 
We are currently working on a new version of Spikeling (2.0) that will feature a range of 

improvements, including perhaps most notably the possibility to connect a TFT colour display 

for live display of the model output.  

The new version replaces the low-cost Arduino Nano microcontroller of Spikeling 1.0 with the 

more modern ESP8266 (e.g. https://www.adafruit.com/product/2471). First tests indicate that 

the ESP8266 (by itself, without TFT screen connected) executes the Izhikevich model at about 

5-10 times the speed of Spikeling 1.0 (3.7 kHz at full output, compared to 420 Hz for Spikeling 

1). This can be pushed to near “realtime” with fastmode enabled (see above), such that each 

https://www.adafruit.com/product/2471
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loop execution round approaches 0.1 ms, which is the iteration step that the Izhikevich model 

is set to. Of course, it is possible (up to a point) to lower that timestep_ms parameter to match 

the the actual execution step to achieve “realtime”.  

With the screen connected, Spikeling 2.0 speed drops to about the same speed as Spikeling 

1.0. 

 

Spikeling 2.0 prototype with TFT screen connected 

In addition to either offering speed enhancements or the option for a TFT screen, the new 

microcontroller is also WiFi enabled which presents the possibility to do remote-data logging 

without need for a dedicated USB cable. Notably, to connect the ESP8266 to the dials and 

photodiode used in Spikeling 1.0 requires addition of a dedicated integrated circuit (IC) chip 

such as the MCP3008 (e.g. https://www.adafruit.com/product/856).  

 

 

The ESP8266 Wifi Colour Display Kit 

sold by ThingPulse, which includes the 

ESP8266 itself, a breakout board and the 

TFT screen: 

 https://thingpulse.com/product/esp8266-

wifi-color-display-kit-2-4/ 

 

 

At time of writing, Spikeling 2.0 is under 

ongoing development. All documentation to its current state can be found on the Spikeling 

GitHub: https://github.com/BadenLab/Spikeling. However, the Arduino code running Spikeling 

https://www.adafruit.com/product/856
https://thingpulse.com/product/esp8266-wifi-color-display-kit-2-4/
https://thingpulse.com/product/esp8266-wifi-color-display-kit-2-4/
https://github.com/BadenLab/Spikeling
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1.0 has already been set-up to work with either version, with one required user alteration 

depending on which board is used: 

//#include "SettingsArduino.h"  decommented, so disabled 

#include "SettingsESP.h"  currently Spikeling 2.0 is enabled.  

To switch, just move the // (decomment) to the other line 
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Spikeling Exercises 
 

Resting membrane potential 
In the absence of a stimulus, the Spikeling rests at -70 mV and should only spike sporadically. 

Resting membrane voltage (Vm) can be set indirectly with bottom-most dial (dial 4), which 

sets a constant input current. For now, on the oscilloscope we are only interested in the 

membrane potential trace (the red one) and the current trace (the green one). The red LED 

on the board also tracks Vm, and flashes with each spike which should also be accompanied 

by a “click”. Electrophysiologists often connect a speaker to their recording of membrane 

voltage to get a direct audio feedback of what the neuron might respond to. 

 

Task 1: What happens when you increase or decrease the static input current? 

You should observe that increasing the static input current drives Vm towards and beyond 

spike threshold. As you keep driving Vm upwards, you will elicit progressively higher spike 

rates. This is the simplest of all neuronal codes - the intensity of a stimulus (here, simply the 

increased input current) is encoded in the frequency of spikes. Imagine you are the 

postsynaptic neuron and all you see is this spike pattern – you could easily infer from seeing 

more spikes in close succession that the input to the presynaptic neuron has probably 

increased. Most spiking neurons use this rate code to signal input intensity. 

On the screen, note that each spike is preceded by a shallow rise in Vm and followed by a 

brief dip below starting levels. This dip is the refractory period of the neuron. During this time, 

generating another spike is particularly difficult. At the extreme low point of Vm it is impossible 

to generate a spike, which in a biological neurons is because the sodium channels are blocked 

(not just closed). This absolute refractory time, together with the duration of the spike itself 

(1-2 ms) sets a limit on the maximum spike rate possible. In an average neuron, the absolute 

refractory period is a few milliseconds, and thus the maximal spike rate of most neurons is 

~100-200 Hz. Some specialised neurons can go a bit higher, but kHz range is out of question. 

This means that, by using a single spiking neuron, it is impossible to faithfully encode a time-

varying stimulus above this frequency. However, there are a few tricks around this problem 

that the nervous system can use. We will pick up on this point later. 

 

Task 2: What happens when you dial current up and then wait a few seconds?  

If you drive up input current and leave it there for a few seconds, you should observe that 

spike rate first increases, but then will taper off to some new basal rate of activity which will 

be higher than the original rate (rate code), but lower than the peak rate. This is an example 

of adaptation. Neurons respond to a change in the input not only by firing more or fewer 

spikes, but in addition by adjusting their sensitivity to further changes based on recent stimulus 

history. This is a fundamental property of neurons that allows them to extend their operating 

range, and to stay responsive to further changes in subsequent inputs.  
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Task 3: Does a rapid and a slow current increase generate the same voltage 

response? 

As you increase input current slowly or rapidly, you should observe that you can reach different 

peak spike rates. A rapid increase in input current is a much more effective way to trigger 

multiple spikes in close succession. This is again because of adaptation. If you change input 

current fast enough, the neuron does not have time to adapt and therefore fires vigorously at 

first. If you change input current slowly enough, you should be able to drive it quite high without 

eliciting many extra spikes as it adapts while you slowly ramp up the current. This means that 

not only the absolute level of a stimulus can be encoded by a neuron, by also the rate of 

change. Note that this creates ambiguity in the code, which is one important reason for the 

need of parallelisation. This means that if you want to read both absolute levels of a stimulus 

and its rate of change, you may need two neurons with different properties.  

 

 

NB: The fact that the speed of change in the input is encoded in a neuron’s firing also means 

that that spike thresholds are not fixed. Depending how quickly you stimulate a neuron, it can 

start firing at different Vm values! 

  

 

External Stimulation: Light 
Spikeling has a built-in photodiode – the clear dome-shaped object in the lower left corner. 

This functions like a “mini solar-panel”. If you shine light at it, it generates a tiny voltage, and 

Spikeling is programmed to react to this voltage. Increasing the amount of light hitting the 

photodiode drives a depolarising current, just like the static input current dial did (above).  

Task 4: Shine some light at the photodiode e.g. using a torch or by holding it to the 

room light. Observe both the current (green) and the voltage trace (red). Can you get 

the cell to spike in response to light? Does it spike every time you hold it into the light? 

Shining light at the photodiode should cause a brief increase in the driving current, which will 

be mirrored by the membrane voltage. If the light intensity is high enough, you should be able 

Rapid Vm change 
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to generate spike(s). However, if the light is weak, or presented only for a very short amount 

of time, you will probably not drive a spike. This is an example of how neurons can use a spike 

threshold to only report the presence of a stimulus if it is of a certain amplitude and minimum 

duration. However, do note that even if there is no spike generated, the membrane voltage 

will still react to most changes in the light. This “sub-threshold” activity is fundamental to 

many neuronal computations. We will return to this point later. 

 

 

Task 5: Turn the static input current dial up so that Spikeling generates a few spikes 

per second, and then shine some steady light at it. You should observe that the spike 

rate increases a lot at first, but then settles to an intermediate spike rate (just as before 

when you increased just the Vm dial). Now, suddenly remove the light. What happens? 

You should observe that when you remove the light, membrane voltage will drop not just back 

to baseline levels, but below baseline for a short period of time. As it drops below baseline, it 

will probably result in a brief gap in spikes. This is an example of how a sudden absence in a 

stimulus that the system has adapted to can be encoded by the neuron by the absence of 

expected spikes. However, the salience of this code is low. For a postsynaptic neuron 

reading this signal, it is much easier to respond to the presence of an unexpected spike, rather 

than the absence of an expected one. (How could you turn the absence of an expected signal 

into the presence of an unexpected one?) 

Spikes 

Sub-threshold 

Light on photodiode… 
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Switching spike-modes 
Spikeling comes with multiple preprogrammed behaviours, which can be cycled through with 

the on-board button (the big black one). If you press the button from reset state, a little LED 

on the Arduino should light up twice. This means that Spikeling is now in “Mode 2”. If you press 

it again, it should blink 3 times (Mode 3) and so on. If you get to the end (Mode 5), it will cycle 

back to 1. You can always jump to 1 by resetting the Arduino (the little white button on the 

Arduino itself). 

The preprogrammed modes are as follows: 

1) Regular spiking neuron, slow adapting photodiode (“Sustained ON”) 

2) Bursting neuron, fast adapting inverted photodiode (“Transient Bursting OFF”) 

3) Fast spiking neuron, slow adapting inverted photodiode (“Sustained OFF”) 

4) “Chattering“ neuron, fast adapting photodiode (“Transient ON“) 

5) High threshold firing, slow adapting photodiode (“Sustained ON II”) 

For now, let’s just focus on the first 3 modes. Compare the above exercises on resting 

membrane voltage and photodiode stimulation in different spike modes.  

 

Task 6: Comparing Modes 1and 2: What are the differences when you depolarise the 

neurons using the static input current (dial 4) and when you pass a torch over the 

diode?  

The baseline spiking behaviours, the speed at which the response to photodiode stimulation 

decays, and the polarity of the light response are all different. For example, if you continuously 

shine light at Spikeling in mode 1, it will adapt slowly. If you do the same for mode 2, it will 

adapt a lot faster and to a stronger degree, the current is inverted. This is an example of a 

“transient OFF” (mode 2) and a “sustained ON” neuron (mode 1). In the nervous system 

the transience of a neuron is one fundamental ingredient in generating different functions. For 

Constant light 
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example, transient neurons are usually good at encoding the onset of a stimulus, but not 

very useful in signalling when that stimulus stops. In contrast, the sustained neuron encodes 

both events quite reliably, but the energetic cost is higher (it needs more spikes) and the 

information content per spike is lower. Neurons are amongst the most energetically costly 

cells in the body. They are also amongst the most fragile if energy supply is low (for example 

during a stroke!). Most neurons will die after even a few seconds to minutes of oxygen 

deprivation. Accordingly, when considering neurons and neuronal networks, it can often be 

instructive to consider the energy costs associated with a particular computation. If you can 

implement the same computation using fewer spikes, or fewer neurons, that is probably a 

good thing, and most of the time it is what the brain will have evolved to do. Accordingly, it is 

not always about setting up the “best” computation, often it is about building the cheapest 

system that still works with adequate reliability. 

Another reason for using a transient neuron is that after it signals the start of an event, it is 

rapidly “ready” to signal the start of another event. If a transient neuron spikes twice, it probably 

means there were two events. If a sustained neuron spikes twice, it could mean there are 2 

events or that there was one event which is still ongoing. Accordingly, the sustained neuron’s 

code is usually more ambiguous. Ambiguity in coding is almost always a bad thing. It reduces 

the information content per spike (costly!) and it usually means you need additional neurons 

to resolve the ambiguity (also costly). 
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Task 7: Compare Modes 1 and 3 at the level of the photoresponse and during current 

injection. What sets them apart? 

In Mode 3, the spike threshold is lower and the refractory period following a spike is shorter. 

This neuron will do most things that the Mode 1 neuron will do, but it will use more spikes. In 

addition, its photo-response is inverted (“sustained Off cell”). While energetically costly, 

sometimes you need more spikes. For example, for a rate code to encode as much information 

as possible, the bigger the rate-range is that the neuron can cover, the more finely resolved 

can you encode signals using the frequency of spikes. One often used example here are 

projection neurons of auditory systems.  

Another advantage of using a neuron that can reach high spike rates is that negative coding 

becomes more useful. If the basal firing rate of a neuron is high, a reduction in this rate (for 

example due to the sudden absence of a depolarising stimulus, or due to the addition of an 

inhibitory input) can still be readily read out by postsynaptic neurons. This is easily illustrated 

if you repeat an experiment from above: Set the basal spike rate to a few spikes per seconds 

using the static input current dial, then iteratively shine a constant light at the photodiode and 

then remove the light. Each time you shine light, the high “dark” spike rate should drop to a 

new, lower spike rate, and this change should be much more obvious (and inverted) if you use 

the fast spiking neuron from Mode 3 compared to the regular spiking Mode 1 neuron. 

 

 

The “Self-Stimulator” 
From the exercises with the torch, you will have noticed that it is difficult to reproduce the same 

stimulus from trial to trial. To help you with this, Spikeling comes with an option to “stimulate 

itself” by generating a defined light output. Port 1, by default, is defined as an output port which 

delivers 5V pulses at different intervals depending on the mode. Connect a BNC cable to this 

port, and on the other end connect the extra BNC-cap with an LED attached. You should now 

see that the LED lights up in regular intervals. Attach this LED to the top of the photodiode 

(e.g. with a bit of tape or a ring of paper or the 3D printable holder provided) such that 

whenever the stimulus LED lights up you can clearly see an increase in the input current on 

the oscilloscope. In addition, configure the 3rd trace on the oscilloscope (blue trace) so that 

you can see it switch between 0 and 1 to indicate the state of the stimulus. 

[Note, instead of using an LED to self-stimulate via the photodiode, you can cut out the middle 

man and inject by connecting the cable from port 1 to the analog in port (3), thereby driving 

Spikeling directly with square pulses.  For this crank up dial 2 as well to set the gain (amplitude) 

of this connection]. 

You should now have 3 traces on the screen: The red membrane potential, the green input 

current, and the blue stimulus. If you cannot see the stimulus, the y-axis is probably configured 

incorrectly – use the buttons as described before to adjust the scaling of the blue trace. Every 

time the stimulus is high, the green trace and therefore the red trace should both respond with 

an increase in turn. This set-up will let you explore the response properties of Spikeling in a 

more controlled manner.  

For now, let’s focus on Modes 1 and 2. For both, the stimulus LED switches on and off at 

regular intervals, such that it is on and off exactly half of the time (the technical term is “50% 

duty cycle”). If you now turn the top-most dial (1) away from resting mid-position, the 

frequency of this flicker will change accordingly.  
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Task 8. Stimulate mode 1 at a constant speed (e.g. 1 Hz) and play with the static input 

current (dial 4). Can you get Spikeling to reliably spike throughout stimulus 

presentation, but not spike in the absence of a stimulus? How precisely can you encode 

the end of the stimulus with spikes? 

You will probably find that while it is easy to set the neuron to only spike during a stimulus, it 

is much more difficult to tune it to reliably fire a last spike just before the stimulus ends. This 

problem will get worse the longer-lasting the stimulus, as the photodiode will adapt just 

naturally the dropping spike rate. Moreover, any one setting of speed will only “work” with a 

limited range of settings of static depolarisation. This comes back to the point before – it is 

much easier to encode the presence of an event with the presence of a spike, than with the 

absence of an expected spike.  

 

 

 

 

 

Task 9. Stimulate mode 2 with steps of light elicited at different speeds. Now, play with 

the static input current in each mode. Can you get Spikeling to reliably burst during 

stimulus offset in transient mode 2?  

You probably found that it is quite easy to set the transient neuron to encode the offset with a 

burst of spikes, simply because this is an intrinsically bursting neuron. However, depending 

on the stimulus speed, you may find that this behaviour breaks down quickly. It is however 

possible to “entrain” this neuron (synchronise to the stimulus) using light within a limited range 

of stimulus rates. As such, as a primary sensory neuron reporting the offset of a step of light, 

this neuron is not great – as it will also spike simply if you wait long enough assuming it is 

Stimulation mode – sustained 
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slightly depolarised. However, if you had an inherently rhythmical stimulus (for example a 

sensory mechanoreceptor neuron in the leg firing during walking) and you wanted to 

synchronise the activity of other neurons to this stimulus, such a burst-entrainment can be 

very useful! 

 

Task 11: Now, start playing with the speed of the stimulus while adjusting the static 

input current as required for all modes. How fast can you go with either the transient or 

the sustained neurons until you start observing spike failures?  

You will probably find that all neurons do a reasonable job in encoding each event with at least 

one spike until about 2-3 Hz, but that at higher frequencies they will start to fail spiking every 

now and then despite the presence of a stimulus. As Spikeling is set up, it will probably do a 

little better using the sustained neurons. This is not inevitable – if one were to change the 

spiking parameters a bit, it would be possible to make the transient neuron more reliable. More 

importantly, the photodiode, the spike mode settings and the static input current all come into 

play when determining thefrequency limit at which a neuron can follow a time-varying stimulus. 

As such, “tuning” a neuron’s response preference to a desired fluctuating input requires 

setting a myriad of properties. The nervous system utilises this to tune each neuron to a 

specific range of input statistics, and, indeed, to adjust these settings as the task at hand 

requires.   

 

Task 12. Pick one mode and keep increasing the speed of the stimulus almost as fast 

as it will go and set the static input current such that it only spikes occasionally. What 

do these spikes encode? 

If you set Spikeling into a regime where most stimuli do not trigger a spike, you will notice that 

nonetheless each stimulus drives a clear subthreshold response. If you now look carefully at 

the timing of each spike that is elicited, you will likely find that this time is fairly well “phase-

locked” to the onset of a stimulus phase. In isolation, this is not a particularly useful property 

of neurons. But imagine you had 10 such neurons, each spiking unreliably every 5-10 stimulus 

phases. If you sum the input from these 10 neurons using a larger, postsynaptic neuron, you 

could fully reconstruct the original stimulus train even though no single input neuron encodes 

that information. This is called a “volley code”, and it is one of the most important tricks that 

neuronal networks use to encode a fast time-varying stimulus that exceeds the speed that any 

one neuron can encode. For example, in auditory systems, the stimulus frequency can easily 

reach the kHz range which no neuron can possibly follow, as discussed above. Nonetheless, 

if you record any one neuron’s firing in response to such a stimulus you will probably find that 

the timing of each spike is exquisitely well phase-locked to the stimulus, such that if you had 

a few 100 of these neurons you could precisely reconstruct the original input. 
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Task 13. Decrease the static input current until no more spikes are triggered. Observe 

the membrane potential as you increase the stimulus speed. Can you get Vm to fail 

following the stimulus? 

You will probably find that up to the speed that Spikeling can stimulate, Vm comfortably tracks 

the stimulus (while spikes do not). This is a fundamental property of neurons. The 

subthreshold response of a neuron is almost always better at following stimuli than the spike 

response. As discussed above, eliciting a spike and resetting the neuron to be ready to fire 

the next spike takes time (in Spikeling, this takes >10 ms, some real neurons can reset after 

1-2 ms but not faster). If you do not need to generate a spike, this limitation is dramatically 

reduced, and you can follow stimuli much better, and much more accurately (also in 

amplitude). Of course, not all neurons spike.  Spiking consumes energy and is a relatively 

costly and inefficient way of conveying information, so if neurons can avoid using spikes, they 

will. For example, one fundamental reason to use spikes is to rapidly cover large distances. If 

you have a big brain (like us), you need to use a spike to send a signal from one end to the 

other. Depending on a neuron’s electrotonic properties, a graded signal would just decay with 
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distance and be lost in the noise ~100 microns from the origin. Spikes are regenerative and 

propagate over distance, allowing signals to be transmitted over longer distances (stubbing 

your toe). Two disadvantages of signalling with spikes is that you truncate the message, both 

in time (refractory period) and in amplitude (threshold). So, if the distance to be covered is 

small, using spikes is usually avoided. For example, the tiny nematode worm C.elegans barely 

uses any spike at all. The animal is so teeny that all distances are small. Similarly, many 

neurons in the Drosophila brain don’t spike. Other’s use a “mix” of spiking and graded 

processing. In vertebrates, the same thing happens in some neurons. For example, in the 

retina, only about half of the neurons use spikes. Photoreceptors, for example, generally don’t 

use spikes. Ganglion cells, on the other hand, connect the eye to the brain via the optic nerve 

– so there is no way around it, those neurons have to spike.  

 

 

 

Noise 
Real neurons are noisy. Sources of noise include synaptic inputs, receptor noise, thermal 

noise or even noise associated with the physical world that an animal inhabits. Accordingly, 

one major challenge that all neurons face to at least some degree is how to detect the 

meaningful “signal” in the background of meaningless “noise”. So far, we have been working 

at low noise but Spikeling provides the option to add different level noise to any operation – 

for this, turn the second dial from the bottom (dial 3). At mid-point (reset-state) and below that, 

no noise is added, but above that position increasing the dial will linearly increase a “noisy 

current” which adds to the total current shown in the green trace.  

 

Task 14. Turn up the noise dial, while keeping the mean input current roughly centred 

around 0 (use static input current dial to offset this if necessary). What happens to 

membrane voltage as you add more and more noise? 

At first, increasing the noise current will only affect the baseline noise of membrane voltage, 

which will resemble a low-pass filtered version of the input noise. This is the first “trick” used 

by all neurons to dampen high frequency components in the noise – the membrane potential 

simply cannot track the fastest transients in the input current and therefore “automatically” 

Stimulation mode – transient, hyperpolarised 
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filters them out. As you keep increasing the noise level, you should be able to elicit spikes. 

These noise-driven spikes are almost always a bad thing. They do not convey any information 

(thus wasted energy), and to make things worse, they confound any message that the neuron 

is aiming to encode using spikes. Accordingly, neurons often aim to keep the spike threshold 

high enough such that the noise they have to deal with by itself very rarely triggers a spike. 

Accordingly, spike generation can be used as a powerful noise filter.  

 

 

Task 15. Turn the noise dial (3) back down and look at the baseline. Now cover the 

photodiode (e.g. with your hand). What happens? 

You will probably find that when you cover the photodiode, the baseline noise that we had all 

along in the above exercises decreases. Clearly, the photodiode is introducing noise to the 

system! In this case this is high frequency noise that largely gets smoothed at the level of 

membrane potential. All sensory processes, whether electronic as here, or in biology, 

necessarily introduce noise - simply because the apparatus to pick up the desired physical 

stimulus is never perfect. In vision, for example, the stimulus (photons) is absorbed inside an 

opsin-type protein by a chromophore. As the photon arrives, it photoisomerises the 

chromophore and thereby sets a biochemical cascade into action that ultimately results in the 

opening of ion channels. However, the isomerisation event can also occur “spontaneously” – 

or rather driven by heat. As such, all sensory systems are noisy, and nervous systems have 

evolved a wide range of little tricks to overcome this problem. Here, spike generation or the 

membrane voltage filtering high frequency noise are but two examples. Others include 
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summation (having multiple neurons signal the same thing and then adding the signal up in a 

postsynaptic neuron) and temporal “smearing” (e.g. by using slow receptor cascades) are two 

further examples. There are many more. 

 

 

Task 16. Compare two modes of your choice to see how each deals with noise. Which 

one would you use to reliably trigger spikes in response to each stimulus? Which one 

would you choose to make sure spikes are only elicited at the start of a stimulus (even 

if sometimes they fail)? 

You will probably find that the sustained neurons will be quite good at reliably firing at least 

one spike in response to each stimulus. However, the number and timing of each spike per 

stimulus cycle will likely vary a lot. In contrast, the transient ON neuron might fail every now 

and then to report the presence of the stimulus, but if there is a spike, it usually means that it 

was preceded by a stimulus. Spikes from such a neuron are highly informative, but unreliable. 

How can nervous systems make this mechanism more reliable? 
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Building networks 
Multiple Spikelings can talk to each other using the Digital Out and Synapse 2 BNC ports (or 

Synapse 1, if enabled in the Arduino code, default is disabled). The idea is that the Digital Out 

port of one Spikeling (port 4) conveys only spike events, which can be fed into the Synapse 2 

input ports of a second Spikeling (port 2). The gain of each synapse can be regulated using 

the corresponding dial on the other side of the board (dial 2). At reset state, the gain is zero 

(so the synapse will not do anything if it receives a spike). If you turn the dial up, you get an 

excitatory synapse. If you turn it below midpoint, you get an inhibitory one. 

Try this now: Reset two Spikelings and take a BNC lead to connect the Digital Out port of one 

(presynaptic) to the Synapse 2 in port of the second. Connect the second Spikeling 

(postsynaptic) to the PC via the USB cable so that we can read its activity on the oscilloscope. 

The presynaptic Spikeling does not need to be connected– but it does need to be powered, 

either using a 9V battery or by plugging the USB into a power socket).  

 

Task 17. In this configuration (above) increase the static input current on the 

presynaptic neuron so that it continuously fires a few spikes per second. Now observe 

what happens to the postsynaptic neuron as you turn up the synapse 2 dial to increase 

its gain. 

You should observe that if the dial is at midpoint, nothing much happens – the spikes from the 

presynaptic Spikeling are still received, but they do not drive any current in the postsynaptic 

neuron. (Note that you can see the incoming spikes if you open a second oscilloscope – 

Synapse 2 spikes are on channel 5, so the green channel of the second oscilloscope). Now 

as you increase the gain you should see that each spike triggers small depolarising current 

which decays back to baseline within a few 100 ms. If spikes come in a sufficient rate, this 

input current will start to integrate between successive incoming spikes to further 

depolarise the cell. If it reaches threshold, spikes should be triggered. The fact that the 

synaptic current outlasts the duration of the incoming spike is a fundamental ingredient 

to neuronal processing. It means neurons can “count and calculate” using synapses – sort 

Networked – excitatory synapse 
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of, anyway. For example, suppose for a particular computation it is important to know that 

there was not just one, but two spikes fired within close succession. This could be easily 

computed by setting the excitatory gain of the connecting synapse(s) such that a single spike 

does not drive the postsynaptic neuron to threshold, but that if two spikes arrive in close 

succession, threshold is reached and thus the neuron fires. The same logic also applies across 

different synapses, which allows the implementation of coincidence detection.  

 

Task 18. Now turn the Synapse 2 dial below midpoint. What happens? 

You should observe that now each presynaptic spike drives a hyperpolarising current in the 

postsynaptic neuron. This is intended to mimic an inhibitory connection. In case of Spikeling, 

this connection is programmed to be mirror symmetric to the excitatory connection in every 

way. However, in reality the gain and time courses of synaptic events can vary dramatically 

and are another fundamental ingredient to building computational networks. For the purpose 

of this tutorial, the time-course of the synapses is fixed. However, advanced users can change 

this in the annotated Arduino code. 

 

 

Task 19. Put the postsynaptic neuron’s stimulus LED above the photodiode as before, 

but now hyperpolarise it using the static input dial such that the LED alone does not 

elicit spikes. On the presynaptic neuron, make sure that it does not fire spikes at rest, 

and configure its input to be weakly excitatory. Now take a torch to stimulate the 

photodiode on the presynaptic neuron and thereby make it spike. Can you get the 

postsynaptic neuron to spike? 

Neither the stimulus light nor the synaptic excitation alone should be sufficient to drive a spike 

in the postsynaptic neuron. However, if you make the presynaptic neuron spike using the torch 

at the same time as the stimulus comes on, the two excitatory inputs will summate and you 

should be able to reach threshold. This is an example of a coincidence detector. If the 
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postsynaptic neuron spikes, it means that both the stimulus (stimulator) AND the presynaptic 

stimulus (torch) were both active at the same time.  

 

 

One “famous” coincidence detector is used in auditory systems for comparing the signal 

between two ears. Imagine sound coming from your left. Because sound travels slowly (330 

m/s) it will arrive at your left earhole about a millisecond before it arrives at your right earhole. 

Neurons in each ear’s cochlea will spike as soon as the sound arrives and send that signal to 

the brainstem where the signals from the two ears are combined. Here there are bilateral 

neurons that receive inputs from both ears. These are the coincidence detectors. If the sound 

came from the left, the spike from the left ear comes in before the spike from the right ear and 

its associated postsynaptic current will decay rapidly, such that it does not overlap with the 

current triggered by a spike from the right ear. As a result, the central neuron will not spike. 

However, if the sound comes from e.g. straight ahead, it will reach both ears are the same 

time which in turn means that the left and right spike inputs to the central neuron will coincide 

and drive a postsynaptic spike. Such as central neuron therefore encodes the direction of 

sound. If we now slightly offset the speed by which the spikes travel, or implement delays of 

initial spike generation in either ear, we can build a neuron that is selective for any sound 

direction in the azimuth plane (horizontally around the head). 

This kind of logic expands into a multitude of computational operations. The above 

coincidence detector is perhaps the simplest of logical operations: an “AND” gate. This 

means that Input 1 AND Input 2 need to be “high” for the spike to be triggered. Another logical 

operation is an “OR” gate – Input 1 OR Input 2 need to be high. This is easily achieved by 

increasing the synaptic gain such that one neuron alone can drive the postsynaptic spike. 

There are many such logical operations (e.g. NOR, XOR, XNOR), which can be thought of a 

computational building blocks of electronics and neuronal networks alike. If you simulate many 

neurons in a computer, it is straightforward to implement any of these logical gates. We can 
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try to set-up some of these using Spikeling. For example, how might you build an “inverse 

conditional” – i.e. a neuron that only fires if input 1 is high, unless input 2 is also high? How 

might you build a NOR gate (only fires when both Inputs 1 and 2 are “low”). How might you 

build an NAND gate (fires always except when both 1 and 2 are “high”). If you have more than 

two Spikelings at hand, try playing with these a bit. What kind of computations can you 

implement? (one useful reference for logical gates and their implementation and background 

can be found on Wikipedia: https://en.wikipedia.org/wiki/Logical_connective).  

Note that in their “pure form”, logical operations are Boolean (“True or False, no intermediate 

state is possible”). But neurons are noisy, so not all operations are equally “easy” to 

implement! (all are possible though). 

 

Task 20. Using what you have learnt(!) (and two Spikelings): Can you build an “OFF 

neuron” using only ON neurons as the input?  

One way of doing this is by setting the postsynaptic neuron at a high resting potential such 

that it continuously generates spikes. Now take a presynaptic neuron that responds to the light 

in an “On fashion” and connect it to inhibit the continuously active cell. If you tune the inputs 

right, you should be able to generate something like the below: 

 

This is not a very “good” Off cell. It is a bad Off cell. Sometimes it spikes during the light, and 

more problematically, the timing of the 1st spike after the light switches off is very variable. 

This is because now we are not using the presence of an excitatory drive, but rather the 

absence of an inhibitory drive as signal to generate spikes. Using this setup, you will find it 

very difficult indeed to tune the off cell to become more transient. The problem is that the 

synaptic current of the inhibition is slow to decay so after the stimulus switches off the inhibition 

will take a while to settle back down to zero. This results in a slow upwards trend of the 

membrane voltage which, as we saw in the beginning, is a very ineffective way to trigger 

Off response 

https://en.wikipedia.org/wiki/Logical_connective
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spikes. So, to make it a “better” Off cell, we would need to implement something that makes 

the membrane potential increase more rapidly after the inhibition turns off. One way to achieve 

this would be the implementation of a “rebound spike, while another would be the use of a 

graded (non-spiking) network feeding into Spikeling (as we saw before, membrane voltage is 

much better at tracking fast inputs below spike-threshold). While Spikeling could principally be 

programmed to mimic either or both of these possibilities, we will not be covering them here.  

 

Task 21. Using what you have learnt (and two Spikelings), can you build a “delayed ON 

neuron”? This is a neuron that responds with spike(s) after the onset of a stimulus, but 

with a delay? 

One way of implementing this delayed ON cell would be to use an excitatory synapse that 

requires more than one presynaptic spike to trigger a postsynaptic spike as shown below. 

Note the two separate small depolarising current that precede each other by ~100 ms – these 

come from the presynaptic neuron responding to the light with 2 spikes in close succession. 

The second incoming spike takes the postsynaptic neuron past threshold. 

 

 

Task 22 (final!):  

Using the delayed ON neuron circuit, plus an additional non-delayed ON transient 

neuron, can you build an elementary motion detector? (Hint: This will probably require 

3 neurons!)   

Delayed On response 


