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   Foreword  

 It has been said that “timing is everything.” While that is certainly true if you’re in 
show business, the same holds true if you’re designing a system-on-a-chip (SoC). 
SoCs are powering the hand-held consumer electronics revolution going on all 
around us. They make things like smart phones and tablets possible. Correct defi ni-
tion and management of timing constraints for an SoC are critical tasks. How well 
these tasks are done will impact the success of the chip project. 

 An SoC is typically a collection of many complex building blocks sourced from 
multiple suppliers. It is the designer’s job to stitch all these blocks together and 
achieve the sometimes competing goals of power, performance, and cost for the 
chip. And all of this happens while the whole team is under tremendous schedule 
pressure. The fact that so many SoC devices work the fi rst time is nothing short of 
a miracle. There are many challenges associated with SoC design and many signifi -
cant technologies that help make them possible. 

 In the chapters that follow, Sridhar Gangadharan and Sanjay Churiwala take an in-
depth look at timing constraints. The broad impact that timing constraints have on the 
success of an SoC design project is discussed. Many examples are presented for both 
ASIC and FPGA design paradigms. On the surface, defi ning timing constraints appears 
to be a straightforward process. It is, in fact, a complex process with many important 
nuances and interrelationships. Sridhar and Sanjay do an excellent job explaining the 
process with many relevant examples and detailed “how to” explanations. 

 As designs have grown in complexity, much effort has gone into initiatives focused 
on improving design effi ciency and managing risk. What is not fully understood is 
the impact that timing constraints have on both. Poorly managed or incorrect 
 constraints can have signifi cant negative impact on design effort and can lead to a 
chip failure. The chances of this occurring are growing with every new technology 
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node. I believe that timing constraints are coming upon us as a major area of design 
challenge, and I congratulate Sridhar and Sanjay for developing such a complete 
guide for this important topic. I hope you fi nd it useful as well. 

  Dr. Ajoy Bose 
  Chairman, President and CEO, Atrenta Inc. 

 San Jose, CA, USA 

Foreword
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   Preface      

 Dear Friends, 
 In today’s world of deep submicron, Timing has become a critical challenge for 
designers developing Application Specifi c Integrated Circuits (ASIC ) or System on 
a chip (SoC). Design engineers spend many cycles iterating between different stages 
of the design fl ow to meet the timing requirements. Timing is not merely a response 
time of a chip, but an integral part of the chip functionality that ensures that it can 
communicate with other components on a system seamlessly. That begs the ques-
tion, what is timing? How do you specify it? 

 This book serves as a hands-on guide to writing and understanding timing con-
straints in integrated circuit design. Readers will learn to write their constraints 
effectively and correctly, in order to achieve the desired performance of their IC or 
FPGA designs, including considerations around reuse of the constraints. Coverage 
includes key aspects of the design fl ow impacted by timing constraints, including 
synthesis, static timing analysis, and placement and routing. Concepts needed for 
specifying timing requirements are explained in detail and then applied to specifi c 
stages in the design fl ow, all within the context of Synopsys Design Constraints 
(SDC), the industry-leading format for specifying constraints. 

 We have often heard from many design engineers that there are several books explain-
ing concepts like Synthesis and Static Timing Analysis which do cover timing constraints, 
but never in detail. This book is our attempt at explaining the concepts needed for specify-
ing timing requirements based on many years of work in the areas of timing characteriza-
tion, delay calculation, timing analysis, and constraints creation and verifi cation. 

    Book Organization 

 Here’s how the book is laid out: 

 Chapters   1    ,   2    , and   3     introduce the subject of Timing Analysis – including its need 
in the context of design cycle. The descriptions in these chapters are vendor, language, 
and format-independent. 

http://dx.doi.org/10.1007/978-1-4614-3269-2_1
http://dx.doi.org/10.1007/978-1-4614-3269-2_2
http://dx.doi.org/10.1007/978-1-4614-3269-2_3
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 Chapter   4     provides an overview of the Tcl language, because SDC (Synopsys 
Design Constraints) acts as an extension to Tcl. The concept of SDC is also intro-
duced in this chapter. 

 These fi rst four chapters might be thought of as Introduction section. 

 Chapters   5     through   8     together form a section which talks about clocks, explaining 
how to apply clock-related constraints. These chapters explain various kinds of 
clocks and their relationships and how to specify those in SDC. 

 Chapters   9     and   10     explain how to apply constraints on the remaining (non-clock) 
ports. With this section, all the primary ports are covered. 

 Chapters   11    ,   12    , and   13     explain the need for timing exceptions. These chapters then 
go on to explain how to specify the exceptions correctly in SDC. 

 Chapters   14     and   15     deal with much more specialized topics. These concepts are 
less about individual constraints. Rather they delve into how design teams 
manage the world of constraints as they move across the fl ow, from front-end 
to back-end, partitioning the complete design to blocks and when integrating 
 individual blocks. 

 In Chap.   16    , we explain some other commands of SDC, which might have an impact 
on Timing Analysis. 

 Some of the commands are still not covered in this book. However, with the 
fundamental understanding gained on Timing Analysis and SDC through these 
chapters, it should be possible for a user to easily comprehend any remaining com-
mands, including any extensions that might come in future versions of SDC. 

 Most tools which support SDC typically also allow some extensions to SDC in 
order to achieve higher accuracy or better ease of use for the specifi c tool. Chapter   17     
provides an overview of the Xilinx extensions to the SDC timing constraints – for 
their product Vivado™.  

    Conventions Used in This Book 

 In general, the names of SDC keywords and its options are printed in  italics .  Italics  
are also used to represent words that have a special meaning as it relates to this book.  

    Additional Resources 

 SDC is an open source format distributed    by Synopsys, Inc. SDC Documentation 
and parsers can be downloaded for free from Synopsys website.  

Preface

http://dx.doi.org/10.1007/978-1-4614-3269-2_4
http://dx.doi.org/10.1007/978-1-4614-3269-2_5
http://dx.doi.org/10.1007/978-1-4614-3269-2_8
http://dx.doi.org/10.1007/978-1-4614-3269-2_9
http://dx.doi.org/10.1007/978-1-4614-3269-2_10
http://dx.doi.org/10.1007/978-1-4614-3269-2_11
http://dx.doi.org/10.1007/978-1-4614-3269-2_12
http://dx.doi.org/10.1007/978-1-4614-3269-2_13
http://dx.doi.org/10.1007/978-1-4614-3269-2_14
http://dx.doi.org/10.1007/978-1-4614-3269-2_15
http://dx.doi.org/10.1007/978-1-4614-3269-2_16
http://dx.doi.org/10.1007/978-1-4614-3269-2_17
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    Feedback 

 We have put in our best efforts to provide an accurate description of the concepts. 
We also got help from some experts in the industry to review the material for 
 accuracy. However, if you fi nd some descriptions confusing or erroneous, please let 
us know. 

 Happy Reading!   

 Sanjay Churiwala
 Sridhar Gangadharan
 

Preface
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                    Application-specifi c integrated circuit (ASIC ) is an IC targeted for a specifi c 
 application, e.g., chips designed to run graphics on a game console, standard 
 interfaces like USB, PCI bus to consumer electronics, special functions to control 
automotive electronics, and chips for smart phones. In the early days of chip design, 
ASICs were a few thousand gates. With advancements in deep submicron  technology, 
today’s ASICs run into millions of gates. Today, some of the more complex ASICs 
combine processors, memory blocks, and other ASIC or ASIC derivatives called IPs  
(intellectual property). These are called SoCs or system on a chip. The reality is 
today’s SoCs will become the blocks or IPs for the future SoC design. This complex 
nature of ASIC development requires a well-structured design fl ow that is scalable 
and provides enough fl exibility to designers and SoC integrators alike to defi ne a 
methodology for seamless design. 

 Another paradigm for IC  design that has gained popularity in recent years is 
FPGA  (fi eld-programmable gate arrays). FPGAs can be used to implement any 
function that can be developed as an ASIC, the only difference being that an IC 
designed as an FPGA can be programmed by the user after its manufacturing. This 
ability to fi eld-program the IC doesn’t restrict the user to any predetermined hard-
ware function, and IC can be tweaked based on changing standards providing 
reduced nonrecurring engineering cost and signifi cant time to market advantages 
over ASICs, although taking a hit on the performance and power consumption. 

 This chapter provides an overview to the typical design fl ow in ASIC and FPGA 
design. It also covers how timing constraints impact these fl ows. 

1.1     ASIC Design Flow 

 A typical ASIC fl ow can be broadly categorized into logical design  and physical design. 
Logical design begins with high-level design specifi cation and chip architecture. The 
chip architect captures high-level functional, power (how much power should the design 
consume) and timing (at what speed should the design operate) requirements. This is 
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followed by a register transfer-level description of the design. Commonly referred to as 
RTL  (register transfer level), this provides an abstraction of the functional behavior of 
the circuit in terms of how the logical operations on signals enable data to fl ow between 
registers (fl ops) in a design. This is typically captured using hardware description lan-
guages (also referred to as HDL s) like Verilog , SystemVerilog , and VHDL . Once the 
functionality of the design is coded, it is verifi ed using simulation . Simulation is a pro-
cess where various stimuli are applied to a representation of a design and the response 
of the design is captured. The objective is to validate that the resulting output matches 
the desired functionality of the circuit. For example, if you implement an adder, which 
includes two inputs and one output, the test vector will emulate inputs as two numbers 
that need to be added, and output should represent the sum of these numbers. At this 
stage, the design is ready for synthesis. 

 Synthesis  (aka logic synthesis) is the step where RTL  description is translated to a 
gate-level representation which is a hardware equivalent implementation of the func-
tionality described in the HDL . Let us consider the following description in Verilog:

    module fl ipfl op (d, clk, rst, q)   
   input d, clk, rst;   
   output q;   

   reg q;   
   always @(posedge clk)   
   if (rst)   

   q <= 1’b0;   
   else   

   q<= d;   
   endmodule     

 Synthesis tool will map this RTL description to a positive-edge-triggered fl ip- 
fl op with a synchronous reset. An HDL description is said to be synthesizable RTL, 
if it can be consumed by industry standard synthesis tools to map to a unique and 
unambiguous implementation. In this step, the designer also captures certain design 
and timing characteristics which are representative of the high-level objectives set 
forth by the chip architect, like clock frequency, delays available in the block, and 
target library, so that the synthesis tool can optimize the design to meet the require-
ments. Details on synthesis are available in Chap.   2     of this book. 

 After synthesis, the design is prepared for testability. DFT  or design for testability is 
the technique to ensure that there are enough hooks in place to perform tests on the IC 
after manufacturing so that faulty parts don’t get shipped. One such technique is called 
scan  insertion, also known as test-point insertion. Let us consider the circuit in Fig.  1.1 .

   In this circuit the second fl op is not controllable. However, by inserting the multi-
plexer structure, the user can control the second fl op via a  scan clock  and  scan enable . 
This results in all registers to be linked in a chain called the scan chain  or the scan 
path. Similar to clock control, the data to the fl op can also be controlled using the scan 
enable. This is used to test that data can be shifted through the design. This technique 
helps to make all registers in the design controllable  and observable  via the inputs and 
outputs of the design. 

1 Introduction

http://dx.doi.org/10.1007/978-1-4614-3269-2_2


3

 After synthesis and scan insertion, the hardware equivalent representation needs 
to be verifi ed against the original RTL  description so that the design intent is pre-
served. This is called  equivalence checking   and uses  formal    verifi cation  techniques. 
At this stage design is also ready for  STA   or  static timing analysis . It is worthwhile 
to note that equivalence checking only verifi es the functionality of the implemented 
gate-level representation against the original description but not whether it meets 
the frequency target of the implementation, which is the responsibility of STA. 

    STA is a method of checking the ability of the design to meet the intended timing 
requirements, statically without the need for simulation. Most STA engines require 
the designers to specify timing constraints that model how the chip needs to be 
characterized at its periphery and what assumption to make inside the design so as 
to meet the timing requirements set forth by the chip architect. This is specifi ed 
using an industry standard format called SDC  (Synopsys Design Constraints) which 
forms the premise of this book. Details on STA are available in Chap.   3     onwards of 
this book. STA step completes the logical design step and acts as the bridge between 
logical and physical design. 

 Physical design  begins with fl oor planning . After preliminary timing analysis, 
the logical blocks of the design are placed with the aim of optimizing area, aspect 
ratio, and how signals between the blocks interact. The objective is to ensure that 
there isn’t too much of inter-block interaction that causes congestion or diffi culty 
in routing. These factors have direct impact on power, area, timing, and perfor-
mance. Once the optimal fl oor plan  is achieved, the connections between blocks 
are routed. During the synthesis stage, many assumptions are made about clock 
network since that level of design information is not available until after fl oor 
plan. Floor planning is followed by clock tree synthesis  to distribute the clock as 
evenly as possible so as to reduce clock skew  between different parts of the design. 
This step of fl oor planning, placement, and routing is called  layout   of a design. 
During the physical design, STA may be done multiple times to perform a more 
accurate timing analysis as the assumptions made during the initial implementa-
tion are gradually solidifi ed. 

Flop not
Controllable

Scan Clock

Scan Enable

Flop is
Controllable

  Fig. 1.1    A sample circuit for 
scan insertion       
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 At this stage layout of an IC needs to be verifi ed to ensure the following criteria 
are met:

    1.    All rules laid out by the foundry where it will be fabricated into a chip are 
adhered to. This is called  DRC   or Design Rule Checking.   

   2.    The layout matches the netlist generated after synthesis. This is called  LVS   or 
layout versus schematic where the layout is formally verifi ed against the post- 
synthesis netlist.     

 Once the design is  LVS  and  DRC  clean, signoff static timing analysis is completed. 
After layout, design is not guaranteed to meet timing and may require to be tweaked 
further so as to meet the timing and frequency requirements. After signoff static tim-
ing analysis is successful, GDSII of the design is generated.  GDSII   is a geometric 
representation of the polygons that describe the actual layout of the design with all its 
connectivity. Fabs manufacture chips based on the  GDSII  that is released to them. 

 This whole fl ow from logical to physical design is commonly referred to as the 
 RTL2GDSII   fl ow, and process of releasing GDSII for manufacturing is termed as 
 tapeout  . Figure  1.2  shows the typical ASIC  design fl ow.

1.2        FPGA Design Flow 

 FPGA  comprises an array of logical blocks and connections between blocks, 
both of which are programmable. Figure  1.3  shows the internal representation of 
an FPGA .

Chip Architecture

RTL Design

Functional
Simulation

Synthesis & Scan
Insertion

Equivalence
Checking

Static Timing
Analysis

Floorplanning

Place and Route

LVS

Signoff Static
Timing Analysis

DRC

GDSII

Logical Design Physical Design

  Fig. 1.2    ASIC design fl ow       
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   Logic block  is used to defi ne the functionality of the circuit, and its complexity can 
vary depending on the function the user is trying to implement or the target FPGA  
from the vendor. This has direct correlation to the placement, routing, and timing 
analysis. Figure  1.4  shows a representative hypothetical logic block structure.

   The logic block consists of a  LUT   or lookup table, which can be used to imple-
ment any arbitrary combinational function. The output of the LUT is then registered 
or connected to the output directly.  Tracks  , a collection of horizontal and vertical 
wire segments, run between the logical blocks. These can be programmed using 
switch boxes to indicate the actual connectivity between the intersecting horizontal 
and vertical wires. Figure  1.5  shows the internals of a switch box.

   FPGA  design fl ow is similar to ASIC  fl ow in the logical design portion. The user 
writes the RTL description using one of the HDLs. The HDL is functionally verifi ed 
using simulation and then synthesized to logic gates. However, the physical design is 
vendor dependent. Post synthesis, the netlist is compiled to target FPGA on which it 
needs to be mapped. This compilation step includes mapping netlist functionality to 
logic block, placing the logic blocks and routing between the blocks using the tracks 
available in the target FPGA. Place and route is timing constraints driven to ensure the 

  Fig. 1.3    Internal representation of an FPGA       

Look Up
Table

  Fig. 1.4    Representative logic 
block       
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timing requirements of the IC are met. Once place and route is complete, the delays of 
the circuit are generated in  SDF   (standard delay format). This SDF fi le is used along 
with the post-layout netlist to do back-annotated full-timing gate-level simulation 
( FTGS  ). Since simulation is not always exhaustive, accurate static timing analysis is 
also performed at this stage. Once all the verifi cation is complete, the device is pro-
grammed. Figure  1.6  shows the FPGA  design fl ow.

   Since FPGA fl ow is faster to execute, it has now become quite common to 
 prototype ASICs and SoCs using an FPGA. This is called FPGA prototyping .  

  Fig. 1.5    Switch box       
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  Fig. 1.6    FPGA design fl ow       
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1.3     Timing Constraints in ASIC and FPGA Flow 

 The successful tapeout of any chip is measured by a variety of factors. This includes how 
well the design adheres to the timing, power, and area objectives set by the architect in 
addition to meeting all the functional requirements. Given the complexity of both ASIC 
and FPGA design fl ows, it is prudent to establish checks and balances at each stage of 
the design fl ow for this measure to prevent any late-stage design changes and ECOs. 

 From a timing perspective, at the architecture stage the architect will assign block 
budgets which are handed off to block owners. Depending on whether a block is a 
derivative design or being developed from scratch, the RTL designer will create initial 
timing constraints or tweak existing ones for synthesis. This will form the baseline for 
all runs in the implementation fl ow and typically includes defi ning clock frequency 
and budgets in the subblocks. This results in an unoptimized netlist with ideal clock s 
(clock with zero delay). Once logic optimization step is completed by the synthesis 
tool, STA is done. At this stage more accurate timing intent in the form of intra-block 
delay, clock latency, and clock skew is provided, with objective that design meets all 
setup and hold requirements and correctly estimates any interconnect delay. 

 During the physical design stage clock assumptions (skew and network delays) 
made during logical design get solidifi ed. Delays can be computed more accurately 
using the actual parasitics  extracted from the real routing. Clock tree synthesis is 
done to balance the clock tree to reduce any clock skew . 

 Timing is critical component in this fl ow and its impact is uniform whether in the 
ASIC or FPGA fl ow. If you look at the evolution of chip, timing plays an integral 
part at each step of the fl ow. It is constantly tweaked and verifi ed as the design pro-
gresses through the implementation fl ow. At each step the designer tries to ensure 
that original timing intent as prescribed by the chip architect is preserved. A signifi -
cant duration of physical design cycle is spent on achieving timing closure.  

1.4     Timing Constraint Issues in Nanometer Design 

 As described in the last section, timing constraints  touch many stages of design 
fl ow. Given the strong dependence, designers face many pain points ranging from 
creation, verifi cation, to validation of timing constraints. During the logical design 
step, creation of constraints is an error-prone and iterative process. The designer 
needs to translate the chip architect’s requirements into equivalent, yet reasonable, 
constraints. However, at this stage most designers are concerned about meeting the 
functional requirements, and timing ends up taking a backseat. Once block-level 
constraints are created, they need to be validated for correctness. The designers also 
need to ensure that constraints are in sync with the design. 

 When block design is complete, the design and the constraints are handed off 
to the subsystem or chip integrator. The integrators develop their own top-level 
constraints which have to be consistent with the blocks; otherwise, a block which 
may have met timing may not function when integrated into the subsystem or chip. 

1.4  Timing Constraint Issues in Nanometer Design
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 During the physical design, power optimization changes like clock gating may 
not take into account its impact on timing constraints, thereby deviating from the 
original timing intent. To aggravate problems further, there is knowledge disconnect 
between RTL design and physical design teams. RTL design teams tend to be less 
concerned about timing since their objective is to meet the functionality. The physi-
cal design team is responsible for meeting the timing; however, they don’t know the 
internals of the design. They have to rely on RTL designer to bless the timing con-
straints. This disconnect results in unnecessary iterations having direct impact on 
time to market.  

1.5     Conclusion 

 ASIC and FPGA design fl ows depend heavily on timing constraints. Most design 
fl ows are heavily focused on verifying the correctness of the functionality of the 
design – represented through RTL. However, an equal emphasis has traditionally 
not been given to validation of timing constraints. Timing constraints issue can 
cause unpredictable design schedule, delay tapeout, increase iterations between 
logical and physical design teams, and result in late-stage ECOs. A set of con-
straints if not written properly can greatly diminish the ability to reuse the block in 
future SoCs. Since constraints impact performance of the realized hardware design, 
the quality of timing constraints has a direct correlation to the quality of silicon. As 
we will see in subsequent chapters of this book, the world of constraints is full of 
very fi ne-grained nuances. Thus, it is very important to understand and write con-
straints which are correct as well as effi cient.    

1 Introduction
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                    Synthesis is the fi rst step in the design process, where timing constraints are used. 

2.1     Synthesis Explained 

 Let us consider a 3-bit counter, which counts in the sequence  0 → 5 → 2 → 7 → 6 
→ 3 → 5 → 1 → 0 . If we have to realize the gate-level circuit for this counter, it 
would take a lot of time to draw the  Karnaugh map   and then realize the logic feed-
ing into the  D  pin of each of the 3 fl ops which form the counter. 

 However, it is much faster to write an HDL  code, which describes the above 
functionality. This HDL code can then be taken through a tool, which will create the 
corresponding netlist. 

 Synthesis  in the context of electronic design means realization of a gate-level 
netlist to achieve a specifi c functionality. Besides the specifi c functionality, the pro-
cess of synthesis might also meet certain other requirements, namely, power, fre-
quency of operation, etc. 

 Sometimes, there are specialized synthesis tools for specifi c kinds or portions of 
circuit, e.g.:

•    Clock tree synthesis – which creates the clock tree  
•   Data path synthesis – which creates a repetitive structure in the data path  
•   Logical synthesis – used for realizing all kinds of logical circuits    

 Usually, the word “synthesis” just by itself means logical synthesis only.  

    Chapter 2   
 Synthesis Basics 
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2.2     Role of Timing Constraints in Synthesis 

 The design process involves a lot of steps. These steps are of various kinds, e.g.:

•    Capturing intent  
•   Verifying that the design is in line with what we desire  
•   Estimating certain characteristics  
•   Actually realizing the design    

 The last series of steps are also called implementation  steps. Synthesis is the fi rst 
among the implementation steps. The following subsections give a few examples of 
the choices that a synthesis tool might need to make and the basis of the decision. 
These are all examples of additional information (beyond functionality) that the 
synthesis tool needs to be provided through constraints. 

2.2.1     Optimization 

 For a synthesis tool to realize a netlist, it needs several pieces of information. The 
fi rst information is the functionality that the realized netlist needs to perform. This 
information comes from the HDL  description. 

 For a device, obviously functionality is the most important consideration. 
However, designers have to be also very sensitive to:

•    Area: We want to fi t as much functionality into the same unit area as possible.  
•   Power: We want to conserve battery power and also reduce junction heating.  
•   Performance: We want to get highest possible speed from the device.    

 However, each of the above goals may impact the others and sometimes nega-
tively. For example, if we want to get best speed, we will need to have higher drive 
devices, which will mean higher power and greater area on silicon. So, instead of a 
designer trying to squeeze out the maximum performance, the designer might want 
to get just about enough performance that would achieve the purpose and, in the 
process, save on area and power. 

 A designer communicates his requirements around area, power, and performance 
to the synthesis tool through  constraints  . Once the synthesis tool is able to achieve 
a circuit that meets these goals, the tool need not make any further effort to realize 
a “better” circuit. Any further attempt to improve in any one dimension could 
worsen the other dimensions. 

 So constraints are used to tell the synthesis tool – among the many possible 
implementations possible to realize the same functionality, which should be chosen 
so that all the three requirements on area, power, and performance are met.  
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2.2.2     Input Reordering 

 Let us consider a function involving  AND ing of four inputs,  a ,  b ,  c , and  d . One of 
the simplest realizations of this circuit is as shown in Fig.  2.1 .

   However, now imagine that the input  d  arrives much later than other inputs. So 
the fi nal evaluation of the circuit has to wait till  d  arrives and passes through 2  AND  
gates. On the other hand, there can be an alternative realization of the same func-
tionality as shown in Fig.  2.2 .

   In this circuit, by the time  d  arrives, the other three signals have already been 
evaluated, and  d  has to travel through only one  AND  gate. 

 Though both circuits perform the same functionality and have similar area 
(3  AND  gates), a designer might prefer Fig.  2.1  or  2.2 , depending upon whether  d  
comes along with all other signals or whether  d  comes much later than all other 
signals. If instead of  d , it was some other signal which was coming much later, then 
 d  might be swapped with that late arriving signal. 

 Thus, depending upon the relative arrival time for various inputs feeding into the 
same combinational logic, the synthesis tool might need to decide which design 
should be chosen among the available choices – so that the last arriving signals have 
to cross the minimum number of logic. 

 Designers use constraints to convey to the synthesis tool about the arrival time of 
various input signals.  

a

d

b

z

c

  Fig. 2.1    ANDing of 4 inputs       

a

d

b

z
c

  Fig. 2.2    Alternative 
realization of Fig.  2.1        
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2.2.3     Input Buffering 

  Drive   can be thought of as current-carrying capability. Thus, higher drive means 
output would switch faster and a higher amount of load can be connected. Let us 
say, a specifi c input has to drive a huge fanout cone. But, whether the specifi c input 
can drive such a huge cone or not depends upon the driving capability of the signal 
which is driving the input. If the signal driving the input cannot drive the load for 
the whole fanout cone, then the signal would need to be buffered before it can be fed 
into the huge cone. 

 Figure  2.3  shows an input which has to drive a fanout load of  9 . However, it does 
not have the drive strength for that kind of load. Hence, buffering is done on the 
input, before feeding into the load. With this buffering, the load that the input has to 
drive is only  3 .

   Designers need to tell the synthesis tool the driving capability of the external 
signal which is driving the input so that synthesis tool can decide whether or not to 
put additional buffers. And constraints are used to convey information about the 
drive strength of the external inputs.  

2.2.4     Output Buffering 

 Similar to input buffering, a design might need to have additional drive capability 
at the output side, if the output port is expected to drive a huge load externally. 
So designers need to convey to the synthesis tool – the external load that a port 

I1

  Fig. 2.3    Input being buffered        
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might have to drive. Synthesis tool will then choose appropriate cells or buffers with 
the right drive strengths that can drive the load. And constraints are used to convey 
information about the external load that needs to be driven by the output port.   

2.3     Commonly Faced Issues During Synthesis 

 Synthesis step can have different class of issues. In fact, one could write a whole 
book around issues faced during synthesis. This section gives a glimpse of some 
issues around synthesis related to constraints. These same topics are discussed in 
much more details in subsequent chapters of the book. 

2.3.1     Design Partitioning 

 Though synthesis techniques have provided a major leap in terms of designer’s 
productivity, the biggest bottleneck of a synthesis tool is the size of a design that it 
can synthesize. The design sizes today are humongous, compared to the sizes of 
design that synthesis tool can synthesize. 

 Thus, a full design has to be broken into smaller units, called blocks . During 
synthesis stage, the blocks are created based on logical view of the design, namely, 
related functionality being put into one block. This kind of partitioning is called 
 logical partition  . A synthesis tool would synthesize one block as a unit. Thus, a 
synthesis tool can view only a block at any given time, and it does not see how the 
block interacts with the rest of the design. Figure  2.4  shows how a design is com-
posed of logical blocks.

   The outermost rectangular boundary denotes the complete design. Usually, the 
design would have requirements listed for the whole design. Because the synthesis 
tool cannot synthesize the whole design, so the design is partitioned  into smaller 
blocks ( B1  through  B6 ), represented by inner smaller rectangles. 

 At any time, synthesis tool views a block . But, the requirements are known for 
the complete design. So the top-level constraints for the complete design have to be 

B1 B2 B3

B4 B5 B6

  Fig. 2.4    A design partitioned 
into blocks       
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broken into constraints for individual blocks. These constraints for individual 
blocks have to be created – based on interaction of the block with all other blocks. 
For example, for the block  B1 , the constraints have to be specifi ed to defi ne its inter-
action with primary inputs for the design as well as its interaction with other blocks 
 B2  and  B4 . 

 So what was supposed to be just the constraints at the top level now gets trans-
lated into many more constraints defi ned at each interface. And as the number of 
constraints grows, there are higher chances of errors. In the fi gure, the partitions are 
shown as regular rectangular blocks. In reality, all the blocks interact with many 
blocks, and that increases the complexity of the total set of constraints. 

 Let us consider the interaction between blocks  B1  and  B2 . Based on this interac-
tion, there would be some constraints for blocks  B1  and corresponding constraints 
for block  B2 . Many times, the people or the team working on these different blocks 
are different. There have been many instances where the constraints written for 
interfacing blocks are not consistent. For example,  B1 ’s designer might assume that 
he will get 50 % of the total path time for his block and the remaining 50 % would 
be for rest of the path. Similarly,  B2 ’s designers might also assume 50 % of the path 
time available for his block. So between the two blocks, they might consume the 
entire path time, leaving nothing for the top-level routing for connecting the two 
blocks.  

2.3.2     Updating Constraints 

 It seems slightly strange that such inconsistency might happen among blocks of the 
same design. However, such inconsistencies usually creep in gradually as various 
blocks keep getting impacted due to some other block not meeting their initial 
requirements. 

 Let us assume block  B1  failed to meet some of its timing, which causes an impact 
on  B2 . Block  B2 ’s designer might now have to update his constraints, and its impact 
might be on the  B2/B3  and  B2/B5  interface. However, at this stage, either  B3  or  B5  
constraints might get out of sync with the updated constraints of  B2 , and in many 
cases, these changed constraints might disturb delicate balance of area, perfor-
mance, and power. Thus, the block-level constraints may have to be updated depend-
ing on how the block is integrated in the subsystem or chip.  

2.3.3     Multi-clock Designs 

 Most designs today have multiple processing cores, running on different clock fre-
quencies. There could be different peripherals for these cores. In the process of 
integrating these cores which are being developed simultaneously by design groups, 
an inadvertent mistake of constraining a high-frequency core with a low-frequency 
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constraint may be missed during initial implementation. These may be eventually 
caught during full-chip STA, post integration. That could be pretty late as the block 
constraints would now have to be redone to the original specifi cation adding an 
unnecessary iteration to the chip integration.   

2.4     Conclusion 

 This chapter gave a glimpse of the need for constraints and nature of some of the 
problems related to synthesis. Synthesis has been used just as an example of an 
implementation tool. All implementation tools are driven by constraints. Most of the 
discussions mentioned in this chapter would apply to all implementation tools, not 
just synthesis. So incorrect constraints impact the ability of these tools to implement 
a circuit which will meet its performance, area, and power goals. 

 As design complexities are growing, the constraints themselves are also becoming 
complex – in order to be able to correctly represent the complex requirements as well 
as relationships. The nuances of the design process involving partitioning, integra-
tion, and multiple cores operating at different frequencies all add to further problems 
around creating constraints. 

 Several implementation tools also allow constraints to provide physical informa-
tion, such as physical shape of a block, or specifi c location of ports, etc. These 
physical constraints are not covered in this book.    

2.4  Conclusion
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                    Before we learn to constrain our design, let us fi rst understand the basics of timing 
analysis. Fundamentally, timing analysis is of two kinds:

•    Dynamic timing analysis  
•   Static timing analysis (STA)    

 Dynamic timing analysis means we apply a set of vectors at the inputs and 
observe the time at which the signals reach various points in the circuit. By knowing 
the time difference between the inputs applied and the signals observed, we know 
how long the signal takes to travel through the specifi c path segment. For fl ops, by 
observing when  D  input arrives with respect to the  CLK  input, we know whether or 
not the specifi c fl op meets the setup and the hold requirements. Thus, this process is 
dependent on timing simulation and is dependent on the stimulus being applied. On 
the other hand, static timing analysis  analyzes the circuit topology to compute the 
same information without the need for any input vectors. 

 Usually, timing analysis means static timing analysis. In the context of this chapter 
also, timing analysis would mean static timing analysis, unless otherwise mentioned. 

3.1     Static Timing Analysis 

 The concept of STA  started around mid-1990s. Since then, static timing analysis 
(STA) has been gaining ground as the preferred method for timing analysis. STA 
is not dependent on the input vectors. STA involves analyzing the circuit topology 
and computing the time window within which various signals can reach various 
points in the circuit and then comparing it against the time when those signals are 
required at that point. As long as the range of time during which the signals arrive 
meets the required time, the design is clean – from STA perspective. The main 
reason why STA became popular vis-à-vis dynamic timing analysis is that it is 
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much more exhaustive, as STA does not depend on input vectors’ completeness. 
Starting with Chap.   5    , we will learn the specifi cs of STA in much more detail. For 
the time being, let us consider a very abstract view of a circuit – as shown in 
   Fig.  3.1 .

   STA would know at what times the signals can arrive at inputs  I1  and  I2  (and all 
other inputs). Now, STA would compute at what time these signals can reach the 
output  O1  (and all other outputs). STA would also know at what time the signal is 
required at the output  O1 . By comparing the time that the signal is available at  O1 
–  with the time when it is required – an STA tool will report whether the timing has 
been met or failed. If the circuit contains some fl ops, then, STA will also need to 
compute at what time each fl op receives its clock and data. STA tool will then com-
pare the data and clock arrival time on each fl op with the setup and hold requirement 
for the fl op. If the data arrival time does not meet the setup and the hold requirement 
for the fl op, STA tool will report a violation. Let us dive slightly deeper into the 
circuit shown by Fig.  3.1 . Let us say, Fig.  3.2  shows a small portion of the above 
circuit.

   For this portion of the circuit, the data at  F1  should arrive before the setup 
window starts for  F1 , for each active edge of clock on  F1 . On the other hand, the 
data should arrive only after the previous data has been captured reliably (i.e., do 
not violate the hold time). This depends on the time at which triggering edge 
arrives on  F1 , the delay through the combinational circuit  C1 , and the input arrival 
time at  I1 . 

 Similarly, for the fl op  F2 , the timing requirement will depend on the time at 
which triggering edge arrives on  F2 ’s clock pin, the delay through the  combinational 
circuit  C2 , as well as the time at which data starts from  F1  which in turn depends on 
the triggering edge at  F1 ’s clock pin. 

I1

I2

O1

  Fig. 3.1       A sample (abstract) 
circuit for STA basics       

I1

Clk

F1
C2

F2
C1 O1

  Fig. 3.2    Internals of the circuit shown in Fig.  3.1        
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 In Sect.  3.4 , we will see how STA depends on delay calculation. Because STA 
depends so heavily on delay calculation, it can only be carried out after the 
gate- level netlist is available. There can be no STA at the RTL . Even for gate level, 
as the design progresses further into the fl ow, the estimates for routing delays and 
capacitive load become more accurate, which allows for better delay computation 
and so more accurate STA.  

3.2      Role of Timing Constraints in STA 

 An STA tool gets the circuit description from the corresponding design description, 
HDL  being the most commonly used form. It also takes in library  inputs – mostly to 
know about technology-dependent characteristics, e.g., delay values through spe-
cifi c gates. 

 Another set of inputs that STA tools need are related to the arrival time and other 
characteristics of various signals at the inputs and the time at which various outputs 
are required. These inputs are provided through timing constraints. Timing con-
straints  perform several roles during an STA. 

3.2.1     Constraints as Statements 

 Certain constraints are simply a statement  to the tool. The tool need not validate 
these statements for accuracy or correctness. The tool should simply use this as an 
input for itself, in order to validate that the timing would be met. Typically, this is 
information about some condition external to the design – something that the tool 
cannot determine on its own. 

 For the circuit given in Fig.  3.3 , the following could be examples of constraints 
which are simply used as statements:

•     The time at which input  I1  arrives at the boundary  
•   The time at which input  I2  arrives at the boundary  
•   The transition time  (time needed for a signal to change its state from logic  0  to 

logic  1  or vice versa) for the inputs at  I1  and  I2   
•   The load that has to be driven by the output  O1      

O1
I1

I2  Fig. 3.3    Sample statement- 
type constraints       
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3.2.2     Constraints as Assertions 

 On the other hand, there are certain constraints which act as assertions . The tool 
needs to validate that the design meets these constraints. This is what the STA is 
about. After doing various computations, if the tool fi nds that the timing meets these 
constraints, STA is considered as pass, or timing is considered to be met. Alternately, 
if these constraints are not met, STA or timing is considered as failed. 

 Looking at the same example circuit as shown in Fig.  3.3 , an example assertion- 
type constraint would be:

•    The time at which output  O1  should be available at the boundary     

3.2.3     Constraints as Directives 

 At some other times, constraints act as directives  to certain tools. This happens for 
implementation  tools, such as synthesis  or place and route. These implementation 
tools take these constraints as a goal that they try to meet. Let us consider the circuit 
shown in Fig.  3.4 .

   For the example circuit, a clock tree synthesis  tool will now put an elaborate 
network structure so that each of the 1,000s of fl ops can be driven by this network. 
An example directive for such a clock tree synthesis tool could be the delay for the 
clock network. The clock tree synthesis tool should implement the tree network in 
such a manner that the delay through the network meets the specifi ed value.  

  Fig. 3.4    Clock tree       
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3.2.4     Constraints as Exceptions 

 There are certain constraints which do the opposite, namely, they specify scope for 
leniency. Suppose certain paths are constrained to meet certain timing. However, for 
some special reason, there is no need for those paths to meet those timings. Or, they 
can work well, even if they are given much more relaxed requirements. These are 
called timing exceptions. Chapters   11     and   12     have several examples of such timing 
exceptions.  

3.2.5     Changing Role of Constraints 

 Sometimes, the same constraint changes its role. It could be a statement at one stage 
of the design, and at another stage of the design, it could become a directive. 

 Let us consider the circuit shown in Fig.  3.4  once again. There is a constraint 
which specifi es the delay through the clock network . If somebody wants to do an 
STA before the clock network has been synthesized, then, this constraint (i.e., delay 
through the clock network) is simply a statement . The STA tool should simply 
assume that the delay through the clock network is the specifi ed value. 

 Now, during clock tree synthesis, this same constraint becomes a directive . The 
clock tree synthesis tool needs to synthesize the clock network such that the delay 
through the clock network is equal to the value specifi ed. 

 Once the clock tree synthesis has been done, the STA can compute the actual 
delay through the clock tree network. The same constraint becomes meaningless 
and should be thrown away!!! 

 Thus, the same constraint (delay through the clock network):

•    Is a statement for pre-layout STA – where it assumes this as the delay through the 
network  

•   Is a directive for clock tree synthesis tool – which tries to realize the clock net-
work such that its delay is within the specifi ed range  

•   Is meaningless for post-layout STA    

 We can consider another example through Fig.  3.5 .
   For the given circuit, there will be a constraint specifying the output required 

time. For an implementation tool like synthesis, this constraint acts as a directive  

O1
C1

  Fig. 3.5    Output required 
time constraint       
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for implementing the combinational block  C1 .  C1  should be realized in such a 
 manner that the delay through it still allows the signals to reach output  O1  at  the 
required time. 

 On the other hand, for an STA tool, this constraint acts as an assertion . The STA 
tool needs to check that the output is available at  O1  at  the required time. If the 
output is not available at the required time, it should report an STA or timing 
failure. 

 Thus, timing constraints could be an input statement or an assertion or a directive 
or even a relaxation (called timing exception ). In most cases, the constraint itself 
does not indicate what role the constraint is playing. The role of the constraint has 
to be determined depending upon the context.   

3.3     Common Issues in STA 

 The biggest issue with STA is a sense of security. There are many chips which were 
STA clean but did not operate correctly. A clean STA causes the designers to get too 
confi dent. 

3.3.1     No Functionality Check 

 STA is only about timing analysis. It does not cover or verify anything else. It does 
no checking at all about functionality. A clean STA has no guarantee that the circuit 
will give the desired functionality. A clean STA would only mean that the circuit 
will operate at the specifi ed frequency. Simulation , assertion -based checks, FPGA 
prototyping , etc. are several techniques that need to be used for ensuring correct 
functionality.  

3.3.2     No Check on Statements 

 As already mentioned in Sect.  3.2 , there are some constraints which specify designer 
intent and are simply treated as statements. The STA tools do not question these 
statements of designer intent. The STA tools simply assume these constraints to be 
true. In most cases, they might not even have the information required to verify 
these constraints. If a user makes an error in giving such constraints, the tool could 
give erroneous results. And, a design which does not meet desired timing might 
simply appear to be STA clean – due to user error in giving incorrect constraints. 
Even if there are portions of circuits where timing characteristics could be deter-
mined, user-provided constraints generally override what can be implicitly inferred. 
For example, for generated clocks (e.g., clock dividers), it might be possible to 
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determine the clock characteristics. However, the user-specifi ed characteristics 
override, even if they are incorrect. Details on such scenarios are explained in 
Chap.   6     on generated clocks.  

3.3.3      Requirements to be Just Right 

 The constraints have to tread a very fi ne balance. Figure  3.6  explains this balance.
   The horizontal axis denotes the constraints required for the desired frequency of 

operation. The vertical axis denotes the constraints actually applied on the design. 
Moving away from the origin signifi es tighter constraints. The straight line at 45° 
denotes the ideal constraint. The constraints actually defi ned should be the same as 
what is actually required. 

 A point below the line means that the constraint applied is more lenient com-
pared to what is required. This means the STA might appear to be clean, but it has 
been done against conditions more lenient than the actual requirements, and so the 
fi nal device might not really work at the desired frequency. 

 An obvious solution is that the constraints should always be applied either on the 
line or above the line. This will ensure that the constraints are tighter than what is 
really needed. A clean STA here would ensure that the design is really timing clean. 
However, applying tighter constraints has its own set of problems.

•    In order to meet stricter timing, the tools might insert higher-drive  cells. These 
higher drive cells mean higher area  and power .  

•      Sometimes in order to meet the tighter constraints, more effi cient routing 
resources might be allotted to these paths, thus leaving out less effi cient resources 
for the actual critical paths. Thus, the paths which really need better resources 
might get lesser priority, because another path had been given an unnecessarily 
tighter constraint.  
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  Fig. 3.6    Constraints 
accuracy requirements       
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•   The worst implication of overly tight constraints is the timing closure  problem. 
The design might not meet timing, because it has been specifi ed a much tougher 
constraint than what is really needed. This might cause a lot of time to be spent 
unnecessarily – in trying to meet timing that is not even needed.    

 Thus, ideally the constraints should be applied just on the line – neither tighter 
nor lenient than the requirement. In case of a doubt, one has to err on the side of 
being a bit tighter.  

3.3.4     Common Errors in Constraints 

 Some of the most common kind of mistakes that users might make while writing 
constraints include:

•    Incorrect timing exceptions: Timing exceptions are the most misunderstood form 
of constraints. By specifying these exceptions, sometimes users provide leniency 
to paths, where it should not be provided.  

•   Incorrect clocks: The errors could be in clock period or waveform. However, the 
more common problem is around generated clocks. Most users concentrate only 
on the  divide_by  and  multiply_by  factors. However, the resulting generated clock 
waveform might have its positive and negative edges swapped – if not specifi ed 
carefully.  

•   Not in sync with changing RTL: Many a time as a design keeps getting retargeted 
or reused, the RTL gets updated. However, the corresponding constraints are not 
updated. This might be because of lack of knowledge/awareness. But, more often 
than not, it happens because a user does not easily see the correlation of the RTL 
changes with the changes that are required in the constraints.    

 In subsequent chapters, we will see the implications of various switches and 
options on many of the commonly used constraints. Each of these as a corollary also 
indicates the kind of mistakes that users might make while writing the constraints.  

3.3.5     Characteristics of Good Constraints 

 For any given timing requirement, there might be many ways in which constraints 
might be applied. A good set of constraints should satisfy the following conditions:

•    First and foremost, these constraints must be obviously correct!! Section  3.3.3  
has already explained the implication of incorrect constraints.  

•   The second most important characteristic is that by looking at the constraint, the 
intent should be clearly understood. This helps in review and catching mistakes, 
and it also insulates the constraints from minor changes in the design. For example, 
for the circuit in Fig.  3.7 , one might declare a false path between  Reg1  and  Reg2 . 
Another user might declare a false path between  Clock1  and  Clock2 . And, yet 

3 Timing Analysis and Constraints



25

another user might declare the two clocks  Clock1  and  Clock2  in asynchronous 
groups. Though, from the STA perspective, all three have the same impact, but from 
understanding the intent perspective, the third one (asynchronous clock groups) 
is the best in conveying exactly the reason for the constraint (actually, an excep-
tion), while the fi rst one (false path between the two registers) is the worst; it does 
not highlight that the false path is due to the clocks being asynchronous and has 
really nothing to do with the actual path between the two registers.

•      Specifi cally for exceptions, care should be taken to write them in a manner such 
that potential minor changes in the RTL should not cause the exceptions to 
become invalid. Looking at Fig.  3.8 , a mutually exclusive relationship between 
 Clock1  and  Clock2  seems reasonable. However, if the RTL is modifi ed so that 
either of the clocks gets used before muxing also, then the above exception gets 
invalidated and is most likely to get missed being updated.

•      The constraints should be written in a manner such that migrating to a new tech-
nology is the easiest. For example, instead of the input transition being specifi ed in 
terms of a specifi c transition value, it is better to specify the driver cell. As technol-
ogy changes, the new drive strength of the driver cell would be considered.  

•   Lastly, the constraints should be written in a manner that they are concise. 
It helps readability and reuse and most tools have lesser memory footprint for 
concisely written constraints. (Most SDC-based tools allow support for wild-
cards. However, an extensive usage of wildcard is not considered effi cient, even 
though the constraints become concise. This is because wildcards could match 
additional objects also.)    

 Constraints written to satisfy the above characteristics are less error prone.   

Clock1

Reg1 Reg2

Clock2

  Fig. 3.7    Intent of constraints       
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  Fig. 3.8    Exceptions being invalidated due to RTL change       
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3.4      Delay Calculation Versus STA 

 Delay calculation  and STA are two distinct and different things. STA depends heav-
ily on delay calculation. Delay calculation has applications other than STA also. 
Delay calculation (for a given process, temperature, and voltage conditions) per-
forms the following activities:

•    Compute the delay through specifi c gates, nets, net segments, paths, etc.  
•   Compute the slew at the output of specifi c gates.  
•   Compute the slew degradation as the signal passes through a wire (which in turn 

becomes the slew at the input pin of the next gate).    

 After this, the delay values might be used directly by an STA tool for its analysis. 
In this case, the delay calculator is a part of the STA tool itself. Or, the various delay 
values might be written out in an  SDF   (standard delay format ) fi le. This SDF fi le is 
read back into the STA tool. In this case, the delay calculation and STA are per-
formed by two different tools. 

 An STA tool’s functionality can be mentioned in an oversimplifi ed manner to be 
as follows:

    1.    Collects all statement-type constraints, e.g., when are the inputs available   
   2.    Passes some statement-type constraints to delay calculators, e.g., input transition time   
   3.    Looks at the circuit topology to identify various timing paths   
   4.    Obtains the path delays from the delay calculator   
   5.    Combines 1 and 4 to compute the arrival time of the signals at the desired points   
   6.    Compares the signal arrival time with assertion-type constraints which tell when 

should the signal be available there   
   7.    Provides a result – based on actual arrival time and the required time     

 Clearly, the correctness of the STA depends very heavily upon the underlying 
delay calculation .  

3.5     Timing Paths 

 A timing path  means a path through which a signal can continue to traverse, without 
having to wait for any other triggering condition. Along a timing path, the signal 
only encounters the delay through the circuit elements. 

3.5.1     Start and End Points 

 The point at which a signal’s timing starts is called a start point . Thus, for a given 
circuit, all inputs act as start points. The point at which a signal has to be timed is 
called an end point . Thus, all outputs act as end points. 

3 Timing Analysis and Constraints
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 At the registers, the  D  input has to wait for the  clock  trigger to arrive. So the 
transitions which reach till  D  now have to wait. The timing for the signal propagat-
ing further will now depend on when the  clock  arrives. This is the place where the 
 D  should be checked for meeting setup and hold requirements. Thus, the timing 
path ends here. So registers  also act as end points. 

 Similarly, registers also act as start points. A signal will start from the  Q  pin of 
the register and then propagate forward. Strictly speaking, the timing starts from the 
 clock  source, reaches the  clock  pin of the fl op, and then goes to the  Q  pin of the fl op 
and then proceeds further. So, in a strict sense, the register is not really a start point. 
However, for most practical purposes, registers  are referred as start points. Though 
during actual analysis, the path tracing starts from the clock source, for the circuit 
shown in Fig.  3.9 .

   Start points are:

•    Primary inputs ( I1, Clk, Clr, I2 )  
•   Registers ( F1, F2, F3, F4 ) – actually the clock sources of these registers!!    

 End points are:

•    Primary outputs ( O1, O2, O3 ) – this is where the check has to be made that the 
signals are available at these points at the desired time  

•   Registers ( F1, F2, F3, F4 ) – this is where the  D  input (and any other synchronous 
inputs) has to be checked for meeting setup and hold requirements    

 Let us look more closely at fl op  F3 . A signal reaching the asynchronous  clear  pin 
of the fl op need not wait here for any other trigger. It can simply continue through 
the  Q  pin of the fl op and onwards. Thus, timing path need not end here. So while  D  
pin of a fl op acts as an end point, an asynchronous   clear  or  set  pin might not be an 
end point.  

I1
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F1
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F2
C1 O1

O2
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I2 N1

C5
N2
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Clr

  Fig. 3.9    Timing paths       
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3.5.2     Path Breaking 

 A user can insert additional start and end points anywhere in the design by specify-
ing some starting conditions or a checking condition. By specifying a starting point 
or a checking point, the path gets broken at that point. 

 For example, in the same Fig.  3.9 , let us say, a user has specifi ed that the maxi-
mum delay from  N1  to  N2  should be some value. In such a case, a check has to be 
made at  N2 . Thus,  N2  becomes an additional end point . And it also becomes a start 
point  for the next segment of the path, namely,  N2  to  O3 . Similarly, since the signal 
tracing is starting from  N1 , it becomes a start point. And it also becomes an end 
point for the previous segment of the path, namely,  I2  to  N1 . 

 Now, if a user had specifi ed a delay for  I2  to  N1 , then,  N1  would become an end 
point. It would also become a start point for the next path segment. However,  I2  
remains only a start point. It does not become an end point, because there is no 
previous path segment. 

 Looking again at fl op  F3 , a timing path would mean  Clr  →  F3’s clear  pin → 
 F3’s Q  pin →  C3  →  F4’s D  pin. However, if a recovery – removal check is applied 
on the  clear  pin of  F3 , then the path gets broken at that point.  

3.5.3     Functional Versus Timing Paths 

 The path topology along which a transition travels from the start point till the end 
point is called a timing path. It is different from a functional path . A functional path 
means the topology along which a signal travels. 

 For example, for the circuit in Fig.  3.9 , a signal starting from I1 will traverse 
through  C1  and then reach the  D  pin of  F1 . After that, when the conditions are right 
(viz., a  clock  trigger), it will cross  F1  and continue on to  C2  and onwards. So this is 
a functional path. 

 However, this is not a timing path. Because, irrespective of when the signal 
arrives at  D , we do not know when will it proceed ahead to cross the fl op. It would 
depend on when the clock trigger arrives at the fl op. Timing path means, when a 
signal arrives, we can say when the next transition in the path will happen. For 
example, when the clock trigger arrives, we know the next transition will happen at 
the fl op output. 

 The actual transition may or may not happen. For example, if the  D  has the same 
value, the  Q  would remain unchanged. The timing path indicates the possibility of 
a transition. 

 Thus, timing paths indicate the sequence along which transition would follow 
without having to wait for any other event to happen. The actual value could be 
coming from somewhere else. Functional paths indicate the sequence in which val-
ues would change. The timing of the value change might still be controlled by 
something else. Sometimes, a timing path and a functional path could overlap, e.g., 
paths through a combinational circuit.  

3 Timing Analysis and Constraints
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3.5.4     Clock and Data Paths 

 A path which feeds into a data pin of a fl op is called the data path . So data path 
could be:

•    From a fl op output to another fl op’s data input  
•   From a primary port to a fl op’s data pin  
•   From a fl op output to an output port (to be fed into a fl op outside this design)    

 A path which feeds into the clock pin of a fl op is called the clock path . So clock 
path could be from the clock port till the fl op’s clock terminal, from the output of a 
clock divider or clock generator circuitry till a fl op’s clock terminal, etc. 

 We have used the word “fl op” to mean any synchronous element, e.g., memory.   

3.6     Setup and Hold 

 STA is mostly about setup and hold analysis. In general terminology, setup  means 
the time before a clock edge before which the data should be stable on the  D  (or any 
other synchronous) pin of a fl op. Hold  means the time after a clock edge for which 
the data should be held stable. 

3.6.1     Setup Analysis 

 In STA world, setup  means checking that the latest data is available before the 
required time. Thus, setup check can be made at any end point – not just the fl op. 
A setup check would be made even at outputs. 

 Setup can be defi ned in a more generic way as follows: The data needs to be set 
up and available before some reference event. In the case of a fl op, the reference 
event is the clock trigger. In the case of other end points, the reference event is the 
“time at which the data is expected to be available at that point.” 

 Let us consider the circuit shown in Fig.  3.10 .

F1
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  Fig. 3.10    Setup check at an output       
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   For the output  O , let us assume that the output is required to be available at  6  time 
units after the clock edge. Assume that the clock has a period of  10 . This require-
ment can be thought of as a setup requirement of  4  ( 10 – 6 ) on a hypothetical fl op 
( FH –  shown in dotted lines), which sits beyond the output port  O . So this setup 
check can be made at the output.  

3.6.2     Hold Analysis 

 Similarly, hold  means checking that the earliest time a new data can disturb the current 
signal after the stability requirements are met for the current signal. Thus, like setup, 
hold check can be made at any end point, including at outputs – not just the fl op. 

 Hold can be defi ned in a more generic way as follows: The data needs to be held 
and left undisturbed after some reference event. In the case of a fl op, the reference 
event is the clock trigger. In the case of other end points, the reference event is the 
“time at which the data is allowed to be changed at that point.” 

 Once again let us consider the circuit shown in Fig.  3.10 . For the output  O , let us 
assume that the output is required to be held for 2 time units after the clock edge. 
This requirement can be thought of as a hold requirement of  2  on the hypothetical 
fl op ( FH ), which sits beyond the output port  O . So a hold check can be made at the 
output.  

3.6.3     Other Analysis 

 Setup check ensures that the slowest moving data also reaches and meets the crite-
rion of being setup  in time. Thus, for the data path, it computes the maximum delay. 
Thus, it is also called  max analysis  . Since setup check considers the latest arriving 
data, it is also called  late analysis  . 

 Similarly, hold  check ensures that even the fastest moving data should not disturb 
the data, while it is expected to remain stable. Hence, for the data path, it computes 
the minimum delay. Thus, it is also called  min analysis  . Since hold check considers 
the earliest arriving data, it is also called  early analysis  . 

 Setup – hold analysis of STA is also called  min – max analysis   or  early – late analy-
sis  . It is more important to be familiar with the concepts, rather than getting too 
worried about the terminology. Sometimes, different tools might use different ter-
minology for the same concept. Or, sometimes, even the same terminology is used 
to refer to different concepts in different contexts. 

 Besides setup or hold analysis, STA performs pulse-width , recovery , removal  
analysis, etc. also.   

3 Timing Analysis and Constraints
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3.7     Slack 

 Slack refers to any additional margin over and above the requirement. Say, a signal 
is required to be available before time  6  (setup analysis). The last signal arrives 
there at time  4 . So the signal has a margin to take an additional  2  time units, without 
risking the operation of the design. This  2  is called  setup slack   . 

 Similarly, say a signal is required to be kept stable till time  2  (hold analysis). The 
earliest a new signal reaches there is at time  5 . So the signal has a scope for getting 
faster by another  3  time units. This  3  is called  hold slack  .

    Setup slack = data setup requirement – last arriving signal   
   Hold slack = earliest arriving signal – data stability requirement     

 Figure  3.11  explains this better.
   Let  E1  be the edge, where data needs to be captured.  S  represents a time which 

is ahead of  E1  by a duration equal to setup requirement. So the latest data should 
reach the end point before time  S . Let us say that the last arriving change happens at 
time  Ma . So the setup slack is the duration  Ma – S  (measured by  S – Ma ). 

 Just like the data has to arrive before  S , similarly, the data should not arrive so 
early that it can interfere with the capture of the data at the previous edge. Let  E0  be 
the previous edge, where previous data is supposed to be captured. For a reliable 
capture of the previous data, the current data should not disturb it till the hold 
requirement from  E0 . Let  H  represent a time, which is hold time after  E0 . So the 
current data can come only after  H . Let us say that the earliest arriving change hap-
pens at time  Mi . So the hold slack is the duration  H – Mi  (measured by  Mi – H ) 

 A positive slack  means timing has been met. And, a negative slack  means the 
timing has not been met. Depending upon the tool being used, the exact format of 
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setup
slack
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slack
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  Fig. 3.11    Slack       
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the report would be different. However, for any of the tools, they would trace the 
delay (maximum for setup analysis and minimum for hold analysis) through the 
path and also trace the time required for the signal. It would then compare the two 
numbers and provide the slack number (either positive or negative). The path delay 
or the required time computation also considers the delay along the path of the clock 
that is used to trigger the launch of the data at the start point and the capture of the 
data at the end point.  

3.8     On-Chip Variation 

 Consider the circuit shown in Fig.  3.12 .
   We want to do a setup analysis at fl op  F2 . So the slowest data path has to be 

considered. So we will consider the maximum delay for:

•     Clk → Q  delay of the fl op  F1   
•   Combo logic  C1   
•   Interconnect net    

 However, the data moves across the fl op only when the clock trigger arrives. 
Thus, we have to consider the clock path till fl op  F1  also with maximum delay. This 
same clock is also reaching fl op  F2  and acts as the reference event for the setup 
check. If we treat the clock path with maximum delay, then the reference event also 
gets delayed, which might allow additional slack for the data to arrive. So, for the 
clock path for the fl op  F2 , the minimum delay is considered. 

 Effectively, for the same clock, one segment ( A→ B → F1’s CLK  pin) has been 
considered as slowest path, while the other segment ( A → C → D → F2’s CLK  pin) 
is considered as fastest path. 

 This differential treatment for the different segments of the same network 
accounts for any variation on different portions of the same chip and is called on- 
chip variation . 

clk

F1
C1

F2

A

B

C

D

  Fig. 3.12    On-chip variation       
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 For the hold analysis, the data path has to be the fastest, so the segment of the 
clock network which feeds into  F1  will also be considered at fastest speed, and 
the segment which feeds into  F2’s CLK  pin will be considered at slowest speed. 

 This on-chip variation reduces the slack . There is a segment of the clock network  
which is common to both the launch and the capture fl ops (from the  Clk  port till  A ). 
The clock traversal through this segment will have the same delay whether for cap-
ture fl op or the launch fl op. This segment which is common to both the fl ops is 
considered to have same delay values. This prevents over-pessimism . Some tools 
apply on-chip variation for the whole clock path, including the common segment. 
After that, they apply a correction factor to compensate for the differential delay 
considered in the common segment. This gets refl ected in a term called  clock net-
work pessimism reduction   or  clock tree pessimism reduction  .  

3.9     Conclusion 

 Constraints provide a way for the user to specify their timing intent to an STA tool 
as well as implementation tools. STA is used to do setup and hold analysis and 
compute the slack for the paths being analyzed. In order to do this analysis, STA 
depends very heavily on delay calculations.    

3.9  Conclusion
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  The term “Synopsys Design Constraints” (aka SDC) is used to describe design 
requirements for timing, power, and area and is the most commonly used format by 
EDA tools used for synthesis, static timing analysis, and place and route. This chap-
ter provides a brief history of timing constraints and an overview of the SDC 
format. 

4.1     History of Timing Constraints 

 Timing constraints were introduced in the early 1990s. These were mainly used for 
specifying design characteristics that could not be captured in the HDL  and were 
used to drive synthesis. At that time these were commands for Design Compiler ®  to 
provide guidance to synthesis tool to optimize the design on area  versus perfor-
mance  curve. When    PrimeTime ®  incorporated the concept of Tcl , these constraints 
were modifi ed to be an extension of the Tcl format. This set was called SDC or 
Synopsys Design Constraints. Over the years this set was extended to capture design 
requirements for power as well. 

 SDC commands are based on the Tcl language. “Tool Command Language”  
(aka Tcl) is a very popular scripting language commonly used in developing appli-
cations for user interface and embedded systems platform. By making SDC an 
extension to Tcl, tool-specifi c commands can be intermixed with native Tcl con-
structs like variable, expressions, statements, and subroutines, making it a very 
powerful language for implementation tools. Today most implementation and STA 
tools use SDC as the standard format for capturing design intent for area, power, 
and performance. However, specifi c implementation tools may also use additional 
commands outside this set in order to guide their specifi c algorithms or capabili-
ties. These commands are generally referred to as the non-SDC commands. 

    Chapter 4   
 SDC Extensions Through Tcl                
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For  example, Design Compiler and PrimeTime have a number of non-SDC com-
mands that are used in conjunction with SDC constructs. Some of these extensions 
facilitate the analysis of constraints, e.g.,  collections , which provide a way to iter-
ate over a list of design objects. While some non-SDC commands are still used to 
capture design intent, they are  periodically included in SDC revisions based on its 
usefulness and popularity. For example,  set_clock_groups   which was a concise 
way of representing domain relationship between clocks was a non-SDC com-
mand until SDC standard  1.7  (March 2007). 

 Today Synopsys provides SDC as an open source format for describing timing 
intent. However, changes to the format are still controlled by Synopsys. SDC 
 documentation and parsers can be downloaded for free from   http://www.synopsys.
com/community/interoperability/pages/tapinsdc.aspx    . At the time this book was being 
written, the latest SDC version was SDC 1.9 which was introduced in Dec 2010.  

4.2     Tcl Basics 

 Most EDA tools today support Tcl as their command shell. This shell along with its 
SDC extension facilitates users to create Tcl-based wrappers in order to drive vari-
ous queries and instructions to the tool. So it is good to have a reasonable under-
standing of Tcl. A basic explanation of Tcl is given here. For a detailed understanding 
of Tcl, the reader is advised to read a book on Tcl. 

 Tcl is a commonly used scripting language that was developed in 1988 by John 
K. Ousterhout from University of California, Berkeley. Unlike a compiled  lan-
guage, where the language is parsed and compiled into machine code before exe-
cution, Tcl is an interpretive  language where each statement is parsed sequentially 
and executed right away. Hence, the language stops at the fi rst error it encounters 
in a script. 

 Tcl follows some basic semantics in its scripting. Each Tcl statement ends with 
a newline character or semicolon. If a statement spans multiple lines, then to con-
tinue on the next line, a backslash is provided at the end of the line. Every statement 
and its arguments are treated as strings. A string with more than one word enclosed 
in double quotes or braces is considered a single unit. A statement beginning with # 
is considered a Tcl comment. Here are a few examples:

    puts    "Hello, World!"; # This is a comment   
   puts {Hello, World!}     

 Each of these statements will print “Hello, World!” on stdout. Words separated 
by white space are treated as multiple arguments to the statement.

    puts Hello World!     

 This will give an error indicating it cannot process the arguments. Error will 
show up as: 

   cannot fi nd a channel named ‘Hello’       

4 SDC Extensions Through Tcl
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 Tcl has many kinds of language constructs. These are:

•    Variables   
•   List   
•   Expressions  and operators   
•   Control fl ow  statements  
•   Procedures     

4.2.1     Tcl Variables 

 Tcl variables  are a string of ASCII characters. Numbers are represented as ASCII 
characters as well. Variables are assigned using the  set   command. For example,

    set abc “1234”; # Here set is the command, abc is the variable and 1234 is the 
value assigned to it.     

 If you need to evaluate a variable, you need to use the  dollar ($)  symbol. For 
example,  puts    $abc  will print 1234. 

 A variable can be treated as an array , if an index is used along with variable 
name. An index doesn’t have to be an integer; it can also be a string. For example,

    set def(1) 4567; # Here def is the array variable and the index is set to 1.   
   set def(test) 5678; # Here the index is test     

 This index  “1”  of array is set to value  4567 . Note the value  4567  doesn’t appear 
in double quotes. In Tcl  “4567”  and  4567  both mean the same since everything is 
treated as a string. To get values of indices used in an array, use the command  array 
names  . For example,  array names def  will return the values  1  and  test . To evaluate 
an array variable, you can use the same mechanism, but the index needs to be speci-
fi ed. Let us consider the examples below:

    puts $def(1); # Valid Command   
   puts $def(test); # Valid Command   
   puts $def; # Invalid command     

 Since  $  has a special meaning in evaluating a variable, to actually print this symbol, 
it has to be preceded by a backslash  (\).  For example,  puts “I have a $bill”  will result in 
error if variable  bill  is not defi ned or will simply print the value of the variable. The cor-
rect way to use this would be:  puts “I have a \$bill” . The evaluation of a variable is also 
disabled within a brace.  puts {I have a $bill}  will not try to evaluate the variable  $bill . 
However, there are exceptions to this rule as illustrated by an example in Sect.  4.2.3 . 

 If you are trying to set a variable from another command, then enclose the com-
mand in square braces. Anything in square braces is evaluated before it is used. 
However, square braces within braces are not evaluated.

    set x [set y 100]; #This will set the value of x to 100   
   set x {[set y 100]}; #This will set the value of x to [set y 100]      

4.2  Tcl Basics
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4.2.2     Tcl Lists 

 Lists  in Tcl are a collection of objects. Like any list, you can add to a list, index into 
a list, and search within a list. Here are few examples:

    # The following creates a list   
   set gates [list AND OR NOT NAND NOR]   
   set gates {{AND} {OR} {NOT} {NAND} {NOR}]   
   set gates [split    “AND.OR.NOT.NAND.NOR” “.”]    

    # To add another item to a list, use lappend    
   set gates [lappend gates XOR]    

    # To search within a list, use lsearch   . This returns the matching indices of the list   
   # Returns 2, which is the index in the list   
   puts [lsearch $gates NOT];    

    # Returns -1, since there is no match found   
   puts [lsearch $gates XNOR];      

4.2.3      Tcl Expression and Operators 

 Expressions  in Tcl are evaluated using the  expr   command. Let us consider the fol-
lowing example:

    set x 10;   
   # Both statement will return the value of 30   
   expr $x + 20   
   expr {$x + 20}     

 In the example above, both of the  expr  commands will result in the same value. 
However, Tcl recommends the expression with braces as it facilitates faster 
execution. 

 Since expression evaluation is very closely related to operator used, Tcl language 
provides a comprehensive support for logical and arithmetic operators. Table  4.1  
shows the list of operators  supported.

4.2.4        Tcl Control Flow Statements 

 Tcl control fl ow  statement consists of the following category of constructs:

•    Iterating over lists  
•   Decision making  
•   Loops  
•   Subroutines    

4 SDC Extensions Through Tcl
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4.2.4.1     Iterating over Lists 

 To iterate over lists, Tcl provides the  foreach   construct.

    set gates [list AND OR NOT NAND NOR XOR]   
   set index 1   
   foreach element $gates {   
   puts “Gate $index in the list is $element”   
   incr index; #This increments the index   
   }     

 This will generate the output as:

    Gate 1 in the list is AND   
   Gate 2 in the list is OR   
   Gate 3 in the list is NOT   
   Gate 4 in the list is NAND   
   Gate 5 in the list is NOR   
   Gate 6 in the list is XOR     

 The Tcl  foreach  gives the user a unique ability to iterate over multiple lists simul-
taneously. Let us consider the example below:

    set allgates {}   
   foreach gatelist1 {AND OR XOR} gatelist2 {NAND NOR XNOR} {   
   lappend    allgates $gatelist2 $gatelist1   
   }   
   puts $allgates     

 This will store the following value in variable  allgates “NAND AND NOR OR 
XNOR XOR”.  As you can see, this iterator gives you the ability to mix the items 
from different lists.  

   Table 4.1    List of supported operators in Tcl   

 Operators  Description 

 - + ~ !  Unary minus, unary plus, bit-wise NOT, logical NOT 
 + - * /  Addition, subtraction, multiplication, division 
 **  Exponents 
 < > <= >= == !=  Relational operators: less, greater, less than or equal, 

greater than or equal, equality, and no equality 
 eq, ne  Compare two strings for equality (eq) or inequality (ne) 
 in, ni  Operators for checking if a string is contained in a list 

(in) or not (ni). Returns 1 for true and 0 for false 
 & | ^  Bit-wise AND, OR, XOR 
 &&, ||  Logical AND, OR 
 << >>  Left or right shift 

4.2  Tcl Basics
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4.2.4.2     Decision Making 

 Tcl provides  if   -elseif   -else   construct to provide decision-making ability. Let us 
 consider the following examples:

    if { $frequency < 330 } {   
   puts "Chip will function well, but slower than expected"   
   } elseif { $frequency > 330 } {   
   puts “Chip will not function"   
   } else { puts “Chip will function optimally" }     

 It is important to use the braces {} carefully. Each segment has its own pair of 
braces.  

4.2.4.3     Tcl Loops 

 Tcl provides  for   and  while   statements when a program wants to loop and terminate 
on a condition. It also provides two additional constructs  break   and  continue  .  break  
is used to terminate a loop prematurely, while  continue  is used to stop the execution 
of the code for the current loop and reevaluate the condition of the loop. Please note 
 break  and  continue  can also be used with  foreach   while iterating over lists.  for  and 
 while  follow the semantics as shown below:

    for <initial value> <condition> <next step> {   
   <statement body>   
   }    

    while <condition> {   
   <statement body>   
   }      

4.2.4.4     Tcl Procedures  

 Tcl procedures are written using  procs  . The value is returned from the procedure 
using a  return   statement. Let us consider the example below:

    proc sum {addend1 addend2} {   
   set value [expr {$addend1 + $addend2}]   
   return $value   
   }    

    # Calling the procedure   
   set x [sum 5 10]   
   puts $x # Will print 15     

4 SDC Extensions Through Tcl
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 Procedures can also be defi ned to defi ne or set default values for arguments as 
 proc sum {{addend1 10} {addend2 20}}.    

4.2.5     Miscellaneous Tcl Commands 

 Table  4.2  shows some of the frequently used Tcl commands.

4.3         SDC Overview 

 The constraints in SDC format can be broadly categorized as:

    1.    Constraints for timing   
   2.    Constraints for area and power   
   3.    Constraints for design rules   
   4.    Constraints for interfaces   

   Table 4.2    Commonly use Tcl commands   

 Command  Description 

  open   /close    File handle to open and close fi les 
  # open a fi le “fi le.txt” in write mode  
  set fhandle [open “fi le.txt” w]  
  # close fi le handle  
  close $fhandle  

  gets   /puts   Get a string or prints a strings from/to stdin/stdout. When used with a fi le 
handle as defi ned above, it will fetch from the fi le or write to a fi le 

  catch    Command to capture error from a command, so as to prevent the Tcl shell 
from aborting 

  set fi le_name “fi le.txt”  
  if { [catch {open $fi le_name w}] $fi d} {  
  # Error from open command is in $fi d  
  puts stderr “Error: $fi d \n”  
  exit 1  
  }  

  info    Command used from Tcl interpreter to get information 
  info commands <pattern>   :  Returns a list of the commands, both internal 

commands and procedures, whose names match pattern 
  info exists <name>   :  Returns 1 if name exists as a variable, otherwise 

returns 0 
  info procs <pattern>   :  Returns a list of the Tcl procedures that match 

pattern 
  source    Command to source a Tcl fi le or script 
  incr    Command to increment an index 
  exit    Command to exit from Tcl shell 
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   5.    Constraints for specifi c modes and confi gurations   
   6.    Exceptions to design requirements   
   7.    Miscellaneous commands     

 Some of the Constraints can fall in more than one category. 

4.3.1     Constraints for Timing 

 Constraints for timing provide guidance on design parameters that affect opera-
tional frequency. It includes commands to specify clock characteristics, delays 
on port, and pins and paths. Table  4.3  shows the list of constraints in this 
category.

4.3.2        Constraints for Area and Power 

 Constraints for area and power include commands that provide guidance on the area 
a design must fi t within and power requirements for optimization. Table  4.4  shows 
the list of constraints in this category.

4.3.3        Constraints for Design Rules 

 Constraints for design rules include commands that provide guidance on some of 
the requirements of the target technology. Table  4.5  shows the list of constraints in 
this category.

   Table 4.3    Constraints for timing   

  create_clock    create_generated_clock    set_clock_groups  
  set_clock_latency    set_clock_transition    set_clock_uncertainty  
  set_clock_sense    set_propagated_clock    set_input_delay  
  set_output_delay    set_clock_gating_check    set_ideal_latency  
  set_ideal_network    set_ideal_transistion       set_max_time_borrow  
  set_resistance    set_timing_derate    set_data_check  
  group_path    set_drive    set_load  
  set_input_transition    set_fanout_load  
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4.3.4        Constraints for Interfaces 

 Constraints for interfaces include commands that provide guidance on the assump-
tions design needs to make about blocks it will be connected to or interacting with 
in a subsystem or chip or SoC. Table  4.6  shows the list of constraints in this 
category.

4.3.5        Constraints for Specifi c Modes and Confi gurations 

 Constraints for what-if analysis include commands that help designers make 
assumptions on the value allowed on ports and pins which facilitate better optimiza-
tion of the design for a specifi c mode by specifi cally ruling out conditions that won’t 
be possible in a specifi c mode of operation or in any of the modes. Table  4.7  shows 
the list of constraints in this category.

4.3.6        Exceptions to Design Constraints 

 This category includes commands that help designer relax the requirements set 
forth by other commands thereby providing scope for leniency. Table  4.8  shows the 
list of constraints in this category. The commands in the table marked with asterisk 
can also be used to provide additional tightening (rather than relaxing).

   Table 4.4    Constraints for area and power   

  set_max_area    create_voltage_area  
  set_level_shifter_threshold    set_max_dynamic_power  
  set_level_shifter_strategy    set_max_leakage_power  

   Table 4.5    Constraints for design rules   

  set_max_capacitance    set_min_capacitance  
  set_max_transition    set_max_fanout  

   Table 4.6    Constraints for interfaces   

  set_drive    set_driving_cell    set_input_transition  
  set_load    set_fanout_load    set_port_fanout_number  
  set_input_delay    set_output_delay  
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4.3.7        Miscellaneous Commands 

 The rest of the SDC commands fall in this category. These commands provide guid-
ance on operating conditions, wire load model, units, and version of the timing 
constraints. Table  4.9  shows the list of miscellaneous commands.

   Details on the use model of these constraints and their application will be 
explained in the later chapters.   

4.4     Design Query in SDC 

 In addition to these aforementioned categories, SDC standard also provides a way 
to access information about the design to facilitate design query, traversal, and 
exploration. These are used in conjunction with SDC constraints and Tcl scripting 
to effectively apply the design requirements at the right place in the design. 
Table  4.10  provides a brief description of commands in this category.

4.5        SDC as a Standard 

 As a standard, SDC is very loose. It pretty much mentions the commands and their 
arguments/switches. For the arguments and switches also, the standard only says 
which of these are optional and which are mandatory and what could be the types 
for the values being specifi ed. 

   Table 4.7    Constraints for specifi c modes and confi gurations   

  set_case_analysis    set_logic_dc  
  set_logic_zero    set_logic_one  

   Table 4.8    Exceptions to design requirements   

  set_false_path    set_multi_cycle_path    set_disable_timing  
  set_max_delay*    set_min_delay*  

   Table 4.9    Miscellaneous commands   

  set_wire_load_model    set_wire_load_mode  
  set_wire_load_selection_group    set_wire_load_min_block_size  
  set_units    set_operating_conditions  
  sdc_version  
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 The standard itself does not say anything on how to interpret any of these com-
mands or the switches or the values. It does not say anything as to which combina-
tions are legal and which combinations are not. It does not specify if an optional 
switch is not applied what the default is. However, most tools interpret most of these 
commands and their options and arguments in a consistent manner. The behavior 
being same has been dictated more by the user community, rather than by the stan-
dard itself. In the following chapters, for many commands and their switches, their 
behavior has been described. This is the behavior as exhibited in the tools. The 
standard may not necessarily specify that behavior. However, considering that all 
the tools pretty much exhibit the same behavior, for all practical purposes, it might 
as well be considered as the behavior dictated by the standard. 

 Considering that the standard does not enforce any specifi c treatment/interpreta-
tion, occasionally, some tools could exhibit some difference in behavior, especially 
around those commands or options which are not used very commonly. The authors 
recommend users to write their SDC using more commonly used constructs – which 
ensure interoperability across tools from different suppliers. The authors also rec-
ommend specifying all requirements explicitly, rather than depending on tool 
defaults, since the defaults are also not specifi ed by the standard. 

 For the sake of simplicity, in most examples in this book, the time unit has been 
assumed to be  ns  (nanoseconds). That is, for explaining the given values, we have 
simply mentioned  ns , rather than specifying the units for each set of commands. For 
your SDC, the actual units would be as specifi ed in your library, which could be 
different from  ns . Treatment of units is also mentioned in Chap.   16     of the book.  

   Table 4.10    Commands for design query   

 Command  Description 

  get_cells    Returns the instance of the design or library cell 
  get_ports    Returns the input, inout, and output ports of the design 
  get_pins    Returns the instance of a port of design or library cell pin 
  get_nets    Returns net connected to the port or pin 
  get_clocks    Returns clocks in the design 
  all_inputs    Returns all input and inout (which are theoretically inputs also) ports in 

the design 
  all_outputs    Returns all output and inout (which are theoretically outputs also) ports 

in the design 
  all_registers    Returns all registers in the design 
  all_clocks    Returns all clocks in the design 
  get_libs    Returns the list of libraries 
  get_lib_cells    Returns the list of cells in the library 
  get_lib_pins    Returns the list of pins on the library cell 
  current_design    Sets the scope of the design for the subsequent commands and queries 

 Report the current scope, if no argument is given 
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4.6     Conclusion 

 Since SDC is Tcl compliant, most tools that support SDC support native Tcl. A user 
could combine the power of Tcl programming with SDC to specify design require-
ments in a very effective manner. Today SDC is the industry standard format that 
helps drive implementation tools to meet a design’s timing, power, and area 
requirements. 

 Now that we have some understanding of Tcl and how constraints drive various 
tools, from next chapter, we will learn how to write the actual constraints.    
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                    A synchronous  design is one where a control signal triggers the circuit to transition 
from one state to another. Such a trigger can happen at the positive or negative edge 
or both edges of the control signal. At the appropriate trigger edge, which may be 
active high or active low, input, outputs, internal registers, and nodes reach a stable 
state. Such a control signal which acts as a trigger for a synchronous design is called 
a  clock   and the edge on which the design triggers is called the  active edge   of the 
clock. A circuit that generates such a clock signal is called a clock generator. 

 A clock has a specifi c periodicity in its behavior which controls the timing within 
the design and is identifi ed by its characteristics and the way it is used. These char-
acteristics are:

    1.    Period   
   2.    Active edge   
   3.    Duty cycle     

 The other characteristics applicable to any signal like edge rate, rise and fall 
times are applicable to clocks as well. 

5.1     Clock Period and Frequency 

 The period  of a clock indicates time after which a clock will repeat its behavior. Let 
us consider the waveform of a signal shown in Fig.  5.1 .

   At time  t  = 5, the signal goes from state  zero  ( 0 ) to state  one  ( 1 ). It remains in that 
state for the next  5ns . At  t  = 10, it goes back to state  0  and stays that way until  t  = 15. 
At time  t  = 15, this pattern starts repeating. Such a signal is said to have a  period   of 
 10ns  and can be used a clock. Period is typically represented in units of time, which 
could be seconds (abbreviated as s) or its derivatives like nanosecond (ns = 10 –9  s) or 
picoseconds (ps = 10 –12  s). 

    Chapter 5   
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 The rate at which a clock’s active edges appear is called the  frequency  . If the 
period of clock is  T , then its frequency is defi ned as  1 / T . This is represented in units 
of Hertz (abbreviated as Hz) or its derivatives like megahertz (MHz = 10 6  Hz) or giga-
hertz (GHz = 10 9  Hz). The speed/performance of circuit is often confused with the 
clock period. A small clock period in a device indicates higher clock rate or fre-
quency; implying that the design has higher number (within a given duration) of 
active edges of a clock; and thus, on a given active edge, it needs to move to the next 
stable state much faster, before the next edge triggers. However it should be noted 
that clock frequency alone cannot be considered a measure of a device’s perfor-
mance. In today’s world we are used to seeing the clock rate of microprocessors in 
MHz and GHz. Clock frequency is one of the parameters that effects a design’s per-
formance, but higher values of these parameters alone may not necessarily indicate 
that microprocessor will run faster and be more effi cient. There are other indicators 
like the architecture and pipelining in a design, which could impact the performance, 
power consumption, etc. This misconception is generally referred to as the “mega-
hertz myth,” a term coined by the late Steve Jobs of Apple in 2001 when he compared 
the performance of 867 MHz PowerPC processor to 1.7 GHz Pentium processor.  

5.2     Clock Edge and Duty Cycle 

 A clock will have positive and negative edge. Positive edge is when a clock transi-
tions from state  0  to state  1 . Let us consider the waveform of the clock as shown 
in Fig.  5.2 . The clock has a positive edge at time =  {0, 10, 20, 30 ….}.  Negative edge 
is when a clock transitions from state  1  to state  0 . In Fig.  5.2 , the clock has a nega-
tive edge at time =  {7, 17, 27 …}. 

   A clock is said to be in  high transition   as it changes state from  0  to  1  and is said 
to be in  positive phase  , while it holds this value until next change. The clock shown 
in Fig.  5.2  is in positive phase from  t  = 0 to  t  = 7 ns .When a clock changes value from 
 1  to  0 , it is said to be in  low transition   and in  negative phase  , while it holds this 
value until the next change. For the circuit in Fig.  5.3 , the positive edge of the clock 
at time { t  = 0,  t  = 10 …} will trigger the circuit. However for the circuit in Fig.  5.4 , 
the negative edge of the clock at time { t  = 7,  t  = 17 …} will trigger the circuit.  Duty 
cycle   is defi ned as the percentage of the time clock spends in positive phase  as a 
fraction of its total time period . Therefore for the positive edge-triggered design, the 
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  Fig. 5.1    Clock waveform       
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clock has a duty cycle of 70 %, since it spends 70 % of its time ( 7  out of the  10ns ) 
in its positive phase. The amount of time also has direct implication on how long a 
circuit is ON, thereby affecting its power consumption. The difference in the time 
interval between the positive and negative edge of a clock is referred to as the high 
pulse width , which is same as the time the design is in high state. This is also appli-
cable to latch-based designs.
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  Fig. 5.2    Clock waveform with uneven duty cycle       

  Fig. 5.3    Positive edge- 
triggered circuit       
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  Fig. 5.4    Negative edge-triggered circuit       
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5.3         create_clock 

 The SDC command for specifying clocks in a design is  create_clock  . The BNF 
grammar for the command is:

    create_clock -period   period_value  
   [source_objects]  
   [ -name   clock_name]  
   [ -waveform   edge_list]  
   [ -add  ]  
   [ -comment   comment_string]    

5.3.1     Specifying Clock Period 

  -period  option is used to specify the period  of the clock. The unit of clock period is 
inferred from the library time units. In all the examples in this book, time unit has 
been assumed to be  ns . Period must have value greater than zero. 

 The  set_units  command mentions the units used in the SDC fi le. Details of this 
command are explained in Chap.   16    .  

5.3.2     Identifying the Clock Source 

  create_clock  is generally specifi ed on design objects which are used as sources of 
clock. These source objects can be port, pin, or net. For example, in Fig.  5.4 , the 
source can be port  A , net  N , or pin  P  of the fl ip-fl op. When defi ning a clock on a net, 
ensure that net has a driver  (either a pin or a port). Otherwise the clock will not have 
a source. A clock can potentially have more than one source. This is mainly used 
when design has to support clock switchover  for redundancy or different mode of 
operation. Clock switch over is a feature generally available in PLLs where in the 
redundant clock can turn on, if the primary clocks stop running. 

 Let us consider the Fig.  5.4  and let us assume that a clock with  10ns  period is 
driving the circuit. This can be represented as:

    # Represents the port as clock source   
   create_clock -period 10 [get_ports A]   

   OR   

   # Represents the net as clock source   
   create_clock -period 10 [get_nets N]   

   OR   

   # Represents the pin as clock source.   
   # Assuming, fl op instance name is FF   
   create_clock -period 10 [get_pins FF/P]      

5 Clocks
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5.3.3     Naming the Clock 

 Each clock defi nition is given a name. This is specifi ed as string using the  -name   
option. When  -name  is not specifi ed explicitly, the tool might specify a name on its 
own – typically the object on which the clock is declared. For the fi rst example 
shown above, the name of the clock is assumed as  A . Clock name plays a very 
important role in SDC. Once a clock has been defi ned and given a name, all other 
SDC commands that depend on a clock would just refer to the name, rather than 
providing any other characteristics. When a clock name is mentioned, all other char-
acteristics of the clock are known. The name provides an easier method to collec-
tively refer to all the characteristics of the clock.  

5.3.4     Specifying the Duty Cycle 

 The duty cycle of a clock is specifi ed using the  -waveform   option. This option is 
typically an ordered pair of real numbers, representing the rising and falling edge of 
a clock. The numbers indicate the time when the rise and fall edge happen after time 
 t =  0. For example, the waveform in Fig.  5.1  has the rising edge at time  t =  5 and 
falling edge at time  t  = 10. This can be represented as:

    create_clock -period 10-name CLK -waveform {5 10} [get_ports A]     

 Similarly in Fig.  5.2 , the rising edge is at time  t  = 0 and falling edge is a time  t  = 7. 
This can be represented as:

    create_clock -period 10 -name NEW_CLK -waveform {0 7} [get_ports C]     

 When this option is not specifi ed, the clock is assumed to have a 50 % duty cycle. 
This is equivalent to saying that the waveform is { 0 period/2 }. The numbers in the 
waveform option have to be monotonically increasing to represent a full period. Let 
us consider the Fig.  5.5 ; here, the clock has a low pulse with a period of  10 .

   The clock edge falls at time  t  = 4 and rises at time  t  = 5 during its clock period 
cycle. Since the option can only represent rise and fall transitions in that order 
and the values have to be monotonically increasing, we will have to consider the 
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  Fig. 5.5    Clock waveform with low pulse       
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clocks transition over two periods. Over a two-cycle period, the clock will have its 
fi rst rising edge at  t  = 5 and the next falling edge again at time  t  = 14. Such a clock is 
represented as:

    create_clock -period 10-name CLK -waveform {5 14} [get_ports C2]     

 In some applications like pulse blanking, there is a need to remove data within a 
specifi ed time region after a trigger. This is mainly done to reduce any RF interfer-
ence. In such cases there is a need to model complex waveforms, which can be 
accomplished by using the  waveform  option with more than two edges. However 
the option must only have even number of edges representing the rise and fall transi-
tion times alternately. Let us consider Fig.  5.6 , where a complex clock with period 
of  10 , has two pulses; the fi rst pulse has a rise at time  t  = 3 and fall at time  t  = 5, the 
second one has rise time  t  = 8 and fall at time  t  = 9.

   This is represented as:

    create_clock -period 10 -name CLK -waveform {3 5 8 9} [get_ports C3]     

 As can be seen in this defi nition, the  waveform  option has four edges. Thus, 
using the - waveform  option, we can model arbitrarily complex clock waveform.  

5.3.5     More than One Clock on the Same Source 

 Many designs require more than one clock to be specifi ed at clock source to meet 
the requirements of multiple I/O speed protocol. Let us consider the block in 
Fig.  5.7 .

   Assume that the clock port is driven from outside the block by a multiplexer on 
which two clocks with two different characteristics converge. In order to model the 
clock constraints for such a block, the designer would have to specify two distinct 
clocks on the same object. This is represented as:

    create_clock -name C1 -period 10 [get_ports CLK]   
   create_clock -name C2-period 15 [get_ports CLK] -add     

 Under these conditions the user would need to specify a  -add   option for subse-
quent clocks on the same object, if he wants both the clocks to be considered for 
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  Fig. 5.6    Clock with complex waveform       
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analysis by synthesis and static timing analysis. Since each clock is required to be 
identifi ed by a unique name, it is mandatory to use  -name   option, when  -add  option 
is used, because tool would not know how to name these two clocks (applied on the 
same object) distinctly. When a user specifi es multiple clocks on the same object, 
but doesn’t specify the  -add  option, the last clock defi nition overrides the previous 
defi nitions. 

 Clock is a property applied on an object with a distinct waveform and periodicity. 
Hence all three attributes (design object, waveform, period), together defi ne a 
clock. Conceptually, a clock  is different from the object (port/pin) on which it is 
applied. So, two different waveforms defi ned on the same object are two different 
clocks. Similarly, same waveforms and period defi ned on two different objects are two 
different clocks. That is precisely why a clock is given a unique name which refers to 
all the three attributes. We will observe in later chapters that this unique name of the 
clock is extensively used in other constraints to refer to a particular clock.  

5.3.6     Commenting the Clocks 

 Starting SDC 1.9 a new option has been added to a few SDC commands including 
 create_clock . This is called the  -comment   option. This option takes a string as its 
argument and is mainly used to document information about the clock to facilitate 
understanding, reuse, and portability of SDC and has no impact on synthesis or tim-
ing. For example,

    create_clock -period 10 -name clk [get_ports clk] \   
   -comment “Clock for USB block generated by PLL”     

 Some more commands have added the  -comment   option. The usage of  -comment  
is the same for all the commands which support this option. This option will not be 
explained in subsequent sections – to prevent repetition.   

CLKC1

C2

  Fig. 5.7    Block driven by off-chip multiplexer with two clocks       
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5.4     Virtual Clocks 

 So far we have seen how to model clocks in a block. However, in some cases the 
user needs to constraint ports/pins in a block that has no clocks. In such cases, ports/
pins are assumed to be triggered by or dependent on clocks outside the block. To 
capture the characteristics of such off-block or off-chip clocks, designers use the 
concept of virtual clocks. Virtual clocks  are clocks that don’t physically exist in the 
specifi c block but represent an external trigger that impacts the timing of the block. 
A virtual clock has no source specifi ed. In reality, it might have a source, but that 
source could be outside the block being constrained. Virtual clocks are modeled 
using the  create_clock  command with  period ,  waveform , and  name  option only, but 
source object is missing. For example,

    create_clock -period 10 -name v_clk -waveform {0 5}     

 In Chap.   9    , we will see how virtual clocks can be used in conjunction with  set_
input_delay   and  set_output_delay  .  

5.5     Other Clock Characteristics 

 Most designs require more than one clock. Having an individual clock generator for 
each clock is not a viable proposition. Hence this requirement of multiple clocks 
necessitates generation of clocks from primary clocks. When multiple clocks in a 
design interact, the user also has to model other characteristics like skew, latency, or 
phase relationship between clocks. This makes description and analysis of clocks a 
very complex topic. Chapters   6    ,   7    , and   8     will cover in detail these concepts.  

5.6     Importance of Clock Specifi cation 

 We will see in Chap.   9     how clock specifi cation is used to specify timing on input 
and output ports. However, clock specifi cation is also very important in describing 
the timing requirement for the internals of the design. 

 For any synchronous design, there are a lot of sequential elements (fl ops, regis-
ters, synchronous memories, etc.), which are triggered by clocks. More than 90 % of 
timing paths in a design are from a sequential element to another sequential element. 
The path between the two fl ops in Fig.  5.7  shows one such path. When clocks are 
defi ned appropriately, tools can determine the time at which each of these sequential 
elements will trigger. This in turn will determine when the data would be launched 
from these elements and when these elements will capture new data. When we 
defi ne a clock, this in turn defi nes the triggering events for thousands of sequential 
devices which are clocked by this clock. And, when the triggering events for the start 
and end point of a path get defi ned, the timing requirement for that path gets defi ned. 
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 Usually, most paths are synchronous paths – which mean the start and end points 
of the path are triggered by the same root clock. Thus, as soon as we defi ne one 
clock, millions of paths within a design get their timing requirement. 

 Let us consider two fl ops  F1  and  F2 , which are both triggered by the positive 
edge of the same clock. In Fig.  5.7 , this source is the  CLK  port. Let us say, we defi ne 
a clock with a period of  10ns  on this source. It immediately puts a requirement that 
the data launched from  F1  should reach  F2  within  10ns . 

 Let us further say that  F2  is negative edge triggered. And the clock has 50 % duty 
cycle. Now, an active edge of  F2  will occur  5ns  after the active edge on  F1 . Thus, 
the timing requirement for the path is  5ns , rather than  10ns . 

 The above two examples provided a very simplifi ed view of how clock specifi ca-
tion defi nes the timing requirement for paths between two synchronous elements. In 
subsequent chapters, we will see how these requirements get further fi ne-tuned. 
However, this gross-level requirement still needs to be specifi ed before further fi ne- 
tuning can take place.  

5.7     Conclusion 

 Clocks need to be defi ned so that synthesis and STA consider the timing paths to the 
sequential elements driven by these clocks. If even a single clock is specifi ed incor-
rectly, the impact could be felt by millions of paths within the design. It may cause 
the block to not meet timing. Even if the block meets timing, it may give a false 
sense of timing closure. A missing clock constraint would also mean that a huge 
number of paths in the design may not be timed. Since clock specifi cations impact 
maximum number of paths, even a single incorrect or missing specifi cation could be 
highly detrimental to the design.    

5.7  Conclusion
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                    Most complex designs require more than one clock for its functioning. When there 
are multiple clocks in a design, they would need to interact or share a relationship. 
Asynchronous clocks are clock signals that don’t share a fi xed phase relationship. 
Having only asynchronous  clocks in the design makes it really hard to meet setup 
and hold requirements when multiple clock domains are interacting. We will explain 
about this in Chap.   7     as to why it is so. Synchronous clocks share a fi xed phase rela-
tionship. More often than not synchronous  clocks originate from the same source. 

 Today’s SoCs (System on a chip)  contain heterogeneous devices within the same 
chip. This could include very high-speed processors as well as low-speed memories 
all on the same chip. These elements working at different speeds are usually trig-
gered by different clocks. Each portion operating on its own clock could bring in 
asynchronicity in the design. This may result in several clocks being derived from 
one master clock. Such clocks are referred to as  generated clocks   or  derived clocks  . 
These clocks can be generated in multiple ways:

    1.    Clock dividers   
   2.    Clock multipliers   
   3.    Clock gating    

6.1      Clock Divider 

 A clock divider  generates a clock of higher period and lower frequency compared to 
the original source clock. A typical example of a clock divider is a 2-bit ripple coun-
ter. Figure  6.1  shows the circuit of a ripple counter . For this circuit, if the period of 
the clock at the input of the fi rst fl op is  10ns , then waveform generated at the LSB 
(least signifi cant bit) is divided by 2, which means it has a period of  20ns . For the 
same design, the waveform at the MSB (most signifi cant bit) is divided by 4, which 
means it has a period of  40ns .

    Chapter 6   
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6.2        Clock Multiplier 

 A clock multiplier  is a circuit where frequency is increased and clock period is 
decreased for faster clocking rate. This technique is typically used in microproces-
sors and on internal busses so as to improve the overall throughput of the processor 
and is generally used in conjunction with internal cache memories. Figure  6.2  shows 
the circuit of a simple clock multiplier, where the clock frequency is doubled. The 
circuit is simple implementation of clock and its delayed version. The delay can be 
introduced in the line by use of buffers and invertors.

   It is more common to use  PLLs   (phase-locked loops) to achieve frequency mul-
tiplication. This usage of PLLs has been mentioned in Chap.   17    .  

6.3     Clock Gating 

 Clock-gating  technique has become very popular since mid-1990s to reduce power  
consumption. Power in a circuit is consumed when a fl op or register in the design 
switches state due to a clock trigger. However in a design portions of the logic may 
not be getting used at certain times. During that stage, disabling clock to those por-
tions of the design reduces the switching power. This is achieved by having enable 
logic before the clock and such a clock is called gated clock . Figure  6.3  shows the 
example of a gated clock.

   We can also use clock gating to obtain divided clocks with waveforms similar to 
those shown in Fig.  6.1 . The concept of clock gating can be extended to create clock 
pulses. Let us consider Fig.  6.4  where the clock is gated via a chain of odd number 

  Fig. 6.1    2-bit ripple counter       
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of inverters. Depending on the delay on the chain of inverters, a pulse will be gener-
ated. This method is used to improve performance and reduce power as well. It is 
important to ensure that clock gating is typically done with only one clock.

6.4        create_generated_clock  

 The SDC command for specifying derived clocks  in a design is  create_generated_
clock . The BNF grammar for the command is

    create_generated_clock  [source_objects]  
    -source  clock_source_pin  
   [ -master_clock  master_clock_name]  
   [ -name  generated_clock_name]  
   [ -edges  edge_list]  
   [ -divide_by  factor]  
   [ -multiply_by  factor]  
   [ -invert ]  
   [ -edge_shift  shift_list]  
   [ -duty_cycle  percent]  
   [ -combinational ]  
   [ -add ]  
   [ -comment  comment_string]    

6.4.1     Defi ning the Generated Clock Object 

  create_generated_clock  is generally specifi ed on design objects where the clock is 
actually available after division or multiplication or any other form of generation. 
These design objects called source objects  can be port, pin, or net. When defi ning a 
clock on a net, ensure that net has a driver pin or the port. Otherwise the clock will 
not have a source. These are the points from where generated clocks can propagate 
into the circuit.  

6.4.2     Defi ning the Source of Generated Clock 

 The source pin of a generated clock is specifi ed using the  -source   option. This indi-
cates the master clock source pin from which the generated clock is derived. For 
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example, in Fig.  6.1 , the generated clock is defi ned for LSB and MSB, and the 
source of the generated clock is defi ned at CLK. 

 It is better to understand the difference between a source object  and the source of 
the generated clock. Source object refers to the point where the generated clock 
(or clock) is being specifi ed, while source of the generated clock refers to the point 
which acts as a reference from which the generated clock has been obtained. 

 As indicated in Chap.   5    , a source object can have more than one clock. If the 
master clock source pin has more than one clock in its fanin, then the generated 
clock must indicate the master clock which causes the generated clock to be 
derived. This is specifi ed using the  -master_clock   option. This option takes the 
name of the SDC clock that has been defi ned to drive the master clock source pin. 
Once a generated clock has been defi ned, the clock characteristics (waveform , 
period , etc.) would be derived by the tool, based on the characteristics of the 
waveform at the source. 

 For a clock to be generated from a specifi c source, it is important that the source 
has to somehow infl uence the generated clock. One of the commonly committed 
mistakes while specifying generated clock is to specify a source which doesn’t 
fanout to the generated clock. Effectively, this means the waveform of the generated 
clock has been specifi ed as a function of the waveform at a source pin that does not 
even infl uence the generated clock! Many implementation tools do not catch this 
and it results in incorrect clock waveforms being used for the generated clock dur-
ing STA.  

6.4.3     Naming the Clock 

 Like the primary clock, a generated clock is also identifi ed by its name. This is 
specifi ed as string using the  -name  option. When  -name   is not specifi ed, tools might 
assign a name on their own. To establish dependency on the generated clock, any 
subsequent SDC command simply refers to the generated clock name.  

6.4.4     Specifying the Generated Clock Characteristic 

 The characteristic of a generated clock can be specifi ed using one of the three options:

    1.     -edges    –  this is represented as a list of integers that correspond to the edge of 
the source clock from which the generated clock has been obtained. The edges 
indicate alternating rising and falling edge of the generated clock. The edges 
must contain an odd number of integers and should at the very minimum contain 
3 integers to represent one full cycle of the generated clock. The count of edge 
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starts with “1” and this number (“1”) represents the fi rst rising edge of the source 
clock.   

   2.     -divide_by    –  this represents a generated clock where the frequency has been 
divided by a factor, which means the period is multiplied by the same factor.   

   3.     -multiply_by    –  this represents a generated clock where the frequency has been 
multiplied by a factor, which means the period is divided by the same factor. It 
should be noted that though clocks are defi ned using period  characteristic, the 
multiply_by and divide_by  are specifi ed using frequency  characteristic in mind 
(which is inverse of period).     

 In general any generated clock represented using  -divide_by  or  -multiply_by  
options can also be represented using  -edges  option. However the vice versa is not 
true. Let us consider Fig.  6.1 ; assuming the  create_clock  is defi ned for  CLK , the 
generated clock can be defi ned at  LSB  and  MSB .

    create_clock -period 10 -name CLK [get_ports CLK]   
   create_generated_clock -name LSB -source [get_port CLK]   
   -divide_by 2 [get_pins FF1/Q]   
   create_generated_clock -name MSB -source [get_pins FF1/Q]   
   -divide_by 2 [get_pins FF2/Q]     

 The generated clocks at  LSB  and  MSB  can also be represented using the  edges   
option as:

    create_generated_clock -name LSB -source [get_ports CLK]   
   -edges {1 3 5}[get_pins FF1/Q]   
   create_generated_clock -name MSB -source [get_pins FF1/Q]   
   -edges {1 3 5}[get_pins FF2/Q]     

 In the  LSB  case, the edges  {1 3 5}  indicate the edge number of the specifi ed 
source clock  CLK  to which the fall and rise edges of    the generated clock are aligned. 
For the  MSB , since the edges are aligned to  LSB  (which is the source); hence, the 
edge specifi cation is the same. 

 The same waveform for  MSB  can be generated using  CLK  as the source. In this 
case, the edge would be  {1 5 9} .

    create_generated_clock -name MSB -source [get_ports CLK]   
   -edges {1 5 9} [get_pins FF2/Q]     

 The edge specifi cation of  MSB  depends on the edge of the source, which in this 
case is the primary clock  CLK . 

 When a generated clock defi ned using  -divide_by   or  -multiply_by   options need to 
be inverted, then it can be specifi ed using the  -invert   option. Let us consider Figs.  6.5  
and  6.6  which have different fl avors of the divide-by-two circuits. Now depending 
on how the generated clock is defi ned (inverting or non-inverting), the characteristic 
of the generated clock can change.

6 Generated Clocks



63

CLK

GCLK1

GCLK2

CLK

GCLK1

1 2 3 4

GCLK2

FF1
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    In Fig.  6.5 , the divider is triggered by positive edge of the source clock, and the 
generated clock  GCLK1  is defi ned as:

    create_generated_clock -name GCLK1 -source [get_ports CLK]   
   -divide_by 2 [get_pins FF1/Q]     

 The clock  GCLK2  is an inverted version of  GCLK1 ; this is therefore defi ned as:

    create_generated_clock -name GCLK2 -source [get_ports CLK]   
   -divide_by 2 -invert [get_pins FF1/QBAR]     

 It should be noted that the presence of - invert   does not change the edge of the 
source clock at which generated clock will have a transition. It only impacts whether 
the generated clock will start with a rising transition or a falling transition. 

 However in Fig.  6.6 , the divider is triggered by negative edge of the source clock; 
in this case, the generated clock  GCLK3  is defi ned as:

    create_generated_clock -name GCLK3 -source [get_ports CLK]   
   -edges { 2 4 6} [get_pins FF1/Q]     

 The clock  GCLK4  is an inverted version of  GCLK3 ; this is therefore defi ned as:

    create_generated_clock -name GCLK4 -source [get_ports CLK]   
   -edges { 4 6 8} [get_pins FF1/QBAR]     

 As it can be seen that  GCLK3  and  GCLK4  can be represented using the - edges  
option. Specifying it any other way will result in inconsistency between the actual 
circuit and the waveform as represented by the SDC command. This is the most 
commonly made mistake in defi ning generated clocks. 

 Similarly, the  CLKOUT  in Fig.  6.2  can be represented as:

    create_generated_clock -name CLKOUT -source [get_ports CLK]   
   -multiply_by 2 [get_pins XOR1/Z]     

 When defi ning a clock where frequency is multiplied, the duty cycle can be spec-
ifi ed using the  -duty_cycle   option. This option has meaning only with  multiply_by  
option and represents the percentage of the pulse width when the multiplied clock 
is  1 . For example,  CLKOUT  in Fig.  6.2  can also be represented as below, indicating 
a 50 % duty cycle.

    create_generated_clock -name CLKOUT -source [get_ports CLK]   
   -multiply_by 2 [get_pins XOR1/Z] -duty_cycle 50     

 Let us consider the Fig.  6.4 , where a high pulse  has been generated and the pulse 
width depends on the delay in the chain of the invertors. In this case, edge  1  of the 
clock triggers both the rising and falling edge of the pulse. This is represented as:

    create_generated_clock -name PULSE -source [get_ports CLK]   
   -edges { 1 1 3} [get_pins AN1/Z]     
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 Depending on the kind of pulse, the edge specifi cation may change. For example, 
in Fig.  6.4 , if the  AND  gate is replaced by a  NAND  gate, then it will result in a rise- 
edge-triggered low pulse . This would be represented as:

    create_generated_clock -name PULSE_N -source [get_ports clk]   
   -edges { 1 3 3} [get_pins NAND1/Z]     

 This is because the fi rst edge of the clock will result in a falling edge and then a 
rising edge of the low pulse and since  -edges   represent the order in terms of rising 
and falling, so it is represented as  {1 3 3} . This implies the rising edge of the gener-
ated clock will happen due to edge  1  of the source clock. The next falling edge of 
the generated clock will happen due to edge  3  of the source clock followed by the 
next rising edge which also is on the edge  3  of the source clock. This falling edge is 
actually in the next pulse of the generated clock.  

6.4.5     Shifting the Edges 

 The edges of a generated clock may need to be moved by time units to indicate shift. 
For example, in Fig.  6.4 , if the delay through the chain of inverters is  2ns , then the 
high pulse  can be accurately represented as:

    create_generated_clock -name PULSE -source [get_ports clk]   
   -edges { 1 1 3} -edge_shift    {0 2 0} [get_pins AN1/Z]     

 The  -edge_shift  option takes a list of fl oating point numbers, which represents 
the shift in each edge in terms of time units. This option must have the same number 
of arguments as the number of edges to represent the shift of each edge of the gener-
ated clock. The above command now implies, on the generated clock:

   Rising edge happens at the fi rst edge of the source clock.  
  Falling edge happens at  2ns  after the fi rst edge of the source clock.  
  Next rising edge happens at third edge of the source clock.    

 Similarly, for a low pulse , the representation would be

    create_generated_clock -name PULSE_N -source [get_ports clk]   
   -edges { 1 3 3}-edge_shift {2 0 2} [get_pins NAND1/Z]     

 This command implies, on the generated clock

   Rising edge happens at  2ns  after the fi rst edge of the source clock.  
  Falling edge happens on third edge of the source clock.  
  Next rising edge happens at  2ns  after the third edge of the source clock.    

 The shift can be a positive or negative number. Use of  -edges   and  -edge_shift   can 
be used to model arbitrarily complex generated clocks.  
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6.4.6     More than One Clock on the Same Source 

 As described in Chap.   5    , there can be more than one clock defi ned at a point. Or, for 
a given source, multiple clocks could be reaching the source. Typically one gener-
ated clock is defi ned per clock reaching the specifi ed source. If there is more than 
one clock converging on the source specifi ed for the generated clock, then the gen-
erated clock derived from this clock source pin could have characteristics corre-
sponding to either of the clocks reaching the source. Thus, we would need to specify 
which of the clocks should be used to determine the characteristics of the generated 
clock. Let us consider the block in Fig.  6.7 .

   Assume that the  CLK  port is driven outside the block by a multiplexer on which 
two clocks with two different characteristics converge. This  CLK  port can act as a 
source for a clock divider circuit inside the block. In order to model the clock con-
straints for such a block and the generated clock for divider circuit, the designer 
would have to specify multiple generated clocks on the same object. This is repre-
sented as:

    create_clock -name C1 -period 10 [get_ports CLK]   
   create_clock -name C2-period 15 [get_ports CLK] -add   

   # The following generated clock is based on C1’s characteristics   
   create_generated_clock -name GC1 -divide_by 3 -source [get_port CLK]   
   -master_clock C1 [get_pins FF2/Q]   

   # The following generated clock is based on C2’s characteristics   
   create_generated_clock -name GC2 -divide_by 3 -source [get_port CLK]   
   -master_clock    C2 [get_pins FF2/Q] -add     

 Thus, even though the source for both the generated clocks is the same (viz., 
 CLK  port), the waveform for the two generated clocks are different. Alternately, 
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  Fig. 6.7    Block driven by off-chip multiplexer with two clocks       
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there are two clock waveforms on the object  FF2/Q . This makes sense logically. 
If the source of the divider has two different kinds of clocks on it, the divider output 
will also have two different kinds of clocks on it. 

 Under these conditions the user would need to specify an  -add   option, if he wants 
both the generated clocks to be considered for analysis by synthesis and STA. Since 
each clock is required to be identifi ed by a unique name, it is mandatory to use 
 -name   option, when  -add  option is used. In this example for a generated clock, the 
specifi ed source object had multiple clocks (either defi ned on it or reaching it). In 
such situations, it’s not clear as to which of these clock characteristics should be 
used to create the waveform for the generated clock. The option - master_clock  has 
been used to identify which of the clocks reaching the specifi ed source object should 
be used for deriving the characteristics of the generated clock. When a user specifi es 
multiple clocks (or generated clocks) on the same object but doesn’t specify a  -add  
option, the last constraint overrides the previous defi nitions. 

 It should be noted that  -source   uses design object on which clock is defi ned/
reaches, while master specifi es the clock name.  

6.4.7     Enabling Combinational Path 

 Let us consider Fig.  6.8  which represents a source-synchronous interface . In a 
source-synchronous interface, clock appears along with the data as an output. The 
advantage of this mechanism is that both clock and data are routed through similar 
traces and thus have very similar delays. At the receiver device, the incoming data 
is sampled with respect to the incoming clock. The actual trace delay is not of  much 
importance as long as the delay differential on the two lines is close to 0. This 
mechanism provides an interface for high-speed data transfer.

   In this fi gure the delay on the  DATAOUT  pin should be specifi ed with respect to 
 CLKOUT . In this case, a generated clock needs to be defi ned at CLKOUT. This is 
done using the  -combinational   option. When this option is specifi ed, the generated 
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  Fig. 6.8    Source-synchronous interface       
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clock is considered to be of the same period as master clock pin, which is equivalent 
to a  divide_by    1 . It cannot be used with any other option. This can be represented as:

    create_generated_clock -name CLKOUT -combinational   
   -source [get_pins FF1/Q [get_ports CLKOUT]     

 In some case, there may be more than one path from the source clock pin to the 
place where generated clock is defi ned. If these paths are sequential in nature, i.e., 
they pass through sequential elements like fl ip-fl ops or through a transparent latch, 
then generated clocks are generally considered safe the way they are traditionally 
defi ned. However in some cases, if there is path from the source pin to the generated 
clock, which is purely combinational, that coexists with the sequential path, then 
traditional defi nitions of  create_generated_clock  will fail. In such cases, it is impor-
tant to block the sequential path because the combinational path is always active. 
That too is achieved by defi ning a generated clock with  -combinational  option. 

 In Chap.   11     on false paths, we will see how the various kinds of clocks can be 
used to disable certain clock paths from timing analysis, which help in improving 
the effi ciency of STA tools.   

6.5     Generated Clock Gotchas 

 Since clocks can be generated in multiple ways, it is a common source of mismatch 
between design functionality and timing specifi cation. While specifying generated 
clock, the designer must be careful about the following things:

    1.    If you defi ne a generated clock make sure it is actually generated by the specifi ed 
source object. Conversely, if a fl ip-fl ip or register is driven by a clock which is in 
fanout of another clock, make sure there is  create_generated_clock  constraint set 
on it. A missing generated clock may result in unconstrained registers.   

   2.    When multiple clocks converge on the source pin of a clock, make sure to spec-
ify the master clock with the generated clock defi nition.   

   3.    If you are specifying more than one generated clock constraint on a pin because 
of multiple sources, make sure to use the  -add  option; otherwise, the last speci-
fi ed constraint would override.   

   4.    Avoid clock convergence via multiple combinational paths as it can result in a 
pulse. If clocks converge via multiple paths (combinational and sequential), then 
it is important to disable the sequential path.      

6.6     Conclusion 

 As with primary clocks, it is important to model generated clocks correctly. Failure to 
do so may result in increased timing closure iterations. If the characteristic of the gen-
erated clock as defi ned by the SDC constraint doesn’t match the actual functionality 
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of the circuit, then these are extremely diffi cult to debug. In many cases, the design 
may meet the timing, but the hardware will exhibit a totally different behavior. 

 When generated clocks are defi ned, the clock characteristics are formed based on 
the clock characteristic at the source. It is usually possible to defi ne the same char-
acteristic directly through  create_clock   on the objects, rather than using generated 
clocks. From timing analysis perspective, as long as the characteristics are the same, 
it does not matter whether the clock was specifi ed using  create_generated_clock  or 
using  create_clock . However, whenever a clock is derived from another clock, it is 
always better to use  create_generated_clock , rather than  create_clock . It is easier to 
maintain and enhance, as modifying the source clock characteristic will directly 
impact the characteristic here. Also, using the correct constraint better mimics the 
design intent, which reduces the chances of errors as constraints are modifi ed or 
enhanced – including migration across technologies and designs. 

 Further, when multiple clocks in a design interact, it is not enough to simply 
defi ne the clocks correctly; it is also required to correctly defi ne relationship between 
clocks. In the next chapter we will cover how you can effectively defi ne such rela-
tionship between interacting clocks.    

6.6  Conclusion
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                    When a design has more than one clock, the timing of such a design depends not 
just on the frequency of clocks but also on the relation the clocks share with each 
other. Synchronous  clocks are clocks which share a deterministic phase relation-
ship. More often than not, synchronous clocks share the same source. 

 On the other hand, asynchronous  clocks are clocks which don’t share a fi xed 
phase relationship. Let us consider Fig.  7.1  – if the two clocks  C1  and  C2  are gener-
ated from different sources, then they are treated as asynchronous.

   The section of the design driven by each of these clocks forms a clock domain . 
The signals that interface between these clock domains driven by asynchronous 
clocks are called asynchronous clock domain crossings or abbreviated as  CDC  . 

 In this chapter, we will understand how to specify the relation between clocks 
which are asynchronous in nature and how to group them into domains. But fi rst, let 
us try to understand the timing impact on a design with multi-frequency clocks. 

7.1     Setup and Hold Timing Check 

 Let us consider Fig.  7.1 . In this simple circuit, there is a launch fl op ( F1 ) that 
launches data that is captured by the capture fl op ( F2 ). As described in Chap.   3    , 
setup  is defi ned as the time by which data needs to be available before the active 
edge of clock, and hold  is the time for which the data must remain stable after the 
active edge of the clock, so that data is properly registered by the fl ip-fl op. 

 The same concept can be extended for the design in Fig.  7.1 . The design would 
need to ensure that data on the active edge of the launch fl op ( F1 ) is captured by the 
closest following active edge of the capture fl op ( F2 ). This is called the  setup timing 
check . Figure  7.2  shows the waveform of the clocks for the design.

   Let us assume that  t  
 F 
  is the delay from  Clock  to  Q  pin of launch fl op ( F1 ) and  t  

 C 
  

is the delay within the combination cloud. This means data arrives at fl op  F2  at  time 
 t  
 F 
  +t  

 C 
 . Let us also assume that edges of clocks  C1  and  C2  are perfectly aligned and 
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the setup requirement of capture fl op ( F2 ) is  t  
 Setup 

 . Since the next clock arrives at 
 F2  at  the next edge, which is  t  

 Period 
  ( period  of clock  C2 ), then for data from fl op  F1  

to be captured by  F2 , the data must arrive at least  t  
 Setup 

  time before the next active 
edge of  F2 . This setup timing check imposes an upper bound on the timing require-
ment for the signal to arrive at  F2  and can be represented as:

    t  
 F 
  + t  

 C 
   < t  

 Period 
  –  t  

 Setup 
     

 Once the setup requirement is met, for the data to be properly captured the hold 
requirements have to meet as well. This is measured by the  hold timing check , which 
ensures the hold timing is met between the active edge of the launch clock and the 
same edge of the capture clock. For the same design, since  t  

 F 
   + t  

 C 
  is the time required 

for the data to reach fl op  F2 , the time at which the data arrives must be more than 
the hold time ( t  

 Hold 
 ) of fl op  F2 , so that the current data does not corrupt the previous 

data. This hold timing check therefore imposes a lower bound on the timing require-
ment for the signal to arrive at  F2  and can be represented as:

    t  
 F 
  + t  

 C 
   > t  

 Hold 
     

 This was a rather simple case, since we assumed clocks  C1  and  C2  had perfectly 
aligned edges. The equations get just a little more complicated if the edges are not 
aligned (though, they still originate from the same source). If  t  

 L 
  is the time for the 
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  Fig. 7.1    Asynchronous clock domain crossing       
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clock to reach the launch fl op from its source and  t  
 Z 
  is the time for the clock to reach 

the capture fl op from its source, then setup and hold timing check would be:

    t  
 L 
   + t  

 F 
  + t  

 C 
   < t  

 Z 
  + t  

 Period 
  –  t  

 Setup 
   

   t  
 L 
   + t  

 F 
  + t  

 C 
   > t  

 Z 
  + t  

 Hold 
     

 On the other hand, if the two interacting clocks have different frequencies, then 
depending on their respective frequency values, the active edge of fl op ( F1 ) and 
closest following active edge of capture fl op ( F2 ) may vary in every clock cycle. 
Here are few representative examples to analyze these further. 

7.1.1     Fast to Slow Clocks 

 For Fig.  7.1 , let us consider the case when the period of the launch clock is less than 
the period of the capture clock. Let us further assume that  C1  has a period of  10ns  
with a  50  % duty cycle and  C2  has a period of  15ns  with a  50  % duty cycle. Let the 
clocks be represented as:

    create_clock -period 10 -name C1 -waveform {0 5} [get_pins F1/CK]   
   create_clock -period 15 -name C2 -waveform {0 7.5} [get_pins F2/CK]     

 Figure  7.3  shows the waveform of these clocks. From this it will be evident that 
the waveforms repeat themselves after  30ns . Thus, any analysis has to be done only 
within  30ns  window. For the setup timing check, the launch/capture combinations 
within the window occur at

     1.    Launch edge at  0  and capture at  15ns .   
   2.    Launch at  10ns  and capture at  15ns .   
   3.    Launch at  20ns  and capture at  30ns.     

  Out of these, the second pair is the most restrictive and is considered for setup. 
Similarly, if we compute all the hold check pairs within the window, we will fi nd 
that the worst case combination for hold corresponds to the launch edge at  0  and 
capture edge at  0 . So, both edges at  0  are chosen for hold check. This ensures that 
data at time unit  0  at  the launch fl op is not registered by capture fl op at time  0 .  

Hold Check Setup Check

0 7.5 15 22.5 30 37.5 45 52.5 60

0 5 10 15 20 25 30 35 40 45 50 55 60

  Fig. 7.3    Waveform for fast to slow clocks       
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7.1.2     Slow to Fast Clocks 

 Let us look at another example of most restrictive check being used. If the period of 
clocks  C1  ( 15 ) and  C2  ( 10 ) are reversed, then once again all edge-pair combination 
till time  30ns  are considered and the most restrictive pair is used. Thus, setup timing 
check should be done between the launch edge at  15ns  and capture edge at  20ns . 
Similarly, the most restrictive hold check is determined, which is still at time  0  for 
both edges. Figure  7.4  shows the waveform in this case.

7.1.3        Multiple Clocks Where Periods Synchronize 
in More than Two Cycles 

 Let us consider Fig.  7.5  where the clocks take several more cycles to realign. Let 
period of clock  C1  be  6ns  and period of clock  C2  be  10ns . Assuming the clock 
edges are aligned at time  t =  0, the next time their edges will align will be at time 
 t =  30, which is the LCM of the two clock periods.

Hold Check Setup Check

0 7.5 15 22.5 30 37.5 45 52.5 60

0 5 10 15 20 25 30 35 40 45 50 55 60

  Fig. 7.4    Waveform for slow to fast clocks       
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  Fig. 7.5    Waveform for clocks that are not integer multiples       
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   As it can be seen from the waveform, there are a number of edges where you can 
perform setup and hold check. But the most restrictive setup check is when launch 
is at  18ns  and capture is at  20ns . Similarly the most restrictive hold check is when 
both edges are at  0 .  

7.1.4     Asynchronous Clocks 

 As it is evident from these examples, these checks can get pretty complicated for 
multiple-frequency clocks. If the clocks don’t share a phase relationship, the arrival 
of the launch clock and capture clock will not be deterministic relative to each other. 
This means setup and hold timing requirement could potentially vary in every cycle. 
This becomes a big timing problem when analyzing asynchronous clocks, if there is 
a signal in the data path driven by these clocks that may be interacting and creating 
an asynchronous clock domain crossing. This can potentially lead to certain issues 
like metastability. In Fig.  7.1 , if the input of the fl ip-fl op  F2  is changing while it is 
being captured by fl ip-fl op  F2 , then the output of  F2  could be unstable for a certain 
period of time. This is called  metastability   which needs to be resolved using syn-
chronizers . The main problem with asynchronous  CDC   is as follows: With each 
edge pair, there is a different timing requirement. So, at some time or other, there 
will be very little margin. And, since checks are supposed to be made on most 
restrictive pair, hence, there will be at least some edge, which will violate! 

 To prevent implementation tools from spending time unnecessarily to meet the 
timing on such paths, it is generally recommend to identify such crossings. This is 
achieved using  set_clock_groups  .   

7.2     Logically and Physically Exclusive Clocks 

 Sometimes, you would have designs where clocks may not be talking to each other 
depending on how the design is architected. Let us consider Fig.  7.6 ; here the two 
clocks irrespective of their source don’t interact with each other, even though they 
coexist in the design. These clocks are considered to be logically exclusive .

C2

C1
F1 F2

  Fig. 7.6    Logically exclusive clocks ( C1  and  C2 )       

 

7.2  Logically and Physically Exclusive Clocks



76

   Let us consider Fig.  7.7 ; here the clocks  C1  and  C2  are logically exclusive; how-
ever, the two generated clocks  GC1  and  GC2  are exclusive, but they cannot coexist 
together on the same net. Thus, clocks  GC1  and  GC2  are considered to be physi-
cally exclusive .

7.3        Crosstalk 

 When clocks are mutually exclusive, even though they don’t talk, there could be 
interference between the signals resulting in unwanted effect. This is typically a 
problem seen in deep submicron technology and could be because of a number of 
reasons like lower geometry’s requirement for higher routing density, interaction 
between devices, or coupling capacitance between signals. This results in a phe-
nomenon called  crosstalk  . Let us consider Fig.  7.8 .

   In this fi gure the coupling capacitance between neighborhood nets results in 
unwanted and unexpected activity on the signals. This activity could be a glitch that 
can impact timing. The signal that is impacted is called the victim  and signal that is 
the cause is called the aggressor . The crosstalk can affect the timing of the victim 
signal, if the aggressor switches at the same time as the victim. Depending upon the 

C2

C1
F1 F2

F3 F4

GC1
GC2

  Fig. 7.7    Physically exclusive clocks ( GC1  and  GC2 )       
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direction of the switching for the aggressor and the victim, the transition at the victim 
could be slower (impacting setup relationship) or faster (impacting hold relationship). 
This is referred as the timing window relationship between the aggressor and victim 
and indicates the period of overlapping time when switching of aggressor and victim 
can potentially coincide. 

 Since crosstalk affects timing, it has a direct impact on setup and hold timing 
check. Let us consider Fig.  7.9 , which is the schematic representation of Fig.  7.8  
without the resistance and capacitance. If the aggressor net has a switching in the 
direction opposite to that of the victim, the slew on the victim net can deteriorate, 
thereby increasing its delay. This will impact the setup timing. Similarly, a switch-
ing on the aggressor net in the same direction as the victim can improve the slew of 
the adjacent victim net reducing its delay. This will impact hold timing.

   From a signal integrity  perspective, if mutually exclusive clocks have no cross-
talk issue, then they are considered to be physically exclusive . 

 Most STA tools provide a way to measure the integrity of a signal in a design 
framework. There are books just on signal integrity and crosstalk analysis, and we 
will not be covering this in detail here. The concept is being introduced since certain 
SDC commands provide directives for crosstalk analysis.  

Aggressor

Victim

Coupling 
capacitance

Glitch

  Fig. 7.8    Glitch due to crosstalk       
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  Fig. 7.9    Victim slew 
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7.4     set_clock_group 

 Based on what we have looked so far, correct setup and hold requirements ensure 
timing for reliable data capture. However for asynchronous clocks it could be 
tedious and impossible to meet the requirement given that the phase relationship of 
the clocks is not deterministic. For mutually exclusive clocks it makes no sense to 
try to meet the requirement, since the clocks don’t talk to each other. In order to 
indicate to timing tools to ignore any timing paths or crosstalk analysis between 
asynchronous or mutually exclusive clocks, SDC provides the  set_clock_groups   
command. The BNF grammar for the command is:

    set_clock_groups  [- name  group_name]  
   [- group  clock_list]  
   [- logically_exclusive ]  
   [- physically_exclusive ]  
   [- asynchronous ]  
   [- allow_paths ]  
   [- comments  comment_string]    

 The  -name   option is used to provide a unique name for clock group. The clocks 
are divided into groups which are specifi ed using  -group   option. 

 The  -logically_exclusive   option is used when clocks are mutually exclusive but 
can have a coupling interaction between them. The grouping between clocks in 
Fig.  7.6  can be represented as:

    create_clock -period 10 -name C1 -waveform {0 5} [get_ports C1]   
   create_clock -period 20 -name C2 -waveform {0 12} [get_ports C2]   
   set_clock_groups -logically_exclusive -group C1 -group C2     

 Though the aforementioned  set_clock_groups  is technically correct, the authors 
recommend to create a combinational  generated clock  from  C1  and  C2  and then set 
up the clock group relation between them. This helps reuse in case the design is 
modifi ed at a later stage such that clocks  C1  and  C2  start interacting in another part 
of the design (among  F3  and  F4 ) as shown in Fig.  7.7 . This would be modifi ed as:

    create_clock -period 10 -name C1 -waveform {0 5} [get_ports C1]   
   create_clock -period 20 -name C2 -waveform {0 12} [get_ports C2]   
   create_generated_clock -name GC1 \   
   -source [get_ ports C1] [get_ pins mux1/A] -combinational   
   create_generated_clock -name GC2 \   
   -source [get_ ports C2] [get_ pins mux1/B]  -combinational   
   set_clock_groups -logically_exclusive -group GC1 -group GC2     

 The  -physically_exclusive  option is used when the clocks don’t coexist in the 
design. The grouping between the clocks in Fig.  7.7  can be represented as:

    create_clock -period 10 -name C1 -waveform {0 5} [get_ports C1]   
   create_clock -period 20 -name C2 -waveform {0 12} [get_ports C2]   
   create_generated_clock -name GC1 -divide_by 1 \   
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   -source [get_pins mux1/A] [get_pins mux1/Z] -combinational   
   create_generated_clock -name GC2 -divide_by 1 \   
   -source [get_pins mux1/B] [get_pins mux1/Z] -combinational -add   
   set_clock_groups -physically_exclusive -group GC1 -group GC2     

 As it can be seen, the timing between fl ops  F1  and  F2  doesn’t have to be consid-
ered for the combination of  F1  being driven by  C1  and  F2  by  C2  and vice versa, but 
clocks  C1  and  C2  also drive fl ops  F3  and  F4,  and so, we cannot simply apply

    set_clock_groups -logically_exclusive -group C1 -group C2     

 This command will disable timing paths between  F3  and  F4  for the clocks  C1  
and  C2 . By defi ning a combinational generated clock at the output of the mux, the 
timing tool is given the directive to disable localized timing path analysis between 
fl ops  F1  and  F2  for the relevant clocks, without impacting fl ops  F3  and  F4 . 

 If you defi ne multiple clocks on the same design object (using  -add  option), they 
should be physically exclusive. Another scenario when clocks are physically exclu-
sive is when both system clock and test clock are applied on the same port. 

 The  -asynchronous   option is used when the clocks don’t share a phase relation-
ship with each other. It should be understood that asynchronous crossings also need 
synchronizers, purely for functional reliability. Synchronizers are not being dealt in 
this book, since the scope of the book is limited to timing aspects. 

 The options  -logically_exclusive  ,  -physically_exclusive  , and  -asynchronous   are 
mutually exclusive. You can use only one option in a single  set_clock_groups   com-
mand. However you can specify relationships between clocks in multiple com-
mands which could be different. 

 Each of these three options indicates that timing paths between clock groups 
must not be considered. However for crosstalk  analysis, they have a different mean-
ing. If the clock group is  logically_exclusive , then crosstalk analysis between clocks 
is computed like any two synchronous clocks. If the clock group is  physically_
exclusive , then no crosstalk analysis is done between the clocks. If the clock group 
is  asynchronous , the clocks are assumed to have an infi nite timing window where 
the aggressor  and victim  can switch together. 

 When clock groups are defi ned asynchronous and the users want to maintain the 
crosstalk analysis but don’t want to disable timing paths between clock, then that is 
achieved using  -allow_paths   option. This option can only be used with  -asynchro-
nous   option. This is generally used only in the context of signal integrity checks and 
not used in STA. 

 You can have more than one group in a single  set_clock_groups  command. The list 
of clocks in a group is meant to be logically exclusive or physically exclusive or asyn-
chronous to all the clocks in other groups. If only one group is specifi ed, then it indicates 
all clocks in that group are logically exclusive or physically exclusive or asynchronous 
to the rest of the clocks in the design. One of the most important things to note is this 
command only specifi es relationship between clocks in different groups. No relation-
ship is implied for the clocks in the same group. Let us consider the command below:

    set_clock_groups -asynchronous -group [get_clocks {clk1 clk2 clk3}] \   
   -group [get_clocks {clk4 clk5 clk6}]     

7.4  set_clock_group
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 This command implies:

    1.     clk1  is asynchronous to  clk4, clk5 , and  clk6.    
   2.     clk2  is asynchronous to  clk4, clk5,  and  clk6.    
   3.     clk3  is asynchronous to  clk4, clk5,  and  clk6.    
   4.    No relation can be assumed among  clk1, clk2,  and  clk3.    
   5.    No relation can be assumed among  clk4, clk5,  and  clk6.       

7.5     Clock Group Gotchas 

 While specifying the clock group the designer must be careful about the following 
things:

    1.    If you defi ne clocks within a group, it doesn’t mean they are synchronous. The 
relationship among clocks within a group could be defi ned elsewhere (say in 
another  set_clock_group  command or by the tool default).   

   2.    Defi ning the clock group with incorrect option ( -physically_exclusive, logically_
exclusive, -asynchronous ) may not impact timing since all effected timing paths 
are ignored, but it will impact your signal integrity analysis.   

   3.    Just because you have defi ned a clock group relationship between a master clock 
and other clocks in the design, it doesn’t mean that relationship is inherited by 
the generated clocks which have been derived from the master clock. All rela-
tionships should be explicitly specifi ed.   

   4.    The best way to remember clock grouping is

    (a)    If two or more clocks coexist in the design, but there is no phase relation-
ship, then they are specifi ed as  -asynchronous  in  set_clock_group .   

   (b)    If two or more clocks coexist in the design, but there is a circuit to select only 
one among these, then they are specifi ed as  -logically_exclusive  in 
 set_clock_group .   

   (c)    If two or more clocks cannot coexist in the design, then they are specifi ed as 
 -physically_exclusive  in  set_clock_group .          

7.6     Conclusion 

 As much as we would like all clocks in a design to be in a single domain, the reality 
is multiple clock domains are inevitable. We looked at how we can ignore timing 
paths between domains that don’t necessarily interact or which need not be timed, 
even if they interact. In the next chapter we will look at other clock characteristics 
that have to be considered for clocks.    
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                    In the preceding chapters, we assumed the clock to be ideal , i.e., they transition 
from  0  to  1  and vice versa instantaneously (have a rectangular waveform); they 
reach all the fl ops in the design at the same time (all edges align) and there is no 
delay between the clock generation circuit and the place where the clock is actually 
consumed. In reality, clocks are never ideal. 

 Clocks in a design form a network reaching out to a high fanout of fl ops. Because 
different fl ops may be at a different electrical distance from the source clock, clocks 
may not be reaching all the fl ops at the same time. Further a single clock buffer driv-
ing all the fl ops would see a huge capacitive load that will result in high slew. To 
alleviate these issues, clock  tree is balanced. In this step clock buffers are inserted 
in the path to balance the network so as to equalize the delay to the leaf level nodes 
or fl ops. This way each buffer sees only a portion of the total load. This step is called 
clock tree  synthesis (aka  CTS  ). 

 Let us now try to understand how these characteristics affect the timing of a 
design. 

8.1     Transition Time 

 Figure  8.1  shows the waveform of a nonideal clock. When the clock transitions 
from  0  to  1  or  1  to  0 , it happens over a fi nite period of time.

   The rate of change of signal is termed as  slew  . Slew is generally measured in 
terms of  transition time   which is defi ned as the time required for a signal to 
change from one state to another. It is also typically measured as percentage of 
the total voltage change to be undergone. These markers act as the threshold  
settings for the measurement. For example, designer may defi ne transition time 
as 30–70 % meaning, the time it takes from signal having undergone 30 % of the 
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voltage change to 70 % of the desired change. Rise transition time is the transition 
component for signal to go from  0  to  1 . Fall transition time models the opposite. 
Also to measure any relationship between edges of a clock, it is assumed that 
clock has reached its active or inactive state when it reaches a predefi ned thresh-
old  value (usually, 50 % of voltage level). The numbers indicated for threshold 
are samples and different methodologies may prescribe to a different threshold 
value. 

 Before  CTS  , because of the high load on the clock network, it doesn’t make sense 
to do any delay calculation on the clock line as it could result in an unrealistically high 
 slew   value, which could affect the setup and hold time of registers. Thus, for STA this 
value of  slew  is assumed prior to  CTS . This value is also specifi ed to  CTS  tools to 
meet the  slew  goals. This is specifi ed using the  set _ clock _ transition   constraint.  

8.2     set_clock_transition 

 Transition time of a clock is modeled in SDC using  set_clock_transition . 
 The BNF (Backus-Naur Form) grammar for the command is:

    set_clock _ transition  [- rise ]  
   [- fall ]  
   [- max ]  
   [- min ]  
   clock_list  
   transition_time    

 The - rise   option is used to provide the transition time for the rising edge of clock. 
Similarly - fall   is used to provide the transition time for the falling edge of clock. 
The options - max   and - min   model transition time for maximum and minimum oper-
ating conditions. The options - rise /- fall /- max /- min  can be used separately or in tan-
dem. However care must be taken not to contradict the transition time. For  example, 
transition time cannot be negative or the max value should not be less than the min 
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  Fig. 8.1    Waveform of a non-ideal clock       

 

8 Other Clock Characteristics



83

value. The transition time can be set on one clock or set of clocks. The specifi ed 
transition time is applicable for the clock network, and the same value is used for 
the clock pin of the sequential element in the network of the clock. The clock used 
in this constraint should match the name of the clock used in  create _ clock  or 
 create _ generated _ clock  constraint.

   #  Rise transition on Clock C1   
   set _ clock _ transition  - rise 0 . 2 [get _ clocks C1]    

   #  Fall transition on Clock C2 for min and max conditions   
   set _ clock _ transition  - fall  - min 0 . 2 [get _ clocks C2]   
   set _ clock _ transition  - fall  - max 0 . 4 [get _ clocks C2]    

   #  Transition  ( rise ,  fall ,  min ,  max )  on all clocks in the design   
   set _ clock _ transition 0 . 3 [all_clocks]     

 It should be noted that  set _ clock _ transition  is to be used only during pre-layout  
stage, before clock tree synthesis  has been done. This command should never 
be used for any post-layout timing analysis , after the clock tree has been 
synthesized. 

 It should be understood that the transition value specifi ed by this command is the 
time taken to transition from one state to another. However, the threshold itself for 
measurement of the transition time is a property of the characterization library.  

8.3     Skew and Jitter 

 When a clock is generated by a source, it may not arrive at all the fl ops at the same 
time. The difference in the arrival time at various fl ops could be because of different 
paths through clock network, or coupling capacitance or other  PVT  (Process, 
Voltage, Temperature) variations in the design. This causes the edges of the same 
clock not to align when they reach the various devices. This difference between 
clock arrivals at different points in the design is referred to as clock  skew  . Clock 
skew can be between different points of the same clock ( intraclock  ) or different 
(usually, synchronous ) clocks ( interclock  ). 

 At the clock generating device (say: PLL) itself, a clock’s edge may not be deter-
ministic on account of crosstalk or electromagnetic interference or due to PLL char-
acteristics. This undesired deviation in the periodicity of a clock is referred to as 
 jitter  . Because of skew or jitter issues, design can have setup and hold violation. 
As shown in Fig.  8.2 , these deviations cause the clock edge to slide on the time 
scale thereby reducing or increasing the time available for meeting the setup and/or 
hold requirements. Skew and Jitter cause lack of predictability as to when will an 
exact edge arrive at the point of the trigger (sequential device). These are called 
 Uncertainty  .

8.3  Skew and Jitter
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8.4        set_clock_uncertainty 

 Clock skew and jitter are modeled in SDC using  set _ clock _ uncertainty  . The BNF 
grammar for the command is:

    set _ clock _ uncertainty  [- from  | - rise _ from  | - fall _ from  from_clock]  
   [- to  |- rise _ to  | - fall _ to  to_clock]  
   [- setup ]  
   [- hold ]  
   [- rise ]  
   [- fall ]  
   [object_list]  
   Uncertainty_value    

8.4.1     Intraclock Uncertainty 

 When modeling  skew   or  jitter   on a single clock (intraclock uncertainty ), you need 
to specify the name of the clock, port, or pin. When you specify a clock, it means 
the uncertainty applies to all sequential elements driven by the clock. When applied 
on a port or pin, it applies to all clocks (and their corresponding sequential ele-
ments) in the fanout of the port or the pin. 

 The user can also specify different uncertainty values for setup and hold checks 
using the - setup   and - hold   options. For intraclock uncertainty, setup is impacted by 
both jitter and skew. While hold is impacted only by skew, not jitter. 

Uncertainty

Setup
Uncertainty

Hold
Uncertainty

Data

  Fig. 8.2    Impact of uncertainty on setup and hold       
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 A hold check is made at the same edge for launch and capture clock. Thus, any 
jitter impacts both the launch and the capture devices by exactly the same amount, 
and in the same direction. Thus, intraclock hold analysis need not care about jitter. 
Hence, it is recommended to have different values for setup and hold uncertainty 
with hold (only skew) being less than setup (skew and jitter).

   #  Intraclock Uncertainty   
   set _ clock _ uncertainty 0 . 5 [get _ clocks C1]   
   set _ clock _ uncertainty  - setup 0 . 5 [get _ clocks C2]   
   set _ clock _ uncertainty  - hold 0 . 2 [get _ clocks C2]     

 In the example above, if there are paths from other clocks to  C1 , then unless 
otherwise specifi ed, the intraclock uncertainty also models the interclock  uncer-
tainty. However the user can explicitly state the interclock skew as described in 
Sect.  8.4.2 .  

8.4.2      Interclock Uncertainty 

 While modeling interclock  uncertainty, source (start) clock is specifi ed using the 
- from   option and the destination (end) clock is specifi ed using  -to   option. 

 If a designer wants to model uncertainty to be different for rise and fall edges, 
then he should use the options  -rise_ from   , -fall_ from   , -rise_to   , -fall_to  . These 
options were added to SDC as an afterthought. Prior to these options the user could 
specify them using  -rise   and  -fall   option. However that didn’t provide a very fi ne 
granularity, e.g., you could want to set uncertainty for rise condition on  -from  and 
fall condition on  -to . It may be matter of time before these may be removed from the 
standard. Most STA tools treat this as an obsolete option today. 

 If the user wants to model the uncertainly only for setup checks or wants to use 
different values for setup and hold, they can use the  -setup   and  -hold   option. Setup 
would now need to include the jitter  and skew for both the clocks. And unlike intra-
clock, in this case jitter and skew  for both clocks need to be taken into account for 
hold as well, because both launch and capture clocks could have their own skew and 
jitter; and in worst case scenario, these could be in opposite directions, e.g., for 
setup, the launch clock could be delayed, while the capture clock could be earlier; 
and for hold, the launch clock could be early, while the capture clock could be 
delayed. 

 The following commands will apply the uncertainty value to all fl ops and latches 
that are driven by the respective clocks.

    # Clock uncertainty from C1 to C2 for setup and hold   
   set_clock_uncertainty -from C1 -to C2 -setup 0.5   
   set_clock_uncertainty -from C1 -to C2 -hold 0.5    

    # Clock uncertainty from rising edge (C1) to falling edge (C2)   
   set_clock_uncertainty -rise_from C1 -fall_to C2 0.5     

8.4  set_clock_uncertainty
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 Let us consider the circuit as shown in Fig.  8.3 . Here, there is path from  C1  to  C2  
and also a path from  C2  to  C1 . One of the more commonly made mistakes is to set 
the uncertainty from  C1  to  C2 . This will not cover the path from  C2  to  C1 . 
Uncertainty must be specifi ed to cover all source and destination clock 
combinations.

     # Clock uncertainty between C1 and C2   
   set_clock_uncertainty -from C1 -to C2 0.5   
   set_clock_uncertainty -from C2 -to C1 0.5     

 When both interclock  and intraclock  uncertainties are specifi ed, then interclock 
takes a higher precedence.

    # Intraclock and Interclock Uncertainty Confl ict   
   set_clock_uncertainty 0.6 -from C2 -to C1   
   set_clock_uncertainty 0.5 [get_clocks C1]     

 In the example above the two uncertainty values on Clock  C1  are different. For 
all paths from  C2  to  C1 , the interclock uncertainty takes precedence, and a value of 
 0.6  is used. For all other paths where the destination clock is  C1 , the intraclock 
value of  0.5  is used. 

 Another important aspect of uncertainty is that its value varies between pre- 
layout   and post-layout . In the pre-layout stage there is no CTS  performed; the 
uncertainty value must take into effect the possible impact of skew that will be 
inserted. However post CTS, the skew  portion is already known and doesn’t need to 
be specifi ed as uncertainty. So, the clock uncertainty in the post-layout stage is gen-
erally less than pre-layout. 

 The following table summarizes which of the factors (among skew and jitter) 
should be contributing to which kind of uncertainty:

 Intraclock (same clock 
on source and destination) 

 Interclock (source and destination 
having different clocks) 

 Setup  Hold  Setup  Hold 

 Pre-layout  Skew and jitter  Skew  Skew and jitter  Skew and jitter 
 Post-layout  Jitter  X  Jitter  Jitter 

C2C1 C1

  Fig. 8.3    C1 to C2 and C2 to C1 paths       
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8.5          Clock Latency 

 Let us consider Fig.  8.4a, b , which shows delay in the clock path.    The delay between 
the source of the clock and the actual pin where clock is used to trigger a device 
is defi ned as  clock latency  . This delay is because of the capacitive load on the 
interconnect or elements in the clock tree between the clock source and the clock 
pin. Clock latency has two components – source and network latency.  Source 
latency   is the delay from the source of the clock to the point where clock is defi ned 
(in SDC, through  create_clock  / create_generated_clock  ). This source could be 
on-chip or off-chip.  Network latency   is the time it takes for clock to propagate 
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  Fig. 8.4    ( a ) Delay on clock path with off-chip clock source ( b ) Delay on clock path on-chip clock 
source       

 

 8.5 Clock Latency



88

from the point where clock is defi ned to the point where it is actually used to trigger 
the sequential device. There could be more than one clock path to a device, in which 
case the delays along the path could be different as well. The longest path or the one 
which has maximum delay is often referred to as the  late path   and shortest path or 
the one which has minimum delay is referred to as the  early path  . The total latency 
is the sum of source and network latency. Depending on the phase of the design fl ow 
you are, you can compute it or make an approximation. However accurate delay in 
a circuit is possible only when you know the complete implementation details – 
including, placement, wire connections, parasitic etc. (on account of the placement 
of the buffers) on the line, which is typically available post-layout . Hence to model 
these network delays before Clock Tree Synthesis  or pre-layout  stage, designers use 
the SDC constraint  set_clock_latency  .  set_clock_latency  is used to model delay in 
the clock network .  

8.6     set_clock_latency 

 The BNF grammar for the command is:

    set_clock_latency  [- rise ]  
   [- fall ]  
   [- min ]  
   [- max ]  
   [- source ]  
   [- late ]  
   [- early ]  
   [- clock  clock_list]  
   delay  
   object_list    

 The options  -rise   /-fall   specify the latency on the rising and falling edge of the 
clock. The options  -min   /max   specify the latency for minimum and maximum oper-
ating conditions. The options  -rise/-fall/-max/-min  can be used separately or in tan-
dem. However care must be taken not to contradict the latency values. For example, 
latency cannot be a negative value or the max value should not be less than the min 
value. 

 To specify the source component of the latency the user needs to provide the 
 -source   option along with the name of the clock. Let us consider Fig.  8.4a , assuming 
the SDC clock defi ned at port is  C1 , then source latency is used to model the delay 
from the off-chip source to the port. This is represented as:

    set_clock_latency -source 0.5 [get_clocks C1]     

 Let us consider Fig.  8.4b . If there are multiple paths from the  PLL  to the 
place where clock is defi ned (output of the PLL), then the delay on the longest 
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path is modeled using  -late   option. The delay on the shortest path is modeled 
using  -early   option.

    set_clock_latency -source -early 0.5 [get_clocks C1]   
   set_clock_latency -source -late 1.0 [get_clocks C1]     

 Clock source latency impacts the way setup and hold check may be performed 
when multiple clocks are interacting. To be pessimistic it is generally recommended 
to do setup check between the late version of the source clock and early version of 
the destination clock and hold check between early version of the source clock and 
late version of the destination clock. Figure  8.5  shows the setup and hold relation-
ship between multiple clocks when latencies are involved.

   When  -source   option is not specifi ed, the command models the network latency. 
As explained earlier,  CTS   inserts buffers to distribute the huge fanout on the clock 
network. This is also done in a way to ensure delay on all the paths in the clock 
network are kept similar. These additional buffers will result in some delay on the 
clock path. This delay is modeled as network latency . So, effectively, network 
latency means delay through the clock network, which comes into being mostly 
because of clock tree. 

 This can be applied on the clocks or ports and pins. For Fig.  8.4a , the following 
command indicates the delay in the network of the clock. This delay applies to all 
the sequential devices triggered by this clock.

    # Network Latency – Applies to rise (for max and min conditions)   
   set_clock_latency 0.5 -rise [get_clocks C1]    

    # Network Latency – Applies to fall (for max and min conditions)   
   set_clock_latency 0.3 -fall [get_clocks C1]     
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  Fig. 8.5    Setup and hold check with source latency       
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 When applied on ports or pins, it implies the latency is till the clock pins of the 
registers which are in the fanout of these design objects. If you want to apply a spe-
cifi c latency value to only a part of a clock tree, it can be achieved by specifying the 
latency on a pin, such that the portion of the tree falls in the fanout cone of the pin. 
Along with port and pins, the user can also specify the associated clock using the
 -clock  option. This is used when multiple clocks pass through a port or pin.

    # Network Latency to all register clock pins in fanout of A   
   set_clock_latency 0.5 [get_ports A]    

    # Network Latency to all register pins in fanout of B, which are clocked   
   # by C1 and C2   
   set_clock_latency 1.0 -clock {C1 C2} [get_ports B]     

 There is a conceptual difference between source and network latency in SDC. 
Source latency can only be applied on clocks, while network latency can be applied 
on clock, ports, and pins. Source latency can only be used to model early and late 
paths. Finally, network latency is an estimate of delay prior to clock tree synthesis  
and is not specifi ed after  CTS . After CTS, it is recommended to use  set_propa-
gated_clock   command to give directive to the tool that clock network latency needs 
to be computed based on the actual circuit elements – including parasitics. The 
actual network latency after CTS is also referred to  insertion delay  . That said, 
source latency still need to be specifi ed after  CTS  for the propagated clock.  

8.7     Clock Path Unateness 

 As clock propagates through the design, it has to pass through combinational ele-
ments. When it passes through buffer or gates like  AND/OR , its sense  (viz: direction 
of transition) is preserved. When it passes through inverters or gates like  NAND/
NOR , its sense is inverted. In either case, it is possible to fi gure out the sense of the 
clock, along its path. Such a clock where based on its propagation, you can fi gure 
out the sense of the arriving clock edge at fl ip fl ops is said to be  unate  . A  positive 
unate   clock is one where a rising edge at the source of a clock results in a rising edge 
at the clock pin of the fl op. A  negative unate   is one where a rising or falling edge of 
at the source of a clock results in falling or rising (just the opposite) at the clock pin. 
Figure  8.6  shows example of a positive and negative unate clock.

   However in some cases, depending on the circuit it may not be possible to fi gure 
out the sense. Such a clock path is said to be  non unate  . Figure  8.7  shows the exam-
ple of a non-unate clock.

   For such clock paths, a user can specify the  set_clock_sense   command to pick 
which sense (positive or negative) should propagate on the path.  
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8.8     set_clock_sense 

 The BNF grammar for the command is:

    set_clock_sense  [- positive  | -negative  | -stop_propagation ]  
   [- pulse pulse ]  
   [- clock  clock_list]  
   pin_list    

 This command only is meaningful in the context of a non-unate  clock network. 
To specify the unateness of the clock network, the user needs to specify the name of 
the design pins through which the clock passes. For example, to propagate only the 
negative clock for Fig.  8.7 , the SDC can be written as

    set_clock_sense -negative [get_pins XOR2/Z]     

1
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  Fig. 8.6    Positive and negative unate clock       
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  Fig. 8.7    Non-unate clock       
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 If multiple clock paths converge on such an  XOR  gate, then aforementioned 
 command would imply that all negative edges of the clocks would be considered for 
analysis. To selectively apply this on certain clocks use the  -clock   option. For 
example,

    set_clock_sense -positive -clock [get_clocks C1] [get_pins XOR1/Z]   
   set_clock_sense -negative -clock [get_clocks C2] [get_pins XOR2/Z]     

 Mutually exclusive to the  -positive   /-negative   option is the  -stop_propagation   
option. This is used, if designer wants to disable the propagation of certain clocks.

    set_clock_sense -stop_propagation -clock [get_clocks C3] \   
   [get_pins XOR1/Z]     

 So when do you use  -stop_propagation ? Let us consider an example where a 
 PLL  has multiple outputs, each output represents a clock. Sometimes clocks may be 
for different modes. These clocks from  PLL  output fanout to all the elements in the 
design, but in a certain mode you don’t want a clock to reach to a particular set of 
fl ops. In that case, you would want to stop the clock propagation before it reaches 
the fl ops. This is achieved using the  stop_propagation  option. We will read more (in 
Chap.   14    ) about mode- based analysis, and that should explain why in some situa-
tions, some clocks might have to be stopped from reaching at a few points, in certain 
specifi c modes. 

 In Chap.   6     (Sect.   6.4.4    , Fig.   6.4    ), we had shown how to model a pulse using  cre-
ate_generated_clock . Another way to model it is using the  -pulse   option in  set_
clock_sense  as shown below.

    set_clock_sense -pulse rise_triggered_high_pulse [get_pins AN1/Z]     

 The  -pulse  option can take one of the four values:  rise_triggered_high_pulse   , 
rise_triggered_low_pulse   , fall_triggered_high_pulse   , fall_triggered_low_pulse   .  
A rise triggered pulse is one where the clock source has a rising active edge, whereas 
in a fall triggered it has falling active edge. Figure  8.8  shows the different kinds of 
pulse waveforms.

   The advantage of using  set_clock_sense  for a pulse over  create_generated_clock   
is that it doesn’t create an additional clock and hence an additional domain. For a 
pulse, the width of the pulse is assumed to be zero, no matter what method you use. 
However when only  set_clock_sense  is used, the actual width of the pulse is calcu-
lated based on the differential values of rise and fall latency . The user can set the 
latency on the pin where pulse is generated. For example, the aforementioned  set_
clock_sense  will be complemented by

    set_clock_latency -rise 0.2 [get_pins AN1/Z]   
   set_clock_latency -fall 0.9 [get_pins AN1/Z]     

 This will result in a pulse of width  0.7ns . In general the pulse width is calculated as

    Pulse_width    = | rise_latency -fall_latency  |     
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8.9     Ideal Network 

 In preceding sections we saw how to create non-ideal clocks to take into account the 
impact of slew, skew, jitter, and latency. However in a design there may be a need to 
defi ne certain points as ideal. This is required specifi cally when user wants to adopt 
a specifi c methodology to synthesize a particular portion of the design. For exam-
ple, high fanout nets like scan, if taken through the traditional synthesis fl ow, may 
cause the tools to spend unwanted time trying to optimize the design to meet timing. 
In some cases, it may optimize design objects away, which may not be the intent. To 
prevent this, user can defi ne design objects like cells, pins, or nets as ideal, which 
implies that such objects are not required to adhere to design rules like maximum 
capacitance, fanout, and transition. Also, on sources that drive such objects optimi-
zation will not be done and timing will not be updated on paths to these objects. 
This network of ideal cells, pins, and nets is called an ideal network  and this is mod-
eled using  set_ideal_network   constraint. 

 The BNF grammar for the command is:

    set_ideal_network  [- no_propagate ]  
   object_list    

 This can be set on ports, cells, or nets at any level of hierarchy. It can be set on 
any internal pin of the design, but cannot be set on a pin at a hierarchical boundary. 
When this constraint is set, then all objects (net, pins, cells) in the transitive fanout 
of the source are also considered ideal. Typically ideal net propagates through all 
combinational elements and stops at a sequential element. To prevent any propaga-
tion through combinational elements, the  -no_propagate   option is used. 
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  Fig. 8.8    Different kinds of pulse waveforms       
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 By default, the transition and latency of an ideal network is assumed to be zero. 
However these can be set to specifi c values using the  set_ideal_transition   and  set_
ideal_latency   constraints.  

8.10     Conclusion 

 In last four chapters we studied different clock characteristics and how to model 
them. Constraining the clocks is the most imperative step in timing. It forms the 
basis of timing analysis. 

 The constraints learnt in this section are especially interesting. These constraints 
change their values and shapes between pre-layout and post-layout. Some constraint 
which was used during pre-layout should be replaced by another constraint during 
post-layout stage; or, sometimes the value might need to be modifi ed. 

 We will now understand how to constrain the remaining ports of the design.    
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                    Once the clock constraints have been applied, all the register to register paths can be 
timed. Now the delay constraints have to be applied on non-clock ports. If input and 
output port constraints are not specifi ed, timing analysis tools assume a highly opti-
mistic timing requirements on the interfaces. They assume the combinational logic 
inside the block can have the entire period to itself and leave nothing for the portion 
of the signal outside the block. 

9.1     Input Availability 

 For each input port, we need to specify the time at which the inputs would be avail-
able. Consider the circuit shown in Fig.  9.1 . For the block  B1 , we need to know the 
time at which the signal arrives on input  I1 .

   This tells the implementation tools the amount of time that can be spent in the 
combo cloud,  C1 –  between the input port and the fi rst register element. This in turn 
decides the level of optimization required. This also allows the STA tools to report 
if the signal would reach  F1 –  the fi rst register after crossing the combinational logic 
– in time to be latched reliably. Consider the circuit shown in Fig.  9.2 .

   For the block  B2 , let us consider the input  I1  for which we need to specify the 
input arrival time. The signal will start at  F1  (of the previous block  B1 ) when the 
fl op gets a clock trigger. So this clock trigger acts as a reference event. After this 
reference event, the signal has to travel through the fl op ( Clk_to_Q  delay), the 
combo logic  C1  (in the previous block  B1 ), the combo logic  C2  (in the top level), 
and the interconnect  delays through the wires. However, as far as the signal arrival 
time at  I1  is considered, it does not matter how the delay is distributed between  C1 , 
 C2 ,  Clk_to_Q , interconnect, etc. It just needs to know how much time after the 
 reference event the signal appears at the input port. A late arriving signal means 
a very small amount of delay in the logic cloud  C3  (between the input port  and 
the register). 

    Chapter 9   
 Port Delays 
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9.1.1     Min and Max Availability Time 

 It is not always possible to specify the exact time at which the signal would be avail-
able at an input port. There could be multiple paths from the same reference event 
as shown in Fig.  9.3 , or even PVT variations could cause some degree of uncertainty 
as to when the signal will reach the input port.
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B1  Fig. 9.1    Block input       
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  Fig. 9.2    Input available time       
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  Fig. 9.3    Multiple paths from same reference event       
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   The designer needs to specify the earliest time at which a signal can change at the 
input port. This also means the minimum time, before which the input signal would 
not be reaching the input port. By corollary, this means that the previous value 
would be held at the input port till this time. This minimum  value is useful for ensur-
ing that the input signal will not violate the hold  requirement on  F2 . 

 The designer needs to also specify the maximum time, within which the input 
signal would surely be available at the input port. This also means the latest time, 
within which all changes to the signal would be available at the input port. This 
maximum time is used to ensure that this signal meets the setup requirement of the 
fl ops inside  B2 . Figure  9.4  shows the impact of minimum and maximum delay on 
the data validity window.

9.1.2        Multiple Clocks 

 Sometimes, an input signal might be triggered by multiple clocks. Consider the 
circuit shown in Fig.  9.5 .

   Signals reaching  I1  could be generated either from  Clk1  (in block  B1 ) or Clk2 
(in block  B2 ). Both these triggering events could be independent. In such a case, the 
arrival time has to be specifi ed with respect to both the reference events. It is the 
responsibility of the implementation tools and the STA tools to consider each of 
these arrival times independently and try to satisfy both the conditions.  

9.1.3     Understanding Input Arrival Time 

 Looking back at the circuit in Fig.  9.1 , let us consider that the earliest time at which 
a signal is available at  I1  is  3ns . Let us say that the minimum delay for the combo 
cloud C1 is  4ns . So the earliest that the signal can be available at the fl op  F1  is at  7ns . 

XXXXXX

Min

Max
delay

New data valid
from here

Previous data valid
upto here

delay

  Fig. 9.4    Data valid window       
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Thus, as long as the hold requirement of the fl op is less than  7ns , the new value does 
not interfere with the capture of the previous data. 

 Similarly, let us consider that the latest time for the signal to arrive at  I1  is  5ns . 
Let us also say that the maximum delay for the combo cloud  C1  is  6ns . So the latest 
that the signal can be available at the fl op  F1  is  11ns . Let us further assume that the 
setup  requirement of the fl op  F1  is  0.5ns . Thus, as long as the clock reaches  F1  at 
 time  11.5ns  or later, the current value can be captured by the fl op reliably.   

9.2     Output Requirement 

 For each output port , we need to specify the time for which a signal travels outside 
the block, before getting sampled. Consider the circuit shown in Fig.  9.6 . For the 
block  B1 , we need to know the time that is needed by the signal to travel after 
emerging out of  O1 , before getting sampled.

   This tells the implementation tools how much logic can be put in the combo 
cloud,  C1 –  between the last register element ( F1 ) and the output port  O1 . This also 
allows the STA tools to report if the signal would be available at  O1  at  a time – such 
that it still is left with suffi cient time required to travel outside the block, after 
emerging out of  O1 . Consider the circuit shown in Fig.  9.7 .

   For the block  B1 , let us consider the output  O1  for which we need to specify the 
output required time. After coming out of  O1 , the signal gets sampled by the fl op  F2  
in block  B2.  The clock that triggers  F2  acts as a reference event. Before this refer-
ence event arrives on  F2 , the signal has to travel through the combo logic  C2  (in the 
top level), the combo logic  C3  (in the next block), and the interconnect  delays 
through the wires. And the signal needs to still reach  F2  slightly before the reference 
event, so that the fl op meets its setup  requirement. However, as far as the signal 
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  Fig. 9.5    Multiple reference events       
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required time at  O1  is considered, it does not matter how the delay is distributed 
between  C2 ,  C 3  F2’s  setup, interconnect, etc. It just needs to know how much time 
before the reference event the signal needs to be available at the output port. 
A higher time outside  O1  means a very small amount of delay in the logic cloud 
 C1  (between the register and the output port). 

 It is to be understood that the output requirement is specifi ed in terms of how 
much time more is needed outside the block, before the signal gets sampled. It is not 
specifi ed in terms of when the signal needs to be available at the output. That can be 
calculated. For example, if an output delay is specifi ed as  6 , that means the signal 
needs  6ns  after coming out. And if the signal is to be sampled by a clock trigger at 
 10ns , that would mean the signal should be available at  4ns . In the world of SDC, 
the user specifi es  6 –  the time that is needed after coming out. Whoever needs to 
know the time when the signal should be available can compute that value. This is a 
conceptual difference between specifying input delay and output delay. At the input, 
the value specifi ed directly gives the time when the input would be available. At 
output, the value specifi ed says for how long the signal will travel further. This is 
different from when the signal needs to be available at the output. 

9.2.1     Min and Max Required Time 

 It is not always possible to specify the exact time for which the signal would need 
to travel after coming out of an output port. There could be multiple paths from the 
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  Fig. 9.6    Block output       
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output port to the same reference event as shown in Fig.  9.8 , or even PVT variations 
could cause some degree of uncertainty as to when will the signal reach the 
output port.

   The designer needs to specify the minimum time that the signal needs to travel 
after the output port. The designer needs to also specify the maximum time that the 
output signal might need to travel after coming out of the output port.  

9.2.2     Multiple Reference Events 

 Sometimes, an output signal might be captured by multiple reference events. 
Consider the circuit shown in Fig.  9.9 .

   Signals from  O1  could be captured either by  Clk1  or  Clk2 . Both these capturing 
events could be independent. In such a case, the required time needs to be specifi ed 
with respect to both the reference events. It is the responsibility of the implementa-
tion tools and the STA tools to consider each of these required times independently 
and try to satisfy each of the requirements.  

9.2.3     Understanding Output Required Time 

 Looking back at the circuit in Fig.  9.6 , let us consider that the minimum  time that 
the signal takes outside  O1  is  3ns . So, even if the delay inside the block till the out-
put port O1 is  “-3ns , ”  the fi nal delay at the end of the path is zero. So the new value 
would still not interfere with the previous data, because that is available till the 
clock edge. Thus, the previous value should be held stable at  O1  till time  “-3ns .” 
This can be thought of as a situation, wherein  O1  is feeding into a hypothetical fl op, 
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  Fig. 9.8    Multiple paths to same reference event       
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which has a hold  requirement of  “-3ns .” Note the negative sign! So a minimum 
delay specifi ed for the output port is equivalent to a hold check on a hypothetical 
fl op, where the hold value to be checked is negative of the delay value specifi ed. 

 Similarly, let us consider that the maximum required time for the signal  O1  is 
 7ns . That means that the signal needs to travel for a further time of  7ns , before get-
ting captured by the next fl op. This can be thought of a situation, wherein  O1  is 
feeding into a hypothetical fl op, which has a setup requirement of  7ns . Assuming 
a clock period of  10ns , the maximum combinational delay for the cloud  C1  can be 
 3ns  ( 10–7  )  .    

9.3     set_input_delay 

 The SDC command for specifying delays on input ports is  set_input_delay   .  The 
BNF grammar for the command is:

    set_input_delay  [ -clock  clock_name]  
   [ -clock_ fall ]  
   [ -level_sensitive ]  
   [ -rise ]  
   [ -fall ]  
   [ -max ]  
   [ -min ]  
   [ -add_delay ]  
   [ -network_latency_included ]  
   [ -source_latency_included ]  
   delay_value port_pin_list    

B1

O1

Clk1

Clk2

  Fig. 9.9    Multiple reference events       
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9.3.1     Clock Specifi cation 

  -clock   option is used to specify the reference clock, with respect to which the delay 
value is specifi ed. This should usually refer to the name of the clock which is used 
to trigger the signal that reaches this input port. Consider the circuit shown in 
Fig.  9.10  . 

   Let us assume that the input  I1  of the block  B1  is being driven by fl op  F1 . The 
fl op  F1  lies outside  B1 . It could be lying in some other block, or it could be part of 
the top level logic. Let us further assume that the clock which triggers  F1  also goes 
into the block  B1 . And the name given to this clock in  B1  is  CLK1 . In that case, the 
 clock_name  specifi cation should be  CLK1 . The input arrival time is triggered by this 
clock – which is the reference. It does not matter what is the name of the same clock 
signal when it drives  F1 . For example, the same clock signal could be named  CLK_1  
for the portion which contains  F1 . But, for input delay of  B1 , the name has to be 
specifi ed in terms of the clock that is seen by  B1 . 

 Sometimes, the clock signal which triggers  F1  might not enter the block  B1 . In 
such a situation, a virtual clock  needs to be declared for  B1 . The characteristic of 
this virtual clock has to be exactly the same as the clock which triggers  F1 . Now, 
this virtual clock can be specifi ed as the  clock_name  with the - clock   option. 

 By default, it is assumed that the delay specifi ed is with respect to the positive 
edge  of the clock mentioned. However, if the fl op  F1  is triggered by negative edge  
of the clock, then option  -clock_fall   needs to be added. Presence of this option will 
cause the reference event to be the negative edge of the specifi ed  clock_name , 
instead of the positive edge. 

 Consider a clock with period  10ns  and having a waveform of  {0 5}.  Let us say 
that the fl op  F1  is triggered by falling edge of the clock. So we could specify a delay 
of  2  with respect to the falling edge of the clock, or we could specify a delay of  7  
with respect to the rising edge of the clock. In terms of timing analysis, both the 
following commands will have the same impact:

    set_input_delay -clock CLK1 -clock_fall 2.0 [get_ports I1]   
   set_input_delay -clock CLK1 7.0 [get_ports I1]     
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  Fig. 9.10    Clock specifi cation for input delay       
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 However, if the launching fl op  F1  is actually triggered by the falling edge of the 
clock, then we should use the fi rst command, because it is a better refl ection of the 
design circuitry. 

 If the input pin being considered is part of a combinational only path, then there 
is no clock which triggers the signal arriving on it. In such a case,  -clock  need not be 
specifi ed. For such  set_input_delay  commands, the reference event is considered as 
time 0. If  -clock  is not specifi ed,  -clock_fall  has no signifi cance. Since most designs 
today are synchronous, hence, usually,  set_input_delay  has clocks specifi ed. Purely 
combinational paths – even if existing – may also be constrained using other con-
straints (discussed in Chap.   13    ).  

9.3.2     -level_sensitive  

 If the launching device is a latch , rather than a fl op, this switch should be specifi ed. 
Conceptually, use of this switch allows for the condition that the launching latch 
could be borrowing  the time from this cycle. That means the setup slack could reduce 
– to account for signal starting from the latch anytime when it is transparent. 

 However, this option should be used after a very careful consideration. Different 
tools are known to treat this option differently. Some tools and translators simply 
ignore this option. If a designer intends to use this option, he/she should make sure 
that all tools in his/her fl ow treat this option uniformly.  

9.3.3     Rise/Fall Qualifi ers 

  -rise   is used to qualify that the input delay corresponds to the signal rising at the 
input port, and  -fall   is used to qualify that the input delay corresponds to the signal 
falling at the input port. The command needs to provide the rise or fall qualifi ers, if 
the input arrival times are different for a signal which is rising at the input port and 
a signal which is falling at the same input port. 

 When the  -rise  or  -fall  qualifi er is not specifi ed, the given value applies to both 
kinds of transitions. In CMOS circuits, typically path delays for rise and fall transi-
tions are quite similar. So  -rise/-fall  specifi cations are not used that often.  

9.3.4     Min/Max Qualifi ers 

  -min   is used to qualify that the delay value specifi ed corresponds to the earli-
est arrival time for the signal at the input port. This value is used for performing 
hold  checks inside the current design.  -max   is used to qualify that the delay value 
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specifi ed corresponds to the latest arrival time for the signal at the input port. 
This value is used for performing setup  checks inside the current design. 

 When  -min  or  -max  qualifi ers are not specifi ed, the same specifi ed value is con-
sidered for both qualifi ers. Usually, the  -min/-max  qualifi ers are not used, and the 
value corresponding to the max delay is specifi ed. 

 For current technologies in the realms of nanometers, the hold  values for indi-
vidual fl ops have come down drastically, to the extent that many times these are nega-
tive. Obviously, because of some fi nite delay in the data path, the input arrival time 
would be positive and would meet the negative hold value. Even if the hold value is 
not negative, it would be very close to  0 . Thus, in most cases, the delay through the 
launching device (launching fl op’s  Clk_to_q  delay) and the interconnect  delay will 
be more than the hold time. Thus, an externally arriving signal would meet the hold 
requirements in most cases. The value used is typically the max value – so that the 
setup check is performed reliably. The same value also gets used for hold checks, 
which anyways gets met. If the signal is going to feed into an element which has 
a large hold requirement, say a memory, the hold check could become important. 
In such a situation, the  -min  value also should be specifi ed correctly.  

9.3.5     -add_delay 

 Most of the timing analysis tools provide an interactive shell to the designers. These 
shells allow users to modify a previously specifi ed value. If an input delay is speci-
fi ed for a port, the current specifi cation overrides prior specifi cations of input delay 
on this port. If a user has to specify input delays with respect to multiple reference 
events on the same port, then  -add_delay   needs to be specifi ed for all subsequent 
specifi cations. For the fi rst delay specifi cation on the input port, it is not necessary 
to specify  -add_delay . However, even if a designer puts an  -add_delay  to the fi rst 
specifi cation, the option would simply be ignored. Presence of  -add_delay  switch 
tells the tool that this is an additional constraint, besides the existing constraints, and 
it does not override the previous constraints. In the absence of this switch, the previ-
ous constraints get overwritten, for example:

    ## fi rst specifi cation   
   set_input_delay -clock CLK1 -min 3.0 [get_ports In1]   

   ## this is OK, since, -max was not specifi ed on this port earlier   
   set_input_delay -clock CLK1 -max 4.0 [get_ports In1]   

   ## this overrides both the previous specifi cations, with respect to CLK1   
   set_input_delay -clock CLK2 3.5 [get_ports In1]   

   ## This one gets added, without removing any of the earlier existing constraints   
   set_input_delay -clock CLK1 -add_delay 3.0 [get_ports In1]   

   ## This is also OK, since, In2 did not have any input_delay specifi ed on it earlier   
   set_input_delay -clock CLK3 4.0 [get_ports In2]      
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9.3.6     Clock Latency 

 In Chap.   8    , we saw that a clock suffers some delay (source latency  and network 
latency ) in its path, before the actual trigger reaches fl ops. Typically, the delay val-
ues at the inputs are specifi ed with respect to the clock reaching the triggering fl op. 
Consider the circuit shown in Fig.  9.11 .

   The delay value  D1  specifi ed is from  F1’s  clock terminal till the  I1  pin of  B1 . The 
timing analysis tool will be able to consider the clock delay from the source till  F1’s  
pin – based on the latency specifi ed for the clocks.  L1  represents source delay and 
 L2  represents network latency. So the timing analysis tool considers the clock edge 
reaching  F1  at   L1+L2  after the active edge at the source. Then, it assumes that the 
signal will reach at  I1 , after a further delay of  D1  as mentioned in the  set_input_
delay  specifi cation. 

 However, if the designer has already included the source latency or the network 
latency, in the specifi ed value, the switches  -source_latency_included   and  - network_
latency_included   need to be mentioned. If  L1  has been included, then the switch 
 -source_latency_included  needs to be specifi ed. If  L2  has been included, then the 
switch  -network_latency_included  should be specifi ed. A user could specify none, 
either of or both of these switches, depending upon which portion of the clock path 
latency has been included. 

 When these switches are specifi ed, the timing analysis tool will not consider the 
corresponding latency while computing the arrival time of the clock at the launch 
fl op, thereby effectively causing the launch edge to be advanced. 

 These switches are usually not used because of the following reasons:

•    Different tools treat these switches differently. For some tools or translator utili-
ties, these switches are simply ignored. If you decide to use this switch, you need 
to make sure that all the tools in your fl ow treat these switches in a consistent 
manner.  
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Clock
Source

F1

D1
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L2

  Fig. 9.11    Clock latency impact on input delay       
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•   Both the launching device (outside the block of interest) and the capture device 
(inside the block of interest) will have similar latencies on the clock path. The 
timing analysis tool is anyways going to consider the clock within the block of 
interest. These switches only impact the clock edge on the launching side. It is 
always much easier and intuitive if both sides are treated similarly. Specifying 
these switches cause a different treatment on the launch side which is not very 
intuitive.  

•   It is much more intuitive to comprehend the delay from the launching device till 
the destination, rather than going further down the clock source also.  

•   From the perspective of reuse of constraints also, it is better to not include source 
and network latencies. Anytime, these latencies get changed; besides changing 
the latency related constraints, we would need to update the input delay specifi -
cations also.     

9.3.7     Completing Input Delay Constraints 

 The only thing that is now left to complete the input constraints is to specify the 
actual ports or pins on which the input delay has to be specifi ed and the delay val-
ues. These two are the only mandatory options to the  set_input_delay  command.   

9.4     set_output_delay 

 The SDC command for specifying delays on output ports is  set_output_delay   .  The 
BNF grammar for the command is:

    set_output_delay  [ -clock  clock_name]  
   [ -clock_ fall ]  
   [ -level_sensitive ]  
   [ -rise ]  
   [ -fall ]  
   [ -max ]  
   [ -min ]  
   [ -add_delay ]  
   [ -network_latency_included ]  
   [ -source_latency_included ]  
   delay_value port_pin_list    

 Conceptually,  set_input_delay   and  set_output_delay  commands are very similar. 
Instead of going through the explanation of each option, this section will only 
explain the differences (if any). 

 The fundamental difference between  set_input_delay  and  set_output_delay  is that 
input delay mentions the time that it takes to reach the input, which in turn means the 
time at which the signal would be available at the input. On the other hand, output 
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delay mentions the time that the signal needs to travel after the output. This is different 
from the time at which the signal needs to be available at the output. However, 
 fundamentally the semantics of both the commands are still similar in the sense that 
both these commands specify the delay requirements outside the block of interest. 
The block inside has to have its timings such that the external delays are met. 

9.4.1     Clock Specifi cation 

  -clock   option is used to specify the reference clock that is used to sample the data 
coming out of the output port. Like  set_input_delay , if the clock which samples the 
data does not enter the block of interest, we would need to specify a virtual clock  
with the same characteristics and use that virtual clock.

    -clock_fall   needs to be specifi ed, if the capturing device is a falling-edge-triggered device.    

 Clock specifi cation can be skipped, if the output pin is part of a combinational only 
path, though it is not very common to specify  set_output_delay  without the clock.  

9.4.2     -level_sensitive 

 If the capturing device is a latch , rather than a fl op,  -level_sensitive   can be specifi ed. 
Conceptually, use of this switch allows for the condition that the output port could 
be borrowing the time from the capturing latch. That means the setup slack could 
increase – to account for signal reaching the latch after it has become transparent. 

 Like  set_input_delay , this option should be used after a very careful consideration.  

9.4.3     Rise/Fall Qualifi ers 

 The  set_output_delay  command needs to provide the  -rise   or  -fall   qualifi ers, if the 
output required times are different for a signal which is rising at the output port and 
a signal which is falling at the same output port.  

9.4.4     Min/Max Qualifi ers 

  -min   and  -max   are used to qualify whether the delay value specifi ed corresponds to 
the minimum or maximum time required for the signal to travel from the output 
port. The  -min  value is used for performing hold  checks at the port/pin. The  -max  is 
used for performing setup checks at the port/pin. 
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 Like  set_input_delay , even for  set_output_delay , usually min delays are not very 
important. And the max values are specifi ed without min or max qualifi ers.  

9.4.5     -add_delay 

 Like  set_input_delay , if a user has to specify output delay with respect to multiple 
reference events on the same port, then  -add_delay   needs to be specifi ed for all 
subsequent specifi cations. Presence of  -add_delay  switch tells the tool that this is an 
additional constraint, besides the existing constraints, and it does not override the 
previous constraints. In the absence of this switch, the previous constraints on this 
port get overwritten.  

9.4.6     Clock Latency 

 The output delay is considered with respect to the clock edge at the capturing fl op’s 
clock terminal. The timing analysis tool considers the clock edge reaching the cap-
turing fl op after the clock latencies. However, if the designer has already included 
the source latency or the network latency in the specifi ed value, the switches 
 -source_latency_included   and  -network_latency_included   need to be mentioned. 

 When these switches are specifi ed, the timing analysis tool will not consider the 
corresponding latency while computing the arrival time of the clock at the capturing 
fl op, thereby effectively causing the capture edge to be advanced. 

 These switches are usually not used even with  set_output_delay .  

9.4.7     Completing Output Delay Constraints 

 The only thing that is now left to complete the output constraints is to specify the 
actual ports or pins on which the output delay has to be specifi ed and the delay val-
ues. These two are the only mandatory options to the  set_output_delay  command.   

9.5     Relationship Among Input and Output Delay 

 Let us consider the circuit shown in Fig.  9.12 .
   A signal goes from block  B1  to  B2 . For the ease of understanding, let us assume:

•    The delay through  C1  includes the  Clk_to_Q  delay also.  
•   The delay through  C2  includes inter-block interconnect delay also.  
•   The delay through  C3  includes the setup requirement for the  F3  fl op also.    
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 For this path, going from  F1  and into  F3 , an output delay needs to be specifi ed 
on the output port  O1  for block  B1 , and an input delay needs to be specifi ed on the 
input port  I1  for the block  B2 . We have already seen that the data takes one cycle to 
reach from one register to another. That means the total delay through  C1 ,  C2 , and 
 C3  has to be less than or equal to one clock period  (denoted by  P ). Thus,

   C C C P1 2 3+ + <=    ( 9.1 )    

  For the output at  O1 , the signal needs another  C2+C3  to be captured reliably at 
 F3 . So the  set_output_delay   ( SOD ) will be equal to or more than  C2+C3 .

    SOD C C>= +2 3    ( 9.2 )    

   P-SOD  denotes the time allowed for logic  C1 . Higher  SOD  means lesser time for 
logic  C1 . 

 For the input at  I1 , the signal takes  C1+C2  to reach  I1 . Thus, the  set_input_delay   
(SID) will be equal to or more than  C1+C2 .

    SID C C>= +1 2    ( 9.3 )    

   P-SID  denotes the time allowed for logic  C3 . Higher  SID  means lesser time for 
logic  C3 . 

 The inequalities in ( 9.2 ) and ( 9.3  )  denote any additional margin/pessimism  that 
the designer might put in. If the constraints are supposed to be just right, then all 
these inequalities can be converted to just an “equal to” sign. For the sake of ease, 
let us further assume that there is no additional margin and all constraints are applied 
to just meet the timing. In that case:

    SID+SOD = C1+C2+C2+C3  (from ( 9.2 ) and ( 9.3 )).  
  Or  SID+SOD = P + C2  (from ( 9.1 )).    

 If  SID+SOD  is higher than  P+C2 , it indicates that the design is 
over-constrained.  
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  Fig. 9.12    Input and output delay relation       
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9.6     Example Timing Analysis 

 Let us do a sample timing analysis , based on our understanding so far. Depending 
upon which tool you use, your report would look different. The exact method of 
calculation could also be different. However, if you understand the basic calculation 
given in this section, it should be possible for you to understand any meaningful 
timing report . 

 For the sake of this example analysis, we will be making assumptions on various 
values. These assumptions will be explicitly mentioned, as we make those. We will 
use the same circuit as shown in Fig.  9.12 . 

9.6.1     Input Delay: Max 

    At fl op  F3  in block  B2 :  
  Data arrival time:

    Clock Rising Edge: Incremental: 0.0; Total 0.0 ## Assuming, active edge of refer-
ence clock is at 0.0; and rising edge is the active edge.   

   Clock Latency: Incremental: 0.5; Total 0.5 ## Assuming, clock source latency = 0.5   
   Clock Network Latency: Incremental: 0.7; Total 1.2 ## Assuming, clock network 

latency = 0.7   
   Input Delay: Incremental: 6.0; Total 7.2 ## Assuming, max input delay is specifi ed 

as 6.0   
   Delay through C3: Incremental: 1.2; Total 8.4 ## Assuming, max delay through 

C3=1.2   
   Data available at F3’s D pin: 8.4      

  Data required time:

    Clock Rising Edge: Incremental: 10.0; Total 10.0 ## Assuming, next positive edge 
of clock triggering the fl op is at time 10   

   Clock Latency: Incremental: 0.5; Total 10.5   
   Clock Network Latency: Incremental: 0.7; Total 11.2   
   Setup requirement: Incremental: 0.3; Total 10.9 ## Assuming, setup is 0.3.   
   Clock Uncertainty: Incremental: 0.2; Total 10.7 ## Assuming, clock uncertainty = 0.2   
   Data required at: 10.7   
   Slack    = 10.7 – 8.4 = 2.3        

 Since the slack is positive, it implies that the setup timing on this path has 
been met. 

 Note:

•    Incremental  time denotes additional delay introduced at this stage  
•   Total time denotes cumulative delay till this stage. This equals incremental time 

of this stage + total time of the previous stage.  
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•   Setup  means data required time will be earlier than clock edge. So the setup 
value is subtracted, rather than added.  

•   Uncertainty  is supposed to reduce the slack. It can either be added to the data 
available time or subtracted from the data required time. Either way, it reduces 
the slack . Many users typically say only the word “slack” when they mean “neg-
ative slack.” In reality, positive slack means the timing is met and it is good. The 
negative slack is the one which causes trouble and needs fi xing. Thus, higher 
degree of uncertainty is bad – as the slack gets reduced by that much.  

•   Usually, the delay through  C3  would be completely enumerated, explicitly show-
ing all the elements and nets in the path and showing the delays through each of 
these elements.  

•   Clock latency  values are used, when the clock network delays are not propagated 
and are used based on latency specifi cations. If the clock network delays are 
propagated, the actual clock path is also enumerated along with showing the 
delays through each of the elements in the path.     

9.6.2     Input Delay: Min 

    At fl op  F3  in block  B2 :  
  Data arrival time:

    Clock Rising Edge: Incremental: 0.0; Total 0.0 ## Assuming, active edge of refer-
ence clock is at 0.0; and rising edge is the active edge   

   Clock Latency: Incremental: 0.5; Total 0.5 ## Assuming, clock source latency = 0.5   
   Clock Network Latency: Incremental: 0.7; Total 1.2 ## Assuming, clock network 

latency = 0.7   
   Input Delay: Incremental: 6.0; Total 7.2 ## Assuming, same value specifi ed as min 

and max delays   
   Delay through C3: Incremental: 0.9; Total 8.1 ## Assuming, min delay through 

C3=0.9   
   Data available at F3’s D pin: 8.1      

  Data required time:

    Clock Rising Edge: Incremental: 0.0; Total 0.0   
   Clock Latency: Incremental: 0.5; Total 0.5   
   Clock Network Latency: Incremental: 0.7; Total 1.2   
   Hold requirement: Incremental: 0.3; Total 1.5 ## Assuming, hold is 0.3.   
   Clock Uncertainty: Incremental: 0.2; Total 1.7 ## Assuming, clock uncertainty = 0.2   
   Data required at: 1.7   
   Slack = 8.1 – 1.7 = 6.4        

 The slack is positive, which implies the hold timing on this path has been met. 
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 Note:

•    For the same logic  C3 , the delays considered for setup computations are higher 
than the delays considered for hold computation. This is because setup uses max-
imum delay through the path, while hold uses minimum delay through the path.  

•   Setup uses the next edge of the clock, because the requirement is for the data to 
be available before the next edge, while hold uses the current edge of the clock, 
because the requirement is for the data to not interfere with the data being sam-
pled at the current edge.  

•   Hold means data required time will be later than clock edge. Hence, the hold 
value is added, unlike setup, which has to be subtracted.  

•   For setup checks, the requirement is that the data has to be available before the 
requirement. So slack=data required – data available. For the hold check, the 
requirement is that the data has to be available after the requirement. Hence, 
slack =data available – data required. The equation for slack computation is dif-
ferent for setup and hold.  

•   Uncertainty  is supposed to reduce the slack. It can either be subtracted from the 
data available time or added to the data required time. Either way, it reduces the 
slack. The treatment (addition or subtraction) of uncertainty is different from 
setup, because the fi nal slack equations are different for setup and hold. In either 
case, uncertainty is used to reduce the slack .     

9.6.3     Output Delay: Max 

    At port  O1  of block  B1 :  
  Data arrival time:

    Clock Rising Edge: Incremental: 0.0; Total 0.0 ## Assuming, active edge of clock 
triggering the fl op is 0.0; and rising edge is the active edge.   

   Clock Latency: Incremental: 0.5; Total 0.5 ## Assuming, clock source latency = 0.5   
   Clock Network Latency: Incremental: 0.7; Total 1.2 ## Assuming, clock network 

latency = 0.7   
   Delay through C1: Incremental: 1.5; Total 2.7 ## Assuming, max delay through 

C1=1.5   
   Data available at O1: 2.7      

  Data required time:

    Clock Rising Edge: Incremental: 10.0; Total 10.0 ## Assuming, next positive edge 
of reference clock is at time 10   

   Clock Latency: Incremental: 0.5; Total 10.5   
   Clock Network Latency: Incremental: 0.7; Total 11.2   
   Setup requirement: Incremental: 6.0; Total 5.2 ## Assuming, max output delay is 

specifi ed as 6.0.   
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   Clock Uncertainty: Incremental: 0.2; Total 5.0 ## Assuming, clock uncertainty = 0.2   
   Data required at: 5.0   
   Slack = 5.0 – 2.7 = 2.3        

 Since the slack is positive, hence, the setup timing on this path has been met. 

 Note:

•    Setup means data required time will be earlier than clock edge. Hence, the setup 
value is subtracted, rather than added – similar to  set_input_delay  .  

•   The output delay specifi ed is treated as a setup requirement (on a hypothetical 
fl op which is driven directly by the output port).     

9.6.4      Output Delay: Min 

    At port  O1  of block  B1 :  
  Data arrival time:

    Clock Rising Edge: Incremental: 0.0; Total 0.0 ## Assuming, active edge of clock 
triggering the fl op is at 0.0; and rising edge is the active edge   

   Clock Latency: Incremental: 0.5; Total 0.5 ## Assuming, clock source latency = 0.5   
   Clock Network Latency: Incremental: 0.7; Total 1.2 ## Assuming, clock network 

latency = 0.7   
   Delay through C1: Incremental: 0.5; Total 1.7 ## Assuming, min delay through 

C1=0.5   
   Data available at O1: 1.7      

  Data required time:

    Clock Rising Edge: Incremental: 0.0; Total 0.0   
   Clock Latency: Incremental: 0.5; Total 0.5   
   Clock Network Latency: Incremental: 0.7; Total 1.2   
   Hold requirement: Incremental: -6.0; Total -4.8 ## Assuming, same output_delay 

value (6.0) is specifi ed for min and max   
   Clock Uncertainty: Incremental: 0.2; Total -4.6 ## Assuming, clock uncertainty = 0.2   
   Data required at: -4.6   
   Slack = 1.7 – (-4.6) = 6.3        

 Since the slack is positive, hence, the hold timing on this path has been met. 

 Note:

•    The output delay specifi ed is treated as a hold requirement on a hypothetical fl op, 
driven by the output port.  

•   The hold requirement is negative of the min  output_delay  specifi ed.      
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9.7     Negative Delays 

 Sometimes, certain delay specifi cations can be negative . 
  set_input_delay    -min   being negative means the signal can possibly reach this 

input, even before the clock edge. This creates a need to have at least some delay for 
the input signal within the block, before it gets registered, else it might have a hold 
time violation on the fl op trying to register it. 

  set_input_delay -max   being negative means the signal will surely reach this 
input, even before the clock edge. This allows the signal to take more than the clock 
period within the block before the fi rst register. 

 Input delays can be negative, if:

•    There is minimal logic and interconnect that the signal has traveled outside this 
block (including the block which generated it and the top level routing).  

•   There is possibly a skew  in the clock network, and the launching clock had 
reached earlier.    

  set_output_delay    -min   being negative means the signal can possibly take nega-
tive time outside the block, before it gets registered. In Sect.  9.6.4 , we have seen that 
the hold requirement is negative of the min  output_delay  specifi ed. So, for a nega-
tive value specifi ed, the hold requirement becomes positive. This creates a need to 
have at least some delay within the block for the output signal. 

  set_output_delay -max   being negative means the signal will surely take negative 
time outside the block, before it gets registered. So this allows the signal to take 
more than the clock period within the block, through the combinational logic 
between the last register and the output port. 

 Output delays can be negative, if:

•    There is minimal logic and interconnect that the signal has to travel outside this 
block (including the block which is going to capture it and the top level 
routing).  

•   There is possibly a skew  in the clock network, and the capturing clock will reach 
later.    

 Thus, negative value for min delay makes the hold requirement stringent, while 
negative value for max delay makes the setup requirement easier. Because, the 
delays through the devices and interconnects are typically more than the skew on 
the clock network, it is almost impossible to fi nd a negative max delay. Min delays 
may sometimes be negative (very small delay through devices and interconnect), 
though it is not very common.  

9.8     Conclusion 

  set_input_delay  and  set_output_delay  need to be specifi ed correctly, so that the sig-
nals traveling across the blocks get timed correctly. If this is not done correctly, 
individual blocks could meet their timing, but when the whole design is integrated, 
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the fi nal design might not meet the timing, causing a lengthy debug and respin of 
affected blocks. Two of the most common mistakes that new designers make while 
specifying port constraints are:

    1.    While specifying set_input_delay, they use the sampling clock as the reference 
clock, while it should be the launching clock.   

   2.    While specifying set_output_delay, they use the launching clock as the reference 
clock, while it should be the sampling clock.    

  In many designs, the sampling and the launching clock might be the same; hence, 
it might not matter. But, understanding this conceptual difference becomes impor-
tant, if the two clocks are not the same.    

9.8  Conclusion
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                    The delay through a specifi c cell depends on the slew /transition  rate at its input as 
well as the load  that it sees at its output. For cells inside the design, the fanin driver 
and the fanout cone is also part of the design. So the transition rate as well as the 
load can be computed by the tool. However, for the cells which are being driven by 
the input port, the input transition time is not known. Similarly, for the cells which 
drive the output port, the load is not known. Thus, designers need to provide the 
input transition time for the input signals and the external load that the output port 
will see. If not specifi ed, the transition time is assumed to be  0,  namely, a sharp 
ramp (equivalent to infi nite drive strength), and load is assumed to be  0,  namely, no 
external load. Both these conditions are highly optimistic. 

 The transition information can be specifi ed through either of the following SDC 
commands:

    set_drive    
   set_driving_cell    
   set_input_transition      

 The load information can be specifi ed through either of the following SDC 
commands:

    set_fanout_load    
   set_load    
   set_port_fanout_number      

10.1     Drive Strength 

 Let us consider the circuit shown in Fig.  10.1 .
   Let us say the input  I1  of the block  B1  is being driven by the inverter. When 

the signal is transitioning to a  1,  the p-transistor of the inverter is driving the value 
on to the signal. This p-transistor offers some resistance to the driving signal. 

    Chapter 10   
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This  resistance   will infl uence the risetime at  I1 . When the signal is transitioning to 
a  0,  the n-transistor ’s equivalent resistor infl uences the fall time at  I1 . 

 The resistive equivalent for the p-transistor  and the n-transistor might not be 
equal. Thus, the driver-resistance value might be different for the input transitioning 
to a  1  or to a  0.  

 Now, let us say that the input is driven by a  NAND  gate, as shown in Fig.  10.2 .
   When  I1  is transitioning to a  1 , it could be because either  P1  transistor is ON, or 

 P2  transistor is ON, or both  P1  and  P2  transistors are ON. Depending upon which 
of the above situation is true, the resistive equivalent would be different. When both 
the transistors are ON, the resistance is minimal. Thus, the driver resistance could 
be within a range, rather than a specifi c value. 

10.1.1     set_drive 

 The SDC command to specify the equivalent resistance of the driver is:

    set_drive   [ -rise ] [ -fall ]  
   [ -min ] [ -max ]  
   resistance_value port_list    

 It should be noted that the value provided is actually the resistive value – which 
is inverse of the drive strength . Higher resistance  means lower drive (longer time to 
transition) and vice versa. 

  -rise   or  -fall   is used to specify whether the drive (actually, resistance  of the driver) 
is for the signal rising or falling. When neither  -rise  nor  -fall  is specifi ed, the specifi ed 
value is considered to be applicable for both rising input and falling input. 
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  Fig. 10.1    Equivalent resistance       
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  -min   or  -max   is used to specify whether the resistive value specifi ed is the 
 minimal resistance or the maximum resistance.    Since minimal resistance means 
higher drive, hence faster transition, so minimal resistance is used for hold  analysis. 
Similarly, max resistance is used for setup  analysis. If none of  -min  or  -max   qualifi ers 
are used, the specifi ed value is applicable for both setup and hold analysis. 

 Given the resistive value of the driver, the tools can compute the slew time at the 
input, if they know the capacitive value of the input pin. It is worth reiterating that 
though the command is  set_drive , the value specifi ed is for resistance  (which is 
inverse of drive ). 

 Usually,  set_drive  is one of the less popular methods of specifying input slew.   

10.2     Driving Cell 

 Most of the times, the internals of a cell are known only to the circuit designers for 
the ASIC library, rather than to the people who are using the libraries to create their 
designs. So it is much easier to specify the cell which will drive the input, rather 
than knowing the actual resistive value. The timing analysis tools have enough 
information from the library about the cell’s electrical characteristics that they will 
be able to extract the relevant information. 

A

B

P1 P2

B1

I1

  Fig. 10.2    NAND driver       
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10.2.1     set_driving_cell 

 The SDC command for specifying the driving cell is:

    set_driving_cell   [ -lib_cell  lib_cell_name]  
   [ -rise ] [ -fall ]  
   [ -min ] [ -max ]  
   [ -library  lib_name]  
   [ -pin  pin_name]  
   [ -from_pin  from_pin_name]  
   [ -multiply_by  factor]  
   [ -dont_scale ]  
   [ -no_design_rule ]  
   [ -clock  clock_name]  
   [ -clock_fall ]  
   [ -input_transition_rise  rise_time]  
   [ -input_transition_fall  fall_time]  
   port_list    

10.2.1.1     Driver Cell Name 

 The  -lib_cell  switch is used to specify the cell which acts as the driver for the pin. 
 In Fig.  10.3 , the input  I1  of the block  B1  is being driven by the cell  FA . Thus, this 

cell should be specifi ed as the  -lib_cell  .
   Even though, SDC shows  -lib_cell  as an optional input, this switch is always 

found in any  set_driving_cell  command. Without this switch, the actual driver cell 
is not known. The rest of the command, options, or qualifi ers might not have any 
meaning, if the driver cell itself is not known.  

10.2.1.2     Min/Max, Rise/Fall 

 The  -rise   /-fall   qualifi er is used, when a designer wants to specify a different driving 
cell for a rise transition at the input pin and another cell for a fall transition at the 
input pin. If the qualifi er is not used, then the same driver cell is used for both the 
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  Fig. 10.3    Driver cell       
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transitions. Usually, a pin is driven by the same driver cell, irrespective of whether 
it is transitioning to a  1  or to a  0 . These qualifi ers are needed, when the input is being 
driven by  pull-up   or  pull-down   kind of drivers. The  pull-up  cell can be specifi ed 
with  -rise  and the  pull-down  cell can be specifi ed with  -fall . 

 The  -min   /-max   qualifi er is used, when a designer wants to specify different driv-
ing cells for setup  (max) analysis and another driving cell for hold  (min) analysis. 
Usually, the circuit would have the same driver; hence, it might appear surprising 
that different cells can be specifi ed for setup and hold analysis. However, earlier in 
the design cycle, a designer might not know exactly which cell will drive this pin. 
So a designer might want to specify the strongest of the possible set of driver cells 
with  -min  option and the weakest of the possible set of driver cells with  -max  option. 
We’ve already discussed that hold analysis is given much less importance; thus, 
most often, the driver corresponding to the setup (max) analysis is specifi ed.  

10.2.1.3     Library 

 Sometimes, multiple libraries might be loaded in the tool. And there might be cells 
with the same name in more than one library. If the specifi ed driving cell is found in 
multiple libraries, the tool might use its own mechanism to decide which of these 
cells should be considered as the driver. The switch  -library   is used to explicitly 
state the library from which the driver cell should be looked up. If only one library 
is loaded into the tool, or if the specifi ed driver cell name exists in only one of the 
loaded libraries, this switch is not needed. 

 Generally, multiple cells with the same name are not simultaneously loaded into 
a tool. Even if the cells have same functionality, but if there is some difference in 
their electrical parameters, they are given a different name, e.g.,  AN2  ( 2  input  AND  
gate),  AN2H  (high-drive version of  AN2 ), and  AN2LP  (low-power version of  AN2 ). 
Thus, name clash usually does not happen for library cells. Some designers specify 
 -library  switch anyways – just to be explicit and ensure that only the intended cell 
gets specifi ed.  

10.2.1.4     Pin 

 For the example driver cell shown in Fig.  10.3 , the driving cell has multiple outputs. 
Thus, the designer should specify  -pin   switch to clarify as to which of the outputs is 
being used to drive the input. For the circuit shown in Fig.  10.3 , even if the driver 
(for  I1  pin of block  B1 ) is known to be the  FA  cell, the drive strength of its output 
pins  S  and  CO  would be different. So the designer should mention the pin which 
drives the input (namely, pin  S  for the example given).  

10.2.1.5     Timing Arc 

 A given output pin (either a cell with single output pin or for a multi-output 
cell – the pin specifi ed with  -pin  switch) would have multiple timing arcs. 
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And the transition time on the output pin would depend on the timing arc that is 
chosen.  -from_pin   switch is used to specify the input pin of the driver cell, from 
which the arc should be chosen. So if the designer wants to specify that even for 
the  S  pin of the driver cell  FA , the arc chosen should be the  A to S  path, then the 
 -from_pin  should specify  A . 

 The switch may be useful when a designer wants to choose an extreme condition 
of timing and might want to specify the arc. Typically, if  S  pin is driving the input 
 I1 , then all transitions on  S  will reach the input  I1 .  

10.2.1.6     Multiplication 

 The number specifi ed with this option is the factor by which the computed transition 
time gets multiplied. Effectively, it specifi es the factor by which the drive  strength 
is considered to be reduced for the driver  cell. Let us consider the circuit shown in 
Fig.  10.4 .

   For the input pin  I1  of the block  B1 , the driver cell can be specifi ed. If needed, 
other option  (-library, -pin, -from_pin)  may also be specifi ed in order to more accu-
rately control the specifi c arc. However, the entire drive strength is not used to drive 
this input pin ( I1 ). The drive strength is used to drive another pin (on  B2) . So the 
effective drive strength applicable for  I1  pin of  B1  has to be divided. This effect can 
be achieved through the switch  -multiply_by  . 

 However, this effect is usually achieved through  set_load   command – as we will 
see later in Sect.  10.6.5  of this chapter.  

10.2.1.7     Scaling 

 Certain electrical characteristics might need to be scaled based on the operating 
conditions. Another word for this scaling is  derating  . If you don’t want the charac-
teristics to be scaled or derated, you can use the switch  -dont_scale .  

Driver

B1I1
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  Fig. 10.4    Driver with 
multiple loads       
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10.2.1.8     Design Rules 

 If the driver pin has some design rule properties (e.g., the highest load that it can 
drive), those properties get transferred to the input port. The switch  -no_design_rule   
prevents the properties from getting transferred to the input port. Any block bound-
ary is only for use in modeling. In the realized circuit, all hierarchies would fi nally 
get dissolved. The signals being driven by the input port would fi nally get driven by 
the driver pin. Thus, all design rules applicable for the driver pin should be honored 
by the input port also, i.e., the design rules for the driver pin should get transferred on 
the input port.  

10.2.1.9    Clock Association 

 If you want the driving cell to be specifi ed only with respect to those  set_input_
delay   which is specifi ed with respect to a specifi c clock, the clock association can 
also be specifi ed. Let us consider the following examples:

    set_input_delay -clock CLK1 3.0 [get_ports I1]   
   set_input_delay -clock CLK2 4.2 [get_ports I1] -add_delay     

 Now, if we specify:

    set_driving_cell BUF1 [get_ports I1]    

it would mean that  BUF1  will be used as a driver for both the above input_delay 
specifi cations. 

 However, if we were to specify:

    set_driving_cell BUF1 -clock    CLK1 [get_ports I1]    

that would mean that the driving cell,  BUF1 , would be used only for the fi rst input_
delay specifi cation. 

 So the clock association can be used to limit the driving cell specifi cation only 
for certain input_delay (those associated with the same clock). 

 Even if an input has delays specifi ed with respect to multiple clocks, the pin 
would still be fi nally driven by a single cell. However, sometimes this option is used 
in conjunction with a few other options. Let us consider the circuit shown in 
Fig.  10.5 .

   For the input pin  I1  for the block  B1 , set_input_delay would be specifi ed with 
respect to clocks  CLK1  and  CLK2 . A very accurate modeling of driving cell can be 
done using the following set of commands:

    set_driving_cell -lib_cell MUX21 -from_pin A -clock CLK1 [get_ports I1]   
   set_driving_cell -lib_cell MUX21 -from_pin B -clock CLK2 [get_ports I1]     

 Thus, for the paths originating from  CLK1 , the  A to Z  arc (of  MUX21 ) gets used 
for the driving cell, and for the paths originating from  CLK2 , the  B to Z  arc  gets used 
for the driving cell. 
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 This is an example where even though some options individually do not make 
much sense, however, in combination with some other options, they are able to 
provide a much more accurate modeling.  

10.2.1.10    Input Transition 

 These options are used to specify the rise and fall transition times at the input of 
the timing arc of the driver cell. Looking again at the circuit in Fig.  10.5 , we could 
use  -input_transition_rise   and  -input_transition_fall   to specify the rise and fall tran-
sition values at the inputs  A  or  B  for the driver cell,  MUX21 . This rise and fall transi-
tion in turn will impact the transition time at the output  Z  of the  MUX21 , which will 
be seen at the input of the block  B1 . 

 It should be noticed that these transition times are not at the input of the block 
under consideration. Rather, these are the transition times at the input of the driving 
cell, which itself lies outside the block of interest. Clearly, this is second order of 
accuracy.  

10.2.1.11    Ports 

 The designer has to specify the list of ports for which the driving cell property is 
being applied. 

 The most commonly used options for the  set_driving_cell  command are the 
name of the driving cell and the port for which the driving cell is specifi ed. All other 
switches and options are used much less frequently. These other options are used 
under some specifi c situations, in order to achieve much fi ner control – as explained 
in above sections.    
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  Fig. 10.5    Clock specifi cation for driving cell       
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10.3     Input Transition 

 The commands  set_drive   and  set_driving_cell   are used by the tools to compute the 
transition  time at the input port. However, a designer could specify the transition 
time directly. The SDC command for specifying the input transition time directly is:

    set_input_transition   [ -rise ] [ -fall ]  
   [ -min ] [ -max ]  
   [ -clock   clock_name]  
   [ -clock_fall ]  
   transition port_list    

 The signifi cance of  -rise  ,  -fall  ,  -min  , and  -max   qualifi ers and the clock specifi ca-
tions are the same as mentioned for  set_driving_cell . They are not being explained 
in this section to avoid repetition. The fundamental difference with respect to  set_
driving_cell  is that usually, the driver cell remains unchanged, and hence, these 
qualifi ers are not used that often with  set_driving_cell . However, transition times 
are different for rise  and fall  or for min and max. Hence,  set_input_transition  often 
uses these qualifi ers to specify different transition times for rise and fall and for 
setup  and hold  analysis. 

 The transition values specifi ed are the actual transition times for the specifi ed 
ports. 

10.3.1     Input Transition Versus Clock Transition 

 In Chap.   8    , we had seen  set_clock_transition   command. The main difference between 
 set_clock_transition  and  set_input_transition   is that for the transition time specifi ed 
with the  set_clock_transition , the specifi ed value is used for the entire clock net-
work, rather than computed for different points on the network, while the transition 
time specifi ed with the  set_input_transition  is used only for the specifi ed port. For 
all other points in the fanout cone, the transition time is computed. Let us consider 
the circuit shown in Fig.  10.6 .

   If the transition is specifi ed on  clk  port using  set_clock_transition  , then the same 
transition value will be used at the clock terminals of all the fl ops in the fanout cone 
of the  clk  port. For all the nets in the network, namely,  n1, n2, n3 , …, the same tran-
sition time would be assumed to be applicable. 

 However, if the transition time is specifi ed on  clk  port using  set_input_transition  , 
then the transition rate would be computed at each of the points, namely,  n1, n2, 
n3 , … – including the clock terminals of all the fl ops. 

 A good usage of these two constructs is: Before the clock tree  is routed, the clock 
net could be driving a huge fanout. Trying to compute the transition time on the 
clock net could result in a very very slow transitioning signal – due to a heavy load. 
So, in such cases,  set_clock_transition   should be used. It is expected that the clock 
tree synthesis  will ensure that the transition rate on the clock network remains 
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within a reasonable value. Once the clock tree has been synthesized, it is better to 
actually compute the transition value at all points. Use of  set_input_transition   
(instead of  set_clock_transition ) at this stage will cause the timing analysis to com-
pute the real transition value in the fanout cone of the  clk  port.   

10.4     Fanout Number 

 Many wire-load models depend on the number of fanout pins to estimate the effec-
tive wire capacitance. The SDC command to specify the fanout number is:

    set_port_fanout_number   value port_list    

 This is a very simple command that specifi es the fanout count of various output 
ports. This command has no implication, if external parasitic load is known and is 
being specifi ed (through  set_load  command explained in Sect.  10.6 ). Since the 
value is the number of pins in the fanout of the port, it is expected to be an integer.  

10.5     Fanout Load 

 Let us consider the circuit shown in Fig.  10.7 .
   The output  O1  drives two pins, a buffer and an  AND  gate. However, the 

load exhibited by the buffer is different than the load exhibited by the  AND  gate. 
The fanout number as mentioned in the previous section just considers the number 
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  Fig. 10.6    Clock network       
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of pins being driven. It does not give any idea of the effective loading that those pins 
together exhibit. The output port needs to know the total effective load that it sees. 
SDC allows designers to specify the total load in terms of multiple of standard 
fanout loads. The standard load is defi ned in the library. The SDC command to 
specify the external load in terms of standard load is:

    set_fanout_load value  port_list    

 Like  set_port_fanout_number  , this is also a simple command. Let us consider 
that the load exhibited by the buffer is one standard load . And also assume that the 
load of the  AND  gate is  1.5  times the load of the buffer. So AND gate’s load becomes 
 1.5  standard load. Thus, the load seen by the port  O1  is  2.5  (standard load). This 
example should also explain the fundamental difference between  set_fanout_load  
and  set_port_fanout_number . For the same circuit, the  set_port_fanout_number  
would be  2 , because the port drives  2  pins.  

10.6      Load 

 When external load is expressed in terms of standard load , the tools convert the 
fanout values into the equivalent capacitive load. A more commonly used style of 
expressing external load is by specifying the external capacitance value directly, 
rather than the fanout. The SDC syntax for  set_load   command is:

    set_load  [ -min ] [ -max ]  
   [ -subtract_pin_load ]  
   [ -pin_load ]  
   [ -wire_load]   
   value objects    

 The  -min   /-max   qualifi ers have the usual meaning. The  -min  value is to be used 
during hold  analysis, and the  -max   value is to be used during setup analysis. 

10.6.1     Net Capacitance 

 One of the most important things to note is that  set_load  can be applied even 
on wires, which are internal to the design under analysis. Thus, it provides a very 
convenient method to annotate extracted net capacitance obtained after post-layout. 

O1
  Fig. 10.7    Fanout load        
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After the layout is done, effective net capacitance of each net can be extracted . And 
for the timing analysis tools, the capacitance value can be annotated on each net, 
through the  set_load  command. This allows net capacitance to be extracted by tools 
which are more accurate in extraction and used by STA tools.  

10.6.2     Pin Load Adjustments 

 Let us consider the circuit shown in Fig.  10.8 .
   Let us say that during extraction of net capacitance for net  n1,  the extraction tool 

also included the loading of the pins  I1/P2  and  I2/P1.  Now, this capacitive value 
gets annotated on the net  n1.  The timing analysis tool sees the load on net  n1  which 
it considers to be the wire load only and then adds the load due to pins,  I1/P2  and 
 I2/P1.  So the load due to the pins gets counted twice. 

 So, in order to avoid double-counting, the switch  -subtract_pin_load   needs to be 
specifi ed while annotating net capacitance. However, this switch should be speci-
fi ed only if the pin capacitances were also included during extraction. Most extrac-
tion tools will extract the net capacitance separately. If only that net capacitance is 
being annotated, this switch should not be specifi ed. 

 Designers need to understand their extraction  methodology, before deciding 
whether or not the pin load adjustments have to be made when specifying load on 
nets.  

10.6.3     Load Type 

 Whether the specifi ed load is of type pin or wire is specifi ed using switches  -pin_
load   or  -wire_load  . Tools might treat wire and pin loads differently. For example, 
slew might be degraded when propagating through wires. Let us consider the circuit 
in Fig.  10.9 .

   The slew  s1  at  the output of the  AND  gate is computed based on the characteris-
tics of the  AND  gate, the slew at the corresponding input pin of the gate and the load 
at the gate output. This signal then moves across the wire to the input of the buffer. 
However, as the signal travels across the wire, the slew characteristics get changed 
by the time it reaches the input of the buffer, so that the slew s2 at the buffer input is 
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  Fig. 10.8    Pin load 
adjustments for net 
capacitance       
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different from the original slew,  s1 . This concept called slew degradation  occurs for 
wires and not for pins. Hence, it is important to convey whether the specifi ed capac-
itive load is for net or for pin.  

10.6.4     Load Versus Fanout Load 

  set_load   and  set_fanout_load   differ in the sense that  set_load  specifi es the actual 
capacitive value of the load, while  set_fanout_load  specifi es the load in terms of a 
standard load. 

 Capacitive load (specifi ed by  set_load ) = standard loads (specifi ed by  set_fanout_
load ) × capacitive load of single standard load  . 

 During earlier days, standard load used to be more commonly used mechanism 
to specify pin loads; however, standard loads are not used that commonly in current 
technology libraries.  

10.6.5      Load at Input 

 Usually, load is specifi ed at output ports. However, sometimes load might need to 
be specifi ed at input ports also. Let us revisit the circuit in Fig.  10.4 . 

 For the block  B1 ’s  I1  pin, if drive strength or driver is specifi ed and the same 
driver is seeing additional load, then the effective drive available to  I1  pin is reduced. 
That additional load needs to be specifi ed as a load on the input pin  I1  so that the 
effective drive can be adjusted accordingly. 

 This load needs to be specifi ed only if the drive at  I1  is being specifi ed as drive 
strength ( set_drive  ) or a driving cell ( set_driving_cell  ). If an input transition is spec-
ifi ed for  I1 , the load at the input does not have any impact.   

10.7     Conclusion 

 With the transition times and the load values specifi ed, the inputs and outputs are 
fully constrained. The bidirects  need to be constrained as if they are both inputs 
(i.e., input transition) and outputs (i.e., load). Usually, clocks or reset pins are driven 
by higher drive cells. Thus, drive strengths for clock/reset ports/pins are usually 
 different from the drive strengths for other functional pins. 

s1 s2
  Fig. 10.9    Slew degradation 
through wire       

 

10.7  Conclusion



130

 Though there are several different commands, the tools actually need input  transition 
time and the output load. If the information is provided in another form (e.g., drive, 
driving cell, standard load), then the information is transformed into input transition 
and output load. 

 Typically, during the early stage of a design, the actual details of the driver are 
not known, as all the blocks are being built bottom-up; at this stage, it is better to 
constraint the input transition through commands like  set_input_transition  . As the 
design progresses and various modules and the top level SoC are synthesized and 
available, the actual driver cell is known. At this stage, the actual drivers and arcs 
can be specifi ed using  set_driving_cell  . 

 For output specifi cation, the more commonly used command is  set_load  .    
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11.1                        Introduction 

 So far we saw how you can constrain your clocks and ports to specify the timing 
requirements for the design. However, even after setting these global requirements, 
designers would want to make certain exclusions for certain paths. This may be 
done to specify certain unique requirements on the paths or provide additional scope 
for leniency. Such constraints are referred to as timing exceptions . There are three 
kinds of timing exceptions:

    1.    False paths  – These are paths that don’t need to meet any timing requirements. 
Implementation tools ignore timing on such paths when constrained.   

   2.    Multi cycle paths  – These are paths that need more than one cycle to propagate 
data. Implementation tools relax timing on such paths.   

   3.    Min and max delay – These are paths with specifi c maximum  and minimum  
delay requirements and specifi ed when designers want to override inferred setup  
and hold  requirements. In this chapter, we will focus on false paths.    

11.2       set_false_path 

 False path is modeled in SDC using  set_false_path   command. 
 The BNF grammar for the command is:

    set_false_path  [- setup ]  
   [- hold ]  
   [- rise ] [- fall ]  
   [- from  from_list]  
   [- to  to_list]  
   [- through  through_list]  
   [- rise _from rise_from_list]  

    Chapter 11   
 False Paths 
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   [- rise_to  rise_to_list]  
   [- rise_through  rise_through_list]  
   [- fall_from  fall_from_list]  
   [- fall_to  fall_to_list]  
   [- fall_through  fall_through_list]  
   [- comment  comment_string]    

 Between all these switches, the command specifi es:

 –    The exact path(s) which are to be treated as false  
 –   The transitions within the paths which are to be treated as false  
 –   Whether the false path relationship is for setup or for hold  
 –   Any additional textual annotation to explain the context/justifi cation for the 

false path     

11.3     Path Specifi cation 

 The paths which are to be declared as false path  are identifi ed using  -from  ,  -through     , 
and  -to   options. The specifi cation could include one or more of the above options. 
 -from  and  -to  can be specifi ed at most only once each for each command. However, 
 -through  can be specifi ed multiple times within the same command. Each of the 
 -from ,  -through , and  -to  can take several points in the design as its argument. Let us 
consider a design represented as a graph network, as shown in Fig.  11.1 .

   Each point in the graph (i.e.,  S1, S2, S3, S4, P1, P2, P3, P4, X1, X2, X3, X4, D1, 
D2, D3, D4 ) represents a circuit element in the design. An edge in the graph 
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  Fig. 11.1    A circuit represented as a graph network       
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 represents a net connecting two elements. The following examples would show how 
these options are used to defi ne the path specifi cations. 

  set_false_path -from    S1  means all unique paths starting from  S1 . Thus, the path 
specifi cation covers the following eight paths:

    S1 → P1 → X1 → D1   
   S1 → P1 → X1 → D2   
   S1 → P1 → X2 → D2   
   S1 → P1 → X2 → D3   
   S1 → P2 → X2 → D2   
   S1 → P2 → X2 → D3   
   S1 → P2 → X3 → D3   
   S1 → P2 → X3 → D4     

 Similarly,  set_false_path -through    P1  would cover all paths passing through  P1 , 
and  set_false_path -to    D1  would cover all paths terminating at  D1 . 

 If multiple of these options are specifi ed, the command applies to paths which 
satisfy each of the options. Example: 

  set_false_path -from S1 -through X1  covers only the following two paths:

    S1 → P1 → X1 → D1   
   S1 → P1 → X1 → D2     

 Sometimes, the argument to any of the options is a list having multiple elements, 
rather than a single element. In that case, it is equivalent to having multiple com-
mands each with one element only. Example:

    set_false_path -from S1 -through {X1, X2}  is equivalent to the following two command 
excerpts together:  

   set_false_path -from S1 -through X1   
   set_false_path -from S1 -through X2     

    Either we use the fi rst specifi cation or the lower two specifi cations; they would 
cover the following paths:

    S1 → P1 → X1 → D1   
   S1 → P1 → X1 → D2   
   S1 → P1 → X2 → D2   
   S1 → P1 → X2 → D3   
   S1 → P2 → X2 → D2   
   S1 → P2 → X2 → D3     

 Stated alternately, when a list is specifi ed as an argument to an option, it means 
any one of the elements in the list. Thus, 

  set_false_path -from S1 -through {X1, X2}  means paths starting from  S1  and 
passing through either of ( X1  or  X2 ). 

 When  -through  is specifi ed multiple times, it indicates that each of the  -through  
have to be satisfi ed independently. Thus,
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   set_false_path -through P1 -through X1  means paths which pass through both  P1  
as well as  X1 . Thus, the command excerpt would cover:

    S1 → P1 → X1 → D1   
   S1 → P1 → X1 → D2   
   S4 → P1 → X1 → D1   
   S4 → P1 → X1 → D2     

 In case of multiple  -through , their order is also important. Thus,  -through P1 
-through X1  is not the same as  -through X1 -through P1 . The order of  -through  
specifi es the order in which the paths must cover the circuit elements. Thus,  -through 
P1 -through X1  will cover the four paths enumerated above. On the other hand, 
 -through X1 -through P1  will not  cover any path, because there is no path which 
goes fi rst through  X1  and then through  P1 . 

 Thus,  set_false_path -from S1 -through {X1, X2}  is different from  set_false_path 
-from S1 -through X1 -through X2.  The  “-through {X1, X2}”  indicates a path pass-
ing through either  X1  or  X2 , while  “-through X1 -through X2 ” indicates a path 
which goes through both  X1  and  X2  and also in the order  X1 → X2 . 

 The options  -from     and  -to  can only be timing start  and end points , respectively. 
Also, these options can specify clocks, in addition to circuit elements. When clock  
name is specifi ed, it means all sequential elements triggered by the clock and all 
input/output ports whose input/output delay is specifi ed with respect to the specifi ed 
clock. In fact, specifying clocks in  -from  and  -to  provides an easy way to cover 
many sequential elements. Thus, 

  set_false_path -from CLK1  means all paths originating from:

 –    All sequential elements triggered by  CLK1   
 –   And all input ports constrained with respect to  CLK1     

 In general, there are recommendations on what should be specifi ed as a start or 
end point. The start point  should be a clock, primary input or inout port, a sequen-
tial cell, clock pin of a sequential cell, or a pin on which input delay has been speci-
fi ed. Similarly the end point  should be a clock, primary output or inout port, a 
sequential cell, data pin of a sequential cell, or a pin on which output delay has been 
specifi ed. Some tools may allow certain other points to be also specifi ed as start or 
end points, but using those points will minimize the reuse of such false paths in an 
implementation fl ow, as such exceptions may not be accepted universally by all 
tools. 

 It is apparent that the same set of paths can be specifi ed in multiple ways. 
However, it is always advisable that the path specifi cation should be done in a man-
ner so that the intent is apparent from the command itself. Thus, if there is a false 
path requirement due to clock relationship, it is better to provide the specifi cation in 
terms of clocks, rather than enumerating the individual fl ops.  
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11.4     Transition Specifi cation 

 Sometimes, a designer might want to provide false specifi cation for only a specifi c 
transition and not all transitions along the path. 

 This can be achieved through the usage of:

    -rise_from  : impacts only rising transitions at the specifi ed start points  
   -fall_from  : impacts only falling transitions at the specifi ed start points  
   -rise_through  : impacts only rising transitions at the specifi ed through points  
   -fall_through  : impacts only falling transitions at the specifi ed through points  
   -rise_to  : impacts only rising transitions at the specifi ed end points  
   -fall_to  : impacts only falling transitions at the specifi ed end points  
   -rise  : impacts only rising paths  
   -fall  : impacts only falling paths    

 For most tools, the “rising path” or “falling path” is characterized in terms of the 
transitions at the end points . Thus, options  -rise  and  -fall  become synonyms of 
- rise_to  and  -fall_to . 

 These transition related options implicitly also specify a  -from   or  -through   or  -to  . 
Hence, a  -rise_from   should be seen as also having specifi ed a  -from  implicitly, and 
 -from  should not be specifi ed explicitly, if  -rise_from/-fall_from  is specifi ed. Let us 
consider Fig.  11.2 . In this fi gure, the clock network fans out to a network of fl ops, 
some of which are positive edge  triggered and some of which are negative edge  trig-
gered. Further let us assume that all the paths in the combinational cloud are 
non-inverting.

     set_false_path -from CLK  will not time path from fl ops  F1  and  F2.   
   set_false_path -from CLK  can be written as combination of the following two 

 command excerpts:  
   set_false_path -rise_from CLK   
   set_false_path -fall_from CLK     

CLK

F1

F2

buf1

  Fig. 11.2    Clock network with non-inverting paths but registers triggered by both edges       

 

11.4  Transition Specifi cation



136

  set_false_path -rise_from CLK  will not time path from fl op  F1 , while  set_false_
path -fall_from CLK  will not time path from fl op  F2 .  set_false_path -from CLK 
-fall_through buf1  does not impact the transitions which have a rising transition at 
 buf1 . Since all the paths in this design are non-inverting, this is equivalent to:

    set_false_path -fall_from CLK -through buf1  which in turn is also equivalent to:  
   set_false_path -fall_from CLK -fall_through buf1     

 These set of equivalent commands will therefore result in path from fl op  F2  not 
to be timed. 

 On the other hand, the following is an example command excerpts which will not 
impact any path:

    set_false_path -fall_from CLK -rise_through buf1     

 Any rise transition at  CLK  can cause only a rising transition at  buf1 . So there is 
no path which qualifi es the criterion of a falling transition at  CLK  and a rising transi-
tion at  buf1  simultaneously. 

 When a clock  is specifi ed as  -rise_from/-fall_from/-rise_to/-fall_to , the specifi -
cation implies the transition at the clock source (not at the elements triggered by the 
clock). 

 An application of this option could be the reset network. If the reset is asynchro-
nous, there is no need to time the path for assertion of reset. Assuming this is 
negative- edge-triggered reset, this can be modeled as

    set_false_path -fall_from reset_n     

 To understand the above command, let us consider the concept of recovery  and 
removal timing check. Recovery timing check ensures there is suffi cient time 
between an asynchronous signal going inactive and the next active clock edge. This 
setup like check therefore makes sure that the design has enough time to recover 
from reset before the next clock edge becomes effective. Similarly the removal  tim-
ing check ensures that there is suffi cient time between active clock edge and deas-
sertion of an asynchronous control signal. This hold like check therefore makes sure 
that effect of asynchronous signal remains on the design and is not impacted by any 
active clock edge during that period. Figure  11.3  shows the waveform depicting 
these checks.

   A good usage style of asynchronous reset recommends that while assertion can 
happen asynchronously, the deassertion should happen synchronously. This means 
the user would not like to time the path during assert, but all registers would need to 
come out of the reset state in the same cycle. Hence in this case, the user would need 
to ensure that timing checks are satisfi ed for deassertion. However, he doesn’t care 
about the timing check during assertion. Assuming this is negative-edge-triggered 
reset, this can be modeled as

    set_false_path -fall_from reset_n     

 If  -fall_from  option is not specifi ed, then the false path gets applied for both asser-
tion and deassertion of the asynchronous reset.  
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11.5     Setup/Hold Specifi cation 

 In some situations the designer may want to set this constraint only for the setup or 
the hold path. This is achieved using the  -setup   and  -hold   options.  

11.6     Types of False Paths 

 False paths are paths that may or may not exist in the design; however, timing on 
such paths doesn’t make sense. In general, false paths are defi ned as paths where 
sensitization at the start point of the path causes no transition at the end point of the 
path. However, in some cases the path may exist and be possibly sensitized, but the 
user may not want to time the paths. The advantage of identifying false paths is that 
it gives guidance to implementation tool to only spend time optimizing real paths 
and meet timing on it. There are different kinds of false paths: 

11.6.1     Combinational False Path 

 Let us consider the schematic in Fig.  11.4 . In this fi gure path from 
 A → mux1/A → mux2/A → B  cannot be sensitized since the select signals of the two 
multiplexers have opposite sense. Such a false path, which cannot be sensitized and 
the control logic infl uencing the sensitization consists of combinational elements, is 
called a combinational false path .

Recovery Timing

Negative Edge Asynchronous Reset

Positive Edge Clock

0 5 10 15 20 25 30 35 40 45 50 55 60

Removal Timing

  Fig. 11.3    Recovery and removal timing check       
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   This false path can be modeled as:

    set_false_path -from [get_ports A] -through [get_pins mux1/A] -through [get_pins 
mux2/A] -to [get_ports B]     

 In this example, the  -from  and  -to  need not be used. Any path through  mux1/A  
and  mux2/A  should be false. By putting  -from A  and  -to B , we are not covering other 
paths – which could be passing through this. This false path should be written as:

    set_false_path -through [get_pins mux1/A] -through [get_pins mux2/A]      

11.6.2     Sequential False Path 

 Let us consider the schematic in Fig.  11.5 . This fi gure is a slight variant of Fig.  11.4 , 
where in the select signal is driven by a one hot controller. In this fi gure as well, the 
path from  A → mux1/A → mux2/A → B  cannot be sensitized for the same reason. 
However, the control logic infl uencing the sensitization consists of sequential ele-
ments. Such a false path is called a sequential false path . The false path specifi cation 
for such a path would also be the same as mentioned in the previous section.

A
A

B

A

B B

mux1
mux2

  Fig. 11.4    Combinational false path       
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  Fig. 11.5    Sequential false path       
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11.6.3        Dynamically Sensitized False Path 

 Let us consider the schematic in Fig.  11.6 . In this fi gure, there is a re-convergence 
of combinational path from  A  to  B . There are two paths from  A  to  B , namely, 
 A → k1 → B  and  A → k2 → k3 → B . Now for the path  A → k2 → k3 → B  not to be 
blocked, the value of port  C  must be zero. If that be the case, then irrespective of the 
value on  A  ( 0  or  1 ), the value of  B  is always 0. So the path ( A → B ) is never sensi-
tized and appears to be a false path.

   However, if the delay on paths  A → k1 → B  and  A → k2 → k3 → B  is different, 
such that

   delay on path ( A → k1 → B ) < delay on path ( A → k2 → k3 → B )    

 In this case a  0 → 1  transition on  A  will cause a glitch . And if

   delay on path ( A → k1 → B ) > delay on path ( A → k2 → k3 → B )    

 In this case a  1 → 0  transition on  A  will cause a glitch. So irrespective of which 
path has higher delay, there will be a glitch – for one transition or the other breaking 
the inherent defi nition of a false path. Such a path where depending on the delay, the 
path may have a glitch is called a dynamically sensitized false path . 

 Such paths should not be declared as false. The glitch  may happen just at the time 
that the signal is captured, causing the glitch to be captured, and thus, the design 
may fail.  

11.6.4     Timing False Path 

 Timing false paths are paths that exist in the design and can be sensitized, but the 
designer chooses not to time them. For example, design contains confi guration reg-
isters  which get initialized during initialization  sequence to bring the whole design 
to a known state for correct operation. After this, they maintain a static value and 
timing for these registers is not a designer care about. 

 Another example is path to asynchronous signals like reset. To initialize the 
FSMs in a design, the registers are reset so as to reach a known state before the fi rst 
clock transition. Once the normal operation starts, such reset paths are not required 
to be timed. 

A B/0

C/0

k1

k2

k3

  Fig. 11.6    Dynamically sensitized false path       
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 False paths are also used to model asynchronous domain crossings. We saw in 
Chap.   7     how  set_clock_groups   could be used to model this. Prior to SDC1.7, when 
 set_clock_groups  was not part of the standard, asynchronous clock domain cross-
ings  were modeled using false paths. Therefore, Fig.   7.1     could also be modeled as:

    set_false_path -from C1 -to C2   
   set_false_path -from C2 -to C1    

instead of

    set_clock_groups -asynchronous -group C1 -group C2     

 As it can be seen , set_clock_groups  is a more concise and effi cient way of 
describing this relationship. More importantly, it conveys the intent correctly.  

11.6.5     False Path Due to Bus Protocol 

 Let us consider a bus protocol-based design, as shown in Fig.  11.7 .
   Let the master and the two slaves be connected to the same bus. Further the pro-

tocol allows the master to initiate data transfer in either direction with either of the 
slaves. However, the slaves themselves might not be able to exchange data between 
themselves directly. Due to bidirectional connection between the bus to each of the 
slave peripherals, it might appear that there is a path between  Slave1  and  Slave2 , 
while, in reality, data will never get transmitted along this path. Thus, the path 
between  Slave1  and  Slave2  needs to be declared as false – in both directions. 

 Usually, these kinds of false paths are very diffi cult to determine or be verifi ed by 
any tool, since the information is specifi c to the protocol and that is not apparent by 
looking at the design connectivity.  

Master

Slave1 Slave2

  Fig. 11.7    Protocol-based 
data exchange       
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11.6.6     False Path Between Virtual and Real Clocks 

 Today, more and more designs are being pad-limited, because the size of IOs is not 
reducing at the same pace as the circuit geometry. The size of the chip is being 
decided by the number of IOs, rather than by the amount of logic sitting inside it. 
This has resulted in more and more pins being multiplexed. Figure  11.8  shows one 
such multiplexed output pin.

   Signals from  F1  and  F2  are multiplexed to use the same output pin  O1 . This can 
be done, if both  F1  and  F2  do not need to send outputs simultaneously. Let’s further 
assume that when data is sent out by  F1  (clocked by  Clk1 ), it is consumed outside 
the block by fl op  F3 , which is also clocked by  Clk1 . Thus, an output delay has to be 
specifi ed on  O1  with respect to  Clk1 . Similarly, let us assume that when the data is 
sent out by  F2  (clocked by  Clk2 ), it is consumed by fl op  F4  – clocked by  Clk2 . 
Hence, an additional output delay has to be specifi ed on  O1  with respect to  Clk2 . 

 So  O1  has two output delays, one with respect to  Clk1  and another with respect 
to  Clk2 . And  O1  receives data from two sources: fl op  F1  (triggered by  Clk1 ) and 
fl op  F2  (triggered by  Clk2 ). 

 Thus, at  O1 , the following four checks are made:

    1.    Data starting from  F1  (triggered by  Clk1 ) and output delay specifi ed with respect 
to  Clk1    

   2.    Data starting from  F1  (triggered by  Clk1 ) and output delay specifi ed with respect 
to  Clk2    

O1

Clk1

Clk2

Clk1

Clk2

F1

F2

F3

F4

  Fig. 11.8    Multiplexed output pin       
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   3.    Data starting from  F2  (triggered by  Clk2 ) and output delay specifi ed with respect 
to  Clk1    

   4.    Data starting from  F2  (triggered by  Clk2 ) and output delay specifi ed with respect 
to  Clk2     

  Out of these four checks, only the (1) and (4) are of interest. The other two are 
not of interest, because data starting from  F1  is not supposed to be captured on  Clk2 , 
or data starting from  F2  is not supposed to be captured on  Clk1 . 

 Thus, these two checks, which are not of interest, need to be disabled. This can 
be done through  set_false_path  (or  set_clock_groups ) between  Clk1  and  Clk2 . This 
has the risk that any interaction between  Clk1  and  Clk2  elsewhere in the design also 
doesn’t get timed. 

 Thus, a common practice is to create virtual clocks  (say,  vClk1  and  vClk2 ) cor-
responding to the clocks  Clk1  and  Clk2 , and the output delays are declared with 
respect to these virtual clocks. Now, false paths can be declared from the real clocks 
to the virtual clocks. Thus, the complete set of constraints would be:

    create_clock -name vClk1 < period and waveform>   
   create_clock -name vClk2 < period and waveform>   

   set_output_delay < delay value > -clock vClk1 [get_ports O1]   
   set_output_delay < delay value > -clock vClk2 [get_ports O1] -add_delay   

   set_false_path -from Clk1 -to vClk2   
   set_false_path -from Clk2 -to vClk1     

 Similarly, for situations where an input pin is multiplexed to receive data from 
two different clocks, which are also sampled by the two corresponding clocks, the 
input delays should be specifi ed with respect to the virtual clocks, and false paths 
can be declared between the virtual clock (used for specifying the input delays) and 
the real clock (which trigger the capturing fl ops).   

11.7     set_disable_timing 

 Let us consider an excerpt of a design as shown in Fig.  11.9 .
   Here, if delay computation starts from or reaches point  B , it will keep on adding 

delay, as it keeps making subsequent iterations over the loop  I1 → n1 → I2 → n2 → I1 , 
and never really converge. Most tools have a mechanism to detect such loops and 

A

B

I2

I1 n1

n2

C

Z
  Fig. 11.9    Combinational 
loop       
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break the loop for the purpose of timing analysis. However, it is up to the tool to 
break whichever segment it considers appropriate. Let us consider that the tool 
broke the loop by breaking the segment  n1 . As a result, the path  B  to  C  also is not 
timed. In such situations, it is better for the user to specify the segment which should 
be broken for the timing analysis. The user needs to choose the segment in such a 
manner, so that no other paths get impacted. For example, in the current circuit, it is 
best to break the segment from  OR  gate’s second input to its output. This breaks the 
loop as well as leaves all other paths intact for being timed. 

 Such breaking of the loop can be done through the command,  set_disable_timing . 
 The BNF grammar for  set_disable_timing  command is:

    set_disable_timing  [- from   pin_name]  
   [- to   pin_name]  
   design_objects    

 Here the design object list includes cells, pins, and ports. For example, in the 
command shown below, the timing arc from  B  to  Z  for the  OR  gate (instance  I1 ) 
would be removed from timing analysis:

    set_disable_timing -from B -to Z I1     

 The conceptual difference between  set_false_path   and  set_disable_timing   is that 
former simply prevents timing of the paths; however, the delay calculation doesn’t 
stop. However, in the case of  set_disable_timing , the path itself is removed from 
timing analysis.  

11.8     False Path Gotchas 

 While specifying the false paths, the designer must be careful about the following 
things:

    1.    Several tools allow users to use wildcards in the specifi cation of false path. For 
example, in the circuit in Fig.  11.1  somebody could have tried to model as  set_
false_path -from S* . This causes all paths from  S1, S2, S3, S4  to be made false. 
This can be very dangerous and can result in real paths from not being timed, 
which could result in timing failure on silicon.   

   2.    Many times false paths are set between start and end points, which don’t have a 
physical connectivity between them. Though harmless, they would result in lon-
ger and unnecessary runtimes in your implementation tools.   

   3.    While specifying  -through , the designer must ensure that the  through  is not 
redundant. When  -through  is specifi ed, the design object on that list will not be 
optimized, even if it is a good candidate, which could result in suboptimal design 
implementation.   

   4.    Many times different kinds of exceptions (false paths and multi cycle paths) are 
set on the same path or path segment. This kind of overlap causes implementa-
tion tools to make assumptions that may not be consistent.      
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11.9     Conclusion 

 In summary, false paths act as exceptions to timing constraints, which results in the 
path not to be timed. However, in some cases, design may require path to be timed 
but take more than one clock cycle to propagate the information. In the next chapter, 
we will learn how we can use multi cycle paths to provide scope for leniency beyond 
a single cycle.    
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                    By default, each path is timed for a single cycle , i.e., data launched at any edge of 
the clock should be captured by the next fl op at the next rising edge of the clock on 
the destination fl op. Figure  12.1  shows this relationship.

   However, sometimes a designer might need to provide some additional cycles 
before the data is to be captured. Figure  12.2  shows this scenario of an additional 
cycle. The paths which get additional cycles are called multi cycle paths .

12.1      SDC Command for Multi Cycle Paths 

 The SDC command for declaring a path as multi cycle is:

    set_multicycle_path   [ -setup ]  
   [ -hold ]  
   [ -rise ] [ -fall ]  
   [ -start ] [ -end ]  
   [ -from  from_list]  
   [ -to  to_list] [ -through  through_list]  
   [ -rise_from  rise_from_list]  
   [ -rise_to  rise_to_list]  
   [ -rise_through  rise_through_list]  
   [ -fall_from  fall_from_list]  
   [ -fall_to  fall_to_list]  
   [ -fall_through  fall_through_list]  
   path_multiplier  
   [ -comment  comment_string]    

    Chapter 12   
 Multi Cycle Paths 
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 Between all these switches, the command specifi es:

 –    The exact path(s) which are to be treated as multi cycle  
 –   The transitions within the paths which are to be treated as multi cycle  
 –   Whether the multi cycle relationship is for setup or for hold  
 –   Whether the additional cycle(s) are in terms of launch clock or capturing clock  
 –   The number of cycles  
 –   Any additional textual annotation to explain the context/justifi cation for the 

multi cycle nature     

12.2    Path and Transition Specifi cation 

 Path and transition specifi cation (options:  -rise   , -fall   , -from   , -to   , -through   , -rise_
from   , -rise_to   , -rise_through   , -fall_from   , -fall_to   , -fall_through  ) for a multi cycle 
specifi cation is exactly same as that explained in Chap.   11    . These options and path 
specifi cations are not being repeated here.  

Data captureData launch

  Fig. 12.1    Default setup timing relationship       

Data capture
Data launch

  Fig. 12.2    Multi cycle of 2       
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12.3    Setup/Hold Specifi cation 

 For the purpose of this section, we will assume that both the launching device and 
the capturing device are triggered by the same clock. The implication of different 
clock frequencies will be discussed in Sect.  12.4 . A clock waveform is depicted in 
Fig.  12.3 .

   Timing analysis will assume that the launching fl op  will launch the data at edge 
 A . For setup analysis, it will consider that the data will be captured at the edge  B . So, 
setup relation is analyzed between edges  A  and  B . Use of  -setup  switch causes the 
capturing edge for setup  analysis to be moved further to the right – away from  A  to 
 C ,  D,  etc., depending upon the number of cycles  specifi ed. 

 Let us assume that the capturing edge  for setup  has been moved to edge  D , 
through  -setup   switch. For the purpose of hold  analysis, the timing analysis tool 
considers the immediately preceding edge at the capture fl op  (when launch and 
capture clocks are the same). Thus, hold analysis will be considered using the edge 
 C  for capture. Use of  -hold  switch causes the capturing edge for hold analysis to be 
moved towards left, to either  B  or  A  – depending upon the number of cycles speci-
fi ed. The general practice is to restore the hold check back to edge  A . If the hold 
check is not brought back to edge  A , there might be buffers inserted in the path to 
ensure some delay. These buffers will take up silicon area  as well as power . 

 We have assumed above, the setup edge  was moved to 3 cycles (so that it reached 
edge  D ). The hold edge  automatically moved to edge  C  (the immediately preceding 
edge). Now, in order to bring it back, it has to be moved back by 2 cycles. This can 
be achieved through use of  -hold   switch. 

 In order to move the hold check edge back to  A , we have moved it by 2 cycles. It 
has now come back to the same edge as launch edge , i.e., at  0 th edge (with launch 
edge being considered Origin). It should be noted that we are now talking about two 
different numbers. A hold multiplier  number  2  which specifi es the number of edges 
by which the hold edge needs to move towards left. This is the number that is speci-
fi ed in the  set_multicycle_path  with -hold. And, another is number  0 , which speci-
fi es the actual edge number, where the check is happening. These two numbers are 
often a source of confusion during conversation. When you are talking about hold 
edge – specially in the context of multi cycle path – make sure that all the people 
involved understand, whether the number being mentioned is the “hold multiplier ” 
the number by which the edge will move towards left, or the edge number, where 
the check will be performed. For the waveform shown in Fig.  12.3  (assuming setup 
number of 3), edge  A  corresponds to a hold multiplier number of  2 , edge  B  corre-
sponds to a hold multiplier number of  1 , and edge  C  corresponds to a hold multiplier 
number of  0 , in the context of the  set_multicycle_path  defi nition. 

A B C D

  Fig. 12.3    Clock waveform       
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  -setup   switch specifi es the period to which (not “by which”) the setup capture 
edge will move to the right. Thus, a specifi cation of  N  means move to  N th period. 
This is different from move by  N  cycles. The  -hold   switch on the other hand speci-
fi es the period by which (not “to which”) the hold capture edge will move to the left. 
If setup edge was moved to  N th edge, the hold edge is automatically moved to 
 N–1 th edge. In order to restore it back to its original location, the hold check needs 
to be moved backwards by  N–1  cycles, so that it goes back to “ 0 ” edge. 

 Thus,  -setup  switch will move the capturing edge  for setup. Simultaneously, it 
also moves the capturing edge for hold. After that, another  set_multicycle_path  
might be needed with  -hold  switch to restore the hold check back to the original 
edges. Multi cycle path specifi cations are usually found in pairs of  -setup  and  
-hold . If the  -hold  specifi cation is not given, the hold edge remains where it had got 
moved due to setup edge movement.  

12.4     Shift Amount 

 The path multiplier specifi es the number of clock cycles for the multi cycle path 
specifi cation. If the launching device and the capturing devices are triggered by the 
same clock (or different clocks but with the same frequency), and the command 
specifi es a multi cycle relationship, it is not important as to whether the number of 
cycles mentioned is for the start clock  or for the end clock . However, if the start and 
the end clocks are different, then, it is important to specify whether the number of 
cycles specifi ed is in terms of start clock or the end clock. For the purpose of our 
understanding, let us assume the clocks to be synchronous  (Though the same 
approach can be extended to asynchronous clocks, however, asynchronous clocks  
are usually not timed). 

 Let start clock have a period of  10ns  and end clock have a period of  20ns . For 
performing setup checks, the timing analysis tool identifi es pairs of launch edge  and 
the next capture edge . For all such pairs determined, the timing analysis tool fi gures 
out which of these pairs gives the minimal time for the data to travel. Figure  12.4  
shows the waveforms for these clocks.

   For the given example waveforms, the setup check would be made for the com-
bination, launch at  B  and capture at  N . So, for setup to be met, data path has to be 
within  10ns . 

 Similarly, determine which are the worst case hold combinations, and use that 
launch/capture combination for hold check. The edge combinations used for hold 
check may not have any relation with the edges used for setup check. 

 For the given waveform, the hold check would be made for the combination: 
launch at  A  and capture at  M  (this is equivalent to launch at  C  and capture at  N ). 

  Within 1 cycle of destination clock, two data can get launched, which will mean 
losing one data. Within 1 cycle of destination clock, only one data should be 
launched – to avoid data loss. For a capture at   N  , the data could be launched either 
at   A   or at   B  . There is no advantage of launching at   B  , since the capture is still at   N  . 
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We might as well launch the data at   A   and provide 2 cycles (of source clock) for the 
data to reach the destination. Thus typically, for setup, we want to move the launch 
edge    back to   A  . So, we declare a path of 2 cycles in terms of source clock   . This can 
be specifi ed through use of   -start    switch. This results in the launch edge being 
moved to the previous triggering edge of the launch clock, namely, launch at   A   and 
capture at   N  . So, setup gets another   10ns  . Note that the number “2” represents the 
number of cycles to be allowed for setup. It is different from the number of cycles 
by which the check got moved. The check got moved by 1 cycle, since the original 
setup check allowed for 1 cycle.  

 Now, for determining the hold check, the two pairs of edges are determined:

    1.    Launch at  B  and capture at  N  (hold launch edge one later than the setup launch 
edge).   

   2.    Launch at  A  and capture at  M  (hold capture edge one earlier than the setup cap-
ture edge).     

 Out of these two combinations, the fi rst one is more restrictive (higher require-
ment for hold check). Hence, the hold check moves to launch at  B  and capture at  N . 
This means a minimum delay of  10ns  ( B  to  N ). The aim was to allow additional 
time, if needed, not to force a higher delay. So, we would want to restore the hold 
checks to default positions (viz., launch at  C  and capture at  N ). Thus, we need to 
move the launch edge  towards right by 1 cycle of the start clock . This can be 
achieved by specifying  -start  switch with  -hold . Now, the hold edges are  C, N  com-
bination, which is same as  A, M  combination. Thus, the hold check edges have been 
restored to the original conditions. Note that in the case of hold multiplier, the num-
ber “1” represents the number of cycles by which the check got moved. 

 Let us consider another example. This time, the start clock has a period of  20ns  
and the end clock has a period of  10ns . Figure  12.5  shows the corresponding 
waveform:

   For this combination of start and end clocks, the default setup check would be 
made at launch edge   M  and capture edge   B . And, the hold check would be made at 
launch edge  M  and capture edge  A . 
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  Fig. 12.4    Start and end clocks have different period       
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 The data launched at  M  does not get changed for 2 cycles in terms of destination 
clock. So, multiple edges of destination clock would capture the same data (launched 
at  M ). We might as well disable the capture at all the edges of destination and do the 
capture only once for each launch. And, for a data launched at  M , we would rather 
do the capture at  C , thereby allowing more time for the signal to reach the destina-
tion. So, typically for setup, we declare a path of 2 cycles in terms of destination 
clock. This can be specifi ed through use of  -end  switch. This results in the capture 
edge  being moved to the next triggering edge of the destination clock, namely, 
launch at  M  and capture at  C . Thus, setup gets another  10ns . 

 This will cause the hold  check to be moved to launch at  M  and capture at  B  (hold 
capture edge being 1 clock edge before the setup capture edge). If we want to restore 
the hold checks to default positions (viz., launch at  M  and capture at  A ), we need to 
move the capture edge  towards left by 1 cycle of the end clock. This can be achieved 
by specifying  -end  switch with  -hold . 

 So, effectively, for setup  checks,  -end   means move the capture edge  to the right, 
and  -start   means move the launch edge  to the left.  -start  with  -hold  causes the 
launch edge to move to the right, and  -end  switch with  -hold   causes the capture edge 
to move to the left. 

 Stated alternately, - start  moves the launch clock edge and  -end  moves the capture 
clock edge. With multi cycle, these edges move in a direction so as to make the checks 
less stringent. The number of cycles moved is always in terms of the edge that is mov-
ing. So, if launch edge is moving, the number of cycles is in terms of the launch clock. 

 Few more observations apparent from these two examples are:

    1.    In order to restore the hold edge back to the original location, the hold multiplier  
is 1 less than the setup multiplier .   

   2.    For synchronous clocks with different frequencies, the setup number is equal to 
the ratio of the time period of the two clocks.   

   3.    The multiplier is specifi ed in terms of the period of the faster clock (smaller time 
period).     

 There should be an exact match in the number of data launched and data cap-
tured. For a one-to-one transmittal of data, that would mean one launch and one 
capture per one period of the slower clock. The remaining edges of the faster 
clock should be disabled, so that they neither capture nor launch additional data. 
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  Fig. 12.5    Start clock slower than end clock       
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And the launch/capture edges can be so chosen that they provide maximum time for 
the data to travel. This will result in the observation 2 and 3 above. 

 These are just thumb rules. Each multi cycle path should be analyzed on its own 
for the right value of the multiplier, and the right clock period to be used. 

 The comment  option can be used to specify a text annotation – mostly to mention 
the reasoning behind the multi cycle specifi cation.  

12.5    Example Multi Cycle Specifi cation 

 Let us consider a few example situations of multi cycle specifi cation. In the previous 
section, we already saw examples of synchronous data transfers between a fast to 
slow and a slow to fast clocks. 

12.5.1    FSM-Based Data Transfer 

 Let us consider a circuit as shown in Fig.  12.6 .
   When the  data  is generated by  Cs , the same clock also generates an  enable  sig-

nal. This signal goes through an FSM , and then the target capturing device is enabled 
to capture the data. Let us assume that the  enable  signal takes  N  cycles within the 
FSM, before the target device is ready to capture the data. In such a situation, there 
is no need for the actual  data  to rush to the target device immediately. It can take 
time up till  N  cycles (of destination clock) to reach there. Hence, this path needs to 
be constrained as:

    set_multicycle_path -from Cs -through F1/Q -to Cd -setup N -end   
   set_multicycle_path -from Cs -through F1/Q -to Cd -hold N-1 -end     
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  Fig. 12.6    FSM-based data transfer       
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 Note the use of  -through . This is needed, so that only the  F1  to  F3  path are cov-
ered. The  enable  signal might need its own multi cycle specifi cation, if it takes more 
than a cycle. 

 Paths using Handshake , Acknowledge, etc., for data transfer are examples of 
such situations which might use multi cycle. Another example is when a data bus is 
crossing a clock domain  and instead of trying to synchronize  the whole bus, an 
enable signal is synchronized. If the control FSM is going to take more than 1 cycle 
before enabling the capture device, the data can take those many cycles in reaching 
the destination device.  

12.5.2    Source Synchronous Interface 

 In a source synchronous interface , as a data is presented at the output, the clock is 
also sent out. Both data and the clock lines can be routed on the board to have similar 
delays. Thus, the receiving device need not worry about the delays through the board 
trace. Whenever there is a clock signal, the receiving device knows that the actual 
data is also available around the same time. Figure  12.7  shows a typical realization of 
a source synchronous interface, and Fig.  12.8  shows the corresponding waveform.

    In a system synchronous interface  (in which all the signals are synchronized 
to system clocks), the output delay on the  Data  pin would be specifi ed with respect to 
 Clk . However, in the source synchronous interface , the reference is with respect to 
the  Strobe  . Thus, a timing relation specifi ed wrt  Strobe  would cover  Data  pin also. 
The  Strobe  itself might be specifi ed through  create_generated_clock   using  Clk  as 
the master. 
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  Fig. 12.7       Simple realization 
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 Usually,  Data  launched on  Clk  edge corresponding to edge  P  of  Strobe  would be 
timed for setup edge  Q . However, in this interface,  Data  should be timed with 
respect to the edge  P  itself. Thus, the setup edge  needs to be moved. This can be 
done through the command:

    set_multicycle_path -from [get_clocks Clk] -to [get_clocks Strobe] -setup 0     

 Notice that the setup multiplier  number is specifi ed as  0 , which moves the setup 
edge  towards left – to the same edge as the launch edge . The start point  is the fl op 
 F1  triggered by  Clk  and the end point  is the port  Data , constrained with respect to 
 Strobe  . 

 When the setup edge moved back to point  P , the hold edge  needs to be restored 
back to its original location. This can be done through the command:

    set_multicycle_path -from [get_clocks Clk] -to [get_clocks Strobe] -hold -1     

 The same path can be specifi ed as  -to [get_ports Data],  instead of  -from [get_
clocks Clk] -to [get_clocks Strobe] . Notice the negative  value of the hold 
multiplier . 

 The  Data  cannot be available at exactly the same time as the  Strobe  edge. Let us 
assume that the duration  AB  indicates the time during which the  Data  is expected to 
change. That means, till  B , the old  Data  would be available, and the new  Data  
should be available by time  A . This has to be modeled through appropriate values on 
 set_output_delay . 

 Let us assume the duration  P  to  A  is  1.5ns . So, this can be specifi ed as:

    set_output_delay -clock [get_clocks Strobe] -max -1.5 [get_ports Data]     

 Note the negative  value of the delay. This indicates that the data availability is 
after the reference edge. 

 Let us assume the duration  B  to  P  is  1ns . So, this can be specifi ed as:

    set_output_delay -clock [get_clocks Strobe] -min 1.0 [get_ports Data]     

 Notice that the min value is larger than the max value. Some tools do not support 
this. Make sure that your tool allows this! 

 The same timing effect can also be specifi ed without  set_multicycle_path . Let us 
assume the clock period to be  10ns . Without the  set_multicycle_path , the default 
edge for setup check would be launch at  P  and capture at  Q . The need for data to be 
available at  A  can also be looked as a requirement that the data should be available 
 8.5ns  before the next edge  Q . This can be specifi ed as:

    set_output_delay -clock [get_clocks Strobe] -max 8.5 [get_ports Data]     

 The hold check would still be made for capture at  P . So, min delay remains the 
same, namely,  set_output_delay -clock [get_clocks Strobe] -min 1.0 [get_ports 
Data].  

 This example showed how the same path can be specifi ed in multiple ways. And 
also, the same timing effect can be achieved through different ways.  

12.5 Example Multi Cycle Specifi cation
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12.5.3    Reset 

 In many ASIC designs, the master reset  signal remains asserted for several cycles. 
So, the assertion of these signals can be declared as multi cycle paths. Assuming an 
active low asynchronous reset kept asserted for 3 cycles, the command would be:

    set_multicycle_path -fall -from reset_n -setup 3   
   set_multicycle_path -fall -from reset_n -hold 2      

12.5.4    Asynchronous Clocks 

 In Chap.   7    , we have seen that asynchronous clock domain crossings  are declared as 
 set_clock_groups    -asynchronous . The timer effectively disables such paths from 
any timing analysis. Thus, a path crossing clock domain can be allowed to have any 
amount of delay. Many designers want to put some kind of upper limit on the delay 
that such paths might have. This can be achieved through the commands:

    set_multicycle_path -from [get_clocks C1] -to [get_clocks C2] -setup 2   
   set_multicycle_path -from [get_clocks C1] -to [get_clocks C2] -hold 1     

 When we specify a setup of 2 cycles, effectively the delay on the asynchronous 
path gets capped to 1 cycle (and not 2 cycles). Because the path is asynchronous, an 
edge pair will be considered where the launch and the capture edges are close. Thus, 
1 cycle is effectively lost because of the close edges. Figure  12.9  explains this.

   The default launch – capture combination is edges  A  and  P  which are very close. 
With a setup multi cycle of  2  (in terms of end clock), the capture edge moves to  Q . 
The data path then gets the time from  A  to  Q , which is almost one clock (of destina-
tion clock).  

12.5.5    Large Data Path Macros 

 Some data paths have huge adders, multipliers, or other data path elements . Or, they 
might have deep levels of logic. Or, they might have a high setup requirement for 
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  Fig. 12.9    Asynchronous clocks       
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the capturing device (say, a memory ), or the launching device might have a high 
 Clk-to-output  delay (e.g., a memory). Or, the path might be on a clock which has 
very high frequency. In many such cases, it might be diffi cult for the data to meet 
the timing requirements of a single cycle . In such cases, the path might have to be 
declared as multi cycle.  

12.5.6    Multimode 

 In Chap.   15    , when we discuss multimode , we will also see one more example situ-
ation of  set_multicycle_path  command.   

12.6    Conclusion 

 Multi cycle path provides additional relaxation to the specifi ed paths. While speci-
fying multi cycle paths, you should be careful to ensure:

 –    Unintended paths do not become multi cycle.  
 –   The amount of additional time allowed is in line with what you had intended.    

 If a path is under-constrained (i.e., multi cycle specifi cation allows a wider range 
for the signals to arrive) than what designed for, the device might not operate at the 
desired frequency. 

 When we move the setup edge through a multi cycle path specifi cation, the hold 
edge also moves. You should check if the hold edge needs to be restored back to its 
original location. In most cases, it should be restored back. If you do not restore the 
hold edge, the design might have additional buffers in the data path, in order to 
increase delay to meet the increased hold requirement. This would cause wasted 
silicon area as well as power. 

 This chapter discussed multi cycle paths only in the context of timing. However, 
there are implications on the functional design (RTL) also, to ensure:

 –    Data is not lost.  
 –   Glitches are not captured.       

12.6 Conclusion
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                    Usually, outputs are always registered  – just before being presented to the port. In 
many cases, inputs are also registered immediately after entering the block. In any 
case, most of the times, each signal entering an input gets registered at least once, 
before it comes out through an output port. 

 However, sometimes there might be paths from input to output, without encoun-
tering any register. Such paths are called combinational paths . Figure  13.1  shows an 
example of a combinational path.

13.1       set_max_delay 

 A combinational path can be constrained so that the delay on the path can be limited 
within an upper bound. This can be done through  set_max_delay   command. The 
SDC syntax for this command is:

    set_max_delay  [ -rise ] [ -fall ]  
   [ -from  from_list]  
   [ -to  to_list]  
   [ -through  through_list]  
   [ -rise_from  rise_from_list]  
   [ -rise_to  rise_to_list]  
   [ -rise_through  rise_through_list]  
   [ -fall_from  fall_from_list]  
   [ -fall_to  fall_to_list]  
   [ -fall_through  fall_through_list]  
   delay_value
 [ -comment  comment_string]    

 The options related to path and transition specifi cation and comment are same as 
those explained in Chap.   11     for  set_false_path  , and thus a detailed explanation is 
omitted in this chapter. The  delay_value  specifi es the upper limit of the allowed 
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delay for this combinational path. For example, if the path shown in Fig.  13.1  is 
allowed to have a maximum delay of  8ns , the corresponding command would be:

    set_max_delay -from [get_ports I1] -to [get_ports O1] 8.0      

13.2     set_min_delay 

 If the path is required to have a lower bound for the delay, the requirement can be 
specifi ed through set_min_delay  command. The SDC syntax for the command is:

    set_min_delay  [ -rise ] [ -fall ]  
   [ -from  from_list]  
   [ -to  to_list]  
   [ -through  through_list]  
   [ -rise_from  rise_from_list]  
   [ -rise_to  rise_to_list]  
   [ -rise_through  rise_through_list]  
   [ -fall_from  fall_from_list]  
   [ -fall_to  fall_to_list]  
   [ -fall_through  fall_through_list]  
   delay_value
 [ -comment  comment_string]    

 The options for  set_min_delay  and  set_max_delay  are the same in meaning and 
syntax. The only way  set_min_delay  differs from  set_max_delay  is that this com-
mand specifi es the lower bound on the delay through the path, while  set_max_delay  
specifi es the upper bound on the delay. Thus, the actual delay for the path has to be 
somewhere between  set_min_delay  and  set_max_delay . 

 Usually, in most cases, there might be no need to specify  set_min_delay . Only in 
some specifi c situation, where some hold  requirements might need a minimal delay 
value, there would be a need for  set_min_delay  specifi cation.  

13.3     Input/Output Delay 

 A combinational path can also be constrained using  set_input_delay   and  set_ 
output_delay  . The syntax and semantics of these commands and their options are 
described in Chap.   9     and are not being repeated here. In this section, we will describe 
how  set_input_delay  and  set_output_delay  can be used to constrain the delay for a 
combinational path. 

I1 O1
  Fig. 13.1    Combinational 
path       
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 Let us say that we want to constrain the combinational path shown in Fig.  13.1  
to have a maximum delay of  8ns . 

13.3.1     Constraining with Unrelated Clock 

 Let us also say that this same block also has a clock  declaration (say  CLK ) with a 
period of  12ns . This clock may not have any relationship with this combinational 
path, as shown in Fig.  13.2 .

   So, out of the period of  12ns , a duration of  8ns  needs to be available for this 
combinational path. The remaining  4ns  can be distributed outside this block, through 
 set_input_delay  and  set_output_delay . Say, an input delay of  3  and an output delay 
of  1  can be specifi ed. The distribution of  3  and  1  among  set_input_delay  and  set_
output_delay  is not important, as long as the total of input delay and the output 
delay specifi cation is  4 . Thus, the following set of commands can achieve a combi-
national path delay of maximum  8ns :

    create_clock -name CLK -period 12 [get_ports clk]   
   set_input_delay -max -clock CLK [get_ports I1] 3.0   
   set_output_delay -max -clock CLK [get_ports O1] 1.0     

 The risk with this style of constraining a combinational path is, if for some reason, 
the clock period  is modifi ed, the combinational path delay also gets modifi ed, even 
though there might be no relation between the combinational path and the clock.  

13.3.2     Constraining with Virtual Clock 

 Instead of using a clock which is being declared for this block for some other pur-
pose, a virtual clock  can be declared, just for constraining the combinational path. 

clk

I1 O1

  Fig. 13.2    Combinational 
path – no interaction with 
clock       
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We can choose whatever period we want for this virtual clock – as long as the period  
is more than the required max delay for the combinational path. And, the excess can 
be distributed among input and output delays. The following set of constraints pro-
vides one example possibility:

    create_clock -name vCLK -period 15   
   set_input_delay -max -clock vCLK [get_ports I1] 3.0   
   set_output_delay -max -clock vCLK [get_ports O1] 4.0     

 A virtual clock has been declared with a period of  15 . Notice that there is no 
design object associated with the  create_clock  , thus making the clock to be virtual. 
With the period of  15 , there is an excess of  7ns (15–8) . This excess has been distrib-
uted between  set_input_delay   and  set_output_delay  .  

13.3.3     Constraining with Related Clock 

 Let us look at the same path, but this time, we also consider the circuit around this 
block, to show the launching  and the capturing fl ops  also – which lie outside this 
block. Figure  13.3  shows an example.

   The launch and the capture fl ops lie outside the specifi c block. They could be 
lying in a different block, or they could be a part of the top-level glue logic. The 
input delay constraint can be specifi ed with respect to the clock that launches data 
from  F1 . The input delay specifi ed should be the delay from the launch fl op  till the 
input pin  I1 . 

 The output delay constraint can be specifi ed with respect to the clock that cap-
tures data in  F2 . The output delay specifi ed should be the delay from the output pin 
 O1  till the capture fl op   F2 . 

 The clocks (which trigger  F1  and  F2 ) themselves may or may not be feeding into 
this block. If these specifi c clocks are not feeding into the block, a corresponding 
virtual clock  would need to be created. 

I1 O1
F2F1

  Fig. 13.3    Combinational path in the context of launching/capturing fl op       
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 Among the three approaches discussed for constraining using input/output 
delays, this approach using the related clocks is the best. It correctly refl ects the 
design scenario, and the allowed delay through the combinational block can then be 
determined automatically by the tools.   

13.4      Min/Max Delay Versus Input/Output Delay 

 In terms of timing implication, usage of either style (viz.,  set_max_delay   /set_min_
delay   or either of the three styles of  set_input_delay   /set_output_delay  ) has the same 
effect. However, it is preferable to constrain a combinational path using  set_input_
delay/set_output_delay  combination. Let us consider the circuit in Fig.  13.4 , where 
an input and output are part of both a combinational path as well as a registered 
path.

   Let us say, the clock period is  15ns . Let us say, the input arrives at  I1  at   4ns  after 
the clock edge. Let us say, the output  O1  has to travel for  3ns , before it gets captured 
in the destination fl op. 

 So, the delay outside the block is  7ns . Thus, the combinational path can have a 
delay of  8ns  maximum. This can be specifi ed as:

    set_max_delay    -from [get_ports I1] -to [get_ports O1] 8.0     

 Because of the input feeding into a register, there needs to be an input delay also 
on I1 (in order to time  I1  to  F1  path), which will be specifi ed as:

    set_input_delay    -max -clock CLK [get_ports I1] 4.0     

 And, in order to time  F2  to  O1  path, there needs to be an output delay also on  O1 , 
which will be specifi ed as:

    set_output_delay    -max -clock CLK [get_ports I1] 3.0     

clk

I1 O1

F1 F2

  Fig. 13.4    An input/output is part of combinational as well as registered path       
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 The  set_input_delay  and the  set_output_delay  have to be anyways specifi ed, 
because of  I1  and  O1 ’s involvement in registered path. With these two specifi ca-
tions, the combinational path anyways gets constrained to  8ns . So, there is no need 
for the explicit specifi cation of  set_max_delay . 

 Assuming that the  set_max_delay  is anyways specifi ed (to  8ns ), it might be 
expected that these input and output delay specifi cations should not impact the com-
binational path delay (viz.,  8ns ). However, in reality, the arrival time at the input and 
the output external delays will get counted as part of the combinational path!!!! 

 So, the combinational path is specifi ed a limit of  8ns  (through  set_max_delay ). 
Out of that,  7ns  is contributed by the input and output delays. Thus, only  1ns  is left 
for the actual path. This is not what was intended. So, it is possible that for a com-
binational path constrained through  set_max_delay , the effective allowed delay gets 
modifi ed due to an input/output delay specifi cation. 

 Now, if an input to output path is purely combinational, we would have a choice 
of either using only a  set_max_delay  or a combination of  set_input_delay  and  set_
output_delay . Here, since there is no need for  set_input_delay  and  set_output_delay , 
it might appear as if  set_max_delay   alone is suffi cient and is harmless. This is true. 
However, if the design gets modifi ed so that  I1  or  O1  get involved in a registered 
path, they will also warrant a  set_input_delay/set_output_delay  specifi cation. Now, 
this new specifi cation of  set_input_delay   /set_output_delay   ends up inadvertently 
modifying the max allowed delay for the combinational path. 

 Hence, from an ease-of-maintenance perspective, it is better to use input/output 
delay combination, rather than  set_max_delay . Though the discussion was pre-
sented in terms of  set_max_delay  and  set_input_delay / set_output_delay  with - max  
specifi cation, the same discussion holds true for  set_min_delay   and  set_input_delay/
set_output_delay  with  -min   specifi cation.  

13.5     Feedthroughs 

 The word  feedthrough   has more than one meaning – depending upon the context. 
In the context of this chapter, we use the term to refer to specifi c types of combi-
national paths , wherein an input signal directly reaches an output port, without any 
circuit. The delay for a feedthrough path is just the wire delay inside the block. 
A feedthrough path often spans several consecutive blocks. The discussion  mentioned 
in this section in the context of a feedthrough is equally applicable for other combi-
national paths also, if they happen to span through multiple consecutive blocks. 

 Let us consider a feedthrough path which spans across four consecutive blocks, 
as shown in Fig.  13.5 .

   Let us assume that the total path delay from  S (ource) to  D (estination) is supposed 
to be within  13ns . Let us assume that the delay within each block is supposed to be 
maximum  2ns  and that the time of fl ight from one block to another block can be 
maximum  1ns . The time of fl ight for  S  to  B1  and from  B4  to  D  also has a maximum 
limit of  1ns  each. So, the total path delay stays within  13ns . 
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 We will now apply constraint on all these blocks. One way is to specify the fol-
lowing for each of the blocks. The actual port names have to be specifi ed in the 
command below:

    set_max_delay    -from <input port> -to <output port> 2.0     

 However, we have seen in the previous section that it is better to specify  set_
input_delay   /set_output_delay  , rather than  set_max_delay . 

 For  B1 , the signal arrives at  I1  within  1ns . After it comes out of  O1 , it has to 
travel for a max of  10ns  ( 3  blocks *  2ns  each +  4  top-level routing *  1ns  each). 

 For  B2 , the signal arrives at  I2  within  4ns  ( 1  block *  2ns  +  2  top-level routing 
*  1ns  each). After it comes out of  O2 , it has to travel for a max of  7ns  ( 2  blocks *  2ns  
each +  3  top-level routing *  1ns  each). 

 For  B3 , the signal arrives at  I3  within  7ns  ( 2  blocks *  2ns  each +  3  top-level rout-
ing *  1ns  each). After it comes out of  O3 , it has to travel for a max of  4ns  ( 1  block 
*  2ns  +  2  top-level routing *  1ns  each). 

 For  B4 , the signal arrives at  I4  within  10ns  ( 3  blocks *  2ns  each +  4  top-level 
routing *  1ns  each). After it comes out of  O4 , it has to travel for a maximum of  1ns  
( 1  top-level routing *  1ns ). 

 Assuming a clock  CLK  has already been created with a period of  13ns , the con-
straints would be specifi ed as:

   For  B1 :  
   set_input_delay -max -clock CLK [get_ports I1] 1.0   
   set_output_delay -max -clock CLK [get_ports 01] 10.0    

   For  B2 :  
   set_input_delay    -max -clock CLK [get_ports I2] 4.0   
   set_output_delay    -max    -clock CLK [get_ports 02] 7.0    

   For  B3 :  
   set_input_delay -max -clock CLK [get_ports I3] 7.0   
   set_output_delay -max -clock CLK [get_ports 03] 4.0    

   For  B4 :  
   set_input_delay -max -clock CLK [get_ports I4] 10.0   
   set_output_delay -max -clock CLK [get_ports 04] 1.0     

 It should be seen that the delay through each of the block gets constrained to a 
max of  2ns . 

B1 B2 B3 B4

S
I1 I2 I3 I4O1 O2 O3 O4

D

  Fig. 13.5    Feedthrough path spanning multiple blocks       
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13.5.1     Feedthroughs Constrained Imperfectly 

 Let us say that after the above is tried, for some reason, the timing for  B2  could not 
be met. Say, the delay for this block could not be reduced below  2.5ns . So, for some 
other block, the delay has to be reduced. Say, for  B4 , the delay can be reduced to 
 1.5ns . So, the total delay for the whole feedthrough path remains the same. However, 
the  set_input_delay  and  set_output_delay  for the individual blocks would need to be 
modifi ed. This will change the arrival time for  B3  and  B4  (arrives  0.5ns  later), and 
external time on the output side of  B3  and  B2  (external required time is  0.5ns  lesser), 
thus changing many input/output delays – including for blocks like  B3  – for which 
there was no change in the routing/delays inside it. 

 Often, for such paths, where a feedthrough  passes through several blocks, many 
designers do not necessarily specify the actual arrival time for input and external 
required time for output. Rather, they would choose a pair of input and output delay 
values such that the delay inside the block is the desired value. For the example 
described, the output delay for  B2  would be reduced by  0.5ns . And, the input delay 
for  B4  would be increased by  0.5ns . The constraints for  B3  would be left unchanged. 
Though, it still means  2ns  inside  B3 , the  set_input_delay/set_output_delay  no lon-
ger represents the actual time of arrival or the actual time needed to travel after 
coming out of the block. 

 Usually, on some very high-performance designs, e.g., processors – several 
blocks are designed as hard-IP s. In order to not impact the timing due to routing on 
higher layers, these IPs provide feedthrough paths. A path going from one block to 
another could feedthrough several IPs. Such designs might have such characteris-
tics, where the input and output delays are different from the actual values.   

13.6     Point-to-Point Exception 

 As shown in Sect.  13.4 , usually for port to port paths,  set_input_delay  and  set_out-
put_delay  combination is preferred compared to  set_max_delay , even if the path is 
purely combinational. 

 Sometimes, a path segment on an entire path inside the design might need to be 
constrained to a special value.  set_max_delay   might be very useful for such point- 
to-point exceptions. Figure  13.6  shows a simple double-fl op synchronizer  due to an 
asynchronous clock domain crossing .

F1 F2 F3

C1

C2

  Fig. 13.6    Simple double-fl op synchronization       
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   The path from  F1  to  F2  should not be timed. This can be achieved through either 
 set_clock_groups   or  set_false_path  . Or, a user might put a  set_multicycle_path  . 
The path from  F2  to  F3  gets constrained due to clock period defi ned for  C2 . Usually, 
no logic is put between  F2  and  F3 . It is possible that placement and routing tools 
can place these fl ops far apart or take a long route, since they see the complete 
clock period available for this path. If the path from  F2  to  F3  is long, then the whole 
purpose of putting a direct path without any other logic is lost. The effectiveness of 
the synchronization is reduced (means MTBF (mean time between failures)  will not 
increase as much as desired). Designers usually want that the delay from  F2  to  F3  
should be very small – much smaller than the allowed clock period. So, they will 
constrain this path using  set_max_delay , e.g.,

    set_max_delay -from F2 -to F3 <value>      

13.7     Path Breaking 

 Before applying a  set_max_delay   or a  set_min_delay  , the designer should under-
stand that if the constrained portion does not start from a timing start point  or end at 
a timing end point , these constraints break the path, at both ends of the path seg-
ment. Figure  13.7  shows a design excerpt, which has several paths, namely, 
 F1 → F3; F1 → F4; F2 → F3; F2 → F4 .

   Each of these paths will be timed. However, let us say, for some reason, a  set_
max_delay  or a  set_min_delay  is specifi ed  -from I1/Z -to I2/A . Now, a timing path 
that starts from  F1  (or  F2 ) will stop at  I1/Z , which has become a new start point. It 
is very important to understand this path breaking nature of  set_min_delay  and  set_
max_delay . Because of this characteristic, the paths  F1 → F3; F1 → F4; F2 → F3 
and F2 → F4  will not be timed any more.  

F3
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F2
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  Fig. 13.7    Path breaking        

 

13.7  Path Breaking



166

13.8     Conclusion 

 A combinational path can be constrained using  set_min_delay  and  set_max_delay . 
If the paths span from an input port to an output port, it is better to constrain the path 
using  set_input_delay  and  set_output_delay  combination. In general, since in most 
cases, the interest is in making sure that the delays are lesser than a desired value, 
so,  set_max_delay  is used more often than  set_min_delay .    
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                    Today’s designs are very complex. They are “System on a Chip” in the real sense. 
The same chip performs multiple functions at different points of time. Within the 
chip also, there are portions in the design which behave one way in one use mode 
and behave differently in another use mode. 

14.1     Usage Modes 

 A portion of the design might have one requirement for one kind of operation. And, 
for a different kind of operation the same portion of the design might have a differ-
ent requirement. 

 The best example could be a design in the video entertainment segment. In the 
video world, user experience is a major requirement. In order to provide a real-like 
user experience, performance becomes the key factor. On the other hand, when the 
user is not using the device for a video application, performance is no longer impor-
tant. Rather, it is more important to conserve battery life (thus, power) – even if 
 performance has to be scaled down signifi cantly. 

 Thus, parts of the device could have changing requirements – depending upon 
what mode  the device is currently in. Individually, each part of the design has to 
meet the requirements of each of the individual modes.  

14.2     Multiple Modes 

 For the sake of simplicity, let us say, a device has two major usage scenario – represented 
as modes  M1  and  M2 . Let us further assume, there are two parts –  P1  and  P2  in the 
design, for which the timing requirements change depending upon whether the 
device is being used in mode  M1  or  M2 . 

    Chapter 14   
 Modal Analysis 
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 Now,  P1  has to meet the requirements of both the modes,  M1  and  M2 . Thus,  P1  
has to be designed to meet the most restrictive of the requirements. Similarly,  P2  has 
to be designed to meet the most restrictive of the requirements among  M1  and  M2 . 
However, there is no situation when  P1  will be operating in mode  M1  while  P2  
would be operating in mode  M2 . Both  P1  and  P2  will together operate in mode  M1  
or in  M2 . 

 Let us consider the circuit shown in Fig.  14.1 .
   The paths shown with solid lines indicate functional paths  – which are active 

when the circuit is in normal operation. The paths shown with dotted lines indicate 
scan paths  – which are active during Scan Shift . The same  CLK  port is used for 
 SystemClock  during functional mode and  TestClock  for Scan  mode. 

 The  SystemClock  usually operates at a higher frequency, say a period of  10ns ; 
while  TestClock  usually operates at a lower frequency, say a period of  40ns . 

 The path  F1  →  F3  is a functional path  and should meet the timing corresponding 
to  10ns  period. The path  F1  →  F2/SI  is a scan path and should meet the timing 
 corresponding to  40ns . 

 We need to specify  SystemClock  so that path  F1  →  F3  gets timed correctly. We 
also need to specify  TestClock  so that path  F1  →  F2  gets timed. Since both 
 SystemClock  and  TestClock  share the same port, both clocks will be declared at the 
same location – which is  CLK  port. Now, during timing analysis, each of the paths 
will get analyzed corresponding to both  SystemClock  as well as  TestClock . Thus, 
path  F1  →  F2  will be timed corresponding to  SystemClock  also – which is an over-
kill. The path will be forced to meet  10ns , when  40  is good enough. 

 However, at any time the device will be in only one mode – either it will be in 
normal operation or it will be under scan mode. If it is in functional mode , the path 
 F1  →  F2  is not of interest. And, when the path  F1  →  F2  is of interest, the device is 
in scan mode . 

F1

F3

F2

SI

SI

CLK

  Fig. 14.1    Functional and test mode       
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 In such situations, we can defi ne two different modes for the device. We could 
defi ne a functional mode. In this mode, it analyzes paths  F1  →  F3  and  F2  →  F3  
using  SystemClock . And, we could defi ne another mode for scan. In this mode, it 
analyzes path  F1  →  F2  using  TestClock .  

14.3     Single Mode Versus Merged Mode 

 A user could write the constraints for each mode individually, or write a set of con-
straints which are combined for multiple modes. 

 Usually front end designers who write the RTL code to represent the functional-
ity fi nd it easier to comprehend the design in terms of various functional modes. It 
comes more naturally for them to think of the design in terms of functional mode. 
Hence, they prefer to write the constraints for each mode individually. 

 In Sect.  14.6 , we will see some of the challenges that arise due to individual 
mode constraints. Because of those challenges, the backend designers tend to merge 
the constraints. For them, the design is usually less about the functionality. They 
look at the design as a network of logic elements, and don’t tend to think in terms of 
individual functional modes.  

14.4     Setting Mode 

 When an SDC represents a single mode, certain points in the design can be fi xed at 
specifi c values that are unique characteristics of that mode. The SDC command for 
setting a specifi c value is  set_case_analysis  . The SDC syntax for the command is:

    set_case_analysis  value port_pin_list   

where, value can be  0 / 1 / rising / falling . 
 The command fundamentally conveys that for the current analysis assume that a 

given object is at the specifi ed value or transition. 
 For putting a device into a specifi c mode , sometimes just one  set_case_analysis  

might be suffi cient. And, sometimes, a set of several  set_case_analysis  might be 
needed to put the device into a specifi c mode. 

 Figure  14.2  shows the same circuit as Fig.  14.1  – but with some more details.
   For this example to be analyzed in the functional mode , the clocks will be 

declared as:

    create_clock    -name SysClk -period 10 [get_ports CLK]     

 In addition, we should apply

    set_case_analysis 0 [get_ports SE]     
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 The fl op models contain the information that when  SE  pin is  0 , only  D  pin can be 
sampled. Thus, the paths to  SI  pin will not be analyzed, but the paths to  D  pin will 
be analyzed. Thus, path  F1  →  F2  will not be analyzed in this mode, because this 
path reaches  SI  pin of  F2 . 

 On the other hand, if we want the example to be analyzed in the scan mode , the 
corresponding commands would be:

    create_clock -name TstClk -period 40 [get_ports CLK]   
   set_case_analysis 1 [get_ports SE]     

 Again, because fl op model contains the information that when  SE  pin is  1 , only 
 SI  pin can be sampled. Thus, the paths to  D  pin will not be analyzed but the paths to 
 SI  pin will be analyzed. Thus path  F1  →  F2  will be analyzed in this mode. Also, the 
path from  F2  →  F3 ’s  SI  pin will also be analyzed. 

 Let us consider a block, which has several possible modes of operation. There is 
a confi guration register  of 8 bits whose setting decides the specifi c mode of opera-
tion. In such a case, all 8 bits of the register might need to be set in order to put the 
device in the mode of interest. Example commands could be something like:

    set_case_anlaysis 0 [get_pins confi g_reg[0]/Q]   
   set_case_anlaysis 1 [get_pins confi g_reg[1]/Q]   
   set_case_anlaysis 1 [get_pins confi g_reg[2]/Q]   
   set_case_anlaysis 0 [get_pins confi g_reg[3]/Q]   
   set_case_anlaysis 1 [get_pins confi g_reg[4]/Q]   
   set_case_anlaysis 0 [get_pins confi g_reg[5]/Q]   
   set_case_anlaysis 1 [get_pins confi g_reg[6]/Q]   
   set_case_anlaysis 0 [get_pins confi g_reg[7]/Q]     
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  Fig. 14.2    Scan pins shown for the previous circuit       
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 In order to decide the  set_case_analysis  settings, we fi rst need to decide the mode 
of operation for which the analysis has to be done. After that we need to decide the 
control pins/ports which infl uence the mode of operation for the device. Then, we 
need to specify those pins/ports to be at the values which will put the device into that 
mode of operation. Usually,  set_case_analysis  is applied only on ports or on register 
output pins. Usually, the register pins are used to set values on confi guration regis-
ters. Even though, the syntax allows the values to be applied on any pin. 

  set_case_analysis  command prevents certain paths from participating in timing 
analysis. This prevention happens in multiple ways. First, the specifi c pin being 
constant does not originate or transmit any transition. Second, the values specifi ed 
through  set_case_analysis  propagate to the rest of the design – thus putting addi-
tional constants in the design. Third, these constants (either specifi ed directly 
through  set_case_analysis  or after propagation) disable certain paths from being 
timed. Circuit shown in Fig.  14.3  provides an example of how the values applied 
through  set_case_anlaysis  propagate and disable certain paths from participating in 
timing analysis.

   Let us assume that in order to set the device into a specifi c mode, the following 
constraint has been specifi ed:

    set_case_analysis 0 [get_ports P1]     

 So, any path involving a transition on  I1/A  no longer participates in timing analy-
sis, as  I1/A  is always held at a constant value. A transition on  I1/B  will also not reach 
 I1 ’s output pin. Hence, any path involving a transition on  I1/B  will also not partici-
pate in timing analysis. The value of  0  on  I1/A  propagates to the output of the  AND  
gate and then to the  Sel  pin of the  MUX . Because  MUX ’s  Sel  pin is held at constant, 
so, paths through this pin will also not be timed. And, paths through  D1  pin of the 
 MUX  will also not participate – because,  MUX ’s  Sel  pin being at  0  means  D1  will 
not reach the output. Only the paths through  D0  to output of  MUX  and the  I2/B  to 
 I2/Z  will be timed.  
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  Fig. 14.3    Case analysis impact on paths being timed       
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14.5     Other Constraints 

 Using the  set_case_analysis  command we can set specifi c points in a design to fi xed 
logical values which characterize a specifi c mode of operation. Besides setting the 
logical values, the constraints for a specifi c mode also means setting other con-
straints like clock defi nitions, input and output delays etc. also which are specifi c to 
the intended mode of operation. Thus for the same input port, in one mode, it could 
have one input delay and in another mode, it could have another input delay. 

 For example, let us say, an input port receives data with respect to one clock in 
one mode of operation and data with respect to another clock in another mode of 
operation. In this case, for each mode, the input would be constrained with respect 
to one clock only (corresponding to that mode). 

 Or, an input might receive signals at different time in different mode of opera-
tion. In such cases also, the input delay specifi ed in a specifi c mode is usually the 
value corresponding to that mode of operation. 

 In short, while writing constraints for a specifi c mode, the constraints are written 
as if that is the only mode in which the device will operate.  

14.6      Mode Analysis Challenges 

 The advantage of analyzing individual modes is that certain timing paths which are 
never possible in the actual device operation get excluded from timing analysis, e.g., 
referring to Fig.  14.1 ,  F1  →  F2  path in functional mode need not be timed. However, 
mode analysis  also has its own challenges. 

14.6.1     Timing Closure Iterations 

 Let us consider a design with four different modes –  M1 , M2, M3, and  M4 . The 
design has to meet the timing for each mode individually. The designer will synthe-
size the design for any one mode – say  M1 . Now, if timing analysis is done for  M1 , 
the timing might be clean. The same design also needs to be analyzed and made 
timing clean for mode  M2 . It is possible that certain paths which are applicable in 
 M2  were not to be analyzed in  M1 . These paths might potentially fail timing, when 
subjected to timing analysis in mode  M2 . So, some fi xes will have to be made into 
the design – so that these paths also start meeting the timing. After mode  M2  is also 
timing clean, the timing analysis will need to be done for mode  M3 . Once again, it 
is possible that some paths valid in mode  M3  might fail the timing. So, some fi xes 
will have to be made once again – so that these paths also start meeting the timing. 
Similarly, analysis will be needed for mode  M4 , which might cause some more fi xes. 

 By now, each of the modes has been individually analyzed and where needed, 
fi xes were also made. However, as part of making these fi xes, the design has been 
altered. Any timing analysis done before the design was last altered is no longer 
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valid. Thus, timing analysis will need to be done once again for each of the modes 
after the last update. 

 When we redo the timing analysis for mode  M1  – it is possible that some path 
might fail timing now. During the previous iteration of mode  M1 , this same path was 
meeting the timing. As part of making fi xes for other modes, it is possible that this 
path was diverted through a longer route. And, as part of fi xing this, it is possible 
that some other path is diverted through a longer route – which could potentially 
cause some other mode to fail. 

 Thus, the whole process goes into a loop, where a fi x of a path in one mode 
causes another path applicable in another mode to have broken timing. The funda-
mental problem is that implementation tools have been made to see only a subset of 
the paths at any given time and they try to meet only those paths. In the process, they 
might deteriorate paths which are not being seen by them in the current mode. At 
this time, the tools are not able to see that the paths which are being deteriorated 
could be important in another mode, causing a failure in that other mode. 

 Today, with complete systems on a single chip, many of the designs have more 
than ten modes. So, there are too many analysis required; and there is always a risk 
of this going into a loop. This loop is commonly referred as timing closure 
iterations . 

 As a solution to this problem, many designers try to combine various modes into 
a single hypothetical mode. The concept is called Mode Merge . We will read more 
about it in the next chapter.  

14.6.2     Missed Timing Paths 

 We have seen earlier in this chapter, that when we apply some  set_case_analysis  , certain 
paths get excluded from the timing analysis. However, it is expected that each timing 
path in the design is there for some specifi c purpose, and each path should be required 
to meet some timing in some mode or other. Typically, a design has millions of timing 
paths. In each mode, thousands of paths may get excluded from timing analysis. 

 However, each timing path should get covered in at least some mode or the other. 
There is no good way of knowing that each path been covered. Effectively, there is 
a risk that some specifi c path got excluded from each of the mode settings and was 
not timed at all in any of the modes. This could happen because the   set_case_analy-
sis   used for some mode were incorrect; or because a certain mode was not consid-
ered for analysis.   

14.7     Confl icting Modes 

 Because of the problem related to timing closure iteration  mentioned above, some-
times, users will set different parts of the design in different modes, which might 
even be confl icting. They do this so that not many different modes have to be cre-
ated. Let us consider the circuit shown in Fig.  14.4 .
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B1
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B2

  Fig. 14.4    Confl icting mode 
settings       

   Let us assume that the design pin  En  controls the operational mode of the design. 
Hence, for two different runs, the  case_analysis  settings would be:

    set_case_analysis 0 [get_ports En]   

  and  

   set_case_anlaysis 1 [get_ports En]     

 As mentioned in the previous section, this will mean doing timing analysis twice. 
Sometimes, this could also cause iterations through the implementation tools. 

 Let us further assume that the block  B1  has the most restrictive timing when its 
pin  En  is at  0 , while the block  B2  has the most restrictive timing when its input pin 
 En  is  1 . In such a case, some designers prefer to specify:

    set_case_analysis 0 [get_ports En]   
   set_case_anlaysis 1 [get_pins B2/En]     

 It should be noticed that it is never possible to have the above situation in the 
design, since  B2/En  is being driven directly by the  En  port. However, this allows the 
design to be put into the most restrictive situation and do the analysis only once. 

 Similarly, sometimes, confl icting values are set at fl ops. A  set_case_analysis  set 
somewhere could propagate a  0  at  a specifi c fl op’s input, while the fl op’s output 
might have a  1  set at it. Again, not something that is actually possible in the design. 
However, this covers the situation, where the timing was supposed to be most 
restrictive in one condition till the fl op; and after the fl op it is most restrictive in an 
opposite condition. 

 Merging of several SDC fi les belonging to different modes into one SDC fi le is 
dealt in more detail in the next chapter. This example has been given mostly to show 
that sometimes, mode settings could be made in a confl icting manner, even though, 
logically these situations may never occur in the actual design.  
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14.8     Mode Names 

 It should be noted that several times in this chapter, we refer to mode names. 
However, SDC does not provide any mode naming convention/command. Individual 
tools might still provide a mechanism to provide a name to the mode. In the context 
of SDC, any name for the mode is mostly for understanding of the user – as to which 
functionality does he want to cover, by the corresponding  set_case_analysis  
commands.  

14.9     Conclusion 

 Mode analysis allows a user to restrict the analysis to specifi c operational situations 
only, rather than considering all possible combinations of paths and situations, some 
of which might never happen in the design. Mode analysis makes it easier for the 
designer to write constraints only for specifi c operational modes. However, dealing 
with only a subset of paths for one mode, without any consideration for the other 
paths, which will be meaningful in other modes often causes a long iterative loop 
through the timing closure. 

 For most designs, front end designers generate the SDC fi le specifi c to individual 
modes. However, the backend engineers merge several modes into one constraint 
fi le, so that the implementation tools can look at the whole set of requirements in 
one go.    
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                    As the complexity of designs increases there is a need to accurately model timing 
constraints for early design closure. When done correctly, they help not only to 
achieve faster timing closure  but also reduce iterations between front-end and back- 
end teams. In reality constraints are constantly being tweaked as the design is being 
pushed from RTL to post layout. This requires the design to be partitioned appropri-
ately and the constraints to be managed effectively so that the design intent is pre-
served at every step. 

 During the design development chip architect makes a call on how the design 
needs to be partitioned, optimized, and assembled. Depending on the complexity of 
the design and the level of integration involved designers may choose one of the 
following three fl ows

    1.    Hierarchical top-down  methodology   
   2.    Bottom-up methodology   
   3.    Bottom-up top-down (hybrid) methodology     

 Further depending on the number of modes per block or chip, the designer may 
want to reduce his timing closure iterations by merging modes to manage his con-
straints effectively. 

15.1     Top-Down Methodology 

 In this methodology the entire chip is considered one single design unit and con-
straints are applied at the top level and the design is synthesized as a single unit. The 
advantage of this methodology is that it boasts of a simple use model and makes 
optimization relatively simple and worry free step. However this model is not very 
scalable. For really large designs this is dependent on the implementation tool 
capacity and the hardware on which it is running. Further any minor change in any 
part of the design results in a complete re-implementation.  

    Chapter 15   
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15.2     Bottom-Up  Methodology 

 This is a variant of the hierarchical top-down fl ow, in the sense that it uses divide 
and conquer approach to partition a chip into sub-chips and sub-chip into blocks. 
Constraints are created for each sub-chip or block, which are then analyzed similar 
to the top-down fl ow. Each block is optimized separately based on its own con-
straints and integrated at the sub-chip or chip level. This has the advantage that it 
makes the design methodology scalable for large designs. An incremental change to 
a block doesn’t require the entire design to be synthesized. However this methodol-
ogy may result in integration issues at the top level. A block which when optimized 
separately may meet its timing, but when integrated in the context of the sub-chip or 
chip may fail timing. Similarly critical paths  at intermediate level or top level of 
hierarchy may not be apparent as critical at the block level. This is because the con-
straints created at the block level have no visibility to the constraints at the top level 
and the constraints of the adjoining blocks it is going to interact with. This increases 
the iteration when multiple blocks are integrated and the design tries to meet inter 
block and intra block timing requirements. 

 Further at the sub-chip level, to create constraints, designers may resort to propa-
gation of block level constraints. This is not straightforward, as there could be con-
fl icting clock and case analysis constraints from multiple blocks to deal with. 
Figure  15.1  shows an example of such a confl ict.

   In this fi gure, the block level constraints are such that port  P1  is constrained in 
block  B1  to have a value of  1 , while  P1  of block  B2  is set to  0 . Then at the chip level 
there is feed-through  path from  B1/P1→ B1/O1 → B2/P1 , which causes these con-
straints to confl ict. Why is this an issue?  B1  has been timed for a mode when its port 

Block
B1

Block 
B2

set_case_analysis 1  P1 set_case_analysis 0  P1

P1 O1 P1 O1

P2 P2

set_case_analysis 0 P2 set_case_analysis 0 P2

  Fig. 15.1    Bottom-up constraints propagation causing confl ict       
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 P1  is at  1 . Similarly  B2  has been timed for a mode when port  P1  is at  0 . But in the 
actual functioning of the chip, since they cannot have values  1  and  0  simultaneously, 
the mode is hypothetical at chip level. One of the blocks may exhibit worse timing, 
compared to what it showed when timed individually. Similarly, if port  P2  in block 
 B1  and  B2  are constrained to value  0 , then from the logic it is clear that both ports 
cannot have the same value, since there is an inverter in the path to  P2  of block  B1 . 

 In the examples above, we have kept the port names the same across blocks just 
to make it easy to understand. Many times the port names may not be the same, 
while there is a relation among the ports. Such cases are quite diffi cult to detect, 
through text-based human review of constraints. 

 When Constraints are propagated upwards in a bottom-up fl ow, there are three 
kinds of transformations that are possible.

    1.    Constraints at block level are applied as is at chip level with only the hierarchy 
updated.   

   2.    Constraints at block level are modifi ed to refl ect the SoC context.   
   3.    Constraints are dropped, since they don’t make sense in the SoC context.     

 Let us consider the example in Fig.  15.2 . In this example the block  B1  defi nes a 
clock  for  C1  and generated clock   GC1  in its own constraints fi le. Block  B2  defi nes 
a clock  C1  in its own constraints fi le.

     ## Constraints of block B1   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_generated_clock -name GC1 -divide_by 2 -source C1 [get_pins F1/Q]   
   set_false_path -from F2   

   ## Constraints of block B2   
   create_clock -name C1 -period 20 [get_ports C1]   
   set_false_path -from P1 -to F1     

B1 B2

P1
O1 P1 O1

C1 O2 C1 O2F1

F2 F1

F2

buf1

C1

CHIP

  Fig. 15.2    Bottom-up constraints propagation       
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 When  B1  and  B2  are integrated at chip level, the clock  C1  and  GC1  (with hierar-
chy updated) are retained. Since  GC1  effectively drives the clock modeled by  C1  of 
block  B2 , an additional constraint is not required for  B2 ’s clock. Further the  set_
false_path   in block  B1  should be simply transformed to refl ect the new hierarchy.

    ## Constraints of CHIP based on propagation   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_generated_clock -name GC1 -divide_by 2 -source C1 [get_pins B1/F1/Q]   
   set_false_path -from B1/F2     

 At chip level we don’t need the false path from  P1  to  F1  in block  B2 , since the 
false path from  B1/F2  covers that path as well. Therefore at chip level this can be 
dropped. It is important to note sometimes a mere hierarchy manipulation may not 
be enough, if at the SoC level additional paths become false. It is always advisable 
that such anomalies, if any, should be resolved based on knowledge of the design. 

 If the designer decides to create the chip level constraints manually, he would 
need to validate consistency between chip and block constraints. This step would 
ensure that for each constraint at the top level there is no confl ict with the con-
straints at the block level.

•     Let us consider Fig.  15.3  which shows an example of a block level constraints 
and the corresponding chip level constraint. In this case, the clock constraints at 
the block and chip level are not consistent. The block is constrained with a  10ns  

  Fig. 15.3    Chip vs. block constraints validation       
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   ## Constraints of CHIP   
   create_clock -name C1 -period 8 [get_ports C1]   
   set_input_delay 6 -clock C1 [get_ports P1]   

   ## Constraints of block   
   create_clock -name C1 -period 10 [get_ports C1]   
   set_input_delay 4 -clock C1 [get_ports P1]   
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clock, however at the chip level it is being driven by an  8ns  clock. The block may 
not have been designed to run with a faster clock and could result in the chip not 
to function properly. Similarly the input delay at chip level is more than input 
delay at the block level. This indicates inconsistency in input delays as the delay 
at the block port cannot be lower than that at the chip boundary, due to fi nite time 
of fl ight delay between chip level port  P1  and its connection at the block level  P1 .

      Hence in the bottom-up methodology, designers may need to tweak both the sub- 
chip and block level constraints to reach a convergence on meeting both the chip and 
block level timing requirements. As explained before, this is because the block level 
constraints are supposed to be created keeping in view its surroundings in the context 
of the chip where it will be integrated. However there is a possibility of an error, 
because constraints keep changing due to continuous give and take between various 
blocks. To circumvent this problem, designers these days use a hybrid of the bottom-
up and top-down fl ow, also referred to as the Bottom-up Top-down methodology.  

15.3     Bottom-Up  Top-Down  (Hybrid) Methodology 

 This methodology includes a context sensitive optimization of the block where 
 constraint for the lower level blocks is derived from the chip level constraints. The 
block is then timed using the traditional bottom-up fl ow. This methodology ensures 
that the block constraints consider the impact of the adjoining blocks which will 
be used during the chip integration. The interface level constraints for the block 
include information about the block, the arrival time at the input, the required time 
at the output and other parameters like capacitance, load, driving cell, etc. for accu-
rate context sensitive optimization. This methodology also ensures that delays are 
correctly split across blocks and in a balanced fashion. This process is called 
budgeting . 

 The timing budgeting step ensures the following:

    1.    Delays are allocated between blocks in order to meet top level timing require-
ments. This allocation could be based on either a fi xed proportion of clock 
period, or a ratio depending upon the number of logic levels.   

   2.    After the initial budgets are allocated to the blocks and blocks are synthesized, 
some blocks may have positive slack and some may have negative slack. The 
block constraints are refi ned and slack  is redistributed on the input and output 
delay of the blocks in such a way that positive slack paths don’t become negative 
and negative slack paths don’t become any worse.   

   3.    The process can be iterative, but incremental changes require only the effected 
blocks to be resynthesized and not the entire design.     

 If a block has more than one instance, then each instance may have to be synthesized 
with different set of constraints to model the context sensitive nature of  optimization. 
This process where each instance is treated differently is called uniquifi cation . 
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 Figure  15.4  shows an example of how constraints at the top level are budgeted to 
the blocks.

   In this example, the clock at the chip level has a period of  20ns . Let the input delay 
be  3ns  and output delay be  3ns  as well. The chip level constraints are shown below.

    ## Constraints of chip   
   create_clock -name C1 -period 20 [get_ports C1]   
   set_input_delay 3 -clock C1 [get_ports P1]   
   set_output_delay 3 -clock C1 [get_ports O1]     

 This means there is  17ns  (clock period – chip input delay) time available from the 
port  P1  at  chip level and Flop  F1  in block  B1 . Further the time from fl op  F1  in block 
 B1  to fl op  F1  in block  B3  is  20ns . Let us further assume that all the interconnect 
delays are  1ns . Also let the delay inside the feed-through block be  4ns . This means 
that the time available inside block  B3  from its port to the fl op  F1  is  11ns . Finally 
the path between fl op  F1  inside block  B3  and output  O1  at  chip level has a  17ns  
(clock period – chip output delay) time available. This will result in the block con-
straints as shown.

    ## Constraints of block B1 Post Budgeting   
   create_clock -name C1 -period 20 [get_ports C1]   
   set_input_delay 4 -clock C1 [get_ports P1]   
   set_output_delay 17 -clock C1 [get_ports O1]   

   ## Constraints of block B2 Post Budgeting   
   create_clock -name C1 -period 20 ## Virtual clock   
   set_input_delay 4 -clock C1 [get_ports P1]   
   set_output_delay 12 -clock C1 [get_ports O1]   

   ## Constraints of block B3 Post Budgeting   
   create_clock -name C1 -period 20 [get_ports C1]   
   set_input_delay 9 -clock C1 [get_ports P1]   
   set_output_delay 4 -clock C1 [get_ports O1]     
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20 ns 17 ns
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  Fig. 15.4    Budgeting chip constraints       
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 Now if allocation of these budgets causes any block to have negative slack, then 
delay from the block with positive slack can be redistributed. For example, if block  B1  
has  1ns  negative slack and  B2  has a  1ns  positive slack, the delay can be redistributed. 
This will result in the constraints for  B1  and  B2  to change. The user would need to re-
synthesize only  B1  and  B2 . Since  B3  is unaffected, no more change needs to happen.

    ## Constraints of block B1 Post Budgeting   
   create_clock -name C1 -period 20 [get_ports C1]   
   set_input_delay 4 -clock C1 [get_ports P1]   

   ## Constraints that changed   
   set_output_delay 16 -clock C1 [get_ports O1]   

   ## Constraints of block B2 Post Budgeting   
   create_clock -name C1 -period 20 ## Virtual clock   
   set_input_delay 5 -clock C1 [get_ports P1]       ## Constraints that changed   
   set_output_delay 12 -clock C1 [get_ports O1]   

   ## Constraints of block B3 Post Budgeting – Remains unchanged   
   create_clock -name C1 -period 20 [get_ports C1]   
   set_input_delay 9 -clock C1 [get_ports P1]   
   set_output_delay 4 -clock C1 [get_ports O1]     

 The hybrid approach is advantageous because it enables faster convergence at 
the block level with respect to chip level, thereby reducing iterations during the 
integration phase. 

 All this analysis is for a single mode of operation. In reality a chip has many 
modes of operation and user would end up doing this kind of analysis for each 
mode, which could be tedious. Let us now try to understand how you can manage 
constraints, when you are dealing with multiple modes.  

15.4     Multimode Merge 

 As described in Chap.   14     a chip can have multiple operational modes  like functional 
mode with fast clock (say for high-end graphics application), functional mode with 
slow clock (for normal operation), a test mode, a sleep mode for power savings and 
in some cases a debug mode to run diagnostics. STA is typically performed for dif-
ferent PVT (Process, Voltage, and Temperature) corners  also. These could be Worst 
Case (Slow process, Low Voltage, and High Temperature), Best Case (Fast process, 
High Voltage, Low Temperature), Typical Case (Typical process, Nominal Voltage, 
and Nominal Temperature). Just between the operational modes and the PVT cor-
ners, a single chip might need to be analyzed for 18 (6 modes × 3 corners) different 
modes. When you do signal integrity analysis, you would need to consider the impact 
of different parasitic interconnect corners, which could add the third dimension to 
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the number of modes. Thus trying to run a design on all these modes to meet  timing 
and on each one of them is a giant task by itself and to reach convergence in a way 
that all modes meet timing is extremely diffi cult and painfully iterative, as explained 
in Sect.   14.6.1    . This kind of analysis is generally referred to as Multimode-multi-
corner  (abbreviated as MMMC) analysis. 

 We saw in the previous chapter that one of the challenges of MMMC analysis 
was that incrementally modifying constraints of a mode may cause unwanted tim-
ing failure on a mode on which timing may have been closed in the previous itera-
tion. STA and implementation tools today provide MMMC support, wherein they 
are able to simultaneously consume the constraints for all modes and then perform 
a unifi ed optimization. However this can be very runtime intensive and designers 
may not get a meaningful result in a reasonable time. Besides, most tools do not 
dump out the “envelope” constraints  – the effective constraints that they were con-
sidering, which cover all the individual modes/corners. So, designers are not able to 
review whether the analysis has really considered all corners and modes. Hence 
often, designers would constrain their blocks by merging all the modes to create a 
super-mode constraint fi le. 

 Mode merge  is the technique in which constraints of different operational modes 
are combined with the sole aim of consolidating into a single mode. This single 
constraint is a hypothetical mode that models the union of all modes. Typically such 
a mode would facilitate faster timing closure as it models the constraints in a rather 
pessimistic fashion. Instead of trying to painfully meet timing for each mode indi-
vidually, the design can meet timing in the merged mode thereby saving implemen-
tation cycles. 

 Typically in a hierarchical fl ow, the designer tries to create merged mode con-
straint for the block design. However the chip level constraints are created for each 
mode and MMMC analysis is done at signoff. Though there is nothing that prevents 
any deviation from this, it is generally accepted practice today in the industry based 
on what the tools support. Of course, this can change in future. 

 Most designers do merge of multiple modes based on the understanding of the 
constraints. They typically adhere to the following guidelines while merging:

•    Merging must not under-constrain any path or object any more than in any of the 
individual modes. Effectively merged constraints should not be optimistic than 
any of the individual modes.  

•   Merged constraints must be easily understood by designers.  
•   Merged constraints should not result in too many commands or expand to too many 

paths as it can overwhelm the implementation tools. For example, a brute force 
way of merging would be to enumerate every path and constraining it in a way that 
it would have worked. But this will result in over hundred thousand and in some 
cases over million paths, which can be beyond the tool’s ability to handle. Further 
this volume of constraints may not be maintainable or reusable by designers.  

•   Theoretically you can merge all modes into a single mode, but that is generally 
not done. Merging is limited to a smaller set so as to keep a balance between 
excessive pessimism, readability, not needing too many exceptions etc.    
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 The following examples illustrate a few scenarios on how to merge multiple 
modes. Once the concept is understood, it should be possible for a designer to apply 
these/similar principles and merge the constraints for various modes. 

15.4.1     Picking Pessimistic Clock 

 Let us consider the example in Fig.  15.5 . In this example, in mode 1, the clock has 
a period of  10ns . In mode 2, the clock has a period of  5ns . In the merged mode, we 
could pick the clock with  5ns  period so as to not under-constrain any path more than 
in the individual modes.

     ## Mode1   
   create_clock -name C1 -period 10 [get_ports C1]   

   ## Mode2   
   create_clock -name C1 -period 5 [get_ports C1]   

   ## Merged_Mode   
   create_clock -name C1 -period 5 [get_ports C1]      

15.4.2     Mutually Exclusive Clocks  

 Let us consider the example in Fig.  15.6  which shows a clock mux structure with 
confl icting constraints in two different modes.

     ## Mode1   
   create_clock -name C1 -period 10 [get_ports C1]   
   set_case_analysis 0 mux1/S   

   ## Mode2   
   create_clock -name C2 -period 40 [get_ports C2]   
   set_case_analysis 1 mux1/S     

 In this example, in mode 1, the clock  C1  has a period of  10ns , and no clock is 
defi ned for  C2  and select line of the mux is set to  0 . In mode 2, no clock is set on 
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F1

  Fig. 15.5    Picking pessimistic 
clock       
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 C1 , the clock  C2  has a period of  40ns  and the select line of the mux is set to  1 . While 
merging, since the  set_case_analysis   on the select lines are confl icting, it needs to 
be dropped. Both clocks  C1  and  C2  will be retained in the merged mode, since fl ops 
 F1  and  F2  need to be timed with both clocks to model both modes. However any 
interaction between  C1  and  C2  (anywhere else in the design) will have to be nulli-
fi ed. This can be achieved by defi ning a  set_clock_group -logically_exclusive   
between  C1  and  C2 .

    ## Merged_Mode   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 40 [get_ports C2]   
   set_clock_group -logically_exclusive -group C1 \   
   -group C2     

 While specifying the logically exclusive relationship, it should be ensured that 
these clocks are not interacting anywhere other than the fanout cone of the mux. The 
following section shows how to apply the constraints correctly, if these clocks also 
interact somewhere other than the fanout cone of the mux.  

15.4.3     Partially Exclusive Clocks  

 Let us consider the example in Fig.  15.7 .

     ## Mode 1   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 20 [get_ports C2]   
   set_case_analysis 0 mux1/S   

   ## Mode 2   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 20 [get_ports C2]   
   set_case_analysis 1 mux1/S     

 In this example, in mode 1, the clock  C1  has a period of  10ns  and clock  C2  has 
a period of  20ns . The select line of the mux is set to  0 . However clocks  C1  and  C2  

C2

C1
F1 F2mux1
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  Fig. 15.6    Mutually exclusive 
clocks       
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do interact for fl ops  F3  and  F4  and are only partially exclusive. In mode 2, clocks 
have the same period but the select line of the mux is set to  1 . Now in merged mode 
the select line cannot be set to a constant value. Thus, both clocks can pass through 
the mux. The interaction between  C1  and  C2  need not be timed for fl ops  F1  and  F2 , 
but still needs to be timed for  F3  and  F4 . So, combinational generated clocks  need 
to be defi ned at the output of mux and these generated clocks would need to be 
physically exclusive as well. The merged mode constraint would look like:

    ## Merged_Mode   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 20 [get_ports C2]   

   create_generated_clock -name GC1 -combinational \   
   -source [get_pins mux1/A] [get_pins mux1/Z]   
   create_generated_clock -name GC2 -combinational \   
   -source [get_pins mux1/B] [get_pins mux1/Z] -add   

   set_clock_group -physically_exclusive -group GC1 \   
   -group {GC2}     

 In summary, in the event of a confl ict, constraints may have to be dropped or both 
constraints have to be considered and additional constraints may have to be added 
to model any exclusivity of paths that may have been present in the individual mode. 

 Sometimes, for simplifi cation, additional pessimism can be introduced. However, 
in today’s designs which try to exploit the last bit of performance, it is not desirable 
to add too much pessimism. Also any point of time, the merged mode cannot be any 
more optimistic than the original mode.  
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  Fig. 15.7    Partially exclusive 
clocks       
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15.4.4     Merging Functional and Test Mode 

 Let us consider the example in Fig.  15.8  where a scan  fl op has been used to hookup 
the design and the scan chain

     ## Mode1   
   create_clock -name C1 -period 10 [get_ports C1]   
   set_case_analysis 0 [get_ports TE]   

   ## Mode2   
   create_clock -name C1 -period 40 [get_ports C1]   
   set_case_analysis 1 [get_ports TE]     

 In this example in functional mode the test enable pin ( TE ) is set to  0  and the 
clock has a period of  10ns . In the test mode the test enable pin is set to  1  and the 
clock has a period of  40ns . In the merged mode, both the clocks would have to be 
considered. However the  set_case_analysis  on the test enable pin would have to be 
dropped. In the merged mode this will enable paths from the  10ns  clock to all reg-
isters which are hooked to the Scan input pin ( SI ). Hence a false path would need to 
be defi ned from  10ns  clock to all the scan input pins ( SI ) for all fl ops in the design.

    ## Merged_Mode   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 40 [get_ports C1] -add   
   set_clock_group -physically_exclusive -group C1 \   
   -group C2   
   set_false_path -from C1 -to F*/SI     

 Let us understand the need to defi ne  C2 , even though, the more restrictive clock 
( C1 ) has already been created. If  C2  was not defi ned then because of the false path 
the paths to  SI  are not getting timed. However they still need to be timed for the  40ns  
clock. So, there is a need to defi ne the additional clock  C2  on the same port. This 
also requires the clock group to be defi ned between  C1  and  C2 . 

 Alternately, instead of defi ning the clock C2, we could have used:

set_multicycle_path -to F*/SI -setup 4
set_multicycle_path -to F*/SI -hold 3 
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  Fig. 15.8    Design with scan chain hooked up       
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 If you observe we have used a 4 cycle multi cycle path, since period of C2 is 
4 times period of C1.

In the examples chosen, the clock names have been kept consistent; i.e., for  similar 
clocks on similar objects, they have been given the same name in different modes. 
However, this is not a requirement. Often, the clock names could be different. Or, 
clocks with same name in two different modes could be having different character-
istics or could be defi ned on different objects. Thus, all merge-related analysis and 
decisions should be based on the characteristics of the clocks, rather than on their 
textual names.  

15.4.5     Merging I/O Delays for Same Clock 

 Let us see some examples of merging I/O delays.

    ## Mode1   
   create_clock -name C1 -period 10 [get_ports C1]   
   set_input_delay    -min 0.5 -clock C1 [get_ports P1]   
   set_input_delay -max 1.5 -clock C1 [get_ports P1]   

   ## Mode2   
   create_clock -name C1 -period 10 [get_ports C1]   
   set_input_delay -min 0.7 -clock C1 [get_ports P1]   
   set_input_delay -max 1.7 -clock C1 [get_ports P1]     

 In merged mode, the clocks would be merged according to the examples shown 
in aforementioned sections. In this example for sake of simplicity, let us assume the 
clocks are the same. To merge the input delays, pick the minimum of the delays 
specifi ed using the  -min  option and the maximum of the delays specifi ed using the 
 -max  option. The merged mode SDC would look like:

    ## Merged Mode   
   create_clock -name C1 -period 10 [get_ports C1]   
   set_input_delay -min 0.5 -clock C1 [get_ports P1]   
   set_input_delay -max 1.7 -clock C1 [get_ports P1]     

 The same principle also applies to output delays.  

15.4.6     Merging I/O Delays with Different Clocks 

 Let us take a variant of the example above. Let the clocks used to constraint the I/O 
delays be different in the two modes

    ## Mode1   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 20 [get_ports C2]   
   set_input_delay -min 0.5 -clock C1 [get_ports P1]   
   set_input_delay -max 1.5 -clock C1 [get_ports P1]   
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   ## Mode 2   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 20 [get_ports C2]   
   set_input_delay -min 0.7 -clock C2 [get_ports P1]   
   set_input_delay -max 1.7 -clock C2 [get_ports P1]     

 In merged mode, the input delay would need to be modeled with respect to both 
clocks and clock group would be required between the clocks. Since input delays 
are now defi ned with respect to two clocks the need for  -add_delay  option is required 
in the  set_input_delay  constraint.

    ## Merged Mode   
   create_clock -name C1 -period 10 [get_ports C1]   
   create_clock -name C2 -period 20 [get_ports C2]   
   set_input_delay -min 0.5 -clock C1 [get_ports P1]   
   set_input_delay -max 1.5 -clock C1 [get_ports P1]   
   set_input_delay -min 0.7 -clock C2 [get_ports P1] \   
   -add_delay   
   set_input_delay -max 1.7 -clock C2 [get_ports P1] \   
   -add_delay   
   set_clock_group -logically_exclusive -group {C1} \   
   -group {C2}     

 The same principle also applies to output delays.   

15.5     Challenges in Managing the Constraints 

 Irrespective of whether designers use Bottom-up or Top-down methodology with 
one mode or multiple modes, they face challenges in managing constraints. These 
include:

    1.    Blocks may meet timing when analyzed standalone, but when integrated at the 
chip level may fail timing. Typically, this happens if the block level constraints 
are not consistent with the constraints of other blocks, or with the top level con-
straints. For example, a block was signed off with a  10ns  clock, but at the chip 
level is being driven by  8ns  clock.   

   2.    It may not be always possible to simply update the hierarchical name of the 
object to get the updated correct constraints. For example, a  create_clock  at 
block level may need to become a generated clock at chip level, if it is being 
driven by another block.   

   3.    Critical paths which span block boundaries at chip level may not appear to be 
critical at block level. Typically, this happens if the allocation of delay across 
blocks and top level glue logic is not done correctly. For example, let us say, a 
path of  10ns  is spanning across three blocks. Each block is budgeted certain 
amount within this  10ns . For one of the blocks, the number of logic levels is too 
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low compared to the time being allocated to it. Thus, this block might not see this 
path as critical; while, in reality, this forms a segment of the critical path; any 
saving here would be useful at the top level.   

   4.    Optimization done on a design may not mimic the constraints any more. Let us 
consider the example in Fig.  15.9 . There is a false path set from the  F1  through 
buffer  buf1 , this means path from  F1 → F2 ,  F1 → F3  are false paths.

       Now if design is optimized in a way the buffers are resized such that the same 
buffer drive all the fl ops, the equivalent design would look like Fig.  15.10 .

   However if the original constraints are not modifi ed, then this optimization will 
result in additional paths ( F1 → F4 ,  F1 → F5 ) to be incorrectly constrained as false 
path. That could be a potential chip killer.

    5.    As described in Chap.   14    , multimode analysis challenges include timing closure 
iterations and missed timing paths.   

   6.    Mode merge sounds theoretically a strong concept but its actual success in the 
chip design has been limited because of its inherent limitation on what can be 
merged. In an attempt to remove confl icts, the addition of new constraints may 
cause unwanted optimization. Though not clear, mode merge may be leaving 
chip performance and area on that table, as it is a speed vs. accuracy tradeoff.    

  As of now, there are no algorithmic ways to merge modes for all kinds of sce-
narios. The examples shown above provide the general concept and cover most of 
the common scenarios encountered.  

buf1

buf2

F1 F2

F3

F4

F5

set_false_path -from F1 -through buf1

     Fig. 15.9       Design with false path before optimization       
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15.6     Conclusion 

 In summary, merging and propagating the constraints in your design fl ow is a tough 
problem. Designers use a combination of internal scripts, methodology; comple-
mented by capabilities of commercially available tools to meet their current needs. 
There is active research and development going on in this area. As of now, most of 
these manipulations and merging are done based on individual experience.    

buf1

F1 F2

F3

F4

F5

set_false_path -from F1 -through buf1

Path F1 F4, F1 F5  also become false

  Fig. 15.10    Design after optimization       
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                    In this chapter, we will discuss some additional SDC commands and concepts. 

16.1     Operating Condition 

 Delay  of an element depends on several factors. The most important ones being

 –    Load  on the element  
 –   Input slew  time  
 –   Process   
 –   Voltage   
 –   Temperature     

 Out of the aforementioned factors, load and input slew are either computed for 
each element based on the design connectivity and properties available in the tech-
nology library or given as constraints, as explained in Chap.   10    . 

 The information related to other three factors (Process, Voltage, and Temperature) 
is given through Operating Condition . 

 Conventional thoughts say that with higher temperature, usually the delay 
increases. Though, with current technology nodes, temperature inversion effects 
are also known to exist, where sometimes lower temperatures could have higher 
delay. With higher voltage, usually the delay decreases. Similarly,  P -transistors  
with higher strength will cause transitions to  1  to be made faster; and  N -transistors  
with higher strength will cause transitions to  0  to be made faster. 

 Temperatures can range from an extremely low value to a very high value. 
Voltage usually has a much smaller range. Process could range from Strong  P  or  N  
to a Weak  P  or  N . Usually, processes are characterized using different terminolo-
gies. Some of the popular terminologies include

    Chapter 16   
 Miscellaneous SDC Commands 
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 –     Min/ Typ/Max : Indicating transistors with high strengths  (i.e., min delay), moder-
ate strengths or lowest strengths (i.e., max delay).  

 –    Slow/Typ/Fast : Indicating transistors with weak strengths (hence, slow to drive), 
moderate strengths, or higher strengths (hence, fast to drive).  

 –    SNSP/SNWP/WNWP,  etc.: Indicating strengths of P and N transistors individu-
ally, e.g.,  SNWP  means Strong  N , Weak  P . Thus, transitions to  0  will be faster, 
but transitions to  1  will be slower.    

 Between temperature, voltage, and process corners, there can be many variations 
or combinations. A user could explicitly specify the values of temperature, voltage, 
and process corner, under which analysis needs to be performed. SDC itself does 
not provide a set of commands to specify these parameters. Specifi c tools would 
have their own set of commands. 

 However, a more common practice is to defi ne a set of operating conditions. 
Each operating condition is a combination of temperature, voltage, and process. 

 Different libraries could be using different naming conventions for operating con-
ditions. One of the more common naming conventions used is  <speed><application> , 
where

    speed  is one of

 –     Best Case  : indicates fast conditions, such as low temperature, high voltage, 
strong transistors  

 –    Typical Case  : average conditions  
 –    Worst Case  : indicates slow conditions, such as high temperature, low voltage, 

weak transistors     

   Application  is one of

 –     Commercial  : very low range swing  
 –    Industrial  : slightly higher range swing  
 –    Military  : extremely high range swing       

 For example,  BCMIL  (Best Case Military) could be an operating condition and 
 WCIND  (Worst Case Industrial) could be another operating condition. For a set of 
operating conditions, using the above naming convention, the expected order in 
terms of fastest to slowest conditions would be

 –     BCMIL   
 –    BCIND   
 –    BCCOM   
 –    TYP   
 –    WCCOM   
 –    WCIND   
 –    WCMIL     

 If a user specifi es an operating condition, he is effectively specifying a combina-
tion of temperature, voltage, and process corner. So, the timing analysis would be 
done under the specifi ed set of environmental conditions. 
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16.1.1     Multiple Analysis Conditions 

 Sometimes, a user might want to perform different kinds of analysis under different 
conditions. Some of the conditions used more commonly for analysis are

 –    Slow  (Worst Case /Max ): All the paths will be assumed to have slowest delays.  
 –   Fast  (Best Case /Min ): All the paths will be assumed to have fastest delays.  
 –   Slow for Setup and Fast for Hold analysis: During setup analysis, all the paths 

will be considered to have slowest delays; while during hold analysis, all the 
paths will be considered to have fastest delays.  

 –   On Chip Variation : This considers that there will be variations in operating con-
ditions within the chip itself. Thus, different parts of the device will be using 
different kinds of delays. This is explained in Sect.   3.8     of the book.    

 All timing analysis tools might not necessarily support each of these analysis 
conditions. Or, some tools might even call these conditions by a different name. You 
might need to understand what all analysis modes are supported by your tool, and 
decide which one is most suited for your analysis.  

16.1.2     set_operating_conditions 

 The SDC command to specify the operating conditions and the type of analysis to 
be done is

    set_operating_conditions   [ -library  lib_name]  
   [ -analysis_type  analysis_type]  
   [ -max  max_condition]  
   [ -min  min_condition]  
   [ -max_library  max_lib]  
   [ -min_library  min_lib]  
   [ -object_list  objects]  
   [condition]    

 Analysis_type indicates the type of analysis that should be performed, whether 
to use slowest (max) or fastest (min) or On Chip Variation-based delay conditions. 

 Various Condition options are used to specify the operating point that should be 
considered for that condition, e.g.,  max_condition  means the operating point that 
should be considered for slowest analysis. If the analysis mode is chosen to be a 
single condition (e.g., only slowest for all paths or only fastest for all paths), then 
just one operating point specifi cation is suffi cient. 

 The various library options are used to specify the libraries where the correspond-
ing operating conditions are specifi ed (in terms of temperature, voltage, and process). 

 Objects can be used to specify the design objects for which these operating 
 conditions are to be used. In general, the operating condition is set for the whole 
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design; hence, this is rarely specifi ed. Earlier, this option was used to specify 
 specifi c voltage values, if parts of the design were operating at a different 
v oltage. However, now, the same purpose can be achieved through  set_voltage   
command of SDC. 

 For example, the command:  set_operating_conditions -analysis_type min_max 
-max WCMIL -min BCIND -library L1  says

•    Timing Analysis should be done under  min_max  condition, assuming, the tool 
has  min_max  as a valid analysis type. Lets say, in the given tool, the  min_max  
analysis means, setup using Max conditions and hold using Min conditions.  

•   For Min conditions, use the operating condition as specifi ed by BCIND.  
•   For Max conditions, use the operating condition as specifi ed by WCMIL.  
•   The defi nition for the two operating conditions (BCIND and WCMIL) needs to 

be picked from the library  L1 .     

16.1.3     Derating 

 Temperature, voltage, etc., are continuous variables. It is not possible to character-
ize delays for a library for all combinations of these variables. It is possible that the 
characterization data is not available for the operating condition chosen. In such 
cases, derating  is used to obtain the values at the operating condition. 

 Let us say, values are measured at two different operating conditions where 
temperature is the only characteristic which is different among the two operat-
ing conditions. By knowing how much does the delay change due to a given 
change in temperature, it is possible to fi nd out the scaling factor for delay as a 
function of temperature. This change in delay per unit change in temperature is 
called derating factor . If the delay value at a specifi c temperature is known, the 
delay at any nearby temperature can be obtained using the derating factor. This 
concept is called derating . The example provided is for delay derating due to 
temperature. 

 Thus, if the characterization data is not available for the operating point of inter-
est, user can use the characterization data available for the nearest operating point 
and derate the values. The SDC command for specifying the derating is

    set_timing_derate   [ -cell_delay ]  
   [ -cell_check ]  
   [ -net_delay ]  
   [ -data ]  
   [ -clock ]  
   [- early ] [ -late ]  
   [ -rise ] [ -fall ]  
   derate_value  
   [object_list]    
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 The derate_value is used to multiply the characterization data. Usually delay 
decreases for voltage increase. If the operating condition has a higher voltage com-
pared to the characterization voltage, the derate_value would be less than 1; and so on. 

 The various options specify, whether the specifi ed derate_value has to be used for

•     -cell_delay  : Cell delay  
•    -cell_check  : Setup/Hold values for a cell  
•    -net_delay  : Net delay   
•    -data  : For data path   
•    -clock  : For clock path   
•    -early  : For early  (hold ) analysis  
•    -late  : For late  (setup ) analysis  
•    -rise  : For rise transitions   
•    -fall  : For fall transitions    

 As can be seen, the command provides a very fi ne granular control over what do 
you want to derate and by how much. 

 However, you should be very careful, before derating any library data. Derating 
has to be applied based on characterization data. Usually, library data contains 
appropriate derating factors. You should be very sure if you want to override the 
derating factors provided in the library . 

 By specifying different derate_value for clock and data, the clock and data path 
can be given different derating factors. This is often used to mimic the on chip varia-
tion  effect. 

 Earlier, max delay would happen at highest temperature, lowest voltage, and 
slowest process. However, due to temperature inversion effect, sometimes, highest 
temperature might not necessarily mean max delay. Also, the data path at max delay 
may not necessarily be the worst case scenario. Though conventionally, a lot of 
 literature uses the term “worst case” for max delay.   

16.2     Units 

 You might have noticed that in most of the examples mentioned for the SDC com-
mands, the numbers do not have a unit. In the textual explanation of the examples 
or commands, we have used  ns , only for the sake of convenience. 

 Units  are picked up from the library being used. SDC does not have the concept 
of units being associated with each command. It allows specifying units in a 
 command by itself. The SDC command for specifying units is

    set_units    -capacitance  cap_unit  
   -resistance  res_unit  
   -time  time_unit  
   -voltage  voltage_unit  
   -current  current_unit  
   -power  power_unit    
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 This command can be used to specify the units for capacitance (e.g., used in  set_
load  ), resistance (e.g., used in  set_resistance  ), time (e.g., used in  set_input_delay ), 
voltage (e.g., used in  set_voltage  ), current  (to derive units for power – in conjunc-
tion with unit for voltage), and power  (e.g., used in power optimization related 
commands). 

 The standard itself does not specify how to interpret the  set_units  command. At 
the time of writing the book, for most tools, this command does not change the unit. 
It only acts as a documentation of user’s intent – as to what unit did he intend when 
specifying all the numbers in the SDC commands. Tools would check these units 
against the units that they are using (from the library), and fl ag if there is a mismatch 
in units being used by the tool (from library) and being used by the user (specifi ed 
with  set_units ).  

16.3     Hierarchy Separator 

 Most electronic design languages allow a user to refer to a hierarchical object, by 
providing the concept of a hierarchical name. In all such languages, a change in 
hierarchical boundary is denoted by a specifi c character, e.g., in Verilog, “ /  ” denotes 
a hierarchical boundary (popularly called, hierarchy delimiter  or hierarchy separa-
tor ). Sometimes, a user might want to put this same delimiter character as a part of 
the name itself. In such situations, the languages allow for an escape character , so 
that the hierarchy delimiter character might no longer be treated as a hierarchy 
delimiter, rather it should get treated as an ordinary character, which is a part of the 
name. Again, taking the example of Verilog , the escape character is “  \ ”. Thus, in 
Verilog, “  a/b  ” means object “ b ” within instance “ a ”. However, “  \ a/b  ” in Verilog 
means an object, whose name contains the character “ / ”. 

 SDC does not provide the concept of an escape character. A reference to “ a /b ” 
in SDC could mean either of

•    “ b  within  a ” (i.e., “  a /b  ” of Verilog) or  
•   “ / ” being part of the name itself (i.e., “  \ a/b  ” of Verilog).    

 This could result in ambiguous identifi cation of an object. In order to remove this 
ambiguity, SDC allows a user to specify his own hierarchy separator. 

16.3.1     set_hierarchy_separator 

 The SDC command for specifying hierarchy separator is

    set_hierarchy_separator   separator    

 You should choose your hierarchy separator as that character, which is not used 
in the actual naming of any object in your design. 
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 Let us say, your design does not use any escaped naming. In that case, “ / ” is a 
good hierarchy separator . When SDC refers to “  a/b  ”, there is no ambiguity; it is 
clear that this mean “ b  within  a ”. On the other hand, let us say, your design has 
several objects, where “ / ” is used as a part of the escaped name itself. Using this 
same character as a hierarchy separator can cause ambiguity – as mentioned in the 
previous section. In such situations, the hierarchy separator might be changed to 
another character (say:  @ ) using the following command:

    set_hierarchy_separator @     

 With the hierarchy separator being set at  @ , the above ambiguity is resolved. 
“  a/b  ” only means the design object “  \ a/b  ”, where “ /  ” is part of the name. It cannot 
match “ b  within  a ”. If we want to refer to “ b  within  a ”, we need to specify  a@b.   

16.3.2     -hsc 

 Besides setting a global hierarchy separator, SDC also allows to set a hierarchy 
separator in a very local context, where the scope of the specifi ed separator is  limited 
only to objects specifi ed within a specifi c command. 

 This capability is useful in the following two situations: 
 Let us say, your design uses too many escaped names, with all kinds of charac-

ters in them. So, irrespective of which character do you choose for hierarchy separa-
tor in SDC, some object in your design might already be using that same character. 
In such situations, you might want to use a different hierarchy separator at different 
places in the SDC. 

 Usually, readability is an important aspect of an SDC fi le. As seen in the previous 
section, if we have used “ /  ” as part of a name, we have to choose a different hierarchy 
separator (say:  @  – as shown as an example in the previous section). Because of this, 
all the design object references might appear funny (using “ @ ”, rather than “ /  ”, which 
a user might be more used to). Let us say that there are a very few objects which have 
such names which may cause ambiguity. In such a case, we can decide to use a differ-
ent hierarchy separator – only at commands, where there are chances of ambiguity. 

 The way to specify a hierarchy separator with a local scope is to add the 
option  -hsc  . 

 The following command could mean the start point to be “ b  within  a ” or “  \ a/b   ”:

    set_false_path -from [get_pins a/b]     

 However, the following command only means the pin “ \  a/b  ”, where “ / ” is part 
of the name itself:

    set_false_path -from [get_pins a/b -hsc “@”]     

 If hierarchy separator has to be made different for a lot of commands, it is better 
to use the  set_hierarchy_separator  command, which has a global scope. On the 
other hand,  -hsc  option might be preferred, if the hierarchy separator has to be 
changed for only a few objects.   
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16.4     Scope of Design 

 The scope of working design is specifi ed through SDC command  current_design  . 
All objects referred in subsequent commands are with respect to the  current_design . 
The  current_design  is the effective “top” of the design. Anything outside the hierar-
chy of  current_design  is not accessible. Thus,  current_design  does not have any 
instance name for itself. 

 It should be noted that even though, these commands are part of SDC, but several 
tools expect these commands to be specifi ed in their shell or project settings, rather 
than being read through SDC fi le itself. 

16.4.1     current_instance 

 The scope can be changed to an instance within the  current_design . The SDC com-
mand to limit the scope to a specifi c instance is

    current_instance   [instance]    

 When the scope is changed to a specifi c instance, all search and query is limited 
to within the specifi c instance. So, search and access commands can be specifi ed 
using names relative to the  current_instance . However, names returned are still 
always with respect to the current_design. 

 Let us consider the design shown in Fig.  16.1 .
   If we search for  U2  (through:  get_cells U2 ), we will get the topmost  U2 , instanti-

ated directly under the “top”. 
 However, if we want to get  U2  under  U1 , there are two ways of getting access to it.

    get_cells U1/U2   

  OR  

   current_instance U1   
   get_cells U2     

U1

U2U2

  Fig. 16.1    Object reference 
through current_instance       
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 In the second example, the search for  U2  is made only inside  U1 , and it returns 
back  U1/U2 . Notice that though the search was limited to be only within  U1 , the 
return name is with respect to the  current_design  , rather than the  current_instance . 

 Setting up  current_instance   is useful, when you want to limit the scope of your 
search to within a specifi c portion of the hierarchy. Search based on  current_instance  
might be more effi cient, compared to searching through the entire design and then 
using the TCL fi lters  to select only those objects whose initial portion matches the 
desired hierarchy.   

16.5     Wire Load Models 

 We’ve seen earlier that delay depends on capacitive load. Nets also provide a signifi -
cant capacitive load. The net capacitance in turn is dependent on the length of the 
specifi c net. Before routing is done, the actual net lengths, etc., are not known. 
During pre-route stage, tools estimate the net lengths, and use this estimated lengths 
to compute the wire-capacitance. 

 Wire load models  are used to provide a statistical estimate of the wire-lengths. 
Usually, wire-lengths depend on

•    Size of the design: A larger design will typically have longer wires, as they have 
to span across larger size.  

•   Fanout: A higher fanout will typically mean longer wire-lengths, as more pins 
need to be connected.    

 Wire length estimates (hence, wire load models) are useful only for pre-layout  
stage. Once routing is done, the tools have access to the actual net length and those 
get used, rather than the wire load models. 

 The wire load models can be set through the SDC command:

    set_wire_load_model    -name  model_name  
   [ -library  lib_name]  
   [ -min ] [ -max ]  
   [object_list]    

 The specifi ed model name is searched for in the given library.  -min  and  -max  are 
used to specify, whether the specifi c model is to be used for min conditions or for 
max conditions. Typically, users don’t change wire load models for analysis condi-
tions.  Object_list  is also not used very often. A more popular mechanism is to 
change the scope of the design and then apply the wire load model on that scope, 
without having to specify the object_list explicitly. 

 So,  set_wire_load_model -name WIRE_LOAD_70X70  indicates that for the 
given scope, the tool should use a  wire_load_model  named  WIRE_LOAD_70X70 . 
The actual model would be defi ned in the library loaded into the analysis tool. 
Usually, the model provides wire length estimates as a function of fanout. 
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 In most cases, the user would provide a wire load model based on the size of the 
design. For example:

    current_design Top   
   set_wire_load_model -name WIRE_LOAD_100X100   

   current_instance Next_level   
   set_wire_load_model -name WIRE_LOAD_70X70   

   current_instance Lowest_level   
   set_wire_load_model -name WIRE_LOAD_40X40     

 Hence, most tools provide a mechanism to automatically assign the  wire_load_
model  appropriate for a given size, rather than the user having to specify different 
wire load models for different portions of the design. 

16.5.1     Minimal Size for Wire Load 

 Let us say, that you have set the tool for automatic assignment of wire load models. 
However, you might want that for the purpose of wire load model selection, the 
block size should always be considered to be larger than some specifi ed value. This 
can be specifi ed through the SDC command:

    set_wire_load_min_block_size   size    

 For any block smaller than the specifi ed size, the wire load model would be 
assigned, as if the block had an area of the specifi ed size. Say, you want that the 
minimum size that should be considered is  30 , so you can specify

    set_wire_load_min_block_size 30     

 If any block has an area smaller than  30 , the area would still be considered as  30  
for wire-load estimation. For blocks larger than  30 , their actual area would be used.  

16.5.2     Wire Load Mode 

 Let us consider the wire  n1  in Fig.  16.2 .
   In order to estimate the wire-length, which instance’s area should we consider? 

Should it be for  M2 , from which the net originates? Or, should it be  M3  or  M4  into 
which the net feeds in? Or, should it be  M1  within which most of the net lies? Or, 
should it be  M0 , which fully encompasses the net? Or, should it be the top level? 

 This selection can be made through the SDC command:

    set_wire_load_mode   mode_name    

16 Miscellaneous SDC Commands



203

 The mode_name specifi ed should be one of the modes that your analysis tool 
supports. Some of the more commonly supported modes are the following:

•    Use the top level for the whole design – including for nets within the 
sub-hierarchies.  

•   Use the smallest module which fully encloses the whole net.  
•   Use different instances for different segments of the net. For example, different 

models (appropriate for the respective sizes) to compute the segment lengths for 
portions within  M2 ,  M3 ,  M1 ,  M4,  and  M0 . Finally, add up the lengths in each 
segment to decide on the total length.    

 You have to fi nd the modes that your tool supports and identify which of these 
modes you prefer for your analysis.  

16.5.3     Wire Load Selection Group 

 Many libraries defi ne collection of wire loads which may be applicable to different 
cells based on the area. Let us consider an example extract from a Synopsys .lib fi le

    wire_load_selection (WL_SELECTION_GRP_1) {   
   wire_load_from_area (0, 4000, “WIRE_LOAD_20X20”);   
   wire_load_from_area (4000, 49000, “WIRE_LOAD_70X70”);   
   wire_load_from_area (49000, 100000, “WIRE_LOAD_100x100”);   

   }     

 A library may contain many such selection groups. The selection group of inter-
est can be assigned using the  set_wire_load_selection_group   command. The syntax 
for this command is

    set_wire_load_selection_group  [ -library  lib_name]  
   [- min ] [- max ]  
   group_name  
   [object_list]    

M2 M3

M4

n1

M1
M0

Top  Fig. 16.2    Wire spanning 
across multiple hierarchies       
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 The  -min and -max  command imply the selection group that needs to be picked 
for minimum and maximum conditions. The  -library  indicates the name of the 
library from where the collection group specifi ed using “group_name” needs to be 
picked up. Generally the collection group applies to the  current_instance  . However 
the user can apply the collection group to a specifi c hierarchical cell, though this 
option is not used that often.   

16.6      Area Constraints 

 These constraints are not useful for timing analysis. However, these are part of 
SDC, because they impact implementation tools like synthesis, in the sense that 
they impact their ability to optimize on area . 

 Let us consider a situation, where your top level design is made of various IPs. 
These IPs are generic IPs which provide customization, based on the values on 
some of their input pins. Let us say, in your specifi c design, some of these pins are 
to be hard-wired to a specifi c value (say:  0 ). In this case, synthesis tool should be 
allowed to optimize the logic driven by this pin – so that it is good enough for logic 
 0  only. 

 Let us further say, you are using a bottom-up methodology, wherein this IP is 
being synthesized by itself. Since the connections to this IP are not visible at this 
stage, synthesis tool does not know, that there are pins of this IP which will be hard- 
wired during instantiations to logic  0 . This information can be conveyed to the tool, 
through the SDC command:

    set_logic_zero   port_list    

 Synthesis tools would assume the specifi ed ports to be hard-wired to  0  and will 
optimize the logic inside the IP – in order to reduce area . Similarly, SDC allows

    set_logic_one   port_list   

to convey that the specifi ed ports are to be considered as hard-wired to  1 .

    set_logic_dc    port_list   

to convey that the specifi ed ports are dont care . The logic driven by these ports 
can be reduced signifi cantly by the synthesis tools. 

 It should be noted that these commands are different from  set_case_analysis   
discussed in Chap.   14    .  set_case_analysis  sets the logic to a specifi c value only for a 
specifi c analysis. It is still understood that the opposite logic value will also be a 
valid value on that object, and functionality cannot be optimized based on   set_case_
analysis .  It effects only timing portion of the analysis, while  set_logic  commands 
impact the functionality itself. 

 Synthesis tools can also be provided an area target. The SDC command for spec-
ifying an area target is

    set_max_area   area_value    
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 The synthesis tool will try to realize the design in a manner such that the area 
fi nally required is lesser than the specifi ed area value. It should be understood that 
area  and performance  (and power ) are often mutually contradictory goals. For a 
given technology node, if area improves, performance and/or power will likely dete-
riorate. So, while specifying the constraints, we should be realistic, rather than try-
ing to stretch the tool too much in any one dimension, as it might deteriorate the 
other two dimensions.  

16.7     Power Constraints 

 Because of power considerations, it is common in today’s designs to have different 
parts of the design working at different voltage levels. This brings in its own set of 
challenges. It is beyond the scope of this book to explain power-related concepts. 
However, in this section, we will briefl y touch the SDC constraints which come into 
effect due to power or multi-voltage  situations. 

 We’ve already discussed that the delay is dependent on voltage. If a specifi c por-
tion of a device is operating at a different voltage (compared to the operating condi-
tion specifi ed), its delay would be different. The SDC command to specify which 
portions of the device are operating at a different voltage is

    set_voltage   [ -min  min_case_value]  
   [ -object_list  list_of_power_nets]  
   max_case_voltage    

 max_case_voltage refers to the voltage corresponding to the maximum delay 
(viz., lowest voltage).  -min  is used to specify the voltage corresponding to the mini-
mum delay (viz., highest voltage). Note that the  -min/max  is with respect to the 
delay, rather than the voltage! 

  -object_list  specifi es the list of power_nets which are at the specifi ed voltage. 
 The next set of commands does not directly impact timing analysis. However, 

they impact several implementation tools. Timing would be a side-effect of the lay-
out/routing changes. 

16.7.1     Voltage Island 

 If a design has multiple power supplies, it makes sense to localize all devices operat-
ing at a given voltage in one area. Such an arrangement makes it easy for the power 
rail distribution, as all the rails don’t have to go all over the chip. Specifi c rails will 
go to specifi c locations, and all cells connected to that rail should be lying in that 
location. This concept is also called voltage island . 

16.7  Power Constraints
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 The SDC command to specify voltage islands (so that placement tools can place 
cells accordingly) is

    create_voltage_area    -name  name  
   [ -coordinates  coordinate_list]  
   [- guard_band_x  fl oat]  
   [- guard_band_y  fl oat]  
   cell_list    

 Name specifi es a name given to the specifi c voltage island. cell_list is the list of 
cells, which needs to be placed together. This could even be orthogonal to hierarchy; 
meaning: cells belonging to two different hierarchies could be in the same voltage 
island; similarly, something lower in the hierarchy could be in a different voltage 
island compared to where it is instantiated. 

  -coordinates   specify the rectangular region within which the specifi c voltage 
island should be kept.  -guard_band_x   and  -guard_band_y  specify a distance along 
 x -axis and  y -axis, where no cells should be placed. This is the buffer area between 
two different voltage islands.  

16.7.2     Level Shifters 

 When a signal moves from one voltage level to another, its noise margin gets 
impacted. In order to ensure a clean transfer of signal across voltage domains, level 
shifters  are often used. Synthesis tool would need to know when to insert level shift-
ers. The SDC commands to convey this direction are

    set_level_shifter_strategy   [ -rule  rule_type]  

   set_level_shifter_threshold   [ -voltage  fl oat] [ -percent  fl oat]    

 Depending upon your choice of methodology, your strategy could be one of the 
following:

•    Put level shifters, whenever a signal goes from one voltage to another.  
•   Put level shifters, only when a signal goes from a lower voltage to a higher 

voltage.  
•   Put level shifters, only when a signal goes from a higher voltage to a lower 

voltage.    

 You would need to check your power optimization tool to see which of these 
strategies it supports and accordingly specify the rule name. 

 Also, you might not want to put level shifters for even a minor change in voltage 
levels. The  set_level_threshold   command allows you to control the variation in volt-
age levels, when the level shifter should be put in. Only when the voltage variation 
is higher than the specifi ed value, does the optimizer put in the level shifter. The 
variation can be expressed in absolute voltage diff or in terms of % diff.  

16 Miscellaneous SDC Commands
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16.7.3     Power Targets 

 As mentioned in Sect.  16.6 , area, power, and timing are mutually contradictory. 
A user can specify power requirements also to an optimization tool, so that it tries 
to keep the power  values also within required limits. The SDC commands for speci-
fying power targets are

    set_max_dynamic_power   power [unit]  
   set_max_leakage_power   power [unit]    

 These commands set the upper target for dynamic  and leakage power , respec-
tively. The synthesizer is expected to keep the power values to be below the speci-
fi ed limits. 

 Power has become an important consideration all by itself. There are dedicated 
languages (UPF  and CPF ) to specify power intent. The importance of SDC com-
mands for power is getting reduced.   

16.8     Conclusion 

 The commands mentioned in this chapter provide the operating environment for the 
design. SDC commands are used by tools other than timing analysis. For implemen-
tation tools, they specify area and power targets also. Usually, area, power, and tim-
ing performance are mutually contradictory. Hence, area and power constraints 
impact fi nal timing performance also. 

 SDC has some more commands also. With the understanding gained so far, it 
should be fairly simple for a reader to understand and interpret other commands and 
their usage scenarios. 

 Some specifi c tools have extended SDC with some additional proprietary com-
mands or options. These extensions allow these tools to get additional user input for 
something that is specifi c to those tools only. In the next chapter, we will see propri-
etary extensions for current generation of Xilinx tools.    

16.8  Conclusion
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FPGA design flows have become very similar to ASIC flow. They both usually start 
from RTL and require a number of similar physical and timing constraints in order 
to ensure proper functionality and timing on hardware. Adoption of industry stan-
dards has also helped with the convergence between the two worlds, particularly on 
the timing constraints side via the adoption of SDC and deprecation of proprietary 
equivalent formats. The main differences remain around the rules to be followed 
during the design implementation. ASICs come with an extensive set of manufac-
turability and testability rules, while FPGA designs need to follow a set of higher 
level rules such as device capacity and architecture features compatibility. These 
differences are reflected in the FPGA design flow where the tools are able to sim-
plify or hide a number of complex rules that are typically encountered in ASIC 
flows, for example on signal integrity, and automatically create some constraints 
such as generated clocks or jitter. The following chapter will focus on how SDC 
support has been extended in Xilinx new generation of FPGA compilation software. 
The Xilinx extension to SDC is called XDC.

17.1  Clocks

Compared to ASICs, FPGA devices provide a limited amount of dedicated clocking 
resources with known characteristics which should be used as much as possible by 
any design. These resources are a combination of input buffers, clock buffers, clock- 
modifying blocks such as PLL and MMCM (Mixed-Mode Clock Manager), and 
clock recovery or generation blocks such as Gigabit Transceiver and PCIe. The 
clock signals are distributed with dedicated routing resources which span across a 
group of IO ports, a portion of the device or the full device. While the designer 
remains in charge of defining the clocks coming from outside the device, the Xilinx 
FPGA compilation software is able to complete and refine the definition of these 
clocks as they propagate through the design.
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17.1.1  Primary and Virtual Clocks

Like in a standard ASIC flow, the primary and virtual clocks need to be defined with 
the create_clock command as presented in Chap. 5.

17.1.2  Generated Clocks

There are two categories of generated clocks in Xilinx FPGA compilation software. 
They are

• User-defined generated clocks (as explained in Chap. 6)
• Tool-created generated clocks

17.1.2.1  Tool-Created Generated Clocks

When a clock traverses a Xilinx-specific clock-modifying cell, the tool knows the 
characteristics of the clock(s) at the output of that same cell and automatically 
defines the corresponding generated clocks. The clock transformation is fully 
described by the cell parameters.

Let us consider the example usage of PLL shown in Fig. 17.1. Let the reference 
clock have a period of 10 ns with a 50 % duty cycle:

create_clock-name mclk-period 10-waveform {0 5} [get_ports clk]

Let us further assume that the PLL instance has the following parameters:

• Clock input divider: D = 2
• Feedback clock multiplier: M = 32
• Output clock divider: O = 8

(The divider and the multiplier is in terms of frequency and not period. For 
period computations, divider becomes multiplier and vice-versa).

The period of the generated clock at the output of this PLL is given by

VCO O

M

D
CLKIN

CLKOUT

pll

clk
gclk

mclk

Fig. 17.1 Tool-created generated clock on a Xilinx PLL output
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(17.1)

The equivalent constraint automatically created by the tool is

create_generated_clock -name gclk \
-edges {1 2 3} -edge_shift {0 -2.5 -5} \
-source [get_pins pll/CLKIN] [get_pins pll/CLKOUT]

The name of the generated clock is based on the name of the net directly con-
nected to the PLL output pin, at the same level of hierarchy, i.e., gclk in this particu-
lar example.

If several automatically generated clocks have a name conflict, the timing engine 
will append a unique index to each name. For example, gclk_0, gclk_1, etc.

Since the generated clock is automatically created, and its waveform is based on 
the actual behavior of the PLL’s parameter, the user does not have to explicitly put 
a create_generated_clock. A user may still decide to explicitly define a generated 
clock, if (for example), he wants to give a specific name to this clock. If the user has 
already defined a clock on the output pin of the clock-modifying block, the corre-
sponding auto-generated clock will not be created. This ensures that the user still 
has full control over the clock definitions.

17.1.2.2  Generated Clocks with Nonintegral Ratio

The Xilinx devices provide a large number of PLL and MMCM to be used in diverse 
situations: clock insertion delay compensation, frequency synthesis, jitter filtering. 
In many cases, the clocks generated by these blocks have a frequency ratio described 
by (17.1) (in Sect. 17.1.2.1). It is possible for the user to describe this ratio by using 
the create_generated_clock options -multiply_by and -divide_by simultaneously.

Considering another example, with a different set of parameter values (as given 
below), the create_generated_clock constraint can be written as follow:

• Clock input divider: D = 3
• Feedback clock divider: M = 32
• Output clock divider: O = 7

create_generated_clock-name gclk-multiply_by 32-divide_by 21 \
-source [get_pins pll/CLKIN] [get_pins pll/CLKOUT]

The advantage of using -multiply_by and -divide_by options is that the values 
purely describe the clock transformation through the cell and are independent of the 
master clock waveform definition. Hence, they don’t need to be updated if the mas-
ter clock definition gets changed. On the other hand, -edge/edge_shift depends on 
the exact master clock waveform.

Note: the simultaneous use of -multiply_by and -divide_by is not compatible 
with the introduction of a phase shift in the generated clock definition.

17.1  Clocks
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17.1.3  Querying Clocks

In general, the name of the tool-created generated clocks is predictable and can 
safely be used in other timing constraints. But in some cases, for the reason explained 
in Sect. 17.1.2.1, this may not be true. Usually, clocks are queried by using the 
get_clocks command, where the exact clock name or a name pattern must be sup-
plied. This use model has some limitations in case the names are not known. For this 
reason, Xilinx tools support two unique additional get_clocks switches:

17.1.3.1  -of_objects

This option allows querying the design database and retrieving objects related to 
other ones based on their relationship. get_clocks -of_objects returns the clock 
objects which traverse the specified pins, ports, or nets. It does not work with cell 
objects, and does not return anything for objects which do not belong to a clock tree.

For the circuit shown in Fig. 17.2, a primary clock clk traverses a PLL instance, 
which generates two clocks, gclk0 and gclk1. These two clocks propagate through 
their respective clock network, i.e., clock buffers bufg_i0 and bufg_i1, and reach the 
sequential cells. The get_clocks -of_object command can be used on various objects 
as follows:

get_clocks -of [get_pins pll/CLKOUT0]
get_clocks -of [get_nets gclk0]
get_clocks -of [get_pins bufg_i0/O]
get_clocks -of_objects [get_pins F1/C]

All the commands above return the same result: gclk0.
This option can be used similarly with some other get commands, such as get_

pins, get_nets, get_cells, and get_ports.

pll

CLKIN

CLKOUT0

CLKOUT1

gclk0

gclk1

bufg_i0

bufg_i1

F1

C

Fig. 17.2 Getting a clock along its tree
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17.1.3.2  -include_generated_clocks

A master clock and its associated generated clocks define a group of synchronous 
clocks, i.e., clocks with a predictable initial phase relationship. The get_clocks 
-include_generated_clocks command returns a list of clocks which includes the 
specified master clock(s) as well as the associated generated clocks, plus their child 
generated clocks if any. This is particularly convenient for creating asynchronous 
clock groups constraints (see Clock Groups described in Sect. 17.1.4).

For the circuit shown in Fig. 17.3, the primary clock C1 reaches a PLL instance, 
pll, which generates the GC4x clock. One of the GC4x clock tree branches reaches 
a register-based clock divider, fddiv2, which in turn generates the clock GC2x. The 
corresponding clock definitions are presented below, as well as the result of get_
clocks -include_generated_clocks.

create_clock -name C1 -period 10 [get_ports C1]
create_generated_clock -name GC4x -multiply_by 4 \

-source [get_ports C1] [get_pins pll/CLKOUT]
create_generated_clock -name GC2x -divide_by 2 \

-source [get_pins pll/CLKOUT] [fddiv2/Q]

get_clocks -include_generated_clocks C1
will return: C1 GC4x GC2x

17.1.4  Clock Groups

Section 7.3 of the book explains how the various options of set_clock_groups are 
important only for signal integrity analysis. From timing analysis perspective, 
the options are interchangeable. At the beginning of this chapter, we mentioned 
that the FPGA designers do not have to handle signal integrity issues the same 
way as with ASICs. This is mostly because of the way the internal hardware 
circuitry is designed and how the cell timing arcs and net delays are calculated. 

pll

CLKIN CLKOUT
GC4x

bufg_GC4x
GC2x

fddiv2

C1

Fig. 17.3 Getting a clock and its associated generated clocks
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In order for the FPGA device to safely operate under a wide range of operating 
conditions, the timing models include higher margin. Thus, for Xilinx users, the 
set_clock_groups options related to crosstalk are not needed and can be used 
interchangeably

• -logically_exclusive, -physically_exclusive, and -asynchronous are all treated 
similarly by the timing engine. They can still be used by the designer in order to 
clarify the original intent of the set_clock_groups constraint and maintain com-
patibility with ASIC flows.

• -allow_paths is completely ignored.

The example below shows how to simply specify that two groups of clocks are 
asynchronous based on their topology, and without knowing the name of the clocks. 
The schematics presented in Fig. 17.4 above shows two primary clocks C1 and C2, 
defined on input ports and propagating through PLL instances before reaching the 
sequential elements fd1 and fd2. The logic path between fd1 and fd2 is assumed to 
be safe by design and should be ignored during the timing analysis.

create_clock -name C1 -period 10.57 [get_ports clk1]
create_clock -name C2 -period 6.667 [get_ports clk2]
set_clock_groups -asynchronous -name asynch_clk1_clk2 \

-group [get_clocks -include_generated_clocks -of [get_ports C1]] \
-group [get_clocks -include_generated_clocks -of [get_ports C2]]

Assume that the generated clocks are named GC1 and GC2. In addition to the 
relationship between C1 and C2 as explained in Chap. 7, the following relationships 
have also been inferred due to -include_generated_clocks:

 1. C1 and GC2 are also asynchronous to each other
 2. GC1 is also asynchronous to C2 and GC2

pll1

CLKIN CLKOUT

fd1

C1

pll2

CLKIN CLKOUT
GC2

fd2

C2

GC1

Fig. 17.4 Asynchronous clocks
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17.1.5  Propagated Clocks and Latency

The Xilinx FPGA timing models are based on accurate delay extraction from the 
device hardware and are used throughout the implementation flow to provide the 
user with the most accurate estimated or actual routed net delays. This is  particularly 
true for the clock distribution network. As explained previously in this chapter, the 
Xilinx FPGA architecture includes a dedicated and optimized clocking infrastruc-
ture which the designer should utilize as much as possible. A particular design clock 
tree propagates through certain clock buffer primitives, which indicates how far it 
will propagate and what route it is likely to take. This gives useful information to the 
Xilinx implementation tools for providing good clock insertion delay estimates 
before placement, and very accurate ones after placement. Thus, Xilinx FPGA tools 
consider all clocks as propagated by default in order to let the tools calculate the 
insertion delay for each of them and have a more accurate delay computation early 
in the design cycle. Consequently, the set_propagated_clock command is supported 
(for the sake of completeness) but not needed.

Also, it is not recommended for the user to manually set the clocks network 
latency as the Xilinx software can infer a better estimate, corresponding to the spe-
cific device size and speed grade. The user is still responsible for specifying the 
clocks source latency, via the set_clock_latency -source command, especially for 
clocks coming from outside the FPGA (see Sects. 8.5 and 8.6).

17.1.6  Clock Uncertainty

In addition to automatically provide the clock network latency, the Xilinx software 
computes the total clock uncertainty of a timing path as a function of the following 
variables:

• System Jitter: This is the uncertainty common to all clocks of the design, due to 
power and board noises. A default value is provided by the Xilinx software for 
each FPGA device family and can be overridden by the user via the set_sys-
tem_jitter constraint.

• Input Jitter: This is the uncertainty of a particular clock at its definition point. It 
usually reflects the random, peak-to-peak jitter present on a clock generated out-
side the device, when it reaches the FPGA device package pin. The input jitter of 
a clock generated by an MMCM (or PLL) is derived from its master clock input 
jitter, based on the MMCM (or PLL) operating mode. A default value is provided 
by the Xilinx software for each FPGA device family and can be overridden by 
the user via the set_input_jitter constraint.

• Discrete Jitter: This is the jitter introduced by an MMCM (or PLL) instance only 
on the clocks it generates depending on its operating mode. Since these are hard 
blocks on the FPGA device, hence, Xilinx software knows an accurate value of 
this jitter. Thus, this value is always provided by the Xilinx software and cannot 
be modified by the user.
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• Phase Error: This is the undesired phase variation introduced by an MMCM (or 
PLL) instance between two clocks it generates. This value is also always pro-
vided by the Xilinx software and cannot be modified by the user.

• User Uncertainty: This is the additional uncertainty specified by the user on a 
particular clock, or between two clocks, via the set_clock_uncertainty constraint 
(explained in Sect. 8.4).

The effective uncertainty that Xilinx software considers after combining the effect 
of various jitters, phase error and user uncertainty is given by the following equation:

 
Timing Path Clock Uncertainty

TSJ TIJ DJ
PE UU=

+ +
+ +

2 2

2  
(17.2)

where,

• TSJ = Total System Jitter
• TIJ = Total Input Jitter
• DJ = Discrete Jitter
• PE = Phase Error
• UU = User Uncertainty

Total System Jitter corresponds to the quadratic sum of the launch clock system 
jitter and the capture clock system jitter. Since both clocks are propagated by default 
and the system jitter value is the same for all clocks, the Total System Jitter is 
usually

 Total System Jitter System Jitter= * 2  (17.3)

Similarly, the Total Input Jitter corresponds to the quadratic sum of the launch 
clock input jitter and the capture clock input jitter

 
Total Input Jitter LC Input Jitter CC Input Jitter= +2 2

 
(17.4)

where LC is the Launch Clock and CC is the Capture Clock.
In summary, by default, all clocks are treated as propagated clocks and the Xilinx 

tools provide an accurate estimate of the clock uncertainty. The user can add addi-
tional margin to his design by using the set_clock_uncertainty constraint.

17.2  Timing Exceptions

The Xilinx compilation software supports all timing exceptions as defined in the 
SDC standard. Only one option has been added to the max delay constraint: set_
max_delay -datapath_only. When this option is used, the launch and capture clock 
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insertion delays are removed from the slack computations. This is particularly con-
venient when constraining the maximum delay between two asynchronous clock 
domains where the designer wants to keep the latency as small as possible. In tradi-
tional ASIC flows, the designer has to consider the clock skew into the max delay 
value specified with the set_max_delay constraint. In Xilinx FPGA designs, third 
party RTL IPs are often used. They all include a section of clock tree which can look 
different once the top-level design is complete. By using the datapath_only option, 
the IP designers can define delays on clock domain crossing paths included in their 
IP, which are invariant of the clock skews.

When using the -datapath_only option, the min delay analysis is disabled on the 
same paths.

17.3  Placement Constraints

For complex designs or designs with challenging timing requirements, it is often 
necessary to guide the implementation algorithms by specifying physical con-
straints. The Xilinx compilation software offers several options:

• Cell Placement: The user can constrain the location of a cell by setting its LOC 
property. Following is an example of how to define a placement constraint on the 
LUT instance inst123:

set_property LOC SLICE_X0Y0 [get_cells inst123]

Depending on the primitive of the cell, it can be placed on a particular grid. For 
example, LUTs, DSPs, and RAMBs are placed on their specific grids. These 
grids have a different range for each device size or family, so any placement 
constraint is only valid for a particular device.

• Net Weight: The user can increase the importance of a net by setting its weight 
property to a higher value (the default value is 1). The cells connected to the net 
with high weight are more likely to be placed closer to each other. This is particu-
larly convenient for improving the placement of a group of cells without modify-
ing their timing constraints or restricting them to a specific area. Following is an 
example of how to set a higher weight on the net n456:

set_property WEIGHT 10 [get_nets n456]

• Physical Block (pblock): Traditional design floorplanning is done by using 
pblocks, which is a convenient mechanism for keeping critical logic grouped 
together or clock to special hardware resources such as IO buffers for example. A 
pblock is a location range constraint set on a group of cells. The range is defined 
by one or more rectangles on the device floorplan. The following example shows 
how to create a pblock, add the hierarchical cell usbInst to it, and place it:

17.3  Placement Constraints
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create_pblock pblock_usb
add_cells_to_pblock pblock_usb [get_cells usbInst]
resize_pblock pblock_usb -add {SLICE_X12Y34:SLICE_X56Y78}

Assigning a hierarchical cell to a pblock will assign all its children cells too.

17.4  SDC Integration in Xilinx Tcl Shell

Tcl is commonly used across most EDA tools as the user interface scripting lan-
guage. Xilinx tools provide a convenient support of SDC and netlist objects which 
fully relies on the standard TCL built-in commands and on object substitution with 
their name depending on the context.

Tcl basics are covered in Chap. 4. The get_* commands in Xilinx tools return the 
string name for the objects, as prescribed by Tcl. This is different from some other 
Tcl-based tools, which provide a handle to the object, rather than its string name.

17.5  Conclusion

This chapter was used mostly to explain, how specific tools could extend SDC, in 
order to fit their specific requirements. These modifications could be in the form of

 – additional switches (e.g., -datapath_only),
 – additional commands (e.g., set_property),
 – default application of certain constraints (e.g., create_generated_clock),
 – etc.

For actual features of the Xilinx FPGA devices and Xilinx tools, including 
 current extensions to SDC, you should refer to http://www.xilinx.com.
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