Stack ADT

In this laboratory you
B use an abstract base class as an ADT interface.

W create two implementations of the Stack ADT—one
using an array representation of stack, the other using
a singly linked list representation.

W analyze the kinds of permutations you can produce
using a stack.

C

1

~

A
I
ol

51

1

...,/A.

SOAL

e

| Lnbniniory 6

(

ADT Overview

Many applications that use a !
operations supported by the Lis
using the List ADT, the resulting
inefficient. An alternative approa
more constrained sets of operat
produce ADTs that meet the nee
structures that are easier to apply—

The stack is one example 0
jtems are ordered from most
bottom). All insertions and deletions are pe
push operation 10 insert a d
the topmost stack data item. A sequence

Push a Push b
b
a a

These constraints on insertion
behavior that characterizes a S
defined, it is SO extensively used by sys
is one of the basic data items of most comp

f a constraine
recently added (the top) to least recently added (the
rformed at the top of the stack. You use¢ the
the stack and the pop operation t0 remove
of pushes and pops is shown here.

ata item onto

r data structure do not require the full range of
1 ADT. Although you can develop these applications
programs are likely to be somewhat cumbersome and
ch is to define new linear data structures that support
ions. By carefully defining these ADTs, you can
ds of a diverse set of applications but yield data
and are often more efficient—than the List ADT.

d linear data structure. In 2 stack, the data

Pop Pop
b
a a

and deletion produce the “last in, first out"—LIFO—
tack. Although the stack data structure is narrowly
tems software that support for a primitive stack
uter architectures.

The stack is one of the most frequently used data structures. Although all

programs share the same definition of stac
with insertion and removal done
varies from program to program.
characters, ﬂoating-point numbers,

k—a sequence of homogeneous data items
d—the type of data item stored in stacks
Some use stacks of integers, others use stacks of
points, and so forth.

C++ Concepts Overview

Abstract base classes: An abstract base
yirtual function (see definition belo
directly {nstantiated. A common rea
for a set of derived classes to imp
implementing a stack with arrays or
ABC to specify the functi
derive the linked and array-
that code that uses @ stack, but doesnt
to the ABC, while the small portion 0

appropriate derived class.

Pure virtual function: This is a me
in a base class. The function mMus
instantiated. Because the base class
cannot create an object of that type since

class (ABC) is any class with at least one pure
An ABC is called abstract because it cannot be
son for creating an ABC is to specify an interface
lement. For instance, there are good reasons for
th linked data structures. We provide 2 stack
at any impiementation must provide. Then we
based impiementations from the stack ABC. The benefit is
't care about the stack’s implernentation can refer
£ code that does care can explicitly reference the

mber function that is declared, but not implemented,
t be implemented in any derived class that will be
does not implement any pure yirtual functions, W€
there is no code for those member functions.

 Stack ADT

Stack ADT

Data items:
The data items in a stack are of generic type DataType.

Structure:

The stack data items are linearly ordered from most recently added (the top) to least
recently added (the bottom). Data items are inserted onto (pushed) and removed from
(popped) the top of the stack.

Operations:
Stack (int maxNumber = MAX STACK_SIZE)

Requirements:
None

Results:
Constructor. Creates an empty stack. Allocates enough memory for a stack containing
maxNumber data items (if necessary).!

Stack (const Stack& other)

Requirements:
None

Results:
Copy constructor. Initializes the stack to be equivalent to the other Stack object

parameter.!

Stack& operator= (const Stacké& other)

Requirements:
None

Results: \
Overloaded assignment operator. Sets the stack to be equivalent to the other Stack
object parameter and returns a reference to the modified stack.?

~Stack ()

Requirements:
None

Results:
Destructor. Deallocates (frees) the memory used to store the stack.

IBecause of the way ABCs work, constructors are actually declared and implemented in the
derived classes, not in the base class. This relates to the requirement that constructor names
match the class names; it is impossible for the base class and the derived class to have the same
name,

2[ike ABC constructors, operator= is declared and implemented in the derived classes with
corresponding name changes.

void push (const DataType& newDataIltem) throw (logic_error)

Requirements:
Stack is not full.

Results:
Inserts newDataItem onto the top of the stack.

DataType pop () throw (logic_error)
Requirements:
Stack is not empty.

Results:
Removes the most recently added (top) data item from the stack and returns the value
of the deleted item.

void clear ()

Requirements:
None

Results:
Removes all the data items in the stack.

bool isEmpty () const

Requirements:
None

Results:
Returns true if the stack is empty. Otherwise, returns false.

bool isFull () const

Requirements:
None

Results:
Returns true if the stack is fu11. Otherwise, returns false,

void showStructure () const

Requirements:
None

Results:

Outputs the data items in a stack. If the stack is empty, outputs “Empty stack”. Note
that this operation is intended for testing/debugging purposes only. It only supports
stack data items that are one of C++'s predefined data types (int, char, and so forth)
or other data structures with an overridden ostream operator<X,

?

. ' 7 Stack ADT | 73)

Implementation Notes

Pure virtual function: A member function is identified as a pure virtual function in the
class declaration by the word virtual, followed by the class prototype, followed by
the string “=0". For instance, the Stack ABC isEmpty function is declared as follows:

virtual bool isEmpty() const = 0;

Stack implementations: Multiple versions of an ADT may be necessary if the ADT is to
perform efficiently in a variety of operating environments. Depending on the hardware
and the application, you may want an implementation that reduces the execution time
of some (or all) of the ADT operations, or you may want an implementation that
reduces the amount of memory used to store the ADT data items. In this laboratory,
you develop two implementations of the Stack ADT. One implementation stores the
stack in an array, the other stores each data item separately and links the data items
together to form a stack.

Array-Based Implementation

Step 1: Implement the operations in the Stack ADT using an array to store the stack
data items. Stacks change in size, therefore you need to store the maximum
number of data items the stack can hold (maxSize) and the array index of the
topmost data item in the stack {top), along with the stack data items
themselves (dataltems). Base your implementation on the declarations from
the file StackArray.h. An implementation of the showStructure operation is
given in the file showé6.cpp.

Step 2: Save your array implementation of the Stack ADT in the file StackArray.cpp.
Be sure to document your code.

Compilation Directions

Compile test6.cpp. The value of LAB6_TEST1 in config.h determines whether the
array-based implementation or the linked-list implementation is tested. If the value is 0
(the default), the array implementation is tested. If the value is 1, then the linked
implementation is tested.

AN

Testing

Test your implementation of the array-based Stack ADT using the program in the file
test6.cpp. The test program allows you to interactively test your ADT implementation
using the commands in the following table.

('774 | Laboratory 6

Command Action

+x Push data item x onto the top of the stack.
Pop the top data item and output it.
Report whether the stack is empty.

Report whether the stack is full.

Clear the stack.

Exit the test program.

1

o HH

Step 1: Download the online test plans for Lab 6.

Step 2: Complete the test plan for Test 6-1 by filling in the expected results for each
given operation, Add test cases in which you

* pop a data item from a stack containing only one data item,

* push a data item onto a stack that has been emptied by a series of pops,
® pop a data item from a full stack (array implementation), and

¢ clear the stack.

Step 3: Execute Test Plan 6-1. If you discover mistakes in your implementation of the
Stack ADT, correct them and execute the test plan again.

Linked-List Implementation

In your array implementation of the Stack ADT, you allocate the memory used to store
a stack when the stack is declared (constructed). The resulting array must be large
enough to hold the largest stack you might possibly need in a particular application.
Unfortunately, most of the time the stack will not actually be this large and the extra
memory will go unused. ‘ :

An alternative approach is to allocate memory data item-by-data item as new data
items are added to the stack. In this way, you only allocate memory when you actually
need it. Because memory is allocated over time, however, the data items do not occupy
a contiguous set of memory locations. As a result, you need to link the data items
together to form a linked list representation of a stack, as shown in the following
figure,

top

Creating a linked list implementation of the Stack ADT presents a somewhat more
challenging programming task than did developing an array implementation. One way
to simplify this task is to divide the implementation into two template classes: one
focusing on the overall stack structure (the Stack class) and another focusing on the
individual nodes in the linked list (the StackNode class).

Stack ADT | 75)

Let’s begin with the StackNode class. Each node in the linked list contains a stack
data item and a pointer to the node containing the next data item in the list. The only ‘
function provided by the StackNode class is a constructor that creates a specified node.

Access to the StackNode class is restricted to member functions of the Stack class. ‘
Other classes are blocked from referencing linked list nodes directly by declaring the
StackNode as an inner class of Stack. (Refer to the Lab 5 C++ concepts and
implementation sections for details.)

The StackNode class constructor is used to add nodes to the stack. The statement
below, for example, adds a node containing newDataItem ('d' in this example) to a
stack of characters. Note that top is of type StackNode*.

! top = new StackNode<DataType? (newDataltem,top);

‘ The new operator allocates memory for a linked list node and calls the StackNode
constructor passing both the data item to be inserted ('d') and a pointer to the next
node in the list (top).

top

Finally, the assignment operator assigns a pointer to the newly allocated node to top,
thereby completing the creation and linking of the node.

top

The member functions of the Stack class implement the operations in the Stack
ADT. A pointer is maintained to the node at the beginning of the linked list or,
equivalently, the top of the stack. The following declaration for the Stack class is given
in the file StackLinked.h.

Step 1: Implement the operations in the Stack ADT using a singly linked list to store |
the stack data items. Each node in the linked list should contain a stack data
item (dataItem) and a pointer to the node containing the next data item in
the stack (next). Your implementation should also maintain a pointer to the
node containing the topmost data item in the stack (top). Base your
implementation on the class declarations in the file StackLinked.h. A linked-
list implementation of the showStructure operation is given in the file
show6.cpp.

Step 2: Save your linked list implementation of the Stack ADT in the file
StackLinked.cpp. Be sure to document your code.

76 | Laboratory 6 R - ’ o
L___ ——

Compilation Directions

Edit config.h and change the value of LAB6_TEST1 to 1. (If the value is O, then the
array-based implementation is tested instead.) Recompile fest6.cpp.

Testing

Test your implementation of the linked list Stack ADT using the program in the file
testé.cpp.

Step 1: Re-execute Test Plan 6-1. If you discover mistakes in your linked-list
implementation of-the Stack ADT, correct them and execute your test plan
again.

Stack ADT

Programming Exercise 1

We commonly write arithmetic expressions in infix form, that is, with each operator placed
between its operands, as in the following expression.

B+4*(5/2)

Although we are comfortable writing expressions in this form, infix form has the disadvantage
that parentheses must be used to indicate the order in which operators are to be evaluated. These
parentheses, in turn, greatly complicate the evaluation process.

Evaluation is much easier if we can simply evaluate operators from left to right.
Unfortunately, this evaluation strategy will not work with the infix form of arithmetic expressions.
However, it will work if the expression is in postfix form. In the postfix form of an arithmetic
expression, each operator is placed iminediately after its operands. The expression above is written
in postfix form as

34+52/*

Note that both forms place the numbers in the same order (reading from left to right). The order of
the operators is different, however, because the operators in the postfix form are positioned in the
order that they are evaluated. The resulting postfix expression is hard to read at first, but it is easy
to evaluate. All you need is a stack on which to place intermediate results.

Suppose you have an arithmetic expression in postfix form that consists of a sequence of
single digit, nonnegative integers and the four basic arithmetic operators (addition, subtraction,
multiplication, and division). This expression can be evaluated using the following algorithm in
conjunction with a stack of floating-point numbers.

Read in the expression character-by-character. As each character is read in:

e If the character corresponds to a single digit number (characters '0' to '9'), then push the
corresponding floating-point number onto the stack,

e If the character corresponds to one of the arithmetic operators (characters '+', '-', '*', and
v/ 1), then

e Pop a number off of the stack. Call it operand1l.

¢ Pop a number off of the stack. Call it operand2.

¢ Combine these operands using the arithmetic operator, as follows:
Result = operand2 operator operandl

e Push result onto the stack.

When the end of the expression is reached, pop the remaining number off the stack. This number

is the value of the expression.
Applying this algorithm to the arithmetic expression

AN

34+52/*

yields the following computation

'3 : Push 3.0
t4t : Push 4.0

l\nl

Step 1:

Step 2:

Step 3:

Pop, operandl = 4.0
Pop, operand2 = 3.0

Combine, result = 3.0 + 4.0 = 7.0
Push7.0

Push 5.0

Push 2.0

Pop, operandi = 2.0

Pop, operand2 = 5.0

Combine, result = 5.0 [2.0 = 2.5
Push 2.5

Pop, operandl = 2.5
Pop, operand2 = 7.0

Combine, result = 7.0 * 2.5 = 17.5
Push 17.5

Pop, Value of expression = 17.5

Create a program that reads the postfix form of an arithmetic expression, evaluates it
and outputs the result. Assume that the expression consists of single-digit, nonnegative
integers ('0' to '9') and the four basic arithmetic operators ('+', *-t v+t and r/v),
Further assume that the arithmetic expression is input from the keyboard with all the
characters separated by white space on one line. Save your program in a file called

postfix.cpp.

Complete Test Plan 6-2 by filling in the expected result for each arithmetic expression.
You may wish to include additional arithmetic expressions in this test plan,

Execute the test plan. If you discover mistakes in your program, correct them and execute
the test plan again.

; ' ' ; ' S © Stack ADT | 79'"‘)
\m

Programming Exercise 2

A classic computer science problem that can be solved with a stack is called the 8-queens problem.
The question is whether it is possible to safely place eight queens on a chessboard. The answer is
yes, so the question is often modified to list one or more safe scenarios.

The standard algorithm is to place a queen in a potentially safe spot and check whether it is
safe. If it is safe, leave it and try placing another queen; otherwise, remove it and try placing it in
another place. If no safe locations can be found, then a queen previously declared safe must also
be removed. Continue until all eight queens are safely on the board. The process of trying a
solution that may require undoing is called backtracking.

We use a stack to facilitate backtracking. When a queen is thought to be safely placed, we
push the queen’s location on to the stack. When we need to remove a queen, we pop the location
from the stack.

Step 1: Write an implementation of the previous algorithm. We provide an implementation of a
number of routines to represent and manipulate the queens on the board. You must
maintain the stack and track queen placement.

Step 2: Save a copy of the file queens.cs as queens.cpp. Write your implementation of the 8-
queens main algorithm in the file queens.cpp.

Step 3: Compile and run the program in queens.cpp.

Step 4: Visually verify that the printed solution is valid. Because visual inspection on the screen
can make it hard to determine whether your solution is valid, Test Plan 6-3 is available
for you to write the results if you wish.

(so

IV - Lab&fétory 6 ,
-

Programming Exercise 3

One of the tasks that compilers and interpreters must frequently perform is deciding whether some
pair of expression delimiters are properly paired, even if they are embedded multiple pairs deep.
Consider the following C++ expression.

a=(f(b)-(ct+d))/2;

The compiler has to be able to determine which pairs of opening and closing parentheses go
together and whether the whole expression is correctly parenthesized. A number of possible errors
can occur because of incomplete pairs of parentheses—more of one than the other—or because of
improperly placed parentheses. For instance, the expression below lacks a closing parenthesis,

a=(f(b)-(ctd)/2;

A stack is extremely helpful in implementing solutions to this type of problem because of its
LIFO—Last In, First Out—behavior. A closing parenthesis needs to be matched with the most
recently encountered opening parenthesis. This is handled by pushing opening parentheses onto a
stack as they are encountered. When a closing parenthesis is encountered, it should be possible to
pop the matching opening parenthesis off the stack. If it is determined that every closing
parenthesis had a matching opening parenthesis, then the expression is valid.

bool delimitersOk(const stringé expression)

Requirements:
None

Results:
Returns true if all the parentheses and braces in the string are legally paired. Otherwise, returns
false.

Step 1: Save a copy of the file delimiters.cs as delimiters.cpp. Implement the delimitersQk
operation inside the delimiters.cpp program.

Step 2: Complete Test Plan 6-4 by adding test cases that check whether your implementation of
the delimitersOk operation correctly detects improperly paired delimiters in input
expressions. Note that it is not required that the input be valid C++ expressions, just the
delimiters are correct.

Step 5: Execute your test plan. If you discover mistakes in your implementation of the
delimitersOk operation, correct them and execute the test plan again.

Stack ADT | 81

Analysis Exercise 1

Given the input string "abc", which permutations of this string can be output by a code fragment
consisting of only the statement pairs

cin >> ch; permuteStack.push(ch);
and
ch = permuteStack.pop(); cout << ch;

where ch is a character and permuteStack is a stack of characters? Note that each of the
statement pairs may be repeated several times within the code fragment and that the statement
pairs may be in any order. For instance, the code fragment

cin >> ch; permuteStack.push{(ch);

cin >> ch; permuteStack.push(ch); i
cin >> ch; permuteStack.push(ch);
ch = permuteStack.pop(); cout << ch;

ch = permuteStack.pop(); cout << ch;

ch = permuteStack.pop(); cout << ch;

outputs the string "cba".

Part A :

For each of the permutations listed below, give a code fragment that outputs the permutation or a
brief explanation of why the permutation cannot be produced.

llabcll Ilacbll %

] i "bac“ "bca"
1 1 "aab" obat |
|
B
Part B |
|

Given the input string "abcd", which permutations beginning with the character 'd' can be
output using the same code fragment combinations (e.g., cin/push, pop/cout) described previously?
Why can only these permutations be produced?

Analysis Exercise 2

For each of the stack implementations, identify the performance order of magnitude (big-O value)

for the listed operations. Then provide a justification for your big-0 value. D

Operation Array-based Linked

push o]) o()
Justification

pop o() o()
Justification)

clear 0o() o()

Justification

