
Copyright  2010-2016 ARM. All rights reserved. Page 1

Confidential

ARM® Cordio Stack

ARM-EPM-115882 1.0

Stack Porting Guide

Confidential

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 2

Confidential

ARM® Cordio Stack

Porting Guide
Copyright © 2010-2016 ARM. All rights reserved.

Release Information
The following changes have been made to this book:

Document History

Date Issue Confidentiality Change

25 September 2015
-

Confidential
First Wicentric release for 1.1 as 2010-

0014

1 March 2016 A Confidential First ARM release for 1.1

24 August 2016 A Confidential AUSPEX # / API Update 1.2

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this

document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any

form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to

any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the

information: (i) for the purposes of determining whether implementations infringe any third party patents; (ii) for developing technology

or products which avoid any of ARM’s intellectual property; or (iii) as a reference for modifying existing patents or patent applications or

creating any continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for

publication or disclosure to third parties, which compares the performance or functionality of the ARM technology described in this

document with any other products created by you or a third party, without obtaining ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,

IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,

SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or

understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,

HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS

DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this

document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported,

directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers is not intended to

create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without

notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this

document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version

of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2010-2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 3

Confidential

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status
This document is Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with

the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 4

Confidential

Contents

ARM® Cordio Stack 1

1 Preface 6

1.1 About this book 6

1.1.1 Intended audience 6

1.1.2 Using this book 6

1.1.3 Terms and abbreviations 7

1.1.4 Conventions 8

1.1.5 Additional reading 8

1.2 Feedback 8

1.2.1 Feedback on content 8

2 Introduction 10

3 Porting WSF 11

3.1 About WSF 11

3.2 Porting Steps 11

3.3 File Organization 11

3.4 Common Data Types 12

3.5 System Timer Interface 12

3.5.1 Initialization 12

3.5.2 Keeping Time 13

3.5.3 Next Expiration 13

3.6 OS Interfaces 13

3.6.1 Critical Sections and Task Schedule Locking 13

3.6.2 WSF Event Handlers and Target OS Tasks 14

3.6.3 WsfSetEvent() 15

3.6.4 WsfTaskSetReady() 15

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 5

Confidential

3.6.5 WsfTaskMsgQueue() 15

3.6.6 Initialization 16

3.6.7 Servicing Event Handlers 17

3.7 Diagnostics 18

3.8 Security 18

3.8.1 Random Number Generation 18

3.8.2 AES Encryption 18

3.8.3 AES CMAC algorithm 18

3.8.4 ECC Algorithm 19

4 Porting HCI 20

4.1 File Organization 20

4.2 Porting Thin HCI 20

4.2.1 Command Interface 20

4.2.2 Event Interface 20

4.2.3 ACL Data Interface 21

4.3 Porting Transport-Based HCI 21

4.3.1 Sending Data and Commands 21

4.3.2 Receiving Data and Commands 21

A. Revisions Error! Bookmark not defined.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 6

Confidential

1 Preface

This preface introduces the Cordio Stack Porting Guide.

1.1 About this book

This document describes the Cordio stack and provides porting instructions.

1.1.1 Intended audience

This book is written for experienced software engineers who might or might not have experience with

ARM products. Such engineers typically have experience of writing Bluetooth applications but might

have limited experience of the Cordio software stack.

It is also assumed that the readers have access to all necessary tools.

1.1.2 Using this book

This book is organized into the following chapters:

 Introduction

Read this for an overview the software design of the Host Controller Interface (HCI) subsystem

of the Cordio Bluetooth LE protocol stack.

 Design Considerations

Read this for the design considerations of the HCI subsystem.

 System Context

Read this for a description of the context of the HCI subsystem in the Bluetooth LE stack.

 Subsystem Architecture

Read this for an overview of the modules in the HCI subsystem.

 Detailed Design

Read this for a description of the platform and transport-independent portion of the design.

 Detailed Design, Dual Chip

Read this for a description of dual-chip considerations.

 Revisions

Read this chapter for descriptions of the changes between document versions.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 7

Confidential

1.1.3 Terms and abbreviations

For a list of ARM terms, see the ARM glossary.

Terms specific to the Cordio software are listed below:

Term Description

ACL Asynchronous Connectionless data packet

AD Advertising Data

ARQ Automatic Repeat reQuest

ATT Attribute Protocol, also attribute protocol software subsystem

ATTC Attribute Protocol Client software subsystem

ATTS Attribute Protocol Server software subsystem

CCC or CCCD Client Characteristic Configuration Descriptor

CID Connection Identifier

CSRK Connection Signature Resolving Key

DM Device Manager software subsystem

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IRK Identity Resolving Key

JIT Just In Time

L2C L2CAP software subsystem

L2CAP Logical Link Control Adaptation Protocol

LE (Bluetooth) Low Energy

LL Link Layer

LLPC Link Layer Control Protocol

LTK Long Term Key

MITM Man In The Middle pairing (authenticated pairing)

OOB Out Of Band data

SMP Security Manager Protocol, also security manager protocol software subsystem

SMPI Security Manager Protocol Initiator software subsystem

SMPR Security Manager Protocol Responder software subsystem

STK Short Term Key

WSF Wireless Software Foundation software service and porting layer.

http://arminfo.emea.arm.com/help/topic/com.arm.doc.aeg0014g/index.html

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 8

Confidential

1.1.4 Conventions

The following table describes the typographical conventions:

Typographical conventions

Style Purpose

Italic Introduces special terminology, denotes cross-references, and

citations.

bold Highlights interface elements, such as menu names. Denotes

signal names. Also used for terms in descriptive lists, where

appropriate.

MONOSPACE Denotes text that you can enter at the keyboard, such as

commands, file and program names, and source code.

MONOSPACE Denotes a permitted abbreviation for a command or option. You

can enter the underlined text instead of the full command or option

name.

monospace italic Denotes arguments to monospace text where the argument is to be

replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and> Encloses replaceable terms for assembler syntax where they

appear in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical

meanings, that are defined in the ARM
®

 Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN,

and UNPREDICTABLE.

1.1.5 Additional reading

This section lists publications by ARM and by third parties.

See Infocenter for access to ARM documentation.

Other publications

This section lists relevant documents published by third parties:

 Bluetooth SIG, “Specification of the Bluetooth System”, Version 4.2, December 2, 2015.

1.2 Feedback

ARM welcomes feedback on this product and its documentation.

1.2.1 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

http://infocenter.arm.com/

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 9

Confidential

 The title.

 The number, ARM-EPM-115154.

 The page numbers to which your comments apply.

 A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note: ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the

quality of the represented document when used with any other PDF reader.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 10

Confidential

2 Introduction

This document is the porting guide for the Cordio Bluetooth low energy protocol stack.

The porting process typically consists of two main steps:

1. Porting WSF interfaces and services to the target OS and software system.

2. Porting HCI to the target system and writing a transport driver, if applicable.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 11

Confidential

3 Porting WSF

This section describes how to port the Cordio stack.

3.1 About WSF
WSF is a simple OS wrapper, porting layer, and general-purpose software service used by the stack and

embedded software system. The goal of WSF is to stay small and lean, supporting only the basic

services required by the stack. It consists of the following:

 Event handler service with event and message passing.

 Timer service.

 Queue and buffer management service.

 Portable data types.

 Critical sections and task locking.

 Trace and assert diagnostic services.

 Security interfaces for encryption and random number generation.

WSF does not define any tasks but defines some interfaces to tasks. It relies on the target OS to

implement tasks and manage the timer and event handler services from target OS tasks. WSF can also

act as a simple standalone OS in software systems without an existing OS.

For a complete description of the WSF API see the Wireless Software Foundation API Reference

Manual.

3.2 Porting Steps
Porting WSF typically consists of the following steps:

1. Create common data types for the target compiler.

2. Interface to a system timer to receive timer updates.

3. Implement WSF OS wrapper functions and interfaces.

4. Implement WSF diagnostics.

3.3 File Organization
WSF source code files are organized as shown below:

wsf
common
include
generic
<target name>

wsf_assert.h Assert interface

wsf_cs.h Critical section interface

wsf_os.c WSF OS wrapper implementation

wsf_os_int.h Target-specific WSF interface

wsf_trace.h Trace interface

wsf_types.h Common data types

A new directory, typically named after the target system, is created in the WSF directory. This new

directory contains the files required to implement the WSF port.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 12

Confidential

The common and include directories contain platform-independent files that typically do not need to be

modified when porting. The generic directory contains a generic port to ARM Cortex-M CPUs with

WSF acting as a simple standalone OS. Files in this directory may be useful when porting to other

ARM Cortex-M based platforms.

3.4 Common Data Types
The following common data types must be defined in file wsf_types.h:

Table 1 Integer types

Name Description

int8_t 8 bit signed integer

uint8_t 8 bit unsigned integer

int16_t 16 bit signed integer

uint16_t 16 bit unsigned integer

int32_t 32 bit signed integer

uint32_t 32 bit unsigned integer

uint64_t 64 bit unsigned integer

bool_t Boolean integer

Note that these integer data types match the names used in C99. If C99 is used in the target system

then include stdint.h in wsf_types.h instead of creating type definitions for the above types.

In addition, the following macros must be defined in wsf_types.h:

Table 2 Macros in wsf_types

Name Description

NULL 0

TRUE 1

FALSE 0

3.5 System Timer Interface
WSF has a timer service that is used by the protocol stack.

3.5.1 Initialization

The WSF timer service keeps time based on “ticks”. The number of milliseconds per tick is

configurable; recommended values are 10-100ms per tick. The ms per tick value is set via function

WsfTimerInit().

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 13

Confidential

3.5.2 Keeping Time

The target system updates the WSF timer service from the target system’s own timing mechanisms.

Function WsfTimerUpdate() is called to update the WSF timer service with the number of elapsed

ticks.

One way to implement this is to configure a system timer to expire every tick and call

WsfTimerUpdate() when the system timer expires.

3.5.3 Next Expiration

The WSF timer service provides an interface to read the number of ticks until the next WSF timer

expiration, WsfTimerNextExpiration(). Use of this function is optional. This function is useful

when implementing a ‘tickless’ timer port. For example: On sleep, call WsfTimerNextExpiration()

and set a platform timer to expire at this time. On wakeup, call WsfTimerUpdate() with the elapsed

time.

3.6 OS Interfaces

3.6.1 Critical Sections and Task Schedule Locking

WSF uses critical sections and task schedule locking to allow for the stack to operate in a pre-emptive

multitasking environment with interrupts. Critical sections disable interrupts while task schedule

locking prevents a task context switch.

Only certain WSF functions are designed to be called from interrupt context: Buffer management

functions (wsf_buf.h), queue functions (wsf_queue.h), and WsfSetEvent(). Other WSF functions

must be called from task context. Note that all stack API functions must only be called from task

context.

The following critical section macros must be implemented in file wsf_cs.h:

Table 3 Macros in wsf_cs

Name Description

WSF_CS_INIT() Initialize critical section.

WSF_CS_ENTER() Enter a critical section.

WSF_CS_EXIT() Exit a critical section.

The following task schedule locking functions must be implemented:

Table 4 Task schedule locking functions

Name Description

WsfTaskLock() Lock task scheduling.

WsfTaskUnock() Unlock task scheduling.

Critical sections and task schedule locking may not be necessary depending on how WSF and the stack

are used in the target system:

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 14

Confidential

1. If no WSF functions are executed in interrupt context, then the critical section macros can be

defined to call the task schedule locking functions.

2. If the target OS does not use pre-emptive multitasking then the task schedule locking functions

can be implemented as empty functions.

3.6.2 WSF Event Handlers and Target OS Tasks

WSF defines and event handler service that can receive events and messages. An event is an integer bit

mask set to an event handler by WsfSetEvent(). A message is a buffer containing data that is sent to

an event handler by WsfMsgSend(). WSF event handlers must be executed by the target system when

an event handler receives a message, event, or a timer expires for the event handler.

The target system must provide WSF certain interfaces into the target OS task service. These interfaces

are in the form of task event macros and data types defined in file wsf_os_int.h plus certain functions

that the target system must implement: WsfSetEvent(), WsfTaskSetReady() and

WsfTaskMsgQueue().

Certain macros are passed to function WsfTaskSetReady(). The following macros must be defined in

file wsf_os_int.h:

Table 5 Macros in wsf_os_int

Name Example Value Description

WSF_MSG_QUEUE_EVENT 0x01 Message queued for event handler.

WSF_TIMER_EVENT 0x02 Timer expired for event handler.

WSF_HANDLER_EVENT 0x04 Event set for event handler.

WSF allows event handlers to run in separate target OS tasks. The handler ID is used to map a handler

to a task. The following macros must be defined in file wsf_os_int.h:

Table 6 Macros in wsf_os_int

Name Description

WSF_TASK_FROM_ID(handlerID) Derive task from handler ID.

WSF_HANDLER_FROM_ID(handlerID) Derive handler from handler ID.

The following data types must be implemented in file wsf_os_int.h:

Table 7 Types in wsf_os_int

Name Description

wsfHandlerId_t Event handler ID data type.

wsfEventMask_t Event handler event mask data type.

wsfTaskId_t Task ID data type.

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 15

Confidential

wsfTaskEvent_t Task event mask data type.

3.6.3 WsfSetEvent()

This function sets an event for an event handler.

Syntax:

void WsfSetEvent(wsfHandlerId_t handlerId, wsfEventMask_t event)

Where:

 handlerId: Event handler ID.

 event: Event mask.

This function must be implemented by the target system. The implementation of this function typically

sets the passed event value in a data structure for the event handler and then calls WsfTaskSetReady().

An example implementation is shown below:

void WsfSetEvent(wsfHandlerId_t handlerId, wsfEventMask_t event)

{

 WSF_CS_INIT(cs);

 WSF_CS_ENTER(cs);

 wsfOs.task.handlerEventMask[handlerId] |= event;

 WSF_CS_EXIT(cs);

 WsfTaskSetReady(handlerId, WSF_HANDLER_EVENT);

}

3.6.4 WsfTaskSetReady()

This function notifies a target OS task that it is ready to run.

Syntax:

void WsfTaskSetReady(wsfHandlerId_t handlerId, wsfEventMask_t event)

Where:

 handlerId: Event handler ID.

 event: Event mask.

The implementation of this function typically calls a target OS function to set a pending event for the

task.

3.6.5 WsfTaskMsgQueue()

This function returns the message queue used by a given event handler.

Syntax:

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 16

Confidential

wsfQueue_t *WsfTaskMsgQueue(wsfHandlerId_t handlerId)

Where:

 handlerId: Event handler ID.

If a single message queue is used for all event handlers (a typical case) then this function can be

implemented as shown below:

wsfQueue_t *WsfTaskMsgQueue(wsfHandlerId_t handlerId)

{

 /* return global WSF message queue */

 return &(wsfOs.task.msgQueue);

}

3.6.6 Initialization

WSF and the stack require a specific initialization sequence. This sequence is typically implemented in

a target system initialization function that is executed once on system startup. The initialization

sequence initializes WSF services, sets up event handlers, and initializes stack subsystems. An

example initialization sequences is shown below. Note that each event handlers is assigned a unique

ID.

static void mainStackInit(void)

{

 wsfHandlerId_t handlerId;

 /* initialize WSF services */

 WsfSecInit();

 WsfSecAesInit();

 /* initialize HCI */

 handlerId = WsfOsSetNextHandler(HciHandler);

 HciHandlerInit(handlerId);

 /* initialize DM */

 handlerId = WsfOsSetNextHandler(DmHandler);

 DmAdvInit();

 DmConnInit();

 DmConnSlaveInit();

 DmSecInit();

 DmHandlerInit(handlerId);

 /* initialize L2CAP */

 handlerId = WsfOsSetNextHandler(L2cSlaveHandler);

 L2cSlaveHandlerInit(handlerId);

 L2cInit();

 L2cSlaveInit();

 /* initialize ATT */

 handlerId = WsfOsSetNextHandler(AttHandler);

 AttHandlerInit(handlerId);

 AttsInit();

 AttsIndInit();

 /* initialize SMP */

 handlerId = WsfOsSetNextHandler(SmpHandler);

 SmpHandlerInit(handlerId);

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 17

Confidential

 SmprInit();

 /* initialize App Framework */

 handlerId = WsfOsSetNextHandler(AppHandler);

 AppHandlerInit(handlerId);

 /* initialize application */

 handlerId = WsfOsSetNextHandler(FitHandler);

 FitHandlerInit(handlerId);
}

3.6.7 Servicing Event Handlers

WSF event handlers must be executed by the target system when an event handler receives a message,

event, or a timer expires for the event handler. This is typically done from a target OS task or other

dispatcher code that executes when WsfTaskSetReady() is called.

An example implementation for servicing WSF event handlers is shown below:

 if (taskEventMask & WSF_MSG_QUEUE_EVENT)

 {

 /* service message queue */

 while ((pMsg = WsfMsgDeq(&pTask->msgQueue, &handlerId)) != NULL)

 {

 /* execute event handler */

 (*pTask->handler[handlerId])(0, pMsg);

 /* free message buffer */

 WsfMsgFree(pMsg);

 }

 }

 if (taskEventMask & WSF_TIMER_EVENT)

 {

 /* service timers */

 while ((pTimer = WsfTimerServiceExpired(0)) != NULL)

 {

 /* execute event handler */

 (*pTask->handler[pTimer->handlerId])(0, &pTimer->msg);

 }

 }

 if (taskEventMask & WSF_HANDLER_EVENT)

 {

 /* service events */

 for (i = 0; i < WSF_MAX_HANDLERS; i++)

 {

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 18

Confidential

 if ((pTask->eventMask[i] != 0) && (pTask->handler[i] != NULL))

 {

 /* clear event mask */

 WSF_CS_ENTER(cs);

 eventMask = pTask->eventMask[i];

 pTask->eventMask[i] = 0;

 WSF_CS_EXIT(cs);

 /* execute event handler */

 (*pTask->handler[i])(eventMask, NULL);

 }

 }

 }

3.7 Diagnostics
WSF provides macros for interfacing to asserts and trace messages. Assert macros are defined in file

wsf_assert.h. Trace macros are defined in file wsf_trace.h.

The target system must define all the macros in these files. If asserts are trace macros are not used then

these macros can be defined to be empty.

3.8 Security
WSF provides interfaces for the following security functions:

 Random number generations

 AES encryption

 AES CMAC algorithm

 ECC algorithm.

3.8.1 Random Number Generation

Function WsfSecRand() is the interface for random number generation.

The example implementation in /sw/wsf/common/wsf_sec.c uses the standard HCI command for

random number generation. This works well for typical systems that implement standard HCI

commands.

3.8.2 AES Encryption

Function WsfSecAes() is the interface to AES encryption.

The example implementation in /sw/wsf/common/wsf_sec_aes.c uses the standard HCI command

for AES encryption. This works well for typical systems that implement standard HCI commands.

Alternatively this function could be mapped to a hardware or software AES implementation in the

target system.

3.8.3 AES CMAC algorithm

Function WsfSecCmac() is the interface to the AES CMAC algorithm.

The example implementation in /sw/wsf/common/wsf_sec_cmac.c uses the standard HCI command

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 19

Confidential

for AES encryption. This works well for typical systems that implement standard HCI commands.

Alternatively this function could be mapped to a hardware or software AES or CMAC implementation

in the target system.

3.8.4 ECC Algorithm

Functions WsfSecEccGenKey() and WsfSecEccGenSharedSecret() are the interfaces to the ECC

algorithm.

The example implementation in /sw/wsf/common/wsf_sec_ecc_debug.c always returns debug

values instead of actually executing the ECC algorithm. The example implementation in

/sw/wsf/uecc/wsf_sec_ecc.c interfaces to the open source micro-ecc code. For more information

on micro-ecc see https://github.com/kmackay/micro-ecc.

https://github.com/kmackay/micro-ecc

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 20

Confidential

4 Porting HCI

Cordio’s HCI layer is designed to be portable and support different transport and chip configurations.

The porting process depends on the chip configuration: If the stack is ported to a single-chip system

then a “thin HCI” porting process is used. If the stack is ported to a two-chip system with wired HCI

transport then a transport based porting process is used.

4.1 File Organization
The HCI code is organized as follows:

hci configuration-specific hci files

include common interface files

generic common platform-independent files

dual-chip dual-chip platform files

exactle thin HCI port to Cordio link layer

<target name> target-specific implementation

stack
hci platform and configuration-independent hci files

A new directory, typically named after the target system, is created in the HCI directory. This new

directory contains the files required to implement the HCI port.

The other directories contain platform-independent or configuration-independent files that typically do

not need to be modified when porting.

4.2 Porting Thin HCI
The “thin HCI” porting process is used in a single-chip system where the stack and the link layer run on

the same CPU. The porting process involves adapting the stack’s HCI interface to the link layer’s

interface. If the link layer uses a functional interface similar to that defined by the Bluetooth HCI

specification then porting is rather straightforward exercise. There are three parts of the functional

interface: The HCI command interface, event interface, and ACL data interface.

4.2.1 Command Interface

The stack uses a functional interface very similar to the interface defined by the Bluetooth HCI

specification. The details of the stack’s HCI command API are described in the Wireless Software

Foundation API Reference Manual.

Porting the command interface involves implementing the HCI command API functions to call the

target’s link layer or HCI controller API. Depending on the target system implementation, a typical

function may simply directly call the target API function or it may send a message to the link layer

task.

4.2.2 Event Interface

The stack uses an optimized event interface based on the interface defined by the Bluetooth HCI

specification. The details of the stack’s HCI event API are described in the Cordio HCI API Reference

Manual.

Porting the event interface involves executing the HCI event callback with the event IDs and their

associated data structures. The general procedure for interfacing events from the target link layer to the

stack’s HCI callback is as follows:

Cordio Stack Porting Guide

Copyright  2010-2016 ARM. All rights reserved. Page 21

Confidential

1. Copy the link layer event data to a WSF message buffer and queue it to the HCI RX queue.

2. In function hciEvtProcessMsg(), convert link layer event data to stack HCI data types and

execute the HCI event callback.

4.2.3 ACL Data Interface

The stack sends and receives data using WSF buffers containing ACL data packets in the standard

format.

For transmit data, the function HciSendAclData() must be implemented to send ACL data to the

target. The function is responsible for deallocating the buffer after the data is transmitted.

For receive data, a WSF message buffer containing an ACL data packet is queued to the stack’s HCI

RX queue. The stack is responsible for deallocating the buffer.

4.3 Porting Transport-Based HCI
The transport-based porting process is used in a dual-chip system where the CPU running the stack is

connected to a HCI controller chip via a wired interface. If the transport is UART or SPI, then the

porting process involves implementing functions to send and receive data using target system’s driver

interface.

4.3.1 Sending Data and Commands

The target system must implement function hciDrvWrite() to send HCI data and commands. In a

typical implementation this function copies data contained in a WSF buffer to the target driver

interface.

4.3.2 Receiving Data and Commands

Received HCI events and ACL data must be copied into a WSF buffer and passed to function

hciCoreRecv(). This function queues the buffer to the stack. Alternatively, function

hciTrSerialRxIncoming() can be used to reassemble a received byte stream of data into HCI event

and data packets, which are then passed to the stack.

