

 1

RIMAC AUTOMOTIVE CHALLENGE
INSTRUCTIONS FOR STAGE B

1. VEHICLE MODEL
The vehicle model provided in the package has the same parameters as that provided for Stage A. However,
the simulation speed has been improved significantly. The FMU now runs at half the speed of real time with
a step size of 10ms. The model has been optimized to run at this step size and it corresponds to the
communication interval between the platforms on which the model and controller will be implemented. Also,
the outputs are cleaner- related quantities (like velocity in the orthogonal directions) have been collapsed into
vectors.

1.1 Tire Model

Given the significant complexity of the tire model and inexperience of contestants with the Pacejka model, a
new Tire Test FMU has been provided which accepts all relevant tire states (longitudinal speed, angular speed,
slip angle and normal load) as inputs and produces tire rolling radius, forces and moments as outputs, which
allows for more direct use of the tire model and obviates the need for contestants to independently reproduce
it.
Note: The Wheel Radius parameter mentioned in the previous document corresponds to the radius of the
wheel and not the tire. The unloaded radius of the tire can be found in the .tir file and corresponds to
approximately 0.34m. The effective rolling radius is now available as an output from the Tire Test FMU.

1.2 Simplified Vehicle Model

In order to assist contestants, a simplified vehicle model implemented in Simulink has been included in the
package. The chassis, implemented as a MATLAB Function, has three degrees of freedom (longitudinal and
lateral translation and rotation about the vertical axis) and simplified load transfer effects. The new Tire Test
FMU provided with the package is used along with the wheel dynamics implemented using Simulink blocks.
The purpose of this model is solely to demonstrate how a simplified model of the vehicle could be constructed
to replicate the detailed model and has not been parameterized too accurately. Contestants should use their
discretion to modify and tune the simple model to fit their needs.

2. REWARD FUNCTION
The reward function used to evaluate control algorithms in Stage A was defined to assign maximum weight
to vehicle side-slip angle but also included contributions from longitudinal speed and lateral offset. However,
we noticed that contestants optimized for the reward function structure by simply driving slowly along the
edge of the track. To encourage contestants to target the primary objective of the challenge- to sustain high
vehicle side-slip angles through the course of a given circuit- the structure of the reward function has been
modified significantly and is now as follows:

𝑓𝑓(𝑡𝑡) =
1
𝑡𝑡
� (β)2𝑑𝑑𝑡𝑡
𝑡𝑡

0
 𝜷𝜷− 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣 𝑠𝑠𝑖𝑖𝑑𝑑𝑣𝑣𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑣𝑣 (𝑑𝑑𝑣𝑣𝑎𝑎)

The rationale behind this structure is that it is more important to maintain higher sideslip angles- it is a drift
competition after all. Averaging the reward function over time incentivizes maintaining a higher longitudinal
speed as the time taken to complete the circuit would then be lower and conversely avoids a higher reward
function being generated from driving slowly with a low sideslip angle (which is obviously easier to achieve).

 2

3. HARDWARE PLATFORMS
As mentioned in the Challenge Description document, the vehicle model will be simulated on a dSpace
SCALEXIO Hardware-In-the-Loop (HIL) test rig and the control algorithm will be implemented on a dSpace
MicroAutoBox II Rapid Development Platform (RDP). More information regarding the MicroAutoBox II can be
found here. The two platforms will communicate via a CAN bus as defined below.

3.1 CAN BUS

Fig: Transmitted signals from MABX (MicroAutoBox) and SCLX (SCALEXIO)

The BUS.dbc file provided contains the definition of the CAN BUS for communication between the
MicroAutoBox and the SCALEXIO. The vehicle model, running on SCALEXIO, transmits the model states to the
MicroAutoBox and receives the actuation commands from it, as depicted in the figure above.

To transmit commands to the vehicle model and receive states from it, you must use the RTICAN Transmit
and RTICAN Receive blocks from the dSPACE RTI CAN blockset in your Simulink model of the control algorithm.
The RTI CAN library would be installed during installation of the dSpace software suite. Make sure to select
the RTI1401 platform in Matlab during startup after installation of the dSpace library. An example model
demonstrating CAN communication has been included in the package.

3.2 Exporting Your Control Algorithm

Control algorithms should be exported to C code which is executable on the RDP using Simulink Coder. This
process generates a number of files, all of which are necessary to program and monitor the MicroAutoBox II
platform. The files (when using the default “solution.slx” model name) are as follows:

- solution.map
- solution.ppc
- solution.ppc.hex
- solution.ppc.srec
- solution.sdf
- solution.trc
- solution.trz

Contestants can send their compiled control algorithms (a .zip file containing all the files above) to the Rimac
Automotive Challenge Team through WeTransfer at any time during the week. The Rimac Automotive
Challenge team will test the submitted code on a MicroAutoBox II platform every Friday, and report the results
(execution time, faults generated) to the submitting team.

3.3 dSpace Software Suite

To install the dSpace software suite, follow the instructions available here.
The Ticket Group ID is: ACT-8E933-9229D-084F3-7A654-0303D.

https://www.dspace.com/shared/data/pdf/2018/dSPACE_MicroAutoBoxII-Brochure_2018-01_180418.pdf
https://www.dspace.com/files/pdf1/nlt_dongle_uc1.pdf

	RIMAC AUTOMOTIVE CHALLENGE
	INSTRUCTIONS FOR STAGE B
	1. VEHICLE MODEL
	1.1 Tire Model
	1.2 Simplified Vehicle Model

	2. REWARD FUNCTION
	3. HARDWARE PLATFORMS
	3.1 CAN BUS
	3.2 Exporting Your Control Algorithm
	3.3 dSpace Software Suite

