
Stanford typed dependencies manual

Marie-Catherine de Marneffe and Christopher D. Manning

September 2008
Revised for the Stanford Parser v. 3.3 in December 2013

1 Introduction

The Stanford typed dependencies representation was designed to provide a simple description

of the grammatical relationships in a sentence that can easily be understood and effectively

used by people without linguistic expertise who want to extract textual relations. In particular,

rather than the phrase structure representations that have long dominated in the computational

linguistic community, it represents all sentence relationships uniformly as typed dependency

relations. That is, as triples of a relation between pairs of words, such as “the subject of

distributes is Bell.” Our experience is that this simple, uniform representation is quite accessible

to non-linguists thinking about tasks involving information extraction from text and is effective

in relation extraction applications.

Here is an example sentence:

Bell, based in Los Angeles, makes and distributes electronic, computer and building

products.

For this sentence, the Stanford Dependencies (SD) representation is:

nsubj(makes-8, Bell-1)

nsubj(distributes-10, Bell-1)

vmod(Bell-1, based-3)

nn(Angeles-6, Los-5)

prep in(based-3, Angeles-6)

root(ROOT-0, makes-8)

conj and(makes-8, distributes-10)

amod(products-16, electronic-11)

conj and(electronic-11, computer-13)

amod(products-16, computer-13)

conj and(electronic-11, building-15)

amod(products-16, building-15)

dobj(makes-8, products-16)

dobj(distributes-10, products-16)

These dependencies map straightforwardly onto a directed graph representation, in which

words in the sentence are nodes in the graph and grammatical relations are edge labels. Figure 1

gives the graph representation for the example sentence above.

1

Bell

based

 partmod

distributes

nsubj

products

dobj

makes

nsubj

 conj_and

 dobj

Angeles

 prep_in

Los

 nn

electronic

 amod

building

amod

computer

amod

 conj_andconj_and

Figure 1: Graphical representation of the Stanford Dependencies for the sentence: Bell, based

in Los Angeles, makes and distributes electronic, computer and building products.

Document overview: This manual provides documentation about the set of dependencies

defined for English. (There is also a Stanford Dependency representation available for Chinese,

but it is not further discussed here.) Section 2 of the manual defines the relations and the

taxonomic hierarchy over them appears in section 3. This is then followed by a description of

the several variant dependency representations available, aimed at different use cases (section 4),

some details of the software available for generating Stanford Dependencies (section 5), and

references to further discussion and use of the SD representation (section 6).

2 Definitions of the Stanford typed dependencies

The current representation contains approximately 50 grammatical relations (depending slightly

on the options discussed in section 4). The dependencies are all binary relations: a grammatical

relation holds between a governor (also known as a regent or a head) and a dependent. The

grammatical relations are defined below, in alphabetical order according to the dependency’s

abbreviated name (which appears in the parser output). The definitions make use of the Penn

Treebank part-of-speech tags and phrasal labels.

acomp: adjectival complement

An adjectival complement of a verb is an adjectival phrase which functions as the complement

(like an object of the verb).

“She looks very beautiful” acomp(looks, beautiful)

advcl : adverbial clause modifier

An adverbial clause modifier of a VP or S is a clause modifying the verb (temporal clause,

consequence, conditional clause, purpose clause, etc.).

2

“The accident happened as the night was falling” advcl(happened, falling)

“If you know who did it, you should tell the teacher” advcl(tell, know)

“He talked to him in order to secure the account” advcl(talked, secure)

advmod : adverb modifier

An adverb modifier of a word is a (non-clausal) adverb or adverb-headed phrase that serves to

modify the meaning of the word.

“Genetically modified food” advmod(modified, genetically)

“less often” advmod(often, less)

agent : agent

An agent is the complement of a passive verb which is introduced by the preposition “by” and

does the action. This relation only appears in the collapsed dependencies, where it can replace

prep by, where appropriate. It does not appear in basic dependencies output.

“The man has been killed by the police” agent(killed, police)

“Effects caused by the protein are important” agent(caused, protein)

amod : adjectival modifier

An adjectival modifier of an NP is any adjectival phrase that serves to modify the meaning of

the NP.

“Sam eats red meat” amod(meat, red)

“Sam took out a 3 million dollar loan”amod(loan, dollar)

“Sam took out a $ 3 million loan”amod(loan, $)

appos: appositional modifier

An appositional modifier of an NP is an NP immediately to the right of the first NP that serves

to define or modify that NP. It includes parenthesized examples, as well as defining abbreviations

in one of these structures.

Sam , my brother , arrived

appos

Bill (John ’s cousin)

appos

The Australian Broadcasting Corporation (ABC)

appos

aux : auxiliary

An auxiliary of a clause is a non-main verb of the clause, e.g., a modal auxiliary, or a form of

“be”, “do” or “have” in a periphrastic tense.

Reagan has died

aux

He should leave

aux

auxpass: passive auxiliary

A passive auxiliary of a clause is a non-main verb of the clause which contains the passive

information.

3

“Kennedy has been killed” auxpass(killed, been)

aux (killed,has)

“Kennedy was/got killed” auxpass(killed, was/got)

cc: coordination

A coordination is the relation between an element of a conjunct and the coordinating conjunc-

tion word of the conjunct. (Note: different dependency grammars have different treatments of

coordination. We take one conjunct of a conjunction (normally the first) as the head of the

conjunction.) A conjunction may also appear at the beginning of a sentence. This is also called

a cc, and dependent on the root predicate of the sentence.

“Bill is big and honest” cc(big, and)

“They either ski or snowboard” cc(ski, or)

“And then we left.” cc(left, And)

ccomp: clausal complement

A clausal complement of a verb or adjective is a dependent clause with an internal subject

which functions like an object of the verb, or adjective. Clausal complements for nouns are

limited to complement clauses with a subset of nouns like “fact” or “report”. We analyze them

the same (parallel to the analysis of this class as “content clauses” in Huddleston and Pullum

2002). Such clausal complements are usually finite (though there are occasional remnant English

subjunctives).

“He says that you like to swim” ccomp(says, like)

“I am certain that he did it” ccomp(certain, did)

“I admire the fact that you are honest” ccomp(fact, honest)

conj : conjunct

A conjunct is the relation between two elements connected by a coordinating conjunction, such

as “and”, “or”, etc. We treat conjunctions asymmetrically: The head of the relation is the first

conjunct and other conjunctions depend on it via the conj relation.

“Bill is big and honest” conj (big, honest)

“They either ski or snowboard” conj (ski, snowboard)

cop: copula

A copula is the relation between the complement of a copular verb and the copular verb. (We

normally take a copula as a dependent of its complement; see the discussion in section 4.)

“Bill is big” cop(big, is)

“Bill is an honest man” cop(man, is)

csubj : clausal subject

A clausal subject is a clausal syntactic subject of a clause, i.e., the subject is itself a clause. The

4

governor of this relation might not always be a verb: when the verb is a copular verb, the root

of the clause is the complement of the copular verb. In the two following examples, “what she

said” is the subject.

“What she said makes sense” csubj (makes, said)

“What she said is not true” csubj (true, said)

csubjpass: clausal passive subject

A clausal passive subject is a clausal syntactic subject of a passive clause. In the example below,

“that she lied” is the subject.

“That she lied was suspected by everyone” csubjpass(suspected, lied)

dep: dependent

A dependency is labeled as dep when the system is unable to determine a more precise depen-

dency relation between two words. This may be because of a weird grammatical construction,

a limitation in the Stanford Dependency conversion software, a parser error, or because of an

unresolved long distance dependency.

“Then, as if to show that he could, . . . ” dep(show, if)

det : determiner

A determiner is the relation between the head of an NP and its determiner.

“The man is here” det(man, the)

“Which book do you prefer?” det(book, which)

discourse: discourse element

This is used for interjections and other discourse particles and elements (which are not clearly

linked to the structure of the sentence, except in an expressive way). We generally follow

the guidelines of what the Penn Treebanks count as an INTJ. They define this to include:

interjections (oh, uh-huh, Welcome), fillers (um, ah), and discourse markers (well, like, actually,

but not you know).

Iguazu is in Argentina :)
discourse

dobj : direct object

The direct object of a VP is the noun phrase which is the (accusative) object of the verb.

“She gave me a raise” dobj (gave, raise)

“They win the lottery” dobj (win, lottery)

expl : expletive

This relation captures an existential “there”. The main verb of the clause is the governor.

5

“There is a ghost in the room” expl(is, There)

goeswith: goes with

This relation links two parts of a word that are separated in text that is not well edited. We

follow the treebank: The GW part is the dependent and the head is in some sense the “main”

part, often the second part.

They come here with out legal permission

goeswith

iobj : indirect object

The indirect object of a VP is the noun phrase which is the (dative) object of the verb.

“She gave me a raise” iobj (gave, me)

mark : marker

A marker is the word introducing a finite clause subordinate to another clause. For a complement

clause, this will typically be “that” or “whether”. For an adverbial clause, the marker is typically

a preposition like “while” or “although”. The mark is a dependent of the subordinate clause

head.

Forces engaged in fighting after insurgents attacked

mark

He says that you like to swim

mark

mwe: multi-word expression

The multi-word expression (modifier) relation is used for certain multi-word idioms that behave

like a single function word. It is used for a closed set of dependencies between words in common

multi-word expressions for which it seems difficult or unclear to assign any other relationships.

At present, this relation is used inside the following expressions: rather than, as well as, instead

of, such as, because of, instead of, in addition to, all but, such as, because of, instead of, due to.

The boundaries of this class are unclear; it could grow or shrink a little over time.

“I like dogs as well as cats” mwe(well, as)

mwe(well, as)

“He cried because of you” mwe(of, because)

neg : negation modifier

The negation modifier is the relation between a negation word and the word it modifies.

“Bill is not a scientist” neg(scientist, not)

“Bill doesn’t drive” neg(drive, n’t)

6

nn: noun compound modifier

A noun compound modifier of an NP is any noun that serves to modify the head noun. (Note

that in the current system for dependency extraction, all nouns modify the rightmost noun of

the NP – there is no intelligent noun compound analysis. This is likely to be fixed once the

Penn Treebank represents the branching structure of NPs.)

“Oil price futures” nn(futures, oil)

nn(futures, price)

npadvmod : noun phrase as adverbial modifier

This relation captures various places where something syntactically a noun phrase (NP) is used

as an adverbial modifier in a sentence. These usages include: (i) a measure phrase, which

is the relation between the head of an ADJP/ADVP/PP and the head of a measure phrase

modifying the ADJP/ADVP; (ii) noun phrases giving an extent inside a VP which are not

objects; (iii) financial constructions involving an adverbial or PP-like NP, notably the following

construction $5 a share, where the second NP means “per share”; (iv) floating reflexives; and

(v) certain other absolutive NP constructions. A temporal modifier (tmod) is a subclass of

npadvmod which is distinguished as a separate relation.

“The director is 65 years old” npadvmod(old, years)

“6 feet long” npadvmod(long, feet)

“Shares eased a fraction” npadvmod(eased, fraction)

“IBM earned $ 5 a share” npadvmod($, share)

“The silence is itself significant” npadvmod(significant, itself)

“90% of Australians like him, the most of any country” npadvmod(like, most)

nsubj : nominal subject

A nominal subject is a noun phrase which is the syntactic subject of a clause. The governor of

this relation might not always be a verb: when the verb is a copular verb, the root of the clause

is the complement of the copular verb, which can be an adjective or noun.

“Clinton defeated Dole” nsubj (defeated, Clinton)

“The baby is cute” nsubj (cute, baby)

nsubjpass: passive nominal subject

A passive nominal subject is a noun phrase which is the syntactic subject of a passive clause.

“Dole was defeated by Clinton” nsubjpass(defeated, Dole)

num: numeric modifier

A numeric modifier of a noun is any number phrase that serves to modify the meaning of the

noun with a quantity.

“Sam ate 3 sheep” num(sheep, 3)

“Sam spent forty dollars” num(dollars, 40)

“Sam spent $ 40” num($, 40)

7

number : element of compound number

An element of compound number is a part of a number phrase or currency amount. We regard

a number as a specialized kind of multi-word expression.

“I have four thousand sheep” number(thousand, four)

“I lost $ 3.2 billion” number(billion, 3.2)

parataxis: parataxis

The parataxis relation (from Greek for “place side by side”) is a relation between the main verb

of a clause and other sentential elements, such as a sentential parenthetical, a clause after a “:”

or a “;”, or two sentences placed side by side without any explicit coordination or subordination.

“The guy, John said, left early in the morning” parataxis(left, said)

“Let’s face it we’re annoyed” parataxis(Let, annoyed)

pcomp: prepositional complement

This is used when the complement of a preposition is a clause or prepositional phrase (or

occasionally, an adverbial phrase). The prepositional complement of a preposition is the head

of a clause following the preposition, or the preposition head of the following PP.

“We have no information on whether users are at risk” pcomp(on, are)

“They heard about you missing classes” pcomp(about, missing)

pobj : object of a preposition

The object of a preposition is the head of a noun phrase following the preposition, or the adverbs

“here” and “there”. (The preposition in turn may be modifying a noun, verb, etc.) Unlike the

Penn Treebank, we here define cases of VBG quasi-prepositions like “including”, “concerning”,

etc. as instances of pobj. (The preposition can be tagged a FW for “pace”, “versus”, etc. It

can also be called a CC – but we don’t currently handle that and would need to distinguish

from conjoined prepositions.) In the case of preposition stranding, the object can precede the

preposition (e.g., “What does CPR stand for?”).

“I sat on the chair” pobj (on, chair)

poss: possession modifier

The possession modifier relation holds between the head of an NP and its possessive determiner,

or a genitive ’s complement.

“their offices” poss(offices, their)

“Bill’s clothes” poss(clothes, Bill)

possessive: possessive modifier

The possessive modifier relation appears between the head of an NP and the genitive ’s.

8

“Bill’s clothes” possessive(John, ’s)

preconj : preconjunct

A preconjunct is the relation between the head of an NP and a word that appears at the beginning

bracketing a conjunction (and puts emphasis on it), such as “either”, “both”, “neither”).

“Both the boys and the girls are here” preconj (boys, both)

predet : predeterminer

A predeterminer is the relation between the head of an NP and a word that precedes and modifies

the meaning of the NP determiner.

“All the boys are here” predet(boys, all)

prep: prepositional modifier

A prepositional modifier of a verb, adjective, or noun is any prepositional phrase that serves to

modify the meaning of the verb, adjective, noun, or even another prepositon. In the collapsed

representation, this is used only for prepositions with NP complements.

“I saw a cat in a hat” prep(cat, in)

“I saw a cat with a telescope” prep(saw, with)

“He is responsible for meals” prep(responsible, for)

prepc: prepositional clausal modifier

In the collapsed representation (see section 4), a prepositional clausal modifier of a verb, adjec-

tive, or noun is a clause introduced by a preposition which serves to modify the meaning of the

verb, adjective, or noun.

“He purchased it without paying a premium” prepc without(purchased, paying)

prt : phrasal verb particle

The phrasal verb particle relation identifies a phrasal verb, and holds between the verb and its

particle.

“They shut down the station” prt(shut, down)

punct : punctuation

This is used for any piece of punctuation in a clause, if punctuation is being retained in the

typed dependencies. By default, punctuation is not retained in the output.

“Go home!” punct(Go, !)

9

quantmod : quantifier phrase modifier

A quantifier modifier is an element modifying the head of a QP constituent. (These are modifiers

in complex numeric quantifiers, not other types of “quantification”. Quantifiers like “all” become

det.)

“About 200 people came to the party” quantmod(200, About)

rcmod : relative clause modifier

A relative clause modifier of an NP is a relative clause modifying the NP. The relation points

from the head noun of the NP to the head of the relative clause, normally a verb.

“I saw the man you love” rcmod(man, love)

“I saw the book which you bought” rcmod(book,bought)

ref : referent

A referent of the head of an NP is the relative word introducing the relative clause modifying

the NP.

“I saw the book which you bought” ref (book, which)

root : root

The root grammatical relation points to the root of the sentence. A fake node “ROOT” is used

as the governor. The ROOT node is indexed with “0”, since the indexation of real words in the

sentence starts at 1.

“I love French fries.” root(ROOT, love)

“Bill is an honest man” root(ROOT, man)

tmod : temporal modifier

A temporal modifier (of a VP, NP, or an ADJP is a bare noun phrase constituent that serves

to modify the meaning of the constituent by specifying a time. (Other temporal modifiers are

prepositional phrases and are introduced as prep.)

“Last night, I swam in the pool” tmod(swam, night)

vmod : reduced non-finite verbal modifier

A reduced non-finite verbal modifier is a participial or infinitive form of a verb heading a phrase

(which may have some arguments, roughly like a VP). These are used to modify the meaning of

an NP or another verb. They are not core arguments of a verb or full finite relative clauses.

“Points to establish are . . . ” vmod(points, establish)

“I don’t have anything to say to you” vmod(anything, say)

“Truffles picked during the spring are tasty” vmod(truffles, picked)

“Bill tried to shoot, demonstrating his incompetence” vmod(shoot, demonstrating)

10

xcomp: open clausal complement

An open clausal complement (xcomp) of a verb or an adjective is a predicative or clausal com-

plement without its own subject. The reference of the subject is necessarily determined by an

argument external to the xcomp (normally by the object of the next higher clause, if there is one,

or else by the subject of the next higher clause. These complements are always non-finite, and

they are complements (arguments of the higher verb or adjective) rather than adjuncts/modifiers,

such as a purpose clause. The name xcomp is borrowed from Lexical-Functional Grammar.

“He says that you like to swim” xcomp(like, swim)

“I am ready to leave” xcomp(ready, leave)

“Sue asked George to respond to her offer” xcomp(ask, respond)

“I consider him a fool” xcomp(consider, fool)

“I consider him honest” xcomp(consider, honest)

xsubj : controlling subject

A controlling subject is the relation between the head of a open clausal complement (xcomp)

and the external subject of that clause. This is an additional dependency, not a basic depedency.

“Tom likes to eat fish” xsubj (eat, Tom)

3 Hierarchy of typed dependencies

The grammatical relations defined in the above section stand in a hierarchy. The most generic

grammatical relation, dependent (dep), will be used when a more precise relation in the hierarchy

does not exist or cannot be retrieved by the system.

root - root

dep - dependent

aux - auxiliary

auxpass - passive auxiliary

cop - copula

arg - argument

agent - agent

comp - complement

acomp - adjectival complement

ccomp - clausal complement with internal subject

xcomp - clausal complement with external subject

obj - object

dobj - direct object

iobj - indirect object

pobj - object of preposition

subj - subject

nsubj - nominal subject

nsubjpass - passive nominal subject

11

csubj - clausal subject

csubjpass - passive clausal subject

cc - coordination

conj - conjunct

expl - expletive (expletive “there”)

mod - modifier

amod - adjectival modifier

appos - appositional modifier

advcl - adverbial clause modifier

det - determiner

predet - predeterminer

preconj - preconjunct

vmod - reduced, non-finite verbal modifier

mwe - multi-word expression modifier

mark - marker (word introducing an advcl or ccomp

advmod - adverbial modifier

neg - negation modifier

rcmod - relative clause modifier

quantmod - quantifier modifier

nn - noun compound modifier

npadvmod - noun phrase adverbial modifier

tmod - temporal modifier

num - numeric modifier

number - element of compound number

prep - prepositional modifier

poss - possession modifier

possessive - possessive modifier (’s)

prt - phrasal verb particle

parataxis - parataxis

punct - punctuation

ref - referent

sdep - semantic dependent

xsubj - controlling subject

4 Different styles of dependency representation

Five variants of the typed dependency representation are available in the dependency extraction

system provided with the Stanford parser. The representations follow the same format. In the

plain text format, a dependency is written as abbreviated relation name(governor, dependent)

where the governor and the dependent are words in the sentence to which a number indicating

the position of the word in the sentence is appended.1 The parser also provides an XML format

which captures the same information. The differences between the five formats are that they

1In some cases, an apostrophe is added after the word position number: see section 4.6 for more details.

12

range from a more surface-oriented representation, where each token appears as a dependent in

a tree, to a more semantically interpreted representation where certain word relationships, such

as prepositions, are represented as dependencies, and the set of dependencies becomes a possibly

cyclic graph.

4.1 Basic

The basic typed dependencies use the dependencies defined in section 2, and form a tree struc-

ture. That is, there are no crossing dependencies. This is also referred to as a projective

dependency structure. Each word in the sentence (except the head of the sentence) is the de-

pendent of one other word. For the sentence, “Bell, a company which is based in LA, makes

and distributes computer products.”, the basic typed dependencies will be:

nsubj(makes-11, Bell-1)

det(company-4, a-3)

appos(Bell-1, company-4)

nsubjpass(based-7, which-5)

auxpass(based-7, is-6)

rcmod(company-4, based-7)

prep(based-7, in-8)

pobj(in-8, LA-9)

root(ROOT-0, makes-11)

cc(makes-11, and-12)

conj(makes-11, distributes-13)

nn(products-15, computer-14)

dobj(makes-11, products-15)

4.2 Collapsed dependencies

In the collapsed representation, dependencies involving prepositions, conjuncts, as well as infor-

mation about the referent of relative clauses are collapsed to get direct dependencies between

content words. This “collapsing” is often useful in simplifying patterns in relation extraction

applications. For instance, the dependencies involving the preposition “in” in the above example

will be collapsed into one single relation:

prep(based-7, in-8)

pobj(in-8, LA-9)

will become

prep in(based-7, LA-9)

Moreover, additional dependencies are considered, even ones that break the tree structure (turn-

ing the dependency structure into a directed graph) as well as non-projective dependencies. So

in the above example, the following relation will be added:

ref(company-4, which-5)

That relation does not appear in the basic representation since it creates a cycle with the rcmod

and nsubjpass relations. Relations that break the tree structure are the ones taking into account

elements from relative clauses and their antecedents (as shown in this example), the controlling

(xsubj) relations, and the (pobj) relation in the case of preposition stranding.

13

according to as per compared to instead of preparatory to

across from as to compared with irrespective of previous to

ahead of aside from due to next to prior to

along with away from depending on near to pursuant to

alongside of based on except for off of regardless of

apart from because of exclusive of out of subsequent to

as for close by contrary to outside of such as

as from close to followed by owing to thanks to

as of contrary to inside of preliminary to together with

Table 1: List of two-word prepositions that the system can collapse.

English has some very common multi-word constructions that function like prepositions.

These are also collapsed as prepositional relations. At the moment, the system handles the

multi-word prepositions listed in Tables 1 and 2.

The same happens for dependencies involving conjunction:

cc(makes-11, and-12)

conj(makes-11, distributes-13)

become

conj and(makes-11, distributes-13)

A few variant conjunctions for “and (not)” are collapsed together in this representation as shown

in Table 3.

The information about the antecedent of the relative clause (ref(company-4, which-5)) will

serve to expand the following dependency:

nsubjpass(based-7, which-5)

becomes

nsubjpass(based-7, company-4)

In the end the collapsed dependencies that the system gives you for the sentence are:

nsubj(makes-11, Bell-1)

det(company-4, a-3)

appos(Bell-1, company-4)

nsubjpass(based-7, company-4)

auxpass(based-7, is-6)

rcmod(company-4, based-7)

prep_in(based-7, LA-9)

root(ROOT-0, makes-11)

conj_and(makes-11, distributes-13)

nn(products-15, computer-14)

dobj(makes-11, products-15)

14

by means of in case of in place of on behalf of with respect to

in accordance with in front of in spite of on top of

in addition to in lieu of on account of with regard to

Table 2: List of three-word prepositions that the system can collapse.

Mapped to

conj and as well as not to mention but also &

conj negcc but not instead of rather than but rather

Table 3: Mapping of select conjunct relations in the collapsed representation.

4.3 Collapsed dependencies with propagation of conjunct dependencies

When there is a conjunction, you can also get propagation of the dependencies involving the

conjuncts. In the sentence here, this propagation should add two dependencies to the collapsed

representation; due to the conjunction between the verbs “makes” and “distributes”, the subject

and object relations that exist on the first conjunct (“makes”) should be propagated to the second

conjunct (“distributes”):

nsubj(distributes-13, Bell-1)

dobj(distributes-13, products-15)

However, at present, our converter handles this imperfectly and only generates the first of these

two dependencies (in general, it is hard to determine if object dependencies should be distributed

or not in English).

Since this representation is an extension of the collapsed dependencies, it does not guarantee

a tree structure.

4.4 Collapsed dependencies preserving a tree structure

In this representation, dependencies which do not preserve the tree structure are omitted. As

explained above, this concerns relations between elements of a relative clause and its antecedent,

as well as the controlling subject relation (xsubj), and the object of preposition (pobj) in the

case of preposition stranding. This also does not allow propagation of conjunct dependencies.

In our example, the dependencies in this representation are actually identical to the ones in the

collapsed representation:

nsubj(makes-11, Bell-1)

det(company-4, a-3)

appos(Bell-1, company-4)

nsubjpass(based-7, which-5)

auxpass(based-7, is-6)

rcmod(company-4, based-7)

prep_in(based-7, LA-9)

root(ROOT-0, makes-11)

conj_and(makes-11, distributes-13)

nn(products-15, computer-14)

15

dobj(makes-11, products-15)

4.5 Non-collapsed dependencies

This representation gives the basic dependencies as well as the extra ones (which break the tree

structure), without any collapsing or propagation of conjuncts. There are options to get the

extra dependencies separated from the basic dependencies (see section 5). At print time, the

dependencies in this representation can thus look as follows:

nsubj(makes-11, Bell-1)

det(company-4, a-3)

appos(Bell-1, company-4)

nsubjpass(based-7, which-5)

auxpass(based-7, is-6)

rcmod(company-4, based-7)

prep(based-7, in-8)

pobj(in-8, LA-9)

root(ROOT-0, makes-11)

cc(makes-11, and-12)

conj(makes-11, distributes-13)

nn(products-15, computer-14)

dobj(makes-11, products-15)

======

ref(company-4, which-5)

4.6 Alteration of the sentence semantics

In some cases, collapsing relations introduces a slight alteration of the semantics of the sentence.

In all the representation styles involving collapsing, the two following phenomena may appear.

Introduction of copy nodes marked with an apostrophe. A copy node will be introduced

in the case of PP conjunction as in “Bill went over the river and through the woods”. In this

example, the two prepositions “over” and “through” are conjoined and governed by the verb

“went”. To avoid disjoint subgraphs when collapsing the relations (preposition and conjunction),

sentences like this are transformed into VP coordination, which requires making a copy of the

word “went”. A copy node will be marked with one or more apostrophes in the plain text

output or by a copy attribute in the XML output. This gives the following representation,

which corresponds to a sentence like “Bill went over the river and went through the woods”:

prep over(went-2, river-5)

prep through(went-2’, woods-10)

conj and(went-2, went-2’)

Distortion in governors of preposition modifiers. Another instance where collapsing sac-

rifices some linguistic fidelity is the case of preposition modifiers. When turning the preposition

into a relation, the preposition does not appear as a word of the sentence anymore. Therefore

preposition modifiers become dependent on the head of the clause in which they appear, and

16

not on the preposition itself. In He left his office just before lunch time, just will be an adverbial

modifier of the verb left. This induces some distortion in the exact semantics of the sentence.

4.7 The treatment of copula verbs

The design philosophy of SD has been to maximize dependencies between content words, and so

we normally regard a copula verb like be as an auxiliary modifier, even when its complement is an

adjective or predicative noun (see the references in section 6 for more discussion and motivation).

However, some people do not like this because then the head of some sentences is no longer a

verb. In the dependency conversion software, you can ask for the copula to remain the head

when its complement is an adjective or noun by giving the flag -makeCopulaHead. Uses of the

verb be as in auxiliary in passives and progressives will still be treated as a non-head auxiliary.

4.8 Comparison of the representation styles

To facilitate comparison, the table below shows the dependencies for the four variants for the

example sentence “Bell, a company which is based in LA, makes and distributes computer

products”. The “non-collapsed” variant (see section 4.5) contains all the relations in the “basic”

variant plus one extra dependency: ref(company-4, which-5).

basic collapsed propagation collapsed tree

nsubj(makes, Bell) nsubj(makes, Bell) nsubj(makes, Bell) nsubj(makes, Bell)

nsubj(distributes, Bell)

det(company, a) det(company, a) det(company, a) det(company, a)

appos(Bell, company) appos(Bell, company) appos(Bell, company) appos(Bell, company)

nsubjpass(based, which) nsubjpass(based, company) nsubjpass(based, company) nsubjpass(based, which)

auxpass(based, is) auxpass(based, is) auxpass(based, is) auxpass(based, is-)

rcmod(company, based) rcmod(company, based) rcmod(company, based) rcmod(company, based)

prep(based, in)

prep in(based, LA) prep in(based, LA) prep in(based, LA)

pobj(in, LA)

root(ROOT, makes) root(ROOT, makes) root(ROOT, makes) root(ROOT, makes)

cc(makes, and)

conj and(makes, distributes) conj and(makes, distributes) conj and(makes, distributes)

conj(makes, distributes)

nn(products, computer) nn(products, computer) nn(products, computer) nn(products, computer)

dobj(makes, products) dobj(makes, products) dobj(makes, products) dobj(makes, products)

4.9 Graph-theoretic properties

Dependency syntax representations are naturally thought of as “directed graphs”, but some of

the precise formal properties of Stanford dependencies graphs can surprise people, so here we

summarize the main graph-theoretic properties. The unusual properties are all things that occur

with relative clauses. A summary of the properties is shown in table 4. To cover the collapsed

representations, you need what is commonly referred to as a labeled, directed multigraph.

The collapsed and CCprocessed dependencies are not a DAG. The graphs can contain small

cycles between two nodes (only). These don’t seem eliminable given the current representational

choices. They occur with relative clauses such as the woman who introduced you. The cycles

occur once you wish to represent the referent of who. In the basic plus extras representation,

17

basic collapsed CCprocessed collapsed tree basic plus extras

Connected? Yes Yes Yes Yes Yes

All tokens are nodes? Yes No No No Yes

Rooted? Yes Yes Yes Yes Yes

Acyclic Yes No No Yes Yes

Multigraph No No No No Yes

Tree Yes No No Yes No

Self-loops? No No No No No

Table 4: Graph-theoretic properties of different versions of SD graphs.

you get rcmod(woman, introduced), nsubj (introduced, who), and ref (woman, who).2 In the

collapsing process, ref arcs are collapsed, and so there is then a two node cycle: rcmod(woman,

introduced) and nsubj (introduced, woman). These cycles can occur at the “top” of the graph

when an NP is the head of the sentence, given the treatment of copula verbs (as in She is the

woman who introduced me.). This used to mean that the dependency graph didn’t have a clear

root. This was fixed after version 1.6.8 by explicitly adding a root arc to the representation.

There can be multiple arcs with the same label from a node. For instance, this occurs when

a noun has several adjective modifiers, each of which gets an amod relation, as in its third

consecutive monthly decline.

In the basic plus extras representation, a word can be the dependent of two different words.

For example, a relative word will be a ref of the head of the noun phrase it modifies and will

have a role in the relative clause. For example you might get both the arcs ref (researchers-5,

who-6) and nsubj (studied-7, who-6). You can even get two arcs between the same pair of words,

though these normally result from bugs in the converter.

All graphs should be connected (if it’s not, it’s a bug!). There are no self-loops in the graphs.

5 In practice

In practice, two classes can be used to get the typed dependencies of a sentence using the code

in the Stanford parser (downloadable at http://nlp.stanford.edu/software/lex-parser.shtml).

? edu.stanford.nlp.parser.lexparser.LexicalizedParser

If you need to parse texts and want to get different formatting options for the parse tree, you

should use this class. To get the dependencies, add typedDependencies in the -outputFormat

option. By default, this will give you collapsed dependencies with propagation of conjunct

dependencies. If you want another representation, specify it in the -outputFormatOptions

using the following commands according to the type of dependency representation you want:

basicDependencies Basic dependencies.

collapsedDependencies Collapsed dependencies (not necessarily a tree structure).

2Arguably, that third dependency should already have been represented the other way around as ref (who,

woman), giving a three node cycle, but it wasn’t.

18

CCPropagatedDependencies Collapsed dependencies with propagation of conjunct dependen-

cies (not necessarily a tree structure). [This representation is the default, if no option is

specified.]

treeDependencies Collapsed dependencies that preserve a tree structure.

nonCollapsedDependencies Non-collapsed dependencies: basic dependencies as well as the

extra ones which do not preserve a tree structure.

nonCollapsedDependenciesSeparated Non-collapsed dependencies where the basic dependen-

cies are separated from the extra ones (by “======”).

You should also use the -retainTmpSubcategories option to get best performance in recogniz-

ing temporal dependencies. In the following command, file.txt contains your input sentences.

(With this command-line, the parser will attempt to tokenize and sentence-break them. There

are options to the parser to specify that this has already been done.) The penn option will also

give you the context-free phrase structure grammar representation of the sentences.

Command line example:

java -mx200m edu.stanford.nlp.parser.lexparser.LexicalizedParser

-retainTmpSubcategories -outputFormat "penn,typedDependencies"

-outputFormatOptions "basicDependencies" englishPCFG.ser.gz file.txt

Java example:
LexicalizedParser lp = LexicalizedParser.loadModel(

"edu/stanford/nlp/models/lexparser/englishPCFG.ser.gz",

"-maxLength", "80", "-retainTmpSubcategories");

TreebankLanguagePack tlp = new PennTreebankLanguagePack();

GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory();

String[] sent = "This", "is", "an", "easy", "sentence", "." ;

Tree parse = lp.apply(Sentence.toWordList(sent));

GrammaticalStructure gs = gsf.newGrammaticalStructure(parse);

Collection〈TypedDependency〉 tdl = gs.typedDependenciesCCprocessed();

System.out.println(tdl);

? edu.stanford.nlp.trees.EnglishGrammaticalStructure

If you already have Penn treebank-style trees (whether hand-annotated or as output from an-

other parser), you can use this class to get the Stanford dependencies.

Command-line usage. Use the -treeFile option as shown in the command line example

below. The options to get the different types of representation are as follows:

-basic basic dependencies

-collapsed collapsed dependencies (not necessarily a tree structure)

-CCprocessed collapsed dependencies with propagation of conjunct

dependencies (not necessarily a tree structure)

-collapsedTree collapsed dependencies that preserve a tree structure

19

-nonCollapsed non-collapsed dependencies: basic dependencies as well as

the extra ones which do not preserve a tree structure

-conllx dependencies printed out in CoNLL X (CoNLL 2006) format

If you want the non-collapsed version of the dependencies where the basic ones are separated

from the extra ones, add the flag -extraSep. This will print the basic dependencies, a separator

(======) and the extra dependencies. By default, punctuation dependencies are not printed.

If you want them, give the option -keepPunct.

Command line example:

java edu.stanford.nlp.trees.EnglishGrammaticalStructure -treeFile

file.tree -collapsedTree -CCprocessed -keepPunct

By default, the CoNLL format retains punctuation. When the CoNLL format is used with

collapsed dependencies, words of the sentences which have been collapsed into the grammatical

relations (such as prepositions and conjunctions) still appear in the list of words but are given

an “erased” grammatical relation:

1 Bell NNP NNP 11 nsubj

2 , , , 1 punct

3 a DT DT 4 det

4 company NN NN 7 nsubjpass

5 which WDT WDT 0 erased

6 is VBZ VBZ 7 auxpass

7 based VBN VBN 4 rcmod

8 in IN IN 0 erased

9 LA NNP NNP 7 prep in

10 , , , 1 punct

11 makes VBZ VBZ 0 root

12 and CC CC 0 erased

13 distributes VBZ VBZ 11 conj and

14 computer NN NN 15 nn

15 products NNS NNS 11 dobj

16 . . . 11 punct

This class can read files that contain Stanford dependencies in the CoNLL format (i.e., the basic

Stanford dependencies), and transform them into another representation (e.g., the CCprocessed

representation). To do this, you need to pass the input file using the option -conllxFile.

You can also use this class to parse texts, but the input has to be formatted as strictly one

sentence per line, and you will not be able to specify options for the parse tree output on the

command line. You will only be able to specify the type of the dependencies. Use the option

-sentFile instead of -treeFile. You will need to specify the parser file using the -parserFile

option. You can print the parse tree by using the -parseTree option.

Command line example:

java -mx100m edu.stanford.nlp.trees.EnglishGrammaticalStructure

20

-sentFile file.txt -collapsedTree -CCprocessed -parseTree -parserFile

englishPCFG.ser.gz

API usage. Basic API usage was already illustrated in the LexicalizedParser usage above.

If you have a Tree object, the steps for converting it to dependencies are like this:

// One time setup

TreebankLanguagePack tlp = new PennTreebankLanguagePack();

GrammaticalStructureFactory gsf = tlp.grammaticalStructureFactory();

// For each Tree

Tree parseTree; // assumed to come from a treebank or parser

GrammaticalStructure gs = gsf.newGrammaticalStructure(parse);

Collection〈TypedDependency〉 tdl = gs.typedDependencies();

The PennTreebankLanguagePack vends an EnglishGrammaticalStructureFactory. The only

common option to pass in when creating one is a punctuation filter. Pass in a Filters.〈String〉
acceptFilter() to keep punctuation dependencies. A GrammaticalStructure is created for

each Tree. The methods on a GrammaticalStructure for each kind of dependencies is as follows:

basic gs.typedDependencies()

nonCollapsed gs.allTypedDependencies()

collapsed gs.typedDependenciesCollapsed(true)

CCPropagated gs.typedDependenciesCCprocessed()

tree gs.typedDependenciesCollapsedTree()

? GrammarScope

Bernard Bou has written GrammarScope, a GUI interface to the Stanford Dependencies repre-

sentation, which allows not only viewing dependencies, but altering their definitions. This is a

separate download. It is available at: http://grammarscope.sourceforge.net/.

? Other parsers

A number of dependency parsers have now been trained to parse directly to the basic Stanford

Dependencies, including MaltParser, DeSR, and MSTParser. Several of these parsers distribute

models trained for Stanford Dependencies parsing, including MaltParser and the Easy First

Parser. If desired, these parses can then be postprocessed to the collapsed or CCprocessed

representation using the -conllxFile option of EnglishGrammaticalStructure, as discussed

above.

Any Penn Treebank constituency parser can be used to produce Stanford Dependencies by

using our conversion tool to convert the output of other constituency parsers to the Stanford

Dependencies representation. For more information on other parser options, see:

http://nlp.stanford.edu/software/stanford-dependencies.shtml

21

6 Further references for Stanford Dependencies

The Stanford Dependencies representation was first made available in the 2005 version of the

Stanford Parser. Subsequent releases have provided some refinements to and corrections of

the relations defined in the original release. The initial written presentation was (?). A more

thorough discussion of the motivations behind the design of the representation appears in (?).

The SD representation has seen considerable use within the biomedical text mining com-

munity. It has been used to give a task relevant evaluation scheme for parsers (??) and as a

representation for relation extraction (??????????????). ? develops a version of the BioIn-

fer corpus annotated with (a slight variant of) the SD scheme. It is available for download at

http://mars.cs.utu.fi/BioInfer/. A small amount of SD gold standard annotated data was sepa-

rately prepared for the Parser Evaluation Shared Task of the Workshop on Cross-Framework and

Cross-Domain Parser Evaluation (http://lingo.stanford.edu/events/08/pe/) and is discussed in

(?). This data is available from the Stanford Dependencies page: http://nlp.stanford.edu/software

/stanford-dependencies.shtml, but the BioInfer corpus is the main source of gold-standard SD data

which is currently available. In the recent BioNLP 2009 Shared Task, many of the leading teams

built their relation extraction systems over the Stanford Dependency representation (?). It was

used by the teams that came 1st, 3rd, 4th, and 5th in Task 1, by the team who came first in

Task 2, and by the teams who came 1st and 2nd in Task 3. In the BioNLP 2011 shared task,

every team used it (?).

The SD representation has also been used in other domains. It is a common representation

for extracting opinions, sentiment, and relations (????????????), as well as specific informa-

tion (such as event, time or dialogue acts) (???). The tool has been consistently used by several

groups in the Pascal/NIST challenges targeting textual entailment (???????????). It is also

used for a variety of other tasks, such as unsupervised semantic parsing (?), coreference res-

olution, disagreement detection and word sense induction (???), as well as being part of the

preprocessing for machine translation systems by several groups (???).

The Stanford dependency representation has also served as a model for developing depen-

dency schemes in other languages. Recently schemes based on the Stanford dependency repre-

sentation have been proposed for Finnish (??), Thai (?), Persian (?), and French (?). Indeed,

there has been increasing interest in defining a consistent cross-linguistic set of relations suitable

for Stanford Dependencies (??). The Stanford Dependencies representation was also used to

evaluate dependency parsers in the 2012 shared task on parsing the web (?).

7 Recent changes

This section summarizes recent changes. This may help if you see old versions of the dependen-

cies, or need to update your code.

abbrev was removed as a relation. It is now a particular case of an appos.

attr has been removed as a relation. attr was a relation intended for the complement of a copular

verb such as “to be”, “to seem”, “to appear”. Mainly, it was used for WHNP complements.

(The relation attr was meant to stand for “attributive” but that was arguably a misuse of

the word.)

22

complm was removed as a relation. It is now a particular case of mark. This follows HPSG-like

usage, where the complementizer is a mark on the clause.

discourse was introduced. The lack of a dependency type for interjections was an omission

even in the early versions, but it became more essential as we expanded our consideration

of informal text types.

goeswith was introduced. It is useful on badly edited text.

infmod was remode as a relation. It has been generalized as a case of vmod.

partmod was remode as a relation. It has been generalized as a case of vmod.

purpcl was removed as a relation. It is now a particular case of an advcl.

rel has been removed as a relation. rel was the relation between the main verb of a relative

clause and the head of the Wh-phrase. Now, the converter resolves the grammatical

relation (nsubj, dobj, or pobj) for simple cases, and the rest are left unresolved as a dep

relation.

vmod has been introduced as a relation generalizing over non-finite verbal modifiers that are

participial in form (formerly partmod) or infinitival (formerly infmod).

23

