

SSttrruuttss
SSuurrvviivvaall GGuuiiddee

BBaassiiccss ttoo BBeesstt PPrraaccttiicceess

CCoovveerrss SSttrruuttss 11..11

Srikanth Shenoy

Austin

2

ObjectSource LLC books are available for bulk purchases for corporations and other organizations.
The publisher offers discounts when ordered in bulk. For more information please contact:

Sales Department
ObjectSource LLC.
2811 La Frontera Blvd., Suite 517
Austin, TX 78728

Email: sales@objectsource.com

First corrected reprint Copyright ©2004,2005 ObjectSource LLC. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and ObjectSource LLC, was aware of
a trademark claim, the designations have been printed in initial capital letters.

The author and the publisher have taken care in preparation of this book, but make no express or
implied warranty of any kind and assume no responsibility for errors or omissions. In no event shall
the ObjectSource LLC or the authors be liable for any direct, indirect, incidental, special, exemplary or
consequential damages (including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused and on any theory of liability,
whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of
use of the information or programs contained herein.

Published by
ObjectSource LLC
2811 La Frontera Blvd., Suite 517,
Austin TX 78728

Printing
RJ Communications
51 East 42

nd
 Street, Suite 1202,

NewYork NY 10017

Cover Design
Matt Pramschufer
Budget Media Design
Pleasantville, New York

Library of Congress Catalog Number: 2004100026

ISBN: 0-9748488-0-8 (paperback)

Printed in the United States of America

3

4

5

Table of Contents
Chapter 1. Getting Started ..15

J2EE Platform 15
J2EE web application 16
JSPs Error! Bookmark not defined.

1.1 Model 1 Architecture 20
Problems with Model 1 Architecture 20

1.2 Model 2 Architecture - MVC 21
Advantages of Model 2 Architecture 22
Controller gone bad – Fat Controller 23

1.3 MVC with configurable controller 23
1.4 First look at Struts 25
1.5 Tomcat and Struts installation 28
1.6 Summary 28

Chapter 2. Struts Framework Components...30
2.1 Struts request lifecycle 31

ActionServlet 31
RequestProcessor and ActionMapping 33
ActionForm 34
Action 35
ActionForward 36
ActionErrors and ActionError 37

2.2 Struts Configuration File – struts-config.xml 39
2.3 View Components 42

How FormTag works 43
How ErrorsTag works 45

2.4 Summary 47
Chapter 3. Your first Struts application ..48

3.1 Introduction 48
3.2 Hello World – step by step 49
3.3 Lights, Camera, Action! 61
3.4 Handling multiple buttons in HTML Form 63
3.5 Value replacement in Message Resource Bundle 65
3.6 Summary 67

Chapter 4. All about Actions ...68
4.1 ForwardAction 68

MVC compliant usage of LinkTag 69
Using LinkTag’s action attribute 70
Using LinkTag’s forward attribute 70
Using ForwardAction for Integration 71
ForwardAction Hands-on 72

4.2 Protecting JSPs from direct access 72
4.3 IncludeAction 75
4.4 DispatchAction 76
4.5 LookupDispatchAction 80
4.6 Configuring multiple application modules 82
4.7 Roll your own Base Action and Form 85
4.8 Handling Duplicate Form Submissions 88
4.9 What goes into Action (and what doesn’t) 91
4.10 When to use Action chaining (and when not to) 93

6

4.11 Actions for complex transitions 94
Wiring the handlers 94
State aware Forms 95

4.12 Managing struts-config.xml 96
Struts-GUI 96
Struts Console 96
XDoclet 97

4.13 Guidelines for Struts Application Development 98
4.14 Summary 99

Chapter 5. Form Validation ..101
5.1 Using Commons Validator with Struts 102

The twin XML files 102
validation-rules.xml – The global rules file 103
validation.xml – The application specific rules file 104
More validation.xml features 106
Using the ValidationForm 108
Configuring the Validator 108
Steps to use Commons Validator in Struts 109

5.2 DynaActionForm – The Dynamic ActionForm 109
DynaValidatorForm 113

5.3 Validating multi-page forms 113
5.4 Validating form hierarchy 116
5.5 Summary 117

Chapter 6. Struts Tag Libraries..119
6.1 Struts HTML Tags 120

Modifying the Base Tag 120
Form Tag 122
FileTag 122
Smart Checkbox – The state aware checkbox 123
Using CSS with Struts HTML Tags 125
Enhancing the error display with customized TextTag 125
The recommended way to use ImgTag 129

6.2 Using Images for Form submissions 130
ImageButton and JavaScript 133

6.3 Struts Bean Tags 134
Message Tag and Multiple Resource Bundles 134
Write Tag 135

6.4 Struts Logic Tags 135
Nested Logic Tags 136
Iterate Tag 137

6.5 A crash course on JSTL 138
JSTL Binaries – Who’s who 141

6.6 Struts-EL 141
Struts-EL hands-on 142
Practical uses for Struts-EL 143

6.7 List based Forms 143
6.8 Multi-page Lists and Page Traversal frameworks 147

Pager Taglib 148
DisplayTag and HtmlTable frameworks 149
Creating the Model for iteration 150

7

6.9 Summary 153
Chapter 7. Struts and Tiles..154

7.1 What is Tiles 154
7.2 Your first Tiles application 157

Step 1: Creating the Layout 158
Step 2: Creating the XML Tile definition file 159
Step 3: Modifying the forwards in struts-config.xml 160
Step 4: Using TilesRequestProcessor 161
Step 5: Configuring the TilesPlugIn 161

7.3 Tiles and multiple modules 163
7.4 Summary 163

Chapter 8. Struts and I18N..164
Terminology 164
What can be localized? 165

8.1 The Java I18N and L10N API 166
Accessing Locale in Servlet Container 167

8.2 Internationalizing Struts Applications 171
8.3 Internationalizing Tiles Applications 173
8.4 Processing Localized Input 174
8.5 Character encodings 175

Struts and character encoding 177
native2ascii conversion 178

8.6 Summary 179
Chapter 9. Struts and Exception Handling ..181

9.1 Exception Handling Basics 182
9.2 Log4J crash course 183
9.3 Principles of Exception Handling 184
9.4 The cost of exception handling 187
9.5 JDK 1.4 and exception handling 188
9.6 Exception handling in Servlet and JSP specifications 189
9.7 Exception handling – Struts way 191

Declarative exception handling 191
Using the ExceptionHandler 193
When not to use declarative exception handling 194
Exception handling and I18N 196

9.8 Logging Exceptions 196
9.9 Strategies for centralized logging 202
9.10 Reporting exceptions 206
9.11 Summary 208

Chapter 10. Effectively extending Struts..209
Customizing the action mapping 211

10.1 A rudimentary page flow controller 213
10.2 Controlling the validation 215
10.3 Controlling duplicate form submissions 218
10.4 DispatchAction for Image Button form submissions 222
10.5 Summary 224

8

Preface

I started using Struts in late 2000. I was immediately drawn to its power and ease

of use. In early 2001, I landed in a multi-year J2EE project, a large project by any

measures. Struts 1.0 was chosen as the framework for the web tier in that project.

Recently that project upgraded to Struts 1.1. I did the upgrade over a day. It

cannot get any easier!

This book makes no assumptions about your Struts knowledge. It starts with

the basics of Struts, teaches you what is important in Struts from a usage

perspective and covers a lot of practical issues all in a short 200-page book. No

unnecessary explanations. Concise, Clear and straight to the topic.

I am a consultant, not an author by profession. Hence my writing also tends

to reflect my mindset that got shaped by the various assignments I have

undertaken in the past. Large projects and their inbuilt complexities excite me. In

large projects, decoupling layers is a big thing. Also minor decisions during

architecting and designing (probably without the complete knowledge of the

framework used) can impact the project in a big way down the line. Clearly

understanding the strengths and shortcomings of a framework and minor

customizations to the framework go a long way in making the applications

cleaner. In that perspective, I have attempted to give a practical face to this book

based on my experience. Chapters 4, 5, 6, 9 and 10 will be extremely valuable to

all those wishing to use Struts effectively in J2EE projects.

Chapter 9 is based on my article originally published in IBM

developerWorks in May 2002 on Best practices in EJB Exception handling

(http://www-106.ibm.com/developerworks/java/library/j-ejbexcept.html). This

chapter borrows some of the core concepts from that article and extends and

improvises them to specifically suit the needs of a Struts web application.

I have enjoyed a lot writing this book. Even though I knew Struts well, there

were some crevices that I had not explored and have made me that much better.

If you are a beginner, this book is your fastest track to master Struts. There are a

lot of best practices and strategies related to Struts that makes this book valuable

to even experienced developers and architects.

 Srikanth Shenoy

 January 2004

9

10

Acknowledgements

A good book is the end result of the efforts of many. For the first edition,

Sandeep Nayak helped by agreeing to be a beta reader and pointing out the

problems in the initial two chapters. The first edition also owes debt to Fulco

Houkes from Neuchâtel, Switzerland who reviewed the book and tried parts of

the source code to ensure it is working.

Likewise I am indebted to booksjustbooks.com, for making their book on

Publishing basics available freely online without which this book wouldn’t have

been a reality. Thanks to RJ Communications for printing this book. Many

thanks to Matt Pramschufer from Budget Media Design for the cover design.

I would like to thank Amazon.com for being a small publisher friendly

retailer. It is impossible to sell the books without having the reach as Amazon

does. This books comes from a independent small publisher lacking the

distribution network that big publishers possess. Hadn't it for Amazon, the first

edition of this book would still be lying in my warehouse and I would not have

been able to offer this ebook free of cost.

I owe thanks to my wife for patiently putting up with me when I was

working evenings and weekends on the book and also editing the book. I also

owe thanks and gratitude to my parents who showed the right path as I was

growing up and instilled in me the passion for perfection, courage to achieve

anything and never give up.

Finally thanks to God through whom all things are made possible.

 Srikanth Shenoy

 March 2005

11

12

WWhheerree ttoo ggeett tthhee SSoouurrccee CCooddee ffoorr tthhee bbooookk

The source code for this book can be downloaded from the website

http://www.objectsource.com.

Specifically the link for the examples is http://www.objectsource.com/struts-

survival-guide-examples.zip, which also includes a companion workbook for this

Survival Guide. The workbook illustrates the concepts with step by step

instructions.

Also don’t forget to download the PDF slides used in a short Struts Training.

It is located at http://www.objectsource.com/Struts_for_J2EE_Developers-

ObjectSource_Training_Material.zip.

13

Author Profile

Srikanth Shenoy is the co-founder and chief mentor at ObjectSource LLC.

ObjectSource is a Austin, TX based company providing J2EE training and

consulting that also publishes great technical books. Srikanth has over 10 years

of experience in the software industry. Previously he worked as J2EE Consultant

and Architect for J2EE and CORBA product vendors and large system

integrators. He has helped clients in the manufacturing, logistics, and financial

sectors to realize the Java's "write once, run anywhere" dream. He has written

articles and papers for IBM developerWorks, The SerververSide and so on

ranging from topics such as EJBs to JavaServer Faces and Maven. Most recently

he created the OTOM framework (http://otom.dev.java.net) - a Java Tool that

allows graphical mapping of one object to another and subsequent code

generation. He also contributes to several other Open Source projects. He can be

reached at shenoy@objectsource.com.

ObjectSource LLC, provides solutions and services including architecture &

design, strategic architecture review, consulting in areas such as J2EE

applications, O-R Mapping (specifically TopLink and Hibernate) and training on

topics such as J2EE, Struts, Hibernate, TopLink, JavaServer Faces and Spring.

Struts Survival Guide – Basics to Best Practices

14

Chapter 1. Getting Started

15

CChhaapptteerr 11

Getting Started

In this chapter:

1. You will learn about Model 1 and Model 2 (MVC) and their differences.

2. You will understand the shortcomings of Model 1.

3. You will understand the problems with Model 2 – The Fat Controller Anti-

pattern.

4. You will learn how to overcome the problems in Model 2 by using Model

2 with a configurable controller.

5. You will see how Struts fill the gap by providing the configurable

controller and much more to boost developer productivity.

6. You will look at installing Tomcat and Struts on your computer.

What is Struts?

Struts is a Java MVC framework for building web applications on the J2EE

platform.

That’s it! As you can see, whole lot of buzzwords appear in the above sentence.

This chapter analyzes the above definition word-by-word and presents a big

picture of Struts. It also shows how Struts makes it easy to develop web

applications for the J2EE platform. But first, I will start with a quick overview of

the J2EE platform followed by basics of J2EE web application development

before looking at various strategies and frameworks that are available today for

developing the J2EE presentation tier.

J2EE Platform

As you might be already knowing, J2EE is a platform for executing server

side Java applications. Before J2EE was born, server side Java applications were

written using vendor specific APIs. Each vendor had unique APIs and

architectures. This resulted in a huge learning curve for Java developers and

architects to learn and program with each of these API sets and higher costs for

the companies. Development community could not reuse the lessons learnt in the

Struts Survival Guide – Basics to Best Practices

16

trenches. Consequently the entire Java developer community was fragmented,

isolated and stunted thus making very difficult to build serious enterprise

applications in Java.

Fortunately the introduction of J2EE and its adoption by the vendors has

resulted in standardization of its APIs. This in turn reduced the learning curve for

server side Java developers. J2EE specification defines a whole lot of interfaces

and a few classes. Vendors (like BEA and IBM for instance) have provided

implementations for these interfaces adhering to the J2EE specifications. These

implementations are called J2EE Application Servers.

The J2EE application servers provide the infrastructure services such as

threading, pooling and transaction management out of the box. The application

developers can thus concentrate on implementing business logic. Consider a

J2EE stack from a developer perspective. At the bottom of the stack is Java 2

Standard Edition (J2SE). J2EE Application Servers run in the Java Virutal

Machine (JVM) sandbox. They expose the standard J2EE interfaces to the

application developers. Two types
1
 of applications can be developed and

deployed on J2EE application servers – Web applications and EJB applications.

These applications are deployed and executed in “container”s. J2EE specification

defines containers for managing the lifecycle of server side components. There

are two types of containers - Servlet containers and EJB containers. Servlet

containers manage the lifecycle of web applications and EJB containers manage

the lifecycle of EJBs. Only Servlet containers are relevant to our discussion as

Struts, the theme of this book, is a web application framework.

J2EE web application

Any web application that runs in the servlet container is called a J2EE web

application. The servlet container implements the Servlet and JSP specification.

It provides various entry points for handling the request originating from a web

browser. There are three entry points for the browser into the J2EE web

application - Servlet, JSP and Filter. You can create your own Servlets by

extending the javax.servlet.http.HttpServlet class and implementing

the doGet() and doPost() method. You can create JSPs simply by creating a

text file containing JSP markup tags. You can create Filters by implementing the

javax.servlet.Filter interface.

The servlet container becomes aware of Servlets and Filters when they are

declared in a special file called web.xml
2
. A J2EE web application has exactly

1 There are actually three types of applications that can be developed and deployed on
J2EE app servers. The third one is a application conforming to J2EE Connector
Architecture (J2CA). However I will leave this out for simplicity.
2 There are various kinds of Listeners that you can declare in web.xml. You can also
declare Tag Library Definitions (TLD) in web.xml. More details can be found in the
Servlet Specification. Again, I am leaving this out for simplicity.

Chapter 1. Getting Started

17

one web.xml file. The web application is deployed into the servlet container by

bundling it in zipped archive called Web ARchive – commonly referred to as

WAR file.

Listing 1.1 Sample doGet() method in a Servlet handling HttpRequest

public class MyServlet extends HttpServlet {

 public void doGet(HttpServletRequest httpRequest,

 HttpServletResponse httpResponse)

 throws ServletException, IOException {

 //Extract data from Http Request Parameters

 //Business Logic goes here

 //Now write output HTML

 OutputStream os = httpResponse.getOutputStream();

 os.println(“<html><body>”);

 //Write formatted data to output stream

 os.println(“</body></html>”);

 os.flush();

 os.close();

 }

}

A servlet is the most basic J2EE web component. It is managed by the servlet

container. All servlets implement the Servlet interface directly or indirectly. In

general terms, a servlet is the endpoint for requests adhering to a protocol.

However, the Servlet specification mandates implementation for servlets that

handle HTTP requests only. But you should know that it is possible to implement

the servlet and the container to handle other protocols such as FTP too. When

writing Servlets for handling HTTP requests, you generally subclass HttpServlet

class. HTTP has six methods of request submission – GET, POST, PUT, HEAD

and DELETE. Of these, GET and POST are the only forms of request submission

relevant to application developers. Hence your subclass of HttpServlet should

implement two methods – doGet() and doPost() to handle GET and POST

respectively. Listing 1.1 shows a doGet() method from a typical Servlet.

With this background, let us now dive straight into presentation tier

strategies. This coverage of presentation tier strategies will kick start your

thought process on how and where Struts fits in the big picture.

1.1 Presentation Tier Strategies

Technologies used for the presentation tier can be roughly classified into three

categories:

Struts Survival Guide – Basics to Best Practices

18

� Markup based Rendering (e.g. JSPs)

� Template based Transformation (e.g. Velocity, XSLT)

� Rich content (e.g. Macromedia Flash, Flex, Laszlo)

Markup based Rendering

JSPs are perfect examples of markup based presentation tiers. In markup based

presentation, variety of tags are defined (just like HTML tags). The tag

definitions may be purely for presentation or they can contain business logic.

They are mostly client tier specific. E.g. JSP tags producing HTML content. A

typical JSP is interpreted in the web container and the consequent generation of

HTML. This HTML is then rendered in the web browser. The next few

paragraphs cover the role played by JSPs in comparison to Servlets in J2EE web

application.

In the last section, you saw how Servlets produced output HTML in addition

to executing business logic. So why aren’t Servlets used for presentation tier?

The answer lies in the separation of concerns essential in real world J2EE

projects. Back in the days when JSPs didn’t exist, servlets were all that you had

to build J2EE web applications. They handled requests from the browser,

invoked middle tier business logic and rendered responses in HTML to the

browser. Now that’s a problem. A Servlet is a Java class coded by Java

programmers. It is okay to handle browser requests and have business and

presentation logic in the servlets since that is where they belong. HTML

formatting and rendering is the concern of page author who most likely does not

know Java. So, the question arises, how to separate these two concerns

intermingled in Servlets? JSPs are the answer to this dilemma. JSPs are servlets

in disguise!

The philosophy behind JSP is that the page authors know HTML. HTML is a

markup language. Hence learning a few more markup tags will not cause a

paradigm shift for the page authors. At least it is much easier than learning Java

and OO! JSP provides some standard tags and java programmers can provide

custom tags. Page authors can write server side pages by mixing HTML markup

and JSP tags. Such server side pages are called JSPs. JSPs are called server side

pages because it is the servlet container that interprets them to generate HTML.

The generated HTML is sent to the client browser.

Presentation Logic and Business Logic – What’s the difference?

The term Business Logic refers to the middle tier logic – the core of the system

usually implemented as Session EJBs. The code that controls the JSP

navigation, handles user inputs and invokes appropriate business logic is

referred to as Presentation Logic. The actual JSP – the front end to the user

Chapter 1. Getting Started

19

contains html and custom tags to render the page and as less logic as possible.

A rule of thumb is the dumber the JSP gets, the easier it is to maintain. In

reality however, some of the presentation logic percolates to the actual JSP

making it tough to draw a line between the two.

We just said JSPs are server side pages. Server side pages in other languages

are parsed every time they are accessed and hence expensive. In J2EE, the

expensive parsing is replaced by generating Java class from the JSP. The first

time a JSP is accessed, its contents are parsed and equivalent Java class is

generated and subsequent accesses are fast as a snap. Here is some twist to the

story. The Java classes that are generated by parsing JSPs are nothing but

Servlets! In other words, every JSP is parsed at runtime (or precompiled) to

generate Servlet classes.

Template based Transformation

In Template based transformation, a template engine uses a pre-defined template

to transform a given data model into desired output.

XSLT is a perfect example for template based transformation. XSLT stands

for XML Stylesheet Language Transformation. XSLT is used to transform an

XML document in one format into another XML document in another format.

Since HTML is a type of XML, XSLT can be used for generating HTML from

XML. In a J2EE application, J2EE components can generate XML that

represents the data. Then the XML is transformed into HTML

(presentation/view) by using a stylesheet written using the XML Stylesheet

Language (XSL).

Velocity is another fantastic example of template based transformation

mechanism to generate the view. In fact Velocity is a general purpose Templating

framework that can be used to generate almost anything, not just a replacement

for JSPs. For more information on Velocity check out

http://jakarta.apache.org/velocity. Velocity with Struts is not covered in this

edition of the book.

Rich Content in Rich Internet Applications (RIA)

Rich content delivery over the internet to the good old browser is not an entirely

new paradigm, but something that’s drawing a lot of attention lately. The

traditional browser’s presentation capabilities are fairly limited even with the

addition of DHTML and JavaScript. In addition, the browser incompatibilities

cause a lot of headache for developing rich application with just DHTML and

JavaScript.

Enter, Macromedia Flash, a freely available plugin for all the popular

browsers that can render the rich content uniformly across all browsers and

operating systems. This strategy can be of interest to Struts developers because

Struts Survival Guide – Basics to Best Practices

20

Macromedia has also released Flex – a presentation tier solution to deliver

internet applications with rich content using Struts.

Laszlo is another platform to deliver rich internet applications. Laszlo

renders contents using the same flash player, but it is open source. It can be

integrated with Struts too.

NOTE: Struts can be used as the controller framework for any of the view

generation strategies described above. Struts can be combined with JSPs – the

most popular option among developers. Struts can also be combined with

Velocity templating or XSLT. Struts is also an integral part of Macromedia

Flex. Lazlo and Struts can be combined to deliver rich internet applications.

So far, we have looked at various strategies that can be applied in the

presentation tier to generate the view. We also saw that Struts can play an

effective role in each of these strategies as a controller. Well, I didn’t explain

exactly how it plays the role of a controller. It is the topic of next few sections.

We will start by introducing the two modes of designing JSPs - Model 1 and

Model 2 architectures in the next two sections and then arrive at Struts as an

improvement over the Model 2 architecture.

1.2 Model 1 Architecture

Model 1 architecture is the easiest way of developing JSP based web

applications. It cannot get any easier. In Model 1, the browser directly accesses

JSP pages. In other words, user requests are handled directly by the JSP.

Let us illustrate the operation of Model 1 architecture with an example.

Consider a HTML page with a hyperlink to a JSP. When user clicks on the

hyperlink, the JSP is directly invoked. This is shown in Figure 1.1. The servlet

container parses the JSP and executes the resulting Java servlet. The JSP contains

embedded code and tags to access the Model JavaBeans. The Model JavaBeans

contains attributes for holding the HTTP request parameters from the query

string. In addition it contains logic to connect to the middle tier or directly to the

database using JDBC to get the additional data needed to display the page. The

JSP is then rendered as HTML using the data in the Model JavaBeans and other

Helper classes and tags.

Problems with Model 1 Architecture

Model 1 architecture is easy. There is some separation between content

(Model JavaBeans) and presentation (JSP). This separation is good enough for

smaller applications. Larger applications have a lot of presentation logic. In

Model 1 architecture, the presentation logic usually leads to a significant amount

Chapter 1. Getting Started

21

of Java code embedded in the JSP in the form of scriptlets. This is ugly and

maintenance nightmare even for experienced Java developers. In large

applications, JSPs are developed and maintained by page authors. The

intermingled scriptlets and markup results in unclear definition of roles and is

very problematic.

Application control is decentralized in Model 1 architecture since the next

page to be displayed is determined by the logic embedded in the current page.

Decentralized navigation control can cause headaches. All this leads us to Model

2 architecture of designing JSP pages.

Figure 1.1 Model 1 Architecture.

1.3 Model 2 Architecture - MVC

The Model 2 architecture for designing JSP pages is in reality, Model View

Controller (MVC) applied to web applications. Hence the two terms can be used

interchangeably in the web world. MVC originated in SmallTalk and has since

made its way into Java community. Model 2 architecure and its derivatives are

the cornerstones for all serious and industrial strength web applications designed

in the real world. Hence it is essential for you understand this paradigm

thoroughly. Figure 1.2 shows the Model 2 (MVC) architecture.

The main difference between Model 1 and Model 2 is that in Model 2, a

controller handles the user request instead of another JSP. The controller is

implemented as a Servlet. The following steps are executed when the user

submits the request.

1. The Controller Servlet handles the user’s request. (This means the hyperlink

in the JSP should point to the controller servlet).

2. The Controller Servlet then instantiates appropriate JavaBeans based on the

request parameters (and optionally also based on session attributes).

3. The Controller Servlet then by itself or through a controller helper

Struts Survival Guide – Basics to Best Practices

22

communicates with the middle tier or directly to the database to fetch the

required data.

4. The Controller sets the resultant JavaBeans (either same or a new one) in one

of the following contexts – request, session or application.

5. The controller then dispatches the request to the next view based on the

request URL.

6. The View uses the resultant JavaBeans from Step 4 to display data.

Note that there is no presentation logic in the JSP. The sole function of the

JSP in Model 2 architecture is to display the data from the JavaBeans set in the

request, session or application scopes.

Figure 1.2 Model 2 Architecture.

Advantages of Model 2 Architecture

Since there is no presentation logic in JSP, there are no scriptlets. This means

lesser nightmares. [Note that although Model 2 is directed towards elimination of

scriptlets, it does not architecturally prevent you from adding scriptlets. This has

led to widespread misuse of Model 2 architecture.]

With MVC you can have as many controller servlets in your web application.

In fact you can have one Controller Servlet per module. However there are

several advantages of having a single controller servlet for the entire web

application. In a typical web application, there are several tasks that you want to

do for every incoming request. For instance, you have to check if the user

requesting an operation is authorized to do so. You also want to log the user’s

entry and exit from the web application for every request. You might like to

centralize the logic for dispatching requests to other views. The list goes on. If

you have several controller servlets, chances are that you have to duplicate the

Chapter 1. Getting Started

23

logic for all the above tasks in all those places. A single controller servlet for the

web application lets you centralize all the tasks in a single place. Elegant code

and easier to maintain.

Web applications based on Model 2 architecture are easier to maintain and

extend since the views do not refer to each other and there is no presentation

logic in the views. It also allows you to clearly define the roles and

responsibilities in large projects thus allowing better coordination among team

members.

Controller gone bad – Fat Controller

If MVC is all that great, why do we need Struts after all? The answer lies in

the difficulties associated in applying bare bone MVC to real world complexities.

In medium to large applications, centralized control and processing logic in the

servlet – the greatest plus of MVC is also its weakness. Consider a mediocre

application with 15 JSPs. Assume that each page has five hyperlinks (or five

form submissions). The total number of user requests to be handled in the

application is 75. Since we are using MVC framework, a centralized controller

servlet handles every user request. For each type of incoming request there is “if”

block in the doGet method of the controller Servlet to process the request and

dispatch to the next view. For this mediocre application of ours, the controller

Servlet has 75 if blocks. Even if you assume that each if block delegates the

request handling to helper classes it is still no good. You can only imagine how

bad it gets for a complex enterprise web application. So, we have a problem at

hand. The Controller Servlet that started out as the greatest thing next to sliced

bread has gone bad. It has put on a lot of weight to become a Fat Controller.

1.4 MVC with configurable controller

You must be wondering what went wrong with MVC. When application gets

large you cannot stick to bare bone MVC. You have to extend it somehow to deal

with these complexities. One mechanism of extending MVC that has found

widespread adoption is based on a configurable controller Servlet. The MVC

with configurable controller servlet is shown in Figure 1.3.

When the HTTP request arrives from the client, the Controller Servlet looks

up in a properties file to decide on the right Handler class for the HTTP request.

This Handler class is referred to as the Request Handler. The Request Handler

contains the presentation logic for that HTTP request including business logic

invocation. In other words, the Request Handler does everything that is needed to

handle the HTTP request. The only difference so far from the bare bone MVC is

that the controller servlet looks up in a properties file to instantiate the Handler

instead of calling it directly.

Struts Survival Guide – Basics to Best Practices

24

Figure 1.3 MVC with configurable controller Servlet.

Listing 1.1 Configurable Controller Servlet Implementation

public class MyControllerServlet extends HttpServlet {

 private Properties props;

 public init(ServletConfig config) throws ServletException {

 try {

 props = new Properties();

 props.load(new FileInputStream("C:/file.properties"));

 } catch (IOException ioe) {

 throw new ServletException(ioe);

 }

 }

 public void doGet(HttpServletRequest httpRequest,

 HttpServletResponse httpResponse)

 throws ServletException, IOException {

 String urlPath = httpRequest.getPathInfo();

 String reqhandlerClassName = (String) props.get(urlPath);

 HandlerInterface handlerInterface = (HandlerInterface)

 Class.forName(reqhandlerClassName).newInstance();

 String nextView = handlerInterface.execute(httpRequest);

 ..

 ..

 RequestDispatcher rd = getServletContext().

 getRequestDispatcher(nextView);

 rd.forward(httpRequest, httpResponse);

 }

Chapter 1. Getting Started

25

}

At this point you might be wondering how the controller servlet would know

to instantiate the appropriate Handler. The answer is simple. Two different HTTP

requests cannot have the same URL. Hence you can be certain that the URL

uniquely identifies each HTTP request on the server side and hence each URL

needs a unique Handler. In simpler terms, there is a one-to-one mapping between

the URL and the Handler class. This information is stored as key-value pairs in

the properties file. The Controller Servlet loads the properties file on startup to

find the appropriate Request Handler for each incoming URL request.

 The controller servlet uses Java Reflection to instantiate the Request Handler.

However there must be some sort of commonality between the Request Handlers

for the servlet to generically instantiate the Request Handler. The commonality is

that all Request Handler classes implement a common interface. Let us call this

common interface as Handler Interface. In its simplest form, the Handler

Interface has one method say, execute(). The controller servlet reads the

properties file to instantiate the Request Handler as shown in Listing 1.1.

The Controller Servlet instantiates the Request Handler in the doGet()

method and invokes the execute() method on it using Java Reflection. The

execute() method invokes appropriate business logic from the middle tier and

then selects the next view to be presented to the user. The controller servlet

forwards the request to the selected JSP view. All this happens in the doGet()

method of the controller servlet. The doGet() method lifecycle never changes.

What changes is the Request Handler’s execute() method. You may not have

realized it, but you just saw how Struts works in a nutshell! Struts is a controller

servlet based configurable MVC framework that executes predefined methods in

the handler objects. Instead of using a properties file like we did in this example,

Struts uses XML to store more useful information.

1.4 First look at Struts

In the last section, you have seen the underlying principle behind Struts

framework. Now let us look closely at the Struts terminology for controller

servlet and Handler objects that we mentioned and understand Figure 1.4. Figure

1.4 is a rehash of Figure 1.3 by using Struts terminology. Since this is your first

look at Struts, we will not get into every detail of the HTTP request handling

lifecycle in Struts framework. Chapter 2 will get you there. For now, let us

concentrate on the basics.

Listing 1.2 Sample ActionForm

public class MyForm extends ActionForm {

 private String firstName;

Struts Survival Guide – Basics to Best Practices

26

 private String lastName;

 public MyForm() {

 firstName = “”; lastName = “”;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String s) {

 this.firstName = s;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String s) {

 this.lastName = s;

 }

}

In Struts, there is only one controller servlet for the entire web application.

This controller servlet is called ActionServlet and resides in the package

org.apache.struts.action. It intercepts every client request and populates

an ActionForm from the HTTP request parameters. ActionForm is a normal

JavaBeans class. It has several attributes corresponding to the HTTP request

parameters and getter, setter methods for those attributes. You have to create

your own ActionForm for every HTTP request handled through the Struts

framework by extending the org.apache.struts.action.ActionForm

class. Consider the following HTTP request for App1 web application –

http://localhost:8080/App1/create.do?firstName=John&lastName=Doe. The

ActionForm class for this HTTP request is shown in Listing 1.2. The class

MyForm extends the org.apache.struts.action.ActionForm class and

contains two attributes – firstName and lastName. It also has getter and setter

methods for these attributes. For the lack of better terminology, let us coin a term

to describe the classes such as ActionForm – View Data Transfer Object. View

Data Transfer Object is an object that holds the data from html page and

transfers it around in the web tier framework and application classes.

The ActionServlet then instantiates a Handler. The Handler class name is

obtained from an XML file based on the URL path information. This XML file is

referred to as Struts configuration file and by default named as struts-config.xml.

Chapter 1. Getting Started

27

The Handler is called Action in the Struts terminology. And you guessed it right!

This class is created by extending the Action class in

org.apache.struts.action package. The Action class is abstract and

defines a single method called execute(). You override this method in your

own Actions and invoke the business logic in this method. The execute()

method returns the name of next view (JSP) to be shown to the user. The

ActionServlet forwards to the selected view.

Figure 1.4 A first look at Struts architecture.

Now, that was Struts in a nutshell. Struts is of-course more than just this. It is

a full-fledged presentation framework. Throughout the development of the

application, both the page author and the developer need to coordinate and ensure

that any changes to one area are appropriately handled in the other. It aids in

rapid development of web applications by separating the concerns in projects.

For instance, it has custom tags for JSPs. The page author can concentrate on

developing the JSPs using custom tags that are specified by the framework. The

application developer works on creating the server side representation of the data

and its interaction with a back end data repository. Further it offers a consistent

way of handling user input and processing it. It also has extension points for

customizing the framework and much more. In this section, you got a bird’s eye

view of how Struts works. More details await you in the chapters ahead. But you

have to install Tomcat and Struts on your machine to better understand the

chapters ahead. Hence we will cover Tomcat and Struts installation briefly in the

next section.

Struts Survival Guide – Basics to Best Practices

28

1.5 Tomcat and Struts installation

We will use Windows environment to develop Struts application and Tomcat

servlet container to deploy and test Struts applications. Precisely we will use

Tomcat-5.0.14 Beta, the latest milestone release of Tomcat. You can download

Tomcat 5.0.14 from http://jakarta.apache.org/tomcat and follow the link to

download. There are several binaries available – several variations of tar, exe and

zip files. Choose the 5.0.14.zip file and unzip it. A folder called jakarta-tomcat-

5.0.14 is created automatically. This is the TOMCAT_HOME directory. Under

the TOMCAT_HOME, there are a lot of folders of which two are important – bin

and webapps folders. The bin folder contains two batch files - startup.bat, used

to start the Tomcat and shutdown.bat, used to stop the Tomcat. All the WAR files

are dropped in the webapps directory and get deployed automatically.

Installing Struts is very easy. In the Struts web site,

http://jakarta.apache.org/struts, go to download section and select the 1.1 Release

Build. This is the latest production quality build available. Once you download

the zipped archive of Struts 1.1 release, unzip the file to a convenient location. It

automatically creates a folder named “jakarta-struts-1.1”. It has three sub-

folders. The lib sub-folder contains the struts.jar – the core library that you want

to use and other jars on which the Struts depends. You would normally copy

most of these jars into the WEB-INF/lib of your web application. The webapps

sub-folder contains a lot of WAR files that can just dropped into any J2EE

application server and tested.

You can test your Tomcat installation and also study Struts at the same time.

Start Tomcat using startup.bat and then drop the struts-documentation.war from

your Struts webapps folder into Tomcat’s webapps folder. The WAR is

immediately deployed. You can access the Struts documentation at the URL

http://localhost:8080/struts-documentation. You should also download the Struts

1.1 source and refer to it and probably study it to get more insights about its

internals. However be sure to read through this book before you dive into the

Struts source code.

1.6 Summary

In this chapter, we refreshed your memory on Model 1 and Model 2 architectures

for JSPs and pointed out the problems with the bare bone MVC in real life –

about how it gets big and ugly. You understood how MVC with configurable

controller could solve the real life problem. You also took a first look at the high

level Struts architecture and saw how it matched the configurable MVC

controller. You also briefly looked at Struts and Tomcat installation and warmed

up for the forthcoming chapters.

Chapter 2. Struts Framework Components

29

Struts Survival Guide – Basics to Best Practices

30

CChhaapptteerr 22

Struts Framework Components

In this chapter:

1. You will learn more about Struts components and their categories –

Controller and View

2. You will understand the sequence of events in Struts request handling

lifecycle

3. You will understand the role of the following controller classes -

ActionServlet, RequestProcessor, ActionForm, Action, ActionMapping and

ActionForward in the request handling lifecycle

4. You will also learn about the role of Struts Tags as View components in

rendering the response

5. You will understand the various elements of Struts configuration file –

struts-config.xml

In the last chapter, you had a cursory glance at the Struts framework. In this

chapter you will dive deeper and cover various Struts Framework Components.

Here is something to remember all the time.

1. All the core components of Struts framework belong to Controller

category.

2. Struts has no components in the Model category.

3. Struts has only auxiliary components in View category. A collection of

custom tags making it easy to interact with the controller. The View

category is neither the core of Struts framework nor is it necessary.

However it is a helpful library for using Struts effectively in JSP based

rendering.

Controller Category: The ActionServlet and the collaborating classes

form the controller and is the core of the framework. The collaborating classes

are RequestProcessor, ActionForm, Action, ActionMapping and

ActionForward.

Chapter 2. Struts Framework Components

31

View Category: The View category contains utility classes – variety of

custom tags making it easy to interact with the controller. It is not mandatory to

use these utility classes. You can replace it with classes of your own. However

when using Struts Framework with JSP, you will be reinventing the wheel by

writing custom tags that mimic Struts view components. If you are using Struts

with Cocoon or Velocity, then have to roll out your own classes for the View

category.

Model Category: Struts does not offer any components in the Model

Category. You are on you own in this turf. This is probably how it should be.

Many component models (CORBA, EJB) are available to implement the business

tier. Your model components are as unique as your business and should not have

any dependency on a presentation framework like Struts. This philosophy of

limiting the framework to what is absolutely essential and helpful and nothing

more has prevented bloating and made the Struts framework generic and

reusable.

NOTE: Some people argue that ActionForm is the model component.

However ActionForm is really part of the controller. The Struts documentation

also speaks along similar lines. It is just View Data Transfer Object – a regular

JavaBeans that has dependencies on the Struts classes and used for transferring

the data to various classes within the controller.

2.1 Struts request lifecycle

In this section you will learn about the Struts controller classes –

ActionServlet, RequestProcessor, ActionForm, Action,

ActionMapping and ActionForward – all residing in

org.apache.struts.action package and struts-config.xml – the Struts

Configuration file. Instead of the traditional “Here is the class – go use it”

approach, you will study the function of each component in the context of HTTP

request handling lifecycle in Struts.

ActionServlet

The central component of the Struts Controller is the ActionServlet. It is

a concrete class and extends the javax.servlet.HttpServlet. It performs

two important things.

1. On startup, its reads the Struts Configuration file and loads it into memory in

the init() method.

2. In the doGet() and doPost() methods, it intercepts HTTP request and

handles it appropriately.

Struts Survival Guide – Basics to Best Practices

32

The name of the Struts Config file is not cast in stone. It is a convention

followed since the early days of Struts to call this file as struts-config.xml and

place it under the WEB-INF directory of the web application. In fact you can

name the file anyway you like and place it anywhere in WEB-INF or its sub-

directories. The name of the Struts Config file can be configured in web.xml. The

web.xml entry for configuring the ActionServlet and Struts Config file is as

follows.

 <servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/config/myconfig.xml</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

In the above snippet, the Struts Config file is present in the WEB-INF/config

directory and is named myconfig.xml. The ActionServlet takes the Struts

Config file name as an init-param. At startup, in the init() method, the

ActionServlet reads the Struts Config file and creates appropriate Struts

configuration objects (data structures) into memory. You will learn more about

the Struts configuration objects in Chapter 7. For now, assume that the Struts

Config file is loaded into a set of objects in memory, much like a properties file

loaded into a java.util.Properties class.

Like any other servlet, ActionServlet invokes the init() method when

it receives the first HTTP request from the caller. Loading Struts Config file into

configuration objects is a time consuming task. If the Struts configuration objects

were to be created on the first call from the caller, it will adversely affect

performance by delaying the response for the first user. The alternative is to

specify load-on-startup in web.xml as shown above. By specifying load-on-

startup to be 1, you are telling the servlet container to call the init() method

immediately on startup of the servlet container.

The second task that the ActionServlet performs is to intercept HTTP

requests based on the URL pattern and handles them appropriately. The URL

pattern can be either path or suffix. This is specified using the servlet-mapping in

web.xml. An example of suffix mapping is as follows.

 <servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

Chapter 2. Struts Framework Components

33

If the user types http://localhost:8080/App1/submitCustomerForm.do in the

browser URL bar, the URL will be intercepted and processed by the

ActionServlet since the URL has a pattern *.do, with a suffix of "do”.

Once the ActionServlet intercepts the HTTP request, it doesn’t do

much. It delegates the request handling to another class called

RequestProcessor by invoking its process()method. Figure 2.1 shows a

flowchart with Struts controller components collaborating to handle a HTTP

request within the RequestProcessor’s process() method. The next sub

sections describe the flowchart in detail. It is very important that you understand

and even memorize this flowchart. Most of the Struts Controller functionality is

embedded in the process() method of RequestProcessor class. Mastery

over this flowchart will determine how fast you will debug problems in real life

Struts applications. Let us understand the request handling in the process()

method step by step with an example covered in the next several sub sections.

Figure 2.1 Flowchart for the RequestProcessor process method.

RequestProcessor and ActionMapping

The RequestProcessor does the following in its process() method:

Step 1: The RequestProcessor first retrieves appropriate XML block for

the URL from struts-config.xml. This XML block is referred to as

Struts Survival Guide – Basics to Best Practices

34

ActionMapping in Struts terminology. In fact there is a class called

ActionMapping in org.apache.struts.action package.

ActionMapping is the class that does what its name says – it holds the mapping

between a URL and Action. A sample ActionMapping from the Struts

configuration file looks as follows.

Listing 2.1 A sample ActionMapping from struts-config.xml

 <action path="/submitDetailForm"

 type="mybank.example.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetailForm.jsp">

 <forward name="success"

 path="ThankYou.jsp"

 redirect=”true”/>

 <forward name="failure" path="Failure.jsp" />

 </action>

Step 2: The RequestProcessor looks up the configuration file for the URL

pattern /submitDetailForm. (i.e. URL path without the suffix do) and finds the

XML block (ActionMapping) shown above. The type attribute tells Struts which

Action class has to be instantiated. The XML block also contains several other

attributes. Together these constitute the JavaBeans properties of the

ActionMapping instance for the path /submitDetailForm. The above

ActionMapping tells Struts to map the URL request with the path

/submitDetailForm to the class mybank.example.CustomerAction. The

Action class is explained in the steps ahead. For now think of the Action as your

own class containing the business logic and invoked by Struts. This also tells us

one more important thing.

Since each HTTP request is distinguished from the other only by the path,

there should be one and only one ActionMapping for every path attribute.

Otherwise Struts overwrites the former ActionMapping with the latter.

ActionForm

Another attribute in the ActionMapping that you should know right away is

name. It is the logical name of the ActionForm to be populated by the

RequestProcessor. After selecting the ActionMapping, the

RequestProcessor instantiates the ActionForm. However it has to know the

fully qualified class name of the ActionForm to do so. This is where the name

attribute of ActionMapping comes in handy. The name attribute is the logical

Chapter 2. Struts Framework Components

35

name of the ActionForm. Somewhere else in struts-config.xml, you will find a

declaration like this:

<form-bean name="CustomerForm"

type="mybank.example.CustomerForm"/>

This form-bean declaration associates a logical name CustomerForm with the

actual class mybank.example.CustomerForm.

Step 3: The RequestProcessor instantiates the CustomerForm and puts

it in appropriate scope – either session or request. The RequestProcessor

determines the appropriate scope by looking at the scope attribute in the same

ActionMapping.

Step 4: Next, RequestProcessor iterates through the HTTP request parameters

and populates the CustomerForm properties of the same name as the HTTP

request parameters using Java Introspection. (Java Introspection is a special form

of Reflection using the JavaBeans properties. Instead of directly using the

reflection to set the field values, it uses the setter method to set the field value

and getter method to retrieve the field value.)

Step 5: Next, the RequestProcessor checks for the validate attribute in the

ActionMapping. If the validate is set to true, the RequestProcessor invokes

the validate() method on the CustomerForm instance. This is the method

where you can put all the html form data validations. For now, let us pretend that

there were no errors in the validate() method and continue. We will come

back later and revisit the scenario when there are errors in the validate()

method.

Action

Step 6: The RequestProcessor instantiates the Action class specified in the

ActionMapping (CustomerAction) and invokes the execute() method on

the CustomerAction instance. The signature of the execute method is as

follows.

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response) throws Exception

 Apart from the HttpServletRequest and HttpServletResponse, the

ActionForm is also available in the Action instance. This is what the

ActionForm was meant for; as a convenient container to hold and transfer data

from the http request parameter to other components of the controller, instead of

having to look for them every time in the http request.

The execute() method itself should not contain the core business logic

irrespective of whether or not you use EJBs or any fancy middle tier. The first

and foremost reason for this is that business logic classes should not have any

dependencies on the Servlet packages. By putting the business logic in the Action

Struts Survival Guide – Basics to Best Practices

36

class, you are letting the javax.servlet.* classes proliferate into your

business logic. This limits the reuse of the business logic, say for a pure Java

client. The second reason is that if you ever decide to replace the Struts

framework with some other presentation framework (although we know this will

not happen), you don’t have to go through the pain of modifying the business

logic. The execute() method should preferably contain only the presentation

logic and be the starting point in the web tier to invoke the business logic. The

business logic can be present either in protocol independent Java classes or the

Session EJBs.

 The RequestProcessor creates an instance of the Action

(CustomerAction), if one does not exist already. There is only one instance

of Action class in the application. Because of this you must ensure that the

Action class and its attributes if any are thread-safe. General rules that apply to

Servlets hold good. The Action class should not have any writable attributes

that can be changed by the users in the execute() method.

ActionForward

The execute() method returns the next view shown to the user. If you are

wondering what ActionForward is, you just have found the answer.

ActionForward is the class that encapsulates the next view information.

Struts, being the good framework it is, encourages you not to hardcode the JSP

names for the next view. Rather you should associate a logical name for the next

JSP page. This association of the logical name and the physical JSP page is

encapsulated in the ActionForward instance returned from the execute method.

The ActionForward can be local or global. Look again at the good old

ActionMapping XML block in Listing 2.1. It contained sub elements called

forwards with three attributes – name, path and redirect as shown below.

The name attribute is the logical name of the physical JSP as specified in the

path attribute. These forward elements are local to the ActionMapping in Listing

2.1. Hence they can be accessed only from this ActionMapping argument in

the CustomerAction’s execute() method and nowhere else. On the other

hand, when the forwards are declared in the global forwards section of the struts-

config.xml, they are accessible from any ActionMapping. (In the next section,

you will look closely at Struts Config file.) Either ways, the findForward()

method on the ActionMapping instance retrieves the ActionForward as

follows.

ActionForward forward = mapping.findForward(“success”);

The logical name of the page (success) is passed as the keyword to the

findForward() method. The findForward() method searches for the

forward with the name “success”, first within the ActionMapping and then in the

global-forwards section. The CustomerAction’s execute() method returns

the ActionForward and the RequestProcessor returns the physical JSP

Chapter 2. Struts Framework Components

37

to the user. In J2EE terms, this is referred to as dispatching the view to the user.

The dispatch can be either HTTP Forward or HTTP Redirect. For instance, the

dispatch to the success is a HTTP Redirect whereas the dispatch to “failure” is a

HTTP Redirect.

Difference between HTTP Forward and HTTP Redirect

HTTP Forward is the process of simply displaying a page when requested

by the user. The user asks for a resource (page) by clicking on a hyperlink or

submitting a form and the next page is rendered as the response. In Servlet

Container, HTTP Forward is achieved by invoking the following.

RequestDispatcher dispatcher =

 httpServletRequest.getRequestDispatcher(url);

Dispatcher.forward(httpServletRequest, httpServletResponse);

HTTP Redirect is a bit more sophisticated. When a user requests a

resource, a response is first sent to the user. This is not the requested resource.

Instead this is a response with HTTP code “302” and contains the URL of the

requested resource. This URL could be the same or different from original

requested URL. The client browser automatically makes the request for the

resource again with the new URL. And this time, the actual resource is sent to

the user. In the web tier you can use HTTP redirect by using the simple API,

sendRedirect() on the HttpServletResponse instance. The rest of the

magic is done by HTTP. HTTP Redirect has an extra round trip to the client

and is used only in special cases. Later in this book, we will show a scenario

where HTTP redirect can be useful.

ActionErrors and ActionError

So far, we have covered Struts request handling lifecycle as a happy day

scenario – from the point the user submits an html form till the user sees the next

page. In reality, users of your web application may submit incorrect data or

sometimes no data at all. You have to catch these as close to the user interface as

possible, rather than waiting for the middle tier or the database to tell you that a

column cannot be inserted in the database because it was expecting a non-null

value. There are two consequences of such programming practice.

1. Server time and resources are precious since they are shared. Spending too

much of server’s time and resources on a request, that we know is going to

fail eventually is a waste of server resources.

2. It has a negative impact on the code quality. Since one has to prepare for the

possibility of having null data, appropriate checks have to be put (or

Struts Survival Guide – Basics to Best Practices

38

NumberFormatExceptions have to be caught) everywhere in the code.

Generally business logic is the toughest code of the system and contains

enough if-else blocks as such. More if-else blocks for null checks can only

mean two things – bad code and maintenance nightmare. Not an elegant

programming to say the least. If only you could verify the validity of the user

data as close to the user, then the rest of the code only has to deal with

business logic and not invalid data.

Listing 2.2 validate() method in the CustomerForm

public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request)

{

 // Perform validator framework validations

 ActionErrors errors = super.validate(mapping, request);

 // Only need crossfield validations here

 if (parent == null) {

 errors.add(GLOBAL_ERROR,

 new ActionError("error.custform"));

 }

 if (firstName == null) {

 errors.add("firstName",

 new ActionError("error.firstName.null"));

 }

 return errors;

}

Struts provides validate() method in the ActionForm to deal with

user input validations. Let us now look at how you can validate the user input

and report errors to the framework. We will postpone the discussion of how

Struts reports the errors to the end user when we discuss View Components later

in this chapter. As shown in the flowchart (Figure 2.1), the validate()

method is called after the ActionForm instance is populated with the form

data. A sample validate() method is shown in Listing 2.2.

In the validate() method, you will notice an object called

ActionErrors is instantiated. All error checks are performed with the usual

if-else blocks. If there are errors, then an individual ActionError object is

created for the culprit field and added to the ActionErrors. Think of

ActionErrors as a Map for the individual ActionError objects. You can

associate one or more ActionError objects for each key. The form field name

is generally chosen as the key and can have multiple ActionError objects

associated with it. The ActionError is either specific to a field in the

Chapter 2. Struts Framework Components

39

ActionForm or it is global to the entire form. When the error is specific to a

form field, the field name is used as the key in the ActionErrors. When the

error is global to the form, the key name is always GLOBAL_ERRORS. Both of

the cases are shown in the Listing 2.2.

You might also notice that the ActionError constructor takes a rather

cryptic key as the argument. This key is declared in a properties file whose value

is the actual error message. The properties file is selected based on the user

chosen Locale. The technical term for this properties file where the messages are

externalized is Message Resource Bundle. It is based on the Java’s concept of

Localization using the java.util.ResourceBundle and has a whole lot of

bells and whistles. We will cover Message Resource Bundle in depth in

Chapter10 on Internationalization and Localization. For now it suffices to know

that the properties file also serves another purpose apart from Localization. It lets

you change the messages without recompiling the code, and is quite handy while

maintaining the code. An entry in the Message Resource Bundle properties file

looks like:

error.firstName.null=First Name cannot be null

The RequestProcessor stops any further processing when it gets the

ActionErrors object with ActionError objects. The Action instance

never gets the control (and never gets a chance to return ActionForward).

Hence the RequestProcessor consults the ActionMapping object to find

the page to be displayed. Notice that the ActionMapping has an attribute

named “input”. This attribute specifies the physical page to which the request has

to be forwarded on error. Generally this page is the original page where user

entered the data since it is natural that user would want to reenter the data in the

same page on error and resubmit.

That completes our overview of the working of Struts Controller

components. Now, let us formally look at the Struts configuration file in detail.

2.2 Struts Configuration File – struts-config.xml

As you learnt in Chapter 1, the configurable controller is the answer to the Fat

controller problem. In a Fat Controller, the programmers can code “if” blocks on

need basis. Not so with the configurable controllers. The expressive and

configuration capability is limited to what the built-in controller can support. In

Struts, the built-in controller supports a variety of cases that can arise while

developing web applications. It even provides points to extend the configuration

capabilities. These points known as Extension points, take the configuration

capability to the next dimension. We will deal with extending Struts in Chapter 7.

In this section, we will just look at the normal facilities offered by the struts-

config.xml.

Struts Survival Guide – Basics to Best Practices

40

The Struts configuration file adheres to the struts-config_1_1.dtd. The struts

config dtd can be found in the Struts distribution in the lib directory. It shows

every possible element, their attributes and their description. Covering all of

them at once would only result in information overload. Hence we will only look

at the five important sections of this file relevant to our discussion and their

important attributes. In fact we have already covered most of these in the

lifecycle discussion earlier, but are summarizing them again to refresh your mind.

The five important sections are:

1. Form bean definition section

2. Global forward definition section

3. Action mapping definition section

4. Controller configuration section

5. Application Resources definition section

Listing 2.3 shows a sample Struts Config file showing all the five sections.

The form bean definition section contains one or more entries for each

ActionForm. Each form bean is identified by a unique logical name. The type is

the fully qualified class name of the ActionForm. An interesting to note is that

you can declare the same ActionForm class any number of times provided each

entry has a unique name associated with it. This feature is useful if you want to

store multiple forms of the same type in the servlet session.

Table 2.1 Important attributes and elements of ActionMapping entry in struts-config.xml

Attribute/Element

name

Description

Path The URL path (either path mapping or suffix mapping) for which this

Action Mapping is used. The path should be unique

Type The fully qualified class name of the Action

Name The logical name of the Form bean. The actual ActionForm associated

with this Action Mapping is found by looking in the Form-bean definition

section for a form-bean with the matching name. This informs the

Struts application which action mappings should use which

ActionForms.

Scope Scope of the Form bean – Can be session or request

Validate Can be true or false. When true, the Form bean is validated on

submission. If false, the validation is skipped.

Input The physical page (or another ActionMapping) to which control should

be forwarded when validation errors exist in the form bean.

Forward The physical page (or another ActionMapping) to which the control

should be forwarded when the ActionForward with this name is

selected in the execute method of the Action class.

 The ActionMapping section contains the mapping from URL path to an Action

class (and also associates a Form bean with the path). The type attribute is the

fully qualified class name of the associated Action. Each action entry in the

action-mappings should have a unique path. This follows from the fact that each

Chapter 2. Struts Framework Components

41

URL path needs a unique handler. There is no facility to associate multiple

Actions with the same path. The name attribute is the name of the Form bean

associated with this Action. The actual form bean is defined in Form bean

definition section. Table 2.1 shows all the relevant attributes discussed so far for

the action entry in action-mappings section.

Listing 2.3 Sample struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config> Form bean Definitions

 <form-beans>

 <form-bean name="CustomerForm"

 type="mybank.example.CustomerForm"/>

 <form-bean name="LogonForm"

 type="mybank.example.LogonForm"/>

 </form-beans> Global Forward Definitions

 <global-forwards>

 <forward name="logon" path="/logon.jsp"/>

 <forward name="logoff" path="/logoff.do"/>

 </global-forwards> Action Mappings

 <action-mappings>

 <action path="/submitDetailForm"

 type="mybank.example.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="/CustomerDetailForm.jsp">

 <forward name="success"

 path="/ThankYou.jsp"

 redirect=”true” />

 <forward name="failure"

 path="/Failure.jsp" />

 </action>

 <action path=”/logoff” parameter=”/logoff.jsp”

 type=”org.apache.struts.action.ForwardAction” />

 </action-mappings> Controller Configuration

 <controller

 processorClass="org.apache.struts.action.RequestProcessor" />

 <message-resources parameter="mybank.ApplicationResources"/>

Struts Survival Guide – Basics to Best Practices

42

</struts-config> Message Resource Definition

In the ActionMapping there are two forwards. Those forwards are local

forwards – which means those forwards can be accessed only within the

ActionMapping. On the other hand, the forwards defined in the Global Forward

section are accessible from any ActionMapping. As you have seen earlier, a

forward has a name and a path. The name attribute is the logical name assigned.

The path attribute is the resource to which the control is to be forwarded. This

resource can be an actual page name as in

 <forward name="logon" path="/logon.jsp"/>

or it can be another ActionMapping as in

 <forward name="logoff" path="/logoff.do "/>

The /logoff (notice the absence of “.do”) would be another ActionMapping in

the struts-config.xml. The forward – either global or local are used in the

execute() method of the Action class to forward the control to another

physical page or ActionMapping.

The next section in the config file is the controller. The controller is optional.

Unless otherwise specified, the default controller is always the

org.apache.struts.action.RequestProcessor. There are cases when

you want to replace or extend this to have your own specialized processor. For

instance, when using Tiles (a JSP page template framework) in conjunction with

Struts, you would use TilesRequestProcessor.

The last section of immediate interest is the Message Resource definition. In

the ActionErrors discussion, you saw a code snippet that used a cryptic key as the

argument for the ActionError. We stated that this key maps to a value in a

properties file. Well, we declare that properties file in the struts-config.xml in the

Message Resources definition section. The declaration in Listing 2.1 states that

the Message Resources Bundle for the application is called

ApplicationResources.properties and the file is located in the java package

mybank.

If you are wondering how (and why) can a properties file be located in a java

package, recall that any file (including class file) is a resource and is loaded by

the class loader by specifying the package. An example in the next chapter will

really make things clearer.

2.3 View Components

In Struts, View components are nothing but six custom tag libraries for JSP

views – HTML, Bean, Logic, Template, Nested, and Tiles tag libraries. Each one

caters to a different purpose and can be used individually or in combination with

others. For other kinds of views (For instance, Template based presentation) you

Chapter 2. Struts Framework Components

43

are on your own. As it turns out, majority of the developers using Struts tend to

use JSPs. You can extend the Struts tags and also build your own tags and mix

and match them.

You already know that the ActionForm is populated on its way in by the

RequestProcessor class using Java Introspection. In this section you will

learn how Struts tags interact with the controller and its helper classes to display

the JSP using two simple scenarios – how FormTag displays the data on the

way out and how the ErrorsTag displays the error messages. We will not

cover every tag in Struts though. That is done in Chapter 6.

What is a custom tag?

Custom Tags are Java classes written by Java developers and can be used

in the JSP using XML markup. Think of them as view helper beans that can be

used without the need for scriptlets. Scriptlets are Java code snippets

intermingled with JSP markup. You need a Java developer to write such

scriptlets. JSP pages are normally developed and tweaked by page authors,

They cannot interpret the scriptlets. Moreover this blurs the separation of

duties in a project. Custom Tags are the answer to this problem. They are

XML based and like any markup language and can be easily mastered by the

page authors. You can get more information on Custom Tags in Chapter 6.

There are also numerous books written about JSP fundamentals that cover this

topic very well.

Listing 2.4 CustomerDetails JSP

<html>

 <head>

 <html:base/>

 </head>

 <body>

 <html:form action="/submitDetailForm">

 <html:text property="firstName" />

 <html:text property="lastName" />

 <html:submit>Continue</html:submit>

 </html:form>

 </body>

</html>

How FormTag works

Consider a case when the user requests a page CustomerDetails.jsp. The

CustomerDetails JSP page has a form in it. The form is constructed using the

Struts Survival Guide – Basics to Best Practices

44

Struts html tags and shown in Listing 2.4. The <html:form> represents the

org.apache.struts.taglib.html.FormTag class, a body tag. The

<html:text> represents the org.apache.struts.taglib.html.TextTag

class, a normal tag. The resulting HTML is shown in Listing 2.5.

The FormTag can contain other tags in its body. SubmitTag generates the

Submit button at runtime. The TextTag <html:text> generates html textbox at

runtime as follows.

 <input name=”firstName” type=”text” value=”” />

The FormTag has an attribute called action. Notice that the value of the

action attribute is /submitDetailForm in the JSP snippet shown above. This

represents the ActionMapping. The generated HTML <form> has

action=”/submitDetailForm.do” in its place. The servlet container parses

the JSP and renders the HTML.

Listing 2.5 Generated HTML from CustomerDetails JSP

<html>

 <head>

 <html:base/>

 </head>

 <body>

 <form name=”CustomerForm” action=”/submitDetailForm.do”>

 <input type=”text” name=”firstName” value=”” />

 <input type=”text” name=”lastName” value=”” />

 <input type=”submit” name=”Submit” value=”” />

 </form>

 </body>

</html>

When the container encounters the FormTag, it invokes the

doStartTag() method. The doStartTag() method in the FormTag class

does exactly what the RequestProcessor does in the execute() method.

1. The FormTag checks for an ActionMapping with /submitDetailForm in its

path attribute.

2. When it finds the ActionMapping, it looks for an ActionForm with the

name CustomerForm, (which it gets from the ActionMapping) in the

request or session scope (which it gets from ActionMapping).

3. If it does not find one, it creates a new one and puts it in the specified

context. Otherwise it uses the existing one. It also makes the Form name

available in the page context.

4. The form field tags (e.g. TextTag) access the ActionForm by its name

from the PageContext and retrieve values from the ActionForm

Chapter 2. Struts Framework Components

45

attributes with matching names. For instance, the TextTag <html:text

property=”firstName /> retrieves the value of the attribute firstName

from the mybank.example.CustomerForm and substitutes as the

value. If the CustomerForm existed in the request or session and the

firstName field in the CustomerForm had a value “John”, then the

TextTag will generate HTML that looks like this:

 <input name=firstName” type=”text” value=”John” />

 If the firstName field was null or empty in the CustomerForm instance,

the TextTag will generate HTML that looks like this

 <input name=firstName” type=”text” value=”” />

And thus the ActionForm is displayed as a HTML Form.

The moral of the story is that ActionForms should be made available in

advance in the appropriate scope if you are editing existing form data. Otherwise

the FormTag creates the ActionForm in the appropriate scope with no data.

The latter is suited for creating fresh data. The FormTag reads the same old

ActionMapping while looking for the ActionForm in the appropriate scope. It

then displays the data from that ActionForm if available.

How ErrorsTag works

When dealing with ActionErrors, you learnt that the validation errors in an

ActionForm are reported to the framework through the ActionErrors

container. Let us now see what facilities the framework provides to display those

errors in the JSP. Struts provides the ErrorsTag to display the errors in the JSP.

When the ActionForm returns the ActionErrors, the RequestProcessor

sets it in the request scope with a pre-defined and well-known name (within the

Struts framework) and then renders the input page. The ErrorsTag iterates over

the ActionErrors in the request scope and writes out each raw error text to the

HTML output.

You can put the ErrorsTag by adding <html:errors /> in the JSP. The tag

does not have any attributes. Neither does it have a body. It displays the errors

exactly in the location where you put the tag. The ErrorsTag prints three

elements to the HTML output – header, body and footer. The error body consists

of the list of raw error text written out to by the tag. A sample error display from

struts-example.war (available with Struts 1.1 download) is shown in Figure 2.2.

You can configure the error header and footer through the Message Resource

Bundle. The ErrorsTag looks for predefined keys named errors.header and

errors.footer in the default (or specified) Message Resource Bundle and their

values are also written out AS IS. In the struts-example.war, these are set as

follows:

Struts Survival Guide – Basics to Best Practices

46

errors.header=<h3>Validation Error</h3>

You must correct the following error(s) before proceeding:

errors.footer=<hr>

For each ActionError, the ErrorsTag also looks for predefined keys

errors.prefix and errors.suffix in the default (or specified) Message

Resource Bundle. By setting errors.prefix= and errors.suffix =

, the generated HTML looks like follows and appears in the browser as

shown in Figure 2.2.

<h3>Validation Error</h3>

You must correct the following error(s) before proceeding:

 From Address is required.

 Full Name is required.

 Username is required

Figure 2.2 Struts error display.

Note that all the formatting information is added as html markup into these

values. The bold red header, the line breaks and the horizontal rule is the result of

html markup in the errors.header and errors.footer respectively.

Tip: A common problem while developing Struts applications is that

<html:errors/> does not seem to display the error messages This generally

means one of the following:

� The properties file could not be located or the key is not found. Set the

Chapter 2. Struts Framework Components

47

<message-resources null="false"...> for debugging.

� Another reason for not seeing the error messages has got to do with the

positioning of the tag itself. If you added the tag itself in the <tr>

instead of a <td>, the html browser cannot display the messages even

though the tag worked properly by writing out the errors to the response

stream.

The View Components was the last piece of the puzzle to be sorted out. As it

turns out, all the work is performed in the controller part of the framework. The

View Tags look for information in the request or session scope and render it as

HTML. Now, that is how a view should be – as simple as possible and yet

elegant. Struts lets you do that, easy and fast.

2.4 Summary

In this chapter you learnt the Struts request lifecycle in quite a bit of detail. You

also got a good picture of Struts framework components when we covered the

controller and view components. You also got to know relevant sections of

struts-config.xml – the Struts configuration file. Armed with this knowledge we

will build a Hello World web application using Struts framework in the next

chapter.

Struts Survival Guide – Basics to Best Practices

48

CChhaapptteerr 33

Your first Struts application

In this chapter:

1. You will build your first Struts web application step by step

2. You will build a Web ARchive (WAR) and deploy the web application in

Tomcat

In the last two chapters you have learnt a lot about Struts. In this chapter will take

you step by step in building your first Struts application and deploying it onto

Tomcat.

3.1 Introduction

You can access the sample application by typing

http://localhost:8080/App1/index.jsp in the browser. The index.jsp contains a

single hyperlink. The link is http://localhost:8080/App1/CustomerDetails.jsp. On

clicking the link, CustomerDetails.jsp is displayed. CustomerDetails.jsp contains

an HTML Form with two buttons – Submit and Cancel. When the user submits

the Form by clicking Submit, Success.jsp is shown if the form validations go

through. If the validations fail, the same page is shown back to the user with the

errors. If the user clicks Cancel on the form, the index.jsp is shown to the user.

Figure 3.1 The JSP flow diagram for the Hello World Struts application.

Chapter 3. Your First Struts Application

49

Directory Structure overview

This is the first time you are building a sample application in this book.

Hence we will introduce you to a standard directory structure followed

throughout the book when developing applications. Then we will move on to the

actual steps involved. Figure 3.2 shows the directory structure.

The structure is very logical. The top-

level directory for every sample

application is named after the

application itself. In this case all the

files are located under the directory

named App1. The directory src/java

beneath App1 contains the Java

source files (CustomerForm.java and

CustomerAction.java) and also the

application’s Message Resource

Bundle (App1Messages.properties).

Another directory called web-root

beneath App1 contains all the JSPs

(index.jsp, CustomerDetails.jsp and

Success.jsp) and images (banner.gif).

The web-root contains a WEB-INF

sub directory with files web.xml and

struts-config.xml.

Figure 3.2 The directory structure used

throughout the book for sample Struts

applications.

3.2 Hello World – step by step

Here are the steps involved in creating the Struts application.

1. Add relevant entries into the web.xml

a. Add ActionServlet Configuration with initialization parameters

b. Add ActionServlet Mapping

c. Add relevant taglib declaration

2. Start with a blank template for the struts-config.xml. In the struts-config.xml,

add the following

a. Declare the RequestProcessor

b. Create a properties file and declare it as Message Resource Bundle

c. Declare the Message Resource Bundle

d. Declare the Form-bean

Struts Survival Guide – Basics to Best Practices

50

e. Declare the ActionMapping for the Form-bean

f. Add the forwards in the ActionMapping

3. Create the Form-bean class

4. Create the Action class

5. Create the JSP with Struts tags

6. For every <bean:message> tag in the JSP, add key value pairs to the

Message Resource Bundle (properties file) created in Step 3b

7. Add Validation in the Form-bean

8. Define the error messages in the Message Resource Bundle

9. Create the rest of the JSPs.

Listing 3.1 web.xml for the Struts Application

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Hello World Struts Application</display-name>

 <servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <param-name>debug</param-name>

 <param-value>3</param-value>

 </init-param>

 <init-param>

 <param-name>detail</param-name>

 <param-value>3</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet> (continued..)

Chapter 3. Your First Struts Application

51

Listing 3.1 web.xml for the Struts Application (Continued)

 <servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

 <taglib>

 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>

 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>

 </taglib>

 <taglib>

 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

 </taglib>

</web-app>

Step 1. As you already know from Chapter 2, the first step in writing a Struts

application is to add the ActionServlet entry in web.xml and also map the

servlet to the url-pattern *.do. This is shown in Listing 3.1. You already know the

meaning of the initialization parameter named config. Here we will introduce two

more initialization parameters. They are debug and detail.

The debug initialization parameter lets you set the level of detail in the debug

log. A lower number means lesser details and a higher number implies detailed

logging. It is absolutely essential that you use this logging feature especially in

the beginning and also while setting up Struts application for the first time. The

debug messages give you enough insight to resolve any configuration related

issues. Use them to their fullest capability. In Listing 3.1, we have set the value

of debug to 3.

The detail initialization parameter lets you set the level of detail in the

digester log. Digester is the component that parses the Struts Config file and

loads them into Java objects. Some of the errors can be traced by looking at the

log created by the Digester as it parses the XML file.

Later in this chapter, you will also use two of the Struts Tag libraries to

construct the JSP. Hence the relevant tag library definition files – struts-html.tld

and struts-bean.tld are also declared in web.xml.

Struts Survival Guide – Basics to Best Practices

52

Another setting of interest in web.xml is the <welcome-file-list>.

Typically you would want to type http://localhost:8080/App1 in the browser

URL bar and go to index.jsp automatically. This goal is achieved by declaring

index.jsp as one of the welcome files.

Step 2. Select a blank template for struts-config.xml and add the following

Listing 3.2 struts-config.xml with all entries for App1

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

 <form-beans>

 <form-bean name="CustomerForm"

 type="mybank.app1.CustomerForm"/>

 </form-beans>

 <global-forwards>

 <forward name="mainpage" path="index.jsp" />

 </global-forwards>

 <action-mappings>

 <action path="/submitCustomerForm"

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetails.jsp">

 <forward name="success" path="Success.jsp" />

 <forward name="failure" path="Failure.jsp" />

 </action>

 </action-mappings>

 <controller

processorClass="org.apache.struts.action.RequestProcessor"/>

 <message-resources parameter="mybank.app1.App1Messages"/>

</struts-config>

Step 2a. Declare the controller element in Struts Config file. The

<controller> element tells the Struts framework to use

org.apache.struts.action.RequestProcessor for this application. For

Chapter 3. Your First Struts Application

53

a simple Struts application like App1, this RequestProcessor will suffice. You

will use specialized sub classes of RequestProcessor as controllers later in

this book. The struts-config.xml is shown in Listing 3.2

<controller processorClass=

 "org.apache.struts.action.RequestProcessor" />

Step 2b. Create a properties file under mybank.app1 java package and name it

as App1Messages.properties. You will later add key value pairs into this file.

Instead of hard coding field names in the JSP, you will use key names from this

file to access them. In this way, the actual name can be changed outside the JSP.

For now, add the following entry into the Struts Config file.

 <message-resources parameter="mybank.app1.App1Messages"/>

This is the instruction to the Struts controller to use the App1Message.properties

file as the Message Resource Bundle.

Step 2c.Define the form bean by adding a form-bean entry in the form-beans

section.

 <form-bean name="CustomerForm"

 type="mybank.app1.CustomerForm"/>

Step 2d. Define an ActionMapping by adding the following to the action-

mappings

 <action path="/submitCustomerForm"

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetails.jsp">

 </action>

Step 2e. Add the local forwards to the ActionMapping

 <forward name="success" path="Success.jsp" />

 <forward name="failure" path="Failure.jsp" />

At this point, the struts-config.xml looks as shown in Listing 3.3. All entries

in bold are added for App1.

Step 3. Create the Form-bean by extending ActionForm in

org.apache.struts.action package. Listing 3.3 shows the Form bean. For

every field in the HTML Form, there is an instance variable with getter and setter

methods in the Form bean. The Struts controller populates the HTML Form by

calling the getter methods on the Form bean. When the user submits the HTML

Struts Survival Guide – Basics to Best Practices

54

Form, the Struts controller populates the Form bean with data from HTML Form

by calling setter method on the Form bean instance.

Step 4. Next, create the Action bean by extending the

org.apache.struts.action.Action class. Let us call it CustomerAction.

Every class that extends Action implements the execute() method. As you

saw earlier in Chapter 2, the RequestProcessor calls the execute() method

after populating and validating the ActionForm. In this method you typically

implement logic to access middle-tier and return the next page to be displayed to

the user. Listing 3.4 shows the execute() method in CustomerAction. In this

method, an operation is performed to check is the Cancel button was pressed. If

so, the “mainpage” (Global Forward for index.jsp) is shown to the user. The

isCancelled() method is defined in the parent Action class. If the operation

requested is not Cancel, then the normal flow commences and the user sees

Success.jsp.

Listing 3.3 CustomerForm – Form Bean for App1

public class CustomerForm extends ActionForm {

 private String firstName;

 private String lastName;

 public CustomerForm() {

 firstName = “”;

 lastName = “”;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String s) {

 this.firstName = s;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String s) {

 this.lastName = s;

 }

}

Step 5. Create the JSP using Struts html and bean tags.

Chapter 3. Your First Struts Application

55

All Struts html tags including the FormTag are defined in struts-html.tld.

These tags generate appropriate html at runtime. The TLD file struts-html.tld and

struts-bean.tld are declared at the top of JSP and associated with logical names

“html” and “bean” respectively. The JSP then uses the tags with the prefix of

“html:” and “bean:” instead of the actual tag class name. Listing 3.5 shows the

CustomerDetails.jsp. Let us start from the top of this Listing.

Listing 3.4 CustomerAction – Action Bean for App1

public class CustomerAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 if (isCancelled(request)) {

 System.out.println(Cancel Operation Performed”);

 return mapping.findForward(“mainpage”);

 }

 CustomerForm custForm = (CustomerForm) form;

 String firstName = custForm.getFirstName();

 String lastName = custForm.getLastName();

 System.out.println(“Customer First name is “ + firstName);

 System.out.println(“Customer Last name is “ + lastName);

 ActionForward forward = mapping.findForward(“success”);

 return forward;

 }

}

<html:html>: Under normal circumstances, this JSP tag just generates

opening and closing html tags for the page i.e. <html> and </html>. However

the real advantage of this tag is when the browser has to render the HTML based

on the locale. For instance, when the user’s locale is set to Russia, the tag

generates <html lang=”ru”> instead of the plain old <html>, so that the

browser can attempt to render the Russian characters (if any) in the best possible

manner. Setting <html:html locale="true"> tells Struts to look for the

locale specific resource bundle (More on this later).

<html:base>: As you might be already aware of, one of the best practices

in authoring pages is to use relative URLs instead of absolute ones. In order to

use relative URLs in HTML, you need to declare the page context root with the

declaration <base href=”…”> tag. All URLs (not starting with “/”) are

Struts Survival Guide – Basics to Best Practices

56

assumed to be relative to the base href. This is exactly what the <html:base/>

tag generates.

Listing 3.5 CustomerDetails.jsp

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<html:html>

 <head>

 <html:base/>

 </head>

 <body>

 <html:errors/>

 <html:form action="/submitCustomerForm">

 <bean:message key="prompt.customer.firstname"/>:

 <html:text property="firstName" size="16" maxlength="16"/>

 <bean:message key="prompt.customer.lastname"/>:

 <html:text property="lastName" size="16" maxlength="16"/>

 <html:submit>

 <bean:message key="button.save"/>

 </html:submit>

 <html:cancel>

 <bean:message key="button.cancel"/>

 </html:cancel>

 </html:form>

 </body>

</html:html>

<html:form>: The FormTag represented by <html:form> generates the

HTML representation of the Form as follows:

 <form name=..” action=”..” method=”GET”>)

It has one mandatory attribute – action. The action attribute represents the

ActionMapping for this form. For instance, the action attribute in Listing 3.5 is

/submitCustomerForm. Note that the FormTag converts this into a HTML

equivalent as follows:

 <form name=”CustomerForm” action=”/App1/submitCustomerForm.do”>

Chapter 3. Your First Struts Application

57

The corresponding ActionMapping in Struts Config file is associated with

CustomerForm. Before displaying the page to the user, the FormTag searches

the request scope for an attribute named CustomerForm. In this case, it does not

find one and hence it instantiates a new one. All attributes are initialized to zero

length string in the constructor. The embedded tags use the attributes of the

CustomerForm in the request scope to display their respective values.

<html:text>: The <html:text> tag generates the HTML representation

for the text box. It has one mandatory attribute named property. The value of this

XML attribute is the name of the JavaBeans property from the Form bean that is

being represented. For instance, the <html:text property=”firstname”/>

represents the JavaBeans property firstName from the CustomerForm. The

<html:text> tag will get the value of the JavaBeans property as indicated by

the property attribute. Since the CustomerForm was newly instantiated, all its

fields have a value of zero length string. Hence the <html:text

property=”firstName” /> generates a html textbox tag of <input

type=”text” name=”firstName” value=”” />. Listing 3.6 shows the

generated HTML.

<html:submit>: This tag generates the HTML representation for the

Submit button as <input type=”submit” value=”Save Me”>.

<html:cancel>: This tag generates the HTML representation for the

Cancel button. This must have started a though process in your mind now. Why

do I need a <html:cancel> when I already have <html:submit>? Well, this

is because of the special meaning of Cancel in everyday form processing.

Pressing a Cancel button also results in Form submission. You already know that

when validate is set to true, the form submission results in a validation. However

it is absurd to validate the form when form processing is cancelled. Struts

addresses this problem by assigning a unique name to the Cancel button itself.

Accordingly, a JSP tag <html:cancel>Cancel Me</html:cancel> will

generate equivalent HTML as follows:

 <input type="submit"

 name="org.apache.struts.taglib.html.CANCEL"

 value="Cancel Me">

Just before the RequestProcessor begins the Form validation, it checks if the

button name was org.apache.struts.taglib.html.CANCEL. If so, it

abandons the validation and proceeds further. And that’s why <html:cancel>

is different from <html:submit>.

<html:errors>: This tag displays the errors from the ActionForm

validation method. You already looked at its working in the last chapter.

Struts Survival Guide – Basics to Best Practices

58

In the generated html, you might notice that the <html:errors/> tag did

not translate into any meaningful HTML. When the form is displayed for the first

time, the validate() method in CustomerForm hasn’t been executed yet

and hence there are no errors. Consequently the <html:errors/> tag does

not output HTML response.

There is another tag used in Listing 3.5 called <bean:message> for which

we did not provide any explanation yet. The <bean:message> tags in the JSP

generate regular text output in the HTML (See Listing 3.6). The

<bean:message> tag has one attribute named “key”. This is the key to the

Message Resource Bundle. Using the key, the <bean:message> looks up the

properties file for appropriate values. Hence our next task is to add some key

value pairs to the properties file created in Step 3b.

Listing 3.6 Generated HTML for CustomerDetails.jsp

<html lang=”en”>

<head>

 <base

 href=”http://localhost:8080/App1/CustomerDetails.jsp” />

</head>

 <body>

 <form name=”CustomerForm”

 action=”/App1/submitCustomerForm.do”>

 First Name:

 <input type=”text” name=”firstName” value=”” />

 Last Name:

 <input type=”text” name=”lastName” value=”” />

 <input type=”submit” value=”Save Me”/>

 <input type="submit"

 name="org.apache.struts.taglib.html.CANCEL"

 value="Cancel Me">

 </form>

 <body>

</html>

Step 6. For every <bean:message> tag in the JSP, add key value pairs to the

Message Resource Bundle (App1Messages.properties) created in Step 3b. This is

pretty straightforward. Listing 3.7 shows the App1Messages.properties. We will

add more contents into this file in Step 9. But for now, this is all we have in the

Message Resource Bundle.

Chapter 3. Your First Struts Application

59

Step 7. Now that the CustomerForm is displayed to the user, what if user

enters wrong data and submits the form? What if the user does not enter any

data? These boundary conditions have to be handled as close to the user interface

as possible for reasons discussed in Chapter 2. That’s why the validate()

method is coded in every Form bean. You have seen the validate() method

before in Chapter 2. It is repeated in Listing 3.8.

Listing 3.7 App1Messages.properties

prompt.customer.firstname=First Name

prompt.customer.lastname=Last Name

button.save=Save Me

button.cancel=Cancel Me

 According to the business requirements set for this application, first name has

to exist all the time. Hence the validate() method checks to see if the first

name is null or if the first name is all spaces. If either of this condition is met,

then it is an error and according an ActionError object is created and added to the

ActionErrors. Think of the ActionErrors as a container for holding individual

ActionError objects. In Listing 3.8, the ActionError instance is created by

supplying a key “error.cust.firstname.null” to the ActionError

constructor. This key is used to look up the Message Resource Bundle. In the

next step, the keys used for error messages are added to the Message Resource

Bundle.

Listing 3.8 validate() method in CustomerForm

public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request) {

 ActionErrors errors = new ActionErrors();

 if (firstName == null || firstName.trim().equals(“”)) {

 errors.add("firstName",

 new ActionError("error.cust.firstname.null"));

 }

 return errors;

}

Step 8. In Step 7, validate() method was provided with the error messages

identified by keys. In this step, the error message keys are added to the same old

App1Messages.properties. The modified App1Messages.properties is shown in

Listing 3.9. The new entry is shown in bold. Note that we have used a prefix

“error” for the error message entries, a prefix of “button” for button labels and a

prefix of “prompt” for regular HTML text. There is no hard and fast rule and it is

only a matter of preference. You can name the keys anyway you want.

Struts Survival Guide – Basics to Best Practices

60

Step 9. In the previous steps, you created most of the artifacts needed for the

Struts application. There are two more left. They are index.jsp and Success.jsp.

These two JSPs are pretty simple and are shown in Listing 3.10 and Listing 3.11

respectively.

Listing 3.9 Updated App1Messages.properties

prompt.customer.firstname=First Name

prompt.customer.lastname=Last Name

button.save=Save Me

button.cancel=Cancel Me

error.cust.firstname.null=First Name is required

Here we are introducing a new tag – <html:link>. This generates a

hyperlink in the HTML. You must be wondering why would you need another

tag when might as well do the job. There are many advantages

of using the <html:link> tag. We will explain one advantage relevant to our

discussion – URL rewriting. We will look at other uses of the <html:link> tag

in Chapter 4.

Since HTTP is stateless, J2EE web applications maintain data in a special

object called HTTPSession. A key on the server side uniquely identifies every

user’s HTTPSession. You can think as if the Servlet container is storing all the

active sessions in a big Hash Map. A per-session cookie is created when the user

accesses the web application for the first time. There after the browser sends the

per-session cookie to the server for every hit. The cookie serves as the key into

the Servlet container’s global Hash Map to retrieve the user’s HTTPSession.

Under normal circumstances this works fine. But when the user has disabled

cookies, the Servlet container uses a mechanism called URL rewriting as a work

around. In URL rewriting, the Servlet container encodes the per-session cookie

information into the URL itself. However the container does not do this unless

you ask it to do so explicitly. You should make this provision to support users

with cookie-disabled browsers since you can never anticipate the user behavior in

advance. Therefore, when using the regular for the hyperlinks,

you have to manually encode the URL by using the API

HttpServletResponse.encodeURL() method to maintain the session as

follows:

<a href=”<%= response.encodeURL(“CustomerDetails.jsp”) %>” >

 Customer Form

Now, that’s a painful and laborious thing to do for every link in your

application. In addition, you are unnecessarily introducing a scriptlet for every

encoding. The good news is that the <html:link> does that automatically. For

instance,

Chapter 3. Your First Struts Application

61

<html:link page=”CustomerDetails.jsp”>Customer Form

generates a HTML as follows by rewriting the URL by including the jsessionid.

<a

href=”http://localhost:7001/App1/CustomerDetails.jsp;jsessionid=1O

s1Ame91Z5XCe3l648VNohduUlhA69urqOL1C2mT1EXzsQyw2Ex!-

824689399”>Customer Form

Listing 3.10 index.jsp

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html:html>

 <head>

 <html:base/>

 </head>

 <body>

 <html:link page=”CustomerDetails.jsp”>Customer Form

 </body>

</html:html>

Listing 3.11 Success.jsp

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:html>

 <head>

 <html:base/>

 </head>

 <body>

 <h1>My First Struts Applications is a Success.</h1>

 </body>

</html:html>

3.3 Lights, Camera, Action!

In the previous steps, you completed all the coding that was required. Now you

should compile the Java classes, create the WAR artifact and deploy onto

Tomcat. Compiling the classes is a no-brainer. Just set the right classpath and

invoke javac. The classpath should consist of the servlet-api.jar from Tomcat

(This jar can be found in <TOMCAT_HOME>/common/lib, where

TOMCAT_HOME is the Tomcat installation directory.) and all the JAR files

Struts Survival Guide – Basics to Best Practices

62

from Struts distribution. They are found under jakarta-struts-1.1/lib directory.

After compiling, you have to construct the WAR. Ant, Java community’s de-

facto build tool, can be used to perform these tasks. However we have chosen to

create the WAR manually to illustrate which component goes where in the WAR.

A clear understanding of the structure of Struts web applications is key to writing

effective Ant scripts.

In Figure 3.2, you saw the

directory structure of the Struts

application. Now let us follow these

steps to create the WAR that will look

as shown in Figure 3.3 upon

completion.

1. Create a directory called temp under

the App1 directory.

2. Copy all the contents of App1/web-

root AS IS into the temp directory.

3. Create a subdirectory called classes

under temp/WEB-INF

4. Copy the compiled classes into the

directory WEB-INF/classes. Retain the

package structure while doing this)

5. Copy the App1Messages.properties

into the directory WEB-INF/classes.

Copy the file according to the java

package structure. See Figure 3.3 for

the final structure of the WAR.

Figure 3.3 The structure of the WAR file.

6. Create a directory lib under WEB-INF and copy all the JAR files from Struts

distribution into the lib folder. These JAR files are required by your web

application at runtime.

7. Copy struts-bean.tld and struts-html.tld from Struts distribution into the WEB-

INF directory.

8. Zip (or jar) the temp directory into a file named App1.war. You WAR is ready

now. Drop it into the webapps sub-directory in Tomcat. Start Tomcat and test it

out!

Chapter 3. Your First Struts Application

63

Congratulations! You have successfully developed and deployed your first Struts

application. However we are not done yet. Let us look at some practical issues

that need to be addressed.

3.4 Handling multiple buttons in HTML Form

In the example application, we used the <html:submit> tag to submit the

HTML form. Our usage of the tag was as follows:

<html:submit><bean:message key=”button.save”/></html:submit>

This generated a HTML as follows.

 <input type="submit" value="Save Me">

 This worked okay for us since there was only one button with “real” Form

submission (The other one was a Cancel button). Hence it sufficed for us to

straight away process the request in CustomerAction. You will frequently face

situations where there are more than one or two buttons submitting the form. You

would want to execute different code based on the buttons clicked. If you are

thinking, “No problem. I will have different ActionMapping (and hence different

Actions) for different buttons”, you are out of luck! Clicking any of the buttons

in a HTML Form always submits the same Form, with the same URL. The Form

submission URL is found in the action attribute of the form tag as:

<formname=”CustomForm”action=”/App1/submitCustomerForm.do”/>

 and is unique to the Form. You have to use a variation of the <html:submit>

as shown below to tackle this problem.

 <html:submit property=”step”>

<bean:message key=”button.save”/>

 </html:submit>

The above SubmitTag, has an additional attribute named property whose value is

step. The meaning of the property attribute is similar to that in <html:text> - It

represents a JavaBeans property in the ActionForm and generates the name of the

Form input element. This tag generates a HTML as follows

 <input type="submit" name=”step” value="Save Me">

 The generated HTML submit button has a name associated with it. You have

to now add a JavaBeans property to your ActionForm whose name matches the

Struts Survival Guide – Basics to Best Practices

64

submit button name. In other words an instance variable with a getter and setter

are required. If you were to make this change in the application just developed,

you have to add a variable named “step” in the CustomerForm and then add

two methods getStep() and setStep(). The Struts Framework sets the value

of the step by Introspection, just like it does on the other fields. In the

CustomerAction, the logic corresponding to the Save Me button is executed

after performing a check for the Save Me button. Listing 3.12 shows the

modified execute() method from CustomerAction. The changes are shown

in bold. When the Save Me button is pressed, the custForm.getStep()

method returns a value of “Save Me” and the corresponding code block is

executed.

Listing 3.12 CustomerAction modified for mutltiple button Forms

public class CustomerAction extends Action

{

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 if (isCancelled(request)) {

 System.out.println(Cancel Operation Performed”);

 return mapping.findForward(“mainpage”);

 }

 CustomerForm custForm = (CustomerForm) form;

 ActionForward forward = null;

 if (“Save Me”.equals(custForm.getStep())) {

 System.out.println(“Save Me Button Clicked”);

 String firstName = custForm.getFirstName();

 String lastName = custForm.getLastName();

 System.out.println(“Customer First name is “ +

 firstName);

 System.out.println(“Customer Last name is “ +

 lastName);

 forward = mapping.findForward(“success”);

 }

 return forward;

 }

}

Chapter 3. Your First Struts Application

65

In Struts applications, when using regular buttons, it is customary for all

submit buttons to have the same name (except Cancel and Reset buttons). This is

for convenience purposes. In HTML, when a form is submitted, only one of the

submit buttons is pressed and hence only the value of that button is submitted.

The ActionForm can thus have a single instance variable for all the submit

buttons in its Form. This makes the if-else check in the Action class easier.

Suppose that the HTML Customer Form that we show to the users has another

button with label “Spike Me”. The submit button can still have the name “step”

(same as the “Save Me” button). This means the CustomerForm class has a

single JavaBeans property “step” for the submit buttons. In the

CustomerAction you can have check if the custForm.getStep() is “Save

Me” or “Spike Me”. If each of the buttons had different names like button1,

button2 etc. then the CustomerAction would have to perform checks as

follows:

 if (“Save Me”.equals(custForm.getButton1()) {

 // Save Me Button pressed

 } else if (“Spike Me”.equals(customForm.getButton2()) {

 // Spike Me button pressed

 }

Using the HTML Button Label to distinguish the buttons works for most of

the cases except when you have a internationalized Struts web application.

Consider the HTML rendered for a Spanish user. By virtue of the Message

Resource Bundles (<bean:message> tag), the Spanish user will see a label of

“Excepto Mí” instead of “Save Me”. However the CustomerAction class is still

looking for the hard coded “Save Me”. Consequently the code block meant for

“Save Me” button never gets executed. In Chapter 4, you will see how a

specialized subclass of the Action called LookupDispatchAction solves this

problem.

3.5 Value replacement in Message Resource Bundle

When you constructed the web application, earlier in this chapter, you used static

messages in the Resource Bundle. However consider this: You have a dozen

fields in the form. The only validation rule is that all fields are required. Hence

the error messages for each field differs from another only by the field name.

First name is required, Last name is required, Age is required and so on. It

would be ideal if there were a field name replacement mechanism into a fixed

error message template. The good news is that it already exists. In the resource

bundle file, you can define a template for the above error message as:

 errors.required={0} is required.

Struts Survival Guide – Basics to Best Practices

66

In the validate() method, the ActionError is then constructed using

one of the following overloaded constructors.

 public ActionError(String key, Object value0);

 public ActionError(String key, Object value0, Object value1)

 . . .

 public ActionError(String key, Object[] values);

The first overloaded constructor accepts the key and one replacement value.

The second overloaded constructor accepts a key and two replacement values.

The last constructor accepts a key and an array of objects for replacement. You

can now construct an ActionError for the first name as follows:

 String[] strArray = {“First name”};

 ActionError err = new ActionError(“errors.required” strArray);

This will result in an error message: First name is required.

Beautiful isn’t it! Now you can make this even better. Notice that in the above

example, we hard coded the field name in the replacement value array in the

process of reducing the set of error messages to a single error message template.

Now, let us go one step further and get the field name from the resource bundle

too. The following code shows how to do it.

MessageResources msgRes =

 (MessageResources) request.getAttribute(Globals.MESSAGES_KEY);

String firstName =

 msgRes.getMessage(“prompt.customer.firstname”);

ActionError err = new ActionError(“errors.required” firstName);

� First, a MessageResources for the current module is obtained.

� Next, the display value of the first name field is obtained from the

MessageResources (resource bundle) in the getMessage() method by

using the key for the first name – prompt.customer.firstName.

� Finally, the display value of the first name field is used as a replacement

parameter in the ActionError using the first of the overloaded

constructors.

This is generally the preferred way of constructing reusable error messages when

the validate() method is coded manually.

TIP: Using the struts-blank.war as a template

In this application we put together everything from scratch to construct the

application. You can use the template so constructed for future use or you can

use the ready-made template available in the Struts distribution. The ready-made

template is called struts-blank.war is something that you can unwar and use as

Chapter 3. Your First Struts Application

67

template for your applications. It has all the tlds and jars included in the WAR.

Plus it provides the web.xml and struts-config.xml ready to be used as

placeholders with default values.

3.6 Summary

In this chapter you applied all that you have learnt so far and built a Hello World

Struts application. This application although simple, illustrates the basic steps in

building a Struts application. In the coming chapters we will go beyond the

basics and learn other features in Struts and effectively apply them to tackle real

life scenarios.

Struts Survival Guide – Basics to Best Practices

68

CChhaapptteerr 44

All about Actions

In this chapter:

1. You will learn about all the built-in Struts Actions – ForwardAction,

IncludeAction, DispatchAction, LookupDispatchAction and SwitchAction

2. You will learn about multiple sub application support in Struts and using

SwitchAction to transparently navigate between them

3. You will see examples of effectively using the built-in Actions

4. You will learn of ways to prevent direct JSP access by the users

In Chapter 2, you understood the basics of the Struts framework. In Chapter 3,

you applied those basics to build a simple web application using Struts and got a

clear picture of the basics. In this chapter we take you beyond the basics as you

explore Struts Controller components that are interesting and timesaving that

prepare you to handle realistic scenarios.

Action classes are where your presentation logic resides. In Chapter 2, you

saw how to write your own Action. Struts 1.1 provides some types of Action out-

of-the-box, so you don’t have to build them from the scratch. The Actions

provided by Struts are ForwardAction, IncludeAction, DispatchAction,

LookupDispatchAction and SwitchAction. All these classes are defined in

org.apache.struts.actions package. These built-in actions are very

helpful to address some problems faced in day to day programming.

Understanding them is the key to using them effectively. All of these the Actions

are frequently used, except for IncludeAction.

4.1 ForwardAction

ForwardAction is the one of the most frequently used built-in Action classes.

The primary reason behind this is that ForwardAction allows you to adhere to

MVC paradigm when designing JSP navigation. Most of the times you will

perform some processing when you navigate from one page to another. In Struts,

Chapter 4. All about Actions

69

this processing is encapsulated in the Action instances. There are times however

when all you want to do is navigate from one page to another without performing

any processing. You would be tempted to add a hyperlink on the first page for

direct navigation to the second. Watch out! In Model 2 paradigm, a straight JSP

invocation from another JSP is discouraged, although not prohibited. For

instance, suppose you want to go from PageA.jsp to PageB.jsp in your Struts

application. The easy way of achieving this is to add a hyperlink in PageA.jsp as

follows:

Go to Page B

or even better, as follows:

<html:link page=”/PageB.jsp”>Go to Page B</html:link>

This is what we did in Chapter 3 when navigating from index.jsp to the

CustomerDetails.jsp. However this violates the MVC spirit by directly accessing

the JSP. In Model 2 applications, it is the responsibility of the Controller to select

and dispatch to the next view. In Struts, ActionServlet and Action classes

together form the controller. They are supposed to select and dispatch to the next

view. Moreover the ActionServlet is responsible for intercepting your request

and providing appropriate attributes such as Message Resource Bundles. If you

bypass this step, then the behavior of the Struts tags may become unpredictable.

MVC compliant usage of LinkTag

Struts provides a built-in Action class called ForwardAction to address this

issue. With ForwardAction, the Struts Controller is still in the loop while

navigating from PageA to PageB. There are two steps involved in using the

ForwardAction. They are:

� First, declare the PageA hyperlink that takes you to PageB as follows:

<html:link page=”/gotoPageB.do”>Go to Page B</html:link>

� Next, add an ActionMapping in the Struts Config file as follows:

 <action path=”/gotoPageB”

 parameter=”/PageB.jsp”

 type=”org.apache.struts.actions.ForwardAction” />

The PageA.jsp hyperlink now points to “/gotoPageB.do” instead of

“PageB.jsp”. This ensures that the controller is still in the loop. The three

attributes shown above are mandatory in a ForwardAction. The type attribute

is always org.apache.struts.actions.ForwardAction instead of a

custom Action of yours. The path attribute identifies the URL path, as any other

ActionMapping. The parameter attribute in the above definition is the URL for

the next JSP.

Struts Survival Guide – Basics to Best Practices

70

In the above ActionMapping you might have noticed there is no ActionForm.

The Struts Config file DTD specifies that the Form bean is optional in an

ActionMapping. Logically speaking ActionForm makes sense only where is data

to be collected from the HTML request. In situations like this where there is no

HTML data involved in the navigation, there is no need for ActionForm.

Using LinkTag’s action attribute

The LinkTag (<html:link>) has several variations. It can be used in a

variety of ways in conjunction with ForwardAction. You just saw one usage of

the LinkTag. A second way of using the this tag is as follows:

� First, declare the PageA hyperlink that takes you to PageB as follows:

<html:link action=”gotoPageB”>Go to Page B</html:link>

� Next, add the ActionMapping for /gotoPageB in the Struts Config file

same way as before:

 <action path=”/gotoPageB”

 parameter=”/PageB.jsp”

 type=”org.apache.struts.actions.ForwardAction” />

When you use the action attribute instead of the page attribute in

<html:link>, you need not specify the “.do” explicitly.

Using LinkTag’s forward attribute

There is yet another way to use <html:link>. In this approach you use the

forward attribute of the <html:link> tag instead of the action. There are two

steps involved in this approach.

� First, declare the PageA hyperlink that takes you to PageB as follows:

<html:link forward=”pageBForward”>Go to Page B</html:link>

� Add a Global Forward for “pageBForward” as follows in the global-

forwards section:

 <global-forwards>

 <forward name=”pageBForward” path=”/PageB.jsp” />

 </global-forwards>

When used in this manner, the <html:link> gets transformed into the

following HTML Link.

Go to Page B

 Oops, that doesn’t seem right. The HTML Link is now displaying the actual

JSP name directly in the browser. Ideally you would love to hide the JSP name

Chapter 4. All about Actions

71

from the user. And with a slight twist you can! First, define an ActionMapping as

follows:

 <action path=”/gotoPageB”

 parameter=”/PageB.jsp”

 type=”org.apache.struts.actions.ForwardAction” />

Next, modify the global forward itself to point to the above ActionMapping.

 <global-forwards>

 <forward name=”pageBForward” path=”/gotoPageB.do” />

 </global-forwards>

When used in this manner, the <html:link> gets transformed into the

following HTML Link.

Go to Page B

There you go! The generated HTML is not displaying the JSP name anymore.

From a design perspective this seems to be the best way of using the

<html:link> tag since the link is completely decoupled from the associated

ActionMapping, thanks to the global-forward.

The <html:link> points to the global-forward and the global-forward

points to the ForwardAction. The extra level of indirection, although looks

confusing in the beginning, is a good design decision due to the following

reason:

As is true with any application, requirements change and it might just

become necessary to do some processing during the navigation from PageA to

PageB. A conversion from ForwardAction to a custom Action will be easier to

manage with the extra level of indirection.

Using ForwardAction for Integration

In general, the ForwardAction’s parameter attribute specifies the resource

to be forwarded to. It can be the physical page like PageB.jsp or it can be a URL

pattern handled by another controller, maybe somewhere outside Struts. For

instance, consider the following ForwardAction.

 <action path=”/gotoPageB”

 parameter=”/xoom/AppB”

 type=”org.apache.struts.actions.ForwardAction” />

In the snippet above, the value of the parameter is not a physical page. It is a

logical resource that might be mapped to another Servlet totally outside the

control of Struts. Yet from PageA’s perspective, you are still dealing with a

Struts URL. This is the second use of ForwardAction. You can integrate

Struts applications transparently with already existing non-Struts applications.

NOTE: Even with the ForwardAction, you cannot prevent a nosy user

from accessing the JSP directly. See the section Protecting JSPs from direct

access for techniques to protect your JSPs from direct access.

Struts Survival Guide – Basics to Best Practices

72

ForwardAction Hands-on

In the last chapter, we modeled the navigation from index.jsp to

CustomerDetails.jsp with a direct link. Let us correct the mistake we made by

applying the knowledge we have gained so far. Think of index.jsp as PageA and

CustomerDetails.jsp as PageB. The <html:link> in index.jsp will look as

follows: <html:link forward=”CustomerDetailsPage”>Customer Form

 The following Global Forward and ForwardAction are added to the Struts

Config file.

 <global-forwards>

 ..

 <forward name="CustomerDetailsPage"

 path="/gotoCustomerDetails.do" />

 </global-forwards>

 <action-mappings>

 ..

 <action path=”/gotoCustomerDetails”

 parameter=”/CustomerDetails.jsp”

 type=”org.apache.struts.actions.ForwardAction” />

 </action-mappings>

And now, we have an application that strictly adheres to MVC. What a relief!

4.2 Protecting JSPs from direct access

According to the Model 2 paradigm, the view is always served by the controller

and should not be requested explicitly from any other view. In reality a JSP can

always navigate to another JSP when the JSPs are placed anywhere in a WAR

other than the WEB-INF directory (or its sub-directories). Similarly a user can

type in the name of the JSP in the URL bar and invoke the JSP. The web

application specification does not disallow such access. Actually this makes

sense. The specification should not prevent anybody from coding using the

Model 1 paradigm. Consequently your JSPs are exposed to the external world for

nosy users to cause unnecessary problems, for hackers to exploit any

vulnerability in the system. If you are wondering what the problem is with

allowing direct access to JSPs, well, here are some.

A nosy user might attempt to guess the JSP name by the operation performed in

that page or request parameters or worse – if the page author used html comment

tag for SCM and code comments instead of the JSP comments. Armed with this

information, the user attempts to access the JSPs directly. A JSP as you know is a

view and it displays information based on model objects stored in one of the four

scopes – page, request, session or application, the first three being the most

Chapter 4. All about Actions

73

common. These objects are created by the back end presentation and business

logic and made available for the JSP to act upon. When the JSP is accessed out of

context or out of order, the required model objects may not exist in the

appropriate scope and consequently almost always leads to the exceptional

situations in the JSP code.

It is not common to perform null checks in every bit of code in the JSP tags,

scriptlets and other helper classes. These checks are generally limited to

interfaces and boundaries between modules and not later on. For instance, in a

typical Model 2 scenario, when the model object cannot be created for some

reason, the controller instead takes alternate route and displays an alternate view

corresponding to the null model object. This assumption of model objects being

not null in the main path of the presentation logic and view highly simplifies the

coding. In fact when the system is accessed as intended, everything works

smoothly. However whenever somebody tries to access the views out of order, all

hell breaks lose. Every view starts throwing NullPointerExceptions,

IllegalArgumentExceptions and other unchecked and checked exceptions

depending on how the JSP page and its tags and scriptlets are authored. This is

exactly what a nosy user is trying out.

The implications are even more serious when a malicious user tries to find weak

points in the design to bring the system down to its knees. The first thing that

might occur is to put checks for nulls and unintended access in the system.

Invariably, this is nothing but a collection of if-else blocks in every part of the

JSP page making it messy and buggy to maintain.

Two prominent alternatives exist. Let us look the easiest one first. As we

glossed over earlier, the servlet specification explicitly states that contents

located in the WEB-INF and its sub-directories are protected from outside access.

Let us take a simple example to illustrate this. All contents located in a WAR

belong to the same protection domain. A protection domain is a set of entities

known (or assumed) to trust each other. Consequently any resource within a

WAR can access resources located under WEB-INF directory without

restrictions. JSP is also a resource and thus any class within the same WAR can

forward to a JSP under WEB-INF. (This part is not explicitly stated in the

specification) However when the request originates outside the container, it does

not belong to the protection domain (at least not until it is authenticated) and

hence cannot access the protected resource under WEB-INF. Thus putting all

JSPs under the WEB-INF directly or as sub-directories if needed is the easiest

and also the best way of protecting direct access to JSPs. What if the hyperlink in

one of your page wants to really just forward to another JSP? Is that disallowed

as well? Yeah! You cannot have different rules in your system right? However

there is a way around.

Struts Survival Guide – Basics to Best Practices

74

Consider the case when a hyperlink in page A needs to forward request to

page B. Instead of directly forwarding to page B, which is disallowed, you can

put the following entry in the struts-config.xml

 <action path=”/gotoPageB”

 parameter=”/WEB-INF/pageB.jsp”

 type=”org.apache.struts.actions.ForwardAction” />

On the pageA, the hyperlink can point to “pageB.do” is suffix mapping is

used or some other path is path mapping is used. Either ways, the

ActionMapping shown above is picked up and as its type indicates, the action is

just a ForwardAction, which as the name suggest is a forward. However since

the forward is occurring from within the container, (in the protection domain) it

is allowed.

A question might be popping up in your mind. The technique just highlighted

is the easiest and also supposedly the best. Why do I need anything lesser than

best? The answer is not all containers support the behavior just mentioned. As we

stated earlier, since the specification is clear about not letting direct access to

resources under WEB-INF, all J2EE compliant application servers implement it.

However, the second part is not stated in the specification and consequently it is

the vendor’s prerogative to implement it or not. Certain providers do (For e.g.

Tomcat) and others don’t (For e.g. WebLogic). Hence we have to have an

alternate mechanism for the less fortunate ones. This one is not difficult either.

Instead of putting the JSPs underneath WEB-INF, they can stay wherever they

are. The following entries are added to the web.xml.

<security-constraint>

 <web-resource-collection>

 <web-resource-name>Deny Direct Access</web-resource-name>

 <description>

 Deny direct access to JSPs by associating

 them with denied role

 </description>

 <url-pattern>*.jsp</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>Denied</role-name>

 </auth-constraint>

</security-constraint>

<security-role>

 <role-name>Denied</role-name>

</security-role>

Chapter 4. All about Actions

75

First, all the url patterns ending with suffix “.jsp” are associated with a Role

named “Denied”. Any user who wants to access the JSP pages directly should be

in that role. We further ensure that no user of the system is in that Role. Role and

user association is done depending on your implementation of authentication and

authorization. For instance, if you are using LDAP as the user persistence

mechanism, then the users, their passwords and Roles are stored in LDAP. If you

ensure nobody gets the Denied role, then you have effectively prevented

everyone from directly accessing the JSPs. You will still have to have the

ForwardAction as shown earlier in this section if you have situation when page

A needs to just navigate to page B. The internal forwards to other JSPs using

RequestDispatcher are okay because the container does not intercept and

cross check internal forwards even though the url-pattern matches the ones in

web.xml.

NOTE: The default pagePattern and forwardPattern values for

<controller> element in struts-config.xml are MP, where $M is replaced

with the module prefix and the $P is replaced with the path attribute of the

selected forward. If you place your JSP files under WEB-INF for access

protection, you have to set the pagePattern and forwardPattern attributes

of the <controller> element in the struts-config.xml to /WEB-INF/MP to

tell Struts to construct the paths correctly.

4.3 IncludeAction

IncludeAction is much like ForwardAction except that the resulting

resource is included in the HTTP response instead of being forwarded to. It is

rarely used. Its only significant use is to integrate legacy applications with Struts

transparently. Consider a web site that aggregates information from disparate

sources – some of which are non-Struts. The JSP for such a web site consists of

<jsp:include>s to include different resources. One of such <jsp:include>

that might be as follows:

<jsp:include page=”/xoom/LegacyServletA” />

It is very clear from the value of the page attribute that it is a non-Struts

resource. Wouldn’t it be better to have a <jsp:include> that pretends as if the

resource exists in the current Struts application? It would be ideal if the page

include looked as follows:

<jsp:include page=”/App1/legacyA.do” />

The /legacyA.do cannot be a ForwardAction because it would perform a

HTTP Forward to the above resource instead of including the resource in the

HTTP response. Since the HTTP Response OutputStream closes (The J2EE

jargon for this is the response has been committed) after HTTP Forward, the

Struts Survival Guide – Basics to Best Practices

76

servlet container cannot process the rest of the JSP and include its response in the

OutputStream. Consequently it throws a IllegalStateException with a

message that “Response is already committed”. IncludeAction addresses this

problem. Instead of forwarding to the specified resource, it includes the resource

in the current response. Consequently the output of the LegacyServletA is

displayed in the same HTML as that of the Struts application. You have to add

the following ActionMapping in the Struts Config file:

 <action path=”/legacyA”

 parameter=”/xoom/LegacyServletA”

 type=”org.apache.struts.actions.IncludeAction” />

The parameter attribute indicates the actual resource that has to be included

in the response.

As mentioned earlier, the use of IncludeAction is limited to including

responses from existing Servlet in the current page. This requires the use of

<jsp:include> in the page. If you web application is aggregating response

from legacy servlet applications, portlets seems to be the way to go. Portlet API –

JSR 168 has been finalized and it is matter of time before you can develop

standardized portals aggregating contents from disparate web applications. Tiles

framework is the way to go if you are on a short-term project that wants to

aggregate information now (From different applications or may be from various

Actions in the same Struts application). Tiles provides a robust alternative to the

primitive <jsp:include>. Chapter 7 provides an in-depth coverage of Tiles in

conjunction with Struts.

4.4 DispatchAction

DispatchAction is another useful built-in Struts Action. However you cannot

use it as is. You will have to extend it to provide your own implementation. An

example will make things clear. Consider an online credit card application.

Customers fill the credit card application online. The bank personnel get a List

screen as shown in Figure 4.1 and they can act in one of four ways - Approve,

Reject or Add Comment. Consequently there are three images each being a

<html:link>.

One way of dealing with this situation is to create three different Actions –

ApproveAction, RejectAction and AddCommentAction. This is a valid

approach, although not elegant since there might be duplication of code across

the Actions since they are related. DispatchAction is the answer to this

problem. With DispatchAction, you can combine all three Actions into one.

The DispatchAction provides the implementation for the execute()

method, but still is declared as abstract class. You start by sub-classing

Chapter 4. All about Actions

77

DispatchAction. Let us assume that CreditAppAction, a sub-class of

DispatchAction is used to implement the above-mentioned presentation logic.

It has four methods – reject(), approve() and addComment(). The

CreditAppAction class definition is shown in Listing 4.1.

You might be wondering why all the three methods take the same four

arguments – ActionMapping, ActionForm, HttpServletRequest,

HttpServletResponse. Don’t worry, you will find the answer soon.

For a moment, look at the four URLs submitted when the bank staff perform

the three actions as mentioned before. They would look something like this.

� http://localhost:8080/bank/screen-credit-app.do?step=reject&id=2

� http://localhost:8080/ bank/screen-credit-app.do?step=approve&id=2

� http://localhost:8080/bank/screen-credit-app.do?step=addComment&id=2

Figure 4.1 Screen Credit Applications page as seen by the bank staff.

An interesting thing to notice is that the value of the HTTP request parameter

named step is same as the four method names in CreditAppAction. This is no

coincidence. DispatchAction (the parent class of CreditAppAction) uses

the value of the HTTP request parameter step to determine which method in

CreditAppAction has to be invoked. In the execute() method,

DispatchAction uses reflection to invoke the appropriate method in

CreditAppAction. For this reason, the arguments on all the three methods in

CreditAppAction are fixed and have to be – ActionMapping, ActionForm,

HttpServletRequest, and HttpServletResponse in that order. Otherwise

the method invocation by Reflection fails.

Okay, so part of the puzzle is solved. But how does DispatchAction know

to look for the HTTP request parameter specifically named step in the URL? The

simple answer is that it doesn’t. You will have to tell it explicitly. And this is

done in the ActionMapping for /screen-credit-app.do. The ActionMapping for

Struts Survival Guide – Basics to Best Practices

78

the URL path “/screen-credit-app.do” is declared in struts-config.xml as shown

in Listing 4.2.

The section highlighted in bold is what makes this Action different from the

rest. The type is declared as mybank.example.list.CreditAppAction –

you already knew that. Now, let us look at the second attribute in bold. This

attribute, named parameter has the value “step”. Notice that one of the HTTP

request parameter in the four URLs is also named “step”. Now, it is all coming

together. DispatchAction knows what parameter to look for in the incoming

URL request through this attribute named parameter in struts-config.xml. From

the value of parameter attribute, it knows the method to be invoked on the

subclass. Since the arguments and their order in these methods is fixed by

DispatchAction, the method invocation by reflection at runtime is successful.

If for any reason, the arguments on these methods are different; the method

invocation fails at runtime.

Listing 4.1 Example DispatchAction

public class CreditAppAction extends DispatchAction {

 public ActionForward reject(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 String id = request.getParameter(“id”);

 // Logic to reject the application with the above id

 mapping.findForward(“reject-success”);

 }

 public ActionForward approve(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 String id = request.getParameter(“id”);

 // Logic to approve the application with the above id

 mapping.findForward(“approve-success”);

 }

 public ActionForward addComment(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 String id = request.getParameter(“id”);

Chapter 4. All about Actions

79

 // Logic to view application details for the above id

 mapping.findForward(“viewDetails”);

 }

 ...

 ...

}

DispatchAction can be confusing in the beginning. But don’t worry.

Follow these steps to setup the DispatchAction and familiarize yourself with

the steps.

1. Create a subclass of DispatchAction.

2. Identify the related actions and create a method for each of the logical

actions. Verify that the methods have the fixed method signature shown

earlier.

3. Identify the request parameter that will uniquely identify all actions.

4. Define an ActionMapping for this subclass of DispatchAction and assign

the previously identified request parameter as the value of the parameter

attribute.

5. Set your JSP so that the previously identified request parameter (Step 3)

takes on DispatchAction subclass method names as its values.

Listing 4.2 ActionMapping for the DispatchAction

<action path="/screen-credit-app"

 input="/ListCreditApplications.jsp"

 type="mybank.example.list.CreditAppAction"

 parameter="step"

 scope="request"

 validate="false">

 <forward name="reject-success"

 path="RejectAppSuccess.jsp"

 redirect="true"/>

 ..

 </action>

Design Tip: Use DispatchAction when a set of actions is closely related and

separating them into multiple Actions would result in duplication of code or

usage of external helper classes to refactor the duplicated code. In the above

example DispatchAction was used handle hyperlinks. DispatchAction is

a good choice when there are form submissions using the regular buttons (not

Struts Survival Guide – Basics to Best Practices

80

the image buttons). Just name all the buttons same. For instance,

 <html:submit property=”step”>Update</html:submit>

 <html:submit property=”step”>Delete</html:submit>

and so on. Image buttons is a different ball game. Image button usage for form

submission and DispatchAction are exclusive. You have to choose one. See

Chapter 6 on Struts tags for details on Image buttons.

In the above example we used the DispatchAction and used methods that

has ActionForm as one of its arguments. As you learnt in the last chapter, an

ActionForm always existed in conjunction with the Action. Earlier in this

chapter, we dealt with ForwardAction and we neither developed our Action or

ActionForm. In that context we stated that having an ActionForm was optional.

That holds true even if the Action is a custom coded one like the

CreditAppAction. If the ActionMapping does not specify a form bean, then

the ActionForm argument has a null value. In the Listing 4.1, all the four

methods got a null ActionForm. But that did not matter since the HTTP request

parameters were used directly in the Action. You can have a Form bean if there

are a lot of HTTP parameters (and perhaps also require validation). The HTTP

parameters can then be accessed through the Form bean.

4.5 LookupDispatchAction

In Chapter 3 you were introduced to a Localization problem with the Action class

when the form has multiple buttons. Using LookupDispatchAction is one

way of addressing the problem when regular buttons are used. Chapter 6 presents

another alternative that works irrespective of whether an Image or a grey button

is used to submit the Form. One has to choose the most appropriate solution

under the given circumstances.

Figure 4.2 Modified Screen Credit Applications page as seen by the bank staff.

LookupDispatchAction is a subclass of DispatchAction as its name

suggests. We will use a slightly modified example to illustrate the use of

Chapter 4. All about Actions

81

LookupDispatchAction. We will still use the list of credit applications as

before, but with one twist. Each row in the list is a HTML Form and the images

are now replaced with grey buttons to submit the Form. Figure 4.2 shows the

modified application list as seen by the bank personnel.

A LookupDispatchAction for this example is created by following these

steps.

1. Create a subclass of LookupDispatchAction.

2. Identify the related actions and create a method for each of the logical

actions. Verify that the methods have the fixed method signature as similar to

DispatchAction methods in Listing 4.1.

3. Identify the request parameter that will uniquely identify all actions.

4. Define an ActionMapping in struts-config.xml in the same way as

DispatchAction (Listing 4.2). Assign the previously identified request

parameter as the value of the parameter attribute in the ActionMapping. All

the steps up until this point are the same as what you did before with

DispatchAction. From here on, they will differ.

5. Implement a method named getKeyMethodMap() in the subclass of the

LookupDispatchAction. The method returns a java.util.Map. The

keys used in the Map should be also used as keys in Message Resource

Bundle. The values of the keys in the Resource Bundle should be the method

names from the step 2 above. If the CreditAppAction from the bank

example were to be implemented as a LookupDispatchAction it would

look like Listing 4.3.

Listing 4.3 Example LookupDispatchAction

public class CreditAppAction extends LookupDispatchAction

{

 public ActionForward reject(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws Exception

 {

 }

 //Other methods go here

 public Map getKeyMethodMap()

 {

 Map map = new HashMap();

Struts Survival Guide – Basics to Best Practices

82

 map.put(“button.approve”, “approve”);

 map.put(“button.reject”, “reject”);

 map.put(“button.comment”, “addComment”);

 }

}

6. Next, create the buttons in the JSP by using <bean:message> for their

names. This is very important. If you hardcode the button names you will not

get benefit of the LookupDispatchAction. For instance, the JSP snippet

for Approve and Add Comment button are:

 <html:submit property=”step”>

<bean:message key=”button.approve”/>

 </html:submit>

 <html:submit property=”step”>

<bean:message key=”button.comment”/>

 </html:submit>

 The <bean:message> keys point to the messages in the Resource Bundle.

 button.approve=Approve

 button.reject=Reject

 button.comment=Add Comment

In summary, for every form submission, LookupDispatchAction does the

reverse lookup on the resource bundle to get the key and then gets the method

whose name is associated with the key into the Resource Bundle (from

getKeyMethodmap()). That was quite a bit of work just to execute the method.

DispatchAction was much easier!

But the implications of LookupDispatchAction are significant. The

method name in the Action is not driven by its name in the front end, but by the

Locale independent key into the resource bundle. Since the key is always the

same, the LookupDispatchAction shields your application from the side

effects of I18N.

4.6 Configuring multiple application modules

So far we have covered several important built-in Actions with examples. There

is one more feature that is very important and useful addition in 1.1 – Multiple

Application module support. In Struts1.0 (and earlier), a single config file was

supported. This file, normally called struts-config.xml, was specified in web.xml

as an initialization parameter for the ActionServlet as follows:

Chapter 4. All about Actions

83

<servlet>

 <servlet-name>mybank</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

</servlet>

The single configuration file is bottleneck in large projects as all developers

had to contend to modify this resource. In addition managing a monolithic file is

painful and error prone. With Struts1.1 this problem has been resolved by the

addition of multiple sub application support better known as application modules.

You can now have multiple configuration files, one for each module or logical

group of forms. The configuration files are specified in web.xml file using

multiple <init-param> - initialization parameters as shown in Listing 4.4.

Listing 4.4 web.xml setting for Multiple Application module Support

<servlet>

 <servlet-name>mybank</servlet-name>

 <servlet-class>org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <param-name>config/module1</param-name>

 <param-value>

 /WEB-INF/struts-module1-config.xml

 </param-value>

 </init-param>

</servlet>

The newly added application module is shown in bold. The default

application module based on struts-config.xml can still continue to exist. The new

module is defined by adding an initialization parameter config/module1. In fact

any init-param prefixed with “config/” is interpreted as configuration for a

separate module. Its corresponding value – /WEB-INF/struts-module1-config.xml

is the struts configuration file containing Form bean definitions and

ActionMappings for the module module1. If the URLs in the default struts-

Struts Survival Guide – Basics to Best Practices

84

config.xml were accessed as http://localhost:8080/App1/start.do, and the

corresponding ActionMapping were moved to struts-module1-config.xml then the

URL would be accessed as http://localhost:8080/App1/module1/start.do where

App1 is the web application context. Notice that the application URL contains the

module name after the web application context as if it is a sub directory name.

Even though each application module has a separate struts configuration file

and a sub-directory like url pattern while accessing through the browser, the

physical organization need not necessarily be the same although that is

generally the route taken since the application module was after all created for

logical division (driven by functional requirements) and there are less

headaches if the physical organization matches the logical division as much as

possible.

The benefits of application modules are immediately obvious. You can now

split your monolithic struts application into logical modules thus making

maintenance easier. It will cause less contention during development time as

developers working on different modules get to work on their own struts

configuration files. Each Struts Configuration file and hence each application

module can choose its own RequestProcessor, MessageResources and

PlugIn. You can now choose to implement one or more modules with Tiles. If

you find this convenient and useful then you can migrate your application to

Tiles or JSF or plug in any other Struts extensions for one module at a time.

Here is a tip: Generally web applications are organized so that navigation

occurs from generic to specific. For instance, you start from the initial welcome

page for the web application and then navigate to a specific module. You can

organize you struts modules so that the initial welcome page and other top-level

pages are defined in the default application module (struts-config.xml). The pages

correspond to individual use cases are defined in different application modules

(struts-config-xxx.xml). You can then navigate from the default application

module to the use case specific module.

That brings up the question: How do you move between application

modules? It is quite simple actually. Struts 1.1 provides a specialized Action

called SwitchAction. We will illustrate its usage with an example.

Consider a Struts banking application with a default module (with top level

pages) and another module named loanModule. The JSPs of the loan module are

present in a directory called loanModule and its action mappings are defined in

struts-config-loan.xml.

� The top-level page defined in the default application module provides

hyperlink to navigate to the loan module as shown below. This hyperlink

indicates points to a global-forward named goto-loanModule in the

default struts-config.xml.

Chapter 4. All about Actions

85

 <html:link forward="goto-loanModule">

 Go to Loan Module

 </html:link>

� Add the action mapping for SwitchAction to the default struts-config.xml

as follows:

 <action path="/switch"

 type="org.apache.struts.actions.SwitchAction"/>

� Now, add a global-forward named goto-loanModule to the default

struts-config.xml as follows:

 <forward name="goto-loanModule"

 path="/switch.do?page=/listloans.do&prefix=/loanModule" />

This global-forward turn points to an action mapping called switch.do and

also adds two request parameters. The switch.do is the ActionMapping for

the SwitchAction. The two request parameters – prefix and page stand

for the module and the action mapping within that module. In this case, the

module is loanModule (identified by the struts-config-loan.xml) and the

listloans.do stands for an action mapping within the struts-config-

loan.xml – the Struts Config file for Loan module.

� In the struts-config-loan.xml, add the action mapping for listloans.do

as follows:

 <action path="/listloans"

 type="mybank.app1.ListLoanAction">

 </action>

The ListLoanAction is a normal Struts Action that decides the next

resource to forwards in its execute() method. If you don’t have additional

processing to do, you can use a ForwardAction too.

If you want to go from the Loan module to the default module, repeat the

same process, by setting the prefix attribute to a zero length string.

4.7 Roll your own Base Action and Form

You have looked at different types of Actions offered by Struts. Now, let us look

at some recommended practices in using Action. When it comes to using

Actions, the brute force approach is to extend the actions directly from the

org.apache.struts.action.Action. But a careful look at your web

application will certainly reveal behavior that needs to be centralized. Sooner or

later you will discover functionality common to all the actions. While it is

Struts Survival Guide – Basics to Best Practices

86

impossible to predict the exact purposes of why you might need the base Action,

here are some samples:

� You might like to perform logging in Action classes for debugging purposes

or otherwise to track the user behavior or for security audit purposes.

� You might want to retrieve the user’s profile from application specific

database to check if the user has access to your application and act

appropriately.

Whatever the purpose, there is always something done always in web

applications warranting a parent Action class. Start with a common parent Action

class. Let us call it MybankBaseAction. Depending on the complexities of the

web application, you can further create child classes for specific purposes. For

instance, an Action subclass for dealing with form submissions and another for

dealing with hyperlink-based navigation is a logical choice if the Action classes

handling hyperlink don’t need an ActionForm. You might want to filter out some

words typed in the form fields.

In conjunction with the base Action, you can also roll a base Form extending

the org.apache.struts.action.ActionForm. Let us call this class

MybankBaseForm. The base form fits well into the base action strategy. In

chapter 2, we introduced the term View Data Transfer Object to refer an

ActionForm. This isn’t without a reason. Data Transfer Object is a Core J2EE

pattern name. It is typically used between tiers to exchange data. The

ActionForm serves similar purpose in a Struts application and you use to its very

best. Typical uses of a base form would be:

� Add attributes to the base form that are needed frequently in the web

application. Consider a case when every Action in your web application

needs to reference an attribute in the request or session. Instead of adding the

code to access this attribute as request.getAttribute(“attribName”)

everywhere, you can set this as an ActionForm attribute and access it in a

type-safe manner in the application.

� Retrieving the user’s profile from application specific database and then set

it as a form attribute on every call to MybankBaseAction’s execute()

method.

Listing 4.5 shows the MybankBaseAction using the MybankBaseForm. It

implemented the execute() method and adds audit logging for entry and exit

points. Further down the line, it retrieves the application specific profile for the

user. This is helpful if you have a portal with a single sign-on and the user rights

and profiles differ from one application to another. Then it casts the

ActionForm to MybankBaseForm and assigns its variables with the values of

commonly accessed request and session attributes. MybankBaseAction defines

three abstract methods – preprocess(), process() and postprocess().

These methods when implemented by the subclasses respectively perform pre-

Chapter 4. All about Actions

87

processing, processing and post-processing activities. Their signatures as as

follows:

protected abstract void preprocess(ActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception;

protected abstract ActionForward process(ActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception;

protected abstract void postprocess(ActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception;

Pre-processing activities involve validating the form (Validations requiring

access to backend resources to are typically performed in the Action instead of

ActionForm, where the validations are limited to trivial checking and inter-

depdendent fields), checking for duplicate form submissions (In the next section

you will look at the facilities in Struts to handle duplicate form submissions. In

Chapter 10 we will develop the generalized strategy for duplicate form handling

– not just repeating synchronizer token in the Action classes.), checking if the

action (page) was invoked in the right order (if a strict wizard like behavior is

desired) etc.

Processing activities are the meat of the application and do not need any

more explanation. Validation errors can be discovered in this stage too.

Post-processing activities may involve setting the sync token (for checking

duplicate form submission), cleaning up unnecessary objects from request and

session scopes and so on. The bottom line is that all applications have recurring

tasks that need to be refactored into the parent class and hence a base Form and

Action are a must for every serious application. In Chapter we will add a lot of

functionality into the base Action giving you that many reasons to create the base

Action.

Listing 4.5 The Base Action class

public class MybankBaseAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 // Add centralized logging here (Entry point audit)

 // Check here if the user has rights to this application

Struts Survival Guide – Basics to Best Practices

88

 // or retrieve app specific profile for the user

 MybankBaseForm myForm = (MybankBaseForm) form;

 // Set common MybankBaseForm variables using request &

 // session attributes for type-safe access in subclasses.

 // For e.g. myForm.setUserProfile(

 // request.getAttribute(“profile”));

 preprocess(mapping, myForm, request, response);

 ActionForward forward =

 process(mapping, myForm, request, response);

 postprocess(mapping, myForm, request, response);

 // More code to be added later.

 // Add centralized logging here (Exit point audit)

 return forward;

 }

}

4.8 Handling Duplicate Form Submissions

Duplicate form submissions can occur in many ways

� Using Refresh button

� Using the browser back button to traverse back and resubmit form

� Using Browser history feature and re-submit form.

� Malicious submissions to adversely impact the server or personal gains

� Clicking more than once on a transaction that take longer than usual

Duplicate form submissions are acceptable in some cases. Such scenarios are

called idempotent transitions. When multiple submissions of data are not critical

enough to impact the behavior of the application, duplicate form submissions do

not pose a threat.

They can cause a lot of grief if for instance you are buying from an online

store and accidentally press refresh on the page where you are charged. If

storefront is smart enough, it will recognize duplicate submissions and handle it

graciously without charging you twice.

Why is the form submitted again after all, when the refresh button is pressed?

The answer lies in the URL seen in the URL bar of your browser after the form

submission. Consider a form as: <form name=CustomerForm”

Chapter 4. All about Actions

89

action=”/App1/submitCustomerForm.do”>. The above form is submitted

with the URL /App1/submitCustomerForm.do and the same URL is shown

in the URL bar. On the back end, Struts selects the action mapping associated

with submitCustomerForm and executes the action instance. When you press

refresh, the same URL is submitted and the same action instance is executed

again. The easy solution to this problem is to use HTTP redirect after the form

submission. Suppose that the CustomerForm submission results in showing a

page called Success.jsp. When HTTP redirect is used, the URL in the URL bar

becomes /App1/Success.jsp instead of /App1/submitCustomerForm.do.

When the page refreshed, it is the Success.jsp that is loaded again instead of

/App1/submitCustomerForm.do. Hence the form is not submitted again. To

use the HTTP redirect feature, the forward is set as follows:

<forward name=”success” path=”/Success.jsp” redirect=”true” />

However there is one catch. With the above setting, the actual JSP name is

shown in the URL. Whenever the JSP name appears in the URL bar, it is a

candidate for ForwardAction. Hence change the above forward to be as follows:

<forward name=”success” path=”/GotoSuccess.do” redirect=”true” />

where GotoSuccess.do is another action mapping using ForwardAction as

follows:

 <action path=”/GotoSuccess”

 type=”org.apache.struts.actions.ForwardAction”

 parameter=”/Success.jsp”

 validate=”false” />

Now, you have now addressed the duplicate submission due to accidental

refreshing by the customer. It does not prevent you from intentionally going back

in the browser history and submitting the form again. Malicious users might

attempt this if the form submissions benefit them or adversely impact the server.

Struts provides you with the next level of defense: Synchronizer Token.

To understand how the Synchronizer Token works, some background about

built-in functionalities in the Action class is required. The Action class has a

method called saveToken() whose logic is as follows:

 HttpSession session = request.getSession();

 String token = generateToken(request);

 if (token != null) {

 session.setAttribute(Globals.TRANSACTION_TOKEN_KEY, token);

 }

Struts Survival Guide – Basics to Best Practices

90

The method generates a random token using session id, current time and a

MessageDigest and stores it in the session using a key name

org.apache.struts.action.TOKEN (This is the value of the static variable

TRANSACTION_TOKEN_KEY in org.apache.struts.Globals class.

The Action class that renders the form invokes the saveToken() method to

create a session attribute with the above name. In the JSP, you have to use the

token as a hidden form field as follows:

<input type="hidden"

name="<%=org.apache.struts.taglib.html.Constants.TOKEN_KEY%>"

value="<bean:write name="<%=Globals.TRANSACTION_TOKEN_KEY%>"/>">

The embedded <bean:write> tag shown above, looks for a bean named

org.apache.struts.action.TOKEN (which is the the value of Globals.

TRANSACTION_TOKEN_KEY) in session scope and renders its value as the

value attribute of the hidden input variable. The name of the hidden input

variable is org.apache.struts.taglib.html.TOKEN (This is nothing but

the value of the static variable TOKEN_KEY in the class

org.apache.struts.taglib.html.Constants).

When the client submits the form, the hidden field is also submitted. In the

Action that handles the form submission (which most likely is different from the

Action that rendered the form), the token in the form submission is compared

with the token in the session by using the isTokenValid() method. The

method compares the two tokens and returns a true if both are same. Be sure to

pass reset=”true” in the isTokenValid() method to clear the token from

session after comparison. If the two tokens are equal, the form was submitted for

the first time. However, if the two tokens do not match or if there is no token in

the session, then it is a duplicate submission and handle it in the manner

acceptable to your users.

NOTE: We could also have chosen to have the synchronizer token as an

ActionForm attribute. In that case, the <html:hidden> tag could have been

used instead of the above <input type=”hidden”> tag (which looks

complicated at the first sight). However we have not chosen to go down this

path since protection from duplicate submission is not a characteristic of the

form and it does not logically fit there very well.

Although the above approach is good, it requires you as a application

developer to add the token checking method pair – saveToken() and

isTokenValid() in methods rendering and submitting the sensitive forms

respectively. Since the two tasks are generally performed by two different

Actions, you have to identify the pairs and add them manually. In chapter 10, we

will look at an approach to declaratively turn on the synchronizer token.

Chapter 4. All about Actions

91

You can use the same approach for sensitive hyperlink navigations. Just set

the tranaction attribute in <html:link> to true and use the same logic in the

Action classes to track the duplicate hyperlink navigations.

The reset argument of the isTokenValid() is useful for multi-page form

scenario. Consider a form that spans across multiple pages. The form is

submitted every time the user traverses from one page to another. You definitely

want to validate token on every page submission. However you also want to

allow the user to traverse back and forth using the browser back button until the

point of final submission. If the token is reset on every page submission, the

possibility of back and forth traversal using the browser button is ruled out. The

solution is not disabling back button (using JavaScript hacks) but to handle the

token intelligently. This is where the reset argument is useful. The token is

initially set before showing the first page of the form. The reset argument is

false for all the isTokenValid() invocations except in the Action for the last

page. The last page uses a true value for the reset argument and hence the token

is reset in the isTokenValid() method. From this point onwards you cannot

use back button to traverse to the earlier form pages and successfully submit the

form.

4.9 What goes into Action (and what doesn’t)

Don’t even think twice – Action classes should contain only the presentation

logic. If it is business logic it does not belong here. What qualifies as

presentation logic? The following do – analyzing request parameters and creating

data transfer objects (for server side processing), invoking business logic

(preferably through business delegates), creating view-models – the model

JavaBeans for the JSPs, selecting the next view and converting exceptions into

appropriate action errors. That’s probably it.

The common mistake while coding the Action is stuffing the execute()

with a lot of things that don’t belong there. By the time it is noticed, the

execute() method has intermingled request handling and business logic

beyond the point of separation without considerable effort. The separation is

tough because, when there is no architectural separation, the

HttpServletRequest and HttpSession attributes will be used all over the

place and hence the code cannot be moved enmasse to the server side to “extract

a class”. The first resolution you have to make for a cleaner and better design is

to avoid this temptation.

A preferred way of splitting the code in Action’s execute() method (or

rather MybankBaseAction’s process() method is by layering. The

functionality in process() method can be divided into three distinctive steps.

Struts Survival Guide – Basics to Best Practices

92

1. User Action Identification

2. Transfer Object Assembly

3. Business Logic invocation using Business Delegates

The postprocess() method is suitable for forwarding the user to the

chosen view based on the output from business tier. Let us start looking in detail

at the above three steps in process().

User Action Identification: The first step in process() is to check what action

the user performed. You don’t have to do this if DispatchAction or

LookupDispatchAction is used. The framework itself calls the appropriate

method.

 if (user pressed save button) {

 //Do something

 } else if (user pressed delete button) {

 //Do something else

 }

Transfer Object Assembly: The next step is creating serializable data transfer

objects (DTO) that are independent of the HttpServletRequest and

HttpServletResponse (and the entire javax.servlet.http package). This involves

copying the ActionForm attributes into a regular serializable JavaBeans. The

formal term used to describe this copying process is Transfer Object Assembly.

The class that assembles the transfer object is called Transfer Object Assembler.

Every tier uses object assemblers when transferring objects across the tier

boundary. In general, the object assemblers used to send data from business tier

to presentation tier have some intelligence. However the object assemblers used

to send data from presentation tier to business tier are straightforward. They are

monotonous and dumb (It better be dumb. Otherwise you are coding business

logic here). You can take advantage of their straightforward nature and easily

develop a framework using Java Reflection API to perform the object assembly.

The framework thus developed takes the ActionForm-to-DTO mapping

information in a XML file and creates the DTOs.

To make life a bit easier, you can offload some of the conversions to the

BeanUtils class in Commons BeanUtils. This jar is packaged along with Struts.

You can use the BeanUtils.copyProperties(dest, orig) method to

copy the properties with same names between the form bean and the DTO. It also

does the required data type conversions in the process.

Business Logic Invocation: The DTOs thus created are transferred to the business

tier as arguments while invoking the busiess logic methods. Consider how a Loan

Session EJB containing the business logic for loan management is invoked using

Chapter 4. All about Actions

93

the standard Service Locator pattern. Service Locator is a core J2EE pattern that

is used widely to locate the business service – in this case used to locate the EJB.

LoanMgmt loanmgmt = (LoanMgmt)

 ServiceLocator.getInstance().lookup(“LoanMgmtEJB”);

The above method call can throw RemoteException, CreateException.

If the same business service is implemented using CORBA, a different Exception

might be thrown. At times you will certainly have a lethal combination of EJB

and mainframe serving as the business tier. Whatever be the case, you should

isolate the web tier from these dependencies that are a direct result of the choice

of implementation for the business logic tier. This is exactly where the Business

Delegate comes in.

Figure 4.3 Business Delegate.

The Business Delegate is another Core J2EE Pattern and decouples the web

tier from dependencies on the choice of business logic implementation. Typically

business delegate is a class with implementation for all the business methods.

Figure 4.3 shows the Business Delegate class. The client invokes the methods on

business delegate. The delegate, true to its name delegates the client calls to the

actual implementation. It uses the ServiceLocator to lookup the Service, invoke

methods on it and convert the implementation exceptions into application

exceptions thus reducing coupling.

4.10 When to use Action chaining (and when not to)

The process of forwarding to another action mapping from an action is called

Action Chaining. Let’s say that the execute() method from an Action forwards

to an ActionForward called pageB. Assume that the forward is as follows:

<forward name=”pageB” path=”/pageBAction.do” />

Struts Survival Guide – Basics to Best Practices

94

The forward itself points to another action mapping called pageBAction.

Accordingly the Action instance associated with pageBAction is invoked. This

can continue until an actual JSP is shown to the user.

There are scenarios where the action chaining is a good idea. Consider the

example used earlier in the chapter: A page shows a list of loans with option to

delete loans one at a time. After deletion, the same loan list is shown again. If the

user is forwarded directly to the List JSP after deletion, then the task of creating

the loan list is left to the JSP. That is a bad design. Action chaining saves the day

here. In the Action for the delete, just forward to the listLoan.do after a

successful deletion. The Action corresponding to listLoan.do then creates the List

of Loans to display.

Using the action mapping of self as the input attribute is a preferred than

using a JSP name. This is a special case of action chaining and comes handy

when a lot or preprocessing is needed to show a page, irrespective of whether

page is shown for the first time in the normal way or because of validation errors.

Then there are scenarios where action chaining is a bad idea. If the chaining

is used for linking several units of business logic one after the other, it is better to

do this in the business tier. If this is one of your goals, then use a session ejb

method as a façade to hide the execution of fine-grained business logic snippets

as one unit instead of chaining actions. Use the Transfer Object Assembly from

the last section to create a DTO from the form bean and pass it to the business

tier. Also, avoid having more than two actions in the chain. If you are having

more than two actions in the chain, chances are that you are trying to do business

logic by chaining Actions. A strict no-no. Nada.

4.11 Actions for complex transitions

Perfectly reusable Actions are not a reality yet. Suppose that you have a common

page accessed from two different pages and what the page shows where the page

goes next depends on where you came from. You can never create totally

reusable Actions and chain them in this scenario.

Wiring the handlers

If the web application you are designing is entirely of the format “where you

came from drives what to do and where to go next”, then consider using a

different approach. Split the current request handling and presenting next page

into two different handler classes. Write atomic piece of “do”s as Commands for

each. In a separate XML, wire them up together as you would like. The Action

class serves very little purpose here other than to figure out which handlers are

wired together. In fact a single Action for the whole application suffices. All that

this Action does is to look up in the XML for commands to be executed in a

Chapter 4. All about Actions

95

pipeline. Similarly if your web application provides personalization features, then

you have to create atomic handlers and wire them together dynamically.

State aware Forms

Consider a scenario when you can enter a page from N different places and exit

in N different ways. Figure 4.4 shows the scenario. There is a common page. It

can be accessed from Page1 and Page2. After executing the common action in

common page, the user is forwarded to Page3 and Page4 respectively on success.

On pressing Cancel, Page1 and Page2 are shown respectively.

Figure 4.4 Complex Page transition example.

An easy way to achieve this is to track where the user came from in session

and then accordingly act in the common action. This however makes the common

action less reusable. If a lot of your pages behave in this manner you should

consider developing a framework to abstract the complexities of the transition. A

simple approach is illustrated here. Start with an interface with two methods as

shown below:

 public interface StateAware {

 public String getPreviousState();

 public String getNextState();

 }

The ActionForms involved in the complex transitions implement this

interface. Consider that ActionForm1 is associated with Page1. The ActionForm1

implements the StateAware interface. The getPreviousState() returns the forward

for Page1 and the getNextState() returns the forward for Page3. The Common

Action now becomes really reusable.

public class CommonAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception {

 StateAware sw = (StateAware) form;

Struts Survival Guide – Basics to Best Practices

96

 if (isCancelled(request)) {

 return mapping.findForward(sw.getpreviousState());

 }

 //do common action here

 //success

 return mapping.findForward(sw.getNextState());

 }

}

Refer to http://www.livinglogic.de/Struts/ for more about Struts based

workflow approach to solve similar problems.

For multi page forms, use multiple Action classes; one Action per page

submission. Multi-page forms generally have buttons with same names: Prev,

Next etc. This will result in confusion when forwarding to appropriate page if a

single Action class is used to handle buttons with the same names in multiple

pages.

4.12 Managing struts-config.xml

When the development begins, the struts-config.xml is always small and

manageable. But as time passes and features are added, the file continues to grow

to become a monster. Splitting the application into modules definitely helps, but

modules can be relatively large too. There are better ways to mange the struts-

config.xml than simply editing by hand or even an XML editor. Some of the

popular tools to manage struts-config.xml are described below.

Struts-GUI

Struts-GUI is a Visio Stencil from Alien Factory

(http://www.alienfactory.co.uk/strutsgui/). It lets you visually edit the struts

config.xml as a Visio diagram and generate the xml file from it. One of the

biggest challenges in maintaining the struts-config.xml is understanding the flow

and tracking down what is going on. With Struts-GUI, you can follow the

visually trace the actions, their forwards and the web pages they lead to. You can

even trace action chaining. You can add documentation in the Visio diagram

reducing the maintenance hurdle even further. Struts-GUI is a commercial tool.

Struts Console

Struts Console is a Swing based editor to manage the struts-config.xml from

James Holmes (http://www.jamesholmes.com/struts/console/). It is not visually

driven as Struts GUI, but very intuitive. It has tree like navigation to traverse the

Chapter 4. All about Actions

97

individual elements. It is much more flexible than Struts GUI in that it can be

used to maintain customized struts-config.xml (More about Struts customization

in Chapter 10). Wizards and drop downs are provided to add inidividual

elements, thus eliminating the chances of typo.

XDoclet

XDoclet based management of struts-config.xml is a entirely different concept.

The two tools cited earlier are based on maintaining the struts-config.xml, while

in XDoclet approach, there is no struts-config.xml at all! In the XDoclet

approach, there is no struts-config.xml at all! All the requisite information linked

to the <form-bean> and <action> are specified in the Action and Form

classes using special XDoclet tags as follows:

* @struts.action name="custForm" path="/editCustomer"

* scope="request" validate="false"

* parameter="action" input="mainpage"

*

* @struts.action-forward name="showCustForm"

* path="/ShowCustomerForm.jsp"

The above tags generate the Struts action mapping as follows in the struts-

config.xml at build time.

 <action path="/editCustomer"

 type="mybank.app1.ShowCustomerAction"

 name="custForm"

 scope="request"

 input="mainpage"

 unknown="false" validate="false">

 <forward name="showCustForm"

 path="/ShowCustomerForm.jsp"

 redirect="false"/>

 </action>

XDoclet is project on sourceforge that started off with auto-generating home

interface, remote interface, ejb-jar.xml from special tags in the EJB

implementation class. It was a good idea with EJBs since the EJB

implementation class would drive everything else - home, remote and the ejb-

jar.xml.

With struts-config.xml, none of the individual classes drive the flow in

entirety. Everything works always in relation to another. You always want to

track what is going on, how various pieces interact together and how the flow

works. You always want to see which action takes you where and get the whole

Struts Survival Guide – Basics to Best Practices

98

big picture as you develop. Hence the struts-config.xml serves much like

whiteboarding - visualizing whats going on in its entirety. Providing this

information via piecemeal approach in different files using XDoclet tags defeats

the purpose. Providing this information via piecemeal approach in different files

using XDoclet tags defeats the purpose. Hence our advice is not to use the

XDoclet approach for auto-generating struts-config.xml.

4.13 Guidelines for Struts Application Development

Struts application development in enterprise applications requires desicipline. We

are not referring to any particular methodology; just some guidelines for Struts

based application development for enterprise applications. In this section a step-

by-step approach for Struts application development cycle is provided.

1. First design your flow at a usecase level on a whiteboard. A JAD session

with business expert, page author and developer is recommended. JAD

stands for Joint Application development. Judging by its name, you might

think that this technique only applies to developing software, but that’s not

the case. The JAD technique can be applied to a wide variety of areas where

consensus is needed.

2. Decide how many forms are involved in the flow. Which comes when and so

on. This will tell you which form should be in request and session scope. (If

possible, try to maintain as many forms in request scope).

3. Forms in a web application have aspects related to it – Creating and

populating a form and setting in the right scope before display and handling

the submitted form. Decide when each of this would happen.

4. The JAD session will give following inputs:

� Page author knows which form to create and navigation using

DynaActionForm (Refer to Chapter 5 for more on DynaActionForm) and

navigation using ForwardAction with <html:link>

� Application developer knows what inputs are availble for the business

logic invocation methods (Session EJB methods)

5. Application developer designs the business logic for each page (not the

Action class) and unit tests them and page author develops and formats the

pages. Both tasks can occur in parallel.

6. Application developer creates Form and Action using the DynaActionForm

and updates the struts-config.xml and invokes the already tested business

logic from Action classes.

7. Page author and developer integrate the pieces and unit test them with

Chapter 4. All about Actions

99

StrutsTestCase (http://strutstestcase.sourceforge.net/).

4.14 Summary

Make the best use of the built-in Actions. Review the systems you build and see

how you can use ForwardAction to stick to MVC, how to use

DispatchAction and LookupDispatchAction to simplify things and

perhaps even internationalize your application. Split your application into

modules and create separate struts config files. Smaller files are easier to

comprehend and manage. Doing so will benefit you in the long run. Define a

base Form and Action in your application. You will be glad you did. Handle

duplicate form submissions using redirects and synchronizer tokens. Use a tool to

manage the Struts Config files and strictly follow the guidelines about what goes

into Action and what does not.

Author’s note: Struts Action Forms tend to get really huge in big projects. The
data in Struts Forms need to be transferred to the middle tier and persisted to the
database. This problem of copying (mapping) data from ActionForms to
ValueObjects (which carry to the middle tier) has been traditionally done by
BeanUtils. When the structure of Value Objects and Action Forms differ
significantly, it is tough to use BeanUtils. Object To Object mapping (OTOM)
framework (hhttttpp::////oottoomm..ddeevv..jjaavvaa..nneett) is designed to solve this problem. With
OTOM, any Java Object can be mapped to another via a GUI. Then, the mapping
Java code can be generated from the GUI or Ant Task.

Struts Survival Guide – Basics to Best Practices

100

Chapter 5. Form Validation

101

CChhaapptteerr 55

Form Validation

In this chapter:

1. You will learn how to use Commons Validator with Struts via ValidatorForm

and ValidatorActionForm

2. You will learn about DynaActionForm and DynaActionValidatorForm

Validation is a beast that needs to be addressed at various levels using different

strategies for different complexity levels in the validation itself.

1. It is commonly accepted principle that the user input validation should

happen as close to the presentation tier as possible. If there are only a bunch

of HTML forms with trivial checks and the validation is limited to the UI,

you can afford to implement validations using JavaScript.

2. Getting too close with JavaScript is one extreme and is not pragmatic in

everyday projects. On the other hand, postponing the validation until it

manifests as a business logic exception, runtime exception or a database

exception is unacceptable too. Another option is to programmatically

validate the HTML Form data using helper classes in the web tier or code the

validation right in the validate() method of the ActionForm itself – which

is what we did in Chapter 3.

3. The third option is to externalize the validation into a XML file that confirms

to the Commons Validator syntax and integrate it into Struts. This approach

works very well for trivial checks, which is a case in approximately 50% of

the projects. Examples of trivial checks are: Null Checks - Checking if a field

is null, Number Check – checking if the field value is numeric or not, Range

Check – checking if a numeric values lies within a range. These validations

depend just on the fields being validated and nothing else.

Validator is a part of the Jakarta Commons project and depends on the

following Commons Projects - BeanUtils, Logging, Collections, Digester and

also on Jakarta ORO library. All of these are shipped with the Struts 1.1. You can

find them in the lib directory of the Struts distribution.

Struts Survival Guide – Basics to Best Practices

102

Struts is bundled with Commons Validator 1.0. Commons Validator 1.1.1

has support for validating interdependent fields. It can be downloaded from the

Jakarta Commons website and used instead of the validator bundled with Struts.

5.1 Using Commons Validator with Struts

The interoperation of Commons Validator and Struts is like a jigsaw puzzle with

several pieces. It is not possible to explain one piece in entirety and move on to

the next since they are all interconnected. Hence our approach is to explain part

of a puzzle before moving on to the next. And then several half-baked pieces are

joined together. You might have read through this section twice to get a clear

picture.

The twin XML files

In Struts, the XML based validations are located in two files – validation-

rules.xml and validation.xml. The validation-rules.xml file contains the global set

of rules that are ready to use (Henceforth referred to as global rules file). It is

shipped along with the Struts distribution in the lib directory. The second file –

validation.xml is application specific. It associates the rules from the global rules

file with individual fields of your ActionForm. Suppose there is a generic rule

named required in the global rules file that checks if a field is empty. You can

use this rule to check if any field is empty including the firstName field in the

CustomerForm by adding the following declaration in validation.xml:

<form name="CustomerForm">

 <field property="firstName" depends="required">

 ..

 ..

 </field>

 <field

 ..

 </field>

 ..

</form>

The above xml contains a XML block with a <form> element, which stands

for an ActionForm named CustomerForm. All the rules associations for the

CustomerForm fields exist inside this <form> block. One such validation – the

validation for the firstName field is also shown in a <field> element. The

<field> has an attribute named depends that lists the set of rules (comma

separated) on which the field is dependent upon. In other words, the

Chapter 5. Form Validation

103

validation.xml is just an association of the actual rules with the application

specific forms. The actual rules are defined in the validation-rules.xml.

validation-rules.xml – The global rules file

For a while, let us go back to validation-rules.xml – the global rules file where all

the rules are actually defined. Listing 5.1 shows a sample file. Each

<validator> element defines one validation rule. The Listing shows a required

rule validator. The required rule validator uses a class called

org.apache.struts.validator.FieldChecks. Where did this come from?

Well, that requires some background too.

Listing 5.1 Required rule in validation-rules.xml

<form-validation>

 <global>

 <validator name="required"

 classname="org.apache.struts.validator.FieldChecks"

 method="validateRequired"

 methodParams="java.lang.Object,

 org.apache.commons.validator.ValidatorAction,

 org.apache.commons.validator.Field,

 org.apache.struts.action.ActionErrors,

 javax.servlet.http.HttpServletRequest"

 msg="errors.required">

 </validator>

 <validator name=”…”>

 … …

 … …

 </validator>

 <!- More validators defined here -->

 </global>

</form-validation>

The basic validator class in Commons Validator is

org.apache.commons.validator.GenericValidator. It contains atomic

and fine-grained validation routines such as isBlankOrNull(), isFloat(),

isInRange() etc. Struts provides the FieldChecks that uses the

GenericValidator but has coarse grained methods such as

validateRequired(), validateDate(), validateCreditCard() etc.

Each of these methods accept four arguments of type

 java.lang.Object,

 org.apache.commons.validator.ValidatorAction,

 org.apache.commons.validator.Field,

Struts Survival Guide – Basics to Best Practices

104

 ActionErrors and HttpServletRequest

in that order. Notice that the same arguments are listed under the methodParams

attribute in Listing 5.1.

NOTE: The FieldChecks couples the ActionForm validations to the Struts

framework by adding dependency on Struts specific classes in the XML, but

makes it easy to use the Commons Validator with Struts.

With this background info, the required validator in Listing 5.1 translates

into plain English as: “The rule named “required” is defined in method

validateRequired within a class named FieldChecks that accepts the above

listed four arguments in that order. On error, an error message identified by the

key errors.required is displayed. The errors.required is a key to the

Resource Bundle”. Quite a mouthful indeed!

The next step is to add the message for errors.required to the Resource

Bundle. The key-value pair added is: errors.required={0} is required.

By default, the rules in global rules file use the following keys for the error

messages - errors.required, errors.minlength, errors.maxlength,

errors.date and so on. To use different error keys, make appropriate changes

in validation-rules.xml.

A rule in the global rules file can itself depend on another rule. For example,

consider the minlength rule. It checks if a field is less than a specified length.

However it doesn’t make sense to check the length of an empty field is less than

a specified length. In other words, minlength rule depends on required rule. If

the required rule fails, the minlength rule is not executed. This depends

relationship among rules is shown below.

 <validator name="minlength"

 classname="org.apache.struts.validator.FieldChecks"

 method="validateMinLength"

 methodParams="java.lang.Object,

 org.apache.commons.validator.ValidatorAction,

 org.apache.commons.validator.Field,

 org.apache.struts.action.ActionErrors,

 javax.servlet.http.HttpServletRequest"

 depends="required"

 msg="errors.minlength">

 </validator>

validation.xml – The application specific rules file

Now, let us get back to the validation.xml. A sample is shown in Listing 5.2. The

xml consists of a <formset> block with multiple <form> blocks, one for each

form.

Chapter 5. Form Validation

105

Listing 5.2 Application specific validations for CustomerForm

<form-validation>

 <formset>

 <form name="CustomerForm">

 <field property="firstName"

 depends="required,minlength ">

 <arg0 key="customerform.firstname"/>

 <arg1 name="len" key="1" resource="false"/>

 </field>

 </form>

 </formset>

</form-validation>

In Listing 5.2, the topmost xml block is <form-validation>. It contains a

single <formset> element, which in turn can contain a collection of <form>s.

Each <form> corresponds to the Struts Form. The <form> contains a set of

<field>s to be validated. The firstName field depends on two rules –

required and minLength. The required and minLength are defined in the

validation-rules.xml.

Then comes the arg0 and arg1. The <field> element accepts up to four

args – arg0, arg1, arg2 and arg3. These argNs are the keys for replacement

values in ActionError. Sure Sounds confusing. Here is an example to make

things clear. Assume that the required rule has failed. An ActionError with

key errors.required needs to be created. The error message for this key is

defined in the resource bundle as “{0} is required”. This message needs a

literal value to replace {0}. That replacement value itself is obtained by first

looking up the resource bundle with key attribute of <arg0> element. In Listing

5.2, the key attribute of <arg0> is customer.firstname. The key is used to

lookup the resource bundle and obtain the replacement value. Suppose that the

resource bundle defines these messages.

customer.firstname=First Name

errors.required={0} is required

Then, the replacement value for {0} is First Name. This value is used to

replace {0} and the resulting error message is First Name is required. Notice that

the Resource bundle is looked up twice – once using the arg0 key and then

during the rendering of the ActionError itself.

You might be wondering why arg1 is needed. The answer is when the

minlength rule fails; it looks for an error message with a predefined key called

errors.minlength. The errors.minlength requires two replacement

values – arg0 and arg1. arg0 was also used by the errors.required key.

The errors.minlength needs arg1 in addition to arg0. I can hear you are

saying – “All that is fine. But how will I know what predefined error keys should

Struts Survival Guide – Basics to Best Practices

106

be added to the resource bundle”. It is simple actually. Just open the validation-

rules.xml and you will find all the error message keys are provided. They are:

 errors.required={0} is required.

 errors.minlength={0} can not be less than {1} characters.

 errors.maxlength={0} can not be greater than {1} characters.

 errors.invalid={0} is invalid.

 errors.byte={0} must be a byte.

 errors.short={0} must be a short.

 errors.integer={0} must be an integer.

 errors.long={0} must be a long.

 errors.float={0} must be a float.

 errors.double={0} must be a double.

 errors.date={0} is not a date.

 errors.range={0} is not in the range {1} through {2}.

 errors.creditcard={0} is an invalid credit card number.

 errors.email={0} is an invalid e-mail address.

As you can see, every error message key needs arg0. The

errors.minlength, errors.maxlength and errors.range need arg1. In

addition, the errors.range also needs arg2.

In Listing 5.2, the arg1 has an attribute called resource and it set to

false. The resource=”false” implies that there is no need to lookup the

message resource bundle for arg1 (as was done with arg0 key –

customerform.firstname).

More validation.xml features

Let us investigate some more interesting validator features. Listing 5.3 shows the

same CustomerForm validation rules with some additions and modifications.

Those are highlighted in bold.

The first addition is the <global> block to <form-validation>. The

<global> can hold as many <constant>s. A <constant> is much like a Java

constant. Declare it once and use wherever needed. In this case, a constant called

nameMask is declared and a regular expression ^[A-Za-z]*$ is assigned to it.

This regular expression is interpreted as: “The field can have any number of

characters as long as each of them is between A-Z and a-z”. This constant is used

to define the mask rule for CustomerForm in two steps as follows:

1. First, a variable <var> called mask is created and the value of nameMask is

assigned to it. This is done by setting the <var-value> to be

${nameMask}. [Any variable within the ${ and } blocks is evaluated. You

will find the same convention in JSTL too.] The <var> scope is limited to

Chapter 5. Form Validation

107

the <field> where it is declared.

2. Next, a rule called mask is added to the CustomerForm’s depends

attribute. The mask rule is defined in the validation-rules.xml. It checks if the

current field value confirms to the regular expression in a predefined variable

called mask (This is the reason why we created a variable called mask in the

firstName <field> and assigned it the nameMask value. Doing so, lets us

reuse the nameMask expression for all the forms in validation.xml if

necessary and at the same time satisfy the constraint imposed by the mask

rule that the regular expression is always available in a <var> called mask.

Listing 5.3 Application specific validations for CustomerForm

<form-validation>

 <global>

 <constant>

 <constant-name>nameMask</constant-name>

 <constant-value>^[A-Za-z]*$</constant-value>

 </constant>

 </global>

 <formset>

 <form name="CustomerForm">

 <field property="firstName"

 depends="required,minlength,mask">

 <arg0 key="customerform.firstname"/>

 <arg1 name="len" key="${var:minlen}"

 resource="false"/>

 <var>

 <var-name>minlen</var-name>

 <var-value>1</var-value>

 </var>

 <var>

 <var-name>mask</var-name>

 <var-value>${nameMask}</var-value>

 </var>

 </field>

 </form>

 </formset>

</form-validation>

The second new feature in Listing 5.3 is the use of variable for arg1. arg1

as you know, represents the minimum length of the first name. In Listing 5.2, the

arg1 key was hard coded. A bit of flexibility is added this time round by

Struts Survival Guide – Basics to Best Practices

108

declaring it as a field scoped variable and then accessing it through the shell

syntax ${..}.

Using the ValidationForm

There is one last piece pending in the puzzle. How does the validation failure

become ActionError and get displayed to the user? We will answer it right

away. Struts has a class called ValidatorForm in

org.apache.struts.validator package. This is a subclass of ActionForm

and implements the validate() method. The validate() method invokes the

Commons Validator, executes the rules using the two xml files and generates

ActionErrors using the Message Resources defined in the struts-config.xml.

All you have to do is extend your form from ValidatorForm and write your

rules in XML. The framework does the rest. More details on the validator are

covered later in this chapter. For now, let us see how the Validator is configured.

Configuring the Validator

Starting from 1.1, Struts provides a facility to integrate third party utilities

seamlessly through what is called as a PlugIn. A PlugIn is simply a configuration

wrapper for a module-specific resource or service that needs to be notified about

application startup and application shutdown events (through the methods init

and destroy). A PlugIn is a class that implements

org.apache.struts.action.PlugIn interface. This interface defines two

methods:

public void init(ActionServlet servlet, ModuleConfig config)

public void destroy()

You can respectively implement logic to initialize and destroy custom

objects in these methods. PlugIns are configured in the struts-config.xml file,

without the need to subclass ActionServlet simply to perform application

lifecycle activities. For instance the following XML snippet (from the struts-

config.xml) configures the validator plugin:

<plug-in className="org.apache.struts.validator.ValidatorPlugIn">

 <set-property property="pathnames"

 value="/WEB-INF/validator-rules.xml,

 /WEB-INF/validation.xml"/>

</plug-in>

The ValidatorPlugIn is a class that implements the PlugIn interface. It

has an attribute called pathnames. The two input rule XML file names are

specified using this attribute. As you know already, Struts reads the struts-

Chapter 5. Form Validation

109

config.xml file during initialization – during which it also reads the Validator

plugin and accordingly initializes it. Consequently the rules are loaded and

available to the ValidatorForm class when the time comes to execute the

validate() method.

Steps to use Commons Validator in Struts

Now, let us summarize the steps involved in using Commons Validator with

Struts. They are:

1. Create the application specific ActionForm by extending the ValidatorForm

2. Add the corresponding <form> element with <field> sub-element for every

form field that needs validation.

3. List the rules to execute in the <field>’s depends attribute.

4. For every rule, add the error message with predefined name to the message

bundle.

5. For every rule, supply the argNs either as inline keys or keys to the resource

bundle.

6. If the rules in validation-rules.xml do not meet your needs, add new rules and

follow the steps above for the new rules. Be sure to have the classes

executing the rules are available in the appropriate class path.

5.2 DynaActionForm – The Dynamic ActionForm

Struts 1.0 mandated that every HTML form in the JSPs have an associated

ActionForm. Struts 1.1 changed all that with the introduction of

DynaActionForm – dynamic ActionForm as the name suggests.

DynaActionForm is defined in the struts-config.xml as a form-bean. A sample

DynaActionForm is shown in Listing 5.4.

Listing 5.4 Sample DynaActionForm

<form-bean name="CustomerForm"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="firstName" type="java.lang.String "/>

 <form-property name="lastName" type="java.lang.String

 initial="Doe"/>

</form-bean>

There are two major differences between a regular ActionForm and a

DynaActionForm.

Struts Survival Guide – Basics to Best Practices

110

1. For a DynaActionForm, the type attribute of the form-bean is always

org.apache.struts.action.DynaActionForm.

2. A regular ActionForm is developed in Java and declared in the struts-

config.xml. The JavaBeans properties of a regular ActionForm are created by

first defining the instance variable and then adding a getter and setter for that

instance variable. A DynaActionForm has no associated Java class. Its

JavaBeans properties are created by adding the <form-property> tag in

Struts Config file (and also declaring its Java type). In Listing 5.4,

CustomerForm is declared as a DynaActionForm with two JavaBeans

properties – firstName and lastName. The type attribute of the <form-

property> is the fully qualified Java class name for that JavaBeans

property; it cannot be a primitive. For instance int is not allowed. Instead

you should use java.lang.Integer. You can also initialize the form-

property, so that the html form shows up with an initial value.

Listing 5.5 CustomerAction – Action Bean for App1

public class CustomerAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws Exception

 {

 if (isCancelled(request)) {

 System.out.println(Cancel Operation Performed”);

 return mapping.findForward(“mainpage”);

 }

 DynaActionForm custForm = (DynaActionForm) form;

 String firstName = (String) custForm.get(“firstName”);

 String lastName = (String) custForm.get(“lastName”);

 System.out.println(“Customer First name is “ +

 firstName);

 System.out.println(“Customer Last name is “ +

 lastName);

 ActionForward forward = mapping.findForward(“success”);

 return forward;

 }

}

Chapter 5. Form Validation

111

How about an example of using DynaActionForm? Remember, the Hello

World application from Chapter 3. Well, now let us rewrite that example using

DynaActionForm. You will be surprised how easy it is.

The first step obviously is to develop the DynaActionForm itself. Listing 5.4

is the DynaActionForm version of the CustomerForm from Chapter 3. The

<form-property> tags are the equivalent of the JavaBeans properties of the

ActionForm.

What about the validate() method? In Chapter 3, you were able to code

the validate() method since you had the CustomerForm as a Java class.

What about the DynaActionForm? With DynaActionForm, unfortunately this is

not possible. Don’t be disappointed. You can use the DynaValidatorForm (a

subclass of DynaActionForm) in concert with Validator Plugin. We will cover

this topic in the next section.

Rearranging the execute() method in CustomerAction is the second and

the final step in ActionForm to DynaActionForm conversion. Listing 5.5 shows

the CustomerAction. Compare this with the CustomerAction in Chapter 3

(Listing 3.5). Instead of using compile time checked getters and setters, the

JavaBeans properties in DynaActionForm as accessed just like HashMap.

One thing is obvious. The DynaActionForm is quick and easy. It is very

convenient for rapid prototyping. Imagine a Struts 1.0 world where an

ActionForm was absolutely needed to prototype an HTML form in JSP using

Struts custom tags. Things were good until the separation of concern came into

picture. In real life projects, different people play different roles. Application

developers have the responsibility of developing Java code and page authors

would exclusively prototype the page and its navigation using JSP markup tags.

Since the Java code being developed is constantly changing, the developer does

local builds on his machine. Similarly the page author would certainly like to add

or remove fields from the prototype during the page design. Since the HTML

forms map to ActionForms, the above scenario implies one of two things.

1. The page author constantly pesters the Java application developer to modify

the ActionForm.

2. The page author develops the ActionForm all by himself.

While the former hampers the developer productivity, the latter leads to

overlap of responsibilities and headaches. Both options are not ideal. Struts 1.1

has solved this problem by introducing DynaActionForm. Although originally

designed for developer’s ease of use, it has been serving the purpose of role

separation in a project very well. One can envision an ideal project development

as follows.

A page author can be isolated from the Java application development by

having a application server environment available for page design. He develops

Struts Survival Guide – Basics to Best Practices

112

the JSPs as JSPs using the Struts (and other) custom tags, not just HTML

prototypes. He also creates DynaActionForms using XML instead of relying

on the application developer to create the Java ActionForms. In other words,

the page author is isolated from the nitty-gritty’s of the build, deploy and all that

chaos accompanying it – at least in the prototype phase.

The page author designs the page Navigation as plain forwards instead of

Form submissions; In other words he uses <html:link> to prototype

navigation instead of <html:submit>s. In case you are wondering why

anybody would go this route, here is the answer: In Struts framework, the

presentation logic resides in the Action classes. It is highly unlikely that the

presentation logic (Action) for the ActionForm will be ready even before the

prototype is ready. Hence the page author uses the <html:link> and

ForwardAction to model the navigation. Once the prototype is approved, the

application developer works on the presentation logic by developing the Action

classes. When doing so, the application developer creates equivalent

ActionForms for the existing DynaActionForms, one form at a time. The

application developer also replaces the forwards in the JSP with form

submissions and adds the glue code in Action classes to handle the form

submissions.

Okay, so DynaActionForms are great, why replace them with ActionForms

anyway? In my opinion, DynaActionForms are good only in the prototyping

stage. Once past that stage, it is always better to have strongly typed

ActionForms. Here are some more downsides of using DynaActionForms

1. The DynaActionForm bloats up the Struts config file with the xml based

definition. This gets annoying as the Struts Config file grow larger.

2. The DynaActionForm is not strongly typed as the ActionForm. This means

there is no compile time checking for the form fields. Detecting them at

runtime is painful and makes you go through redeployment.

3. ActionForm can be cleanly organized in packages as against the flat

organization in the Struts Config file.

4. ActionForm were designed to act as a Firewall between HTTP and the

Action classes, i.e. isolate and encapsulate the HTTP request parameters from

direct use in Actions. With DynaActionForm, the property access is no

different than using request.getParameter(“..”).

5. DynaActionForm construction at runtime requires a lot of Java Reflection

machinery that can be expensive.

6. Time savings from DynaActionForm is insignificant. It doesn’t take long for

today’s IDEs to generate getters and setters for the ActionForm attributes.

(Let us say that you made a silly typo in accessing the DynaActionForm

properties in the Action instance. It takes less time to generate the getters and

Chapter 5. Form Validation

113

setters in the IDE than fixing your Action code and redeploying your web

application)

That said, DynaActionForms have an important role to play in the project

lifecycle as described earlier, which they do best and let us limit them to just that.

Use them with caution, only when you absolutely need them.

DynaValidatorForm

An application specific form can take advantage of XML based validation by

virtue of sub classing the ValidatorForm. The XML based dynamic forms can

also avail this feature by specifying the type of the form to be

DynaValidatorForm as follows:

<form-bean name="CustomerForm"

 type="org.apache.struts.validator.DynaValidatorForm">

 <form-property name="firstName" type="java.lang.String "/>

 <form-property name="lastName" type="java.lang.String

 initial="Doe"/>

</form-bean>

DynaValidatorForm is actually a subclass of DynaActionForm. It implements the

validate() method much like the ValidatorForm and invokes the Commons

Validator. DynaValidatorForm brings the capability of writing XML based

validation rules for dynamic forms too.

5.3 Validating multi-page forms

When large amount of data is collected from the user, it is customary to split the

form into multiple pages. The pages follow a wizard like fashion. However the

ActionForm would still exists as a single Java class. Moreover at any point, the

data validation should be limited to only those pages that have been submitted.

Fortunately, this feature is already built into the Validator. However it requires

some setup from your side. There are two alternatives – the first uses a single

action mapping and the second uses multiple action mappings. The struts-

validator.war provided with the Struts distribution adopts the first approach,

while we recommend the latter.

Both approaches require the use of an optional hidden variable called page.

Consider an html form split into two JSPs – PageA.jsp and PageB.jsp. Since both

JSPs will have the hidden variable mentioned earlier, it is sent as a request

parameter from both form submissions. The hidden variable is assigned the value

of 1 in PageA and 2 in PageB. The ValidatorForm already has a JavaBeans

property named page of type int. All validation for any field on a page less than

Struts Survival Guide – Basics to Best Practices

114

or equal to the current page is performed on the server side. This will of course

require that each rule defined for the field in the validation.xml should have a

page attribute as follows:

 <form name="CustomerForm">

 <field property="firstName" page=”1”

 depends="required">

 <arg0 key="customerform.firstname"/>

 </field>

 <field property="fieldX" page=”2”

 depends="required">

 <arg0 key="customerform.fieldX"/>

 </field>

 </form>

With this background, we will first explain the single action mapping

approach. The html forms in both pages have the same action - <html:form

action=”/submitForm”>.

In the struts config file, set validate=false for the /submitForm action

mapping and add forwards for each of the pages as follows:

<action path="/submitForm"

 type="mybank.example.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="false">

 <forward name="success" path="/Success.jsp"/>

 <forward name="cancel" path="/Cancelled.jsp"/>

 <forward name="input1" path="/PageA.jsp"/>

 <forward name="input2" path="/PageB.jsp"/>

</action>

Since validate is set to false, the execute() method in Action gets control

immediately after the RequestProcessor populates the form. You have to now

explicitly call the form.validate() in the execute() method (Since the

CustomerForm extends from ValidatorForm, the validate() is already

implemented). After that you have to forward to the appropriate page depending

on the current page and whether there are ActionErrors in the current page. For

instance, if PageA is submitted and there are no ActionErrors, then PageB is

displayed to the user. However if there were ActionErrors in PageA, then it is

displayed back to the user. The code is shown below.

public ActionForward execute(.. ..) throws Exception {

 CustomerForm info = (CustomerForm)form;

Chapter 5. Form Validation

115

 // Was this transaction cancelled?

 if (isCancelled(request)) {

 // Add code here to remove Form Bean from appropriate scope

 return (mapping.findForward("cancel"));

 }

 ActionErrors errors = info.validate(mapping, request);

 if (errors != null && errors.isEmpty()) {

 if (info.getPage() == 1)

 return mapping.findForward("input2");

 if (info.getPage() == 2){

 //Data collection completed. Invoke Business Logic here

 return mapping.findForward("success");

 }

 } else {

 saveErrors(request, errors);

 return mapping.findForward("input" + info.getPage());

 }

}

This approach is counter-intuitive. After all, validate() method was

supposed to be invoked automatically by the framework, not manually in the

execute() method. The second approach eliminates the need to manually

invoke the validate(). In this method, the two forms in two pages have

different actions as follows:

Page A Form submission - <html:form action=”/submitPageA”>

Page B Form submission - <html:form action=”/submitPageB”>

Two action mappings are added to the Struts Config file for the above form

submissions. Note that both of the action mappings use the same Action class.

Moreover there is no need to set validate=false. The action mapping for

PageA form submission is as follows:

<action path="/submitPageA"

 type="mybank.example.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input=”/PageA.jsp”>

 <forward name="success" path="/PageB.jsp"/>

 <forward name="cancel" path="/Cancelled.jsp"/>

</action>

Similarly, the action mapping for PageB form submission is as follows:

Struts Survival Guide – Basics to Best Practices

116

<action path="/submitPageB"

 type="mybank.example.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input=”/PageB.jsp”>

 <forward name="success" path="/Success.jsp"/>

 <forward name="cancel" path="/Cancelled.jsp"/>

</action>

Both action mappings define an input value. When the form is validated by

the RequestProcessor and there are errors, the mapping.getInput() page is

shown to the user. Similarly the mapping.findForward(“success”) page is

shown when there are no ActionErrors. Any business logic invocation happens

only after the PageB data is collected. The code below shows the execute()

method.

public ActionForward execute(.. ..) throws Exception {

 CustomerForm info = (CustomerForm)form;

 // Was this transaction cancelled?

 if (isCancelled(request)) {

 // Add code here to remove Form Bean from appropriate scope

 return (mapping.findForward("cancel"));

 }

 if (info.getPage() == 2) {

 //Data collection completed. Invoke Business Logic here

 }

 return mapping.findForward("success");

}

With the second approach, the execute() method in Action is simplified.

While you may not see much difference between the two execute() methods

shown earlier, it will be much pronounced as the number of pages increase and

the last thing you want is page navigation logic intermingled with business logic

invocation.

5.4 Validating form hierarchy

There are still two more validation related Form classes –

ValidatorActionForm and DynaValidatorActionForm. A class diagram

Chapter 5. Form Validation

117

will resolve some of the confusion arising out of plethora of Form classes. Figure

5.1 shows the relationship between these classes. ActionForm and

DynaActionForm reside at the top of the figure as the root class for two

branches. ValidatorForm and DynaValidatorForm are their immediate

siblings. Each of them has a subclass – ValidatorActionForm and

DynaValidatorActionForm. The last two classes deserve some explanation.

Suppose that you have a Form and want to reuse it in various scenarios. Each

scenario has its own validation. However with the XML based validation, a set of

rules are associated with the form name, not where it is invoked from. Both the

ValidatorActionForm and DynaValidatorActionForm match the action

mapping instead of the form name. The name attribute is used to match the action

mapping and thus multiple rules can be defined for the same form based on the

action mapping.

Figure 5.1 Relationship hierarchy among Validating Forms.

5.5 Summary

In this chapter, you learnt about using Commons Validator with Struts – this is

probably the approach you will adopt in your project too. You also understood

the importance of DynaActionForm and its role in projects. You also learnt the

best approach to handle validation in multi page forms.

Struts Survival Guide – Basics to Best Practices

118

Chapter 6. Struts Tag Libraries

119

CChhaapptteerr 66

Struts Tag Libraries

In this chapter:

1. You will learn about frequently used Html, Bean and Logic tags

2. We will customize these Html tags – base, text, checkbox, errors & image

3. You will learn about JSTL and Expression Language

4. You will understand how to use Struts-EL Tags and which of the Struts

tags should be replaced with JSTL and Struts-EL

5. You will see how various Struts tags, their derivatives and other related

tags can work together to create multi-page lists and editable lists.

Custom Tags were introduced in JSP 1.1 specification. They are elegant

replacement for the scriptlets. Without the custom tags, the “edge of the system”

where the decisions in presentation logic based on middle tier models would be

exposed to the JSP page author as Java scriptlets. While not only causing

confusions and headaches to the page author, scriptlets also required the

involvement of the Java developer in the page authoring. Custom Tags changed

all that. The application developer now provides the custom tags written as a Java

class with a pre-defined structure and hierarchy. The page author independently

designs the pages and decides on the contents using the custom tags and their

formatting using general HTML and CSS.

Struts ships with these Tag libraries – Html, Bean, Logic, Template, Nested,

Tiles. We will deal with the first three tag libraries in this chapter. The TLD file

for each of these libraries is included in the Struts distribution. For instance, the

Html Tags are defined in struts-html.tld. The Bean tags are defined in struts-

bean.tld and so on. These tags are like any other custom tags. You have to

include the TLD declarations in the web.xml and also the JSP. For e.g., you have

to add the following lines in the web.xml to use the Html Tag library:

 <taglib>

 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>

 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>

 </taglib>

and the following line in the JSP:

Struts Survival Guide – Basics to Best Practices

120

 <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

Excellent documentation is available with the Struts distribution for each of

the custom tags and their attributes. It will be merely a repetition of going over

each of those attributes and tags here. Instead we will gloss over the categories

and characteristics of the Struts Tags and more importantly cover tags that need

to be customized for use in serious applications.

Here is how to access the tag documentation in Struts distribution:

Deploy the struts-documentation.war from Struts webapps in Tomcat. Use the

URL http://localhost:8080/struts-documentation/ to access the documentation

in the browser. Click on the link named “Learning” on the left hand side. Click

on “User and Developer Guides” on the resulting page. The page that you see

at this point is loaded with information and links including links for Struts tag

documentation. The direct link for Struts HTML Tag documentation is:

http://localhost:8080/struts-documentation/userGuide/dev_html.html. The

direct link for Struts Bean Tag documentation is: http://localhost:8080/struts-

documentation/userGuide/dev_bean.html.

6.1 Struts HTML Tags

Struts HTML tags are useful for generating HTML markup. The Struts HTML

tag library defines tags for generating HTML forms, textboxes, check boxes,

drop downs, radio buttons, submit buttons and so on. You have already used

some of these in Chapter 3. We will look at other important html tags not covered

there.

Modifying the Base Tag

This tag renders the <base href=…”> html tag pointing to the absolute location

of the JSP containing the tag as follows:

<base href=”http://localhost:8080/App1/abc/CustomerDetail.jsp”/>

This can be problematic at times. Assume that the JSP itself is present

somewhere down in a hierarchy of directories. Also the images directory will be

generally at the top level in a web application (See the WAR structure in Figure

3.3). Since the base href is referring to the absolute location of the JSP, the URL

for the images might look like “../../images/banner.jsp”. Three reasons why this

is not a good idea:

1. Referring to a same image with different URLs depending on from which

JSP it is called is error prone and creates a lot of confusion.

2. If the JSP is moved from one folder to another (which is not uncommon),

Chapter 6. Struts Tag Libraries

121

every URL in the page should be inspected and changed if needed. Not a

great idea.

3. Even though the Servlet specification encourages the idea of bundling the

images JavaScript and other static resource along with the WAR, it is not a

good idea in practice. It is a norm to deploy the static resources separately so

that the web server serves these documents instead of the servlet container.

4. When using frameworks such as Tiles (Chapter 7), there is no concept of a

single JSP. There is a single layout that aggregates the JSPs

The solution is to modify the Base Tag itself so that the output is:

 <base href=”http://localhost:8080/App1” />

Listing 6.1 MybankBaseTag – Customized BaseTag

public class MybankBaseTag extends BaseTag {

 public int doStartTag() throws JspException {

 HttpServletRequest request =

 (HttpServletRequest) pageContext.getRequest();

 String baseTag = renderBaseElement(

 request.getScheme(), request.getServerName(),

 request.getServerPort(),request.getContextPath());

 JspWriter out = pageContext.getOut();

 try {

 out.write(baseTag);

 } catch (IOException e) {

 pageContext.setAttribute(Globals.EXCEPTION_KEY, e,

 PageContext.REQUEST_SCOPE);

 throw new JspException(e.toString());

 }

 return EVAL_BODY_INCLUDE;

 }

..

}

Now, the URL of the image is always a constant no matter which JSP it is

used in. Another advantage of this arrangement is that a directory named App1

can be created on the web server to contain the static resources and the images

with no impact on the image URLs. With this background let us get started on

modifying the BaseTag.

Consider a URL http://localhost:8080/App1/cust/CustomerDetail.jsp. This is

generated as the output of the BaseTag. It can be dissected into:

Struts Survival Guide – Basics to Best Practices

122

request.getScheme() (http://),

request.getServerName() (localhost),

request.getServerPort() (8080) and

request.getRequestURI() (App1/customer/CustomerDetails.jsp).

The desired output for the BaseTag is http://localhost:8080/App1. This can be

dissected into

request.getScheme() (http://),

request.getServerName() (localhost),

request.getServerPort() (8080) and

request.getContextPath() (App1).

There you go! This is what we want to output from our version of BaseTag. Let

us call this MyBaseTag. Listing 6.1 shows doStartTag() method from

MyBaseTag.

Form Tag

Another Tag that deserves extra attention is the FormTag. You have learnt about

the working of this tag in Chapter 2 and used it in Chapter 3. At that point, we

looked at only one attribute of this tag – the action attribute.

It also has a set of attributes based on JavaScript events. For instance, the

onreset and onsubmit attributes do exactly what their JavaScript equivalents

do; they invoke the corresponding JavaScript event handler functions. The

JavaScript event based attributes is not limited to just the FormTag. In fact all the

tags in HTML Tag library have similar features.

Another attribute of interest is the enctype. Normally you don’t have to set

the enctype. When you are uploading files however, the value of enctype

should be set to multipart/form-data. More details await you in the section

on FileTag.

FileTag

FileTag lets you select file to upload from the HTML page. When you are

uploading files, the value of enctype (on the FormTag) should be set to

multipart/form-data. The FileTag in its simplest format, generates an

output of <input type=”file” name=”xyz” value”abc” />. This results

in the rendering of a text field for entering the file name and a Browse button as

shown in the figure below.

On clicking the browse button a file selection dialog box appears. The

selected file is uploaded when the form is submitted. In the JSP, the FileTag is

used as <html:file property=”uploadFile”/>. The uploadFile is a

Chapter 6. Struts Tag Libraries

123

JavaBeans property in the ActionForm. Struts mandates the type of this property

to be org.apache.struts.upload.FormFile. FormFile is an interface

with methods to get the InputStream for the uploaded file. For more details

refer to the example web application named struts-upload.war in the webapps

directory of wherever you installed Struts.

Smart Checkbox – The state aware checkbox

Consider a HTML form containing a checkbox in a JSP as follows:

 <html:form action="/submitCustomerForm">

 <html:text property="firstName" />

 <html:checkbox property="agree" />

 <html:submit>Submit</html:submit>

 </html:form>

In addition to the usual text field, it has a checkbox that Customer checks to

indicate he agrees with the terms and conditions. Assume that the associated

ActionForm has validate() method checking if the firstName is not null. If

the first name is not present, then the user gets the same page back with the error

displayed. The user can then submit the form again by correcting the errors.

Further assume that the associated ActionForm is stored in session scope. Now

starts the fun.

1. First, submit the form by checking the checkbox but leaving the firstName

blank. The form submission request looks like this:

 http://localhost:8080/App1/submitCustomer.do?

 firstName=””&agree=”true”

The ActionForm is created in the session with blank firstName and agree

attribute set to true (Checkbox is mapped to Boolean attributes in

ActionForm).

2. Since the firstName is blank, the user gets the same page back. Now fill in

the firstName but uncheck the agree checkbox. The form submission

request looks like this:

 http://localhost:8080/App1/submitCustomer.do?firstName=”John”

Note that the agree request parameter is missing. This is nothing unusual.

According to the HTTP specification, if a checkbox is unchecked, then it is

not submitted as request parameter. However since the ActionForm is stored

in the Session scope, we have landed in a problem. In our case, Struts

retrieves the ActionForm from Session and sets the firstName to “John”.

Now the ActionForm has the firstName=John and agree=true, although

you intended to set the agree to be false.

Struts Survival Guide – Basics to Best Practices

124

The Smart Checkbox we are about to present is the solution to this problem. This

solution uses JavaScript and it works as expected only if your target audience

enables JavaScript in their browser. The solution is as follows:

� Define the ActionForm as usual with the Boolean property for checkbox.

� Define a new class SmartCheckboxTag by extending the CheckboxTag

in org.apache.struts.taglib.html package and override the

doStartTag(). In the doStartTag(), do the following:

� Render a checkbox with name “agreeProxy”, where agree is the name

of the boolean property in ActionForm.

� Render a hidden field with the name agree.

� Define an inline JavaScript within the <script> block as follows.

Substitute appropriate values into [property] and [formName].

 <script>

 function handle" + [property] + "Click(obj) {

 if (obj.checked == true) {

 document.form.[formName]."

 + [property] + ".value = 'true';

 } else {

 document.form.[formName]."

 + [property] + ".value = 'false';

 }

 }

 </script>

� Invoke the above JavaScript function for the onclick event of the

checkbox.

The crux of this solution is to invoke a JavaScript function on clicking

(check or uncheck) the checkbox to appropriately set the value of a hidden field.

The hidden field is then mapped to the actual property in ActionForm. If you can

ensure that your target audience has JavaScript enabled, this solution works like a

charm!

Many might classify this solution as a hack, but the truth is there is no

elegant solution for this problem. Where applicable and feasible you can adopt

this solution. If you are unsure about your target audience or deploying the

application into the public domain, never use this solution. It is impossible to

predict the environment and behavior of an Internet user.

Chapter 6. Struts Tag Libraries

125

Using CSS with Struts HTML Tags

Cascading Style Sheets (CSS) is the mechanism used by page authors to

centralize and control the appearance of a HTML page. Some of the uses of CSS

are:

� Text formatting, indentation and fonts

� Add background color to text, links and other HTML tags

� Setting table characteristics such as styled borders, widths and cell spacing.

CSS allows the page author to make changes to formatting information in one

location and those changes immediately reflect on all pages using that stylesheet

thus resulting in application with consistent appearance with the least amount of

work – in other words a highly maintainable application.

The developers of Struts tags had this in mind and thus most of the HTML

tags support the usage of stylesheet in the form of styleClass and style attributes.

The styleClass refers to the CSS stylesheet class to be applied to the HTML

element and the style attribute refers to the inline CSS styles in the HTML page.

You can use either but styleClass is most frequently used.

Enhancing the error display with customized TextTag

You already know how to validate an ActionForm and display the error messages

to the user. This approach works great so long as the forms are small enough and

the resulting error display fits into the viewable area without scrolling. If the

forms are larger, it is a hassle for the user to scroll down and check for the

messages. We address this usability challenge with an error indicator next to the

field as shown in the figure below. In addition to the quick visual impact, the

error indicator can also provide more information such as displaying a popup box

with errors for that field in a JavaScript enabled browser thus enriching the user

experience.

There are many ways to implement this. One simple way is to extend the

TextTag class and override the doStartTag() method. The doStartTag()

from the Struts TextTag generates the <input type=”text” name=”..” >.

The subclass of the Struts TextTag has to then add an image next to it when

Struts Survival Guide – Basics to Best Practices

126

there is ActionError(s) associated with the input field. Listing 6.2 shows the

implementation with the above approach. The new tag called MyTextTag is used

in the JSP as follows:

<mytags:mytext property=”….” errorImageKey=”img.error.alert” />

The errorImageKey is the key to get the name of the error image from the

resource bundle. In the doStartTag() method, a check is performed if the text

field has any associated errors. If there are no errors, no extra processing is done.

However if there are errors, the errorImageKey is used to retrieve the image

source and a markup is constructed alongside the text tag.

There are other ways of implementing this feature. One of them is to develop a

separate custom tag to generate the error indicator.

Listing 6.2 TextTag with built-in error indicator

public class MyTextTag extends TextTag {

 private String errorImageKey;

 public int doStartTag() throws JspException {

 int returnValue = super.doStartTag();

 ActionErrors errors = RequestUtils.getActionErrors(

 pageContext, this.property);

 if ((errors != null) && ! errors.isEmpty()) {

 String imageSrc = RequestUtils.message(pageContext,

 getBundle(),

 getLocale(),

 this.errorImageKey);

 if (imageSrc != null) {

 StringBuffer imageResults = new StringBuffer();

 imageResults.append("<img src=\"");

 imageResults.append(imageSrc);

 imageResults.append("\"");

 // Print the image to the output writer

 ResponseUtils.write(pageContext,

 imageResults.toString());

 }

 }

 return returnValue;

 }

 ...

Chapter 6. Struts Tag Libraries

127

 ...

 public void release() {

 super.release();

 errorImageKey = null;

 }

}

 Further customizations can also be performed to pop up Java Script alerts to

show the error, if needed. This requires communication between Java and

JavaScript. Sounds complex right. It is easier than you think! You can achieve

this in three steps. All you need is a basic understanding of JavaScript.

First, create a JavaScript function as shown in Listing 6.3. This function

simply creates a JavaScript data structure and adds individual ActionError to a

JavaScript object called errorMessageArray. An array is created for every for

form field to hold multiple error messages.

Listing 6.3 JavaScript function to add ActionError into a JavaScript data
structure

function addActionError(window, formFieldName, errorMessage) {

 if (! window.errorMessageArray) {

 window.errorMessageArray = new Object();

 }

 var value = window.errorMessageArray[formFieldName];

 if (typeof(value) == "undefined") {

 window.errorMessageArray[field] = new Array();

 window.errorMessageArray[formFieldName][0] = errorMessage ;

 }

 else {

 var length =

 window.errorMessageArray[formFieldName].length;

 window.errorMessageArray[formFieldName][length] =

 errorMessage;

 }

}

Second, create your own Errors tag by extending the ErrorsTag from

Struts. This JavaScript function is invoked repetitively from the ErrorsTag’s

doStartTag() method for every ActionError in ActionErrors. Listing

6.4 shows the doStartTag() method for the MyErrorsTag. As usual the

method first invokes the super.doStartTag() to write the ActionErrors as

locale specific error messages to the output stream. It then invokes the JavaScript

function addActionError() inline with the rest of HTML for every

Struts Survival Guide – Basics to Best Practices

128

ActionError. The JavaScript invocation is made inline by using <script>

and </script> demarcations. At the end of this method, every ActionError

associated with the form fields is added to the JavaScript data structure

(errorMessageArray). Any JavaScript code in the page can now access the

data structure to do whatever it likes.

Finally the error messages in the JavaScript data structure (added by

MyErrorsTag) have to be displayed when clicking on the error indicator. This

can be done with a simple JavaScript function as shown in Listing 6.5. The

displayAlert() function iterates over the error messages for the given form

field. This function has to be invoked on the onclick JavaScript event of the

error indicator image.

Listing 6.4 MyErrorsTag invoking the JavaScript functions

public class MyErrorsTag extends ErrorTag {

 public int doStartTag() throws JspException {

 int returnValue = super.doStartTag();

 //Retrieve the ActionErrors

 ActionErrors errors = RequestUtils.getActionErrors(

 pageContext, Globals.ERROR_KEY);

 StringBuffer results = new StringBuffer();

 results.append("<script>");

 //Retrieve all the form field names having ActionError

 Iterator properties = errors.properties();

 String formFieldName = null;

 while (properties.hasNext()) {

 formFieldName = (String) properties.next();

 if (formFieldName.equals(ActionMessages.GLOBAL_MESSAGE))

 continue;

 //Retrieve all ActionError per form field

 Iterator reports = errors.get(formFieldName);

 String message = null;

 while (reports.hasNext()) {

 ActionError report = (ActionError) reports.next();

 message = RequestUtils.message(pageContext, bundle,

 locale, report.getKey(), report.getValues());

 //Invoke the JavaScript function for every ActionError

Chapter 6. Struts Tag Libraries

129

 results.append("addActionError(window,\"" +

 formFieldName + "\",\"" +

 message + "\");\n");

 }

 }

 results.append("</script>");

 ResponseUtils.write(pageContext, results.toString());

 return returnValue;

 }

 ...

}

Listing 6.5 JavaScript function to display alert with ActionError
messages

function displayAlert(window, formFieldName) {

 var length = window.errorMessageArray[formFieldName].length;

 var aggregateErrMsg = "";

 for(var i = 0; i < length; i++) {

 aggregateErrMsg = aggregateErrMsg +

 window.errorMessageArray[formFieldName][i];

 }

 alert(aggregateErrMsg);

}

The recommended way to use ImgTag

The ImgTag is used to render a HTML element such as follows:

If you are wondering why you need a Struts tag for such a simple HTML tag,

consider this. Sometimes, the images actually spell out the actual English word.

Users worldwide access your application. You want to localize the images

displayed to them. You also want the alt text on your images to be

internationalized. How do you do this without adding the big and ugly if-else

block in your JSPs? The answer is to use the ImgTag. With ImgTag, the actual

image (src) and the alternate text (alt) can be picked from the Message

Resources. You can easily setup different Resource Bundles for different Locales

and there you have it. Your images are internationalized without any extra effort.

Even if you are not internationalizing the effort is well worth it. JSPs can remain

untouched when the image is changed. The usage of the ImgTag is as follows:

 <html:img srcKey=”image.main” altKey=”image.main.alttext” />

There are many more attributes in ImgTag and you can find them in the

Struts documentation.

Struts Survival Guide – Basics to Best Practices

130

6.2 Using Images for Form submissions

All along, you have submitted HTML forms with the grey lackluster buttons.

Life requires a bit more color and these days most of the web sites use images for

Form submission. The images add aesthetic feeling to the page well. Struts

provides <html:image> tag for Image based Form submission. Although the

ImageTag belongs to the HTML Tag library, it requires an in-depth treatment

and deserves a section by itself. Let us look at the ImageTag and how it fits into

the scheme of things. Consider an HtmlTag used in a JSP as follows:

 <html:image src=”images/createButton.gif”

 property=”createButton” />

This gets translated to:

 <input type=”image” name=”createButton”

 src=”images/createButton.gif” />.

 When the Form is submitted by clicking on the image, the name is added to

the X and Y coordinates and sent to the server. In this case, two request

parameters createButton.x and createButton.y are sent. Suppose that the

HTML form has two or more images each with a different name. How do you

capture this information in the ActionForm and convey it to the Action? The

answer to this is ImageButtonBean in org.apache.struts.util package.

The ImageButtonBean has five methods – getX(), setX(), getY(),

setY() and isSelected(). All you have to do is add JavaBeans property of

type ImageButtonBean to the ActionForm (Listing 6.6). For instance, if the

JSP has image buttons named and createButton and updateButton, you

have to add two ImageButtonBean properties to the ActionForm with the same

name. When the createButton image is clicked, two request parameters

createButton.x and createButton.y are sent to the server. Struts interprets

the dot separated names as nested JavaBeans properties. For example, the

property reference:

<.. property=”address.city”/>

is translated into

getAddress().getCity()

while getting the property. The setters are called for setting the property as

follows:

getAddress().setCity()

For createButton.x and createButton.y, Struts invokes

getCreateButton() on the ActionForm and then setX() and setY() on

Chapter 6. Struts Tag Libraries

131

createButton. Since createButton is an ImageButtonBean, its x and y

are set to non-null values, when the button is clicked. The isSelected()

method returns true if at least one of x or y is non-null.

Listing 6.6 shows the ActionForm with createButton and

updateButton. It is pretty straightforward. In the Action instance, you can find

which of the buttons is pressed by using the isSelected() method as follows:

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 CustomerForm custForm = (CustomerForm) form;

 if (custForm.getCreateButton().isSelected()) {

 System.out.prinitln(“Create Image Button is pressed”);

 } else if (custForm.getUpdateButton().isSelected()) {

 System.out.prinitln(“Update Image Button is pressed”);

 }

 }

Listing 6.6 CustomerForm using ImageButtonBean

public class CustomerForm extends ActionForm {

 private String firstName;

 ..

 ..

 private ImageButtonBean createButton;

 private ImageButtonBean updateButton;

 public CustomerForm() {

 firstName = “”;

 lastName = “”;

 createButton = new ImageButtonBean();

 updateButton = new ImageButtonBean();

 }

 …

 …

 public ImageButtonBean getCreateButton() {

 return createButton;

 }

 public void setCreateButton(ImageButtonBean imgButton) {

 this.createButton = imgButton;

 }

 public ImageButtonBean getUpdateButton() {

Struts Survival Guide – Basics to Best Practices

132

 return updateButton;

 }

 public void setUpdateButton(ImageButtonBean imgButton) {

 this.updateButton = imgButton;

 }

}

Compare this with the Action using grey buttons. It would look like:

custForm.getCreateButton().equals(“Create”). Obviously, changing

the grey button to image button on the JSP is not gone unnoticed in the Action.

The Action class has changed accordingly. The ActionForm has changed too.

Previously a String held on to the submit button’s name. Now an

ImageButtonBean has taken its place. You might be wondering if it is possible

to eliminate this coupling between the Action and the JSP? The good news is that

this can be achieved quite easily. Listing 6.7 shows HtmlButton that extends

the ImageButtonBean, but overrides the isSelected() method.

ImageButtonBean has basically taken care of handling the image button in

isSelected() method. The extra functionality in HtmlButton takes care of

grey button submission. The attribute called name is the name of the grey button

submitting the form. The isSelected() method now checks if the name is not

null in addition to invoking the super.isSelected(). Now you can use the

HtmlButton for whatever mode of JSP submission – grey button or image

button. The ActionForm will use HtmlButton in both cases and never change

when the JSP changes. Neither does the Action change. Decoupling Nirvana

indeed!

The Image button in JSP will look like:

 <html:image property=”createButton”

 src=”images/createButton.gif” />

If grey button were used in the JSP, it would look like:

 <html:submit property=”createButton.name”>

 <bean:message key=”button.create.name” />

 <html:submit>

Notice that the grey button is called “createButton.name”. The dot

separated naming is essential to maintain the ActionForm and Action unchanged.

Moreover, the suffix of the property – “.name” is fixed since the HtmlButton

has the JavaBeans property called name (Listing 6.7).

Large projects need a simple and systematic way of handling Form

submissions and deciding on the back end. Minor innovations like HtmlButton

go a long way in making your application cleaner and better.

Chapter 6. Struts Tag Libraries

133

The alt text and the image source for ImageTag can also be externalized into

the Message Resource Bundle much like the ImgTag. As it turns out the names

of the attribute for externalizing these are also the same. <html:image> has

srcKey to externalize the name of the image src and altKey to externalize the

alternate text (alt). In Chapter 10, we will develop a DispatchAction-like

capability for HtmlButton by exploiting the Struts customization facility.

ImageButton and JavaScript

ImageButton is all cool and dandy as long as you don’t have to execute

JavaScript and support multiple browser versions. Microsoft Internet Explorer 4

(and above) and Netscape 6 (and above) provide support for JavaScript event

handlers in the <input type=”image”>. If the JavaScript execution is critical

to the application logic, you might want to switch between the image buttons and

grey buttons depending on the browser version. This is another instance where

HtmlButton saves the say. Irrespective of whether the front end uses Image

button or grey button, the presentation logic in the ActionForm and Action

doesn’t change.

Listing 6.7 HtmlButton

public class HtmlButton extends ImageButtonBean {

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String aName) {

 this.name = aName;

 }

 public boolean isSelected() {

 boolean returnValue = super.isSelected();

 if (returnValue == false) {

 returnValue = (name != null && name.trim().length() > 0);

 }

 return returnValue;

 }

}

In Chapter 4, you looked at the goodies offered by DispatchAction and

LookDispatchAction. In particular with LookupDispatchAction, you

Struts Survival Guide – Basics to Best Practices

134

were able to assign methods in Action instance based on the button names in a

locale independent manner. The only pre-requisite was that, all the form

submission buttons have the same name. With the HtmlButton (or

ImageButtonBean for that matter), we started with different names for

different buttons from the outset. For this reason, DispatchAction and

LookupDispatchAction cannot be used in conjunction with image based

form submissions. They can be however used with html links using images.

6.3 Struts Bean Tags

Struts Bean tag library contains tags to access JavaBeans and resource bundles

among others. Two frequently used tags are MessageTag (bean:message) and

WriteTag (bean:write).

Message Tag and Multiple Resource Bundles

You have already used the message Tag for accessing externalized messages in

resource bundles using locale independent keys. In this section, we will go

further and investigate the applicability of multiple resource bundles. When the

application is small, a single resource bundle suffices. When the application gets

larger, the single properties file gets cluttered much like a single struts-

config.xml getting cluttered.

It is advisable to have multiple resource bundles based on the message category

from the outset. This saves the pain involved in splitting the single bundle into

pieces and updating all the resources accessing it.

The first step in using multiple resource bundles is to declare them in the struts-

config.xml first. The semantic for declaring multiple resource bundle is as

follows:

<message-resources parameter="mybank.example.DefaultMsgResource"

 null="false"/>

<message-resources parameter="mybank.example.AltMsgResource"

 null="false" key="bundle.alt" />

<message-resources parameter="mybank.example.ErrorMsgResource"

 null="false" key="bundle.error" />

The above snippet declares three resource bundles identified by a key. The

default resource bundle does not have a key. As the key suggests, the

AltMsgResource contains alternate messages and the ErrorMsgResource contains

error messages. The message tag accesses the default resource bundle as follows:

<bean:message key=”msg.key” />

Chapter 6. Struts Tag Libraries

135

The key specified in the <bean:message> tag is the key used in the

properties file to identify the message.

The non-default resource bundles are accessed by specifying the bundle key

as declared in struts-config.xml (key=”bundle.alt”, key=”bundle.error”

etc.). For instance, a message tag accesses a message in AltMsgResource as

follows:

<bean:message key=”msg.key” bundle=”bundle.alt” />

Similarly a errors tag access the messages in the non-default bundle by

using the bundle attribute as follows:

<html:errors bundle=”bundle.error” />

You can also specify alternate bundles to the following tags in HTML Tag

library – messages, image, img and option.

 Write Tag

Write Tag is another frequently used tag. The usage of this tag is as follows:

<bean:write name=”customer” property=”firstName” />

It accesses the bean named customer in the page, request, session and

application scopes in that order (unless a scope attribute is specified) and then

retrieves the property named firstName and renders it to the current JspWriter. If

format attribute is specified, the value is formatted accordingly. The format can

be externalized to the resource bundle by using the formatKey attribute instead.

Alternate resource bundle can also be specified. This is handy when the display

format is locale specific.

Going further, <c:out> and other JSTL formatting tags are preferred over

write tag for formatting and output.

6.4 Struts Logic Tags

The frequently used tags in the Logic tag library are for logical comparison

between values and for iteration over collection. The important logical

comparison tags are: equal, notEqual, greaterEqual, greaterThan,

lessEqual and lessThan. The following are the important attributes are

common to these tags.

� value – The constant value against which comparison is made.

Struts Survival Guide – Basics to Best Practices

136

� name – The name of the bean in one of the 4 scopes

� property – The property of the bean that is compred with the value.

A sample usage of the tags is as follows:

<logic:equal name=”customer” property=”firstName” value=”John”>

 //do whatever when the customer first name is John

</logic:equal>

The above tag searches for a bean named customer in the 4 scopes and

checks if its firstName property is equal to John. You can also specify the

scope to restrict the search scope by using the scope attribute on these tags.

Another tag attribute is parameter. You have to specify only one:

parameter or (name and property). As the name suggests, the parameter

attribute looks for the specified request parameter and compares it with the

value attribute. In the example below, the request parameter named firstName

is compared with a value of John.

<logic:equal parameter=”firstName” value=”John”>

 //do whatever when the request parameter firstName

 //is equal to John

</logic:equal>

There are more comparison tags of interest: empty, notEmpty, present

and notPresent. These tags do not compare against a given value, but check if

an entity (bean property or request parameter) is empty or present respectively.

Hence they don’t need the value attribute. The following snippet checks if a

request parameter named firstName is present.

<logic:present parameter=”firstName” >

//do whatever when the request parameter firstName is present

//(Irrespective of its value)

</logic:equal>

Nested Logic Tags

Consider how you would write the following logical condition using Logic tags:

if (customer.firstName == “John” && customer.lastName == “Doe”

 && customer.age == 28)

{

 do something.….

}

This can be done by nesting the logic:equal tags as follows:

Chapter 6. Struts Tag Libraries

137

<logic:equal name=”customer” property=”firstName” value=”John”>

 <logic:equal name=”customer” property=”lastName” value=”Doe”>

 <logic:equal name=”customer” property=”age” value=”28”>

 //do something….

 </logic:equal>

 </logic:equal>

</logic:equal>

Nesting of <logic:xxx> tags always results in logical ANDing. There is no

convenient way to do an “OR” test however; that's where the expression

language in JSTL comes in handy (introduced in next section). With JSTL, the

above AND condition can be written as follows:

<c:if test=’${customer.firstName == “John” &&

 customer.lastName == “Doe” && customer.age == 28}’>

 //do something ...

</c:if>

Writing the OR condition is also no different

<c:if test=’${customer.firstName == “John” ||

 customer.lastName == “Doe” || customer.age == 28}’>

 //do something ...

</c:if>

The c in the c:if stands for JSTL’s core tag library TLD. There are other

tag libraries in JSTL such as formatting. Refer to the section “A crash course on

JSTL” for details.

Iterate Tag

The iterate tag is used to iterate over a collection (or a bean containing collection)

in any of the four scopes (page, request, session and application) and execute the

body content for every element in the collection. For instance, the following tag

iterates over the collection named customers.

<logic:iterate name=”customers”>

 //execute for every element in the collection

</logic:iterate>

Another alternative is to use a bean and iterate over its property identified by the

attribute property. The following tag accesses the company bean from one of

the scope and then invokes getCustomers() on it to retrieves a collection and

iterates over it.

Struts Survival Guide – Basics to Best Practices

138

<logic:iterate name=”company” property=”customers”>

 // Execute for every element in the customers

 // collection in company bean

</logic:iterate>

Most of the times a collection is iterated over to display the contents of that

collection, perhaps in the table format. This requires the individual element of the

collection is exposed as a scripting variable to the inner tags and scriptlets. This

is done using the id attribute as follows:

<logic:iterate id=”customer” name=”company” name=”customers”>

 // Execute for every element in the customers

 // collection in company bean.

 // Use the scripting variable named customer

 <bean:write name=”customer” property=”firstName” />

</logic:iterate>

NOTE: The JSTL tag <c:forEach> performs similar functionality. It is

recommended that you switch to these new tags where applicable.

6.5 A crash course on JSTL

JSTL stands for JSP Standard Template Library. It is one of the new

specifications from Sun for standardizing common tags. Due to the lack of

standard tags for most of the common tasks such as iterating over a collection

and displaying it as a table, custom tags from different vendors have sprung up

(including Struts Logic tags), thus presenting a formidable learning curve for the

developers every time a new vendor is chosen. JSTL has standardized the set of

tags. This standardization lets you learn a single tag and use it across the board.

Table 6.1 shows the JSTL tag categories. Core and Formatting tags are most

relevant to the discussion on Struts.

Table 6.1 JSTL Libraries

Library Description

Core Contains Core tags for if/then, output, iterating collections,

Formatting Contains I18N and formatting tags. Localizing text, Setting Resource

Bundles, Formatting and parsing number, currency, date

SQL Database Access tags

XML Tags for XML Parsing and Transforming with Xpath

JSTL also introduced a new expression language (called EL henceforth) as

an alternative for using full-blown JSP expressions. For e.g. consider the

following scriptlet. It checks for the “user” in page, request, session and

application scopes and if it is not null, prints out the roles of that user.

 <%

Chapter 6. Struts Tag Libraries

139

 User user = (User) (pageContext.findAttribute(“user”);

 if (user != null) {

 Role[] roles = user.getRoles();

 %>

 <% for (int i=0;i<roles.length;i++) { %>

 Role Name is <%= roles[i].getName() %>

 <% }%>

 <% }%>

This can be easily written using JSTL and EL as follows:

 <c:forEach items=”${user.roles}” var=”role”>

 <c:out value=${role.name}/>

 </c:forEach>

Any value to be evaluated in a JSTL tag lies in ${ and } blocks. EL defines

several implicit objects much like JSP defines its implicit objects. Table 6.2 gives

a complete list of implicit objects. If the name of the variable in the ${ and }

block does not match one of the implicit objects, then EL searches the page,

request, session application scopes in that order for the variable name specified.

In the above code snippet, “user” is the name of an attribute in one of these

scopes. Once the <c:forEach> tag gets the value, it iterates over the specified

collection. In this case it iterates over the array of roles and provides a scripting

variable called role (var=”role”) for the embedded tags. The <c:out> tag

access the name property of the Role object (obtained from the role scripting

variable) and renders it. The c in the <c:out> represents the Core JSTL tag

library.

Table 6.2 Implicit objects in EL

Category Identifier Description

JSP pageContext PageContext for the current page

pageScope Map holding page scoped attributes

requestScope Map holding request scoped attributes

sessionScope Map holding session scoped attributes

Scope

ApplicationScope Map holding application scoped attributes

Param Map holding request parameter names Request

Parameters ParamValues Map holding request parameter values as arrays

Header Map holding header names Request headers

HeaderValues Map holding header values

Cookies Cookie Map holding cookies by name

Initialization

Parameters

InitParams Map holding web application context initialization

parameters by name

Struts Survival Guide – Basics to Best Practices

140

NOTE: JSTL 1.0 works with JSP 1.2 containers only, such as Tomcat 4.x.

JSTL 1.1 works only with JSP 2.0 containers such as Tomcat 5.x. With JSP 1.2,

the expression language can be used only within JSTL tags. JSP 2.0 specification

defines a portable expression language. With JSP 2.0, the expression language

will become part of the specification and can be used even outside the JSTL.

You have already seen an example of using JSTL Core library earlier in

conjunction with EL. Now, let us look at an example of formatting library tags.

Consider the case when you want to display the currency 12.37 in the user’s

Locale. You can use the formatNumber tag for this purpose. In the following

example the currency is formatted and displayed in a variable called “money”.

For the U.S. Locale, money will contain the value “$12.37”.

<fmt:formatNumber value="12.367" type="currency" var="money"/>

This is somewhat similar to the <bean:write> tag in terms of formatting

the currency. Similarly there is a JSTL equivalent for <bean:message> tag.

<fmt:message key="firstName">

In JSTL, the Resource Bundle for the above tag can be specified in a number of

ways. Unless specified otherwise, JSTL looks for a servlet context parameter

named javax.servlet.jsp.jstl.fmt.localizationContext and uses

its value as the bundle name. You can also use the tag <fmt:setBundle

baseName=”mybank.MyMessages”> in JSP and the rest of the JSP uses the

specified bundle. You can scope a bundle by wrapping other tags with

<fmt:bundle> tag as follows:

 <fmt:bundle baseName=”mybank.MySecondMessages”>

 <fmt:message key="firstName">

 <fmt:message key="lastName">

 </fmt:bundle>

In the above snippet, all the inner tags use mybank.MySecondMessages as

their resource bundle. The resource bundle lookup is similar to Struts. In the

above scenario for instance, the servlet container looks for

MySecondMessages.properties in WEB-INF/classes/mybank and then in the

system classpath.

Design Tip

Since, Struts allows you to specify resource bundles on a tag basis, it seems

easier (and logical) to use separate bundles per category. For instance, all the

errors can reside in one bundle and all the messages of one type can reside in

one bundle and so on.

Chapter 6. Struts Tag Libraries

141

JSTL on the other hand seems to encourage the practice of using resource

bundle per module. This is evident from the way you specify the bundles at a

JSP level, scope it and so on. It is easier this way to use a resource bundle for a

set of JSPs belonging to one module.

JSTL Binaries – Who’s who

If you download JSTL Reference Implementation from Sun, it has two important

jar files – jstl.jar and standard.jar. The former contains the classes from

javax.servlet.jsp.jstl package and the latter contains Sun’s JSTL

Reference Implementation.

From a perspective of this book, we will be using Struts-EL, the JSTL

compliant port of Struts tags. Struts-EL is shipped with Struts 1.1 release as a

contributed library and can be found under the contrib folder. Struts-EL uses the

same jstl.jar containing javax.servlet.jsp.jstl package – it is the vendor

independent JSTL standard. However it uses the implementation from Jakarta

TagLibs as the underlying expression evaluation engine (This implementation is

also named standard.jar and found under Struts-EL/lib). If you explode the

standard.jar, you will find classes belonging to org.apache.taglibs

package.

6.6 Struts-EL

As you might know already, Struts-EL is a port of Struts tags to JSTL. This

provides a migration path for the existing Struts applications to the expression

language syntax in a non-intrusive manner. Normal Struts tags rely on runtime

scriptlet expressions to evaluate dynamic attribute values. For example, the key

of the bean:message below is dependent on some business logic.

<bean:message key=”<%= stringVar %>” />

This assumes that stringVar exists as a JSP scripting variable. This tag can

be rewritten with the Struts-EL version of the message tag as follows:

<bean-el:message key=”${stringVar}” />

Although, not much exciting is going on in the above tag, it shows how easy

it is to port the existing Struts tags to Struts-EL. The real power of Struts-EL

comes to the fore especially when the scriptlet deciding the attribute value starts

becoming complex.

Not all tags from Struts are ported to Struts-EL. In areas where there is

already a JSTL tag available, porting of the Struts tags will only cause

Struts Survival Guide – Basics to Best Practices

142

redundancy. Hence those Struts tags are not ported. For e.g., the bean:write

tag can be implemented with the c:out JSTL tag. Similarly most of the logic

tags (such as equal, notEqual, lessThan etc.) are not ported since the JSTL

tag c:if can take any expression and evaluate it (with the test=”${….}”

option). You have already seen how a logic:equal tag can be replaced with

c:if in the earlier section on Nested Logic Tags.

Struts-EL hands-on

Enough theory. Let’s get down to business and use some Struts-EL tags to get the

feel. Here is the step-by-step process to do so.

� You will need new jar files to use the Struts-EL in your application. Copy

the following jars from the Struts contrib folder into the WEB-INF/lib folder

of the web application – jstl.jar, standard.jar (remember to use the Jakarta

Taglibs version, not the Sun reference implementation jar), struts-el.jar.

These jars are needed in addition to the already existing jars from regular

Struts.

� From the Struts-EL/lib folder copy the following tlds to the WEB-INF of

your web application – c.tld, struts-bean-el.tld, struts-html-el.tld and struts-

logic-el.tld.

� Add the <taglib> declaration for all the new tlds in web.xml as follows:

<taglib>

 <taglib-uri>/WEB-INF/struts-bean-el</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean-el.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>/WEB-INF/struts-html-el</taglib-uri>

 <taglib-location>/WEB-INF/struts-html-el.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>/WEB-INF/struts-logic-el</taglib-uri>

 <taglib-location>/WEB-INF/struts-logic-el.tld</taglib-location>

</taglib>

<taglib>

 <taglib-uri>/WEB-INF/c</taglib-uri>

 <taglib-location>/WEB-INF/c.tld</taglib-location>

</taglib>

� In the JSPs, add the declaration for these TLDs as follows:

<%@ taglib uri="/WEB-INF/struts-bean-el" prefix="bean-el" %>

Chapter 6. Struts Tag Libraries

143

<%@ taglib uri="/WEB-INF/struts-html-el" prefix="html-el" %>

<%@ taglib uri="/WEB-INF/struts-logic-el" prefix="logic-el" %>

<%@ taglib uri="/WEB-INF/c" prefix="c" %>

That’s it! Now you are ready to use the Struts-EL tags in conjunction with

JSTL tags to reap the benefits of expression language and make your applications

a little bit simpler and cleaner.

Practical uses for Struts-EL

When was the last time you wrestled to use a custom tag as the attribute value of

another tag and failed? Something like this:

<html:radio name=”anotherbean”

 value=”<bean:write name=”mybean” property=”myattrib”/>” />

Nesting custom tag within a tag element is illegal by taglib standards. The

alternatives are no good. Thankfully now, with JSTL, you can solve this problem

in a clean way. In Struts tags, JSTL can be combined only with Struts-EL and the

problem can be solved as follows:

<html-el:radio name=”anotherbean” value=”${mybean.myattrib}” />

Beautiful isn’t it! Struts-EL provides you the best of both worlds, the

elegance of JSTL and the power of Struts.

6.7 List based Forms

All along you have seen how to handle regular Forms. Now let us see how to

handle list-based forms. List based forms are used for editing collections of

objects. Examples include weekly hours-of-operation, contacts etc. Such

collections may be limited to a single page or span across multiple pages. We

will deal with a collection limited to single page first. Techniques for dealing

with multi page lists are illustrated later.

Struts Survival Guide – Basics to Best Practices

144

Figure 6.1 Current and Future page layout for the banking application

Indexed struts-html tags are used to display editable collections of objects.

Consider a HTML form used to collect information about the weekly hours of

operation for a company and send the data back to an Action as shown in Figure

6.1. The brute force approach is to create 7 pair of text fields to collect the

opening and closing time for each day of the week. An elegant approach is to use

indexed <html:...> tags.

The ActionForm for the above HTML in Figure 6.1 is shown in Listing 6.8.

The ListForm has a java.util.List named hourOfOperationList. It is a

list containing hours of operation. The HourOfOperation itself is a Serializable

Java class with three JavaBeans properties – day, openingTime and

closingTime. The zeroth day is a Sunday and sixth day is a Saturday. Back to

the ListForm. The ListForm has a getter method for the hours of operation

List, but no setter method. The reset() method initializes the List with exactly

seven HourOfOperation objects. In reality, you would populate this list from

database. Also there is an odd method called getTiming() that takes an integer

index as argument and returns the corresponding HourOfOperation object

from the List. This method replaces the setter method and is the key for the Struts

framework when populating the list using form data. The details will become

clear once you look at the JSP code in Listing 6.9 and the generated HTML in

Listing 6.10.

Listing 6.8 ListForm

public class ListForm extends ActionForm {

 private List hourOfOperationList;

 public ListForm() {

 reset();

 }

 public void reset() {

 hourOfOperationList = new ArrayList(7);

 hourOfOperationList.add(new HourOfOperation(0));

 hourOfOperationList.add(new HourOfOperation(1));

 hourOfOperationList.add(new HourOfOperation(2));

 hourOfOperationList.add(new HourOfOperation(3));

 hourOfOperationList.add(new HourOfOperation(4));

 hourOfOperationList.add(new HourOfOperation(5));

Chapter 6. Struts Tag Libraries

145

 hourOfOperationList.add(new HourOfOperation(6));

 }

 public List getHourOfOperationList() {

 return hourOfOperationList;

 }

 public HourOfOperation getTiming(int index) {

 return (HourOfOperation) hourOfOperationList.get(index);

 }

}

In Listing 6.9, the JSP displays a form containing the company name and the

hours of operation List. The <logic:iterate> is used inside the

<html:form> tag to iterate over the hoursOfOperationList property in the

ListForm bean. Each hour of operation is exposed as a scripting variable named

timing. You may be able to relate now between the getTiming() method in

the ListForm and this scripting variable. The indexed=true setting on each of

the html tags makes the array index to be part of the text field name. For instance,

the following tag

 <html:text name="timing" property="openingTime" indexed="true"/>

generates the HTML as follows in the second iteration (i=1):

 <input type=”text” name="timing[1].openingTime" .. />

Listing 6.9 JSP for the ListForm

<html:form action="/submitListForm">

Company Name: <html:text property="companyName" />

<table border=1 cellpadding=1>

 <tr><td>Day</td><td>Opening Time</td><td>Closing Time</td></tr>

 <logic:iterate id="timing" name="ListForm"

 property="hourOfOperationList">

 <tr>

 <td><bean:write name="timing" property="dayName"/></td>

 <td><html:text name="timing" property="openingTime"

 indexed="true"/></td>

 <td><html:text name="timing" property="closingTime"

 indexed="true"/></td>

 </tr>

 </logic:iterate>

</table>

Struts Survival Guide – Basics to Best Practices

146

 <html:submit>Save</html:submit>

 <html:cancel>Cancel</html:cancel>

</html:form>

Notice the relation between the Struts text tag and the generated input tag.

Each text field now has a unique name as the name is partly driven the array

index. This magic was done indexed=”true” setting. When the form is edited

and is submitted via POST, the request parameter names are unique

(timing[0].openingTime, timing[1].openingTime etc.), thanks to the

array index being part of the text field names. The HTML is shown in Listing

6.10.

Upon form submission, when Struts sees the request parameter named

timing[1].openingTime, it calls the following method:

listForm.getTiming(1).setOpeningTime(...)

and so on for every request parameter. This is exactly where the

getTiming() method in ListForm comes in handy. Without it, Struts can

never access the individual items in the list. Thanks to getTiming(), individual

HourOfOperation are accessed and their attributes are set using the

corresponding request parameters.

List based form editing is frequently a necessity in day-to-day Struts usage.

The above approach is perhaps the only clean way to achieve this.

Listing 6.10 Generated HTML from JSP in Listing 6.9

<form name="ListForm" action="/mouse/submitListForm.do">

Company Name:

<input type="text" name="companyName" value="ObjectSource">

<table border=1 cellpadding=1>

 <tr><td>Day</td><td>Opening Time</td><td>Closing Time</td></tr>

 <tr>

 <td>Sunday</td>

 <td><input type="text" name="timing[0].openingTime"

 value="N/A"></td>

 <td><input type="text" name="timing[0].closingTime"

 value="N/A"></td>

 </tr>

<tr>

 <td>Monday</td>

 <td><input type="text" name="timing[1].openingTime"

 value="8:00 AM"></td>

Chapter 6. Struts Tag Libraries

147

 <td><input type="text" name="timing[1].closingTime"

 value="6:00 PM"></td>

 </tr>

</table>

<input type="submit" value="Save">

<input type="submit" name="org.apache.struts.taglib.html.CANCEL"

 value="Cancel" onclick="bCancel=true;">

</html:form>

6.8 Multi-page Lists and Page Traversal frameworks

As seen in the last section, <logic:iterate> can be used in conjunction with

indexed html tags to display and edit list forms. However read-only tabular

displays are more common than editable list forms in enterprise applications.

Such read-only tables span multiple pages with data ranging from ten rows to

thousands. The IterateTag can also be used for displaying read-only data by

iterating over a collection and rendering the data using <bean:write>. For

multi-page lists, the attributes offset and length are useful. The offset

indicates the index from where to start the iteration in the page relative to the first

element (index = 0). The length indicates the maximum number of entries from

the collection to be displayed in the page. Using these two attributes it is possible

to build a multi-page list.

But the task is more daunting than you can imagine. Believe us. Multi-page

list display will not be your only worry. You will be asked to provide a browsing

mechanism – previous, next, first and last to traverse the collection. You will

have to sort the data for the chosen column (and still do a previous, next etc.).

You will be asked to group the data, aggregate and sum columns and format

them. In addition you will have to make it easier to the page author to apply

different display styles to the list. Before you know it, the seemingly trivial task

has turned into a Frankenstein!

The plain vanilla IterateTag simply cannot be stretched too far. A robust

framework exclusively to perform the above tasks is needed. Fortunately such

frameworks are available at no charge. Why reinvent the wheel unless you have a

unique and stringent requirement not satisfied by one of these frameworks?

Three such frameworks are reviewed below. One is free, the other two are open

source Let us examine what is available and what is missing in these frameworks

and how they fit into the Struts way of building applications. The three

frameworks are:

Struts Survival Guide – Basics to Best Practices

148

1. Pager Taglib (http://jsptags.com/tags/navigation/pager/)

2. displayTag (http://displaytag.sourceforge.net/)

3. HtmlTable (http://sourceforge.net/projects/htmltable/)

Pager Taglib

Pager Taglib covers the display aspects of list traversal very well. Provide it the

minimal information such as rows per page and URL and it will control the entire

paging logic. You are in complete control of the iterating logic and table display.

(If using the IterateTag, offset and length attributes are not needed). Hence you

can completely customize the look and feel of the table using CSS. The Pager

taglib does not provide any assistance for the table display. Neither does it handle

editable list forms, sorting or grouping. If all you need is an easy and elegant way

to traverse list data, you should definitely consider using the Pager taglib and you

will be glad you did. Below we cover a short note on how to use the Pager Taglib

with Struts.

Start with an Action that creates the collection to iterate and put it in

HttpSession using results as the key name. Then forward to the JSP that uses

the Pager taglib. This JSP is shown in Listing 6.11. The resulting HTML is

shown in Figure 6.2. The pg:pager tag has two important attributes – url and

maxPageItems. They specify the destination URL when any of the navigation

links are clicked and the number of items per page respectively. In Listing 6.11,

the url is traverse.do – a simple ForwardAction that forwards to the same JSP.

The JSP uses the iterate tag to iterate the collection. Th pg:item defines each

displayable row. The pg:index, pg:prev, pg:pages and pg:next together

display the page numbers, previous and next links. These tags even provide you

the flexibility of using your own images instead of plain old hyperlinks. Using

pg:param (not shown in the listing), additional request parameters can also be

submitted with the url.

Figure 6.2 Traversing the multi page list using Pager Taglib from jsptags.com

Table 6.3 Feature Comparison between DisplayTag and HtmlTable

Feature DisplayTag HtmlTable

Chapter 6. Struts Tag Libraries

149

Display

Formatting

Very rich and customizable using

CSS.

Limited features. Formatting is based on

a back end XML file and hence not

directly under page author’s control.

Column

Grouping

Yes Yes

Nested Tables Yes No

Coding Style The display model should be

created in advance, but the

formatting can be invoked from the

JSP using hooks called decorators

Does not require controller (such

as Struts or its Action). The JSP

itself can control the paging.

The display model and its formatting

should be performed in advance (in a

Action). The paging is tied to Struts.

Needs a predefined Action called

ServeTableAction. Strictly MVC based.

Paging Customizable auto paging Fixed style auto paging

Sorting Yes Yes

I18N No. Messages can be externalized

to a properties file but cannot be

localized as of 1.0b2. Full support

is expected soon.

Yes. Can use Struts resource bundle

Editable column No Yes, but form is submitted to a

predefined Action. Action chaining for

custom processing can be setup with

minor customization.

Documentation

and examples

Good Limited

User community Relatively high Less

DisplayTag and HtmlTable frameworks

The pager taglib does paging through a table and nothing more. If sorting and

grouping are one of your requirements, you can use one of DisplayTag or

HtmlTable frameworks. Each of them has their own paging logic and should not

be used in conjunction with the Pager Taglib. Covering these frameworks is

beyond the scope of this book. Please check their respective web sites for

documentation and user guide. Table 6.3 provides a comprehensive feature

comparison between the two. DisplayTag shines in many categories but lacks the

table based editing features. DisplayTag is not tied to Struts in any way. Neither

does it enforce MVC. HtmlTable on the other hand mandates strict adherence to

MVC. All the pagination, sort requests are handled by a pre-defined Action class

(ServeTableAction) provided with the library. Further customization is needed to

chain it to your own business processing before/after ServeTableAction does its

job.

Listing 6.11 Using Pager taglib with Struts

<pg:pager url="traverse.do" maxIndexPages="10"

 maxPageItems="5">

 <TABLE width="100%">

 <TR>

 <TD align="center">

Struts Survival Guide – Basics to Best Practices

150

 <TABLE width="80%" border="1">

 <TR>

 <TH width="20%">Name</TH>

 <TH width="20%">Address</TH>

 <TH width="20%">City</TH>

 </TR>

 <logic:iterate id="row" name="results" scope="session"

 type="mybank.app1.CustomerData">

 <pg:item>

 <TR>

 <TD><bean:write name="row" property="name"/></TD>

 <TD><bean:write name="row" property="address"/></TD>

 <TD><bean:write name="row" property="city"/></TD>

 </TR>

 </pg:item>

 </logic:iterate>

 </TABLE>

 <TABLE width="80%" border="0">

 <TR><TD> </TD></TR>

 <TR align="center">

 <TD>

 <pg:index>

 <pg:prev><a href="<%=pageUrl%>">[<< Prev]</pg:prev>

 <pg:pages>

 <a href="<%= pageUrl %>"><%= pageNumber %>

 </pg:pages>

 <pg:next><a href="<%= pageUrl%>">[Next >>]</pg:next>

 </pg:index>

 </TD>

 </TR>

 </TABLE>

 </TD>

 </TR>

 </TABLE>

</pg:pager>

Creating the Model for iteration

In the last two sections, you looked at three options for traversing and displaying

the collection. For limited amount of data, creating the collection is a no-brainer.

The size of the result set is managable and you can tolerate the database returning

Chapter 6. Struts Tag Libraries

151

it at one shot. As the collection gets larger, it consumes a significant amount of

memory and absolutely does not make sense to waste the precious runtime

resources. Instead of maintaining the entire collection in memory, you can use

the Value List Handler pattern (Core J2EE Patterns). Figure 6.3 shows the

class diagram for Value List Handler.

Figure 6.3 Value List Handler pattern

ValueListHandler can be thought of as a façade for the underlying

collection. ValueList - the data object collection is traversed using the

ValueListIterator. The Data Access Object encapsulates the logic to

access the database in the specified format – read-only EJB, direct JDBC or O/R

mapper, the latter two approaches being preferred. We recommend designing the

Value List Handler intelligently so that it fetches data in bulk using read-ahead

(a.k.a pre-fetch) mechanism – i.e. data to serve two to three pages is retrieved and

in advance if needed so that the delay in retrieval is minimized. The beauty of

this pattern is that you can expose the ValueListIterator to the

IterateTag and the tag will believe that it is traversing the original Iterator,

while you can intelligently serve the requested rows and keep fetching in the

background.

In this context it is advantageous to combine an O/R mapping framework

that allows you use SQLs to search the database. Most of the O/R mapping

frameworks provide caching mechanisms. Hence the overhead of object creation

after retrieval is eliminated since the object in already in the cache. Moreover you

can take advantage of the features provided in the RDBMS. For instance, DB2

provides a feature called ROW_NEXT.

Suppose that the requirement is to display 10 rows per page. Here is strategy

for devising a responsive system while working with large data set. When the

query is first made, data for three pages (30 rows) is prefetched and maintained

in the HttpSession. When the user requests the third page, the ValueListHandler

realizes that the end of the cache is reached. It goes ahead and serves the third

Struts Survival Guide – Basics to Best Practices

152

page (21-30 rows). After that it initiates an asynchronous request to fetch another

30 rows from the database (This will need a scheduling mechanism to which

individual valueListHandlers submit their pre-fetch requests). When the next 30

rows are retrieved, it caches them along with the original 30 rows. Hence a cache

of 60 rows is maintained per user. (This is to prevent a “cache-fault” if the user

decides to go to previous page while on third page). Depdending on the size of

the displayed objects, you have to choose an optimal cache within the Value List

Handler. If the objects are 1K each, 60 objects means 60K of memory consumed

by the corresponding HttpSession. This is absolutely not recommended. A rule of

thumb is that HttpSession size should not exceed 20K per user. [Another reason

to make the display objects only as big as needed and no bigger. Overcome the

tendency to reuse bloated value objects and data transfer objects from elsewhere.]

Coming back to the database features for large result sets. The following

SQL can be used to fetch the first 30 rows:

SELECT FIRST_NAME, LAST_NAME, ADDRESS

 FROM CUSTOMER, … …

WHERE … … …

ORDER BY FIRST_NAME

FETCH FIRST 30 ROWS ONLY

OPTIMIZED FOR READ ONLY

When the user reaches the third page, the ValueListHandler makes a prefetch

request for the next 30 rows (Rows 31 to 60). The following SQL can be used to

fetch them:

SELECT * FROM

(

 SELECT FIRST_NAME, LAST_NAME, ADDRESS

 FROM CUSTOMER, … …

 WHERE … … …

 ORDER BY FIRST_NAME

)

AS CUST_TEMP WHERE

 ROW_NEXT BETWEEN 31 AND 60

 OPTIMIZED FOR READ ONLY

This SQL consists of two parts. The inner SQL is exactly the same as the

SQL issued earlier and can be thought to be fetching the data into a temporary

table. The ROW_NEXT in the outer SQL identifies the exact rows to be returned

from the retrieved result set. The values 31 and 60 can be substituted

dynamically. The proprietary SQL no doubt impacts the portability, but almost

Chapter 6. Struts Tag Libraries

153

every database used in the enterprise today has this feature. The Java code still is

portable.

6.9 Summary

In this chapter you got an overview of Struts tags and more importantly learnt to

customize these tags for your projects. In addition you looked at JSTL and

Struts-EL. Hopefully this chapter has prepared you to use Struts tags better.

Struts Survival Guide – Basics to Best Practices

154

CChhaapptteerr 77

Struts and Tiles

In this chapter:

You will learn to use Tiles with Struts for web page design using Layouts

7.1 What is Tiles

Consider a banking application whose current web page layout has a header,

body and footer as shown by the first layout in Figure 7.1. The management

recently decided that all pages in the application should confirm to the corporate

look and feel as shown in the second layout in Figure 7.1. The new layout has a

header, footer, a varying body and a navigation sidebar.

Figure 7.1 Current and Future page layout for the banking application

When the application was first designed, the development team had two

alternatives.

� Use “JSP based” approach. In this approach each JSP page is coded

separately. Although the header and footer are common to every page, the

common JSP markup for header and footer was added into each JSP by direct

copy and paste. This quick and dirty solution is unacceptable even for the

Chapter 7. Struts and Tiles

155

smallest of the web applications and poses a maintenance hurdle. Anytime

the header and footer changes, it has to be manually applied to every page.

Further, any changes to the page layout will have to be made in every page.

� Use <jsp:include> approach. This approach is better than the previous

one since it avoids repetition of common markup. The common markup

related to header and footer is moved into JSPs of their own. The header and

footer JSPs are added to the main JSP by using the standard

<jsp:include> directive. Whenever header or footer changes, it affects

only one or two files. However, if at any point in time, the layout of the

pages itself changes (as it has happened for the banking application now),

every JSP page with this structure has to be updated accordingly.

The team chose the second option at the time of development. However the

new management directive is now posing a challenge. It is a tedious task to

change every page of the system and there are chances that the current system

might break in the process. Had they had Tiles framework at their disposal at the

time of development, this change would have been a breeze!

Title

Header

Body

Footer

Figure 7.2 Current Customer Details Page for My Bank

Figure 7.2 shows a sample HTML page from the banking application. Listing

7.1 shows the (simplified) JSP for that page. The JSP contains the

<jsp:include> for the common header and footer, but has the entire layout

written in terms of html table with various tr and td. All JSPs in the

application also might have the same layout copied over and over. This is “copy

and paste technology” taken to the next dimension and exactly where Tiles

comes into picture.

Struts Survival Guide – Basics to Best Practices

156

Listing 7.1 CustomerDetail JSP using <jsp:include>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:html locale="true">

<head>

 <html:base/>

 <title><bean:message key="title.customerform"/></title>

</head>

<body>

<TABLE border="0" width="100%" cellspacing="5">

 <tr><td><jsp:include page="/common/header.jsp"/></td></tr>

 <tr>

 <td>

 <html:form action=”/submitCustomerForm”>

 <table>

 <tr>

 <td>

 <bean:message key="prompt.customer.firstname"/>

 </td>

 <td><html:input property=”firstName”/></td>

 <tr>

 <tr>

 <td>

 <bean:message key="prompt.customer.lastname"/>

 </td>

 <td><html:input property=”lastName”/></td>

 <tr>

 <tr>

 <td><html:submit>Save Me</html:submit></td>

 <td><html:cancel>Cancel</html:cancel></td>

 <tr>

 </table>

 </td>

 </tr>

 <tr><td><hr></td></tr>

 <tr><td><jsp:include page="/common/footer.jsp"/></td></tr>

</TABLE>

</body>

</html:html>

The basic principle behind Tiles is to refactor the common layout out of

the individual JSPs to a higher level and then reuse it across JSPs.

Chapter 7. Struts and Tiles

157

If the management wants a new look and feel, so be it; you can change the

common layout JSP and the whole web application has the new look and feel!

Redundancy is out and Reuse is in. In OO parlance this is similar to refactoring

common functions from a set of classes into their parent class.

In Tiles, layouts represent the structure of the entire page. Layout is simply a

JSP. Think of it as a template with placeholders (or slots). You can place other

JSPs in these slots declaratively. For instance, you can create a layout with slots

for header, body and footer. In a separate XML file (called XML tile definition

file), you specify what JSPs go into these slots. At runtime, Tiles framework

composes the aggregate page by using the layout JSP and filling its slots with

individual JSPs.

In essence, Tiles is a document assembly framework that builds on the

"include" feature provided by the JSP specification for assembling presentation

pages from component parts. Each part (also called a tile, which is also a JSP)

can be reused as often as needed throughout the application. This reduces the

amount of markup that needs to be maintained and makes it easier to change the

look and feel of a website. Tiles framework uses a custom tag library to

implement the templates.

Comparing this approach with <jsp:include> will help you to understand

the Tiles better. In the <jsp:include> approach, all included JSPs (header,

footer etc.) become part of the core JSP before being rendered. In Tiles, all the

JSPs – header, footer and the core become part of the Layout JSP before being

rendered. The outermost JSP rendered to the user is always the same; it is the

layout JSP. This approach reduces redundancy of HTML and makes maximum

reuse of formatting logic. The entire chapter deals with using Tiles for effective

design in conjunction with Struts. In the next section, you will see how the

banking application can be converted into a Tiles oriented design.

7.2 Your first Tiles application

In this section, you will learn how to assemble a Tiles application. We will start

with the CustomerDetails.jsp in Listing 7.1 and change it to use Tiles. The

Customer Details page is first shown to the user. When the submit button in the

Customer Form is pressed, a Success page is shown. Note that we are not

referring to “.jsp” files any more. Instead they are being referred to as “pages”.

There is a reason for this. Strictly speaking, the only JSP file that the user gets

every time is the Layout JSP – the aggregate page. Hence the several incarnations

of Layout.jsp that the user sees are distinguished by their core contents –

Customer Details information, Success information and so on.

Struts Survival Guide – Basics to Best Practices

158

Step 1: Creating the Layout

To start with, let us concentrate on Tiles enabling the Customer Details Page.

The first step is to create the Layout JSP with placeholders for header, footer,

body and anything else you want by using Tiles insert tags. The insert tag is

defined in struts-tiles.tld, the TLD file that is part of Struts distribution. The

Layout JSP factors out most of the formatting markups. Typical things performed

in a layout are:

� Defining the outer structure of the page with html tables with defined

widths.

� Creating placeholders for pages relative to one another in the overall

presentation scheme.

The first tag used in the listing above is getAsString. This tag retrieves the

title as a string. The insert tags are used to insert different JSPs into the

SiteLayout.jsp. For example the header of the page is inserted as:

<tiles:insert attribute="header" />. The layout we have used is

simple. In reality however, nested tables with bells and whistles are used for

professional looking pages. Although required, they result in indentation and

hence error prone and visually displeasing. With the layout taking care of these

two things, the individual pages don’t have to deal it. That makes the design of

included page simpler and cleaner.

Listing 7.2 SiteLayout.jsp – The layout used by Tiles in the banking app

<%@ taglib uri="/WEB-INF/struts-tiles.tld" prefix="tiles" %>

<html:html locale="true">

<head>

 <html:base/>

 <title><tiles:getAsString name="title"/></title>

</head>

<body>

<TABLE border="0" width="100%" cellspacing="5">

 <tr><td><tiles:insert attribute="header"/></td></tr>

 <tr><td><tiles:insert attribute="body"/></td></tr>

 <tr><td><hr></td></tr>

 <tr><td><tiles:insert attribute="footer"/></td></tr>

</TABLE>

</body>

</html:html>

Chapter 7. Struts and Tiles

159

Step 2: Creating the XML Tile definition file

The SiteLayout.jsp created in the previous step uses the insert tag to insert the

individual JSPs. The insert tags however do not specify the JSPs directly.

They contain an attribute named attribute. The value of attribute is the

reference to the actual JSP. The actual JSP name is specified in a XML based file

called tiles definition. A sample definition is shown below.

<definition name="/customer.page" path="/Sitelayout.jsp">

 <put name="title" value="My Bank – Customer Form”/>

 <put name="header" value="/common/header.jsp" />

 <put name="footer" value="/common/footer.jsp" />

 <put name="body" value="/CustomerDetail.jsp" />

</definition>

The Tiles definition shown above defines the JSPs that go into each of the

insert tag placeholders in the SiteLayout.jsp for the Customer Details page and

identify it them a unique name. Note that the name of each put in the definition

is same as the value of attribute in the insert tag. Similarly a XML

definition for the Success page is added as follows:

<definition name="/success.page" path="/Sitelayout.jsp">

 <put name="title" value="MyBank – Success”/>

 <put name="header" value="/common/header.jsp" />

 <put name="footer" value="/common/footer.jsp" />

 <put name="body" value="/Success.jsp" />

</definition>

Compare the above definition for the Customer Details Page definition

shown earlier. You will see that only the title and body differ between the two.

The header and footer remain the same. Tiles allows you to factor out these

common elements in the definition and create a base definition. Individual

definitions can then extend from the base definition, much like concrete classes

extend from an abstract base class. Factoring out, the common elements of the

two page definitions results in a base definition as:

<definition name="base.definition" path="/Sitelayout.jsp">

 <put name="title" value="MyBank”/>

 <put name="header" value="/common/header.jsp" />

 <put name="footer" value="/common/footer.jsp" />

 <put name="body" value="" />

</definition>

Struts Survival Guide – Basics to Best Practices

160

The individual definitions are created by extending the above definition.

Accordingly, the new definitions for Customer Detail and Success pages are as

follows:

<definition name="/customer.page" extends="base.definition">

 <put name="title" value="MyBank – Customer Form”/>

 <put name="body" value="/CustomerDetails.jsp" />

</definition>

<definition name="/success.page" extends="base.definition">

 <put name="title" value="MyBank – Success”/>

 <put name="body" value="/Success.jsp" />

</definition>

Each of the definition extends from the base.definition and overrides

the settings for title and body. They will however reuse the header and footer

settings from the base.definition. Notice that we have left the body section

blank in the base definition but provided a default title. Individual page

definitions must provide the body JSP. If title is not provided, then the default

title from the base definition is used.

The definitions thus created are stored in a file called tiles-defs.xml.

Generally this file is placed under WEB-INF and is loaded at Struts startup. The

file contains the definitions for each aggregate page (combination of several jsps)

accessed by the user.

Step 3: Modifying the forwards in struts-config.xml

Suppose that you had the following action mapping in the struts-config.xml for

the Customer form submission prior to using Tiles.

 <action path="/submitCustomerForm"

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetails.jsp">

 <forward name="success" path="Success.jsp" />

 </action>

The above action mapping uses the JSP name directly. With Tiles, you have

to replace the JSP name with the tiles definition name. The resulting action

mapping is shown below. The changes are highlighted in bold.

 <action path="/submitCustomerForm"

Chapter 7. Struts and Tiles

161

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="customer.page">

 <forward name="success" path="success.page" />

 </action>

Step 4: Using TilesRequestProcessor

You have so far used org.apache.struts.action.RequestProcessor as

the request processor with regular Struts pages. This request processor forwards

to a specified JSP and commits the response stream. This does not work with

Tiles as individual JSPs have to be included in the response stream even after the

stream data is flushed and data is committed. Moreover, the regular Struts

RequestProcessor can only interpret forwards pointing to direct physical

resource such as a JSP name or another action mapping. It is unable to interpret

“/customer.page” – a Tiles definition. Hence Tiles provides a specialized

request processor called TilesRequestProcessor to handle this scenario. For

a given Struts module, only one request processor is used. A Tiles enabled

module uses the TilesRequestProcessor, even if the module has regular

Struts pages. Since TilesRequestProcessor extends from the regular Struts

RequestProcessor, it inherits all its features and can handle regular Struts

pages as well. TilesRequestProcessor is declared in the struts-config.xml as

follows:

<controller processorClass=

 "org.apache.struts.tiles.TilesRequestProcessor"/>

The TilesRequestProcessor contains the logic to process includes and

forwards. It checks if the specified URI is a Tiles definition name. If so, then the

definition is retrieved and included. Otherwise the original URI is included or

forwarded as usual.

Step 5: Configuring the TilesPlugIn

As you know, TilesRequestProcessor needs the XML Tiles definition at runtime

to interpret Tiles specific forwards. This information created in Step 2 is stored in

a file called tiles-defs.xml. Generally this file is placed under WEB-INF. At

startup this file is loaded by using the Tiles PlugIn. The TilesPlugIn initializes

Tiles specific configuration data. The plugin is added to the struts-config.xml as

shown below.

<plug-in className="org.apache.struts.tiles.TilesPlugin" >

Struts Survival Guide – Basics to Best Practices

162

 <set-property property="definitions-config"

 value="/WEB-INF/tiles-defs.xml" />

 <set-property property="moduleAware" value="true"/>

</plug-in>

The classname attribute refers to the plugin class that will be used. In this

case org.apache.struts.tiles.TilesPlugin class is used.

NOTE: CSS or Cascading Style Sheets is a way to add formatting rules and

layout to existing HTML tags. CSS greatly simplifies changes to page

appearance by only having to make edits to the stylesheets. Tiles, as we saw in

the previous section deals with the organization of different parts of the JSP page

as against enhancing the look and feel of individual components. CSS deals more

with enhancing individual features of the components in each tile or area of the

page. Tiles and CSS are complementary and can be used together to improve the

look and feel of a JSP page.

In this section, you converted the Struts based Customer page and the

subsequent page to use Tiles. The complete working application can be

downloaded from the website (http://www.objectsource.com).

Rules of thumb

1. Although Tiles provides several ways to construct a page, some of them

don’t provide much advantage over the <jsp:include> approach at all.

The approach we have illustrated above is usually the one used most. It is

in this approach the real strength of Tiles get expressed.

2. Thanks to the multiple application module support in Struts 1.1, you don’t

have to Tiles enable your entire application and watch it collapse. Start by

breaking the application into multiple modules. Test if the modules are

working as expected. Also test inter-module navigation. Then Tiles-enable

the modules one at a time. This provides you a rollback mechanism, if

something goes wrong.

3. Never use the Tiles definition as the URL on the browser. This will not

work. Struts can forward to a Tiles definition only when the control is

within the TilesRequestProcessor, not when an external request

arrives. If you want to display an aggregate Tiles page on clicking a link,

define an action mapping for the URL (You can also use a global-forward

instead). Then create an action mapping for a ForwardAction and set the

parameter attribute to be the Tiles definition.

4. In the application shown earlier, JSPs were used as Tiles. You can also use

action mappings as page names.

 <definition name="/customer.page" extends="base.definition">

 <put name="body" value="/custdet.do" />

Chapter 7. Struts and Tiles

163

 </definition>

7.3 Tiles and multiple modules

The application seen earlier used Tiles in a single application module. In this

section you will see Tiles works across modules. Tiles provides two modes of

operation: Non-module-aware and module-aware modes. They are distinguished

by the setting moduleAware attribute on the Tiles PlugIn. The definition file is

specified by the definitions-config attribute on the Tiles PlugIn.

In non-module-aware mode, all modules use the same tiles definition file

specified in the struts-config.xml for the default module. If there is no default

module, all modules use the tiles definition file specified in the struts-config.xml

for the first module listed in web.xml.

In module-aware mode, each module has its own tiles definition file. A

module cannot see definitions in a tiles definition file belonging to another

module unless it uses that file itself.

7.4 Summary

In this chapter you saw how to use Tiles along with Struts to build a maintainable

and cleaner page layout. By transitioning your Struts modules to Tiles, you will

see a boost in productivity for both developers and page authors.

Struts Survival Guide – Basics to Best Practices

164

CChhaapptteerr 88

Struts and I18N

In this chapter:

1. You will understand the basics of I18N

2. You will learn the basics of Java I18N API

3. You will review the features in Struts for I18N

4. You will look how Tiles application is I18N enabled

5. You will understand how localized input is processed

The Internet has no boundaries and neither should your web application. People

all over the world access the net to browse web pages that are written in different

languages. A user in Japan can access the web and check her Yahoo! Email in

Japanese. How does Yahoo do it? Is it because the user’s machine has a

Japanese operating system or do web-based applications automatically adjust

according to the users’ region? This chapter answers these questions and shows

you how to internationalize and localize your Struts web applications.

Terminology

Before diving deep into the bliss of Internationalization and Localization,

coverage of some basic terminology is essential. That’s what we are doing in this

section.

 Internationalization or I18n is the process of enabling your application to

cater to users from different countries and supporting different languages. With

I18n, software is made portable between languages or regions. For example, the

Yahoo! Web site supports users from English, Japanese and Korean speaking

countries, to name a few.

Localization or L10n on the other hand, is the process of customizing your

application to support a specific location. When you customize your web

application to a specific country say, Germany, you are localizing your

application. Localization involves establishing on-line information to support a

specific language or region.

A Locale is a term that is used to describe a certain region and possibly a

language for that region. In software terms, we generally refer to applications as

Chapter 8. Struts and I18N

165

supporting certain locales. For example, a web application that supports a locale

of “fr_FR” is enabling French-speaking users in France to navigate it. Similarly a

locale of “en_US” indicates an application supporting English-speaking users in

the US.

A ResourceBundle is a class that is used to hold locale specific information.

In Java applications, the developer creates an instance of a ResourceBundle

and populates it with information specific to each locale such as text messages,

labels, and also objects. There will be one ResourceBundle object per Locale.

What can be localized?

When your application runs anywhere in the US, everyone, well almost everyone

speaks English and hence, they won’t have any trouble trying to figure out what

your application is trying to say. Now, consider the same application being

accessed by a user in a country say Japan where English is not the mainstream

language. There is a good chance that the very same message might not make

much sense to a Japanese user. The point in context is very simple: Present your

web application to foreign users in a way they can comprehend it and navigate

freely without facing any language barriers.

Great, now you know where this is leading, right? That’s right, localization!

In order to localize your web application, you have to identify the key areas that

will have to change. There are three such key areas. From a Struts perspective,

you only have to deal with the first two.

a. The visible part of your application – the User Interface. The user interface

specific changes could mean changes to text, date formats, currency formats

etc.

b. Glue Layer – Presentation Logic that links the UI to the business logic.

c. The invisible parts of your application – Database support for different

character encoding formats and your back-end logic that processes this data.

Here is a list of the commonly localized areas in a web application. We will

de dealing only with the highlighted ones in this chapter.

1. Messages and Labels on GUI components – labels, button names

2. Dates and Times

3. Numbers and Currencies

4. Personal titles, Phone numbers and Addresses

5. Graphics – Images specific for every locale and cater to each region’s

cultural tastes.

6. Colors – Colors play a very important role in different countries. For

example, death is represented by the color white in China.

Struts Survival Guide – Basics to Best Practices

166

7. Sounds

8. Page layouts – that’s right. Just like colors, page layouts can vary from

locale to locale based on the country’s cultural preferences.

9. Presentation Logic in Struts Action classes.

 There are other properties that you might require to be localized, but the ones

mentioned are the commonly used ones. Struts provides mechanisms to address

some of these, but the actual I18N and L10N capabilities lie in the Java API

itself. You will see in the next section, a brief overview of the Java

Internationalization API and some examples on how to update some of these

fields dynamically based on Locale information.

8.1 The Java I18N and L10N API

The primary I18N and L10N Java APIs can be found in the java.util and

java.text packages. This section shows some of the commonly used classes

and their functions. Figure 8.1 shows the classes in the Java I18n API. If you are

already familiar with the Java Internationalization API, you can skip this section

and proceed to the next section.

Figure 8.1 TheI18n classes provided by the Java Internationalization API

Chapter 8. Struts and I18N

167

java.util.Locale

The Locale class represents a specific geographical or cultural region. It

contains information about the region and its language and sometimes a variant

specific to the user’s system. The variant is vendor specific and can be WIN for a

Windows system, MAC for a Macintosh etc. The following examples show you

how to create a Locale object for different cases:

A Locale object that describes only a language (French):

 Locale frenchSpeakingLocale = new Locale("fr", "");

A Locale object that describes both the spoken language and the country (French

Canada):

 Locale canadaLocale = new Locale("fr", "CA");

A Locale object that describes the spoken language, country and a variant

representing the user’s operating system (French Canada and Windows

Operating system):

 Locale canadaLocaleWithVariant = new Locale("fr", "CA", "WIN");

Accessing Locale in Servlet Container

On every request the client’s locale preference is sent to the web server as part of

the HTTP Header. The “Accept-Language” header contains the preferred Locale

or Locales. This information is also available to the servlet container and hence

in your web tier through the HttpServletRequest. ServletRequest, the

interface that HttpServletRequest extends defines the following two

methods to retrieve Locale

public java.util.Locale getLocale();

public java.util.Enumeration getLocales();

The second method contains a set of Locales in the descending order of

preference. You can set the request’s Locale preference in the browser. For

instance in Internet Explorer, you can add, remove or change the Locales using

Tools � Internet Options � Languages.

The <controller> (RequestProcessor) setup in the Struts Config file

has a locale attribute. If this is set to true, then Struts retrieves the Locale

information from the request only the first time and stores it in the

HttpSession with the key org.apache.struts.action.LOCALE (Don’t

get confused. This is not a class name. It is the actual String used as the Session

key.) The default value of the locale attribute is false for which Struts does not

store the Locale information in the HttpSession.

Struts Survival Guide – Basics to Best Practices

168

A tip from usability perspective: Although it is possible to change the Locale

preference from the browser, I18N usability experts suggest that it might still be

valuable to explicitly provide the choice to the users and let them decide. Every

web site has a navigation bar or menu or something of that sort. You can provide

a HTML choice or drop down to let the user’s choose the Locale that shall

override all other settings. This is easy from a Struts perspective because the

Locale from the HttpServletRequest can be overridden with the setting in

the HttpSession and Struts will never bother about the request header.

java.util.ResourceBundle

ResourceBundle is an abstract base class that represents a container of

resources. It has two subclasses: ListResourceBundle and

PropertiesResourceBundle. When you are localizing your application, all

the locale specific resources like text-messages, icons and labels are stored in

subclasses of the ResourceBundle. There will be one instance of the

ResourceBundle per locale. The getBundle() method in this class retrieves

the appropriate ResourceBundle instance for a given locale. The location of

the right bundle is implemented using an algorithm explained later.

Listing 8.1 Extracting data from a ResourceBundle

 Locale myLocale = new Locale("fr","FR");

 // Get the resource bundle for myLocale

 ResourceBundle mybankBundle = ResourceBundle.getBundle(

 "MybankResources",

 myLocale);

 // Get the localized strings from this resource bundle

 String myHeader = mybankBundle.getString("header.title");

 System.out.println(myHeader);

Let us see how a resource bundle instance is retrieved with a simple example.

Consider a custom ResourceBundle subclass called MybankResources that

will contain data specific to your application. In this example, you will see how

to use PropertyResourceBundles assuming that all the resources to be

localized are strings. In order to use PropertyResourceBundle, you will have

to create Java Properties files that will hold the data in key = value format. The

file name itself identifies the Locale. For instance, if

MybankResources.properties contains strings to be localized for the language

English in the United States (en_US), then MybankResources_fr_FR..properties

contains strings to be localized for the language “fr” (French) and region of “FR”

(France). In order to use the data in these files, you have to get the

ResourceBundle instance as shown in Listing 8.1.

In order to understand Listing 8.1, assume that the English properties file,

MybankResources.properties contains a key value pair: header.title=My

Chapter 8. Struts and I18N

169

Bank. Next assume that the French properties file,

MybankResources_fr_FR.properties also contains a key value pair:

header.title= Ma Banque. The code snippet in Listing 8.1 produces an

output “Ma Banque”. What happens if the MybankResources_fr_FR.properties

file was missing? Just to see what happens, rename the file to something else and

run the program again. This time the output will be My Bank. But the locale was

“fr_FR”!

Here’s what happened. Because the locale was “fr_FR”, the getBundle()

method looked up MybankResources_fr_FR.properties. When it did not find this

file, it looked for the “next best match” MybankResources_fr.properties. But this

file doesn’t exist either. Finally the getBundle() found the

MybankResources.properties file and returned an instance of

PropertiesResourceBundle for this file. Accordingly the String

myHeader is looked up using the header.title key from the

MybankResources.properties file and returned to the user. In general, the

algorithm for looking up a Properties file is:

 MybankResources_language_country_variant.properties

 MybankResources_language_country.properties

 MybankResources_language.properties

 MybankResources.properties

Java Properties files are commonly used for web tier localization in Struts

web applications. Hence we have shown you how to use them for localizing

string data. If your requirement involves extracting locale specific resources

besides strings, you might want to use the ListResourceBundle class.

NOTE: When the above program runs from the command line, the properties

file is located and loaded by the default command line class loader – the System

Classpath Class Loader. Similarly in a web application, the properties file should

be located where the web application class loader can find it.

java.text.NumberFormat

NumberFormat is an abstract base class that is used to format and parse

numeric data specific to a locale. This class is used primarily to format numbers

and currencies. A sample example that formats currencies is shown in listing 8.2.

A currency format for French Locale is first obtained. Then a double is formatted

and printed using the currency format for French Locale. The output is: Salary

is: 5 124,75 €

In the above example, the double amount was hard coded as a decimal in

en_US format and printed as in the French format. Sometime you will have to do

the reverse while processing user input in your web applications. For instance, a

user in France enters a currency in the French format into a text field in the web

application and you have to get the double amount for the business logic to

Struts Survival Guide – Basics to Best Practices

170

process it. The NumberFormat class has the parse() method to do this.

Listing 8.3 shows this. The output of the program is: Salary is:

5124.75

Listing 8.2 Formatting currencies using NumberFormat

Locale frLocale = new Locale ("fr","FR");

// get instance of NumberFormat

NumberFormat currencyFormat =

 NumberFormat.getCurrencyInstance(frLocale);

double salaryAmount = 5124.75;

// Format the amount for the French locale

String salaryInFrench = currencyFormat.format(salaryAmount);

System.out.println ("Salary is: " + salaryInFrench);

There is a subclass of the NumberFormat called DecimalFormat that can

be used to format locale specific decimal numbers with the additional capability

of providing patterns and symbols for formatting. The symbols are stored in a

DecimalFormatSymbols. When using the NumberFormat factory methods,

the patterns and symbols are read from localized resource bundles.

Listing 8.3 Formatting currencies using NumberFormat

// get the amount from a text field (5 124,75 €)

String salaryInFrench = salaryField.getText();

// Print it back into a regular number

System.out.println("Salary is: " +

 CurrencyFormat.parse(salaryInFrench);

java.text.DateFormat

DateFormat is an abstract class that is used to format dates and times. When a

locale is specified it formats the dates accordingly. The following code formats a

date independent of locale

 Date now = new Date();

 String dateString = DateFormat.getDateInstance().format(now);

To format a date for a given locale:

 DateFormat dateFormat =

 DateFormat.getDateInstance(Locale.GERMANY);

 dateFormat.format(now);

java.text.MessageFormat

MessageFormat is used to create concatenated messages in a language neutral

way. It takes a set of input objects, formats them and inserts the formatted strings

Chapter 8. Struts and I18N

171

into specific places in a given pattern. Listing 8.4 shows how to create a

meaningful message by inserting string objects into specific locations in the

already existing message. When you run the program, you will get the following

output: John Doe logged in at 8/28/03 2:57 PM

Listing 8.4 Using MessageFormat to create message

Object[] myObjects = { "John",

 "Doe",

 new java.util.Date(System.currentTimeMillis())

 };

String messageToBeDisplayed = "{0} {1} logged in at {2}";

String message =

java.text.MessageFormat.format(messageToBeDisplayed, myObjects);

System.out.println(message);

8.2 Internationalizing Struts Applications

The I18N features of Struts framework build upon the Java I18N features. The

I18N support in Struts applications is limited to the presentation of text and

images.

I18N features of Struts Resource Bundle

The Struts Resource Bundle is very similar to the Java ResourceBundle. Struts

has an abstract class called org.apache.struts.util.MessageResources

and a subclass org.apache.struts.util.PropertyMessageResources

which as the name suggests is based on property files. In spite of the similar

functionalities, the above Struts classes (surprisingly) do not inherit from their

java.util counterparts. However if you understand the working of the

java.util.ResourceBundle, you have more or less understood how the

Struts Resource Bundles work. In general, Struts applications deal with

internationalization in the following way:

1. The application developer creates several properties files (one per Locale)

that contain the localized text for messages, labels and image file names to be

displayed to the user. The naming convention for the Locale specific

properties files is same as that of java.util.ResourceBundle. The base

properties file name (corresponding to the en_US) is configured in the Struts

Config file (Refer to Chapter 3). For other Locales, Struts figures out the

names of the properties file by the standard naming conventions.

2. The properties file should be placed so that the web application class loader

can locate it. The classes in the WEB-INF/classes folder are loaded by the

web application class loader and is an ideal place to put the properties file.

Struts Survival Guide – Basics to Best Practices

172

Naming conventions of Java classes applies to the properties files too.

Suppose that the classes in an application are packaged in mybank.app1

package. If the App1Messages.properties is placed in mybank/app1 folder it

finally ends up in WEB-INF/classes/mybank/app1 directory in the WAR.

Accordingly the Message Resource Bundle is configured as follows (from

Chapter 3):

 <message-resources parameter="mybank.app1.App1Messages"/>

The Struts Controller Servlet is configured to look up information from these

properties files (Actually the Message Resource Bundle is loaded at startup

and is stored in the ServletContext and is available within the entire web

application if needed).

3. When the Struts Controller Servlet receives a request, it checks the user’s

Locale (by looking up the HttpSession for the key

org.apache.struts.action.LOCALE) and then looks up a resource

bundle confirming to that locale and makes it available. Interested parties

(read your application logic) can then lookup Locale specific messages using

the Locale independent keys.

For instance, an ActionError can be constructed in the ActionsForm’s

validate() method as follows:

ActionError error1 = new ActionError(“error.firstname.required”);

The actual ActionError constructed has the Locale dependent message for the

key error.firstname.required. Some of the commonly used constructors

are:

 ActionError(String key)

 ActionError(String key, Object value)

 ActionError(String key, Object values[])

The second and the third constructor are used if any parameters need to be

passed in dynamically. These constructors take the key and an array of strings

containing the replacement parameters to be used in the validation error

messages. This is similar to the behavior of java.text.MessageFormat.

E.g.: The properties file contains a key value pair as

validation.range.message={0} cannot be less than {1} characters

The ActionError to access this message is:

String[] strArray = {“First Name”, “35”};

new ActionError(“validation.range.message”, strArray);

I18N features of MessageTag

Chapter 8. Struts and I18N

173

You have already used the MessageTag (<bean:message>), not in the context

of I18N but for externalizing the messages. We used this tag to retrieve messages

from the external properties file. Now that the same properties files are put to use

in internationalizing the web application, the MessageTag has donned the role

of providing Locale specific text in the JSP. This is one of the most frequently

used tags whether you are localizing the application or not. Since you already the

workings of this tag, we will not bore you with more verbosity. Instead we will

compare this Struts tag with the JSTL equivalents. As has been stated earlier in

Chapter 6, the word on the street is that the Struts tags should be preferably

replaced with JSTL equivalents.

I18N features of HTML Tag Library

Struts HTML tag library is the key to rendering JSPs as HTML and is filled with

tags offering I18N features. Look for the tag attributes whose name ends with

key. For instance, the <html:img> tag offers srcKey to look up the src of the

image and altKey to look up the alt text from message resource bundle.

I18N features of LookupDispatchAction

As you already know, LookupDispatchAction offers excellent capability to

handle the business logic in a locale independent manner. Certain restrictions

apply in that it can be used only with grey buttons or html links and not with

image buttons. More details are in Chapter 4.

8.3 Internationalizing Tiles Applications

In Chapter 7 you saw how to use Tiles to organize your JSP pages. The Tiles

framework provides an easy way to add tiles or templates to a JSP page to

present content in a dynamic fashion. The Tiles framework, just like Struts can

be localized to provide different tiles based on a user’s preferred locale. For

example, the header tile in Chapter 7 could be replaced with a different header

that corresponds to a specific locale. It could contain an area-specific flag for

instance or simply a different background color.

A Tiles application has a Tiles definition file (e.g.:/WEB-INF/tiles-defs.xml)

that defines the structure of a JSP page using various tiles, for the header, menu,

body, footer etc. In the case of a localized Tiles application, there will one such

file per locale along with the default tiles-defs.xml file. For example, if your

application supports US English and French, there will be two definition files,

one for each locale as well as a default one – tiles-defs_fr.xml, tiles-defs_en.xml

and tiles-defs.xml

The naming conventions for the Tiles definition files are the same as for a

java.util.ResourceBundle class as explained earlier in the chapter. Again,

just as in a localized Struts application, the session attribute

Struts Survival Guide – Basics to Best Practices

174

Action.LOCALE_KEY is looked up for a user’s preferred or default locale and

the appropriate definition file are loaded. For instance, if the default file tiles-

defs.xml is:

<tiles-definitions>

 <definition name="foo.bar" path="MybankLayout.jsp">

 <put name="title" value="My Bank example" />

 <put name="header" value="/header.jsp" />

 <put name="menu" value="/menu.jsp" />

 <put name="footer" value="/footer.jsp" />

 <put name="body" value="/body.jsp" />

 </definition>

</tiles-definitions>

 Then the localized Tiles definition file for French is:

<tiles-definitions>

 <definition name="foo.bar" path="MybankLayout.jsp">

 <put name="title" value="Mon exemple de ma banque"/>

 <put name="header" value="/header.jsp" />

 <put name="menu" value="/menu.jsp" />

 <put name="footer" value="/footer.jsp" />

 <put name="body" value="/body.jsp" />

 </definition>

</tiles-definitions>

This approach is justified if you use different JSPs per locale. However if the

JSPs themselves are fully I18N capable, meaning the single JSP can adapt itself

to render local sensitive UI, then the only difference between the two tiles

definition for the two locales, is the title. The need for different definition files in

that case could be eliminated if there was a mechanism to specify the key to the

message resource bundle in the <put> element above. Unfortunately such a

mechanism doesn’t seem to exist at the time of writing and hence you are left

with creating definitions for each locale.

8.4 Processing Localized Input

Localized input is data input in a native language using locale specific formats.

How does your back-end Java code process data input in a native language? Let

us consider a simple form with two fields, fullName and monthlySalary as

shown below.

Chapter 8. Struts and I18N

175

public class CustomerForm extends ActionForm {

 private String fullName = null;

 private double monthlySalary = 0.0;

...

}

John Doe enters his monthly salary as 5431.52 and submits the form. That’s

it, the form fields are populated nicely and the application works without a hitch.

The conversion of the monthly salary from a String to a double is automatically

taken care of by Struts and John Doe won’t have any problems with the

application.

What happens if the same application is viewed by a user in France and he

decides to enter the same amount in the French format as 5 431,52? When the

French user submits the application, the monthlySalary attribute in

CustomerForm ends up being populated with 0.0 instead of 5431.52. Why so?

When the form is submitted, the RequestProcessor populates the JavaBeans

properties of the ActionForm with the request parameters by using the

RequestUtils and BeanUtils classes. The actual population is done by the

BeanUtils.populate() method. That method tries to parse the String “5

431,52” and assign it to monthlySalary – a double field without caring much

for the Locale of the user. This obviously throws an exception on which the

default action is to set 0.0 in the monthlySalary field.

What is the solution then? How can you make the Struts applications process

localized input? Since the BeanUtils class does not check the locale at the time

of populating the form, the only way out of this situation is to make the

monthlySalary field a String instead of a double. Now, the BeanUtils

does not try to parse a double from the String. Instead the value is assigned AS

IS. A customized routine has to be written to convert the String into a double in a

Locale dependent manner.

8.5 Character encodings

Earlier, when applications were built, they were built for one language. Those

were the days of “code pages”. Code pages described how binary values mapped

to human readable characters. A currently executing program was considered to

be in a single code page. These approaches were fine until Internationalization

came along. Then came the issue of how to represent multiple character sets and

encodings for an application. Hence came character sets and encodings.

 Character sets are sets of text and graphic symbols mapped to positive

integers. ASCII was one of the first character sets to be used. ASCII though

efficient, was good at representing only US English.

Struts Survival Guide – Basics to Best Practices

176

A Character encoding, as mentioned earlier, maps a character to fixed width

units. It also defines ordering rules and byte serializing guidelines. Different

character sets have multiple encodings. For example, Java programs represent

Cyrillic character sets using KO18-R or KO18-U encodings. Unicode enables us

to write multilingual applications.

Other examples of encodings include ISO 8859, UTF-8 etc. UTF or Unicode

Transformation Format is used to encode 16 bit Unicode characters as one to four

bytes. A UTF byte is equivalent to 7-bit ASCII if its higher order bit is zero. You

might have come across many JSP pages, which have a line that looks like:

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

Here, charset=UTF-8 indicates that the page uses a response encoding of

UTF-8. When internationalizing the web tier, you need to consider three types of

encodings:

• Request encoding

• Page encoding

• Response encoding

Request encoding deals with the encoding used to encode request parameters.

Browsers typically send the request encoding with the Content-type header. If

this is not present, the Servlet container will use ISO-8859-1 as the default

encoding.

Page encoding is used in JSP pages to indicate the character encoding for

that file. You can find the page encoding from:

• The Page Encoding value of a JSP property group whose URL pattern

matches the page. To see how JSP property groups work, you can go to the

following URL:

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro13.html#wp72193

• The pageEncoding attribute in a JSP page specified along with the page

directive. If the value pageEncoding attribute differs from the value

specified in the JSP property group, a translation error can occur.

• The CHARSET value of the contentType attribute in the page directive.

If none of these encodings are mentioned, then the default encoding of ISO-

8859-1 is used.

Response encoding is the encoding of the text response sent by a Servlet or a

JSP page. This encoding governs the way the output is rendered on a client’s

browser and based on the client’s locale. The web container sets a response

encoding from one of the following:

Chapter 8. Struts and I18N

177

• The CHARSET value of the contentType attribute in the page directive.

• The encoding in the pageEncoding attribute of the page directive

• The Page Encoding value of a JSP property group whose URL pattern

matches the page

If none of these encodings are mentioned, then the default encoding of ISO-

8859-1 is used.

Early on, when internationalization of computer applications became

popular, there was a boom in the number of encodings available to the user.

Unfortunately these encodings were unable to cover multiple languages. For

instance, the European Union was not able to cover all the European languages in

one encoding, resulting in having to create multiple encodings to cover them.

This further worsened the problem as multiple encodings could use the same

number to represent different characters in different languages. The result:

higher chances of data corruption.

A big company had its applications working great with a default locale of US

English, until it decided to go global. One of the requirements was to support

Chinese characters. The application code was modified accordingly but each time

the application ran, it was just not able to produce meaningful output, as the text

seemed to be distorted. The culprit was the database encoding.

Chinese characters, just like Korean and Japanese, have writing schemes that

cannot be represented by single byte code formats such as ASCII and EBCDIC.

These languages need at least a Double Byte Character Set (DBCS) encoding to

handle their characters. Once the database was updated to support DBCS

encoding, the applications worked fine. These problems led to the creation of a

universal character-encoding format called Unicode.

Unicode is a 16 bit character encoding that assigns a unique number to each

character in the major languages of the world. Though it can officially support up

to 65,536 characters, it also has reserved some code points for mapping into

additional 16-bit planes with the potential to cope with over a million unique

characters. Unicode is more efficient as it defines a standardized character set

that represents most of the commonly used languages. In addition, it can be

extended to accommodate any additions. Unicode characters are represented as

escape sequences of type \uXXXX where XXXX is a character’s 16 bit

representation in hexadecimal in cases where a Java program’s source encoding

is not Unicode compliant.

Struts and character encoding

Setting the character encoding in the web application requires the following

steps:

Struts Survival Guide – Basics to Best Practices

178

1. Configure the servlet container to support the desired encoding. For instance,

you have to set the servlet container to interpret the input as UTF-8 for

Unicode. This configuration is vendor dependent.

2. Set the response content type to the required encoding (e.g. UTF-8). In Struts

1.1, this information is specified in the <controller> element in struts-

config.xml using the contentType attribute.

3. This can also be set in the JSPs with the @page directive as follows:

<%@ page contentType="text/html; charset=UTF-8" %>.

4. Next add the following line in the HTML <head>:

<meta http-equiv="content-type"

 content="text/html; charset=UTF-8">

5. Make sure you are using the I18N version rather than the US version of the

JRE. (If you are using JDK, this problem may ot arise)

6. Make sure that the database encoding is also set to Unicode.

NOTE: Setting <html:html locale="true"> doesn't set the encoding

stream. It is only a signal to Struts to use the locale-specific resource bundle

native2ascii conversion

Java programs can process only those files that are encoded in Latin-1 (ISO

8859-1) encoding or files in Unicode encoding. Any other files containing

different encodings besides these two will not be processed. The

native2ascii tool is used to convert such non Latin-1 or non-Unicode files

into a Unicode encoded file. Any characters that are not in ISO 8859-1 will be

encoded using Unicode escapes. For example, if you have a file encoded in a

different language, say myCyrillicFile in Cyrillic, you can use the native2ascii

tool to convert it into a Unicode encoded file as follows:

 native2ascii –encoding UTF-8 myCyrillicFile myUnicodeFile

You can use other encodings besides UTF-8 too. Use the above tool on the

Struts prorperties files (message resource bundles) containing non Latin-1

encoding. Without this conversion, the Struts application (or java for that matter)

will not be able to interpret the encoded text. Consequently the

<bean:message> and <html:errors/> will display garbage.

Chapter 8. Struts and I18N

179

8.6 Summary

In this chapter you started with what I18N and L10N are, their need and their

advantages. You also got a quick overview of the Java and Struts

Internationalization API. Then you looked at the various ways to internationalize

the web tier using the features in Struts and Tiles. You also saw how to process

localized input using Struts applications.

Struts Survival Guide – Basics to Best Practices

180

Chapter 9. Struts and Exception Handling

181

CChhaapptteerr 99

Struts and Exception Handling

In this chapter:

1. You will learn about basics of Exception Handling

2. You will understand the exception handling from servlet specification

perspective

3. You will understand exception handling facilities in Struts1.1

4. We will develop a simple yet robust utility to log exceptions

5. We will cover strategies to centralize logging in production environments

Exception handling is very crucial part often overlooked in web application

development that has ramifications far beyond deployment. You know how to

handle exceptions using the built-in Java construct to catch one and handle it

appropriately. But what is appropriate? The basic rationale behind exception

handling is to catch errors and report them. What is the level of detail needed in

reporting the exception? How should the user be notified of the exception? How

should customer support handle problem reports and track and trace the

exception from the logs? As a developer where do you handle the exceptions?

These are some of the major questions we will answer in this chapter first from a

generic way and then as applicable to Struts applications.

Under normal circumstances when you catch the exception in a method, you

print the stack trace using the printStacktrace() method or declare the

method to throw the exception. In a production system, when an exception is

thrown it's likely that the system is unable to process end user’s request. When

such an exception occurs, the end user normally expects the following:

� A message indicating that an error has occurred

� A unique error identifier that he can use while reporting it to customer

support.

� Quick resolution of the problem.

The customer support should have access to back-end mechanisms to resolve

the problem. The customer service team should, for example, receive immediate

error notification, so that the service representative is aware of the problem

Struts Survival Guide – Basics to Best Practices

182

before the customer calls for resolution. Furthermore, the service representative

should be able to use the unique error identifier (reported by the user) to lookup

the production log files for quick identification of the problem – preferably up to

the exact line number (or at least the exact method). In order to provide both the

end user and the support team with the tools and services they need, you as a

developer must have a clear picture, as you are building a system, of everything

that can go wrong with it once it is deployed.

9.1 Exception Handling Basics

It is common usage by the developers to put System.out.println() to track

the exception and flow through the code. While they come in handy, they have to

be avoided due to the following reasons:

1. System.out.println is expensive. These calls are synchronized for the

duration of disk I/O, which significantly slows throughput.

2. By default, stack traces are logged to the console. But browsing the console

for an exception trace isn't feasible in a production system.

3. In addition, they aren't guaranteed to show up in the production system,

because system administrators can map System.out and System.errs to

' ' [>nul] on NT and dev/nul on UNIX. Moreover, if you're running the

J2EE app server as an NT service, you won't even have a console.

4. Even if you redirect the console log to an output file, chances are that the file

will be overwritten when the production J2EE app servers are restarted.

5. Using System.out.println during testing and then removing them before

production isn't an elegant solution either, because doing so means your

production code will not function the same as your test code.

What you need is a mechanism to declaratively control logging so that your test

code and your production code are the same, and performance overhead incurred

in production is minimal when logging is declaratively turned off. The obvious

solution here is to use a logging utility. It is pretty customary these days to use a

utility like Log4J (http://jakarta.apache.org/log4j) for logging. With the right

coding conventions in place, a logging utility will pretty much take care of

recording any type of messages, whether a system error or some warning.

However it is up to you as a developer to make the best use of the utilities. It

requires a lot of forethought to handle exceptions effectively. In this chapter we

will use Log4J to log exceptions effectively. Hence we will review Log4J before

proceeding to look at some commonly accepted principles of Exception handling

in Java.

Chapter 9. Struts and Exception Handling

183

9.2 Log4J crash course

Log4J is the logging implementation available from Apache’s Jakarta project and

has been around long before JDK Logging appeared and quite naturally has a

larger developer base. Lot of material is freely available online if you want to dig

deeper into Log4J and we have held back from such a detailed treatment here. As

with any Logging mechanisms, this library provides powerful capabilities to

declaratively control logging and the level of logging.

In Log4J, all the logging occurs through the Logger class in

org.apache.log4j package. The Logger class supports five levels for

logging. They are FATAL, ERROR, WARNING, INFO, DEBUG. Without

Log4J, you would perhaps use a Boolean flag to control the logging. With such a

boolean flag, there are only two states – logging or no logging. In Log4J the

levels are defined to fine tune the amount of logging. Here is how you would

user the Log4J.

 Logger logger = Logger.getLogger (“foo.bar”);

 logger.debug (“This is a debug message”);

The code above first obtains the Logger instance named foo.bar and logs a

message at DEBUG level. You can declaratively turn off the logging for

messages at lower level than WARNING. This means the messages logged at

INFO and DEBUG level will not be logged.

Logged messages always end up in a destination like file, database table etc.

The destination of the log message is specified using the Appender. The

Appender can represent a file, console, email address or as exotic as a JMS

channel. If you need a destination that is not supported by the classes out of the

box you can write a new class that implements the Appender interface.

Appenders can be configured at startup in a variety of ways. One way to

configure them is through an XML file. A XML file is shown below.

<appender name="Mybank-Warn"

 class="org.apache.log4j.FileAppender">

 <param name="Threshold" value="WARN" />

 <param name="File" value="./logs/mybank-warnings.log" />

 <param name="Append" value="false" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern"

 value="%d [%x][%t] %-5p %c{2} - %m%n"/>

 </layout>

</appender>

Struts Survival Guide – Basics to Best Practices

184

<category name="foo.bar" additivity="false">

 <appender-ref ref="Mybank-Warn" />

 <appender-ref ref="Developer-Console" />

</category>

The above XML when translated to simple English reads as follows: The

Appender named Mybank-Warn logs the messages to a file mybank-

warnings.log. Only messages with a threshold of WARN or higher are logged.

The format of the message is as specified by the PatternLayout.

The format of the output message is specified using Layout. Standard

classes for specifying the layout like PatternLayout are used most of the times

and the format is declaratively specified using symbols like %d which instructs

Log4J to include date time in the log and %m – the actual message itself and so

on.

As you saw earlier, the logging is performed through a named Logger

instance. If you are wondering how the Logger would know which Appender

to log to, it is the <category> element in the above XML that provides the link

between the two. The Logger uses the <category> setting in the XML to get

this information. The <category> in the above XML is called foo.bar. Recall

that we tried to log using a Logger named foo.bar. The foo.bar Logger gets the

FileAppender Mybank-Warn appender through the foo.bar category setting in

the XML. And then the messages end up in the file mybank-warnings.log.

There can be more than one appenders associated with a category. This

implies that the messages logged with a Logger can potentially end up in

multiple locations if needed.

9.3 Principles of Exception Handling

The following are some of the generally accepted principles of exception

handling:

1. If you can't handle an exception, don't catch it.

2. Catch an exception as close as possible to its source.

3. If you catch an exception, don't swallow it.

4. Log an exception where you catch it, unless you plan to re-throw it.

5. Preserve the stack trace when you re-throw the exception by wrapping the

original exception in the new one.

6. Use as many typed exceptions as you need, particularly for application

exceptions. Do not just use java.lang.Exception every time you need to declare

a throws clause. By fine graining the throws clause, it is self-documenting

and becomes evident to the caller that different exceptions have to be

Chapter 9. Struts and Exception Handling

185

handled.

7. If you programming application logic, use unchecked exceptions to indicate

an error from which the user cannot recover. If you are creating third party

libraries to be used by other developers, use checked exceptions for

unrecoverable errors too.

8. Never throw unchecked exceptions in your methods just because it clutters

the method signature. There are some scenarios where this is good (For e.g.

EJB Interface/Implementations, where unchecked exceptions alter the bean

behavior in terms of transaction commit and rollback), but otherwise this is

not a good practice.

9. Throw Application Exceptions as Unchecked Exceptions and Unrecoverable

System exceptions as unchecked exceptions.

10. Structure your methods according to how fine-grained your exception

handling must be.

Principle 1 is obviously in conflict with 2. The practical solution is a trade-

off between how close to the source you catch an exception and how far you let it

fall before you've completely lost the intent or content of the original exception.

Principles 3, 4, and 5 is a problems developers face when they catch an

exception, but do not know how to handle it and hence throw a new exception of

same or different type. When this happens, the original exception’s stack trace is

lost. Listing 9.1 shows such a scenario. The SQLException is caught on Line 15

and re-thrown as a application specific UpdateException on Line 16. In the

process, the stacktrace with valuable info about the SQLException is lost. Thus

the developer can only trace back to Line 16 where the UpdateException is

thrown and not beyond that (This is the best case scenario with compiler debug

flags turned on. If hotspot compiler was used, the stacktrace would only have the

method name without any line number). Listing 9.2 shows almost similar

scenario, but the actual exception is logged to the console. This is not good

choice and sometimes not feasible because of reasons cited earlier in this section.

Listing 9.1 Losing Exception stack trace

10 public void updateDetails(CustomerInfo info)

 throws UpdateException

11 {

12 try {

13 CustomerDAO custDAO = CustDAOFactory.getCustDAO();

14 custDAO.update(info);

15 } catch (SQLException e) {

16 throw new UpdateException(“Details cannot be updated”);

17 }

18 }

Struts Survival Guide – Basics to Best Practices

186

Listing 9.2 Losing Exception stack trace

public void updateDetails(CustomerInfo info)

 throws UpdateException

{

 try {

 CustomerDAO custDAO = CustDAOFactory.getCustDAO();

 custDAO.update(info);

 } catch (SQLException e) {

 e.printStackTrace();

 throw new UpdateException(“Details cannot be updated”);

 }

}

Listing 9.3 Preserving Exception stack trace

public void updateDetails(CustomerInfo info)

 throws UpdateException

{

 try {

 CustomerDAO custDAO = CustDAOFactory.getCustDAO();

 custDAO.update(info);

 } catch (SQLException e) {

 throw new UpdateException(e);

 }

}

A better approach is shown in Listing 9.3. Here, the SQLException is

wrapped in the UpdateException. The caller of the updateDetails can

catch the UpdateException, and get the knowledge of the embedded

SQLException.

Principles 7, 8 and 9 in the above list pertain to the discussion of using

checked v/s unchecked exceptions. Checked Exceptions are those that extend

java.lang.Exception. If your method throws checked exceptions, then the

caller is forced to catch these exceptions at compile time or declare in the throws

clause of the method. On the other hand, unchecked exceptions are those that

extend java.lang.RuntimeException, generally referred to as runtime

exceptions. If your method throws a runtime exception, the caller of the method

is not forced to catch the exception or add it to the method signature at compile

time.

Chapter 9. Struts and Exception Handling

187

A rule of thumb is to model application exceptions as checked exceptions

and system exceptions as unchecked exceptions. The code below is an example

of application exception.

 if (withDrawalAmt > accountBalance)

 {

 throw new NotEnoughBalanceException(

 “Your account does not have enough balance”);

 }

When the account does not have enough balance for requested withdrawal

amount, the user gets a NotEnoughBalanceException. The user can decide to

withdraw lesser amount. Notice that the application exception is not logged. In

case of the application exceptions, the developer explicitly throws them in the

code and the intent is very clear. Hence there is no need for content (log or stack

trace).

Principle 10 is about the use of debug flags with compilation. At compile

time it is possible to tell the JVM to ignore line number information. The byte

code without the line information are optimized for hotspot or server mode and

the recommended way of deployment for production systems. In such cases, the

exception stack traces do not provide the line number information. You can

overcome this handicap by refactoring your code during development time and

creating smaller and modular methods, so that guessing the line numbers for the

exceptions is relatively easier.

9.4 The cost of exception handling

In the example used earlier to illustrate application exceptions, we are checking if

withdrawal amount is greater than balance to throw the exception. This is not

something you should be doing every time. Exceptions are expensive and should

be used exceptionally. In order top understand some of the issues involved; let us

look at the mechanism used by the Java Virtual Machine (JVM) to handle the

exceptions. The JVM maintains a method invocation stack containing all the

methods that have been invoked by the current thread in the reverse order of

invocation. In other words, the first method invoked by the thread is at the

bottom of the stack and the current method is at the top. Actually it is not the

actual method that is present in the stack. Instead a stack frame representing the

method is added to the stack. The stack frame contains the method’s parameters,

return value, local variables and JVM specific information. When the exception

is thrown in a method at the top of the stack, code execution stops and the JVM

takes over. The JVM searches the current method for a catch clause for the

exception thrown or one of the parent classes of the thrown exception. If one is

Struts Survival Guide – Basics to Best Practices

188

not found, then the JVM pops the current stack frame and inspects the calling

method (the next method in the stack), for the catch clause for the exception or its

parents. The process continues until the bottom of the stack is reached. In

summary, it requires a lot of time and effort on the part of JVM.

Exceptions should be thrown only when there is no meaningful way of

handling the situation. If these situations (conditions) can be handled

programmatically in a meaningful manner, then throwing exceptions should be

avoided. For instance if it is possible to handle the problem of withdrawal

amount exceeding the balance in some other way, it has to chosen over throwing

an application exception.

Examples of SystemException can be a ConfigurationException, which

might indicate that the data load during start up failed. There is really nothing a

user or even the customer support could do about it, except to correct the

problem and restart the server. Hence it qualifies as a System exception and can

be modeled as runtime exception.

Certain exceptions like SQLException might indicate a system error or

application problem depending on the case. In either case, it makes a lot of sense

to model SQLException as a checked exception because that is not thrown from

your application logic. Rather it is thrown in the third party library and the

library developer wants you to explicitly handle such a scenario.

9.5 JDK 1.4 and exception handling

If you are modeling the UpdateException as a unchecked exception, you will

have to extend from RuntimeException. In addition if you are using JDK1.3.x

and lower, you will also provide the wrapped exception attribute in your own

exception. JDK1.4 onwards, you can wrap the “causative exception” in the parent

class RuntimeException as a java.lang.Throwable attribute thus

allowing you to carry around the “causative exception”. For e.g. SQLException

is the “causative exception” in Listing 9.3. In the Throwable class there is a new

method getCause to get the cause of any exception which returns the wrapped

exception if exists. This can result in an exception chain since the cause itself can

have a cause. Prior to 1.4 Exception classes had their own non-standard

exception chaining mechanisms. For instance, RemoteException was used to

carry the actual exception across different JVMs or from EJB tier to web tier. As

of 1.4, all of these classes have been retrofitted to use the standard exception

chaining mechanism.

Additional exception handling features in JDK1.4 include programmatic

access to stack trace. This is a boon for real time error monitoring and alert

facilities. Often these systems need to manually parse the stack dump for

keywords. This is been made much easier. One can invoke getStackTrace

Chapter 9. Struts and Exception Handling

189

method on the Exception (or Throwable) and get an array of

StackTraceElements returned. Each StackTraceElement provides the

following methods.

� getClassName

� getFileName

� getLineNumber

� getMethodName

� isNativeMethod

By calling the above methods, you can display the stack trace in any format

you like. In addition, elegant error monitoring systems can be written. For

instance, the error monitoring system should alert the appropriate support team

for the sub system by intelligently analyzing the stack trace. This has been made

easier. The following code snippet can be used with JDK 1.4

StackTraceElement elements[] = e.getStackTrace();

for (int i=0, n=elements.length; i<n; i++) {

 if (elements[i].getClassName.equals("LegacyAccessEJB”)

 && elements[i].getMethodName().equals(“invokeCOBOL”)

 {

 //Alert the COBOL support team

 }

}

This code snippet checks if the exception originated in LegacyAccessEJB

during invoking a method named “invokeCOBOL”, it will alert the COBOL

support team. Obviously the decision tree is not as simple as shown, but at least it

removes the headache of parsing the trace for the same information.

9.6 Exception handling in Servlet and JSP

specifications

In the previous section, you looked at the general principles in exception

handling without a J2EE tilt. In this section, we will cover what servlet

specification has to say about exception handling. Consider the doGet() method

signature in a HttpServlet.

 public void doGet(HttpServletRequest request,

 HttpServletResponse response) throws

 ServletException, IOException

The above method signature implies that a Servlet or a JSP (and finally a

web application) is only allowed to throw

Struts Survival Guide – Basics to Best Practices

190

� ServletException or its subclasses

� IOException or its subclasses

� RuntimeExceptions

All other checked exceptions have to be handled in the Servlet/JSP code in

one of the following manner:

� Catch the checked exception and log the error message and (or) take any

business related action.

� Wrap the exception in a ServletException and throw the

ServletException. (ServletException has overloaded

constructors to wrap the actual exception.)

Servlet specification provides exception-handling support through web.xml.

In web.xml, you can declare <error-page> to handle exceptions that are

thrown but not caught.

 <error-page>

 <exception-type>UnhandledException</exception-type>

 <location>UnhandledException.jsp</location>

 </error-page>

What this means is that if an exception of type UnhandledException is

thrown from your web application but not caught anywhere, then the user gets to

see the UnhandledException.jsp. This works well for ServletException,

IOException, RuntimeException and their subclasses.

If the UnhandledException is a subclass of ServletException and

none of the error-page declaration containing exception-type fit the class

hierarchy of the thrown exception, then the Servlet container gets the wrapped

exception using the ServletException.getRootCause method. Then the

container attempts again to match the error-page declaration. This approach

works well if the UnhandledException is not a subclass of

ServletException or IOException (but is a checked exception). You have

to throw a ServletException or its subclass by wrapping the

UnhandledException in it and the servlet container does rest of the magic.

There are times when the user cannot see a page due to incorrect access

rights or the page simply does not exist. The Servlet sends an error response with

an appropriate HTTP error code. For instance, 404 corresponds to Page not

found, 500 corresponds to Internal Server Error and so on. You can also assign

JSPs for default HTTP error code as follows.

 <error-page>

 <error-code>404</error-code>

Chapter 9. Struts and Exception Handling

191

 <location>exceptions/Page404.jsp</location>

 </error-page>

Similarly, exceptions can occur in the JSPs in scriptlets and custom tags.

These can throw runtime exceptions. In addition scriptlets can throw

ServletException and IOException since a JSP gets translated into the

body of _jspService() method and the signature of the _jspService()

method is same as doGet().

public void _jspService(HttpServletRequest request,

 HttpServletResponse response) throws

 ServletException, IOException

Tags however throw JspException in their tag callback methods

(doStartTag(), doEndTag() and so on). JspException is a direct subclass

of java.lang.Exception and has no relationship with ServletException

or IOException. The _jspService() method is container dependent but its

contract is to catch all those exceptions and forward the request to the

errorPage specified by the JSP. Hence it is a best practice to assign error pages

in JSPs with the declarative: <%@ page errorPage="/error.jsp" %>

When forwarding to the exception page as specified by errorPage setting

shown above, the exception describing the error is stored as request attribute with

the key “javax.servlet.jsp.JspException”. If the JSP assigned to handle

the exceptions has the directive <%@ page isErrorPage="true" %> at the

top of their page, then the exception is provided as the implicit scripting variable

named exception.

9.7 Exception handling – Struts way

ServletException, IOException, RuntimeException and their sub

classes can be declaratively mapped to appropriate JSP files through the web.xml

settings. What about the other Exceptions? Fortunately since Struts1.1, you can

assign JSP files for other checked exceptions too. Let us start by examining the

features in Struts 1.1 for exception handling.

Declarative exception handling

Consider the method signature for the execute method in the Struts Action class.

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

Struts Survival Guide – Basics to Best Practices

192

 HttpServletResponse response)

 throws java.lang.Exception

The execute() method has java.lang.Exception in its throws clause.

Hence you don’t have to handle the exceptions explicitly in Action. You can let

them fall through. Consider the execute() method from an Action class.

public ActionForward execute(...) throws java.lang.Exception {

 ActionForward nextPage = null;

 ..

 userControllerEJB.createUser(UserInfo info);

 ..

 mapping.findForward(“success”);

}

The execute() method invokes the createUser() method on

UserControllerEJB – a Session EJB that is responsible for creating the users.

The createUser() method throws two Exceptions – RemoteException and

DuplicateUserException. If the user cannot be created because another user

with same id exists, then the Session EJB throws DuplicateUserException.

A RemoteException is thrown if the user cannot be created because of

problems in looking up or creating the Session EJB. If everything goes fine, then

the user is forwarded to the ActionForward identified by success. However we

have made no attempt to catch them and handle. Instead we have deferred their

handling to Struts through the declarative exception handling facility.

Listing 9.5 Declarative Exception Handling in Struts

<struts-config>

 <action-mappings>

 <action

 path="/submitCustomerForm"

 type="mybank.example.CustomerAction"

 name="customerForm"

 scope="request"

 input="/CustomerDetails.jsp">

 <exception

 key="database.error.duplicate"

 path="/UserExists.jsp"

 type="mybank.account.DuplicateUserException"/>

 <exception

 key="rmi.error"

Chapter 9. Struts and Exception Handling

193

 type="java.rmi.RemoteException"

 path="/rmierror.jsp"/>

 </action>

 </action-mappings>

</struts-config>

Listing 9.5 shows the Struts Config file with declarative exception handling

for the two exceptions – DuplicateUserexception and RemoteException.

For each exception, an <exception> element is defined in the action mapping.

The path attribute in the <exception> element specifies the page shown to the

user upon that exception. For instance, if a DuplicateUserException is

thrown when submitting the modified user profile, the controller will forward

control to the UserExists.jsp page. The key attribute is used to retrieve the error

message template from the associated resource bundle. Since the <exception>

is local to the action mapping, it applies only for that action invocation. As you

might have already notice the J2EE and Struts way of declaratively handling

exceptions are complementary to one another.

In the Listing 9.5, the declarative exception handling was local to the

CustomerAction. You can add global declarative exception handling too. For

instance, if you want to handle the RemoteException in the same way across

the board, use the following approach:

<struts-config>

 <global-exceptions>

 <exception

 key="rmi.error"

 type="java.rmi.RemoteException"

 path="/rmierror.jsp"/>

 </global-exceptions>

</struts-config>

Before forwarding to the page indicated in the <exception> element, Struts

sets the exception as a request attribute with name

org.apache.struts.action.EXCEPTION. (This is the value of

Globals.EXCEPTION_KEY. Globals is a Java class in org.apache.struts

package). The exception can be retrieved in the error page by using the method:

request.getAttribute(Globals.EXCEPTION_KEY).

Using the ExceptionHandler

Apart from key, type and path, the <exception> element also takes several

optional attributes of which handler is a significant one. It is the fully qualified

class name of the exception handler for that exception. By default

org.apache.struts.action.ExceptionHandler is the class used. You

Struts Survival Guide – Basics to Best Practices

194

can create a custom handler by extending the ExceptionHandler and

overriding the execute() method. The execute() method has the following

signature:

public ActionForward execute(Exception ex, ExceptionConfig ae,

 ActionMapping mapping, ActionForm formInstance,

 HttpServletRequest request,

 HttpServletResponse response) throws ServletException

To understand the ExceptionHandler, you have to understand the

RequestProcessor workings on exception. As it does everything else,

RequestProcessor invokes the execute() method on the Action instance.

Hence it is natural that the exception thrown in the execute() is caught by the

RequestProcessor. On receiving the exception, here is what the

RequestProcessor does:

� It checks to see if the exception has an associated <exception>

declaration either in local or global scope.

� If none exists, then the exception is:

� Thrown AS IS if it is ServletException, IOException or their

subclasses.

� Wrapped in a ServletException and thrown if the above criteria is not

satisfied.

� If there is a <exception> element declared then it retrieves the handler

class, instantiates it and invokes execute() method in it. The default

exception handler returns the path attribute of the <exception> element as

an ActionForward.

As you will see later in this section, you can use a custom Exception Handler

to centralize exception logging in the web tier.

When not to use declarative exception handling

Very frequently you would like to generate an ActionError and display it to the

user instead of an exception. Let us look back at Listing 9.5 again for a moment.

When RemoteException is thrown, the user sees rmierror.jsp. This makes

sense since RemoteException is tantamount to a system exception and the only

thing you can do is to ask the user to start all over again. However, it does not

make sense to ask the user to start all over when DuplicateUserException is

thrown since this is an application exception from which the user has a recovery

path. A better option is to show this as an ActionError and give the user a chance

to change the user id. For situations like this, you have to resort to programmatic

exception handling.

Chapter 9. Struts and Exception Handling

195

Listing 9.6 shows the execute() method with programmatic exception

handling. It catches the DuplicateUserException and creates an

ActionErrors object to hold the error. The ActionErrors is set into the

HTTP request as an attribute and then the same Form is shown back. The last

part of showing the same page is achieved by the line mapping.getInput().

In this case you have to remove the declarative exception handling from Struts

config file since it is being explicitly handled in the code.

If you use declarative exception handling, the default ExceptionHandler

will still generate an ActionErrors object. However, the ActionErrors is

associated with the page rather than a particular field. If you don’t have this

requirement, declarative exception handling is preferred over programmatic

exception handling. Just set the initial JSP as the path for the <exception> and

use <html:errors/> on the JSP and you get the exception as if it was an

ActionError without any effort from your side.

Listing 9.6 Alternative to declarative exception handling

public ActionForward execute(... ...) throws java.lang.Exception {

 ActionForward nextPage = null;

 try {

 ..

 ..

 userControllerEJB.createUser(UserInfo info);

 ..

 mapping.findForward(“success”);

 }

 catch (DuplicateUserException due)

 {

 ActionErrors errors = new ActionErrors();

 ActionError error = new ActionError(“userid.taken”,

 due.getUserId());

 errors.add(“userid”, error);

 // This saves the ActionErrors in the request attribute

 // with the key Action.ERROR_KEY

 saveErrors(request, errors);

 nextPage = mapping.getInput();

 }

 return nextPage;

}

Struts Survival Guide – Basics to Best Practices

196

Exception handling and I18N

Another important matter of concern with exception handling is I18N. Even

though the exception logging can occur in the language of your operating system,

the messages should still be displayed in the language of the user’s choice. This

is not much of a concern is the message is generic. For instance, in Listing 9.5,

the message shown to the user on RemoteException is identified by the key

rmi.error. The key can have a generic message in the resource bundle.

However the problem starts when the message has to get specific or the message

requires replacement values. There are two possible solutions to this problem

neither of which is ideal.

Here is the first approach: If you want to keep the internationalization in the

web tier, then the specific exceptions from the server side should encapsulate the

resource bundle keys and some (if not all) replacement values in them. The key

and the replacement values can be exposed through getter methods on the

exception class. This approach makes the server side code dependent on the web

tier resource bundle. This also requires a programmatic exception handling since

you have to pass appropriate replacement values to the ActionError.

The second approach is to send the user’s Locale as one of the arguments to

the server side and let the server side generate the entire message. This removes

the server’s dependency on the web tier code, but requires the Locale to be sent

as a argument on every method call to the server.

9.8 Logging Exceptions

It is common knowledge that exceptions can occur anywhere – web-tier, ejb-tier,

database. Wherever they occur, they must be caught and logged with appropriate

context. It makes more sense to handle a lot, if not all of the exceptions

originating in the ejb tier and database tier on the client side in the web tier. Why

should exception logging take place on the client side?

Listing 9.7 Enumeration class for Exception Category

public class ExceptionCategory implements java.io.Serializable {

 public static final ExceptionCategory INFO =

 new ExceptionCategory(0);

 public static final ExceptionCategory WARNING =

 new ExceptionCategory(1);

 public static final ExceptionCategory GENERAL_PROBLEM =

 new ExceptionCategory(2);

 public static final ExceptionCategory DATA_PROBLEM =

 new ExceptionCategory(3);

Chapter 9. Struts and Exception Handling

197

 public static final ExceptionCategory CONFIG_PROBLEM =

 new ExceptionCategory(4);

 public static final ExceptionCategory FATAL =

 new ExceptionCategory(5);

 private int type;

 private ExceptionCategory(int aType) {

 this.type = aType;

 }

}

First, the control hasn't passed outside of the application server yet.

(Assuming both the web tier and ejb tier do not belong to disparate entities). The

so-called client tier, which is composed of JSP pages, servlets and their helper

classes, runs on the J2EE application server itself. Second, the classes in a well-

designed web tier have a hierarchy (for example, hierarchy in the Business

Delegate classes, Intercepting Filter classes, JSP base class, or in the Struts

Action classes) or single point of invocation in the form of a FrontController

servlet (Business Delegate, Intercepting Filter and Front Controller are Core

J2EE Patterns. Refer to Sun blueprints for more details). The base classes of

these hierarchies or the central point in FrontController classes can contain the

exception logging code. In the case of session EJB-based logging, each of the

methods in the EJB component must have logging code. As the business logic

grows, so will the number of session EJB methods, and so will the amount of

logging code. A web tier system will require less logging code. You should

consider this option if you have co-located web tier and EJB tiers and you don't

have a requirement to support any other type of client.

 To develop a full fledged exception handling strategy let us start with a

simple class shown in Listing 9.7. This class, ExceptionCategory categorizes

the exceptions into INFO, WARNING, ERROR and FATAL. This identification

helps us when the notification of Support personnel depends on the severity of

the exception.

Listing 9.8 Exception Info class

public class ExceptionInfo implements java.io.Serializable {

 private ExceptionCategory exceptionCategory;

 private String errorCode;

 private String exceptionID;

 private boolean logged;

 public ExceptionInfo(ExceptionCategory aCategory,

 String aErrorCode) {

Struts Survival Guide – Basics to Best Practices

198

 this.exceptionCategory = aCategory;

 this.errorCode = aErrorCode;

 this.logged = false;

 this.exceptionID =

 UniqueIDGeneratorFactory.

 getUniqueIDGenerator().getUniqueID();

 }

}

The next class to look at is the ExceptionInfo class as shown in Listing 9.8

This class provides information about the Exception as the name indicates. Apart

from the ExceptionCategory, this class also holds a unique id associated with

the Exception and a boolean indicating if the exception has been already logged.

The UniqueIDGeneratorFactory is a factory class that returns a

UniqueIDGenerator. UniqueIDGenerator is represented by an interface

IUniqueIDGenerator. This interface has just one method – getUniqueID().

Listing 9.9 shows a simple Unique ID Generator implementation IP Address and

time.

Listing 9.9 Simple Unique ID Generator

public class UniqueIDGeneratorDefaultImpl

 implements IUniqueIDGenerator

{

 private static IUniqueIDGenerator instance =

 new UniqueIDGeneratorDefaultImpl();

 private long counter = 0;

 public String getUniqueID() throws UniqueIDGeneratorException

 {

 String exceptionID = null;

 try {

 exceptionID = InetAddress.getLocalHost().getHostName();

 } catch(UnknownHostException ue) {

 throw new UniqueIDGeneratorException(ue);

 }

 exceptionID = exceptionID +

 System.currentTimeMillis() +

 counter++;

 return exceptionID;

Chapter 9. Struts and Exception Handling

199

 }

}

Listing 9.10 MybankException class

public abstract class MybankException extends Exception {

 private ExceptionInfo exceptionInfo;

 public MybankException(ExceptionInfo aInfo) {

 super();

 this.exceptionInfo = aInfo;

 }

}

 And finally Listing 9.10 shows the actual Exception class. This is the base

class for all the checked exceptions originating in MyBank. It is always better to

have a base class for all exceptions originating in a system and then create new

types as required. In this way, you can decide how much fine grained you want

the catch exception blocks to be. Similarly you can have a base class for all

unchecked exceptions thrown from system. Listing 9.11 shows such a class.

Listing 9.11 MybankRuntimeException class

public abstract class MybankRuntimeException extends Exception {

 private ExceptionInfo exceptionInfo;

 private Throwable wrappedException;

 public MybankException(ExceptionInfo aInfo,

 Throwable aWrappedException) {

 super();

 this.exceptionInfo = aInfo;

 this.wrappedException = aWrappedException;

 }

}

 Notice that MybankRuntimeException has only one constructor that takes

both ExceptionInfo and a Throwable. This is because if someone is

explicitly throwing a runtime exception from his or her code, it is probably

because a system error or serious unrecoverable problem has occurred. We want

to get hold of the actual cause of the problem and log it. By enforcing

development time disciplines like this, one can decrease the chances of

exceptions in the system without a context.

Struts Survival Guide – Basics to Best Practices

200

 Finally we also need to look at the actual Logging utility – a stack trace

printing utility shown in Listing 9.12. The default printStackTrace() method

in java.lang.Throwable logs an error message to the System.err.

Throwable also has an overloaded printStackTrace() method to log to a

PrintWriter or a PrintStream. The above method in StackTraceUtil

wraps the StringWriter within a PrintWriter. When the PrintWriter

contains the stack trace, it simply calls toString() on the StringWriter to

get a String representation of the stack trace.

The StackTraceUtil class has two overloaded methods –

getStackTraceAsString() – One of them takes the MybankException as

the parameter, the other takes Throwable as the parameter. All exceptions of

type MybankException already have the unique id in-built. For other

exceptions, to be logged the unique id has to be explicitly generated.

MybankException also has the flag indicating whether the exception has been

logged making it easier to prevent multiple logging, as you will see very soon.

Other Exceptions don’t have this capability and it is up to the caller program and

called to collaborate and ensure that duplicate logging does not happen.

Listing 9.12 Stack Trace printing utility.

public final class StackTraceTool {

 private StackTraceTool() {}

 public static String getStackTraceAsString(

 MybankException exception)

 {

 String message = " Exception ID : " +

 exception.getExceptionInfo().getExceptionID()

 + "\n " + "Message :" + exception.getMessage();

 return getStackMessage(message, exception);

 }

 public static String getStackTraceAsString(Throwable throwable)

 {

 String message = " Exception ID : " +

 UniqueIDGeneratorFactory.getUniqueIDGenerator().getUniqueID()

 + "\n " + "Message :" + exception.getMessage();

 return getStackMessage(message, exception);

 }

 private static String getStackMessage(String message,

 Throwable exception)

 {

 StringWriter sw = new StringWriter();

Chapter 9. Struts and Exception Handling

201

 PrintWriter pw = new PrintWriter(sw);

 pw.print(" [");

 pw.print(exception.getClass().getName());

 pw.print("] ");

 pw.print(message);

 exception.printStackTrace(pw);

 return sw.toString();

 }

}

Armed with these knowledge let us look at a scenario that will lead to

duplicate logging in the system when an exception occurs. Consider a case when

a method, foo(), in an entity EJB component is accessed in a session EJB

method, called bar(). A web-tier client invokes the method bar() on the

session EJB component, and also logs the exceptions. If an exception occurs in

the entity EJB method foo() when the session EJB method bar() is invoked

from the web-tier, the exception will have been logged in three places: first in the

entity EJB component, then in the session EJB component, and finally in the web

tier.

 Fortunately, addressing these problems is fairly easy to do in a generic way.

All you need is a mechanism for the caller to:

� Access the unique ID

� Find out if the exception has already been logged

� If the exception has been already logged don’t log it again.

 We have already developed the MybankException and ExceptionInfo

class that let us check if the exception is already logged. If not logged already,

log the exception and set the logged flag to be true. These classes also generate a

unique id for every exception. Listing 9.13 shows a sample.

Listing 9.13 Sample Exception Logging

try {

 CustomerDAO cDao = CustomerDAOFactory.getDAO();

 cDao.createCustomer(CustomerValue);

} catch (CreateException ce) {

 //Assume CreateException is a subclass of MybankException

 if (! ce.isLogged()) {

 String traceStr = StackTraceTool.getStackTraceAsString(ce);

 LogFactory.getLog(getClass().getName()).error(

 ce.getUniqueID() + ":" + traceStr);

 ce.setLogged(true);

 }

Struts Survival Guide – Basics to Best Practices

202

 throw ce;

}

Listing 9.13 shows the logging scenario when the exception caught is of type

MybankException. It is very much a fact that not all of the exceptions thrown

by your application are in this hierarchy. Under such conditions it is even more

important that the logging is centralized in one place since there is no mechanism

to prevent duplicate logging for exceptions outside the MybankException

hierarchy. That brings us to the idea of centralized logging. In the beginning of

this section we said that it is easy and convenient to log exceptions on web-tier

since most of the web-tier classes have a hierarchy. Let us examine this claim in

more detail.

9.9 Strategies for centralized logging

In the previous section, we saw how to avoid duplicate logging. But when it

comes to the entire application, you also learnt that logging should not only be

done once but also centralized for disparate modules of the system if possible.

There are various strategies to achieve centralized logging in the web tier. This

section will cover those strategies.

Consider the web-tier for MyBank. After the Struts Forms are populated the

RequestProcessor invokes the execute method on Action classes. Typically,

in the execute method you access enterprise data and business logic in session

ejbs and legacy systems. Since you want to decouple your web tier from the

business logic implementation technology (EJB for example – which forces you

to catch RemoteException) or the legacy systems, you are most likely to

introduce Business Delegates. (Business Delegate is a Core J2EE Pattern). The

Business Delegates might throw a variety of exceptions, most of which you want

to handle by using the Struts declarative exception handling. When using the

declarative exception handling you are most likely to log the exceptions in the

JSPs since the control passes out of your code at the end of the execute method.

Instead of adding the exception logging code to every JSP declared in Struts

Config file, you can create a parent of all the error JSPs and put the logging code

in there. Listing 9.14 shows a sample base JSP class.

There is quite a bit going on in Listing 9.14. First the class implements the

javax.servlet.jsp.HttpJspPage interface. All the methods in this

interface except the _jspService() have concrete implementations. These

methods represent the various methods called during the JSP life cycle. In

particular you will recognize the service method that is similar to the servlet’s

service method. In the course of this method execution, the _jspService()

method is also executed. _jspService() method is not implemented by the

Chapter 9. Struts and Exception Handling

203

page author or the developer. Instead it is auto generated by the servlet container

during JSP pre-compilation or run time. All the markup, tags and scriptlets

contained in the JSP get transformed into Java code and form the gist of the

_jspService() method. The page author indicates that the jsp extends from

this java class by adding the directive

 <%@ page extends="mybank.webtier.MybankBaseErrorJsp" %>

If all of the Error-JSPs extend from this abstract JSP class, centralized

logging is achieved. Before you celebrate for having nailed down the problem,

shall we remind you that this solution may not work in all servlet containers. The

reason for this is JspFactory and PageContext implementations are vendor

dependent. Normally the calls for JspFactory.getDefaultFactory() and

factory.getPageContext() occur in the auto generated _jspService()

method. It is possible that some of the implementations may not initialize these

objects we accessed in the service() method until they reach the

_jspService() method !

Listing 9.14 Base JSP class for error pages

public abstract class MybankBaseErrorJsp implements HttpJspPage {

 private ServletConfig servletConfig;

 public ServletConfig getServletConfig() {

 return servletConfig;

 }

 public String getServletInfo() {

 return "Base JSP Class for My Bank Error Pages";

 }

 public void init(ServletConfig config)

 throws ServletException {

 this.servletConfig = config;

 jspInit();

 }

 public void jspInit() {}

 public void jspDestroy() {}

 public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException {

 HttpServletRequest request = (HttpServletRequest)req;

Struts Survival Guide – Basics to Best Practices

204

 HttpServletResponse response = (HttpServletResponse)res;

 JspFactory factory = JspFactory.getDefaultFactory();

 PageContext pageContext = factory.getPageContext(

 this, request, response,

 null, // errorPageURL

 false, // needsSession

 JspWriter.DEFAULT_BUFFER,

 true // autoFlush

);

 Exception exc = pageContext.getException();

 String trace =StackTraceTool.getStackTraceAsString(exc);

 Logger.getLogger(getClass().getName()).error(trace);

 //proceed with container generated code from here

 _jspService(request,response);

 }

 public abstract void _jspService(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException;

}

Don’t panic. We have an alternate solution, which is less elegant but is

guaranteed to work across vendor implementations. Let us create a custom tag to

be invoked from all of the Error-JSPs. Listing 9.15 shows the logic for

doStartTag() method of this custom tag. You will notice that it is very much

similar to the service() method in Listing 9.14. After obtaining the exception

object, it is logged by obtaining the Logger from Log4J. Since this tag is

invoked within the _jspService() method for the JSP, it is guaranteed to have

access to all of the implicit objects including pagecontext and exception in

every vendor implementation.

Listing 9.15 Custom Tag for exception logging

public class ExceptionLoggingTag extends TagSupport

{

 public int doStartTag() throws ServletException, IOException

 {

 Exception exc = pageContext.getException();

 String trace =StackTraceTool.getStackTraceAsString(exc);

 LogFactory.getLog(getClass().getName()).error(trace);

Chapter 9. Struts and Exception Handling

205

 return EVAL_BODY_INCLUDE;

 }

}

For those of you who are visualizing the big picture, you will realize that

logging from the JSP is not the right way. However there is no ideal way to

achieve centralized logging without taking this approach. Each mechanism has

its drawbacks and tradeoffs. This is something you will experience whenever

design abstractions meet reality.

Until now you have seen a JSP based approach of exception handling and

logging. What if you have a requirement to handle the exceptions originating

from your application differently? Let us consider the application exceptions

from our very own MyBank. The exceptions originating from the MyBank are

subclasses of MybankException and MybankRuntimeException. When

using Struts as the framework in your web applications, then you will most likely

have a base Action class with trivial functionality common to all of the Actions

factored out. The base Action class is the ideal location to centralize the special

processing for the application exceptions. Listing 9.16 shows a sample base

Action, MybankBaseAction for the special processing just mentioned.

Listing 9.16 Mybank Base Action

public class MybankBaseAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 ActionForward aForward = null;

 MybankBaseForm aForm = (MybankBaseForm)form;

 try {

 preprocess(mapping, aForm, request, response);

 aForward = process(mapping, aForm, request, response);

 postprocess(mapping, aForm, request, response);

 }

 catch(MybankException ae) {

 //Any Special Processing for Mybank goes here

 if (ae.isLogged()) {

 String trace = StackTraceTool.getStackMessage(ae);

 LogFactory.getLog(getClass().getName()).error(

 ae.getUniqueID() + ":" + trace);

 ae.setLogged(true);

 }

Struts Survival Guide – Basics to Best Practices

206

 aForward = errorPage;

 }

 return aForward;

 }

 protected abstract void preprocess(ActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception;

 protected abstract void process(ActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception;

 protected abstract void postprocess(ActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception;

}

This class implements the execute method, but defines three abstract methods

preprocess(), process() and postprocess() which take the same

arguments as the execute() method but are invoked before, during and after

the actual processing of the request. In the execute method, the

MybankException is caught and any special processing required is done and

then re-throw the exception for the declarative exception handling to work or

programmatically forward to the relevant error page.

Note that you can achieve the same result by creating a custom exception

handler for the MybankException. The custom exception handler’s

execute() method will do exactly what the catch block in Listing 9.16 is doing.

9.10 Reporting exceptions

Until now, you have looked at various exception logging strategies. After the

exception is logged, there is also a need to report the fatal and serious ones by

sending out emails and pager messages to the support team. Several approaches

exist and the choices are numerous, but in this chapter we would like to

consolidate the logging and error reporting for better coordination and control.

For this, let us look at what Log4J has to offer.

Listing 9.17 SMTP Appender setup

<appender name="Mybank-Mail"

 class="org.apache.log4j.net.SMTPAppender">

 <param name="Threshold" value="ERROR" />

Chapter 9. Struts and Exception Handling

207

 <param name="Subject" value="Mybank Online has problems" />

 <param name="From" value="prod-monitor@mybank.com" />

 <!-- use commas in value to separate multiple recipients -->

 <param name="To" value="prod-support@mybank.com " />

 <param name="SMTPHost" value="mail.mybank.com" />

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%m" />

 </layout>

</appender>

As you already know, Log4J has three main components: Layout, Appender,

and Category (also known as Logger). Layout represents the format of the

message to be logged. Appender is an alias for the physical location at which the

message will be logged. And category is the named entity; you can think of it as

a handle for logging. Layouts and Appenders are declared in an XML

configuration file. Every category comes with its own layout and Appender

definitions. When you get a category and log to it, the message ends up in all the

appenders associated with that category, and all those messages will be

represented in the layout format specified in the XML configuration file.

Log4J comes with several standard appenders and one of them is called

SMTPAppender. By using the SMTPAppender, you can declaratively send

email messages when the errors occur in your system. You can configure the

SMTPAppender like any other Appender – in the Log4J configuration file.

Listing 9.17 shows a sample setup for SMTPAppender. It takes a Threshold,

beyond which the Appender is operational, a subject for the email, the From and

To addresses, SMTP server name and the pattern for the email message body.

You can set up the category for the above SMTPAppender as

<category name=”com.mybank.webtier.action” additivity=”false”>

 <priority value=”ERROR”/>

 <appender-ref ref=”Mybank-Mail”/>

 <appender-ref ref=”Mybank-ErrorLog”/>

</category>

With this setup all the exceptions that are caught in the base Struts Action –

MybankBaseAction are reported to email address prod-support@mybank.com.

This is because the category name is identified by the package name for

MybankBaseAction and while logging in Listing 9.16, we used the category

whose name is same as the fully qualified class name for MybankBaseAction

which happens to be com.mybank.webtier.action.MybankBaseAction.

The email address prod-support@mybank.com is generally an email group

configured in the enterprise mail server to include several individual recipients.

Struts Survival Guide – Basics to Best Practices

208

Alternatively, you can explicitly specify multiple recipients in the To param in

Listing 9.17 with commas separating the recipients. You can take a similar

approach if you are logging in the Base JSP class of Listing 9.14 or the custom

tag class of 9.15. But what if you are logging the exception using a scriptlet in

the JSP. Although this approach is not recommended, suppose that you already

have it in place and want to retrofit the Log4J email feature. In this case, you still

can setup the appender as in Listing 9.17. But what about the jsp? What is the

fully qualified class name for the JSP? This depends on the vendor. For instance,

in weblogic a JSP in a directory called mortgage will reside in package named

jsp_servlet.mortgage. Accordingly, for WebLogic, you can setup the

category as follows

<category name=”jsp_servlet.mortgage” additivity=”false”>

 <priority value=”ERROR”/>

 <appender-ref ref=”Mybank-Mail”/>

 <appender-ref ref=”Mybank-ErrorLog”/>

</category>

Note that this setting is vendor specific and may not be portable to other

application servers. But this is a minor change and should not be a problem if

you decide to port to another application server say JBoss.

If you are wondering, “Email messages are all fine. How do I send pager

beeps?” The quick answer is “No problem”. Pagers have email addresses too.

You can ask your service provider to associate the email address with the pager.

Telecommunications companies and providers can use JavaMail API to

implement a PAGER transport protocol that sends email messages to

alphanumeric pagers. Similar approach works for Short Message Service (SMS)

too since you can email a SMS device.

9.11 Summary

In development environments, the developer can go back, fix the root cause of

the exception and move on. Not so in production systems. Exception handling is

a very crucial part of enterprise applications. It is the key to quick response from

the support team and resolution of the problems in working systems. A delayed

or no resolution can leave the customer frustrated. In the internet world, where

the competitor is just a click away, the importance of exception handling,

logging, reporting and resolving cannot be stressed enough. This chapter gave

you the insights into various gotchas on your way, common mistakes and

strategies to address them from a web tier perspective.

Chapter 10. Effectively extending Struts

209

CChhaapptteerr 1100

Effectively extending Struts

In this chapter:

1. You will learn how to extend Struts using PlugIn as an example

2. You will see how to construct a rudimentary page flow controller by

customizing ActionMapping

3. You will develop a mechanism for controlling validation for image button

form submission

4. You will see how to handle sensitive resubmissions in a generic way

rather than handling in every form

5. You will devise a strategy to avail DispatchAction-like functionality for

image button form submission

Struts is a generic framework. It works fine without modification. But there are

times when it has to be customized. And we are not talking about straightforward

customizations like extending the Form, Action and custom tags. We are

referring to the “hooks” that Struts provides to extend the framework. In this

chapter you will see several practical uses of these hooks.

A word of caution though: The customization features are probably going to

be around without modification until Struts 2.0. The main candidates for

overhaul are ActionMapping and RequestProcessor. The replacements

would be designed using Command, interceptor and chain of responsibility

patterns. However, since the above classes is part of public API, an alternative

strategy will definitely emerge to seamlessly migrate the customizations

discussed in this chapter so that none of the application code is affected and only

the customization code might change. Of course this is just a speculation.

To understand the hooks, consider a Struts Plugin for say, a slick menu

utility (Such a utility indeed exists. Check out http://struts-

menu.sourceforge.net). The menu utility needs to read the configuration data

from an external file. If the PlugIn were instead implemented as a servlet, it

would read the file name from an <init-param> in web.xml. The <set-

property> can do the same task for the PlugIn. The file name is set in the

struts-config.xml by using <set-property>.

Struts Survival Guide – Basics to Best Practices

210

 <plug-in className=”mybank.example.MyMenuPlugIn”>

 <set-property property=”fileName”

 value=”/WEB-INF/menudata.xml”/>

 </plug-in>

A JavaBeans property with the same name (fileName) is then added to the

PlugIn class. The <set-property> tells the Struts framework to set the

corresponding JavaBeans property in the plugin class (or any class associated

with the configuration) with the value attribute of the <set-property>

element. In addition, the Struts PlugIn implements the PlugIn interface from

org.apache.struts.action package. Accordingly, the MyMenuPlugIn

class is defined as:

 public class MyMenuPlugIn implements PlugIn {

 private String fileName;

 public String getFileName() {

 return fileName;

 }

 public void setFileName(String name) {

 this.fileName = name;

 }

 public void init(ActionServlet servlet,

 ModuleConfig config) throws ServletException {

 }

 public void destroy() {

 }

 }

During startup, Struts sets the fileName property using the corresponding

setter method (and other properties if exist) and finally calls the init() method.

Since PlugIns are the last ones to be configured by Struts, all other data from the

struts-config.xml is guaranteed to be loaded before the init() method is

invoked. The init() method is an opportunity to override and change any other

settings including the RequestProcessor! Frameworks like SAIF (stands for

Struts Action Invocation Framework. Available at http://struts.sourceforge.net)

utilize this to change the RequestProcessor to one of its own.

Chapter 10. Effectively extending Struts

211

Back to <set-property>. The <set-property> is the cornerstone of

hook-based customization. Its DTD entry is as follows:

<!ATTLIST set-property id ID #IMPLIED

 property CDATA #REQUIRED

 value CDATA #REQUIRED>

Both property and value are mandatory and ID is never set explicitly.

The following elements in struts-config.xml can be customized using <set-

property>: Form-bean, Exception, DataSource, PlugIn, RequestProcessor,

MessageResources, ActionForward and ActionMapping.

Customizing the action mapping

The <action mapping> is the most frequently customized element. One way

to customize action mapping is by setting the className in struts-config.xml as

shown in Listing 10.1.

Listing 10.1 struts-config.xml for custom action mapping

 <action path="/submitCustomerForm"

 className=”mybank.struts.MyActionMapping”

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetails.jsp">

 <set-property property="buttons"

 value="nextButton,saveButton,cancelButton" />

 <set-property property="forwards"

 value="page2,success,cancel" />

 <forward name="page2" path="Page2.jsp" />

 <forward name="success" path="success.jsp" />

 <forward name="success" path="cancel.jsp" />

 </action>

The className attribute tells Struts to use the specified class

(mybank.struts.MyActionMapping) for storing the action-mapping

configuration. MyActionMapping extends ActionMapping in the package

org.apache.struts.action. In addition it has a JavaBeans property for

each of the <set-property> elements. MyActionMapping class is shown

below:

 public class MyActionMapping extends ActionMapping {

 private String buttons;

Struts Survival Guide – Basics to Best Practices

212

 private String forwards;

 //getters and setters for actions and forwards

 public MyActionMapping() { }

 }

The custom action mapping is now ready to use. During startup, Struts

instantiates the subclass of ActionMapping (instead of ActionMapping itself) and

sets its JavaBeans properties to the values specified in the corresponding <set-

property> element. As you know, the execute() method in the Action

accepts ActionMapping as one of the arguments. When the execute()

method in the CustomerAction is invoked at runtime, MyActionMapping is

passed as the ActionMapping argument due to the setting in Listing 10.1. It can

then be cast to MyActionMapping to access its JavaBeans properties as follows:

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception {

 MyActionMapping customMapping =

 (MyActionMapping) mapping;

 String actions = customMapping.getButtons();

 ..

 ..

 }

Listing 10.2 struts-config.xml with global custom action mapping

<action-mappings type=”mybank.struts.MyActionMapping”>

 <action path="/submitCustomerForm"

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetails.jsp">

 <set-property property="buttons"

 value="nextButton,saveButton,cancelButton" />

 <set-property property="forwards"

 value="page2,success,cancel" />

 <forward name="page2" path="Page2.jsp" />

 <forward name="success" path="success.jsp" />

 <forward name="success" path="cancel.jsp" />

 </action>

Chapter 10. Effectively extending Struts

213

 </action-mappings>

There are several uses of simple customizations like this. As you will see

later in this chapter, a lot of code that needs to be often repeated everywhere can

be eliminated by simple customizations. While doing so, a single customized

ActionMapping will be used for all the action mappings in the application.

Setting the className for individual action mapping as shown in Listing 10.1 is

painful. The alternative is to specify the type attribute on the <action-

mappings> element as shown in Listing 10.2. This tells Struts to use the

corresponding ActionMapping class for all the <action> elements. Listing 10.2

forms the basis for some of the utilities we develop in this chapter – a

rudimentary page flow controller, auto-validation feature for image based form

submissions, a generic mechanism to handle sensitive form resubmissions and a

DispatchAction-like facility for image based form submissions. All of these will

use the base Action class and base form conceived in Chapter 4 in conjunction

with the HtmlButton described in Chapter 6 for form submission.

10.1 A rudimentary page flow controller

In the last section you have seen how ActionMapping can be customized. Let us

use the customized action mapping to build a rudimentary page flow controller.

Every Action has to render the next view to the user after successful business

logic invocation. This would mean that a standard mapping.findForward()

in every method of yours. The rudimentary page flow controller eliminates this

by providing this information in a declarative manner in struts-config.xml

utilizing MyActionMapping. That information is used at runtime to

automatically decide which page to forward to. The reason why the page flow

controller is called rudimentary is because it has a serious limitation. If the page

transitions are dynamic, then it cannot work. The controller serves as an example

for customized action mapping usage. Some of the groundwork for the page flow

controller is already done in Listing 10.2, in case you didn’t know it already!). In

particular pay attention to the two lines:

 <set-property property="buttons"

 value="nextButton,saveButton,cancelButton" />

 <set-property property="forwards"

 value="page2,success,cancel" />

This first property (buttons) is a comma-separated name of all the buttons

in the form. The second property (forwards) is a comma-separated name of the

views rendered to the user when the corresponding buttons are selected. The

view names refer to the forwards instead of the actual JSPs. Since the forwards

Struts Survival Guide – Basics to Best Practices

214

is provided declaratively, the task of deciding the next view can be refactored

into the base Action. This functionality has been added to the

MybankBaseAction from Chapter 4. The code is shown in Listing 10.3 with the

changes highlighted in bold.

Listing 10.3 The new and modified methods in MybankBaseAction

public MybankBaseAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception {

 ...

 MybankBaseForm myForm = (MybankBaseForm) form;

 MyActionMapping myMapping = (MyActionMapping) mapping;

 String selectedButton =

 getSelectedButton(myForm, myMapping);

 preprocess(myMapping, myForm, request, response);

 // Returns a null forward if the page controller is used.

 ActionForward forward =

 process(myMapping, myForm, request, response);

 postprocess(myMapping, myForm, request, response);

 ...

 if (forward == null) { // For page controller only

 String forwardStr = mapping.getForward(selectedButton);

 forward = mapping.findForward(forwardStr);

 }

 return forward;

 }

 protected String getSelectedButton(MyActionForm form,

 MyActionMapping mapping) {

 String selectedButton = null;

 String[] buttons = mapping.getButtons();

 for (int i=0;i<buttons.length;i++) {

 HtmlButton button = (HtmlButton)

 PropertyUtils.getProperty(form, buttons[i]);

 if (button.isSelected()) {

 selectedButton = buttons[i];

 break;

 }

 }

 return selectedButton;

 }

Chapter 10. Effectively extending Struts

215

}

First notice that the ActionMapping is cast to MyActionMapping. Also

notice that the signature of the three abstract methods – process(),

preprocess() and postprocess() have been changed to accept

MyActionMapping as the argument instead of ActionMapping. The page flow

controller logic is implemented at the end of execute() method. The logic is

simple: The code first checks which button has been selected. This is done in the

getSelectedButton() method. It then retrieves the corresponding

ActionForward and returns it. The RequestProcessor subsequently renders the

view as usual. Since the code has been refactored into the base Action class, the

child classes need not worry about mapping.findFoward(). They can simply

return null. MybankBaseAction is now capable of automatically selecting the

appropriate ActionForward.

10.2 Controlling the validation

The default mechanism in Struts to skip validations when a button is pressed is

by using <html:cancel> in the JSP. Behind the scenes, this tag creates a button

with a name – org.apache.struts.taglib.html.CANCEL. When the page

is finally submitted, one of the first things RequestProcessor does is to check if

the request has a parameter with the name

org.apache.struts.taglib.html.CANCEL. If so, the validation is

cancelled and the processing continues. While this may be acceptable for grey

buttons (even those pages with multiple buttons), image buttons cannot be named

as org.apache.struts.taglib.html.CANCEL due to their peculiar

behavior. When images are used for form submission, the browsers do not submit

the name and value, but the X and Y coordinates of the image. This is in

accordance with the W3C specification. Even though an image corresponding to

Cancel was pressed, the RequestProcessor is oblivious to this fact. It innocently

requests the page validation and the end user is only but surprised to see the

validation pop up! This is an area where some minor customization goes a long

way. Let us start by customizing the action mapping in the struts-config.xml.

Listing 10.4 shows the new addition in bold.

In addition to the existing <set-property> elements, a new <set-

property> is added for a property called validationFlags. This is a comma-

separated list of true and false telling Struts if validation needs to be

performed when corresponding buttons (also comma-separated values) are

selected on the browser. The validationFlags in the Listing are interpreted

as: “When next and cancel buttons are selected, no validation is necessary. When

save button is selected, validation is required”. In addition another interesting

Struts Survival Guide – Basics to Best Practices

216

change you will find in Listing 10.4 is that the validation is turned off by setting

validate=false. With this setting, the validation in RequestProcessor is

completely turned off for all buttons. The validation will be explicitly invoked in

the base Action’s execute() method. Listing 10.5 shows the execute()

method. The changes are shown in bold.

Listing 10.4 struts-config.xml with global custom action mapping

<action-mappings type=”mybank.struts.MyActionMapping”>

 <action path="/submitCustomerForm"

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="false"

 input="CustomerDetails.jsp">

 <set-property property="buttons"

 value="nextButton,saveButton,cancelButton" />

 <set-property property="validationFlags"

 value="false,true,false" />

 <forward name="page2" path="Page2.jsp" />

 <forward name="success" path="success.jsp" />

 <forward name="success" path="cancel.jsp" />

 </action>

 </action-mappings>

The new validationFlags setting requires some minor code changes to

the in MyBankBaseAction. The changes involve explicitly running the form

validation and saving the ActionErrors. The key logic deciding if the validation is

required for the selected button is in MyActionMapping class in

isValidationRequired() method. The method requires the selected button

name as an argument. A sample implementation for the

isValidationRequired() method is as follows:

public boolean isValidationRequired(String selectedButton) {

 String validationStr = validationFlagMap.get(selectedButton);

 return Boolean.valueOf(validationStr);

}

The above method uses the selected button name to lookup a HashMap

named validationFlagMap. As you know, the JavaBeans properties –

buttons and validationFlags were provided as comma separated values.

Parsing through the comma separated values at runtime for every user is a sheer

waste of time and resources. Hence the comma-separated values are parsed in

Chapter 10. Effectively extending Struts

217

their corresponding setters to create a HashMap with the button name as the key.

This ensures a fast retrieval of the values.

Listing 10.5 execute() method for controlling validation

Public MybankBaseAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception {

 ...

 MybankBaseForm myForm = (MybankBaseForm) form;

 ...

 MyActionMapping myMapping = (MyActionMapping) mapping;

 String selectedButton =

 getSelectedButton(myForm, myMapping);

 boolean validationReqd =

 myMapping.isValidationRequired(buttons[i]);

 if (validationReqd) {

 ActionErrors errors =

 myForm.validate(myMapping, request);

 if (errors != null && ! errors.isEmpty()) {

 saveErrors(request, errors);

 return myMapping.getInput();

 }

 }

 preprocess(myMapping, myForm, request, response);

 ActionForward forward =

 process(myMapping, myForm, request, response);

 postprocess(myMapping, myForm, request, response);

 ...

 return forward;

 }

}

A sample implementation of the setters and the resolve() method is shown

below:

public void setButtons(String buttonNames) {

 this.buttons = buttonNames;

 resolve();

}

Struts Survival Guide – Basics to Best Practices

218

public void setValidationFlags(String flags) {

 this.validationFlags = flags;

 resolve();

}

public void resolve() {

 if (buttons != null && validationFlags != null) {

 validationFlagMap = new HashMap();

 StringTokenizer stButtons = new StringTokenizer(buttons ",");

 StringTokenizer stFlags =

 new StringTokenizer(validationFlags, ",");

 while (stButtons.hasMoreTokens()) {

 String buttonName = stbuttons.nextToken();

 String flagValue = stFlags.nextToken();

 validationFlagMap.put(buttonName, flagValue);

 }

 }

}

As seen above, every setter invokes the resolve() method. When the final

setter is invoked, all the attributes are non-null and the if block in resolve()

is entered. At this point every instance variable is guaranteed to be set by the

Struts start up process. The resolve() method creates a StringTokenizer

and parses the comma-delimited values to create a HashMap with button name as

the key and the validation flag as the value. This HashMap thus created is utilized

at runtime for a faster retrieval of flag values in the isValidationRequired()

method.

10.3 Controlling duplicate form submissions

In chapter 4, you looked at how duplicate form submission can be handled

effectively at individual form level. Here is a recap.

� The isTokenValid() is invoked in the execute() method (or one its

derivatives).

� If the page is the last in a multi-page form, the token is reset.

� After processing, the user is forwarded or redirected to the next page.

� If the next page thus shown also has a form with sensitive submission, the

saveToken() is called to set the token in session just before forwarding

to the page.

Chapter 10. Effectively extending Struts

219

Page after page, the logic remains the same as above with two blanks to be filled.

They are:

1. Should the execute() (or any equivalent method in Action) method check

if the submission was valid for the current page? (through the

isTokenValid() method)?

2. Does the page rendered after processing (in execute() or any equivalent

method in Action) has sensitive submissions needs?

Two approaches emerge to fill in the blanks. The first is to use Template

Method pattern and encapsulate the logic of handling sensitive resubmissions in

the base class and delegate the task of filling the two blanks to the child classes

by declaring two abstract methods in the base Action. While this sounds as the

logical thing to do, there is an even better way. You got it – customizing Struts.

For a moment consider what would the two methods do if you chose the

former option? The first method would simply provide a boolean value (without

any logic) indicating whether the page should handle duplicate submission or

not. The second method would decide (a simple if logic) whether the next view

rendered needs the token in session. This information is best provided as

configuration information and that is exactly what the forthcoming customization

does.

Listing 10.6 struts-config.xml for duplicate form submission handling

<action-mappings type=”mybank.struts.MyActionMapping”>

 <action path="/submitCustomerForm"

 type="mybank.app1.CustomerAction"

 name="CustomerForm"

 scope="request"

 validate="true"

 input="CustomerDetails.jsp">

 <set-property property="validateToken" value="true" />

 <set-property property="resetToken" value="true" />

 <forward name="success"

 className="mybank.struts.MyActionForward"

 path="success.jsp">

 <set-property property="setToken" value="true" />

 /forward>

 <forward name="success" path="cancel.jsp" />

 </action>

</action-mappings>

Struts Survival Guide – Basics to Best Practices

220

Listing 10.6 shows all the customizations needed to achieve what is needed.

The application flow that is used is the same flow as before: CustomerForm is a

single page form. On submit, a success page is shown. On Cancel, cancel.jsp is

shown. However the only twist is that success.jsp is treated as a JSP with a form

that needs to avoid duplicate submission (For simplicity purposes, we are not

showing the redirect=true setting).

The action mapping in listing 10.6 provides all the information needed for

sensitive resubmission logic to be retrieved in a generic manner in the base

Action class. Before looking at the actual code in MybankBaseAction, let us

look at what Listing 10.6 conveys. It has two new <set-property> elements.

The first setting, validateToken is used to determine if token validation is

necessary on entering the execute(). The second setting, resetToken is

useful for the multi-page form scenario when the token has to be reset only on

the final page (See chapter 4 for more information). These two settings fill in the

first blank.

Next, there is a new kind of ActionForward called

mybank.struts.MyActionForward. This is an example of extending the

ActionForward class to add custom settings. The <forward> itself now

contains a <set-property> for a JavaBeans property called setToken on

MyActionForward. This setting fills the second blank.

Now, let us look at the actual code that handles form submission. This code

goes into the base Action class and is shown in Listing 10.7. The new code is

shown in bold. In addition, the listing includes all the useful code discussed so

far that should make into the base Action (except page flow Controller). You can

use this Listing as the template base Action for real world applications.

The getValidateToken() method retrieves the validateToken (<set-

property>) from MyActionMapping. This setting tells the framework whether

to check for sensitive resubmissions on the current page. After the check is done,

duplicate form submissions need to be handled as prescribed by your business.

For regular submissions, retrieve the ActionForward for the next page. If the next

page happens to be one of those requiring a token in the Http Session,

saveToken() is invoked and then the ActionForward is returned.

Listing 10.7 The complete base Action class

public class MybankBaseAction extends Action {

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception {

 // Add centralized logging here (Entry point audit)

 // Check here if the user has rights to this application

 // or retrieve app specific profile for the user

Chapter 10. Effectively extending Struts

221

 ActionForward forward = null;

 MybankBaseForm myForm = (MybankBaseForm) form;

 // Set common MybankBaseForm variables using request &

 // session attributes for type-safe access in subclasses.

 // For e.g. myForm.setUserProfile(

 // request.getAttribute("profile"));

 MyActionMapping myMapping = (MyActionMapping) mapping;

 String selectedButton =

 getSelectedButton(myForm, myMapping);

 boolean validationReqd =

 myMapping.isValidationRequired(buttons[i]);

 if (validationReqd) {

 ActionErrors errors = myForm.validate(myMapping, request);

 if (errors != null && ! errors.isEmpty()) {

 saveErrors(request, errors);

 return myMapping.getInput();

 }

 } //if there are errors through form validation,

 //return immediately

 //Check if token is valid, but dont reset token

 boolean tokenIsValid = true;

 if (myMapping.getValidateToken()) { // validate token

 tokenIsValid = isTokenValid(request);

 }

 if (tokenIsValid) {

 preprocess(myMapping, myForm, request, response);

 forward = process(myMapping, myForm, request, response);

 postprocess(myMapping, myForm, request, response);

 }

 else { //duplicate submission

 //Adopt a strategy to handle duplicate submissions

 //This is up to you and unique to your business

 }

 if (forward.getClass().equals(

 mybank.struts.MyActionForward.class) {

 MyActionForward myForward = (MyActionForward) forward;

Struts Survival Guide – Basics to Best Practices

222

 /* Reset the token if there are no errors and

 resetToken atteibute in ActionMapping is true

 Note that in multipage scenarios, resetToken is

 false in the ActionMapping

 */

 if (!hasErrors(request) && myMapping.getResetToken())

 {

 resetToken(request);

 }

 /* If there are no errors and next page requires

 a new token, set it

 The setToken is false in the ActionForwards

 for that ActionMapping. Hence a multipage

 form flow has a single token – a unique identifier

 for the business transaction

 */

 if(myForward.getSetToken() && !hasErrors(request)) {

 // next page is a form with sensitive resubmission

 saveToken(request);

 }

 }

 // Add centralized logging here (Exit point audit)

 return forward;

 }

}

10.4 DispatchAction for Image Button form

submissions

DispatchAction and LookupDispatchAction work by invoking a method

on the Action whose name matches a predefined request parameter. This works

fine for form submissions when all the buttons have the same name but does not

work for image button form submissions. In this section, we will further

customize the ActionMapping to support a DispatchAction like feature for image

based form submissions. This can be used in an enterprise application without a

second thought. It will definitely prove useful timesaver.

Chapter 10. Effectively extending Struts

223

As before, a new <set-property> needs to be added to the struts-

config.xml as follows:

 <set-property property="methods"

 value="doNext,saveCustInfo,cancelTx" />

This setting works in conjunction with the <set-property> for buttons

property in MyActionMapping. The methods is a comma-separated list of

method names to be invoked for every button name defined in the comma-

separated buttons <set-property>. A subclass of MybankBaseAction

called MyDispatchAction is created to provide the DispatchAction-like

features. This class has concrete implementation for MybankBaseAction’s

process() method. To use this class, you should subclass the

MyDispatchAction. At runtime, the MyDispatchAction invokes appropriate

method from your subclass via reflection. The process() method is shown in

Listing 10.8.

The underlying logic is almost similar to previous utilities. In the

process() method, the method to be invoked for the currently selected button

is retrieved from MyActionMapping. Then, using the MethodUtils (another

helper class from BeanUtils package), the actual method is invoked. The actual

method name to be invoked is specified in the action mapping. These methods

are similar to any method you would write had it been a regular DispatchAction.

The methods have the fixed signature:

public ActionForward methodName(MyActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

Listing 10.8 Base Action class with DispatchAction like features

public class MyDispatchAction extends MybankBaseAction {

 protected ActionForward process(MyActionMapping mapping,

 MybankBaseForm form, HttpServletRequest request,

 HttpServletResponse response) throws Exception

 {

 ActionForward forward = null;

 String selectedButton =

 getSelectedButton(myForm, mapping)

 String methodName = mapping.getMethod(button);

 Object[] args = {mapping, form, request, response};

 // this invokes the appropriate method in subclass

Struts Survival Guide – Basics to Best Practices

224

 forward = (ActionForward)

 MethodUtils.invokeMethod(this, ,methodName, args);

 return forward;

 }

}

10.5 Summary

In this chapter you looked at how to effectively customize Struts to reap

maximum benefit and minimize the burdens while developing web applications.

Hopefully you were able to realize the strengths of extending Struts and its

hidden potential for making your application cleaner and better.

Struts Survival Guide – Basics to Best Practices

225

IINNDDEEXX

Action, 24, 28, 29, 32, 33, 34, 37, 38,

39, 40, 48, 52, 53, 59, 62, 63, 66, 67,
69, 74, 76, 78, 80, 82, 83, 84, 85, 87,
88, 89, 90, 92, 93, 94, 97, 108, 110,
112, 113, 114, 128, 129, 130, 131,
142, 146, 148, 164, 172, 189, 190,
192, 193, 195, 200, 203, 205, 207,
208, 210, 211, 212, 213, 214, 215,
217, 218, 220, 221

ActionError, 35, 36, 37, 40, 44, 57, 64,
103, 106, 123, 125, 126, 127, 170,
192, 193, 194

ActionErrors, 35, 36, 37, 40, 43, 57,
101, 102, 106, 112, 113, 114, 124,
125, 126, 193, 214, 215, 218

ActionForm, 23, 28, 29, 32, 33, 36, 37,
38, 41, 42, 43, 51, 52, 53, 55, 61, 62,
63, 68, 75, 76, 78, 79, 84, 85, 90, 94,
99, 100, 102, 106, 107, 108, 109,
110, 111, 115, 120, 121, 122, 123,
128, 129, 130, 131, 142, 173, 189,
192, 203, 210, 212, 215, 218

ActionForward, 28, 29, 33, 34, 37, 38,
53, 62, 76, 79, 85, 92, 94, 108, 112,
114, 129, 189, 190, 192, 193, 203,
209, 210, 212, 213, 215, 218, 221

ActionMapping, 28, 29, 31, 32, 33, 34,
36, 37, 38, 40, 42, 43, 48, 51, 53, 54,
55, 57, 61, 62, 67, 68, 69, 72, 74, 75,
76, 77, 78, 79, 82, 83, 85, 94, 108,
129, 189, 192, 203, 207, 209, 210,
211, 212, 213, 215, 218, 220

ActionServlet, 23, 24, 28, 29, 30, 31,
47, 48, 49, 67, 80, 81, 106, 208

Bean Tags
MessageTag, 48, 54, 56, 61, 63, 80,

130, 132, 133, 138, 139, 154, 171,
176

WriteTag, 132, 133, 138, 139, 141,
143, 145, 147

Business Logic, 17, 90, 91, 113, 114
Character encoding, 173, 174
Checkbox, Smart, 121
Commons Validator, 99, 100, 101, 102,

106, 107, 111, 115
Configurable Controller, 21
CORBA, 29, 91

Core J2EE Patterns, 148, 195
Business Delegate, 90, 91, 195, 200
Front Controller, 195
Intercepting Filter, 195
ValueListHandler, 149, 150

CSS, 117, 122, 123, 146, 148, 160
Custom Tag, 41, 117, 202
Data Transfer Object, 23, 84, 90, 92
DispatchAction, 66, 74, 75, 76, 77, 78,

79, 80, 90, 97, 131, 207, 211, 220,
221

displayTag, 146, 148
DynaActionForm, 96, 97, 99, 107, 108,

109, 110, 111, 115
DynaValidatorActionForm, 114
DynaValidatorForm, 109, 111, 115
EJB, 16, 29, 91, 96, 97, 149, 183, 186,

190, 195, 199, 200
Errors.footer, 43, 44
Errors.header, 43, 44
Exception Handling, 179, 180, 182, 190
ExceptionConfig, 192
ExceptionHandler, 191, 192, 193
Extension point, 37
Fat Controller, 15, 20, 37
Form-bean, 38, 39, 47, 48, 51, 55, 57,

68, 78, 81, 209
ForwardAction, 39, 66, 67, 68, 69, 70,

72, 73, 78, 83, 87, 97, 110, 146, 160
Handler, 21, 22, 23, 24, 148, 149, 150,

192
Html Tags

BaseTag, 41, 42, 53, 54, 59, 154, 156
CancelTag, 54, 55, 143, 154, 213
ErrorsTag, 41, 43, 44, 125
FileTag, 120
FormTag, 41, 42, 43, 53, 54, 55, 120
HtmlTag, 53, 54, 59, 154, 156, 176
ImageTag, 128, 130
LinkTag, 58, 59, 67, 68, 69, 70, 74,

83, 89, 97, 110
SubmitTag, 41, 54, 55, 61, 77, 80,

110, 121, 130, 143, 154
TextTag, 41, 42, 43, 54, 55, 61, 121,

143
HtmlTable, 145, 146, 148
HTTP Forward, 35, 73

Struts Survival Guide – Basics to Best Practices

226

HTTP Redirect, 35
HttpSession, 87, 89, 146, 149, 165, 166,

170
I18N, 80, 136, 148, 162, 164, 165, 169,

170, 171, 172, 176, 177, 193
DateFormat, 168
Locale, 37, 80, 138, 162, 163, 164,

165, 166, 167, 168, 169, 170, 171,
173, 194

MessageFormat, 168, 169, 170
NumberFormat, 167, 168
PropertiesResourceBundle, 166, 167
ResourceBundle, 37, 163, 166, 169,

171
ImageButtonBean, 128, 129, 130, 131
IncludeAction, 66, 73, 74
jsp

include, 73, 74, 153, 154, 155, 160
JSTL, 104, 117, 133, 135, 136, 137,

138, 139, 141, 151, 171
EL, 117, 136, 137, 138, 139

List based Forms, 141
Logic Tags, 134, 140

EqualTag, 134, 135, 140
IterateTag, 135, 136, 143, 145, 147

LookupDispatchAction, 63, 66, 78, 79,
80, 90, 97, 131, 171, 220

Message Resource Bundle, 37, 40, 43,
44, 47, 48, 51, 56, 57, 63, 67, 79,
106, 127, 130, 170
Multiple, 132

MessageResources, 64, 82, 169, 209
Model 1 Architecture, 17, 18
Model 2 Architecture, 18, 19
Multi-page Lists, 145
MVC, 15, 18, 19, 20, 21, 22, 26, 66, 67,

70, 97, 148

MybankBaseAction, 84, 85, 90, 203,
205, 212, 213, 215, 218, 220, 221

MybankBaseForm, 84, 85, 203, 212,
215, 218, 221

MybankException, 196, 197, 198, 199,
203, 204

MybankRuntimeException, 197, 203
native2ascii, 176
Pager Taglib, 145, 146
Presentation Logic, 17, 163, 164
Request Handler, 21, 22
RequestProcessor, 28, 29, 31, 32, 33,

34, 37, 39, 40, 41, 42, 43, 47, 50, 51,
52, 55, 82, 112, 114, 159, 165, 173,
192, 200, 207, 208, 209, 213

StackTraceUtil, 197, 198
Struts Configuration File, 37
Struts Console, 95
Struts-EL, 117, 139, 140, 141, 151
Struts-GUI, 94
SwitchAction, 66, 82, 83
Tiles, 40, 74, 82, 117, 119, 152, 153,

154, 155, 156, 157, 158, 159, 160,
161, 162, 171, 172, 177

TilesRequestProcessor, 40, 159, 160
Tomcat, 15, 25, 26, 46, 59, 60, 72, 118,

137
UniqueIDGenerator, 196
URL rewriting, 58
validation.xml, 100, 101, 102, 104, 105,

106, 112
validation-rules.xml, 100, 101, 102,

103, 104, 105, 107
ValidatorActionForm, 99, 114
ValidatorForm, 99, 106, 107, 111, 112,

115
View Data Transfer Object, 23, 29, 84
XDoclet, 95

