Ior

GMSRICS‘“

The Style Guide to xtUML Modeling

Modified Date: November 10, 2011
Document Revision: 1.1
Project ID: xtUML Guide

Direct comments, questions to the author(s) listed below:
Bill Chown, 503 685 1537, at Bill Chown@mentor.com
Dean McArthur, 613-963-1112 at Dean McArthur@mentor.com

Mentor Graphics Company Confidential
Copyright © Mentor Graphics Corporation 2011
All Rights Reserved

This document contains unpublished information that is confidential and proprietary to Mentor Graphics
Corporation, 8005 SW Boeckman Road, Wilsonville, Oregon 97070. It is supplied for identification, maintenance,
evaluation, engineering, and inspection purposes only, and shall not be duplicated or disclosed without prior written
permission from an authorized representative of Mentor Graphics. This document and any other confidential
information shall not be released to any third party without a valid Confidential Information Exchange agreement
signed by the third party and an authorized Mentor Graphics representative. In accepting this document, the
recipient agrees to make every reasonable effort to prevent the unauthorized use of this information.

mailto:Bill_Chown@mentor.com

Table of Contents

FOreword t0 the SEYIE GUITEcoiiiiiiee e 4
Contributions t0 thiS GUITE.ccuiiiiiiiiiieie e 5
INEFOTUCTION ... e b bbbttt ab b bt 6
ANAIYSIS IMOUEIING ...t 6
Executable MOGEIINGcooiiiie s 7
MOl VEFTICALION ...t 8
1 ToTo [T I @] o] F= U1 o] o ISP SR 8
The Modeling Style in a Particular Application Segment............cccoveiieiieeie v 9
MOEI EIBIMENTS.cuiiticieie ettt 10
103 = Vo 1SS OPPS 10
D = R 1Y/ 01T 17
APPLCAtIoN OF TIMING ...ooiiiiicc et re e nre e 28
ACLION LANQUAGE.cuveieieie ettt ettt ettt ste et e e s e st e e be e s e sbeesteensesteebeaneesreesreenee e 32
DIAGIAMS GUITR......eeieeiete ettt bbbttt b bbbttt et e bbb bbb 33
ComMUNICATION THAGIAIM ...ttt ettt e bbb b enes 33
SEOUENCE QIAGIAIM ...ttt bbbttt b et b e bbbttt et e e bbbt beenes 47
USE CASE TIAGTAM ...ttt bbbt b bbbttt e et bbbt b eneas 64
(O F S B ol | - TSP TP PP 68
COMPONENT DIAGIAM.....ciuiiiitiitiiteiit et b bbbt e et bbb beenes 76
Y LI DI T-To | - Ly ST 91
ACHIVITY DIAQIAM ..ottt e et e e s re e et e e s te e e teesareenbeearaeareeas 95
IMPIEMENTALION TAIGELS. ... eiiiieiie et e et e re e sra e e beeannas 103
INtrOAUCTION ..o Error! Bookmark not defined.

[o T=To [0 [T I O A O e TR 103

)Y (=] 1 1 OSSPSR UPR PRI 104

Preparing t0 BUIld @ PrOJECE........ccviiiiiieie e 105
Installing BridgePoint Model COMPIIErS.........ccoveiieiiieieee e 105
Implementing a BridgePoint Model in Embedded C............coov e 107
GeNErating C SOUMCE COUEoiviiiiiiieiieiei ettt sb et ene s 107
IVTAIKINGS .ttt bbb bbbttt e e r bbb 108
BUIIAING The PTOJECT ... 109
Overriding Generated Output and Implementing External Entitiescccccoviiiiniiinnnns 110
Running the Implementation COAE...........cooiiiiiiiieicee e 111
Changing the BUIld TYPE.....cc.oiiiiiieieee e 112
Building and Simulating SystemC-based Models with BridgePoint and Vista.................. 114
GEIING SELUP .eiiiiciii et te e e s be et e et e sre e e reene e e e nreeae s 114
T4 ST o SRS 115
BUIlAING the PrOJECT.....c..e ottt ns 115
Creating and Configuring a Vista PrOJECL..........coiiiiiiee e 115
Building the ViSta PrOJECL.......cc.ociiiiece ettt 119
SIMUIALING the PIOJECEveieiiieee ettt e e e 119
RETEIENCES ...ttt bbb bbbttt bbb 123

xtUML Guide 3 Mentor Graphics

Foreword

From determining the hardware/software partition to meeting performance and cost objectives,
the job of building systems has never been easy, and with ever-increasing demand for more
functionality packed into smaller spaces consuming less power, building complex systems is
unquestionably becoming more challenging every day. Add to this the desire to shrink
development cycles and reduce the overall cost of the system, and you have an acute need to
raise the level of abstraction and reduce unnecessary miscommunication between hardware and

software teams.

Executable and Translatable UML (xtUML) accelerates the development of such complex real-
time embedded systems. xtUML is a proven, well defined and automated methodology utilizing
the UML notation. xtUML is based on an object-oriented approach that has been effectively
used in thousands of real-time software and system projects, over several years and across many

industries.
The key concepts that yield the productivity of xtUML build upon three principles

e Application models capture what the application does in a clear and precise manner.
Application models are fully independent of design and implementation details.

e These models are executable, providing the opportunity for early validation of application
requirements.

e Implementation architectures, defined in terms of design patterns, design rules and target
technologies, are incorporated into a translator that generates the code for the target
system. The implementation architectures are completely independent of the applications

they support.

This guide is intended for systems engineers, software developers, managers and supervisors

involved in the analysis and development of such systems.

The guide has been written to set out the application and methodology to achieve effective

results with xtUML, and help new users quickly become productive. In this context, the

xtUML Guide 4 Mentor Graphics

supporting tools are not enough, and effective teams must have a process and methodology that

leads to the desired result.

This guide will introduce each of the essential stages in the development flow, the approaches to
comprehending the needs, tradeoffs and opportunities presented, and the complementary
capabilities of tools and processes that are derived from best practices of many experienced

users.

Contributions to this Guide

Of course, a guide such as this has many sources of expertise and authority to which we refer,

and from whom we draw in offering this compilation of best practices.

Executable UML by Mellor-Balcer

In 2002, Stephen Mellor and Marc Balcer published Executable UML : A Foundation For
Model-Driven Architecture, which has become the definitive reference on Executable UML
(xtUML). To complement this material, this Overview endeavors to apply the principles
described by Mellor and Balcer in a prescriptive step-by-step approach that will assist
development teams in adopting xtUML. At its Core, the xtUML Methodology employs four
phases: Analysis Modeling, Executable Modeling, Model Verification and Model Compilation.
Each of these phases is discussed in general terms, and a recipe provided that will enable

practitioners to quickly become effective xtUML modelers.

BridgePoint documentation

The BridgePoint tool includes reference and user documentation that addresses tool-specific
features, details of use of the many features, and examples of key attributes. The reader is
referred to this source in addition to the methodology best practices in this Style Guide.

Additional Contributions
Other contributions come from xtUML users and practitioners in a variety of fields, and their

individual and collective expertise is gratefully acknowledged.

xtUML Guide 5 Mentor Graphics

Introduction

Several concepts and characteristics are essential to the understanding and effective application
of xtUML.

This guide addresses selected major design flow steps — requirements gathering, analysis,
partitioning, design, test, generation, and associated management processes required. It places
these steps into the context of the four xtUML phases: Analysis Modeling, Executable Modeling,
Model Verification and Model Compilation.

Analysis Modeling

Analysis Modeling is the step that moves the project from the requirements gathering stage to

being ready to begin development of the Executable Models.

Requirements: At the beginning of a system project, it is common for the architecture teams to
build a specification, usually in natural language. Using modeling can help elaborate the true
meaning of those requirements, assemble a contextual environment in which that can be explored
and effectively validated, and offer an ongoing vehicle in which derived requirements can be
included and themselves explored.

Here we will look into using the best modeling techniques to understand the needs, set out the
role of Use Case, Sequence, Communication, etc. diagrams to clarify requirements, and discuss

how and where to reference requirements within the models.

We now enter an iterative phase that simultaneously refines and expands the collection of
Sequence and Activity diagrams and begins linking them (formalizing them) to the emerging
Component models that will contain the behavior of the design being created. In the course of
this activity, we begin identifying domains of expertise, and decomposing designs into subject
matter expertise domains for focused development. This stage includes Partition: defining a
proposed partitioning into domains, for example hardware and software, so the two teams, with

different skills, can head off in parallel, and Interface: the only thing connecting the two

xtUML Guide 6 Mentor Graphics

separate teams, heading off in parallel, each with different skills, is a hardware/software interface

specification, and this is a key element of the formalism of modeling in xtUML.

Once iteration is complete, the Sequences and Activities clearly show the partitioning by
Component and are ready to feed directly into the Executable Modeling step. The System and
Design teams can now proceed with their down-stream tasks. The System team uses the
Sequences and Activities to drive the creation of Test Bench Components and other System
Level executable artifacts while the Design teams enter the Executable Modeling phase of the

design, combining these artifacts at appropriate later stages.
In this stage of the model development, it is essential to remember some fundamental principles:

Build a Single Application Model: The functionality of the system can be implemented in either
hardware or software. It is therefore advantageous to express the solution in a manner that is
independent of the implementation. The specification should be more formal than English
language text, and it should raise the level of abstraction at which the specification is expressed,
which, in turn, increases visibility and communication. The specification should be agreed upon
by both hardware and software teams, and the desired functioning established, for each
increment, as early as possible.

Don't Model Implementation Structure: This follows directly from the above. If the application
model must be translatable into either hardware or software, the modeling language must not
contain elements designed to capture implementation, such as tasking or pipe-lining that tie the
model to an implementation target. In other words, we need to capture the natural concurrency
of the application without specifying an implementation. How can we capture the functionality
of the system without specifying implementation? The trick is to separate the application from

the architecture, and this is the key to a solution, as will be emphasized throughout this guide.

Executable Modeling

Once Analysis Modeling is complete, the requirements are broken down into a collection of
scenarios that illustrate what happens when the system runs. Initial partitioning of the scenarios

and mapping of elements into components should be done. Communication patterns and

xtUML Guide 7 Mentor Graphics

ordering of messaging between components is documented in the analysis models. These
elements feed into Executable modeling that enables exploration of behavior and capabilities,

test of features and functions, and validation of design requirements being implemented.

Executable Modeling takes the scenarios described previously and creates Executable Models
that provide a testable solution to these requirements. This executable specification is directly
derived from requirements and can be tested against the analysis scenarios in the form of Use

Cases, Sequences, Activities and Communication patterns.

At this stage, the activity is evolving into the design stage, creating the detail that expands upon

initial concepts and elaborates the full capabilities required.

Model Verification

An xtUML application model contains the details necessary to both execute and test applications
independently of design and implementation. The model operates in a framework of defined
timing rules allowing verification of timing relationships, as well as functional accuracy. Formal
test cases are executed against the model to verify that application requirements have been

properly addressed.

No design details or target code need be developed or added for model execution. Application
model execution removes system errors early, with less effort and cost, and creates an

unmistakably clear exit gate: a completed application model must execute.

At this stage, the design level test step can be performed, on the individual components, between
components and even between disciplines. By continuing to maintain executable models and
working to defined interfaces, teams can bring together executable models at any stage of the

design elaboration.

Model Compilation

We translate the executable UML application model into an implementation by generating text in

hardware and software description languages, and call the tool that executes this process a Model

xtUML Guide 8 Mentor Graphics

Compiler. This is accomplished by a set of mapping rules that reads selected elements of the
executable UML application model and produces text or code. The rules establish the

mechanisms for communicating between hardware and software according to the same pattern.

Crucially, the elements to be translated into hardware or software can be selected by marking up
the application model, which allows us to change the partition between hardware and software as

a part of exploring the architectural solution space.

Generation in this manner focuses on the separation between the application behavior, described
in the models, and implementation architecture, accommodated by the capabilities of the

generation process.

The Modeling Style in a Particular Application Segment

Every application segment is going to be a little different, have its own needs and constraints,
and company norms and processes. This guide sets out to present a starting point for the
evolution of a company-specific set of guidelines for model construction that is complete and

comprehensible across the enterprise.

xtUML Guide 9 Mentor Graphics

Model Elements

In this portion of the guide, each of the elements contained within an xtUML model is discussed,

and a step by step set of instructions is provided along with recommendations.

Packages

Packages group and organize the pieces of the model. They have no semantic other than control
of visibility. Figure 1 shows a package that has been drawn in BridgePoint Builder as well as the

palette tool used to create new packages.

am £4 = B || .: palette 2 = B8

[]

& [:3 Select
3 zoom Tool

«package:
[-=- Default Toolset 0

‘H Package
+Library Pkg [:ﬁ‘

[~ Ackivity

Figure 1

BridgePoint has two types of packages: generic and specialized.

Specialized packages are restricted to contain only one type of element (for example,
components or data types). Specialized packages have a history in the Shlaer-Mellor modeling
notation. As of BridgePoint 3.4.0, specialized packages are deprecated and generic packages are

preferred.

Generic packages, called simply “Package” in the BridgePoint tool palette, can contain many
different types of elements conforming to the UML 2.0 specification of what a package is and

what it can be used for [1]:

xtUML Guide 10 Mentor Graphics

Packages are general-purpose hierarchical organizational units of UML models. They
can be used for storage, access control, configuration management, and constructing

libraries containing reusable model fragments.

Packages have visibility properties that enforce how the data inside the package can be accessed
by elements within, nested under, or outside the package. Packages also serve as an organizer of
the modeling projects. To effectively employ packages, the guidelines regarding descriptions,

naming standards, and organization, which are provided next, should be considered:

Enter Descriptions

An important guideline is to “document as you go” by entering descriptive information about
each package you create when you create it. All too often analysts choose not to perform this
step surmising that they will circle back and add it later. This second pass to write the
documentation rarely happens, and it is not surprising. The context and ideas that drove the
creation of the model elements become stale or lost completely. The pressures of the later
phases of the project outweigh a documentation pass. The size of the data to document often
becomes so large, that the task seems insurmountable. Or, the original creator of the model
elements has moved on to other work. These are just a few of the reasons that the documentation
information needs to be entered as elements are created. Choosing not to do this is a disservice

to yourself and your team.

Organization

There are no hard and fast rules about where packages, either for Analysis or Executable
modeling, should go in the hierarchy. Related packages should be grouped, following the rules
of cohesion. That is, maximize close proximity of related subject matter and minimize package

interdependency.

Use Separate Packages for Libraries and System Wiring

You should create packages that serve as libraries of components. For example, create a package
that is a library of components which models hardware functionality. Create another package
that is a library of components that serve as the hardware abstraction layer (HAL). Create

another package that is a library of components that serve as a test bench for the components

xtUML Guide 11 Mentor Graphics

elsewhere in the model. Create another package or packages that contain the application itself.

Create packages to contain the interfaces that the components expose.
Then, create one or more packages that define scenarios for how the system is wired together.

Definition: to wire components references together is the act of connecting a provided
interface from one component reference to a matching required interface of another

component reference.

Continuing the previous example, the project should have a “System Test” package with
component references to a hardware component, a HAL component, and a test bench component
wired together. The project should have another package “System Implementation” that includes
HAL component references wired together directly with application components. The system
implementation package is what is passed to the model compiler for translation into

implementation code.

BridgePoint allows you to wire together components themselves as well as component
references. However, direct wiring of components is not recommended. Stick to creating

component libraries, and only wiring together component references.

Let’s consider a simplified example using the case study project included in the BridgePoint
help. Figure 2 shows a library package that contains two components. The component

interfaces are specified, but the interfaces are intentionally left disconnected.

xtUML Guide 12 Mentor Graphics

o library: Package Diagram £ B syskem: Package Diagram

EI synchronization
[e=]

+heart |£2] C

=l

synchronization
+E| +pacer

-

=

Figure 1
The wiring diagram, a package named “system” as shown in Figure 3, is where the component

references from the library have the interfaces connected together.

I library: Package Diagram 2 system: Package Diagram -4

{I synchronization E

T—— =l (= N T
avpace; library;:heart <2 @ 3| avpace:library:pacer

[]

Figure 2
By leaving the interfaces disconnected in the library, you are free to create other components and
system wirings that connect the component references from the library together in different

configurations.

xtUML Guide 13 Mentor Graphics

Naming Conventions

% Model Explorer &3 = B8
Since packages provide the organization of the =i 2
various pieces of the model data, package names 4 |l=F HandheldaPs
. e > HandheldPS: System Model Package Di
should give some indication about the data. Here E anene e Tade] Farkage Hagram
: Analysis
are some suggestions: - B Interfaces GPS-HAL

- B Interfaces HW-HAL

)) - B3 Library GPS

e Usea meanlngful name over a generic or - Library HAL
overly-broad name - H Library Hardware

4 EE‘ System Implementation

- B Swstem Test HAL

e Put the purpose of the package first so that B Systom Test Hardware

similar packages are grouped together in - 1T Datatypes
Model Explorer and provide organizational
information.

Figure 3

Visibility and Namespaces
Packages support public (the default), protected, and private visibility. On the Ul canvases, the
package name is preceded by an indicator to show the current visibility setting: + (public), -

(private) and # (protected).

Name-spacing is supported and managed entirely by means of visibility. That is, two elements
with the same name are permitted provided that they are not simultaneously public in any action

language scope. More than one type found during parsing is indicated by a parse error.

Note that changing the visibility of a container has no effect on the visibility setting of a child. If
a package is visible to another element, it will be descended, regardless of the visibility setting.
You may wonder: “So, what is the point of marking a package as private?” It is in the opposite

conclusion; if a package cannot be seen, it will not be descended.

The behavior is closely analogous to that a text based programming language. For example, can

you see public members of a private class in Java? Yes, but only if you are in the same package

xtUML Guide 14 Mentor Graphics

as that class. In fact, if you are not in the same package, you can't see the class, let alone its

members. Here, the visibility of the container does not affect the visibility of its members.

In the default workspace configuration with inter-project references turned off, a consequence of
the rule above is that marking a top level package as private is meaningless, since there is
nothing above it to be hidden from. However, if the workspace has inter-project references
turned on, top level package visibility does matter because it allows you to control which

packages can be seen (and hence descended in searches) from other projects.

xtUML Guide 15 Mentor Graphics

Visibility matrix

Referred to Referred to Element is
Element is public protected private
Above 1in same v % I
package

Below in v I I
package (1)

Peer Y Y \Y
Above in \Y% I I
sibling

package (1)

Above 1n same v V (3) I (2)
Component

System Level V V (3) I (2)

Legend: V = Visible, | = Invisible

Notes:

(1) Assumes parent package is visible according to the same rules.

(2) A private element immediately under the system or component has very limited visibility,
limited only to peer elements at the declared level.

(3) Marking an element as protected in a system or component level context is meaningless since

the semantics are no different from the public semantic.

xtUML Guide 16 Mentor Graphics

Data Type

UML data types [1] are, by nature, very similar to data types in implementation languages.

BridgePoint data types are based on a two-level scheme:

e Core or Primitive data types are fundamental to the language. Core types are the base
from which other data types can be defined. Model elements may be declared to be of a
core type. The core types are:

void inst<Event>
boolean inst<Mapping>
integer inst_ref<Mapping>
real component_ref
string date

unique_id inst_ref<Timer>
inst_ref<Object> timestamp

inst_ref set<Object>

e Domain-specific data types are added by you to define and extend core types in terms of
the application domain.

For additional discussion of this scheme, see [2]. The BridgePoint help (See Help > BridgePoint
UML Suite Help > Reference > Using BridgePoint > Model Elements > Data Types provides

detailed definitions for each of the core data types.

Steps to creating Domain-specific Data types
The same Help document defines the options to create domain-specific data types. The tool

palette “Types” drawer shown in Figure 4

Figure 5 contains the domain-specific types you can add to your model.

xtUML Guide 17 Mentor Graphics

= O || <% Palette 22

-~ [,E Select
JE' Zoor Taol

== Default Toolset
‘H Package

[Ackivity

[Classes

[Communicakion

[~ Components

[== External

[~ Inkeraction

[—% Sequence

m

== Types
g’ User Data Type
J" Constant Specification
E' Structured Data Type

E Enumeration Daka Type [\'\\S‘

Figure 4

Figure 5

TrackLog
{2, Tracklog} | |

distance;real

currentSpeedireal

currentPace;real {1k
currentHeartRate:red

skartTime:timestamp

lastknownLocation: Location

hasLocation:boolean

addTrackPoint{location: Location': void
clearTrackPaoinks(void
addLapMarkervaid
clearLapMarkers1aid
addHeartRateSampledheartRakte: real) void
clearHeartR.ateSamples():void

imikd 1 evoid

BridgePoint shows the type of elements on appropriate diagrams throughout the tool. Figure 4

shows an example from a class diagram. Attribute, parameter, and return value types are shown

following their associated element.

Both core and domain-specific types are valid in all contexts where types are used. For example,

it is just as valid to use a structured or enumerated data type as a class attributes type as it is to

use those types for a parameter or return value of an interface message.

General Guidelines

e Document all new data types you create by writing description information in the

Properties view when the type is created. This “document as you go” approach has many

benefits and should not be ignored.

xtUML Guide

Mentor Graphics

e Create Packages to contain domain-specific data types. Data type packages may be
nested inside components if the type is specific to that component or its children. Create
packages to hold data types at the system level to organize and contain types that may be
used on the interfaces between components or are generally applicable to more than one
component in the application.

e Create and use enumeration data types to specify lists and values. For example, the
enumerated type “MatterState” with values (Solid, Liquid, Gas) is preferable to using
integers with values 0, 1, and 2. Enumerated types provide contextual information and
allow the parser to restrict code to legal values where, in this example, an integer would
not.

e Use constants instead of embedding raw values into action language.

e Some advice from Mellor and Balcer [2] is applicable as well:

Syntax vs. Semantics. Define attribute types in terms of the meaning of the data (the
semantics), not merely in the form of the data. Good models should use domain-specific types as
much as possible and refrain from using the core data types if more meaning is available. Hence,
defining an attribute merely as real is not as good as using a domain-specific type, such as

Currency or Supply Voltage.

Naming Conventions

e Choose meaningful names for domain-specific types. The name of the type should provide
contextual information about where it is appropriate to use. For example, don’t name a
domain-specific type “MyEnum” when “MatterState” is appropriate. Don’t create an
integer-based User Defined Type “MyShortInt” and overload its usage when two types
“PostalCode” and “AreaCode” are appropriate.

e Name domain-specific types consistently. Don’t name one type “MatterState” and another

“supply_voltage”.

Visibility
Data types are subject to the same visibility rules that govern packages and components. See the

section Packages within the Style Guide for more information about the visibility rules.

xtUML Guide 19 Mentor Graphics

Setting Types

BridgePoint provides two ways to modify the type of

ML wodeling - avpace::librany - BridgePoint UML
File Edit Mavigate Search Project Run Window Help

Ci- | otd %Y = »J;.Y A h
B \l'q SWh Repository Exploring

“ Model Explorer -7 =0

a model element (for example a class attribute or
interface parameter). The primary method is shown

o library

in Error! Reference source not found., using the
“Set Type...” action on the element context menu in

the Model Explorer view.

When you select an element in the Model Explorer
view, or on one of the BridgePoint diagrams, the
Properties view is populated with information
(including the Type) about the selected object. The
Type field is modifiable here by selecting the «...”
button.

Either action may be used with the same outcome,
which is to open the Type Selection wizard shown in
Figure 6. This wizard shows all the types the model

element may be set to. The wizard automatically

cycle_count
current_state
Lireout_kimer
systolic_timeout
@ diastalic_timeout
T8 Instance State Machine 1333 Property
B9 Class State Machine 1279 Easic
G!, Respiratory Monitor 1279

4
Graphical Editar

o Q0 O O

| Properties &9

| 54 7

4 I:__"," avpace 1364 [svn:/fbucson.wy.mentorg. comjarchi/
I;_—'_‘; avpace; Syskem Model Package Diagram 1278
© B inkerfaces 1279
4] library 1364
B library: Package Diagram 1279
- & heart 1279
4 EH pacer 13564
@ pacer: Component Diagram 1351
- HE External Entitiss 1279
d Ei, Increased Activity eactivitys 1364
d Ei, Increased Activity scomme 1333
- B Increased Activity «sdw 1333
4 Bﬁ pacer 1333
EFJ‘ pacer: Package Diagram 1333
- @) Host Manitor 1333
4 & pacer 1333
G'J pacer 1279
@ gyskolic_tolerance

@ diastolic_tolerance
@ cycle_count
© current_st hles
@ timeouk_kin Open
@ gystolic_tin Open With
o diastalic_ti
> m Instance 5 Set Tvpe...
] m C.Iass Skats Move Down
> @J Respiratory M
@J Temperature I itmse Up

1111

I"_ Problems

Yalue

Array Dimensions

L“_, Terperature Monitor 1279 Attribuke Marme cycle_count
to_heart Attribute Mame Prefix
?i, syskemn 1279 Attribute Root Marme cycle_count
{37 Databypes G158 Defaulk Yalue
= HandheldaPs Description
Prefix Mode Mo Prefix
] 10 b Type inkeger
lnk
xtUML Guide 20 Mentor Graphics

hides types with restricted visibilities that are invalid.

Elements must have their type set individually. Group type modification is not supported.

However, the wizard automatically highlights the last type you chose. This saves you a few

mouse clicks when setting a number of elements to the same time. The wizard dialog includes a

“Find” field, where you can enter a regular expression to locate and restrict the available types

shown in the chooser. Note, the existing data type of the selected element being modified is

shown in the “Current type” field. The existing type is never shown as an available choice.

o Type Selection

Find:

Enter texk ko shaorken the lisk, .

Choose a bype:

=3 [Nol ==

Case Sensitive

* = any string, ? = any character, | = escape for literals: * 7) Ilse Regular Expressions

Element

@ boolean

@ component_ref

b date

@ inst=Event =

" 3 inst_ref <Timer =

@' real

@ state=State_Model =
@ skring

" 3 Lirestamp

@ unique_jd

Elernent Path

aYpace;
aypace;
avpace;
SVpace;
aVpace;
avpace;
avpace;
aYpace;
aypace;
avpace;

Dataktypes
1Datatypes
:Datatypes
:Datatypes
:Dataktypes
1Datakypes
:Dakabypes
Dataktypes
1Datatypes
:Datatypes

@ Currenk bype: inkeger - avpace::Dakakypes

—_—
{;?]

o | [Ccmea]

Figure 6

Data Types in Action Language

The OAL parser checks type compatibility in the action language code. It prevents you from

assigning variables of mismatching types, passing variables of the wrong time to operations and

xtUML Guide

21

Mentor Graphics

interfaces, etc. When dealing with integer and real numeric values, the rigidity of type

enforcement can be configured in the BridgePoint preferences as shown in Figure 7.

= Preferences = @

kywpe filker bexk Action Language = RS
- General -
. ATL Allow promotion of inkeger ko real
4 BridgePaint @ Yes Mo
Action Language
Ackivity Editor Allow lossy assignment of real to inkeger
- Diagram Editors @ Yes Ma

Message Direckion

rAa_ Jd_lr—. . _.L

Figure 7

“Allow promotion of integer to real” determines whether or not the parser will transform an
integer into a real when performing mathematic or assignment operations. The default is “Yes.”
If you want to enforce strict type compatibility, change this preference to “No.” Changing this

setting to increase strictness automatically enforces strictness in the other preference.

“Allow lossy assignment of real to integer” determines whether or not the parser will allow
assignment of a real to an integer variable or attribute with the consequence that the decimal

portion of the real value will be truncated off.

Data types in OAL are handled implicitly. There is no explicit declaration of a transient with a
specific type specified. To “declare” a transient to be of a specific type, simply write an

assignment statement that introduces the transient and gives it a value. For example:

/I Correct I Incorrect

index = 0; integer index;

voltageLimit = 1.5; index = 0;

message = “Hello World”; String message = “Hello World”;

To use an enumeration data type in OAL, the syntax is <enumerated type
name>::<enumeration>. For example, using the MatterState enumerated type defined in the

General Guidelines section above:

xtUML Guide 22 Mentor Graphics

// Using an enumerated type

heating = true;

if ((currentState == MatterState::Liquid) && heating)
nextState = MatterState::Gas;

else
nextState = MatterState::Solid;

end if;

(344

The members of a structured data type are accessed with the “.”” operator, the syntax is: <sdt
variable>.<sdt member>. Consider an example from the GPS Watch example model. Here,
currentLocation is of type Location with is a structured data type with three real members

(longitude, latitude, and speed):

select any gps from instances of GPS;
if (empty gps)

create object instance gps of GPS;
end if;

// reset currentLocation
gps.currentLocation.longitude = 0.0;
gps.currentLocation.latitude = 0.0;
gps.currentLocation.speed = 0.0;

Constants are used directly based on the constant name. There is no scoping based on the name
of the constant specification that contains the constant. The constant specification name has no
semantic meaning. It is for informational and organizational purposes only and may be blank.

For example:

xtUML Guide 23 Mentor Graphics

/I A constant specification named “Messages” with constants:

/[LISTENER_REGISTERED = Location listener registered.

/l LISTENER_UNREGISTERED = Location listener unregistered.
I/ exists in a package at the system level.

if (registered)
LOG::LoglInfo(message: LISTENER_REGISTERED);
end if;

Data Types and Model Compilers

The BridgePoint model compilers provide a means to configure domain-specific user data types
for your specific implementation needs. As with all model compiler configurations, this is done
through marks. The marks are found in the <project>/gen/datatype.mark file.
Marking is used to define the precision of these user data types. This is particularly useful to
reduce the storage (say from 16 or 32 bits to 8 bits) of class attributes when the ranges of the
attributes are known to be limited. Marking can also be used to map pointer types, specify
uninitialized enumerators, and specify specific values for enumerators. There is detailed help in
the BridgePoint Model Compiler User’s Guide in the “Specifying Data Types, Precision, and
Enumerators” section. The datatype .mark file itself contains additional information and

examples for using each of the available marks.

Data Types and Inter-Project References

Currently, BridgePoint models are created by default to be self-contained. That is, they do not
refer to any modeled artifacts not defined within the current project. It is often convenient to
create a separate project to act as a model library. However, in order to do that, the cross
referring projects must have a common definition of the Core Data types (integer, real and so
on). If this were not so, the Object Action Language parser could not confirm the compatibility
of data passed between instances in different projects, and Verifier could not execute such inter-
project references. Therefore, before you can reference elements in another project, both projects

must have been upgraded to use common global core data types.

xtUML Guide 24 Mentor Graphics

You can tell if a project has already been upgraded to use global data types. Click the right
mouse button over the root entry of the project in Model Explorer. If the menu entry ‘Upgrade to

use global model elements...’ is present then the project needs to be upgraded.

UL thodeling - HandheldGP%::Datatypes - BridgePoint UL
File Edit Mavigate Search Project Run Window Help

l__l | |.'|.|-|:| i{ - D -,Jh - - - cu:l - -

B \n._'q| WM Repositary Exploring [SEE et ML Modeling]

“f Model Explarer &3 = 0| Datakypes: Dakta Tvpe Package Diagr.
=
< | i primikives
|5 avpace 1364 fembliiccnn s snonkonn comtarchid
- = GRS Watch PlEw 4
+ = HandheldaP? Open
Dpen \With 3

Create documentation
Launch Verifier
Ilpgrade to use global model elements. .. [E‘ —

Project Preferences

< Undo

Figure 8

Choosing this menu action will present you with the dialog shown in Figure 9:

o)

" Upgrade model to global data types @
9 This ackion will ready the model Far use with interproject references.
| |
= It will move all element data tvpe references to refer to global bvpes.
Redundant system level daka types and empty data bype packages wil be

removed,

For Team controlled projects, this will mark multiple elements in the project as
modified,

K] | Cancel

Figure 9

The process will find all references to built-in data types in your model and replace them with

references to the global equivalents. Be prepared for large parts of the model to be marked as

xtUML Guide 25 Mentor Graphics

modified if you use a Configuration Management system. However, the visible changes to your
model will be hardly noticeable. The biggest change to expect is that the system level package;

‘Datatypes’ may be removed if it is found to be empty after the upgrade. This will be the case if
you have never added any types of your own to this package. No user created data types will be

removed.

Once this is done, you can enable inter-project references by clicking on each System Level in

the Model Explorer tree and choosing Project Preferences > Inter-project References.

xtUML Guide 26 Mentor Graphics

Application of Timing

The UML reference manual [1] defines the ability to model time in a diagram, but it does not
provide a definition of what time is or semantics for how time behaves. To the reference
manual, time is little more than another type of graphical element that can be drawn on a

diagram.
Mellor and Balcer expand on the concept of time in Executable UML[2]:

For UML to be executable, we must have rules that define the dynamic semantics of
the specification. Dynamically, each object is thought of as executing concurrently,
asynchronously with respect to all others. Each object may be executing a
procedure or waiting for something to happen to cause it to execute. Sequence is
defined for each object separately; there is no global time and any required

synchronization between objects must be modeled explicitly.

Signals are the means by which objects communicate and synchronize with each other. They are
interpreted by the receiver which executes a procedure as an effect. The procedure has its own

processing which may include data access, operations and the sending of its own signals.

Executable UML goes on to define rules about signals, procedures, and data access that are
implemented in BridgePoint xtUML. These rules define the execution semantics.

Time (TIM) External Entity

BridgePoint provides a built-in external entity named Time (key letters TIM) to implement

access to timing and clocks.

xtUML Guide 27 Mentor Graphics

xtUML supports two different concepts of time in the Object Action Language that provide

concrete access to time in the implementation:

External time: Time as known in the external world. For example, 12 October 1492,
13:25:10. The accuracy of external time is dependent on the architecture and

implementation.

Internal time: An internal system clock that measures time in “ticks”. The value of a tick

is dependent upon the architecture and implementation.

An implementation of the TIM EE is defined inside Model Verifier. It provides a Java

implementation that runs on the host machine inside BridgePoint.

The Model Compiler provides an implementation of the TIM EE in the target language that runs

on the target itself.

Detailed usage syntax for accessing external and internal time may be found in the Help System
under BridgePoint UML Suite Help > Reference > OAL Reference > Date and Time.

BridgePoint does not natively support differencing of internal timestamps. However, an
interesting example of how this can be achieved by extending the application is found in the
“Another Example” section of the Model Verifier Java Interface document (BridgePoint UML

Suite Help > Reference > Using BridgePoint > Model Verifier Java Interface).

Timers
A timer allows a pre-created event to be delivered at some future time. This operation starts a
timer and sets it to expire after a specified number of microseconds, generating the specified

event upon expiration. This can be done in a once-and-done or recurring manner.

It is important to note that the delay given specifies the minimum delay, not the exact delay. The
model relies on the characteristics of the target architecture and the execution environment to
deliver the event as soon as possible after the timer expires. In many architectures, there may be
a delay between the expiration of a timer and the delivery of the event to the receiver. The
xtUML execution semantics have no control over this. The execution semantics can only

guarantee that the timer will never expire before the given delay has elapsed.

xtUML Guide 28 Mentor Graphics

In addition to creating and starting a timer, you can query a timer and receive the time remaining

specified in microseconds. If the timer has expired, a zero value is returned.

The TIM EE also supports setting a new expiration delay on an existing timer, overwriting the

original expiration delay as well as adding time to the original expiration delay.

Finally, the TIM EE supports canceling a timer, which deletes the timer completely such that the

event associated with the timer will never be delivered.

Detailed usage syntax for accessing external and internal time may be found in the Help System
under BridgePoint UML Suite Help > Reference > OAL Reference > Timers.

Time in Model Verifier
Model Verifier supports two ways of viewing time when debugging application execution. Wall
clock time and Simulated time. Each Model Verifier launch configuration can set this option as it

chooses as shown in Figure :

o Debug Configurations @
Create, manage, and run configurations et
_.. **
Launch xtUML application in debug mode ‘\

o [T —»
5 =R
- %| il Marng: (GPS Watkch

by filker bext e p—
= Models] Common

™ accelen Application

@ ATL Transformation Select Model(s) o Verify
L& | CfC++ Application
[©] CfC++ Attach to Appli
=|£| T+ Postmortem De
4] Java Applet

[37 Java Application

B Launch Group

f&“; Model Werifier Applicaki

Model Explorer rulkiplicity: Initializer Message

'[5-‘ aAvpace
I=F GPS wWatch
= HandheldGPS

ﬁ aPS Watch Log model execution activiky [

|_:| TIW'E WitarkFlo Fun determiniskically

', Remate Java Applicati Enable simulated time LIIL.?
Pl 1 3

| Apply | | Revert |

Filker matched 13 of 13 items
et
":-:_’.:: [Debug l | Close |

Figure

xtUML Guide 29 Mentor Graphics

When executing in simulated time, when the application processes all the outstanding events on
the event queue and the application is waiting for timers to expire and post new events to the
event queue, the system recognizes this and advances internal time to the point where the next
timer will expire. By doing this, the application runs much faster because the launch

configuration avoids any delays where the application is effectively sleeping.

When executing in wall clock time, this method of advancing time is not used. All delays or
periods of the application sleeping are waited out the duration of the delay in the real world on a

clock on the wall.

Simulated time is especially useful for testing purposes. It allows scenarios to run faster in
simulation allowing the test to cover more ground in simulation and debugging in a shorter

amount of wall clock time.

“Run deterministically” is another execution preference. It controls the internal behavior of
Model Verifier, and is not primarily related to time so it is not detailed here. However, it does

force the application to run in simulated time to support the features it provides.

xtUML Guide 30 Mentor Graphics

Action Language

OAL is used to define the semantics for the processing that occurs in an action. An action can be

associated with any of the executable BridgePoint model elements. This section provides some

guidance to use while writing OAL. For basic OAL syntax see the BridgePoint OAL Reference

manual in the BridgePoint UML Suite Help. For a more detailed information about why OAL is

needed in executable model see [1].

General Guidelines

Make the OAL Readable
e Make OAL “beautiful” by using white space and consistent formatting.
e Modelers must be able to understand the OAL for code reviews and maintenance.
e Add comments liberally!! The comment character in OAL is: “//”
Leave a history if possible.
e Add references to issue IDs (from an issue tracking system) .
e Adding issue identifiers allows changes to be tracked back to the reason for
the change.
e When checking-in changes to your revision control system always use good
comments in the check-in comment!
When writing OAL think about another Modeler who may have to look at this OAL over
a year from the point in time you are writing it. Comment the OAL and style it to make it
easy for that Modeler (HINT: You may be this modeler that revisits this OAL over a
year from the time it was originally written!).
Use BridgePoint’s Model Verifier to quickly execute, test. and validate OAL .

To assign NULL to a variable use a native Bridge operation that returns null

xtUML Guide 31 Mentor Graphics

Diagrams Guide

In the documentation of requirements and the evolution of xtUML models, diagrams are
extensively used to precisely describe the desired operation of the system. With this importance,
we have included this section to discuss each diagram and provide step-by-step instructions on

producing intelligible, informative diagrams.

Communication diagram

1: lastTomg = gok Currenk Toap: 3704 Tengersturebcntor] : Termpersture Monkor
R
R2
Pacer] : pacer
Sastole_timeout € 3: PACER4: ncrassadTemper Sture (terp) provides tamper e
Syshobe_timact curent. N S %S moedoeng
bemacut_temer fourent_huap > 3.5}
cycle_count - MostMonior] : Most Monktor
Oareck_ate < 4: PACERS: ncreasedRespratonyRate (rate) =
Gastobe_tolerarce kit Temp = 37.84
Systobe_toierance [curerk_rate > 18 bpms] lostRate = 35
= Ourrent_state
MRS R1
host fee mary have montor
proredes resge tory RespratoryMondor] : Respratory Morkor
MOnRonng
R3
.
2: stRate = oRCurrentRate:35

Use a Communication Diagram to document the details of a certain procedure and to depict the
interaction of associated objects within a system. The interaction details include the associations
between the objects of interest. In addition, the details include the communication that can occur
between the objects. The time sequence for the communication can be captured by using

sequence numbers in the message labels.

Style Guide 32 Mentor Graphics

Things to Know

Participants (Component, Instance, Actor, External Entity, Class, Package)
Messages (Synchronous, Asynchronous, Return)

Links

When to use

A Communication Diagram can be used formally or informally. In the formal case the various
objects, associations, and messages will already exist. The Communication elements will be
formalized against (referencing to) the existing objects and will be used to depict a procedure
that occurs among the existing objects. The resulting document will aid in detailing a single

procedure, while filtering out all possible procedures among the objects.

In the informal case there will be no existing objects, associations, or messages. The
Communication elements will be created to document a required procedure, including the objects
and their interaction. The elements can then be used to realize the objects, associations, and
messages. When creating an informal document a few things must be known. The following

checklist can be used to get started:

e The required procedure and its goal, what must be accomplished.

e The various objects that participate in the procedure.

e The associations among the participating objects.

e The messages between the participating objects that are called in order to achieve the

procedure goal.

The resulting document is living and may change over time. When focusing on the informal
case, the exact objects, associations, and messages do not have to be precise. The document will

change as these elements come to realization.

A well written Communication Diagram will be short and precise at describing the desired
procedure. Include only objects that participate in the procedure, and include only messages
between the objects that participate in the procedure. If the procedure to be documented is large,

break the procedure into sub-procedures each with its own Communication Diagram.

Style Guide 33 Mentor Graphics

Formal Usage:

As stated above in the formal case the objects, associations, and messages will already exist. A
Package is used to enclose communication elements and thus represents the Communication
Diagram. Create the Communication Diagram at a location that makes sense given the existing
elements. Place the diagram in the hierarchy of packages following an organized strategy.

Select the appropriate tool to create a participant. This will be one of the listed participants from
the Elements section above. Choose the tool that will match the formal object. For instance if
the content of the Communication Diagram will show the interaction of Components, then
choose the Component Participant tool. Create one participant for every object that will
participate in the documented procedure. For each participant created, use the formalization

wizard to locate and use the appropriate object.

Now select the Link tool, and create the link(s) that are to be documented in the procedure.
Create these links between each object created above. There will be a matching association, or
interface satisfaction for the component case. For each link that represents an association, use

the formalization wizard to locate and use the appropriate association.

Now create the necessary messages that are documented by the procedure. In most cases this
should not be all of the possible messages that are between two associated objects. The diagram
shall focus on the procedure to document and shall ignore any messages that are not pertinent to
that procedure. Create the messages next to the created links. Multiple messages can be present
for each link as long as they pertain to the procedure to be documented. For each message use

the formalization wizard to locate and use the appropriate action.

Style Guide 34 Mentor Graphics

& 248800

Figure 1.1 (Showing formal referencing)

Informal Usage:

When creating the Communication Diagram informally, there are no existing elements to base
the procedure on. The diagram will serve to provide aid when creating the real elements. An
informal diagram will start off informal but will later migrate to a formal diagram. While
creating the diagram consider carefully the procedure to be documented, taking care to name the

informal elements appropriately.

The mechanics of creating this diagram are identical to that of the formal case. The one step that

will not be taken is using the formalization wizard.

The informal Communication Diagram elements have attributes that can be set which allow
further definition. Informal elements can be configured such that enough data is present to allow
fully configured realized elements. The proceeding How To section will explain how these

informal attributes are used.

Style Guide 35 Mentor Graphics

Conversion to formal document:
As stated above at some point all Communication Diagrams shall become formal. After an
informal diagram has been agreed upon by all stake holders, it is time to realize the procedure

using the following steps:

1. Create an object for each participant in the procedure. The object created depends on the
participant type. The exact steps for such creation are not within the scope of this document.
For example, if the participant type is component, then a matching component shall be
created in a package.

2. Create an association or interface satisfaction for each link that exists in the Communication
Diagram. Again this depends on the type of the participants at each end of the link.

3. Create the necessary action, i.e., operation, for each message that exists in the
Communication Diagram. The destination for the actions will be the object that the
participant represents at the end of the message on the diagram. The end of the message is
denoted by the arrow end.

4. After all of the objects, associations, and actions have been created it is time to formalize the
original document. Select each participant and use the formalization wizard to locate and use
the objects created above. Repeat this step for each link and each message within the

document.

Steps to creating a Communication Diagram

Diagram creation:

Once the location has been determined, locate the palette view (see Figure 1.2 below). In the
palette view select the Package tool (as shown in Figure 1.2). On the editor page click the left
mouse button and drag a distance. A marquee will be drawn that indicates the location and size
of the graphical symbol to be created. Once the symbol is at a desired location and size let go of
the left mouse button. At this point a new Package has been created. Right click on the Package
graphical symbol and select “Rename” (See Figure 1.3 and 1.4 below). In the window that is
opened enter a good name for the package. This name should reflect the procedure that is being

captured by the Communication Diagram.

Style Guide 36 Mentor Graphics

[Select
&J Zoom Tool

(= Default Toolset

New Package

(= Actiy

€

= Classes

(= Communication

.~ Components

[~ External

[~ Interaction

= Sequence

& Types
(> Use Case

Figure 2

Enker the new name:

Mew
COpen
Cpen With

Make Private
Make Prokected

Publish References

<= Undo

2 Redo

of Cut
Copry
Copyw Image

Paste

Select all

Delete

Renarme

Figure 3

Mrename

Unnamed Package|

QK

I [Cancel

Figure 4

Style Guide

37

Mentor Graphics

Participation creation:

As with diagram creation, the proper tool must be selected. As stated

: E::j _— in the Elements section there are many participants. Select the

& Zoom Tool participant tool that is of interest (see Figure 1.5 below). Once selected
Zz:;iiuttwﬁt proceed to draw the symbol for the participant graphical element (see
—— steps in package creation for details). At this point the newly created

=% Comrmunicakion

(= Components participant can either be formalized or customized to represent a future

== External

., formal element. For either case, formal or informal, it is a good idea to

A z“” t enter a description for the element created. The description shall
m amponen
fy Instance describe the role of the element within the documented procedure. To

=] External Entity
BH Package Participant

set the description right click on the element and choose the Open With

T Class > Description Editor menu item (See Figure 1.6 below). Enter the

‘y’ Swnchronous Message

7 Asynchronous Message desired description text and save the changes (See Figure 1.7 below).

ﬁ;ﬂ Return Message

=~ Sequence
= Types
= Use Case

Ef=Pacer1:ChssInﬂancePaerpantDeschﬁon &3

IThe pacer instance has an increased amount of signals del
Letivity., This allows the Pacer to deliwver the appropriaf
gooowodate the heart under the inereased activity.

Figure 7

Style Guide 38

Metw
Jpen
Open With

Make Private
Make Protected

Publish References

Undo
Fedo

[D-= Description Editor

Mentor Graphics

Formal participant creation:

If there is a formal element present that the participant can represent,
then right click on the participant and choose the Formalize... menu
item (as shown in Figure 1.8). At this point there is no further
configuration required. All data will be derived from the formal

element chosen.

After executing the Formalize... menu item a wizard will appear.
This wizard will present the available objects to formalize against.
The elements will be listed in a flat list, giving the element name in
the left column and the element’s path in the right column (as shown
in Figure 1.9). Locate the element of interest and click the OK

button. The participant will now be formalized. This can be verified

* Formalize Selection

Find:

Enter kext ko shorten the list, ..

(* = any string, ...or literals; * 2)

Choose a class:

=8| Bl =X

Case Sensitive

Use Regular Expressions

Enable visibility Filker

Element Element Path

8 heart avpace: library: heartheart |

G Host Manitar avpace::library::pacer: ;pacer

C] pacer avpace::library::pacer::pacer

@ Respiratory Manitor avpace::library::pacer::pacer
sinus node avpace::library::heart:heart

G Temperature Manitor avpace::library::pacer::pacer

P

'\3_,' K Cancel

Style Guide

Cpen
Qipen With [3

Unformalize

Formalize. ..

<7 Unda
Redo
of Cut
Copy
Copy Image

FPaste

Select All
Delete

Rename

2y Import...
5 Expork...

WikiTent 3

Run As 3
Debug As 3
Profile As 3

by inspecting the display name or in the Properties

view while the element is selected (see Figure 1.10).

39

(::_F';erl : pacer

diastalic_timeaut
systalic_timeaut
Firmeaut_kirmer
cycle_counk
current_skate
diastalic_tolerance
systalic_tolerance

Mentor Graphics

£ Properties &7 |21 problems | 'C)) S¥M Repositories

Properky
4 Basic
Informal Class Mame
Instance Description
Instance Mame

Is Formal

a fsynchronous Messages
- Asynchronous Message
+ Asynchronous Message

o e an

Figure 10

Informal participant creation:

i@i
"
%

Walue

Pacer

The pacer instance has an increas
Pacerl

true

PACERS: increasedRespirataryR.al
PACER4: increasedTemperature

q

m

-

If the element created is informal, then right click and the element and choose Rename. Enter

the desired name of the element (note that it should be consistent with the future name of the

realized element) in the dialog box that appears. If the element created is the Instance participant

type further detail can be set. The Instance participant type can have an Instance name and an

Informal Class name. The Informal Class name is used to depict the object type that the Instance

is instantiated from. The Instance name is a unique name that represents this particular instance.

Both of these are set in the Properties view. To set them select the Instance participant element

and switch to the Properties view (See Figure 1.11). Find each attribute and change the right

field to the appropriate values.

T | Propetties 24

Property Yalue

Basic

Informal Class Mame T:jir_t‘)
Instance LT

Instance Mame Pacerl
Is Farmal false
Figure 11

Style Guide

40

Mentor Graphics

The Instance and Class participants can additionally have informal Attribute Values and
Attributes added. This will aid in further detail for the procedure that is being captured. The
informal Attribute Value object can additionally have a value set; this is a value for the attribute
in the given procedure. To create an informal Attribute Value, choose the Instance participant of
interest and right click. From the context menu choose the New > Attribute menu item (See
Figure 1.12). The informal Attribute Value will be added to the Instance participant body. To
rename the Attribute Value open the Model Explorer view and right click on the Attribute Value
instance. In the dialog that appears set the desired name. As with other informal elements take
care in naming the Attribute Value as at a later time it will become a real Class Attribute. To
configure a value for the Attribute Value instance open the Model Explorer view and select the
element in the tree. In the properties view navigate to the Attribute Value field and set the
textual value. The informal Attributes can be added to the Class participant. Creation of the
informal Attribute is identical to the steps above for the informal Attribute Value, only a Class
participant is selected rather than an Instance participant. Renaming is also completed in the
same steps as above for the informal Attribute Value. The informal Attribute can additionally
have a type set. The type is a simple unchecked string. Carefully name the type as this will be a
real type in a future model. To set the type open the Model Explorer view and select the
informal Attribute. In the properties view locate the Informal Attribute Type field and set the

appropriate value.

Mew ¥ | o Atkribute
Qpen
Cipen With 3

Formalize. ..

<2 Undo
Figure 12

Link creation:
Again, as with other elements, the proper tool needs to be selected for Link creation. This tool is

found in the Palette view under the Communication folder. Select this tool in the palette view

Style Guide 41 Mentor Graphics

and left click the target element. This will be one of the participants that are associated. Drag
the mouse to the other target (on the other end of the association) and release the mouse button.
As with the participant elements it is good practice to add a description for the Link. Do this in
the same way as stated above. The description should clearly explain to readers the type of Link
(association or interface satisfaction) and should give details on the realized association’s

configuration.

Additional data can be configured to further detail the Link. The available attributes are:

Association Number End Text Phrase
End Visibility Start Text Phrase
Start Visibility

The Association Number, End Text Phrase, and Start Text Phrase values are only necessary
when dealing with informal elements and will be described in the section below titled Informal
Link creation.

The End Visibility and Start Visibility attributes are used in both the formal and informal cases.
The start of the Link is considered the end at the participant that the Link was drawn on first.
The values of the two attributes can be changed in the Properties view while the Link is selected.
Once set to visible an open arrow will be drawn at the corresponding end. These attributes are
used to describe the possible navigation directions. In BridgePoint all associations are
considered bi-directional, so for the formal case these attributes are ignored. This is something

to consider when creating an informal Link that will at some point be realized.

Formal Link creation:
If the underlying participants have realized associations, then the Link should be formalized at
this stage. Only Class Associations are supported for formalizing the Link. Only Links that are

between to Instance participants may be formalized. To formalize a Link right click and choose

Style Guide 42 Mentor Graphics

the Formalize... menu item (See Figure 1.3). A dialog is opened that will present all possible
associations between the formal Class objects. The association of interest shall be chosen using
the dialog’s pull down menu. Once the association is chosen click the Finish button. At this
point the Link will be formal, and the various Association Name, Start and End Text Phrases will

be derived.

Informal Link creation:

If creating an informal Link, the attributes mentioned above in the Link creation section must be
set. How to set the Start and End Visibility attributes is described in the same section. The
remaining attributes to set are Association Number, End Text Phrase and Start Text Phrase.
These are also set in the Properties view when the Link is selected. For each enter an appropriate
value in the right field for the given attribute. Take consideration of the values entered as the

Link will become realized at some point.

Message creation:

Message creation is achieved in the same way as Link creation, in that the proper tool must be
selected. There are three Message tools, Synchronous Message, Asynchronous Message and
Return Message. The proper tool depends on the procedure that is being documented. Creation
is done the same way for each. Once the proper tool is selected, click the left mouse button
down at the desired start location. Drag the mouse to the desired end location and release the
mouse button. Messages should be created near the Link for which they are delivered across.
Messages do not connect to a start or end element. As with all other elements it is good practice
to enter a description about the created Message. This description should describe the Message’s

role in the procedure being documented.

Style Guide 43 Mentor Graphics

A Message can be further configured through the following attributes:

Guard Condition Result Target

Return Value Sequence Number

Each of these attributes is valid in both the formal and informal case. Formalizing a message
does not populate these values; therefore in each case values should be set where it makes sense.
The attributes are set in the Properties view when the Message is selected. For each Message set
the appropriate value in the right field. Take consideration when setting the values in the formal
case as the values are not checked against the realized data. For instance you can enter anything
for the Return Value attribute, however it must match what is truly returned by the Message

delivered.

The Sequence Number attribute can be used to add chronological information to the Message as

it fits within the documented procedure.

Formal Message creation:

When creating a Message that will be formal, the target element must be chosen. The act of
choosing is completed during the formalization step. To achieve this, the Message is first
selected and then the target element is selected. This results in two elements being selected.
After selecting the elements involved the Formalize... menu item should be executed (see Figure
1.3). Adialog is opened that lists the available Messages that exist in the target (the target is the
one which owns the Message that is to be called). Click the Finish button once the appropriate

Message is selected.

Informal Message creation:

In additional to configuring what is listed in the above Message creation section, name the
Message. This is done by right clicking on the Message and selecting the Rename menu item.
In the dialog that is shown enter a name for the Message. Take consideration in the value

entered as the Message will become realized at some point.

Style Guide 44 Mentor Graphics

Informal Messages may also have arguments added. This will aid in providing a clear document
for the realized elements that must be completed. Creating a new argument is achieved by right
clicking on the Message and selecting the New > Argument menu item. At this point the
Argument should be renamed to something meaningful. Right click on the Argument in the
Model Explorer view and choose the Rename menu item. On the dialog that appears enter a
good name. The informal Argument can be further configured to include a value for the given
procedure. This can be achieved by first selecting the Argument in the Model Explorer view,
then by changing the Argument Value field in the Properties view. Note that the string is

unchecked, therefore care needs to be taken so that when realized the types are compatible.

Recommendations

As with any programming language, UML models should be factored into the smallest amount
of data that makes sense. It is easier to read and understand a diagram (or program code) when
the subjects within the system are factored into many small functional parts. This prevents the

diagram from growing large to a point where readability is hindered.

The Communication Diagram is no exception. As stated in the Purpose section above, the
Communication Diagram is used to document a single procedure. The size of the procedure can
vary, but care needs to be taken when documenting such that large procedures are broken in to
smaller procedures. Objects in UML have many procedures that are performed throughout the
life of the system. The Communication Diagram was not created to document them all in one
diagram. Always take care to include only those objects, links and messages that are pertinent to
the procedure being documented. Always include descriptions, for the elements, that describe

their role in the documented procedure.

If a diagram is growing to the point where the picture is hard to follow, take a step back and
consider the possibilities for refactoring. Readers can always be referred to a set of documents to

help describe a larger procedure.

Style Guide 45 Mentor Graphics

Sequence diagram

Pacerl : pacer HostMonibor 1 : Host Maonitor TernperatureMonitorl : Temperature Monitor Respiratory Monitor : Respiratory Monitor
systolic_tolerance lastTemp
diastolic_tolerance lastRate
current_state current_skake
cycle_count
timeout_timer

lastTemp = getCurrentTemp:37 .84

HAL: pall

lastRate = getCurrentRate: 35

PACER4: increasedTemperature (temp)

[temp = 37.5]

PACERS: increasedRespiratoryRate (rate)

S Rt

[rate = 18]

S . 4

I, A

The Sequence Diagram shows communication between objects and the communications between

them with a time perspective.

Use a Sequence Diagram to document the details for an interaction. If the structure of the

objects included in the interaction is not fully known, consider creating a Communication

diagram first. While Sequence and Communication diagrams detail much of the same

information, they are complimentary. Each is good at detailing certain aspects. Sequence

diagrams allow for defining finer details of the control, while Communication diagrams detail

the structure of the procedure.

Style Guide

46

Mentor Graphics

Things to Know

Participant (Component, Instance, Actor, External Entity, Class, Package)
Message (Synchronous, Asynchronous, Return)

Lifeline

Time Span

Timing Mark

When to use

When a clear picture of an interaction between a set of elements is required, including messaging

sequence and timing information, use a Sequence Diagram.

Sequence Diagrams can be used formally or informally. In the formal case the various objects
and messages will already exist. The Sequence elements will be formalized against the existing
objects and will be used to depict the interaction that occurs among the existing objects. The
resulting document will aid in detailing a single interaction, while filtering out all possible

interactions among the objects.

In the informal case there will be no existing objects or messages. The Sequence elements will
be created to document a required interaction. The elements can then be used to realize the
objects and the messages required to execute the interaction. When creating an informal

document a few things must be known. The following checklist can be used to get started:

1. The required interaction and its goal, what must be accomplished.
2. The various objects that participate in the interaction.
3. The messages between the participating objects that are called in order to achieve the
interaction goal.
The resulting document is living and may change with time. When focusing on the informal
case, the exact objects and messages do not have to be precise. The document will change as

these elements come to realization.

A well written Sequence Diagram will be short and precise at describing the desired interaction.
Only include objects that participate in the interaction, and only include messages between the

objects that participate in the interaction. If the interaction to be documented is large, consider

Style Guide 47 Mentor Graphics

breaking the interaction into sub-interactions each with their own Sequence Diagram. When
breaking up a large interaction into multiple interactions use a package hierarchy and naming

scheme to allow easy navigation for the reader. An example follows:
Descriptive Interaction Name (Package)
|_ Descriptive Sub Interaction Name Step 1 (Package)

|_ Descriptive Sub Interaction Name Step 2 (Package)

?aﬁ +pacer m +Host Maritor Pacerl : pacer HostManitorl : Host Monitaor
{1,PACER} {2, HM}

- - - systolic_tolerance lastTemp
systalic_talerance:integer lastTermptinkeger diastolic tolerance lastRate
diastalic_tolerance:inteqer R1 0..1 |lastRate:integer current skate current state
cycle_count:integer current_state:state <Stake_Models ycle Count -
current_state:state <State_Model= . timeout timer
timeout_timer tinst_ref <Timer = monikors may _
systalic_timeoutinteger hiost for have
diastolic_timeout:integer monitor

PACER4: increased_activity (blond_temp, respiratory_rate) ‘
Formal .\{SSSHSS [blood_temp = 37.5 or respiratory_rate = 18]‘
/4. Increasing rate -\ |

entryf

[calculate anincreased rate based onthe ..
i and the current respiratory rate

sef, systolic_tmeout = self, systolic_timeou, .,

sef, diastolic_timeout = self, diastalic_timeo...
generate PACERS ko self;

PACER4: increased _activiey(...)

Figure 1 Formal referencing

Usage

Meaning of Message source and target:

There is meaning in where messages are drawn from and to. Messages can be drawn from or to
the symbol or a Communication Line (Lifespan). When a message is drawn from or to a symbol
this indicates a static call, where the element does not need to be instantiated. When a message
is drawn from or to a Communication Line this usually indicates an instance call where the target
is instantiated. The BridgePoint tool allows a Communication Line on all elements, even those

that are never instantiated. This allows for easier diagram formatting, as otherwise the message

Style Guide 48 Mentor Graphics

space allowed is limited by the target symbol’s size. Take note that when a message is drawn to
a Communication Line with these aspects, it does not represent an instance call. Use of the
Communication Line in this aspect is optional; consistency shall be used in each individual

organization.

Formal Usage:
As stated above in the formal case the objects and messages will already exist. A Package is
used to enclose sequence elements and thus represents the Sequence Diagram. Create the

Sequence Diagram at a location that makes sense given the existing elements.

Select the appropriate tool to create a participant. This will be one of the listed participants from
the Elements section above. Choose the tool that will match the formal object. For instance if
the content of the Sequence Diagram will show the interaction of Components, then choose the
Component Participant tool. Create one participant for every object that will participate in the
documented interaction. For each participant created, use the formalization wizard to locate and
use the appropriate object. Create a Communication Line for all objects that are instantiated in
the documented interaction or for those not instantiated where the diagram formatting approach
IS used.

Now create the necessary messages that are documented by the interaction. In most cases this
should not be all of the possible messages that are between two associated objects. The diagram
shall focus on the interaction to document and shall ignore any messages that are not pertinent to
that interaction. Create the messages between the caller and target objects. As detailed in the
“Meaning of Message source and target” section, messages can be drawn from and to multiple
locations. For each message use the formalization wizard to locate and use the appropriate

action.

Informal Usage:
When creating the Sequence Diagram informally, there are no existing elements to base the

interaction on. The diagram will serve to provide aid when creating the real elements. An

Style Guide 49 Mentor Graphics

informal diagram will start off informal but will later migrate to a formal diagram. While
creating the diagram consider carefully the interaction to be documented, taking care to name the

informal elements appropriately.

The mechanics of creating this diagram are identical to that of the formal case. The one step that

will not be taken is using the formalization wizard.

The informal Sequence Diagram elements have attributes that can be set which allow further
definition. Informal elements can be configured such that enough data is present to allow fully
configured realized elements. The proceeding How To section will explain how these informal

attributes are used.

Conversion to formal document:

As stated above at some point all Sequence Diagrams shall become formal. After an informal
diagram has been agreed upon by all stake holders, it is time to realize the interaction. Create an
object for each participant in the interaction. The object created depends on the participant type.
The exact steps for such creation are not within the scope of this document. For example, if the

participant type is component, then a matching component shall be created in a package.

Create the necessary action, i.e., operation, for each message that exists in the Sequence
Diagram. The destination for the actions will be the object that the participant represents at the
end of the message on the diagram. The end of the message is denoted by the arrow end.
Depending on where the message is drawn to (symbol or Communication Line) the created

action may need to be specified as static (class-based for class operations).

After all of the objects and actions have been created it is time to formalize the original
document. Select each participant and use the formalization wizard to locate and use the objects

created above. Repeat this step for each message within the document.

Style Guide 50 Mentor Graphics

Steps to creating Informative Sequence Diagrams

Diagram creation:

Once the location has been determined, locate the palette view (see Figure 1.2 below). In the

palette view select the Package tool (as shown in Figure 1.2). On the editor page click the left

mouse button and drag a distance. A marquee will be drawn that indicates the location and size

of the graphical symbol to be created. Once the symbol is at a desired location and size let go of

the left mouse button. At this point a new Package has been created. Right click on the Package

graphical symbol and select “Rename” (See Figure 1.3 and 1.4 below). In the window that is

opened enter a good name for the package. This name should reflect the interaction that is being

captured by the Sequence Diagram.

.2 Palette 3 = 08

[‘.;g Select

JE' Zoom Tool

[-= Defaulk Toaolset £

‘g Package ' New

Open
Cpen With

le—= |':'||:t| Make Private

Make Protected

[Classes
Publish References
L~ Commmunication
L= <= Undo
[~ Components Redo
[~ External sf Cut
— . -'E Cl:ll:l':."
L= Inkeraction Copy Image
=% Sequence sl
= Select all
(= Types =
Delete
= Use Case
Figure Figure

Style Guide 51

Mentor Graphics

* Rename @

Enter the new name:

Unnamed Package|

(0]4 l | Cancel

Figure

Participation creation:

As with diagram creation, the proper tool must be selected. As stated in the Elements section
there are many participants. Select the participant tool that is of interest (see Figure 1.5 below).
Once selected proceed to draw the symbol for the participant graphical element (see steps in
package creation for details). At this point the newly created participant can either be formalized
or customized to represent a future formal element. For either case, formal or informal, it is a
good idea to enter a description for the element created. The description shall describe the role
of the element within the documented interaction. To set the description right click on the
element and choose the Open With > Description Editor menu item (See Figure 1.6 below).

Enter the desired description text and save the changes (See Figure 1.7 below).

Style Guide 52 Mentor Graphics

.2 Palette 3 — O

m Select
CJQ Zoam Tool

[.— Default Toolsek
[~ BCkiwiby

[Classes

[-— Communication
[~ Componenkts
[External

[== Inkeraction 4

g Ackor

= Cormponent

3 Instance

3 External Entity

" Package Participant

‘@ Class

;;.il Synchronous Message
A Asynchronous Message

“A Return Message
+*

[~ Sequence

== Types
[~ Use Case

Figure 1.5

Style Guide 53

Mentor Graphics

Mlew »
Open

Cipen With LN Description Editor

Make Private
Make Protected

Publish R.eferences

<4 Undo
Redo
Figure

EF Pacerl: Class Instance Participant Description &2 =&

h‘he pacer instance has anh increased amount of sighals delivered during Increased
Letivity., This allows the Pacer to deliver the appropriate nuwber of heats to
accomodate the heart under the increased activity.

Figure

Formal participant creation:
If there is a formal element present that the participant can represent, then right click on the

participant and choose the Formalize... menu item (as shown in Figure 1.8). At this point there

is no further configuration required. All data will be derived from the formal element chosen.

Style Guide 54 Mentor Graphics

apen
Cipen wWith 2

Unformalize

Formalize. ..

<= Unda
Redo

Uﬂ" Cuk
=| Copy
Copy Image

Paste

Select all
Delete

Renarme

E=g Impart...
B Export...
WikiTexk >

Run As »
Debug &= 2

Profile As 2

Figure

After executing the Formalize... menu item a wizard will appear. This wizard will present the
available objects to formalize against. The elements will be listed in a flat list, giving the
element name in the left column and the element’s path in the right column (as shown in Figure
1.9). Locate the element of interest and click the OK button. The participant will now be
formalized. This can be verified by inspecting the display name or in the Properties view while

the element is selected (see Figure 1.10).

Style Guide 55 Mentor Graphics

-

** Farmalize Selection

Find:

Choose a class:

Erter kext ko sharken the lisk, .

(* = any string, ...or likerals: * 7

-

=3 [NoR ==

Case Sensikive
Ise Regular Expressions

Enable visibility Filker

Element Element Path
A heart avpace::library: sheart;heart
@ Host Marnitor avpace::library::pacer::pacer
C] pacer avpace::library::pacer::pacer
G Respiratory Manitar avpace::library:pacer::pacer
@ sinus nods avpace;: :library; iheart: heart
G Termperature Monitar avpace::library; :pacer::pacer
= I
'M?,' 0] 4 Cancel
Figure
= " = o =
1 Properties 53 %t Problems | {00 SWM Repositories 8
%0 s -
Property Value i
(:dF‘;erl : ED 4 Easic
) L Informal Class Mare Pacer E
diastalic_timeaut Inst o ok H inst h .
SYStl:IliC_timE-'l:lth nstance Descriplion 2 pacer instance nas an increas
kimeout_timer Instance Mame Pacerl
Is Formal true

cvcle_count:
current_state
diastolic_tolerance
systolic_tolerance

Figure

4 Asynchronous Messages
+Asynchronous Message
 Asynchronous Message

o mleen

Informal participant creation:

PACERS: increasedRespiratoryR.al
PACER4: increasedTermperature

If the element created is informal, then right click on the element and choose Rename. Enter the
desired name of the element (note that it should be consistent with the future name of the
realized element) in the dialog box that appears. If the element created is the Instance participant
type further detail can be set. The Instance participant type can have an Instance name and an
Informal Class name. The Informal Class name is used to depict the object type that the Instance

is instantiated from. The Instance name is a unique name that represents this particular instance.

Style Guide 56 Mentor Graphics

Both of these are set in the Properties view. To set them select the Instance participant element
and switch to the Properties view (See Figure 1.11). Find each attribute and change the right

field to the appropriate values.

T | Properties i3

Property Walue
Basic
Informal Class Mame E}.
Instance CriphioT
Instance Mame Pacerl
Is Farrnal False
Figure 1

The Instance and Class participants can additionally have informal Attribute Values and
Attributes added. This will aid in further detail for the interaction that is being captured. The
informal Attribute Value object can additionally have a value set; this is a value for the attribute
in the given interaction. To create an informal Attribute Value, choose the Instance participant
of interest and right click. From the context menu choose the New > Attribute menu item (See
Figure 1.12). The informal Attribute Value will be added to the Instance participant body. To
rename the Attribute Value open the Model Explorer view and right click on the Attribute Value
instance. In the dialog that appears set the desired name. As with other informal elements take
care in naming the Attribute Value as at a later time it will become a real Class Attribute. To
configure a value for the Attribute Value instance open the Model Explorer view and select the
element in the tree. In the properties view navigate to the Attribute Value field and set the
textual value. The informal Attributes can be added to the Class participant. Creation of the
informal Attribute is identical to the steps above for the informal Attribute Value, only a Class
participant is selected rather than an Instance participant. Renaming is also completed in the
same steps as above for the informal Attribute Value. The informal Attribute can additionally
have a type set. The type is a simple unchecked string. Carefully name the type as this will be a
real type in a future model. To set the type open the Model Explorer view and select the
informal Attribute. In the properties view locate the Informal Attribute Type field and set the

appropriate value.

Style Guide 57 Mentor Graphics

FJe P | @ Akkribute
Qpen
Cpen Wikth 3

Formalize...

< Unda
Figure 1

Communication Line creation:

Communication Lines can be added to any symbol. See the “Meaning of Message source and
target” section above for additional detail about the Communication Line. To create a

Communication Line select the proper tool under the Sequence tool folder in the palette view.
Once the proper tool is selected, click the left mouse button down at the desired start location.
Drag the mouse to the desired end location and release the mouse button. Sequence diagrams
depict time vertically, meaning that messages near the top of the document are considered to be
sent before lower ones. Given this the Communication Line should be drawn vertically. A

Communication Line can be terminated (See Figure 1.13 below). This indicates that the Instance

has been destroyed. To configure this select the Communication Line and right click. Choose

the Mark Instance Destroyed menu item (See Figure 1.14 below).

Figure 1.13
Open
JpeEn With b

Mark Instance Destroyved

< Undo
Redo

it

Copy

izopy Image
Py Imag Figure 1.14 (Destroyed

Instance)

Style Guide 58 Mentor Graphics

Message creation:

Message creation is achieved in the same way as Communication Line creation, in that the
proper tool must be selected. There are three Message tools, Synchronous Message,
Asynchronous Message and Return Message. The proper tool depends on the interaction that is
being documented. Creation is done the same way for each. Once the proper tool is selected,
click the left mouse button down at the desired start location. Drag the mouse to the desired end
location and release the mouse button. See the “Meaning of Message source and target” section
above for details about where messages are drawn from and to. As with all other elements it is
good practice to enter a description about the created Message. This description should describe

the Message’s role in the interaction being documented.

A Message can be further configured through the following attributes:

Guard Condition Result Target

Return Value Sequence Number

Each of these attributes is valid in both the formal and informal case. Formalizing a message
does not populate these values; therefore in each case values should be set where it makes sense.
The attributes are set in the Properties view when the Message is selected. For each Message set
the appropriate value in the right field. Take consideration when setting the values in the formal
case as the values are not checked against the realized data. For instance you can enter anything
for the Return Value attribute, however it must match what is truly returned by the Message

delivered.

The Sequence Number attribute can be used to add chronological information to the Message as

it fits within the documented interaction.

Style Guide 59 Mentor Graphics

Formal Message creation:

To formalize a message select it in the diagram. After selecting the message the Formalize...
menu item should be executed (see Figure 1.3). A dialog is opened that lists the available
Messages that exist in the target (the target is the one which owns the Message that is to be
called). Click the Finish button once the appropriate Message is selected.

Informal Message creation:

In additional to configuring what is listed in the above Message creation section, name the
Message. This is done by right clicking on the Message and selecting the Rename menu item.
In the dialog that is shown enter a name for the Message. Take consideration in the value

entered as the Message will become realized at some point.

Informal Messages may also have arguments added. This will aid in providing a clear document
for the realized elements that must be completed. Creating a new argument is achieved by right
clicking on the Message and selecting the New > Argument menu item. At this point the
Argument should be renamed to something meaningful. Right click on the Argument in the
Model Explorer view and choose the Rename menu item. On the dialog that appears enter a
good name. The informal Argument can be further configured to include a value for the given
interaction. This can be achieved by first selecting the Argument in the Model Explorer view,
then by changing the Argument Value field in the Properties view. Note that the string is

unchecked, therefore care needs to be taken so that when realized the types are compatible.

Timing Mark and Span creation:

Additional timing information can be captured on the Sequence diagram. The amount of time
that is spent between messages is captured by using Timing Marks along with Time Spans.
These can be helpful when timing constraints need to be documented. These are created in the

same way as the Communication Line, where the tools are found under the Sequence tool folder.

Style Guide 60 Mentor Graphics

Once the tool is selected left click on the starting point along the Communication Line, then drag
and let go of the mouse at the desired end location (this will not be connected to symbol). Each
piece can have a label, which is free text. The Time Span label is enclosed with curly braces
automatically. The labels are useful in adding detail about the specific occurrence at that point in
time. To set the labels select the element of interest and right click. On the menu that appears
select the “Rename” menu item (See Figure 1.2 and Figure 1.3). On the dialog that appears enter

the desired label. For an example of Timing Mark and Time Span usage see Figure 1.15.

FPacerl : pacer HastMonitorl @ Hask Monitor
syskolic_tolerance lastTemp
diastolic_tolerance lastRate
current_state current_skate
cycle_counk
Eineout_timer

i

I

L

HM1: pall :

L

>

I

—

HMZ: increasedackivity —
increased ackiviky detection

R

{= 10ms}

=

T
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
;
I PACER4: increased_activiky (blood_temp, respirakory_rats
i

notification sent

/]

[blood_temp = 37.5 or respiratory_rake = 18]

Figure 1.15

Style Guide 61 Mentor Graphics

Recommendations

As with any programming language, UML models should be factored into the smallest amount
of data that makes sense. It is easier to read and understand a diagram (or program code) when
the subjects within the system are factored into many small functional parts. This prevents the

diagram from growing large to a point where readability is hindered.

The Sequence Diagram is no exception. The size of an interaction can vary, but care needs to be
taken when documenting such that large interactions are broken in to smaller sub-interactions.
Always take care to include only those objects and messages that are pertinent to the procedure
being documented. Always include descriptions, for the elements, that describe their role in the

documented interaction.

If a diagram is growing to the point where the picture is hard to follow, take a step back and
consider the possibilities for refactoring. Readers can always be referred to a set of documents to

help describe a larger interaction.

Style Guide 62 Mentor Graphics

Use case diagram

Set Up Pacemaker

Cardiologist

Cardiovascular Physiologist

SetUp Rate Responsive Pacemaker

SetUp Single Chamber Pacemaker Set Up Dual Chamber Pacemaker

Use Cases are used to help organize the captured requirements, and help establish the subject
matters for which we will build executable models. Use Case diagrams depict the high level
goals of the system as Use Cases and the external agents that initiate them as Actors. Actors
which use particular Use Cases are tied together by the 'uses' relation. Use Cases and Actors are
grouped by similarity, using the 'generalization’ relation. Use Cases may be referred to more
than once using the 'includes’ and 'extends' relations.

Things to Know
Actor

Use Case

Relationship (generalize, uses, includes, extends)

When to Use
Creating Use Case Diagrams is typically the first task after organizing the requirements into the

repository. These diagrams are not executable, but instead help identify the subject matters that

Style Guide 63 Mentor Graphics

will be explored and analyzed later to produce executable models. Because the diagrams are

informal, they are useful for facilitating feedback with the requirements originators.

Creation

Create or open a Package to contain the Use Case under construction

Use Case
Locate the tool palette and open the Use Case section. In this section, locate the Use Case tool

and select it.

PR L

[Use Case
& Use Case
A Aeenriatinn
Move to the diagram and choose a suitable space on the sheet. Click on the left mouse button

and drag the mouse until the outline is the size you want and release. The Use Case symbol will

be drawn.

Now click the right mouse button on the Use Case symbol and select Rename... and provide the
selected name. Double click the Use Case to open it's description editor and type in the two or
three sentence description captured for it and save by clicking on the disk icon in the top menu

bar, choosing Save in the File menu, or by typing <Ctrl+S>.

Include
In the Use Case section of the tool palette, locate the Include tool and select it.
L7 1 e

== Use Case

& Use Case

g‘" Assocdation

Style Guide 64 Mentor Graphics

Click the left mouse button over the Use Case you wish to include another and drag the mouse
over to the Use Case that you want to be included in the first. Release the mouse button and the
include relation is drawn. You do not need to accurately click on the edges of a Use Case, drag
from center to center and the tool will automatically take care of drawing the lines neatly. Right
click on the new connector and choose Open. The include description editor opens. Type in the

two or three sentence description found during the Use Case creation process and save it.

Extend and Generalize

Locate the tools for these in the Use Case section of the tool palette.

== Types
== Use Case

& Use Case

.,:/ Association

W Generalization

They are drawn in exactly the same way as the Include relation. Generalization relations may
also be drawn between Actors. Generalizations drawn between Actors and Use Cases are not

allowed.

Actor

Locate the tool palette and open the Interaction section. The Actor symbol is used on a number
of other diagrams and so is located in this more general section. You can keep both the Use
Case and Interaction sections of the tool palette open at the same time.

= Interaction
g Actar

et

Style Guide 65 Mentor Graphics

Locate the Actor tool and select it. Move to the diagram and choose a suitable space on the
sheet. Click on the left mouse button and drag the mouse until the outline is the size you want
and release. The Actor symbol will be drawn. Click the right mouse button over the new Actor
and select Rename... Name the Actor based on the name allocated during the Use Case creation
procedure. Double click to open the Actor's description editor. Enter and save the two or three

sentence description found during the Use Case creation procedure.

Uses (Association)
Locate the tool palette and open the Use Case section. Locate the Association tool and select it.
L 1 R

= Use Case

& Use Case

‘?5" Association

wHieneralization

A Trclnide=

Move to the diagram and choose the Actor symbol to start from. Click the left mouse button
and drag the mouse until it is over the Use Case you wish to associate with the Actor. Release
the mouse button and the Association will be drawn. Double click to open the Association’s
description editor. Enter and save the two or three sentence description found during the Use

Case creation procedure.

Style Guide 66 Mentor Graphics

Class Diagram

R2 1 +Temperature Monitor
{3, ™M}
) II?HFDDI:;EEF;EEF“DEFEWFE getCurrentTemp(Jzinteger
ma +pacer m +Host Monitor
{1,PACER} {2,HM}
systolic_tolerancesinteger R1 lastTemp:integer
diastolic_tolerancesinteger 1 0..1 |lastRateinteger
cycle_countzinteger current_state:state<State Model=
current_state:state<State Model>)
timeout_timerzinst_ref<Timer= monitors may
systolic_timeoutinteger host for have
diastolic_timeoutinteger manitar
+Respiratory Monitor
provides respiratory {4RM}
monitoring
getCurrentRate():integer
0.1
R3

A Class Diagram formalizes the knowledge discovered in the requirements and when complete
presents an abstract solution to meeting the requirement. Modelers use Class Diagrams to
abstract the requirements captured and organized in the Use Cases. A Class captures a set of
characteristics and behaviors that are abstracted by studying the detailed interactions described
by the Use Cases. Classes which exhibit similar characteristics or behavior are grouped using
the Generalization association. Classes which have observable enumerable relationships with
each other are connected with Associations that document and describe the constraints on the

relationships.

Things to Know

Class - Attribute, Operation
Association - Multiplicity, Conditionality
Generalization - Supertype, Subtype

When to Use

Class Diagrams may be used both formally and informally. That is, they may be created with
all the necessary detail to allow execution, or they may be used to clarify or explore and

document some aspect of the requirement without providing too much detail.

Style Guide 67 Mentor Graphics

Class diagram construction requires two principal inputs; Component diagrams and Use Case
diagrams. It is possible to create informal Class diagrams without a Component structure, but

formal, executable models must be specified within the boundaries of a Component.

Creation

At a high level, there are two procedures for adding Classes to a diagram:

e Referring to a Class that is already modeled in another Package.

e Adding a new Class to the Package being worked on.

Before proceeding, ensure that you have the correct Package diagram open.

Imported Class
For Classes already defined elsewhere, locate the tool palette and open the Classes section. In
this section locate the Imported Class tool and select it.

.2 Palette 7

[é Select
] Zoom Tool

(= Default Toolset
H Package

[~ Activity

@ Classes

= Imported Class

5 Acomrizativa linl

Move to the diagram and choose a suitable space on the sheet. Click on the left mouse button
and drag the mouse until the outline is the size you want and release. The Imported Class

symbol will be drawn.

Style Guide 68 Mentor Graphics

Now click on the right mouse button and select Assign Class...

% Assign Class Selection = ([B]
Find:
Enter text to shorten the list. .. Case Sensitive

(* = any string, ? = any character, | = escape for literals: *7) IUse Regular Expressions

Choose a dass:

Element Element Path

G Host Monitor avpace::library::pacer::pacer
(C] pacer avpace::library::pacer::pacer
G Respiratory Monitor avpace::library::pacer::pacer
G Temperature Monitor avpace::library::pacer::pacer

3 e
'\‘?) OK, Cancel

A Class Chooser dialog will appear showing the classes that you can choose from. If the list is

very long, use the Find: field to narrow down your search.

When you have located the class you want to appear on the diagram, select it and click on OK,
or just double click on the required class. The chooser dialog will disappear and the class will
be shown on the diagram. There is no need for additional action; the Class already shows any

Attributes and Operations already defined for it.

New Class
The procedure for adding a new Class to the Package is similar to that for the Imported Class,
but using a different drawing tool. In the Classes section of the tool palette, locate the Class tool

and select it.

=7 RLUVILY

- Classes
‘3 Class

w2 Tminarted Class

Locate a suitable place in the diagram, click the left mouse button and drag until the rectangle is

the size you want for your class. Release the mouse button and the Class symbol will be drawn.

Give the new Class a name by clicking the right mouse button and choosing Rename.

Alternatively, open the Properties View to see and modify information captured about the

Style Guide 69 Mentor Graphics

Class. If the Properties View is not already open, use Window > Show View > Other... >

General > Properties to show it.

| Properties 3] g1 = =0
Property Value
4 Basic
Class Description
Class Key Letters HM
Class Name Host Monitor
Class Number 2
4 Attribute
- Attribute lastTemp
» Attribute lastRate
» Attribute current_state
4 Instance State Chart
+ Instance State Machine Host Monitor

Fl T 3

Selecting any element on the diagram will update the Properties View.
Each Class is given a Key Letter as a short way to refer to it. Choose an appropriate short name

and set it using the Properties View.

A new Class will need to have its Attributes added. Click the right mouse button over the Class
and choose New > Attribute. Locate the Attribute in the Model Explorer View, right click on it
and choose Rename. Give the new Attribute a name.

The new Attribute is created as an integer by default. If this is not what is required, click the

right mouse button once more and choose Set Type...

Style Guide 70 Mentor Graphics

" Type Selection =0 o
Find:

Enter text to shorten the list... [] case Sensitive

(* = any string, ? = any character, \ = escape for literals: *7) [T Use Regular Expressions

Choose a type:

Element Element Path

@ boolean

@ component_ref

i date

@ inst<Event>

[~ 3 inst_ref<Timer >

@ real

[y state <State_Model =
@ string

. timestamp

@ unique_id

@ Current type: integer -

P
'\‘?) oK Cancel

A Data Type chooser dialog appears showing the Data Types available. Select or double click

on the required Data Type to set the Attribute type.

Associating Classes

There are two main kinds of relationship between Classes:

e Supertype/Subtype and

e Regular Association relationships.

New Association

In the Classes tool palette, choose the Association tool.

S Py

= Classes £

Move your mouse over one of the classes to be related. Click the left Mouse button and drag

until the mouse is over the other class to be related. Now release the mouse button. The

Style Guide 71 Mentor Graphics

Association will be created. Note that in most cases, you do not have to accurately click on the

edges of a symbol, drag from center to center and the tool will automatically take care of

drawing the lines neatly. You do need to take care of making the lines square on the diagram if

that is what is desired.

Sometimes, you will want to show a reflexive Association, that is, one which returns to the

same Class as it left. To draw this make sure you begin the drawing action near the center of the

Class. Now drag the mouse a little without leaving the boundary of the Class. The tool will

detect what you want to do and draw the looped back Association symbol for you.

With the Properties View showing (Window > Show View > Other... > General > Properties),

click the left mouse button over the Association.

= Properties &2

Property

4 Basic
Assodation Description
Association Mumber
4 Assodation Particpant End
4 Class As Simple Participant
Conditionality
Multiplicity
- Related
Text Phrase
4 Class As Simple Participant
Conditionality
Multiplicity
- Related
Text Phrase

ElCE

Value

1

pacer
Unconditional
One

pacer

maonitors host for
Host Manitor
Conditional

One

Host Monitor

may have monitor

(il I

Properties show the information you can set for the Association. Choose a number for the

Association. This number is used in OAL to specify the Association to work on, so it is

important that it is unique.

Style Guide

72 Mentor Graphics

Setting Association Cardinality

We need to specify the cardinality at each end of the association. The Properties View shows an
Association Participant End section. Open it, and you see the Classes participating in the
Association. Here, we can specify the cardinality information for each end of the Association.
Open each participating Class name and set the Text Phrase. Now set the Conditionality and

Multiplicity fields, using the following table to help you:

Cardinalit Conditionalit Multiplicit
y y y
1 Uncondition One
al
0.1 Conditional One
1.* Uncondition Many
al
* Conditional Many

The diagram will update the Association symbol as you work. Confirm it looks the way you
expected. You may use the mouse to drag the Association number and text phrases around to

maximize readability. The cardinality symbols are not movable.

Style Guide 73 Mentor Graphics

New Supertype/Subtype
Because there is usually just one supertype Class to many subtypes, drawing one of these is

accomplished in two steps. First, locate the class that is to be the supertype. From the Classes

tool palette, choose the Supertype tool.

;s rvmm TR

[=- Classes Ll
3 Class
o Imported Class
;:f' Assodation
W,

+% Assodative Link
{?3'# Supertype
Fom Rl | Rialol

Click the left mouse button on the supertype Class and drag to place the supertype portion of
the symbol where it is required. Now locate all the subtype Classes and for each one, select the
Subtype tool and drag the connection from the subtype Class to the end of supertype portion of

the symbol.

‘? HssDUauveE LNk

‘;ﬂi = ne

Absolute accuracy is not needed, so long as BridgePoint can tell which supertype symbol you
meant, the tool will make the lines join neatly. Due to the nature of the Supertype/Subtype

association, there is no cardinality or text phrase information required.

Style Guide 74 Mentor Graphics

Component Diagram

E synchronization manitor E hiost
Hheart E_)]—C D—E—] +hostrmonitor E—]—O

(1]

hist
synchronization E hiost
C E‘El +pacer E_:l :

synchranization ranikor

=l
O—E—El +pacemaker E—]—O

E synchronization E
avpace::library::heart H] avpace::library: :pacer

[+1

Style Guide 75 Mentor Graphics

component: pacer J
=l
bronizati E J_‘ ronitar E hot
SYNCOroniZation —\ 05!
O [] avpace::library::pacemaker T @/ T avpace::library: :hostronitor /_E_]—O
«inkerfaces «inkerfaces
synchronization manitar
init{systaolic_period:inteqer, diastolic_per... signals
- increased_activbv{current_temp:integer, current_rate;inkeger)
signals
systoic_pulsel)
diastolic_pulsel)
syshboic_pacel) winterfaces
diastolic_pace() hiost
signals
breath_taken()
current_tempi)
Things to Know
Component Component Reference
Provided Interface Required Interface
Delegation Interface
Interface Operation Interface Signal
Parameter

Definition
The Component Diagram captures the definition and internal structure for a Component of a
system. It defines the various parts of a system and their communication channels. Modelers

also use a Component Diagram to define the high level elements of a system. For each

Style Guide 76 Mentor Graphics

component, the internal structural view of the Component Diagram is used to define the

executable behavior of each Component.

When to use
There are two types of Component Diagram, definition and internal structure. The definition
type can also be broken into two distinct types, definition and reference.

The definition type is used to design the high level Components that make up a system. These

are created first and define what will exist in a system and how each part will communicate.

The second flavor of the definition type is used to create contracts between the various
Components. The reference name comes from the fact that the contracts are made between
references of the definition Components. This allows for a solid definition of required
Components, yet a multi-use reconfigurable usage of the Components. An example of this is a
test bench. A test bench would replace one side of the contract with a custom version of the
Component. The test bench Component can then verify the data that is sent from and to the

concrete Component definition being tested.

Contracts are defined by Interface use. Interfaces are defined separately of the usage, and
define the various signals and operations that are either provided or required when used. The
contract is created when two interface usages are connected. A contract is made of one
required interface (required signals/operations) and one provided interface (provided

signals/operations). Contracts are made in the reference definition type.

The internal structure type allows for defining semantic details for a Component definition.
This is used to define how the communication, when a contract is made, is handled. It allows
for definition of both incoming and outgoing communication. The internal structure can be
defined using internal Components, where the communication that is passed into or out of the
Component is delegated to the internal Component. The internal structure can also be defined
using classes, where incoming signals can be mapped to Class State Machine transitions. This
document does not go into detail about this mapping. All internal elements of the Component

have access to sending external data through the various signals and operations.

Style Guide 77 Mentor Graphics

Things to know

1. The Components that make up the system under development.

2. The communication that may occur between each Component of the system.

Steps to creating a Component Diagram

Definition diagram creation:

Once the location has been determined, locate the palette view (see Figure 1.2 below). In the
palette view select the Package tool (as shown in Figure 1.2). On the editor page click the left
mouse button and drag a distance. A marquee will be drawn that indicates the location and size
of the graphical symbol to be created. Once the symbol is at a desired location and size let go
of the left mouse button. At this point a new Package has been created. Right click on the
Package graphical symbol and select “Rename” (See Figure 1.3 and 1.4 below). In the window
that is opened enter a good name for the package. This name should reflect the system that the

Components are defined for.

Style Guide 78 Mentor Graphics

% N = [
Iy Select
& Zoom Tool

(= Default Toolset <«

New Package

(= Actiy

= Classes

(= Communication

|~ Components

(= External

[~ Interaction

[Sequence

(& Types
(= Use Case

Figure 2

Enter the new name:

E =

ey
Dpen
Open With

Make Private
Make Protecked

Puhblish References

<= Undo

- Redo

of Cut
Copy
Zopy Image

Faste

Select all

Delete

F.ename

Figure 3

Unnamed Package|

(0].4 I l Cancel

Figure 4

Style Guide

79

Mentor Graphics

Component definition creation:

Within the definition package (Component Diagram) you will create the various components
that make up the system. This is done by selecting the Component tool in the palette (see
Figure 5). Once the tool is selected create the Component symbol in the same way that the
Package above was created. Configure the created component by first naming it. Select the
component and right click. In the menu choose the “Rename” menu item (see Figure 3). In the
dialog that appears enter a name that is descriptive of the role within the system for the
component (see Figure 4). It is good practice to give every element in the model a good
description. The description shall detail the role within the system of the Component. To add a
description select the component and right click. Choose the Open With > Description Editor

menu item (see Figure 6). In the editor that is opened enter a good description (see Figure 7).

< Paletke 53 = 0

[:3 Select
_JE' Zoom Tool

[Default Toolsek
[—= Ackiviky
[Classes

=% Cormmunicakion

l.c? Components -0::-

3 “omponent Reference

(("' Provided Interface

% Required Interfare
o Interface

[— External
== Inkeraction
== Sequence
[Types

== Use Case

Figure 1.5

Style Guide 80 Mentor Graphics

Mew »
Dipen
Cpen With » | Bff Description Editor

Make Private
Make Protected

Fublish References

<2 Undo
Redo
Figure 1.6
Ef=pacer:CnmpnnentDeschHnn X =0
hhe pacer cowponent listens to the host's heartheat and sends sighals to 2

inerease the rate depending on the host's current rate. It consists of two
internal cowponents, one that handles generating a beat and the other that
listens for increased activity.

Figure 7

Interface creation:

Once the component definitions have been created it is time to consider the communication
between them. As stated earlier, communications are configured by interfaces that define the
necessary contracts. Interfaces will be created in their own Package. Create a new package
according to the steps above relating to the creation of the Component Diagram. Name the
package according to the role within the system of the components that will use the Interfaces.
The Interfaces are created under this package. To create an Interface select the Interface tool in
the palette (see Figure 1.7). Create the Interfaces according to the steps above relating to the
creation of the Component Diagram. Give the Interfaces good names according to the
communication role they play in the overall system. Give each of them a good description,

which describes the same role (see Figures 1.6 and 1.7).

Style Guide 81 Mentor Graphics

.7 Paletke 23 = O

[+ Select
] Zoom Tool

= DefFaulk Taolsek
[—> Ackiviky
L= Classes=s

|—= Communication

o Component

o Component Reference
% Provided Interface
.,?"' FRequired Inkerface

[External
|—% Inkteracktion
[—% Sequence

.= T¥pes
—% Use Case

Figure 8

Interface Operation and Signal creation:

Once the Interfaces have been created it is time to create the operations and signals that define
the available communication routes for the contract. Interface Operations are synchronous and
return a value while Interface Signals are asynchronous and have no return. The steps for
creating operations and signals are identical. To create them select the Interface and right click,
then select the New > Operation or New > Signal menu item (see Figure 1.9).

Style Guide 82 Mentor Graphics

Mew k- 0 Operation
Qpen —+0 Signal
Open With 3

<= Undo
Redo

Cuk

il o&-

Copy
Zopy Inmage

FPaste

Select all
Delete

Fenames

Exg Import...
By Export...
WikiTexk g

Run as [
Debug As 3
Profile A= 3

Figure 9

Now that the operations and signals are created it is time to customize them. Rename each by
selecting them in Model Explorer and right clicking, then select the “Rename” menu item (see
Figures 1.3 and 1.4). Give the interfaces and operations a good description as described for the
Interface creation. Interface Operations can be further configured by setting the following

attributes:

e Message Direction
e Return Array Dimensions

e Return Type

The above are set in the properties view (See Figure 1.10). The details of what each of these

attributes mean are not within the scope of this document.

Style Guide 83 Mentor Graphics

] Properties &3 E;' Hiskarsy = B8

- — —*1 -
=) e
Froperky walue
A Basic
Message Direckion To Prowider
Cperation Description
Cperation MMame inik
FReturn array Dimensions
Feturn Twpe weoid
4 Paramekters
- Properkw Parameker swskolic_period
- Properkw Parameker diastolic_period
Figure 10

Interface Signals do not have any attributes relating to the return value, as they do not return

anything. Therefore only the Message Direction needs to be configured.

Provided and Required Interface creation:

Each Component created must provide or require a certain interface to allow a contract. If a
Component provides an Interface within a contract, it will be called upon to deliver or respond
to such communication. The opposite is true when a Component requires a service in a
contract. Once the provided and required services are determined for each Component it is time
to create the provided and required interfaces. These are created in the same way. Select the
proper tool, either the Provided Interface or Required Interface tool (see Figure 1.11). Once
the proper tool is selected left click on the desired Component that will use the Interface, then

drag the mouse to the desired location and release the mouse button.

Style Guide 84 Mentor Graphics

.2 Palette 2 = 0

[:3 Select

_5@ Zoom Tool

= Default Toolset

== Ackivity

[Classes

[—= Caommunication

.= Components Ceal
= Component

= Cormponent Reference

q.?"'" Prawvided Interface

% Required Interface

7] Interface

[~ Exkernal
[Interaction

[Sequence

= Types
[Use Caze

Figure 11

Formalization of provided and required interfaces:

Once the communication requirements are determined it is time to formalize the provided and
required interfaces. This is accomplished by selecting the provided interface or required
interface and right clicking. Next select the Formalize... menu item and choose the Interface

that defines the required contract in the dialog that appears (See Figures 1.12 and 1.13).

Style Guide 85 Mentor Graphics

Cpen
Cpen Yith b

Disconneck

UnFarmalize

Formalize...

<= Undao
Fedo

_uk

Copy

Figure 12

P

Formalize Selection

Find:

Enter texk to shorken the lisk. ..

Choose a interface:

* = gny skring, ¥ = any characker, |, = escape for literals; * 7))

=T W =5

[case sensitive

[]use Reqular Expressions

[1] svnchronization

Elerment Elerment Fath
E hosk avpace: iinterfaces
E monitor avpace:interfaces

avpace:interfaces

| Ok

] l Cancel]

-

Figure 13

Component Reference creation:

Once the definitions are created it is time to fulfill the contracts among the various

Components. Create another Package at the same level as the definition package. Give the

package a name based on the particular usage that the contracted Components will fulfill. In

the Package create a Component Reference for each Component that will communicate with

each other. This is done by first selecting the Component Reference tool, the creating the

Style Guide

86

Mentor Graphics

symbol in the same way that the Package was created. Now select the Component References
and right click. Select the Assign Component... menu item (see Figure 13). In the dialog that
appears choose the Component that will be referenced (see Figure 14). The Component
References will now show the path to the referred to Component and will have the pre-defined
provided and required interfaces. To complete a contract with two Component References
select one of the provided or required interfaces, and drag its end to the other provided or

required interface (see Figure 15).

Cpen
Open With 3

Assign Component, ..

<2 Undo
Fedo

Cuk

R

Copy
Copy Image

Paste

Select All
Delete

Rename

g2y Import...
gy Export..,
WikiTexk r

Run As 3
Debug fs »
Profile As 3

Figure 13

Style Guide 87 Mentor Graphics

Fo =

*f assign Component Selection = @

Fird:
Enter text to shorken the list, .. Case Sensitive
(* = any string, ¥ = any character, |, = escape faor likerals: *) Ilse Regular Expressions
Choose a componenk:
Element Element Path
E heart avpace::library
B hostrmonitor avpace: library
Epacemaker avpace::library
Epacer avpace::library

e ———
'\,?J' K, Cancel

Figure 14

E svnchronization E host
. (el m | . {—I—u:)
avpace:library;heart = \E/ == avpace: library: :pacer [

(1]

hiosk

Figure 15

Component References that have been assigned can be unassigned by right clicking and
choosing the Unassign menu item. Note that when unassign all interface references will be
removed and any contract made will be lost. Component References that are assigned may also
be re-assigned. This is accomplished by right clicking on a Component Reference and
choosing the Assign Component... menu item. The rule for re-assignment is that the new
Component must at least fulfill the same Interface set. The new Component may support

additional Interfaces.

Interface references that have been connected can be disconnected by right clicking on either
end and selecting the Disconnect menu item. Once done each interface reference end can be

freely moved around and reconnected with other interface references.

Style Guide 88 Mentor Graphics

Internal structure creation:

The internal structure of a Component is created by first opening the Component definition. To
open the Component’s internal structures double click on the Component definition in either
Model Explorer or the Component definition diagram. The elements that define the internal
structure are created within the Component symbol that pre-exists. The same elements that are
created on the Component definition or Component reference diagram can be created on the
internal structure diagram. See the steps above for creation of those elements. In addition to
those elements there are two others that can be created on the internal structure diagram. These
are the Package element and the Delegation element. The Package element allows for creation
of all BridgePoint element types to be part of the internal structure. Package details are not
contained in this document. The Delegation element is a connection between outside
communication and inside elements. The pre-existing Component symbol will have all of the
provided and required interfaces pre-existing as well. To create a Delegation the internal
structure must contain a Component or Component Reference that uses the same formal
Interface type. Select the Delegation tool and left click on either the outer interface reference or
the internal one, then drag the mouse and release the mouse button at the other interface
reference. Another way that communication can be delegated is through transition assignment.
This is not covered in this document as the delegation is not visible on the Component diagram.

Recommendations

When creating Component definitions consider the subject matter that can be separated within
the system. That is the subject matter that can stand alone. When the system is partitioned into
Components it allows for component replacement. This provides a good way for testing as well
as multiple system deployments.

Always use the Component reference diagram for making the contracts, otherwise component
replacement will not be supported easily.

Style Guide 89 Mentor Graphics

State Diagram

1. wamng HUNTL:
6 e

A State Machine diagram documents the lifecycle of a class using a combination of State boxes

Edzraghe) oS

D resams Dy st >PROP 2]

HUNT2:

4 recciammng

ey
SEIE3 008 § FRISEE Ty S8 FPROS(RD]

-
=Rg -

SEIECE ONE 5 MElatEs by s >STEER{RLY:
gemerste STEERZ rigrel) o 5

Sreate evert ingance & of HUNTL neoal) o seif,

t= TIM:Smer_stari microseconssself arget oura®

HUNT1:

(3 revesseg

py—
ey

selectone 5 relates by st >STEER{AL).
generate STEERI sraigre) © 5

selec one D reiated by seif->PROPIRIZ]

=l

reerse)

H
FerEsattifgEac e OORUNTI el wae
Te TIMiTmer_mmey muriselncssfreTerL oy

joined by Transitions between them. An instance of a class is said to be driven between the

States of its lifecycle based on the sequential arrival of Events. Events may carry Parameters

which provide data to the behavior specified in the Actions associated with Transitions and

States. Actions are considered to be carried out while transitioning from one State to the next

and on entry to a new State.

Things to Know

Prior to beginning a State Machine Diagram it is important to have all information related to

Style Guide

Individual State
Events

Signal

Transitions
Parameter

Action

90

Mentor Graphics

When to Use

State Machine diagrams are constructed for many, but not necessarily all Classes in a design.
Use a State Machine diagram if instances of a given Class exhibit some sense of history. That
Is, it responds differently to the same Event depending on what has gone before. Less
commonly, State Machines are constructed for the Class itself as opposed to instances of the
class. One use for Class based State Machines is to manage contention for a resource, see
[xtUML, section 13.2]. Another useful feature of Class State Machines is that Signals may be
assigned to Transitions in these.

Creation

Create a new State Machine diagram for the Class by right clicking on it and selecting New >
Instance State Machine. A small symbol will appear on the Class signifying that an Instance
State Machine exists for it. Double click the Class to open the diagram. To create a class based

State Machine, use New > Class State Machine.

State Symbol

Create a State symbol by locating the State tool in the palette and select it. Now move to the
diagram and choose a suitable space on the sheet. Click on the left mouse button and drag the
mouse until the outline is the size you want and release. The State symbol will be drawn. Click
on the right mouse button and rename the State, giving it the name identified during the State
Machine development procedure. Right click on the State and choose Open > Description.
Enter the description of the State into the editor and save it using File > Save, clicking the disk
icon on the top tool bar or pressing <Ctrl+S>.

Event

Create a new Event by clicking the right mouse button and choosing New > Event. No symbol
is shown for an Event until it is assigned to a Transition. Use the Model Explorer view to locate
the new Event, right click on it and rename the Event using the name identified for it during the

State Machine development procedure.

Style Guide 91 Mentor Graphics

Add Event Parameter
Locate the Event in the Model Explorer. Click on the right mouse button over it and select New
> Parameter. Select the new Parameter and choose Rename..., to give it a name and Set Type...,

to change its type from the default integer setting.

Transition

Select the Transition tool in the palette. Click the left mouse button over the starting State and
drag across to the ending State. You do not need to click accurately on the edge of the State
symbols, draw from center to center. The tool will clean up the drawing automatically.
Sometimes, you will want to show a transition returning to the same State as it left, to draw this
make sure you begin the drawing action near the center of the State. Now drag the mouse a
little without leaving the boundary of the State. The tool will detect what you want to do and
draw the looped back Transition symbol for you.

Creation Transition

A Creation Transition is one which is sent to the Class, in response to which an instance is
created. To draw one, choose the Creation Transition tool from the palette. You can either start
on white space and drag the transition into the initial State or start in the State and stop
dragging over the canvas background. Either way the tool will draw the Transition going into

the target State.

Style Guide 92 Mentor Graphics

Assign an Event to a Transition
Click the right mouse button over the Transition you wish to assign to. Choose Assign Event...
A dialog appears allowing selection of the Event. Sometimes, there may be no Events to choose

from. This is for one of the following reasons:

¢ No Events have been created yet for the diagram.
e All Events created on the diagram are already assigned to outgoing Transitions from
the starting State.
e The Events already assigned on Transitions to the ending State carry a data set for which

no remaining available Event matches.

In the case of Class based State Machines, another menu entry is available on a right mouse

click; Assign Signal. Using this is identical to assigning an Event.

When all States have been visited, switch to the State Event Matrix view by clicking on the tab
below the State Machine diagram. The tool switches to a new editor that shows the State/Event
matrix. For each cell in the matrix that is marked Can't Happen, specify one of the three

possibilities:

e The Event really Can't Happen in the corresponding State
e The Event can_ happen but does not cause any change of State

e A Transition has been missed

No action is required in the first case. In the second case, click on the cell in the matrix and
select Event Ignored. The third case should not occur if the procedure for creating the State

Machine diagram has been followed correctly.

See the procedure documentation for the action required.

Style Guide 93 Mentor Graphics

Activity Diagram

Manitar

X

Check. activity levels

[rormal
activity]
increased
ackivity?
[increased
ackivity]

Motify of increased activity

T 1

Pacer

L~

Accept increased activity

Synchranize with host

[increased
ativity]

Increase pulse frequency

recevied increased activity notifications]

Generate pulse

[normal activity]

Host

Diastole o Systale?

[diastale]

[systole]

Systole

The Activity Diagram depicts the flow of control for an activity. The documented activity

consists of several sub-activities that are involved in the overall flow.

Things to Know

Prior to beginning an Activity Diagram it is important to locate all information related to

Style Guide

94

Mentor Graphics

Accept Event Actions Accept Time Event Actions

Actions Send Signal Actions
Object Nodes Decision/Merge Nodes
Initial Nodes Activity Final Nodes
Flow Final Nodes Activity Partitions
Activity Edges Fork/Join Nodes

When to use

An Activity Diagram can be used to document a business workflow or a software workflow for a

given activity.

When documenting a business workflow the activities and flows are real world elements that are
carried out by parts of the organization. Use an Activity Diagram to produce a clear picture of

the overall flow for situations that must occur within the documented workflow.

When documenting a software workflow the objects, actions and control flow can be mapped to
parts of the system. Use an Activity Diagram to produce an overview of the control flow that
will aid in the creation of the real software elements in the system. The Activity Diagram can
additionally be used after the fact (after the real software elements have been created) to provide

a clear picture of the workflow for a given situation.
Prior to beginning an activity diagram, it is important to know

1. The involved participants.
2. The control flow among the participants.
3. Various paths involved within the control flow.
The resulting document is living and may change over time. In both the business model and

software case the document can change as the project progresses and further detail is learned.

A well written Activity Diagram will clearly depict the flow of control among the set of
participants. It will be easy to follow the flow. If the documented flow becomes large the flow

will grow harder to read. If this occurs consider stepping back and refactoring the document into

Style Guide 95 Mentor Graphics

smaller flows that can be referenced. When breaking up a large activity use a package hierarchy

and naming scheme to allow easy navigation for the reader. An example follows:
Descriptive Activity Name (Package)
|_ Descriptive Sub Activity Name Step 1 (Package)

|_ Descriptive Sub Activity Name Step 2 (Package)

Usage

Generic:

In the generic case the goal of the document is to better understand the general workflow. This
is true for both the business model and software situations. This document may map to real
participants, but may just depict ideas. There is no formal way to map objects, activities and
flow in the BridgePoint tool. To achieve mapping take consideration when naming the various

pieces of the document.

Precise:
In the precise case the workflow participants and control flow is fully understood. As stated
above there is no formal way to achieve mapping. As is true with the generic case use good

naming procedures to produce a mapping.

Steps to creating an effective Activity Diagram

Diagram creation:

Once the location has been determined, locate the palette view (see Figure 1.2 below). In the
palette view select the Package tool (as shown in Figure 1.2). On the editor page click the left
mouse button and drag a distance. A marquee will be drawn that indicates the location and size
of the graphical symbol to be created. Once the symbol is at a desired location and size let go of
the left mouse button. At this point a new Package has been created. Right click on the Package
graphical symbol and select “Rename” (See Figure 1.3 and 1.4 below). In the window that is
opened enter a good name for the package. This name should reflect the situation that control

flow is being captured for.

Style Guide 96 Mentor Graphics

¢%n
00

[Select
&J Zoom Tool

(= Default Toolset

New Package

(= Actiy

€

= Classes

(= Communication

.~ Components

[~ External

[~ Interaction

= Sequence

& Types
(> Use Case

Figure 1.2

Enker the new name:

Mew
COpen
Cpen With

Make Private
Make Prokected

Publish References

<= Undo

2 Redo

of Cut
Copry
Copyw Image

Paste

Select all

Delete

Renarme

Figure 1.3

Mrename

Unnamed Package|

QK

I [Cancel

Figure 1.4

Style Guide

97

Mentor Graphics

Action creation:

As with diagram creation, the proper tool must be selected. As stated in the Elements section
there are many Activity elements. They are broken up into actions, nodes, and flow (Activity
Edge in BridgePoint). Select the action tool that is of interest (see Figure 1.5 below). Once
selected proceed to draw the symbol for the action graphical element (see steps in package
creation for details). At this point the newly created action can be configured. Start by giving
the action a name, remembering to take consideration of the name used. Select the action and
right click, then select the “Rename” menu item (See Figure 1.3). In the dialog that appears
enter the desired name (See Figure 1.4). It is a good idea to enter a description for the element
created. The description shall describe the role of the element within the documented workflow.
To set the description right click on the element and choose the Open With > Description Editor
menu item (See Figure 1.6 below). Enter the desired description text and save the changes (See
Figure 1.7 below).

L Palette &3

[:;3‘ Seleck

& Zoom Taol

== Default Toolsek
5" Accept Event Action
= Accept Time Event Ackion
& Action
g Send Signal Action
g Object Mode
& Decision/Merge Mode
» Initial Mode
@ Activity Final Node
@ Flovw Final Mode
“| Ackivity Partition
A Activity Edge
Iif Fork) Join Mode

[~ Classes

Style Guide 98 Mentor Graphics

Ml 3

Figure 1.5 9B
Open With » D-= Description Editor
Make Private
Make Protected

Publish References

< Undo
Redo
Figure 1.6
D.= Check activity levels: Activity Diagram Action Description &3 =0

hhis action asks the associated low level monitor elements for the current
readings to determing the current activity level.

Figure 1.7
There are four types of action that can be created in the Activity Diagram. These are:

1. Action
2. Accept Event Action
3. Accept Time Event Action
4. Send Signal Action
It is not within the scope of this document to describe the meaning of each of these. Creation of

each action type is identical to the prescribed procedures above.

Node creation:

Select the node tool that is of interest (see Figure 1.5 above). Once selected proceed to draw the
symbol for the mode graphical element (see steps in package creation for details). At this point
the newly created node can be configured. Start by giving the node a name, again remembering
to take consideration of the name used. Select the node and right click, then select the “Rename”

menu item (see Figure 1.3). In the dialog that appears enter the desired name (see Figure 1.4). It

Style Guide 99 Mentor Graphics

is a good idea to enter a description for the element created. The description shall describe the
role of the element within the documented workflow. To set the description right click on the
element and choose the Open With > Description Editor menu item (see Figure 1.6 above).
Enter the desired description text and save the changes (see Figure 1.7 above).

There are six types of node that can be created in the Activity Diagram. These are:

1. Object Node

2. Decision/Merge Node
3. Initial Node

4. Activity Final Node
5. Flow Final Node

6. Fork/Join Node

As mentioned above the meaning of each of the above elements is not within the scope of this
document. The creation of each node is nearly identical to the steps above. The nodes that

behave differently are described below.

The Decision/Merge Node may not always have a name set. In most cases when this element is
used as a Merge the name is omitted. When the element is used as a Decision, the name

generally captures the question that the decision is made against.

The Initial Node, Activity Final Node, and Flow Final Node are never named. In addition the
Initial Node should never have a flow drawn to it, only from it. The opposite is true of the
Activity Final Node and the Flow Final Node.

The Fork/Join Node is not a shape symbol like the other nodes; it is treated as a connector in
BridgePoint. This allows for easier orientation configuration, where the node can be drawn
horizontally or vertically. This means that the movement and resizing behavior is rather
different than the other nodes. Similarly the creation is much different than the other nodes. To
create a Fork/Join Node select the tool in the palette view. Once selected left click the mouse at
the desired start location, then drag and release the left mouse button at the desired end location.

This element can be named to describe the fork or join role within the workflow.

Style Guide 100 Mentor Graphics

Flow creation:

As with the other elements the proper tool must be selected. In BridgePoint this is the Activity
Edge tool. Once selected left click the mouse at the desired start element, then drag and release
the left mouse button at the desired end element. The Activity Edge can be named, but is
commonly omitted. The naming is generally used to indicate a guard condition where the flow
has left a Decision/Merge Node, which is named after the decision made. All other elements,
with the exception of the Activity Partition, are valid start and end elements for the Activity
Edge. The tool will not allow multiple incoming or outgoing Activity Edges to the same action
or node with the following exception. Only the Decision/Merge Node and the Fork/Join Node

may have multiple entries and exits. These two nodes are present for this exact case.

Partition creation:

As with the other elements creation begins with selecting the proper tool. In this case the
Activity Partition tool. Once selected the Partition is created in the same way as the Fork/Join
Node. Left click at the desired start position, then drag and release the left mouse button at the

desired end location. Partitions can be named if desired.

Recommendations

As with any programming language, UML models should be factored into the smallest amount
of data that makes sense. It is easier to read and understand a diagram (or program code) when
the subjects within the system are factored into many small functional parts. This prevents the

diagram from growing large to a point where readability is hindered.

Always include descriptions, for the elements, that describe their role in the documented

workflow.

If a diagram is growing to the point where the flow is hard to follow, take a step back and
consider the possibilities for refactoring. Readers can always be referred to a set of documents to
help describe a larger procedure.

Style Guide 101 Mentor Graphics

Implementation Targets

The Model Translation (also known as Code Generation) step is where a model compiler is used
to perform translation of UML to target code (C, C++, Java, SystemC, Ada ...). Mellor and
Balcer provide an introduction to the model compilers, and their operation in Executable UML
[1]. As they state:

[Y]ou must choose how to compile your Executable UML models based on the
performance requirements and the environment of your application. From this
information, you can select a model compiler that meets your needs, compile the

models, and deliver the running system.

You can buy an existing model compiler as a “design-in-a-box.” Alternatively, you

can modify an existing model compiler or even build your own from scratch

This chapter discusses the capabilities of several off-the-shelf model compilers available from
Mentor Graphics for C, C++, and SystemC. Also included are instructions on how to install

these commercial model compilers or one that you have created.

Embedded C / C++

The BridgePoint embedded C model compiler, known as MC-3020, is available in two forms.
The binary (non-modifiable) version of MC-3020 is included in every BridgePoint installation.
An equivalent source (user-modifiable) version is available as a separate product from Mentor
Graphics, and provides a starting point for the development of a corporate of project-specific
model compiler. The embedded C++ model compiler is available in source form from Mentor

Graphics.

These model compilers generate optimized C or C++ source code that is suitable for use in all
manner of embedded environments. The generated application contains a small, concurrent, and
highly-efficient event-driven architecture that can run directly “on the iron” or on top of a real-
time operating system (RTOS). The C and C++ model compilers are reliable and proven tools to

generate the application implementation in C or C++.

Style Guide 102 Mentor Graphics

SystemC

The BridgePoint SystemC model compiler is used to translate the xtUML model into an
implementation suitable for execution in a SystemC simulator. The SystemC model compiler
can generate code that is compatible with standard SystemC ports as well as Transaction-level
Modeling extensions.

SystemC is useful to build application models that express both hardware and software blocks,

and the interfaces between them. BridgePoint SystemC is used for:

e Architectural exploration. At the beginning of the development process, you must
answer questions such as: How much processing capability do | need? How much RAM
is required? What are the power requirements? What blocks must be implemented in
hardware? What blocks can be implemented in software? System-level models created
using BridgePoint and simulated in SystemC help answer these questions.

e Defining a firmware functional verification platform. With the ability to model and
execute the functionality of hardware and software blocks, the SystemC simulation can
be used to create a test infrastructure that verifies proper operation of the software in the
context of the hardware.

e Creating a Hardware Abstraction Layer. BridgePoint’s ability to model and simulate
both hardware and software makes xtUML an ideal environment to model software that
abstracts the functionality of the hardware and defines the interface points to the
hardware blocks.

e Hardware/software co-design. Multiple BridgePoint model compilers can be used
against a single project. This capability allows you to translate SystemC blocks in one
pass, and embedded C target code in another pass. Because the xtUML model is
platform independent, BridgePoint enables you to retarget your application from
simulation to implementation code according to your needs. At the same time the
software is designed and refined, the hardware undergoes the same design and refinement
until it, too, is ready for implementation. In this way, the tool helps drive the

implementations of the blocks.

Style Guide 103 Mentor Graphics

Preparing to Build a Project

To translate a project into useful implementation code, there are several prerequisites to attend

to. These include:

e A model compiler must be installed and ready to use. Specific instructions how to do this are
found in the following section, Installing BridgePoint Model Compilers.

e The model itself needs to have some specific pieces in place. The model must have a
package containing the system to be translated. Typically, this is a package that contains a
number of component references whose interfaces are connected to each other.

e The model must contain a domain function that serves to bootstrap the application execution.
This initialization function may create key classes and active state machines or send interface
messages to other components that jumpstart their initialization and execution.

e The project must have marking information specified that is used during the model
translation. Only a few marks are essential to create a running application, but many are
available to fine-tune the code generation process. Marking is discussed in more detail in the
following sections about specific implementation targets.

e The correct eclipse project builders must be enabled. Builder configuration is also discussed

in more detail in the documentation about specific implementation targets.

BridgePoint contains a built-in model compiler that : : :
The BridgePoint model compiler
generates fast and small C code for embedded systems. No) .
o o _ o uses a Windows-based tool during
additional licensing or configuration is necessary to get : :
) o _ _ the translation process. Linux
started right away building models with this model : : :
users must install Wine [2] in order

compiler. :

to run the model compiler. See
However, you may wish to use a different commercially Linux guide in BridgePoint Help
available model compiler, or even write your own. To use for more information.

one of these non-built-in model compilers, BridgePoint

must be properly licensed and configured. A floating or node-locked license for the appropriate
model compiler is required. Contact local IT or Mentor Graphics Customer Support for

assistance installing and configuring licenses.

Style Guide 104 Mentor Graphics

The modifiable C model compiler and the SystemC model compiler are distributed separately

from the BridgePoint application installer, typically as an archive file. Decompress the archive

into:

e <BridgePoint install directory>/eclipse extensions/BridgePoint/eclipse/
plugins/com.mentor.nucleus.bp.mc.mc3020 <version>/mc3020

This action creates an arc/ subdirectory.

< mc3020 - File Browser E]@ET
Hle Edit Miew Go Bookmarks Help
@ . & @ @ =
Back Up Reload Home Computer Search

E“ com.mentor.nucleus.bp.mc.mc3020_3.4.0 Hm:BOZOI €, 100% €
Places™ ®
’ [f

@ bpuser

& Desktop bin examples img
> File 5ystem 1:;'—37 1:’;37 % f:tjj']
Figure 10

If you wish to build your own model compiler, you must acquire the proper license from Mentor
Graphics and configure the license in your BridgePoint installation. With the license in place, it
is then simply a matter of creating and arc/ folder as above and populating the folder with your

model compiler archetypes.

Style Guide 105 Mentor Graphics

Implementing a BridgePoint Model in Embedded C

This section describes how to translate the model into a C implementation for embedded targets

and execute the application in the host environment.

Generating C Source Code

BridgePoint performs translation in a sequence of steps using eclipse builders:

 cice+ - BridgePoint LML

File Edit Source Refackor Mavigate Search Project Run Wwindow Help

Pt —
w | o 58 Properties for GPS WWatch = @
==} - £ CiC++ 5
E - kype Filker kext Builders = > =
L™ Project Explorer &5 S : . .
=5 Gp5 Watch Buildere Configure the builders For the project:
E javasrc - C/C4++ Build [id %M1 2.1 Export —
=l JRE System - CC++ General o @ Model Cormpiler Pre-Build —
g core.jar - C Java Build Path V] & MC-3020 Madel Campiler Impart...
% Binaries - Java Code Style 7] [i COT Builder -
i) Includes + Java Compiler 7] [sd Jarva Builder =
(2 sre - Java Editor 7] [iih Scanner Configuration Builder Remove
(= Debug Javfadcuc Location
(= gen :ro]el:c)t :EFESrES:-CBS
= models un/De ug_ ettings Up
README - Task Repository
Task Tags [lalfl}
Yalidation
WikiText
=
'x?)l oK] | Canicel
Figure 11

The first step is known as “Model Compiler Pre-Build.” In this step, the model data is assembled
together in a form that is usable by the model compiler itself. Once the data is prepared, the
model compiler /code generator processes the data using its mechanisms and archetypes. The
output of this step is the implementation code. Lastly, the implementation code is compiled by
the eclipse CDT, which is built into BridgePoint. The built-in code compilation step can be

turned off in order to use a target compiler of your own choosing at a later stage in your

Style Guide 106 Mentor Graphics

development process. As shown in Figure 1, the GPS Watch sample model includes a Java

Builder as well to build the Java-based Ul included in this example.

Markings

BridgePoint uses marking information to provide “knobs and dials” for fine tuning the code
generation process. This information is contained in . mark files located in the gen/ folder.
See the Marking section of the BridgePoint Model Compiler in the Help system for extensive

discussion of this topic.

You can get started quickly by adding the following marks to gen/system.mark and

gen/domain.mark in your project:

system.mark

.invoke MarkSystemConfigurationPackage ("<your system package>")

domain.mark

.invoke MarkInitializationFunction("*", "<your init function>")

Style Guide 107 Mentor Graphics

Building the Project
Once the markings are in place, build the project by selecting “Build Project” in the project’s
context menu as shown in Figure 2. Informational output from the model translation process is

placed in the Console view. The generated code is put into the project’s src/ folder.

e

£/ Ce+ - BridgePoint UML

File Edit Source Refactor Mavigate Search Project Rum Window Help

rd~ & ErerE-Er R-® 0
= @ CIC++ “EE xbUML Modeling @ SN Repository Exploring @ WS Repository
L™ Projeck Explorer 3 - ‘Gé}l = =0
45 GPS Wateh

R javar Mew 1
' %ﬂ JRE: Go Into
o Care
: d{;.p Binar Opern in Mews Window
sl Incly Shaw In Alt-+Shift-+ b
- 05 s
= Deby 12 Copy Chrl+HC
= gen EZ Copy Qualified Mame
© = mody
REAl L= Paste Chrl+Y
¥ Delete Celete
Remove From Conkexk ZErl A+ ShiFE+-Dion
Build Path b
Refactar AlL+3hife+T #
E2g Import...
Ly Export...
Build Project L}
Clean Project
2 Refresh F5
Figure 12

Both the BridgePoint model compiler and the eclipse CDT compiler output messages to the
Console view as they process the model and implementation code. The console view treats the
output separately. Use the Console view display switcher as shown in Figure 3 to choose the

output you want to view.

Style Guide 108 Mentor Graphics

[Properties
B 15w

[2 problems | ¥ Tasks [E] consale 52
C-Build [GPS Watch]

sreh Tracking TrackPoint_class.o sr &, 2 <terminated> MC-3020 Model Compiler [Program] C:\MentorGraphics\BridgePaint)sclipse_sxtensions

sreh Tracking LapMarker class.o src

sreh\ Tracking Display _class.o srchT &= 3 C-Build [GPS Watch]

srciLocation.o srchLOG _bridge.o sro\HeartRateMonitor HeartRatelonitor class.o
sro' HeartRateMonitor.o sre\GuiBridge bridge.o sre)\ARCH bridge.o -lwsock3z

Build complete for project GPS Watch
Time consumed: 3556 ms.

Figure 13

Overriding Generated Output and Implementing External Entities

BridgePoint application models are not restricted to live
in a world isolated from other software. xtUML models
can integrate with domains outside the model such as in-
house legacy software and third-party tools. These

outside domains are modeled as External Entities (EES).

Executable UML[1] details how to properly create and
communicate with External Entities in the xtUML

model.

The BridgePoint model compiler generates code for all
the external entities specified in the model. When it is
time to translate the model to an implementation, you can
override the generated code with your own

implementation of the external entity.

Figure 4 shows the Graphical User Interface (key letters
GuiBridge) external entity of the GPS Watch project.
This EE communicates with the GPS Watch GUI over a

socket connection. The xtUML model does not contain

Style Guide 109

2 Modsl Explorer &3 =8
-
= =§=
4 (= GPS Watch -
= GPS watch: System Model Package Diagram

B analysis
> LEB Sequences
> {‘”E Use Cases
+ 1AL activities
> {E‘F HeartR ateMonitar Interf aces
> L'f.F LocationInkerfaces
¥ Ulinterfaces
a {5 Library
158 Library: Component Package Diagram
S, C- | HeartR.akeMaonitar
o, C- | Lacation
S C-] Tracking
@
@ UL Corponent Diagrann
- B
> {55" TestCases
> {H [Databypes
4 {EE External Entities

{55 External Entities: External Entity

m

- @ Architecture
PR[E] Graphical User Interface
% connect
» % feedLapResetPressedEvent
» % feedlightPressedEvent
» % feedModePressedEvent
» % feedSetTargetPressedEvent
> % feedStartStopPressedEvent
% sendLapResetPressed

Figure 14

Mentor Graphics

native code to do this. The EE simply models the interfaces to this domain that the rest of the

L™ Projeck Explarer &3

C
] ‘!:,-

GPS Whakch
(=8 javasrc

+ Bl JRE System Library [EridgePy

.i}i‘
&

core,jar - iZ:\MenktorGraphics
Binaries
Includes

-8 are
* = Debug

== gen

* =+ code_generation
bridge . mark,
class.mark.
datatype,mark
domain. mark,
event.mark,
GuiBridge_bridge.c
syskem.mark

]

¢ = models

README

Figure 15

application needs to use.

When the model compiler translates model elements, it
always creates regular file names based on the element’s key
letters and the type of the element. For example, external
entities are named <key

letters> bridge.<extension>.

At project build time, the model compiler translates all the
model elements, including the EEs. Then, at the end of the
translation but before compilation, all source code files in the
gen/ folder are copied to the src/ folder. Thus, the
Graphical User Interface EE implementation-specific file
shown in Figure 5 will overwrite the one generated by the

model compiler inthe src/ folder.

It is good practice to let the model compiler provide the

structure of the bridge implementation file(s). Meaning, don’t try to create the bridge

implementation in the gen/ folder from scratch. Build the project and let the model compiler

generate the skeleton data and in the bridge files. This will include the proper file layout and

function prototypes with comments showing where to insert implementation-specific code.

Copy the initial declaration and/or definition files from src/ to gen/. From this point on, edit

the details of the EE implementation in the files under gen/.

Running the Implementation Code

As discussed previously, the default configuration will compile the implementation code using

CDT for the host platform. When the application is built successfully, it shows up under the

project

in the Binaries entry.

BridgePoint includes built-in facilities for running and debugging the application. Figure 6

shows how to run the application directly.

Style Guide

110 Mentor Graphics

/s - GPS Wiatchs sressys_rmain.c - BridgePoint Uil

File Edit Source Refactor Mavigate Search Project Run Window Help

4~ @ @rerd-@r R-®- w-Ofar &@c - 5% o
iz} #&}Debug @CIC++ “EE kML Modeling S\-'N Repository Explating t {no launch histary)
[Project Explarer &3 =l's: | = = 8| g sys_main.c 5 Run As 3 1 Local C/C++ Application % =
r .
4§ GPS Watch int Run Configurations. .. 0
4 [Ejavasrc main | int

4 O ize: F ites...
* B\ IRE System Library [EridgePoint] EEINESS e

- s core.jar - CiiMentarGraphics|BridgePointieclipse_e UserInitializationCallout():

4 #}P Binaries Escher FetFactoryInit(); L
> 3‘531 GPS Wakch,exe - [x86/le] InitializedoaEventPool () ; 1
- e Includes ApplicationlevelInitialization():
Figure 16

The green bug toolbar icon next to the play button shown in the figure provides a means to

launch the application as a debug configuration.

Changing the Build Type

Eclipse CDT sets the default build configuration type to “Debug” in order to facilitate seamless
integration with the built-in debugger out of the box. This information comes at a cost, though.

It increases the size of the application and reduces execution speed.

At deployment time, switch to the “Release” build configuration to tell the CDT compiler to use
settings that will reduce size and increase speed. As shown in Figure 7, the project context menu

contains an entry to easily choose the build configuration to use.

Style Guide 111 Mentor Graphics

File Edit Source

A

e

Figure 17

Style Guide

L | 010

Refactor Mavigate

1™ Projeck Explarer 23 — <‘}==;>
4[5 GPS ok
> 2 i Mew
= 50 Inko
Jom
F] gff‘ Ei Qpe in Mew Window
d :t Shiow In
> [In
s B e (5 Copy
© (= D ES Copy Qualified Mame
4 (=g
‘2 Paste
s E ¥
¥ Delete

Remove from Context
Build Path

Refackor

Irnpork...

Exportt...

Build Project
Clean Project
Refresh
Close Project

Clase Unrelated Projects

Exclude from build...
Build Configurations
Make Targets

Index

Walidate

Coresark To

Search Project Run
@ - ﬁ:,? L @: -
B f’f« Debug @ CiC++ 52 kML Modeling YN Repository Exploring El?l W3 Fepository Exploring
= = B[[£ sys_main.c £

T CfCH+ - GPS Watchs sref sys_main.c - BridgePoint LkAL

window

&~ ®-~

B oo

Alt+5Shift-+4 ¥

Chrl+C

Chrl+Yy

Delete

Crl+alk+Shift+Down
3

Ale+shift+T »

FS

112

%0~ Q-

Help
&5 &~ -

nt argc, char *% argv)

litializationCallout() ;
_SetFactoryIniti):
lizeOoaEventPool()
ationlevelInitialization():
eCoalnitializationCallout) ;
iateMonitor execute_initialization():
on_execute_initialization():
ng_execute_initialization():

cute initializationi):
stloalnitializationCallout () ;
_®XEUML_runi): /% This iz the primary event
edhutdownCallout () ;
sthhutdowvnCallout () ;

L o;

wing provides the dispatcher loops for the

her run flag = true: /% Turn this off to =
[TI]

| Tasks | Bl cansole 52
ch]
Set Active k|
EBuild 4

=) Properties

1 Debug
Z Release

Delete resource cfgs. .,

Manage...

Mentor Graphics

Building and Simulating SystemC-based Models with BridgePoint and Vista

This section describes how to perform the translation of the UML model to SystemC, then
import and simulate the generated SystemC code in Vista. This chapter builds on information

discussed in the Translation and Implementation Targets sections.

Getting Set Up

The SystemC model compiler is distributed separately from the BridgePoint application installer,
see the Configuring BridgePoint section for information about how to install the SystemC model

compiler.

The default BridgePoint project configuration enables a C compiler to build the generated source
code. Since the SystemC code compilation is performed by Vista, you need to disable the

default C code builder in the project properties:

File Edit Source Refactor Aruparilss Jur gasar
v 2 | e~ d | | Builders N
B ML Mol Reource Configure the builders for the project:
(B 5 O [&ié M1 2.1 Export New... '.EE
' [Model Compiler Pre-Build
= i:b b CIC++ General qﬂ, MC-3020 Model Compiler
Project References |t CDT Builder Ar
b & gen Refactoring History I [y Scanner Configuration Builder
P (= models Run/Debug Settings
P gl includes P Task Repository
& src Task Tags
Validation
WikiText
@ Cancel l [OK
Figure 18

Style Guide 113 Mentor Graphics

Marking

BridgePoint uses marking information to provide “knobs and dials” for fine tuning the code
compilation process. See the Marking section of the BridgePoint Model Compiler — User’s
Guide in the Help system for extensive discussion of this topic. The SystemC-specific Markings
subsection provides details and examples for the additional marks you need to know about. For
example, the marking information, not the application model is where you choose if you want to

create an implementation that uses TLM or non-TLM communication.

You can get started quickly by adding the following marks to gen/system.mark and

gen/domain.mark in your project:

system.mark

.invoke MarkSystemConfigurationPackage ("<your system package>")
.invoke EnableTasking("SystemC", "", 1)

.invoke MarkAllPortsPolymorphic ()

.invoke MarkSystemCPortType("TLM")

domain.mark

.invoke MarkInitializationFunction("*", "<your init function>")

Building the Project

Once the markings are in place, build the project by selecting “Build Project” in the project’s
context menu. Informational output from the model translation process is placed in the Console

view. The generated code is put into the project’s src/ folder.

Creating and Configuring a Vista Project

The steps provided here will get the simulation up and running quickly. See the Help contents
within Vista for detailed information about the tool functionality.

Style Guide 114 Mentor Graphics

Once the SystemC source code is created, the next step is to create and configure a project in
Vista.

e Make a working directory for vista (e.g. /home /bpuser/vista/examplel)
e Change to this directory

e Copy the generated src/ folder from the BridgePoint project into here

e Rename src/tobriva src/'

e Start Vista in the current directory ($ vista &)

o Create a project (Project > New Project) named "Project” in the default/current directory

Vista - Project Settings

$PRJDIR /$PRJF ILE_BASENAME Auild B

$PRJIDIR /$PRJF ILE_BASENAME/ interfaces |
o
i

Figure 19

e Open the Files tab

Style Guide 115 Mentor Graphics

e Click "Add Files" button

e Open the "briva_src" folder

e Enter *.cpp in the "File names" field, select "Open"
o Multi-select all the *.cpp files, select "Open”

e Click "Add Files" button

e Enter *.h in the "File names" field, select "Open"

e Multi-select all the *.h files, select "Open"

e Open the Include Paths tab and enter the information shown below:

Vista - Create New Project

$PRJIDIR briva_srocdvista_t Lo

Figure 20

Style Guide 116 Mentor Graphics

e Click OK to close Create New Project wizard

The project is now populated. Before proceeding to the code compilation, create library blocks

for the components imported from BridgePoint.

e Click in the Vista Console view at the bottom of the Vista Ul and enter the commands:
e source briva_src/vista_tlm/briva_tIm.tcl

e briva_all

’
I"f
I\J | =

(wista) source briva_src/vizta_tlmsbriva_tlm,tcl]

IS08----- *zcratoh= fLisp Interaction Fonti----1L1--A11------

Figure 21

Style Guide 117 Mentor Graphics

The scripts create a library of BridgePoint blocks for use in Vista Model Builder:

File Edit Miew Progect Build Modeling Tools Simulation

COOoE & E # & - ox k- G R ¢

BW-C-EIORR LUl Sleas o
= x| 2B S 4 A S

....... meny

& protocols 0
@ Generic_Library
"@ Madels_Catalogue
"@ BridgePoint
IE Froject

Figure 22

Building the Vista Project

You are now ready to compile the SystemC source code. Simply:

e Highlight “Project” in the tree view
e Build the project (Build > Build Project)

The compiler will output informational messages to the Compile Output view.

Simulating the Project

The compiled code is ready to run in simulation. The generated source code contains an initial
testbench and sc_main based on the system package that was specified in BridgePoint. You can
also instantiate the elements under the BridgePoint library in other block diagrams for use in the
hardware architecture design and analysis. See the Vista help for more information about

libraries.

Style Guide 118 Mentor Graphics

Kick off the simulation using the Project’s context menu.

protocols
Generic_Library
Model=s_Catslogus
BridgePoint

Project

External Headers
Models
Pukhlic Headers
Sources
Simulation

&l sysc_main.cpp
Virtual Prototypes

Simulate

Figure 23

Style Guide 119 Mentor Graphics

The Simulation wizard starts. Check the appropriate options as shown in the following figure:

o

-

Vista - Simulation

v
JhomnedbpuzerSvistadexanplel/Project f=im l_

Figure 24

Style Guide

120

Mentor Graphics

e Click OK. The simulation runs until the top level has been elaborated. After
elaboration is complete, Vista shows "Stopped" in the lower right status bar.

e Set breakpoints now (optional)

e In the toolbar, click on the green arrow with a small clock

e Enter a stop time (~5-10 seconds) and then press "Go"

e A lot of output will show up in the Console?.

L If you want to choose a different name in this step, you must modify the <other src dir
name>/vista tlm/briva tlm.tcl file. Update the "bp_source" variable to specify the
name you chose for <other src dir name>. All other references to briva src/ inthe example

instructions and screen shots must be modified appropriately as well.

2 To adjust the size of the console font, click the XEmacs button on the toolbar. Then in the

menu that pops up choose "Options > Font Size" and select the desired size.

Style Guide 121 Mentor Graphics

References

[1] Mellor, Stephen J., and Marc J. Balcer: Executable UML: A Foundation for Model-Driven
Architecture. Addison-Wesley, Boston, 2002. Print. Chapter 18.

[2] Wine URL: www.winehg.com

[3] Rumbaugh, James, Ivar Jacobson, and Grady Booch: The Unified Modeling Language
Reference Manual, Second Edition. Addison-Wesley, Boston, 2004. Print. pp111-112.

[4] Rumbaugh, James, Ivar Jacobson, and Grady Booch: The Unified Modeling Language
Reference Manual, Second Edition. Addison-Wesley, Boston, 2004. Print. p304

[5] Mellor, Stephen J., and Marc J. Balcer: Executable UML: A Foundation for Model-Driven
Architecture. Addison-Wesley, Boston, 2002. Print. pp65-67.

Style Guide 122 Mentor Graphics

http://www.winehq.com/

