
ptg11539604

ptg11539604

Praise for SysML Distilled

“In keeping with the outstanding tradition of Addison-Wesley’s techni-
cal publications, Lenny Delligatti’s SysML Distilled does not disappoint.
Lenny has done a masterful job of capturing the spirit of OMG SysML
as a practical, standards-based modeling language to help systems engi-
neers address growing system complexity. This book is loaded with
matter-of-fact insights, starting with basic MBSE concepts to distin-
guishing the subtle differences between use cases and scenarios to illu-
mination on namespaces and SysML packages, and even speaks to some
of the more esoteric SysML semantics such as token flows.”

— Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory

“The power of a modeling language, such as SysML, is that it facilitates
communication not only within systems engineering but across disci-
plines and across the development life cycle. Many languages have the
potential to increase communication, but without an effective guide,
they can fall short of that objective. In SysML Distilled, Lenny Delligatti
combines just the right amount of technology with a common-sense
approach to utilizing SysML toward achieving that communication.
Having worked in systems and software engineering across many do-
mains for the last 30 years, and having taught computer languages,
UML, and SysML to many organizations and within the college setting,
I find Lenny’s book an invaluable resource. He presents the concepts
clearly and provides useful and pragmatic examples to get you off the
ground quickly and enables you to be an effective modeler.”

— Thomas W. Fargnoli, Lead Member of the
Engineering Staff, Lockheed Martin

“This book provides an excellent introduction to SysML. Lenny Delli-
gatti’s explanations are concise and easy to understand; the examples
well thought out and interesting.”

— Susanne Sherba, Senior Lecturer, Department of
Computer Science, University of Denver

“Lenny hits the thin line between a reference book for SysML to look
up elements and an entertaining book that could be read in its entirety
to learn the language. A great book in the tradition of the famous UML
Distilled.”

— Tim Weilkiens, CEO, oose

ptg11539604

“More informative than a PowerPoint, less pedantic than an OMG Pro-
file Specification, SysML Distilled offers practicing systems engineers
just the right level of the motivation, concepts, and notation of pure
OMG SysML for them to attain fluency with this graphical language for
the specification and analysis of their practical and complex systems.”

— Lonnie VanZandt, chief architect, No Magic, Inc.

“Delligatti’s SysML Distilled is a most aptly named book; it represents
the distillation of years of experience in teaching and using SysML in
industrial settings. The author presents a very clear and highly read-
able view of this powerful but complex modeling language, illustrating
its use via easy-to-follow practical examples. Although intended pri-
marily as an introduction to SysML, I have no doubt that it will also
serve as a handy reference for experienced practitioners.”

— Bran Selic, president, Malina Software Corp.

“SysML is a rather intimidating modeling language, but in this book
Lenny makes it really easy to understand, and the advice throughout
the book will help practitioners avoid numerous pitfalls and help them
grasp and apply the core elements and the spirit of SysML. If you are
planning on applying SysML, this is the book for you!”

— Celso Gonzalez, senior developer, IBM Rational

“SysML Distilled is a great book for engineers who are starting to delve
into model-based systems engineering. The space system examples
capture the imagination and express the concepts in a simple but effec-
tive way.”

— Matthew C. Hause, chief consulting engineer,
Atego and chair, OMG UPDM Group

“I’ve been deeply involved with OMG since the 1990s, but my profes-
sional needs have not often taken me into the SysML realm. So I thought
I’d be a good beta tester for Lenny’s book. To my delight, I learned a
great deal reading through it, and I know you will too.”

— Doug Tolbert, distinguished engineer, Unisys, and member,
OMG Board of Directors and Architecture Board

00_0321927866_FM.indd iii Achorn International 10/18/2013 12:05AM

ptg11539604

“SysML Distilled provides a clear and comprehensive description of the
language component of model-based systems engineering, while offer-
ing suggestions for where to find information about the tool and meth-
odology components. There is evidence throughout the book that the
author has a deep understanding of SysML and its application in a sys-
tem development process. I will definitely be using this as a textbook in
the MBSE courses I teach.”

— J. D. Baker, OCUP, OCSMP, member of the
OMG Architecture Board

“SysML Distilled is the desktop companion that many SysML modelers
have needed for their bookshelves. Lenny has the experience and certi-
fications to help you through your day-to-day modeling questions.
This book is not a tutorial, nor is it the encyclopedic compendium of all
things SysML. If you model using SysML, this will become your daily
companion, as it is meant to be used regularly. I believe your copy will
soon be dog-eared, with sticky notes throughout.”

— Dr. Robert Cloutier, Stevens Institute of Technology

“SysML is utilized today in a wide range of applications, including
deep space robotic spacecraft and down-to-earth agricultural equip-
ment. This book concisely presents SysML in a manner that is both re-
freshingly accessible for new learners and quite handy for seasoned
practitioners.”

— Russell Peak, MBSE branch chief,
Aerospace Systems Design Lab, Georgia Tech

“SysML Distilled is a wonderfully written, knowledgeable, and concise
addition to systems modeling literature. The lucid explanations lead a
newcomer by the hand into modeling reasonably complex systems,
and the wealth and depth of the coverage of the most-used aspects of
the SysML modeling language stretch to even enabling advanced inter-
mediate depictions of most systems. It also serves as a handy reference.
Kudos to Mr. Delligatti for gifting the world with this very approach-
able view of systems modeling.”

— Bobbin Teegarden, CTO/chief architect,
OntoAge and Board Member, No Magic, Inc.

00_0321927866_FM.indd ii Achorn International 10/18/2013 12:05AM

ptg11539604

This page intentionally left blank

ptg11539604

SysML Distilled

00_0321927866_FM.indd iv Achorn International 10/18/2013 12:05AM

ptg11539604

This page intentionally left blank

ptg11539604

SysML Distilled

A Brief Guide
to the Systems
Modeling Language

Lenny Delligatti

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

00_0321927866_FM.indd vi Achorn International 10/18/2013 12:05AM

ptg11539604

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Delligatti, Lenny.
 SysML distilled : a brief guide to the systems modeling language / Lenny Delligatti.
 pages cm
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-92786-6 (paperback : alk. paper)
 ISBN-10: 0-321-92786-9 (paperback : alk. paper)
 1. Systems engineering—Data processing. 2. Engineering systems—Computer
simulation. 3. SysML (Computer science) I. Title.
 TA168.D44 2014
 620.00285'5133—dc23 2013035922

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request
to (201) 236-3290.

ISBN-13: 978-0-321-92786-6
ISBN-10: 0-321-92786-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2013

00_0321927866_FM.indd ix Achorn International 10/18/2013 12:05AM

ptg11539604

This book is dedicated to my wife, Natalie, and my children,
Aidan and Noelle—my greatest blessings . . . and my
reasons for enduring the many late nights of writing.

00_0321927866_FM.indd viii Achorn International 10/18/2013 12:05AM

ptg11539604

00_0321927866_FM.indd xi Achorn International 10/18/2013 12:05AM

This page intentionally left blank

ptg11539604

xi

Contents

Foreword by Rick Steiner xvii

Foreword by Richard Soley xix

Preface xxv

Acknowledgments xxxi

About the Author xxxiii

Chapter 1 Overview of Model-Based Systems Engineering 1

1.1 What Is MBSE? 2
1.2 The Three Pillars of MBSE 4
1.3 The Myth of MBSE 9

Chapter 2 Overview of the Systems Modeling Language 11

2.1 What SysML Is—and Isn’t 11
2.2 Yes, SysML Is Based on UML—but You Can Start

with SysML 13
2.3 SysML Diagram Overview 14
2.4 General Diagram Concepts 17

Chapter 3 Block Definition Diagrams 23

3.1 Purpose 23
3.2 When Should You Create a BDD? 24
3.3 The BDD Frame 24
3.4 Blocks 26
3.5 Associations: Another Notation for a Property 44
3.6 Generalizations 49
3.7 Dependencies 52

00_0321927866_FM.indd x Achorn International 10/18/2013 12:05AM

ptg11539604

xii Contents

3.8 Actors 53
3.9 Value Types 55
3.10 Constraint Blocks 57
3.11 Comments 59

Chapter 4 Internal Block Diagrams 63

4.1 Purpose 63
4.2 When Should You Create an IBD? 64
4.3 Blocks, Revisited 64
4.4 The IBD Frame 65
4.5 BDDs and IBDs: Complementary Views of a Block 66
4.6 Part Properties 67
4.7 Reference Properties 67
4.8 Connectors 68
4.9 Item Flows 71
4.10 Nested Parts and References 72

Chapter 5 Use Case Diagrams 77

5.1 Purpose 77
5.2 When Should You Create a Use Case Diagram? 77
5.3 Wait! What’s a Use Case? 78
5.4 The Use Case Diagram Frame 81
5.5 Use Cases 82
5.6 System Boundary 83
5.7 Actors 83
5.8 Associating Actors with Use Cases 84
5.9 Base Use Cases 85
5.10 Included Use Cases 85
5.11 Extending Use Cases 87

Chapter 6 Activity Diagrams 89

6.1 Purpose 89
6.2 When Should You Create an Activity Diagram? 90

00_0321927866_FM.indd xiii Achorn International 10/18/2013 12:05AM

ptg11539604

xiiiContents

6.3 The Activity Diagram Frame 90
6.4 A Word about Token Flow 92
6.5 Actions: The Basics 93
6.6 Object Nodes 95
6.7 Edges 99
6.8 Actions, Revisited 102
6.9 Control Nodes 112
6.10 Activity Partitions: Allocating Behaviors

to Structures 119

Chapter 7 Sequence Diagrams 123

7.1 Purpose 123
7.2 When Should You Create a Sequence Diagram? 124
7.3 The Sequence Diagram Frame 125
7.4 Lifelines 125
7.5 Messages 129
7.6 Destruction Occurrences 138
7.7 Execution Specifications 139
7.8 Constraints 141
7.9 Combined Fragments 144
7.10 Interaction Uses 151

Chapter 8 State Machine Diagrams 155

8.1 Purpose 155
8.2 When Should You Create a State Machine Diagram? 156
8.3 The State Machine Diagram Frame 156
8.4 States 158
8.5 Transitions 162
8.6 Pseudostates 171
8.7 Regions 173

Chapter 9 Parametric Diagrams 177

9.1 Purpose 177
9.2 When Should You Create a Parametric Diagram? 178

00_0321927866_FM.indd xii Achorn International 10/18/2013 12:05AM

ptg11539604

xiv Contents

9.3 Blocks, Revisited 179
9.4 The Parametric Diagram Frame 182
9.5 Constraint Properties 184
9.6 Constraint Parameters 185
9.7 Value Properties 185
9.8 Binding Connectors 187

Chapter 10 Package Diagrams 189

10.1 Purpose 189
10.2 When Should You Create a Package Diagram? 190
10.3 The Package Diagram Frame 190
10.4 Notations for Namespace Containment 191
10.5 Dependencies between Packages 193
10.6 Importing Packages 193
10.7 Specialized Packages 194
10.8 Shades of Gray: Are You Looking at a Package

Diagram or a Block Definition Diagram? 198

Chapter 11 Requirements Diagrams 201

11.1 Purpose 201
11.2 When Should You Create a Requirements Diagram? 202
11.3 The Requirements Diagram Frame 202
11.4 Requirements 204
11.5 Requirements Relationships 205
11.6 Notations for Requirements Relationships 209
11.7 Rationale 213

Chapter 12 Allocations: Cross-Cutting Relationships 215

12.1 Purpose 215
12.2 There’s No Such Thing as an Allocation Diagram 216
12.3 Uses for Allocation Relationships 216
12.4 Notations for Allocation Relationships 219
12.5 Rationale 224

00_0321927866_FM.indd xv Achorn International 10/18/2013 12:05AM

ptg11539604

xvContents

Appendix A: SysML Notation Desk Reference 227

Appendix B: Changes between SysML Versions 245

Bibliography 253

Index 255

00_0321927866_FM.indd xiv Achorn International 10/18/2013 12:05AM

ptg11539604

This page intentionally left blank

ptg11539604

xvii

Foreword by Rick Steiner

Systems engineering is not an easy subject to teach. Earlier in my ca-
reer, I was emphatically told that systems engineering could not be
taught in a classroom and that it could only be learned through experi-
ence. While that hasn’t proven to be true, there are certainly concepts
within the practice of systems engineering that are both subtle and
arcane.

Expressing these concepts in models demands a suitably robust
language, which is why a dedicated group of us began development of
what would become SysML in early 2002. We attempted to be parsimo-
nious and direct when designing the language, specifically targeting it
for use by practicing systems engineers. I’m convinced that the result-
ing language is both flexible and useful, and I am gratified that it has
emerged as a dominant standard for communicating systems-related
ideas.

Just like the practice of systems engineering, however, SysML has
proven difficult to teach effectively. The scope of systems engineering
is remarkably broad, and even though SysML is a relatively compact
language, students frequently get overwhelmed with its complexity.
Resources for learning SysML and model-based systems engineering
have until recently been rather limited, but it’s getting better. Formal
MBSE and SysML courses are now regularly being taught through sev-
eral university or extension catalogs, and at least one comprehensive
textbook is now available.

An engineer or manager who wants to casually learn the basics of
SysML isn’t likely to want to take a class. An advanced systems engi-
neer who finds him- or herself in the middle of a project with tight
deadlines just doesn’t have the time to take a class. It is in both of these
situations that this book has the greatest value.

Structured in a manner similar to Martin Fowler’s popular UML
Distilled, this book lays out the fundamentals of SysML diagrams in
clear, concise terms. It is written in a casual, lighthearted manner, yet it
conveys the gist of each concept and its graphical representation. What
I like best about this book is that it keeps me reading, without getting

00_0321927866_FM.indd xvi Achorn International 10/18/2013 12:05AM

ptg11539604

 xviii

bogged down in “meta-speak” and “UML-isms.” It is sprinkled with
humor and practical advice.

This is not a textbook or guidebook for SysML application or MBSE
deployment, nor does it describe in detail the methodological rationale
for each of the systems engineering concepts it describes. While it does
use a consistent satellite example through the chapters, it does not walk
the reader through any particular MBSE process. It is not a workbook,
nor does it include questions or sample problems for the reader to work
out. You as a SysML user or advanced MBSE practitioner may eventu-
ally need these other resources, but this book is an excellent start.

This book is a solid, self-paced, lightweight SysML reference guide.
The world is ready for this book.

—Rick Steiner,
coauthor, A Practical Guide to SysML

Foreword by Rick Steiner

00_0321927866_FM.indd xix Achorn International 10/18/2013 12:05AM

ptg11539604

xix

Foreword by Richard Soley

Technology Take-Up Takes Time

I had the great luck to attend one of the best technologically focused
(and entrepreneurially focused) universities in the world in the 1970s
and 1980s. The future, as Steve Jobs might have put it, was invented
there, not discovered. It was one of the places where “hackers stayed
up late” and helped to create radar, flash photography, and the Inter-
net. Those technologies helped change the world; more importantly,
economies flourished through the creation of companies and other or-
ganizations that put those technologies to work. The computing explo-
sion that started in the 1960s certainly fared well in the Massachusetts
of 1980.

My own contributions during my initial foray into the academic
world, eleven years at the Massachusetts Institute of Technology,
moved and changed as my academic interests moved and changed,
starting with the artificial intelligence field (handwriting recognition
was an early focus), moving on in graduate school to computing sys-
tems architectures, and finally melding those two interests. Not a small
contribution to my focus was being involved in five start-ups during
my MIT years (though perhaps it was a large contribution to the length
of time I spent at MIT). Artificial intelligence pioneers like Symbolics
and Gold Hill Computer were important to my understanding of the
application of technology; and my own start-up, A.I. Architects (with
likely the best systems engineer I have ever met), strongly depended on
the collision between the demands of artificial intelligence and the lim-
ited computing power of the early personal computing revolution.

Probably the most important single idea that I learned during this
period was that the time it takes for technology to come out of the labo-
ratory and into production is far greater than any academic believes.
The expert systems of the 1980s, now a primary fixture of diagnostic
and other systems worldwide (though generally under the moniker of

00_0321927866_FM.indd xviii Achorn International 10/18/2013 12:05AM

ptg11539604

xx

“rule-based systems”), were clearly based on systems like PLANNER
and CONNIVER from the 1960s. Twenty years seemed like the right
rule of thumb; taking a technology through the engineering require-
ments necessary to stabilize and replicate the approach on an industrial
scale, to the market development and integration, takes time.

OMG Objects of Awe

Nevertheless, when the Object Management Group (OMG) started up
in 1989, the promise of object technology and distributed objects was to
change the face of computing. As the Internet slowly changed into the
World Wide Web, it was clear that consistent, standardized middle-
ware would make it more possible than ever to integrate not only text
pages from around the world but also application interoperability. The
ability to “mash up” (as we would say twenty years later) computing
power and data sources worldwide, using standardized APIs and
on-the-wire protocols, would be far simpler with an object-oriented
approach.

While OMG did a good job from the beginning in controlling the
hype, avoiding the “artificial intelligence winter” that arose from an
overhyped AI market in the 1980s, OMG likely didn’t do a good enough
job of recognizing that technology take-up takes time. It would be fif-
teen or twenty years before mash-ups became mash-ups, and object-
oriented languages (initially C++, itself a good twenty years after Simu-
lar; now Java, C#, and Ruby-on-Rails) would permeate the computing
milieu. OMG’s objects of awe, as with all technologies, would become
the quotidian tools of software developers everywhere, but it would
take a couple of decades.

Modeling Makes Mavens

In the meantime, another opportunity would come OMG’s way, with
the proposal in 1996 that the object-oriented analysis and design mar-
ket (as it was then called) had reached a dead end, an impasse, based
not on the inherent technology but rather on the multitudinous ap-
proaches (and worse, notations) flooding the market. Even those tech-
nology mavens in love with the approach found themselves stymied
by too much choice (and too little guarantee of portability and inter-

00_0321927866_FM.indd xxi Achorn International 10/18/2013 12:05AM

ptg11539604

xxi

operability, once a choice was made). The mid-1990s consolidation of
the analysis and design market created a vendor-focused market force
for the creation of a standard, a force that was widely accepted by the
slow-growing user community. The creation of the Unified Modeling
Language (UML) standard in 1997, even with only a shared notation
and not a shared methodology, was sufficient to coax the market into
more than 100 percent CAGR over the next decade and a half. As the
application development life cycle is more than just analysis and de-
sign, including also development, test, implementation, and mainte-
nance, what had been just for “analysis and design” was soon called
modeling.

And proof points for modeling, even with nascent standards like
UML, abounded within a few years. Early scientific analysis showed
35 percent or more productivity increases using a modeling approach
(as opposed to low-level programming language development); per-
haps more importantly, as maintenance and support range from 80 per-
cent to 90 percent of the software development life cycle, a couple of
key analyses showed that 35 percent productivity increases (or better)
could be had in maintenance and integration. This acceptance—as of this
writing, according to market analysts Gartner & Forrester, including
more than 71 percent of all software development teams—led to an
explosion of modeling-related standardization at OMG.

Within fifteen years of the availability of the OMG UML standard
(and its associated and very powerful parent, the Meta Object Facility,
MOF), a fleet of domain-specific modeling languages were standard-
ized. Languages and profiles for defining systems on a chip, for service-
oriented architectures (SoaML), for business modeling and analysis
(BPMN), for capturing enterprise architectures (UPDM), for defining
rule-based systems (SBVR), even for capturing the motivations behind
systems development (BMM), all joined the OMG stable. More impor-
tantly, most work at OMG shifted to “vertical markets,” addressing the
needs of healthcare information technology, financial services, life sci-
ences, automotive and other consumer device dependability analysis,
and so forth—all based on a view of systems based on high-level
models.

Servicing the Spread of Systems

One of the most important horses in that stable is the OMG Systems
Modeling Language, SysML. Defined as a “profile” of the UML, SysML

Foreword by Richard Soley

00_0321927866_FM.indd xx Achorn International 10/18/2013 12:05AM

ptg11539604

xxii Foreword by Richard Soley

took on the huge task of being the language that could integrate many
disparate views of large-systems engineering: not only software and
hardware but also requirements, mathematical parameterization, faci l-
ities management, design for maintenance, even the management of
human and other resources and the behavior of the system under de-
sign. The vision I had outlined in 2001, called model driven architecture,
could come to fruition with such an approach to integrated engineer-
ing, and not just for “software architecture,” but for the overall struc-
ture of complex systems like aircraft carriers and chemical plants. As
the IDEF series of specifications had promised in the early 1980s, SysML
could truly bring together the expertise necessary from many fields to
build well-designed, fit-to-purpose, and maintainable large systems.

So here we are, a dozen years removed from the first mention of
model driven architecture and coming up on the requisite twenty years
since the delivery of the Unified Modeling Language, with a book in
hand that integrates the views of experts on how to think about and
how to use SysML to deliver real systems. Here we find SysML distilled:
according to the dictionary, metaphorically, its essential meaning or
most important aspects extracted and displayed for all to see.

Complex systems development is, by its nature, a team sport. No
one person can manage even the gathering of requirements for large
systems; the size alone makes such a project complex. Since the real
focus of design is simplification along one or more dimensions, we
need notations and processes that not only communicate the simplified
vision but also allow designers, developers, and engineers to drill
down into a system’s design and explore, in fractal fashion, the under-
lying parts of the design, the expectations and requirements, and the
integration methodology. It’s one thing to know that a notation like
SysML—large and complex itself, of course, and including many dif-
ferent tools in its toolbox—can support large systems development; it’s
quite another to get past the learning curve to be able to effectively use
those tools. My father-in-law was well known for using a screwdriver
for every handyman task around the house (including driving nails); I
prefer to have tools that are fit for purpose and to understand how to
use those tools in an integrated way. Further, the SysML modeling lan-
guage is not intended only to implement large complex systems but
also to communicate their design to users of those systems; to maintainers
of those systems; and to those who may have to debug and integrate
extensions, corrections, and changes to those systems.

This book presents that introduction to the toolbox; better, it ex-
plains how to use those tools together to gather requirements for, build

00_0321927866_FM.indd xxiii Achorn International 10/18/2013 12:05AM

ptg11539604

xxiiiForeword by Richard Soley

designs for, analyze designs of, and communicate that process to others in
a design team (or future integration team). That’s what engineers do,
and SysML is the best way to do it.

—Richard Mark Soley, Ph.D.,
chairman and chief executive officer,

Object Management Group, Inc.

00_0321927866_FM.indd xxii Achorn International 10/18/2013 12:05AM

ptg11539604

00_0321927866_FM.indd xxv Achorn International 10/18/2013 12:05AM

This page intentionally left blank

ptg11539604

xxv

Preface

Why SysML Distilled? It’s simple: You’re busy. You need to know SysML
now. You already have some systems modeling work to do. You don’t
need to know every detail of the language. You just want a book that
focuses you on those parts of SysML that are most common and most
useful in daily practice. SysML Distilled is that book.

You may choose to use this book as a desk reference, reaching for it
when you’re stuck and you’ve got a deadline bearing down on you. Or
you may choose to dive deep one chapter at a time, adding new mod-
eling skills to your toolbox for the future work coming your way. Or
you may decide to read this book cover to cover to prepare for the first
two levels of the OMG Certified Systems Modeling Professional (OCSMP)
certification: OCSMP Model User and OCSMP Model Builder: Fundamen-
tal. This book is designed to serve you in all these ways.

Who Should Read This Book?

SysML is a graphical modeling language that you can use to visualize
and communicate the designs of sociotechnical systems on all scales—
systems consisting of hardware, software, data, people, and processes.
Systems engineers are the ones who are responsible for the specifica-
tion, analysis, design, verification, and validation of sociotechnical sys-
tems. Systems engineers—and students of systems engineering—are
therefore the target audience for this book.

But that’s an oversimplification. Many authors and teachers have
repeated the axiom, “Everything is a system.” Allow me to add
the corollary: “Every engineer is a systems engineer.” No matter your
domain or job title, you’ve likely performed some or all of the sys-
tems engineering tasks I’ve mentioned. The premise of this book is
that you can perform those activities more effectively via the stan-

00_0321927866_FM.indd xxiv Achorn International 10/18/2013 12:05AM

ptg11539604

xxvi

nonstan dardized modes of communication in disjoint sets of documents
and diagrams. You are a systems engineer—and you want to do your
job more effectively. You are therefore the target audience for this book.

What do you need to know before you dive in? You should have at
least a conceptual understanding of system specification, analysis, de-
sign, verification, and validation. Knowing in advance what these ac-
tivities consist of will help you internalize the ways SysML can help
you do them better. The International Council on Systems Engineering
(INCOSE) Systems Engineering Handbook is the authoritative reference.

You do not need to have any experience with any modeling lan-
guage to benefit from this book. You may already know that SysML is
based on the Unified Modeling Language (UML). In fact, you may have
read Martin Fowler’s seminal book, UML Distilled. I designed SysML
Distilled to be a companion book for systems engineers, who need to
model a wider spectrum of systems beyond that subset—software sys-
tems—for which UML was created. With that said, you do not need to
know UML as a prerequisite for this book. The structure and content of
this book make it a self-sufficient primer for learning SysML.

Structure of the Book

This book contains twelve chapters and two appendixes. Chapter 1,
“Overview of Model-Based Systems Engineering,” introduces the con-
cept of model-based systems engineering (MBSE) and provides the
context and the business case for learning SysML. Chapter 2, “Over-
view of the Systems Modeling Language,” discusses why SysML was
created and introduces the nine kinds of SysML diagrams that you can
create. Chapter 2 also covers general concepts that apply to all nine
kinds of diagrams.

Chapters 3 through 11 zoom in on the details of each of the SysML
diagrams, introducing you to the elements and relationships you can
display on them. Although there’s occasional overlap in the kinds of
elements and relationships that can appear on these diagrams, I focus
on each diagram one chapter at a time to effectively group related ideas
and help you easily locate a particular topic when you need to. Chap-
ters 3–11 are as follows:

• Chapter 3: “Block Definition Diagrams”
• Chapter 4: “Internal Block Diagrams”

00_0321927866_FM.indd xxvii Achorn International 10/18/2013 12:05AM

ptg11539604

xxvii

• Chapter 5: “Use Case Diagrams”
• Chapter 6: “Activity Diagrams”
• Chapter 7: “Sequence Diagrams”
• Chapter 8: “State Machine Diagrams”
• Chapter 9: “Parametric Diagrams”
• Chapter 10: “Package Diagrams”
• Chapter 11: “Requirements Diagrams”

The last chapter, Chapter 12, “Allocations: Cross-Cutting Relation-
ships,” covers the concept of allocations—a relationship that you can
use to relate elements across all nine kinds of SysML diagrams.

The sample diagrams in the figures present various aspects of a
single system, the DellSat-77 Satellite System—a system I conceived of
entirely for the purpose of writing this book (and I hereby certify that I
have not disclosed any proprietary information of any aerospace com-
panies). I chose to focus on a satellite system to demonstrate how you
can use SysML to model a complex, real-world sociotechnical system—
one other than the classic exemplars (ATMs and cruise control systems)
that seem to be prevalent in modeling workshops. And I chose to use a
single system as a running example threaded through all chapters to
show you how the nine kinds of SysML diagrams present complemen-
tary and consistent views of an underlying system model.

The SysML model of the DellSat-77 Satellite System is available for
download from my website, www.lennydelligatti.com, on the “Articles
and Publications” page. I have made the data files available both in
XMI format and in the native formats of various modeling tools. This
resource enables self-learners as well as instructors and their students
to get hands-on with the system model that appears throughout this
book in the modeling tool of their choice.

Appendix A, “SysML Notation Desk Reference,” is a concise sum-
mary of the graphical notations presented in this book, along with ref-
erences to the sections where they are discussed in detail. Appendix B,
“Changes between SysML Versions,” covers the kinds of elements that
are introduced in SysML v1.3, the latest version of SysML at the time of
this writing.

SysML v1.2 is the version of SysML that is currently assessed on the
OCSMP certification exams. The biggest differences between SysML
v1.2 and v1.3 are in ports—a kind of element that can appear on block
definition diagrams (BDDs) and internal block diagrams (IBDs). I cover

Preface

00_0321927866_FM.indd xxvi Achorn International 10/18/2013 12:05AM

http://www.lennydelligatti.com

ptg11539604

xxviii

BDDs in Chapter 3 and IBDs in Chapter 4. In these chapters, I focus on
the SysML v1.2 definition of ports for three reasons:

• They are the predominant kinds of ports in system models on
modeling projects that started before the release of SysML
v1.3—and many of those projects are still active.

• Some modeling tools lag behind the changes in SysML and
have not yet implemented the SysML v1.3 definition of ports.

• The OCSMP certification exams have not been revised since the
release of SysML v1.3 and still cover the SysML v1.2 definition
of ports.

Never fear, though; I give the SysML v1.3 definition of ports full
coverage in Appendix B. If your modeling team is about to create a new
system model, I recommend using the new kinds of ports instead of the
old ones (assuming your SysML modeling tool supports them).

The order of the chapters is loosely based on the typical frequency
of use of the diagrams. It does not reflect the relative value of each kind.
It can’t. Value is a subjective thing. Your team will determine that based
on the modeling method you adopt and the deliverables you produce
for your customer.

The order of the chapters also does not reflect—and should not
suggest—any particular modeling method. Simply put, this is not a
methodology book; rather, it’s a language book. In Chapter 1, “Over-
view of Model-Based Systems Engineering,” I discuss the distinction
between modeling methods and modeling languages. I list a few well-
known modeling methods and point to references that discuss them
comprehensively.

My goal in this book is to present you with concise, targeted cover-
age of the most common and most useful features of SysML—features
that are useful no matter which modeling method your team adopts. A
key point is that SysML is only a language; it’s method independent. I
designed SysML Distilled to be method independent as well. I want you
to come away knowing that SysML is a value-added medium for com-
munication no matter which processes, procedures, or tools your team
adopts to do your work and meet your stakeholders’ needs.

I hope you find this book a valuable companion in your study of
SysML. It’s a rich, expressive language—one with enough breadth and
depth to let you visualize and communicate all aspects of a system’s
design. There’s a lot to know, but you don’t need to know all of it to

00_0321927866_FM.indd xxix Achorn International 10/18/2013 12:05AM

ptg11539604

xxix

create system models that communicate clearly and effectively. Dive in
and get what you need. You’ll discover how quickly you can put that
knowledge to work and deliver value to your customer.

—Lenny Delligatti
Houston, Texas

October 2013

Preface

00_0321927866_FM.indd xxviii Achorn International 10/18/2013 12:05AM

ptg11539604

00_0321927866_FM.indd xxxi Achorn International 10/18/2013 12:05AM

This page intentionally left blank

ptg11539604

xxxi

Acknowledgments

Many talented and dedicated people deserve credit for producing this
book. I would like to begin with a special thanks to Jim Thompson—
my friend, colleague, spiritual adviser, and partner in weekly sushi
catharsis. He spent many months reviewing chapters as I wrote the
original manuscript, and he provided valuable and insightful feed-
back. This book benefited greatly from his keen technical mind and his
excellent communication skills.

A special thanks also to Chris Guzikowski at Addison-Wesley. He
shepherded this project from its inception and flattened the steep learn-
ing curve for this new author. I thank him particularly for the sage ad-
vice that got me to the finish line: “Just keep choppin’ away at it.”

Chris Zahn, development editor at Addison-Wesley, and Betsy
Hardinger, copy editor extraordinaire, provided the essential support
I needed to hammer this book into its present form. They taught me
the art of turning good ideas into good writing and a well-crafted
manuscript. The quality of this book is far greater because of their
contributions.

Elizabeth Ryan, project editor at Addison-Wesley, coordinated the
work of the production team, who created the layout for the book and
brought the various pieces together in preparation for printing. They
made a complex process look easy and created a polished final prod-
uct. I’m grateful to them for their hard work.

I’d like to extend my deep appreciation to the exceptional team of
engineers and systems modelers who served as technical reviewers for
this book: Celso Gonzalez, Robert Cloutier, Susanne Sherba, John Pan-
tone, Michael Engle, and Michael Chonoles. Their expertise and insight
enabled me to turn a very rough draft into a significantly more focused
final product—one that better serves the systems engineering commu-
nity. My thanks to all of them.

I would also like to thank the following individuals who gra-
ciously

00_0321927866_FM.indd xxx Achorn International 10/18/2013 12:05AM

ptg11539604

xxxii

Bran Selic, J. D. Baker, Tim Weilkiens, Tom Fargnoli, Robert Cloutier,
Matthew Hause, Russell Peak, Doug Tolbert, Celso Gonzalez, and Bob-
bin Teegarden. These extraordinary people have made significant con-
tributions to the systems modeling community as modeling language
developers, modeling certification developers, systems architects,
teachers, and expert practitioners in the field. I am honored and hum-
bled to receive their endorsements.

A special thanks to Rick Steiner for writing a foreword for this book.
Rick is one of the original creators of SysML, and he continues to serve
on the SysML Revision Task Force (RTF)—the team that evolves and
improves the SysML specification over time in response to feedback
from the systems modeling community. Our profession is richer be-
cause of his experience and contributions. My thanks to him for all he’s
done.

A special thanks also to Richard Soley for his foreword. Richard has
led the Object Management Group (OMG) since its inception in 1989.
The mark that the OMG has left in the engineering world cannot be
overstated. Richard, the OMG staff, and the pantheon of expert engi-
neers who have served as volunteer members of OMG working groups
have—without hyperbole—transformed the way we do engineering.
The creation of the model-based engineering paradigm and its infusion
into the work we do in our profession have enriched those of us who
love and practice engineering as well as the customers we serve. My
thanks to Richard for his vision and leadership as our community con-
tinues to navigate this sea change.

Many brilliant, experienced engineers have contributed to the de-
velopment of SysML for more than a decade. Any attempt on my part
to give each of them due credit individually would fail. I have to resign
myself to thanking them collectively for their efforts. It’s because of
their hard work that we have this rich medium called SysML to com-
municate our system design ideas to one another. I’ve strived to make
this book a worthy representative of that product.

I am most thankful to my wife, Natalie, and my children, Noelle
and Aidan. For two years, they were extraordinarily patient and under-
standing when I spent long hours on the computer in the evenings and
on weekends. They give my life purpose, and I’m deeply grateful to
them for their love and support.

 Acknowledgments

00_0321927866_FM.indd xxxiii Achorn International 10/18/2013 12:05AM

ptg11539604

xxxiii

About the Author

Lenny Delligatti received his B.S. in electrical and computer engineer-
ing from Carnegie Mellon University and his M.S. in computer science
systems engineering from the University of Denver. He holds the OMG
Certified Systems Modeling Professional (OCSMP) Model Builder: Advanced
certification, the highest level of certification in SysML and model-
based systems engineering (MBSE) methodology. Additionally, he
holds the OMG Certified UML Professional (OCUP): Advanced certifica-
tion, the highest level of certification in UML.

Lenny is a senior systems engineer with Lockheed Martin, creating
SysML models and serving as the MBSE lead for NASA’s Mission Con-
trol Center: 21st Century (MCC-21) project at Johnson Space Center. He
previously served as an embedded software engineer on NASA’s Air-
craft Simulation Program (ASP), building VxWorks kernels and devel-
oping flight software for NASA’s fleet of Gulfstream II in-flight space
shuttle simulators. He also served as a software engineer on the Nomad
project at Carnegie Mellon University’s Field Robotics Center, design-
ing and developing the Sensor Manager subsystem for the Nomad Au-
tonomous Rover.

Lenny is a member of the Object Management Group (OMG) SysML
Revision Task Force (RTF) and the OCUP2 Certification Development
Team. He also serves as the Education and Outreach Director for the
Texas Gulf Coast Chapter (TGCC) of the International Council on Sys-
tems Engineering (INCOSE), supporting the professional development
of the Houston-area systems engineering community.

In addition to his engineering experience, Lenny served as a Sur-
face Warfare Officer in the U.S. Navy, completing a deployment in sup-
port of Operation: Enduring Freedom and two tours of duty in Sasebo,
Japan, and Norfolk, Virginia. Following his Navy service, he received
formal training in pedagogy at Old Dominion University and earned a
license to teach mathematics in the state of Virginia. He served as a
mathematics teacher and department head in the Fairfax County pub-
lic school system before transitioning back into engineering upon his
move to Houston, Texas.

00_0321927866_FM.indd xxxii Achorn International 10/18/2013 12:05AM

ptg11539604

xxxiv

Lenny is passionate about engineering and helping engineers de-
velop more effective ways to do engineering. He has created and deliv-
ered hundreds of hours of classroom instruction to hundreds of sys-
tems and software engineers on the topics of UML, SysML, and MBSE,
enabling many to earn OMG certifications and lead MBSE efforts
on their projects. He has delivered SysML and MBSE presentations at
INCOSE meetings and at American Institute of Aeronautics and Astro-
nautics (AIAA) Technical Symposia at Johnson Space Center.

ptg11539604

1

Chapter 1

Overview of
Model-Based
Systems Engineering

MBSE is the formalized application of modeling to support system
requirements, design, analysis, verification, and validation activities

beginning in the conceptual design phase and continuing
throughout development and later life cycle phases.

—INCOSE, Systems Engineering Vision 2020

You’re reading this book to learn the Systems Modeling Language
(SysML)—either to create SysML models on your systems engineering
team, to earn the OMG (Object Management Group) Certified Systems
Modeling Professional (OCSMP) certification, or both. SysML, how-
ever, is only one facet of a larger subject: model-based systems engi-
neering (MBSE). MBSE is a practice; it’s something you do. And SysML
is a graphical modeling language that enables you to practice MBSE.
The practice of MBSE provides the context—and the business case—for
learning SysML.

I begin this chapter by answering the basic question, What is MBSE?
I then discuss the three pillars of MBSE—the three enablers for the
practice of model-based systems engineering. I end by making you
aware of a common myth that has arisen about MBSE so that you can

ptg11539604

 Overview of Model-Based Systems Engineering 2

better manage your customers’ expectations while you deliver the re-
turn on investment that MBSE promises.

1.1 What Is MBSE?

The best way to understand the MBSE approach is to begin by under-
standing the alternative: what modeling practitioners call the
document-based approach to engineering—and what nonpractition-
ers call “the way we’ve always done things.” Whether they apply the
document-based approach or MBSE, systems engineers perform the
same life cycle activities described in the INCOSE Systems Engineering
Handbook (INCOSE stands for International Council on Systems Engi-
neering). The key difference between the two approaches, however,
is the nature of the primary artifacts produced in those life cycle
activities.

With the document-based approach, systems engineers manually
generate some subset of the following artifacts: concept of operations
(ConOps) documents, requirements specifications, requirement trace-
ability and verification matrices (RTVMs), interface definition docu-
ments (IDDs), N2 charts (also known as N-squared charts—matrices of
structural interfaces), architecture description documents (ADDs), sys-
tem design specifications, test case specifications, and specialty engi-
neering analyses (e.g., analyses of reliability, availability, schedulability,
throughput, and response time). Document-based systems engineers
produce these artifacts in the form of a disjoint set of text documents,
spreadsheets, diagrams, and presentations (and configuration-manage
them in a disjoint set of repositories).

The problem is this: The document-based approach to systems en-
gineering is expensive. More precisely, it’s more expensive than it needs
to be; you incur a significant percentage of total life cycle cost maintain-
ing that disjoint set of artifacts. And if you don’t pay that cost, the arti-
facts become inconsistent and obsolete.

Consider the following day-in-the-life scenario. A system architect
makes a fourth-iteration design decision to refactor a single block in the
system hierarchy into two blocks to achieve a better separation of con-
cerns. She decides to rename the original block to better convey its new,
narrower focus. To implement this change completely and consistently,
she needs to locate every text document, table, matrix, diagram, and
presentation that contains the block, open each one sequentially from

01_0321927866_Ch01.indd 3 Achorn International 10/18/2013 12:08AM

ptg11539604

1.1 What Is MBSE? 3

the various file servers, intranet websites, and configuration manage-
ment (CM) repositories where it resides, and then manually type the
same change into all of those artifacts.

This approach is time consuming and error prone. For one thing,
the architect may mistype the new block name. More important, she
needs to know ahead of time which artifacts will be impacted, perhaps
a great many. She will likely miss a handful of them, and they will be-
come inconsistent with the rest of the set. That creates problems for the
development teams who rely on them as inputs for their stage of the
life cycle. It’s also a problem for the project manager, who must account
for the schedule slippage and increased life cycle cost to fix any defects
that propagate down the line.

This scenario is commonplace in organizations that practice the tra-
ditional document-based approach to systems engineering. Inconsis-
tency is the problem. And MBSE—when practiced correctly—is the
solution.

With the MBSE approach, systems engineers perform the same life
cycle activities and produce the same set of deliverables. But the deliv-
erables are not the immediate outputs of the life cycle activities; they
are not the primary artifacts. With the MBSE approach, the primary
artifact of those activities is an integrated, coherent, and consistent sys-
tem model, created by using a dedicated systems modeling tool. All
other artifacts are secondary—automatically generated from the sys-
tem model using that same modeling tool.

The system model serves as a central repository for design deci-
sions; each design decision is captured as a model element (or a rela-
tionship between elements) in a single place within the system model.
With the MBSE approach, all diagrams and autogenerated text artifacts
are merely views of the underlying system model; they are not the
model itself. And that distinction is the root of the return on investment
(ROI) that MBSE offers over the traditional approach.

Let’s return to our day-in-the-life scenario, this time with the MBSE
approach. The system architect decides to rename the original (refac-
tored) block to better convey its new, narrower focus. To implement
this change completely and consistently, she locates that one block
within the system model hierarchy (often by using a keyword search in
the modeling tool) and types the new name for that block one time.
That’s it.

The modeling tool automatically (and instantly) propagates the
change to all diagrams where that block appears, no matter how
large the set may be. The diagrams, after all, are merely views of the

01_0321927866_Ch01.indd 2 Achorn International 10/18/2013 12:08AM

ptg11539604

 Overview of Model-Based Systems Engineering 4

underlying model. If that model changes, the diagrams change. The
modeling tool also inserts the change into all the autogenerated text
artifacts the next time the architect exports them from the model.
There is no opportunity for inconsistency to occur between the vari-
ous views of the model.

MBSE promises increased quality and affordability for one simple
reason: The cheapest defect to fix is the one you prevented. And at the
heart of this approach is this new kind of engineering artifact called the
system model.

The approach that I’ve described is actually a hybrid form that
bridges the gap between MBSE and the document-based approach.
Model-based engineering organizations are constrained to adopt this
hybrid approach when their customer requires text artifacts as deliv-
erables for review and approval. Organizations that do not have this
constraint, however, can practice MBSE in its pure form.

Organizations that attain the highest MBSE maturity level forgo the
creation of text artifacts entirely. The system model itself is the artifact
that gets reviewed and approved. It’s the artifact that gets handed off,
refined, and evolved as it goes from one stage of design to the next.

Organizations that produce software systems can even use a (suf-
ficiently robust) modeling tool to transform a system model into a soft-
ware model and, ultimately, into production-quality source code. This
level of MBSE maturity blurs the line between design and develop-
ment, enabling rapid prototyping and system simulation. At all times,
however, the model remains the primary artifact that gets modified
when customer requirements change and new design decisions are
made. All other artifacts, including source code, are autogenerated by-
products of the model, continuously consistent with the model and
with each other.

This is MBSE.

1.2 The Three Pillars of MBSE

How do you do MBSE? What do you need to know?
In short, you need to know three things: a modeling language, a

modeling method, and a modeling tool. I refer to these as the three pil-
lars of MBSE. As a member of a design team that’s creating an inte-
grated system model, you will use a dedicated modeling tool to per-
form a set of design tasks prescribed by a modeling method to add

01_0321927866_Ch01.indd 5 Achorn International 10/18/2013 12:08AM

ptg11539604

1.2 The Three Pillars of MBSE 5

elements (and relationships between elements) to an integrated system
model that is expressed in a standard modeling language.

Knowledge of a modeling language alone enables you to sketch
system design ideas on paper or a whiteboard to quickly and effec-
tively communicate with other team members. Learning a modeling
language is the first skill you should acquire, and it’s the focus of this
book. However, the practice of MBSE requires you to possess all three
skills to gain the ROI that this approach offers.

Let’s examine each pillar in more detail.

1.2.1 Modeling Languages

When you create a model, you are speaking a language. It’s not the
natural language you learned as a child at home and in school. It’s not
the natural language I’m using to communicate with you right now.
Rather, it’s a modeling language: a semiformal language that defines
the kinds of elements you’re allowed to put into your model, the allow-
able relationships between them, and—in the case of a graphical mod-
eling language—the set of notations you can use to display the ele-
ments and relationships on diagrams.

MBSE practitioners commonly use the Systems Modeling Lan-
guage (SysML) to construct models of a system’s structure, behavior,
requirements, and constraints. SysML is the focus of this book, but it’s
not the only modeling language. Engineers and analysts in other de-
sign domains (e.g., systems-of-systems, software, hardware, perfor-
mance, business processes) have other modeling languages available
that are more appropriate for the types of systems they design. Like
SysML, some of those languages are graphical modeling languages
(e.g., UML, UPDM, BPMN, MARTE, SoaML, IDEFx); others are text
modeling languages (e.g., Verilog, Modelica).

The key idea here is that each modeling language is a standardized
medium for communication; the rules defined in a given language give
the model’s elements and relationships unambiguous meaning. The ca-
pability to construct and read well-formed models is at the heart of the
MBSE approach.

1.2.2 Modeling Methods

Learning a modeling language is only the first step on the MBSE path.
A modeling language defines a grammar: a set of rules that determines
whether a given model is well formed or ill formed. Those rules do not

01_0321927866_Ch01.indd 4 Achorn International 10/18/2013 12:08AM

ptg11539604

 Overview of Model-Based Systems Engineering 6

dictate how and when to use the language to create a model; they stop
short of dictating any particular modeling method.

In contrast, a modeling method is something like a road map; it’s
a documented set of design tasks that a modeling team performs to
create a system model. More precisely, it’s a documented set of design
tasks that ensures that everyone on the team is building the system
model consistently and working toward a common end point. With-
out such guidance, there will be wide variance in the breadth, depth,
and fidelity that each member of the team builds into the system
model.

Like all projects, an MBSE project requires a plan. And every plan
begins with a purpose. Your team will begin by answering the follow-
ing questions: Why are you modeling? More precisely, what are the ex-
pected results of the modeling effort? Are you creating a model only to
serve as the central record of authority for all design decisions? Do you
need to autogenerate text artifacts from the model for review and ap-
proval? Will you use the model to manage requirements traceability
and perform downstream impact analysis? Will you use the model to
perform trade studies of alternative configurations? Will the system
model be integrated with dedicated equation-solving tools and simu-
lation tools to execute the model directly? Will the model itself be an
input for the work of downstream design and development teams,
such as software, hardware, reliability/availability/performance analy-
sis? Will the model contain the integration and acceptance test cases
that will verify system assembly after development? The answers to
these questions determine the purpose of your team’s modeling effort.

Once your team has defined that purpose, you can then answer a
new set of questions. How much of the external environment of your
proposed system needs to be modeled? Which parts of your system
need to be modeled? Which behaviors need to be modeled? How
deeply do you need to decompose the internal structures and behav-
iors? Which details need to be in the model, and which details can be
omitted (and left to the discretion of the development teams at imple-
mentation time)? The answers to these questions determine the scope
of the system model your team needs to build.

The definition of scope sets the goalpost that your team is working
toward; it enables your team to determine when the model is complete.
To be clear, your team will evolve the model over time as requirements
change and new design decisions are made. “Complete” in this context
means that the model satisfies the purpose you outlined in the project
plan.

01_0321927866_Ch01.indd 7 Achorn International 10/18/2013 12:08AM

ptg11539604

1.2 The Three Pillars of MBSE 7

The scope of the model also determines the modeling method that
your team will follow. Several modeling methods are documented in
the literature. Your team can adopt one of those existing methods and
tailor it to meet your needs and objectives. Or you can create a custom
modeling method if none of the existing ones is a good fit. That discus-
sion, however, is beyond the scope of this book.

The focus here is to help you become proficient in SysML, a model-
ing language, and not to teach you any particular modeling method.
SysML is method independent; you can use SysML to create a system
model no matter which modeling method you decide is the best fit for
your needs. However, I use a little real estate here to list some well-
known modeling methods (and some references that provide in-depth
coverage of them) to help you on your journey:

•	 Method: INCOSE Object-Oriented Systems Engineering Method
(OOSEM)

 Reference: Friedenthal, Sanford, et al., A Practical Guide to SysML,
Second Edition: The Systems Modeling Language (Boston: MK/
OMG Press, 2011)

•	 Method: Weilkiens System Modeling (SYSMOD) method
 Reference: Weilkiens, Tim, Systems Engineering with SysML/UML:

Modeling, Analysis, Design (Boston: MK/OMG Press, 2008)
•	 Method: IBM Telelogic Harmony-SE
 Reference: Hoffmann, Hans-Peter, “Harmony-SE/SysML Desk-

book: Model-Based Systems Engineering with Rhapsody,”
Rev. 1.51, Telelogic/I-Logix white paper (Telelogic AB, May
2006)

These modeling methods broadly span many stages of the systems
engineering life cycle. Not every step prescribed by these methods will
apply to your project. Any modeling method you adopt needs to be
tailored to meet your project’s specific needs. These methods are good
starting points.

1.2.3 Modeling Tools

Developing proficiency with a modeling tool is the third pillar of MBSE.
Modeling tools are a special class of tools that are designed and imple-
mented to comply with the rules of one or more modeling languages,
enabling you to construct well-formed models in those languages.

01_0321927866_Ch01.indd 6 Achorn International 10/18/2013 12:08AM

ptg11539604

 Overview of Model-Based Systems Engineering 8

Modeling tools are distinct from diagramming tools such as Visio,
Schematic, SmartDraw, ProcessOn, and others. With a diagramming
tool, you create diagrams—shapes on a page. There is no model under-
lying those diagrams that ensures automated consistency between
them. In contrast, with a modeling tool, you create a model—a set of
elements and relationships between elements, and optionally a set of
diagrams that serve as views of the underlying model.

When you modify an element on a diagram within a modeling tool,
you’re actually modifying the element itself in the underlying model.
The modeling tool then instantaneously updates all the other diagrams
that display that same element. This is a powerful capability—and one
that is offered only by this distinct class of tools.

Note that a modeling language specification, such as SysML, is
vendor neutral. A particular modeling tool is one vendor’s imple-
mentation of that language specification. Several commercial tool
vendors and nonprofit consortiums have created modeling tools for
the various modeling languages. These tools vary in cost, capability,
and compliance with the modeling language specifications. Selecting
the best tool—based on your project’s specific needs and cost con-
straints—should be part of the MBSE adoption process in your
organization.

Much like SysML and the other modeling languages, I am vendor
neutral. I do not hawk one product over another in this book. How-
ever, I list some SysML modeling tools for you to research for the trade
study that your organization will inevitably conduct. The following
are commercial-grade (euphemism for “not free”) modeling tools:

•	 Agilian (vendor: Visual Paradigm)
•	 Artisan Studio (vendor: Atego)
•	 Enterprise Architect (vendor: Sparx Systems)
•	 Cameo Systems Modeler (vendor: No Magic)
•	 Rhapsody (vendor: IBM Rational)
•	 UModel (vendor: Altova)

The following are free modeling tools, offered with an Eclipse Pub-
lic License (EPL) or General Public License (GPL):

•	 Modelio (creator: Modeliosoft)
•	 Papyrus (creator: Atos Origin)

There are many factors to consider when you select a tool. How-
ever, I strongly recommend that you select a tool that is XML Metadata

01_0321927866_Ch01.indd 9 Achorn International 10/18/2013 12:08AM

ptg11539604

Summary 9

Interchange (XMI) compliant. The XMI standard enables compliant
tools to exchange model data. This capability will ensure that your
team avoids the vendor lock-in trap when your needs (and cost con-
straints) change in the future.

1.3 The Myth of MBSE

The myth of MBSE arises among stakeholders—external customers
and internal downstream design and development teams—who know
about MBSE but don’t practice it themselves. These are the stakeholders
who expect deliverables from you. They understand—conceptually, at
least—that you will autogenerate those deliverables from the system
model.

The myth they harbor deep inside is that MBSE is an Easy Button:
You push it, and good things pop out. To put this more concretely, they
believe, incorrectly, that MBSE makes every engineering task easier
and reduces cost at every point in the life cycle.

But in truth, MBSE does not (and cannot) eliminate the difficult
work of architecting and designing a system well. It does not eliminate
the need for engineering rigor during system specification and de-
sign—the same rigor that has always been necessary to produce any
successful system.

Modeling well is difficult. Designing well is difficult. It’s possible to
create a bad model. And it’s possible to create a good model of a poorly
designed system. Creating a good model of a well-designed system to
the degree of breadth, depth, and fidelity required to satisfy the mod-
el’s purpose takes time and hard work and discipline. Simply put, you
can’t get good things out of the model unless you do the hard work of
putting them in there in the first place.

MBSE delivers its ROI when change happens—when new design
decisions are made and stakeholders’ needs evolve throughout the sys-
tem life cycle. And change, of course, inevitably happens. Until that
time, manage your stakeholders’ expectations and dispel the myth of
MBSE when it presents itself.

Summary

MBSE is an approach to performing systems engineering that prom-
ises to deliver a greater return on investment than the traditional

01_0321927866_Ch01.indd 8 Achorn International 10/18/2013 12:08AM

ptg11539604

 Overview of Model-Based Systems Engineering 10

document-based approach. The practice of MBSE rests on three pillars:
a modeling language, a modeling method, and a modeling tool. The
chapters that follow help you put that first pillar into place by teaching
you SysML, the graphical modeling language that has become the de
facto standard among MBSE practitioners.

ptg11539604

11

Chapter 2

Overview of the
Systems Modeling
Language

SysML is a broad and richly expressive graphical modeling language,
enabling you to visualize and communicate the essential aspects of a
system’s design: structure, behavior, requirements, and parametrics
(mathematical models). SysML can serve as the first of the three pillars
of MBSE, as discussed in Chapter 1, “Overview of Model-Based Sys-
tems Engineering.”

This chapter provides a high-level view of SysML: the purpose of
SysML as a whole, the purpose of each of the nine kinds of SysML dia-
grams, and overarching concepts that apply to all of them. This discus-
sion provides important context for the in-depth coverage of each kind
of diagram in the chapters that follow.

2.1 What SysML Is—and Isn’t

SysML is one of several graphical modeling languages. The key word
is language. SysML is a language—a medium for communicating ideas

ptg11539604

 Overview of the Systems Modeling Language12

from one person to another. It has a grammar and a vocabulary just like
any of the natural languages we speak (e.g., Hindi, Japanese, English).
SysML is the language “spoken” by MBSE practitioners when they cre-
ate system models to visualize and communicate ideas about their sys-
tems’ designs to other stakeholders.

I put “spoken” in quotes because SysML is a graphical language.
Its vocabulary consists of graphical notations that have specific mean-
ings. For example, an arrow with a dashed line has a different meaning
from an arrow with a solid line (more on these details in the chapters
that follow). The key point is the purpose of SysML: visualization and
communication of a system’s design among stakeholders.

The grammar and notations of SysML are defined in a standards
specification that is owned and published by the Object Management
Group, Inc. (OMG). The OMG is a consortium of hundreds of com-
puter industry companies, government agencies, and academic institu-
tions that collaborate to develop a set of enterprise integration stan-
dards and promote business technology. You can find out more about
the OMG on its website: www.omg.org. You will find links there also to
the SysML specification document—the primary source of information
about the rules of SysML.

The SysML specification attempts to define the grammar of this
modeling language in a way that is precise and unambiguous, and it
largely succeeds. But the text in the specification can sometimes be dif-
ficult to parse and process. The target audiences for this primary source
of SysML information are the vendors of modeling tools and designers
of modeling languages (and also modeling geeks who write books
on the subject). In short, the SysML specification is not meant for
beginners.

If that’s not daunting enough, it’s only half the story. As I discuss in
the next section, SysML is not an independent, stand-alone language.
Rather, it’s a profile—an extension—of a subset of the Unified Model-
ing Language (UML). Therefore, if you wanted the complete definition
of the grammar and vocabulary of SysML, you would need to refer also
to parts of the UML specification document (also available on the OMG
website).

If you’re new to SysML, I recommend that you flip to Appendix A,
“SysML Notation Desk Reference,” to get a good first look at its various
graphical notations. These notations are what actually appear on the
SysML diagrams you create. These notations form the vocabulary of
the systems modeling language.

02_0321927866_Ch02.indd 13 Achorn International 10/18/2013 12:09AM

http://www.omg.org

ptg11539604

2.2 Yes, SysML Is Based on UML—but You Can Start with SysML 13

So that’s what SysML is: It’s a modeling language. It’s equally im-
portant to understand what SysML is not: It’s not a modeling method.
To be clear, the formal SysML specification document defines only the
language itself (its grammar and vocabulary); it does not prescribe any
particular modeling method.

Note
Please refer to Chapter 1 for a discussion of the distinction between modeling
languages and modeling methods.

The SysML specification does not tell you, for example, at which point
in the life cycle you should create, say, a use case diagram. It does not
dictate that you must use an activity diagram to elaborate a use case. It
does not demand that you create a set of internal block diagrams (IBDs),
each focusing on a particular aspect of the system architecture. All
these are methodological decisions. They fall outside the scope of the
SysML specification. It is up to you and your project team to adopt and
tailor a modeling method that will enable you to achieve your project’s
unique objectives.

2.2 Yes, SysML Is Based on UML—but You Can
Start with SysML

As mentioned earlier, SysML is not an independent language; it’s a pro-
file, or extension, of UML created specifically for the systems engineer-
ing domain. UML was designed to be a standard modeling language
for the software engineering domain. Systems engineers saw value in
the practice of using a standard modeling language to construct mod-
els of systems, but they didn’t feel that UML sufficiently captured all
the concepts that are meaningful in systems engineering.

For example, UML models can contain DataType elements. Software
engineers can use a data type (e.g., Integer) in a UML model to specify
the type of an attribute within a class, the type of an object that can flow
through an activity, and the type of a parameter within an operation.
Systems engineers, however, care about other types of things that can
flow—matter and energy—and not just data. The concept of DataType

02_0321927866_Ch02.indd 12 Achorn International 10/18/2013 12:09AM

ptg11539604

 Overview of the Systems Modeling Language14

simply wasn’t sufficient. Therefore, SysML introduces a new kind of
model element called ValueType, which extends the concept of DataType
to provide a more neutral term for the broader set of types in the sys-
tems engineering domain.

Because SysML is an extension of UML, some of the rules of SysML
are actually defined in the UML specification document. This means
that the SysML specification document is not a self-sufficient definition
of the language. For example, if you wanted to know all the rules about
using a value type in a system model, it wouldn’t be sufficient to read
the ValueType entry in the SysML specification; you would have to read
the DataType entry in the UML specification, too. That’s simply the na-
ture of a profile as a language extension mechanism.

So do you need to go buy a UML book to learn how to create a sys-
tem model?

No, you don’t. This book is a sufficient primer for learning SysML
so that you can get started modeling as quickly as possible. When I
discuss value types in Section 3.9, “Value Types,” I tell you everything
you need to know about them to use them correctly and effectively in
a system model. It will be transparent to you whether a specific detail
comes from the UML definition of the base element, DataType, or from
the SysML extension, ValueType.

2.3 SysML Diagram Overview

There are nine kinds of SysML diagrams:

•	 Block definition diagram (BDD)
•	 Internal block diagram (IBD)
•	 Use case diagram
•	 Activity diagram
•	 Sequence diagram
•	 State machine diagram
•	 Parametric diagram
•	 Package diagram
•	 Requirements diagram

Figure 2.1, which appears in the SysML specification v1.2, provides
a good overview of the categories and relationships between the SysML
diagrams. But this figure is meaningful only if you know what the lines

02_0321927866_Ch02.indd 15 Achorn International 10/18/2013 12:09AM

ptg11539604

2.3 SysML Diagram Overview 15

with the hollow, triangular arrowheads mean. They’re called generaliza-
tions. You read them as “is a type of” in the direction of the arrowhead.
(I discuss generalizations in detail in Section 3.6, “Generalizations.”)

With this in mind, Figure 2.1 conveys quite a bit of information. Ac-
tivity diagrams, sequence diagrams, state machine diagrams, and use
case diagrams are types of behavior diagrams. Block definition dia-
grams, internal block diagrams, and package diagrams are types of
structure diagrams. Parametric diagrams are a type of internal block dia-
gram; therefore, a parametric diagram is transitively a type of structure
diagram. Finally, requirements diagrams are in a category by them-
selves—but still a useful addition to this family of SysML diagrams.

Here’s a brief summary of the purpose of each kind of diagram.

•	 The block definition diagram (BDD) is used to display ele-
ments such as blocks and value types (elements that define the
types of things that can exist in an operational system) and the
relationships between those elements. Common uses for a BDD
include displaying system hierarchy trees and classification
trees.

•	 The internal block diagram (IBD) is used to specify the internal
structure of a single block. More precisely, an IBD shows the
connections between the internal parts of a block and the inter-
faces between them.

Figure 2.1 SysML diagram taxonomy

02_0321927866_Ch02.indd 14 Achorn International 10/18/2013 12:09AM

ptg11539604

 Overview of the Systems Modeling Language16

•	 The use case diagram is used to convey the use cases that a sys-
tem performs and the actors that invoke and participate in
them. A use case diagram is a black-box view of the services
that a system performs in collaboration with its actors.

•	 The activity diagram is used to specify a behavior, with a focus
on the flow of control and the transformation of inputs into out-
puts through a sequence of actions. Activity diagrams are com-
monly used as an analysis tool to understand and express the
desired behavior of a system.

•	 The sequence diagram is used to specify a behavior, with a
focus on how the parts of a block interact with one another via
operation calls and asynchronous signals. Sequence diagrams
are commonly used as a detailed design tool to precisely specify
a behavior as an input to the development stage of the life cycle.
Sequence diagrams are also an excellent mechanism for specify-
ing test cases.

•	 The state machine diagram is used to specify a behavior, with a
focus on the set of states of a block and the possible transitions
between those states in response to event occurrences. A state
machine diagram, like a sequence diagram, is a precise specifi-
cation of a block’s behavior that can serve as an input to the
development stage of the life cycle.

•	 The parametric diagram is used to express how one or more
constraints—specifically, equations and inequalities—are
bound to the properties of a system. Parametric diagrams sup-
port engineering analyses, including performance, reliability,
availability, power, mass, and cost. Parametric diagrams can
also be used to support trade studies of candidate physical
architectures.

•	 The package diagram is used to display the way a model is or-
ganized in the form of a package containment hierarchy. A
package diagram may also show the model elements that pack-
ages contain and the dependencies between packages and their
contained model elements.

•	 The requirements diagram is used to display text-based re-
quirements, the relationships between requirements (contain-
ment, derive requirement, and copy), and the relationships be-
tween requirements and the other model elements that satisfy,
verify, and refine them.

02_0321927866_Ch02.indd 17 Achorn International 10/18/2013 12:09AM

ptg11539604

2.4 General Diagram Concepts 17

2.4 General Diagram Concepts

You should be aware of a few overarching concepts about SysML dia-
grams before you delve into the details of the specific types. A sample
SysML diagram is shown in Figure 2.2.

Each diagram has a frame, a contents area (colloquially called the
“canvas”), and a header. The diagram frame is the outer rectangle. The
contents area is the region inside the frame where model elements and
relationships can be displayed. The header is in the upper-left corner of
the diagram, shown in Figure 2.2 with its lower-right corner cut off.

In SysML (unlike in UML), the frame must be displayed. With that
said, some figures in this book show model elements and relationships
without an enclosing frame. I do that to hide inconsequential informa-
tion and focus your attention on particular notations. Officially, though,
the frame is mandatory.

One of the most important diagram concepts is the format of the
header information. The header commonly contains four pieces of
information:

•	 Diagram kind
•	 Model element type
•	 Model element name
•	 Diagram name

The format of that information is shown in the header in Figure 2.3.

Figure 2.2 Sample SysML diagram

02_0321927866_Ch02.indd 16 Achorn International 10/18/2013 12:09AM

ptg11539604

 Overview of the Systems Modeling Language18

I begin with two intuitive pieces of information: diagram kind and
diagram name. The diagram kind is shown as its SysML-defined
abbreviation:

•	 bdd = block definition diagram
•	 ibd = internal block diagram
•	 uc = use case diagram
•	 act = activity diagram
•	 sd = sequence diagram
•	 stm = state machine diagram
•	 par = parametric diagram
•	 req = requirements diagram
•	 pkg = package diagram

Based on this, you can conclude that the diagram in Figure 2.2 is a
block definition diagram. (Chapter 3, “Block Definition Diagrams,”
discusses in detail the kinds of elements that can appear on a BDD.)

The diagram name can be anything you want it to be. I advise you
to choose a diagram name that conveys which aspect of the model is
in focus on that diagram. For example, the name of the diagram in Fig-
ure 2.2 is “DellSat-77 Satellite Subsystems.” This diagram name indi-
cates that the focus of the diagram is the set of subsystems that make
up the satellite system. The model certainly contains other information
about the satellite system, but that information is not the focus of this
diagram.

The next two pieces of information in the header are the model ele-
ment type and the model element name. To understand what these
refer to, you first need to know another essential concept about SysML
diagrams: Each diagram you create represents an element that you’ve

Figure 2.3 Diagram header format

02_0321927866_Ch02.indd 19 Achorn International 10/18/2013 12:09AM

ptg11539604

2.4 General Diagram Concepts 19

defined somewhere in your system model. More precisely, the diagram
frame represents an element in the model. And that model element is
the element whose type and name appear in the diagram header.

In Figure 2.2, the model element type is “package,” and the model
element name is “Structure.” This conveys that the frame of this BDD
represents the Structure package that exists somewhere in the system
model hierarchy.

Requiring each diagram to represent a model element may seem
like a strict and unnecessary constraint, but in the words of Frederick
Brooks, Jr., in The Design of Design (Boston: Addison-Wesley, 2010),
“Constraints are friends” (p. 127). The connection between a diagram
and a model element was a deliberate and brilliant decision on the part
of the SysML authors. The reason is conveyed by the next key concept
of SysML diagrams: The model element represented by the diagram
defines the namespace—the container element within the model hier-
archy—for the other elements shown on the diagram. Simply put, the
model element type and model element name shown in the diagram
header indicate where the elements on the diagram can be found within
the model.

The diagram header in Figure 2.2 tells us that the six blocks shown
in the contents area are contained in (i.e., nested under) the Structure
package in the model hierarchy. This gives us a sense of how elements
are partitioned in the model and aids us in navigating it.

The model element may be a structural element (e.g., a package or
block), or it may be a behavioral element (e.g., an activity, interaction,
or state machine). The type of model element that a diagram can repre-
sent depends on the kind of diagram you’re creating. The pairings are
shown in Table 2.1.

Recall from Chapter 1 the distinction between a system model (as
an engineering artifact in its own right) and the set of diagrams you
create (which are views of the underlying model). This idea is so im-
portant that here I rephrase it more formally and give it a name: the
fundamental precept of model-based engineering. Your assignment is
to assume full lotus position and repeat the following mantra until you
enter a deep meditative state:

A diagram of the model is never the model itself; it is merely one view
of the model.

This idea is a paradigm shift for engineers who have only ever
sketched designs using paper, whiteboards, or diagramming tools.
And it’s an idea best explained via metaphor: The model is a mountain,

02_0321927866_Ch02.indd 18 Achorn International 10/18/2013 12:09AM

ptg11539604

 Overview of the Systems Modeling Language20

and a diagram is a picture of the mountain. The mountain exists
whether or not anyone takes a picture of it. If a man comes along and
takes a picture from the north side, he creates one view of the mountain
that shows some of its features but not others. If a woman takes a pic-
ture from the west side, she creates a second view of the mountain that
shows a different—possibly overlapping—set of features.

Each of the two views focuses on a different aspect of the whole.
But at all times the pictures are only views of the mountain and not the
mountain itself. The mountain and its features will continue to exist
even if the photographers later crop out certain details from the final
pictures . . . and even if they destroy the pictures.

This metaphor fails in one respect: You can add new features and
modify or delete existing features from the model at any time. When
you modify an existing feature, the changes are instantly reflected on
all diagrams that show the feature. When you delete a feature from the
model, it instantly vanishes from all diagrams that showed that feature.
Clearly the pictures in your photo album don’t offer the same
capability.

Earlier in this section I mentioned the practice of eliding inconse-
quential information on a given diagram. No diagram should attempt
to convey every detail; the diagram would be unreadable. You should
instead decide what you want the focus of a given diagram to be and
then elide all model information that is not within that focus. This idea

Table 2.1 Allowable Model Element Types for Each Diagram Kind

Diagram Kind Allowable Model Element Types

Block definition diagram package, model, modelLibrary, view, block,
constraintBlock

Internal block diagram block

Use case diagram package, model, modelLibrary, view

Activity diagram activity

Sequence diagram interaction

State machine diagram stateMachine

Parametric diagram block, constraintBlock

Requirement diagram package, model, modelLibrary, view, requirement

Package diagram package, model, modelLibrary, view, profile

02_0321927866_Ch02.indd 21 Achorn International 10/18/2013 12:09AM

ptg11539604

Summary 21

leads to the corollary to the fundamental precept of model-based
engineering:

You cannot conclude that a feature doesn’t exist from its absence on a
diagram; it may be shown on another diagram of the model or on no
diagram at all.

Summary

SysML is a richly expressive graphical modeling language that you can
use to visualize the structure, behavior, requirements, and parametrics
of a system and communicate that information to others. SysML de-
fines nine kinds of diagrams that you can use to convey all this system
design information; each kind serves a specific purpose and conveys
specific information about an aspect of a system.

The chapters that follow provide detailed coverage of these dia-
grams. You will learn the various kinds of SysML model elements—
and the relationships among them—that can appear on each kind of
diagram. I include discussions of the rules of SysML that you will need
to know to build your system model correctly and ensure effective
communication with your stakeholders.

02_0321927866_Ch02.indd 20 Achorn International 10/18/2013 12:09AM

ptg11539604

This page intentionally left blank

ptg11539604

23

Chapter 3

Block Definition
Diagrams

The most common kind of SysML diagram is the block definition dia-
gram. You can display various kinds of model elements and relation-
ships on a BDD to express information about a system’s structure. You
can also adopt design techniques for creating extensible system struc-
tures, a practice that reduces the time and cost to change your design as
your stakeholders’ needs evolve.

3.1 Purpose

The model elements that you display on BDDs—blocks, actors, value
types, constraint blocks, flow specifications, and interfaces—serve as
types for the other model elements that appear on the other eight kinds
of SysML diagrams. We refer to elements that appear on BDDs as ele-
ments of definition. Elements of definition, in a real sense, form the
foundation for everything else in your system model. That’s why I’m
covering BDDs first.

Elements of definition are important; the structural relationships
among them—associations, generalizations, and dependencies—are
arguably more important. You display these relationships on BDDs,
too. With these relationships, you often create BDDs that convey sys-
tem decomposition and type classification.

ptg11539604

 Block Definition Diagrams24

3.2 When Should You Create a BDD?

Often. You should create a BDD often.
That may seem like a glib answer, but it’s accurate. BDDs are not

tied to any particular stage of the system life cycle or level of design.
You and your team will create them (and refer to them) when you per-
form all the following systems engineering activities: stakeholder needs
analysis, requirements definition, architectural design, performance
analysis, test case development, and integration. And you often create
a BDD in conjunction with other SysML diagrams to provide a comple-
mentary view of an aspect of your system of interest.

In short, you should—and will—create BDDs often.

3.3 The BDD Frame

The diagram kind abbreviation for a block definition diagram is bdd.
The model element type that the diagram frame represents can be any
of the following:

•	 package

•	 model
•	 modelLibrary
•	 view
•	 block
•	 constraintBlock

As discussed in Section 2.4, “General Diagram Concepts,” the
model element that the diagram represents serves as the namespace for
the other elements shown on the diagram. A namespace is simply a
model element that’s allowed to contain other model elements; that is,
it can have other elements nested under it within the model hierarchy.
A namespace, therefore, is a concept that has meaning only within your
system model; it has no meaning within an instance of your system.

Many kinds of SysML elements can serve as namespaces. A pack-
age, however, is the most common kind of namespace for the various
elements of definition that appear on BDDs. Therefore, the element
that’s named in the header of a BDD typically is a package you’ve cre-
ated somewhere in the model hierarchy.

03_0321927866_Ch03.indd 25 Achorn International 10/18/2013 12:12AM

ptg11539604

3.3 The BDD Frame 25

Figure 3.1 A sample block definition diagram (BDD)

03_0321927866_Ch03.indd 24 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams26

The name of the BDD in Figure 3.1 is “DellSat-77 Satellite Structure
and Properties.” The diagram header also tells us that this diagram
represents the Structure package in the system model. The Structure
package, therefore, is the namespace for the elements shown on the
diagram.

Let’s take a look in detail at the kinds of elements and relationships
you can display on a BDD.

3.4 Blocks

A block is the basic unit of structure in SysML. You can use a block to
model any type of entity within your system of interest or in the sys-
tem’s external environment.

Note the distinction between definition and instantiation (which
SysML refers to as “usage”). This distinction is one of the most funda-
mental system design concepts, and it’s a pattern that recurs often in
SysML. Some kinds of model elements (e.g., blocks, value types, con-
straint blocks) represent definitions of types; other kinds of model ele-
ments (e.g., part properties, value properties, constraint properties)
represent instances of those types. By analogy, a blueprint of a house
is a definition of a type of house; each house a developer builds on a
plot of land in accordance with that blueprint is a distinct instance of
that type.

With that in mind, I reiterate: A block represents a type of entity,
and not an instance. For example, you could create a block named Desk-
topWorkstation in your system model. That block would represent a
type that defines a set of properties—such as monitor, keyboard, mouse,
CPU, manufacturer, disk space, cost—that are common to all instances.
Each desktop workstation that your IT department purchases for each
office and cubicle would be a distinct instance of that DesktopWorksta-
tion block.

You can easily tell the difference between elements of definition
and elements of usage in a system model. Elements of definition have
a name only (e.g., DesktopWorkstation); elements of usage have a name
and a type, separated by a colon (e.g., SDX1205LJD : Desktop Workstation).

The notation for a block is a rectangle with the stereotype «block»
preceding the name in the name compartment (as shown in Figure 3.2).
You’re required to display a block’s name compartment. Often you’ll
display additional optional compartments that convey the features of
the block.

03_0321927866_Ch03.indd 27 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 27

Features come in two varieties: structural features (also known as
properties) and behavioral features. I discuss each category in depth in
the next two sections.

Here are the optional compartments that you can display:

•	 Parts
•	 References
•	 Values
•	 Constraints
•	 Operations
•	 Receptions
•	 Standard ports (in SysML v1.2 and earlier)
•	 Flow ports (in SysML v1.2 and earlier)
•	 Full ports (in SysML v1.3)
•	 Proxy ports (in SysML v1.3)
•	 Flow properties (in SysML v1.3)
•	 Structure

The structure compartment is the only compartment that doesn’t
list features. Rather, it’s a graphical compartment that displays a block’s
internal structure; you can display in that compartment all the same
notations you can display on an internal block diagram (IBD). Model-
ers rarely display this compartment.

Note that even though it’s legal to display a block’s ports in com-
partments, it’s much more common to display ports as small squares
that straddle the border of a block (as shown in Figure 3.2). I discuss
ports in detail in Section 3.4.1.5, “Ports.”

Figure 3.2 A block

03_0321927866_Ch03.indd 26 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams28

3.4.1 Structural Features

There are five kinds of structural features (also known as properties)
that a block can own:

•	 Part properties
•	 Reference properties
•	 Value properties
•	 Constraint properties
•	 Ports

3.4.1.1 Part Properties

Part properties are listed in the parts compartment of a block (as shown
in Figure 3.3). A part property represents a structure that’s internal to a
block. Stated differently, a block is composed of its part properties. This
relationship conveys ownership.

However, SysML stops short of defining the word ownership; this
concept has different meanings in different domains. In the hardware
domain, ownership typically refers to physical composition. For exam-
ple, Figure 3.3 conveys that a valid instance of the Communication and
Data Handling Subsystem block is one that is physically composed of the
required parts: flight computers, modulator, demodulator, transmitter,
receiver, and antennas. In the software domain, however, ownership

Figure 3.3 Blocks with part properties

03_0321927866_Ch03.indd 29 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 29

typically refers to one object’s responsibility for the creation and de-
struction of another object. When memory is allocated for a composite
object, memory is allocated for each of its parts, too; similarly, when
memory is freed for a composite object, memory is also freed for each
of its parts.

But SysML states definitively that ownership means that a part prop-
erty can belong to only one composite structure at a time. However, a
part property can be removed from one instance of a composite struc-
ture and added to another. For example, I can install a given antenna on
only one satellite at a time, and not on two or more simultaneously. But
that antenna can be removed from one satellite and reinstalled on an-
other at some point.

When you list a part property in the parts compartment of a block,
it appears as a string with the following format:

<part name> : <type> [<multiplicity>]

The part name is modeler defined. The type generally is the name
of a block that you’ve created somewhere in the system model. The
multiplicity is a constraint on the number of instances that the part
property can represent within the composite, expressed either as a sin-
gle integer or as a range of integers.

For example, Figure 3.3 conveys that a valid instance of the Com-
munication and Data Handling Subsystem block must be composed of ex-
actly one instance of the Flight Computer block—an instance that serves
in the role of primaryComputer. Additionally, it must be composed of
either one or two more instances of Flight Computer—instances that
serve in the role of backupComputer.

If you want a part property to represent an unconstrained number
of instances, you can set the multiplicity to 0..*. The asterisk means that
there’s no upper bound (or more precisely, that you’re not specifying
an upper bound in the system model). You would read 0..* in English
as “zero or more.” Alternatively, you can set the multiplicity to *, a
shorthand notation for 0..*.

If no multiplicity is shown for a part property, the default is 1 (which
is equivalent to 1..1). Note that 1 is almost always the default multiplic-
ity in SysML. There is an important exception, however, which I dis-
cuss in Section 3.5.2, “Composite Associations.”

When a part property has a multiplicity with an upper bound
greater than 1 (e.g., 1..2, 0..10, *), we refer to that part property as a col-
lection (of instances). The key idea is that part property and instance are

03_0321927866_Ch03.indd 28 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams30

not synonyms; a single part property may potentially represent multi-
ple instances within a composite if its specified multiplicity allows it.

3.4.1.2 Reference Properties

Reference properties are listed in the references compartment of a block
(as shown in Figure 3.4). A reference property represents a structure
that’s external to a block.

Unlike a part property, a reference property does not convey own-
ership. A reference property can roughly be described as a “needs” re-
lationship; a block with a reference property needs that external struc-
ture for some purpose, either to provide a service or to exchange matter,
energy, or data. And this implies that some type of connection must
exist between them.

Note that the presence of a reference property in a block does not by
itself convey its purpose. If you need to convey that purpose, you could
do so on an internal block diagram (IBD). I discuss this more in Chap-
ter 4, “Internal Block Diagrams.”

When you list a reference property in the references compartment
of a block, it appears as a string with the following format:

<reference name> : <type> [<multiplicity>]

The reference name is modeler defined. The type must be the name
of a block or actor that you’ve created somewhere in the system model.
The multiplicity is a constraint on the number of instances that the ref-
erence property can represent.

For example, Figure 3.4 shows that the Electrical Power Subsystem
block has a reference property named cdhs. This model conveys that an

Figure 3.4 Blocks with reference properties

03_0321927866_Ch03.indd 31 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 31

instance of Electrical Power Subsystem needs exactly one instance of
Communication and Data Handling Subsystem (to fulfill its design pur-
pose). Again, this view alone doesn’t convey what that purpose is; it
simply conveys that some type of connection must exist between them.

Like a part property, a reference property’s default multiplicity is 1
(if no multiplicity is shown). And like a part property, a reference prop-
erty is referred to as a collection when its multiplicity has an upper
bound greater than 1.

3.4.1.3 Value Properties

Value properties are listed in the values compartment of a block (as
shown in Figure 3.5). A value property can represent a quantity (of
some type), a Boolean, or a string. Most often, though, a value property
is something you can assign a number to. Value properties are particu-
larly useful in conjunction with constraint properties to construct a
mathematical model of your system (more on this in Chapter 9, “Para-
metric Diagrams”).

When you list a value property in the values compartment of a
block, it appears as a string with the following format:

<value name> : <type> [<multiplicity>] = <default value>

The value name is modeler defined. The type must be the name of
a value type that you’ve created somewhere in the system model. The
multiplicity is a constraint on the number of values that the value prop-
erty can hold. The default value is an optional piece of information; it

Figure 3.5 A block with value properties

03_0321927866_Ch03.indd 30 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams32

represents the value assigned to the value property when an instance of
its owning block first gets created.

Figure 3.5 shows that the DellSat-77 Satellite block has several value
properties. The eventTimes value property can hold an unconstrained
number of Timestamp values (as conveyed by the multiplicity 0..*).
Timestamp is a value type that exists somewhere in the model hierarchy
(more on value types in Section 3.9, “Value Types”).

As with a part property and a reference property, a value property’s
default multiplicity is 1 (if no multiplicity is shown). Similarly, a value
property is referred to as a collection when its multiplicity has an upper
bound greater than 1.

Some value properties hold values that are assigned, and others
hold values that are derived (calculated) from other value properties in
the system model. To convey that a value property is derived, you put
a forward slash (/) in front of its name. For example, Figure 3.5 shows
that the DellSat-77 Satellite block owns two derived value properties:
mass and period. This view of the model does not convey the equations
used to calculate those derived values, nor does it show which other
value properties provide inputs for those equations. You would specify
those mathematical relationships using constraint expressions, as dis-
cussed in the next section.

3.4.1.4 Constraint Properties

Constraint properties are listed in the constraints compartment of a
block (as shown in Figure 3.6). A constraint property generally repre-
sents a mathematical relationship (an equation or inequality) that is
imposed on a set of value properties. This is a higher level of model fi-
delity than is required on most modeling projects. However, constraint
properties are an essential part of constructing mathematical models of

Figure 3.6 A block with a constraint property

03_0321927866_Ch03.indd 33 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 33

a system, which you display on parametric diagrams (more on this in
Chapter 9).

When you list a constraint property in the constraints compartment
of a block, it appears as a string with the following format:

<constraint name> : <type>

The constraint name is modeler defined. The type must be the name
of a constraint block that you’ve created somewhere in the system
model.

A constraint block is simply a special kind of block—one that you
create to encapsulate a reusable constraint expression. Most often, a
constraint expression is an equation or an inequality. For example, Fig-
ure 3.7 shows a constraint block named Sufficient Memory, which encap-
sulates the constraint expression

memoryCapacity >= dataPerOrbit * 3

This constraint block serves as the type for the constraint property
sm in the Flight Computer block (shown in Figure 3.6). This conveys that
the values held in the two value properties (memoryCapacity and data-
PerOrbit) must satisfy that mathematical relationship at all times (in a
system that’s operating nominally).

Note that you’re not required to use constraint blocks to impose
mathematical relationships on value properties. It’s perfectly legal to
specify a constraint expression directly in the constraints compartment
of a block (as shown in Figure 3.8). You would do this when only one
block needs that constraint expression (i.e., when you don’t intend to

Figure 3.7 A constraint block

03_0321927866_Ch03.indd 32 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams34

reuse it in multiple places). As a matter of best practice, though, I rec-
ommend that you always encapsulate equations and inequalities in
constraint blocks; it enables reuse if the need arises.

I discuss constraint blocks in greater detail in Section 3.10, “Con-
straint Blocks.” Meanwhile, keep in mind these key ideas:

•	 Blocks can own constraint properties (to constrain value
properties).

•	 Constraint properties are typed by constraint blocks, which
generally encapsulate mathematical relationships.

3.4.1.5 Ports

A port is a kind of property that represents a distinct interaction point
at the boundary of a structure through which external entities can in-
teract with that structure—either to provide or request a service or to
exchange matter, energy, or data.

When you add a port to a block, you’re modeling a structure as a
black box with respect to its environment; the structure’s internal im-
plementation is hidden from its clients. Those clients know only the
structure’s interface (the services it provides and requires, and the
types of matter, energy, or data that can flow in and out). Stated differ-
ently, a port decouples a block’s clients from any particular internal
implementation.

Encapsulating a block with a set of ports enables you to redesign
that block’s internal implementation later without impacting the de-
sign of the other parts of your system. This practice reduces the time it
takes to implement system modifications when the customer’s require-

Figure 3.8 A block with a (non-reusable) constraint

03_0321927866_Ch03.indd 35 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 35

ments change later in the life cycle, and time saving translates into cost
saving.

A port can represent any type of interaction point you need to
model. For example, it can represent a physical object on the boundary
of a hardware object (e.g., a spigot, an HDMI jack, a fuel nozzle, a
gauge). It can represent an interaction point on the boundary of a soft-
ware object (e.g., a TCP/IP socket, a message queue, a shared memory
segment, a graphical user interface, a data file). And it can represent an
interaction point between two business organizations (e.g., a purchase
order, a courier, a website, a mailbox). SysML imposes no constraints
on what a port can represent.

SysML v1.2 (and earlier) defines two kinds of ports—standard
ports and flow ports—that you can add to a block to specify different
aspects of its interface. A standard port lets you specify an interaction
point with a focus on the services that a block provides or requires; a
flow port lets you specify an interaction point with a focus on the types
of matter, energy, or data that can flow in and out of a block.

Note

SysML v1.3 no longer supports standard ports and flow ports, instead defining
two new kinds of ports: full ports and proxy ports. I discuss these in detail in Ap-
pendix B. I focus on standard ports and flow ports in this chapter because they
continue to be the predominant kinds of ports in system models at the time of this
writing. Additionally, the current versions of the OCSMP certification exams cover
the concepts of standard ports and flow ports. Moreover, some modeling tools
continue to lag behind the changes in SysML and do not yet support full ports
and proxy ports.

Standard Ports A standard port models the services (behaviors) that
a block provides or requires at an interaction point on its boundary.
Most often, you display a standard port as a small square straddling
the border of a block (as shown in Figure 3.9). Note that it’s legal to list
a standard port as a string in the standard ports compartment, but this
is an uncommon notation.

A standard port can have a modeler-defined name (e.g., sp_cdhs,
sp_eps) that is displayed as a string floating near the standard port
(either inside or outside the block border). A standard port can have

03_0321927866_Ch03.indd 34 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams36

one or more types; the types are the interfaces you assign to it (e.g.,
Power Generation, Status Reporting).

An interface, like a block, is an element of definition—one that de-
fines a set of operations and receptions, a behavioral contract that cli-
ents and providers will conform to. You can display an interface on a
BDD as a rectangle with the keyword «interface» preceding the name;
you can display its operations and receptions in the second and third
compartments. Figure 3.10 displays the Power Generation and Status Re-
porting interfaces using this notation.

When you assign an interface to a standard port, you assign it ei-
ther as a provided interface or as a required interface. A provided inter-
face is displayed using the ball notation—the lollipop symbol attached
to the standard port (shown in Figure 3.9). A block that provides an
interface must implement all of the interface’s operations and recep-
tions. For example, Figure 3.9 conveys that the Communication and Data
Handling Subsystem block provides the Status Reporting interface, and

Figure 3.9 Blocks with standard ports

Figure 3.10 Interfaces

03_0321927866_Ch03.indd 37 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 37

this means that it implements (can perform) the two operations and the
two receptions in that interface.

A required interface is displayed using the socket notation—the
stick with a semicircle attached to the standard port (shown in Fig-
ure 3.9). A block that requires an interface may invoke one or more—
but not necessarily all—of its operations or receptions at some point
during system operation. For example, Figure 3.9 conveys that the Elec-
trical Power Subsystem block requires the Status Reporting interface, and
this means that it may invoke any (or all) of the four operations and
receptions in that interface.

Modeling with standard ports and interfaces is a way to decouple
clients and providers, enabling you to design to abstractions rather
than specific implementations. This extensibility lets you add new
providers of interfaces at any time without impacting the existing cli-
ents of those interfaces.

Flow Ports A flow port models the types of matter, energy, or data
that can flow in or out of a block at an interaction point on its boundary.
As with a standard port, you most often display a flow port as a small
square straddling the border of a block (as shown in Figure 3.11). Un-
like a standard port, however, a flow port has a symbol shown inside
the small square (more on that soon). It’s legal to list a flow port as a
string in a compartment—one named “flow ports”—but again, this is
an uncommon notation.

A flow port can have a modeler-defined name (e.g., dataOut, data-
 In); it can also have a type (e.g., Housekeeping Data). The name and
type are displayed as a string floating near the flow port, separated by
a colon in the format name : type. The type that you specify for a flow
port and the symbol that appears inside the square depend on the kind
of flow port you’re modeling. SysML offers two kinds of flow ports:
non atomic flow ports and atomic flow ports.

Figure 3.11 shows examples of nonatomic flow ports. You add a
nonatomic flow port (symbolized as < >) to a block when you need to

Figure 3.11 Blocks with nonatomic flow ports

03_0321927866_Ch03.indd 36 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams38

model multiple types of items that could flow in or out via that port. The
type of a nonatomic flow port must be the name of a flow specification
that you’ve created somewhere in the system model.

Like a block, a flow specification is an element of definition—one
that defines a set of flow properties that can flow in or out of a non-
atomic flow port. You can display a flow specification on a BDD as a
rectangle with the stereotype «flowSpecification» preceding the name;
you can display its flow properties in a compartment named “flow-
Properties.” Figure 3.12 displays the Housekeeping Data flow specifica-
tion using this notation.

A flow property represents a specific item that can flow in or out of
a block via a flow port. Each flow property has a direction, a name, and
a type, which are displayed as a string in the following format:

<direction> <name> : <type>

The direction can be in, out, or inout. The name is modeler defined.
The type must be the name of a value type, block, or signal that you’ve
created somewhere in your model hierarchy.

Figure 3.11 shows that the Flight Computer block owns a nonatomic
flow port named dataIn, which is typed by the Housekeeping Data flow
specification. This model conveys that temperature and voltage values
can flow into an instance of Flight Computer at some point during sys-
tem operation.

Figure 3.11 also shows that the Electrical Power Subsystem block
owns a nonatomic flow port named dataOut, which also is typed by the
Housekeeping Data flow specification. In this case, though, the type,
Housekeeping Data, has a tilde (~) in front of it. This symbol conveys that
the dataOut flow port is conjugated. This means that the directions of
the flow properties in the Housekeeping Data flow specification are re-
versed for that flow port.

Figure 3.12 A flow specification

03_0321927866_Ch03.indd 39 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 39

The other kind of flow port is an atomic flow port. Figure 3.13
shows examples of this kind. You add an atomic flow port to a block
when you need to model a single type of item that could flow in or out
via that port. The symbol inside the small square is an arrow that con-
veys the direction of flow. The type of an atomic flow port must be the
name of a value type, block, or signal that you’ve created somewhere in
your model hierarchy.

Figure 3.13 shows that the Modulator block and the Transmitter block
have an atomic flow port named coupler, which is typed by the same
value type, Radio Frequency Cycle. These ports differ only in their direc-
tion of flow. This model conveys that a radio frequency signal can flow
from a modulator to a transmitter via a coupler—an interaction point at
their respective boundaries.

3.4.2 Behavioral Features

All the features I discuss in the preceding section are structural fea-
tures. On most modeling projects, however, it’s not sufficient to specify
only the parts, references, constraints, value properties, and ports of a
block. They’re important, but they convey only one aspect of the de-
sign. An equally important aspect is the set of behaviors that a block
can perform. You convey this aspect of the design by adding behavioral
features to a block.

SysML offers two kinds of behavioral features: operations and re-
ceptions. I discuss these briefly in the context of interfaces earlier in
Section 3.4.1.5. However, they’re not limited to interfaces; you can also
add operations and receptions to blocks. The decision to add a behav-
ioral feature to a block directly or to an interface (that a block provides
or requires) is a matter of your chosen modeling methodology and de-
sign principles. SysML does not dictate either course of action, and the
format for displaying operations and receptions is the same in either
case.

Now let’s take a look in detail at each kind of behavioral feature.

Figure 3.13 Blocks with atomic flow ports

03_0321927866_Ch03.indd 38 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams40

3.4.2.1 Operations

An operation represents a behavior that a block performs when a client
calls it. Stated formally, an operation is invoked by a call event.

Note

The term call event becomes more meaningful when I discuss events in detail in
the context of behaviors in Chapter 6, “Activity Diagrams,” Chapter 7, “Sequence
Diagrams,” and Chapter 8, “State Machine Diagrams.” I introduce the term now to
establish its connection to the concept of operations. As you study SysML incre-
mentally, remember that diagrams are merely views of an underlying model; what
you see on BDDs is related to what you see on other kinds of diagrams, including
activity diagrams, sequence diagrams, and state machine diagrams.

Most often, an operation represents a synchronous behavior. This
means that the caller waits for the behavior to complete before continu-
ing with its own execution. However, SysML doesn’t require this;
you’re free to represent any behavior as an operation—even when the
caller doesn’t wait for it to complete.

You display an operation on a BDD as a string in the operations
compartment of a block (as shown in Figure 3.14). That string has the
following format:

<operation name> (<parameter list>) : <return type>
[<multiplicity>]

The operation name is modeler defined. The parameter list is a
comma-separated list of zero or more parameters. (The format for each
parameter is shown shortly.) The return type (if any) must be the name
of a value type or block that you’ve created somewhere in your system
model. The multiplicity is a constraint on the number of instances of
the return type that the operation can return to the caller when it
completes.

The parameters in the parameter list represent the inputs or out-
puts of the operation. Each parameter in the list is displayed with the
following format:

<direction> <parameter name> : <type> [<multiplicity>] =
<default value>

03_0321927866_Ch03.indd 41 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 41

The direction can be in, out, or inout. The parameter name is mod-
eler defined. The type must be the name of a value type or block that
exists somewhere in your model. The multiplicity is a constraint on the
number of instances of the type that the parameter can represent. The
default value is the value assigned to the parameter if no value is speci-
fied as an argument when the operation is called.

Figure 3.14 shows that the Electrical Power Subsystem block and the
Communication and Data Handling Subsystem block own several opera-
tions each—operations that represent behaviors that instances of these
blocks can perform if called upon during system operation. An exam-
ple of an operation is processCommand. This model conveys that a client
can call the communication and data handling subsystem to perform
this operation. When it does, the client can pass one or more commands
as an input to the operation. And when the operation completes, it will
return a status value to the caller.

A bit of advice: It’s good practice to always use a verb phrase (such
as processCommand) to name an operation; an operation represents a
behavior, after all. Also, don’t go overboard with the parameter lists;
simply adding operations to blocks (without specifying parameters) is
often a sufficient degree of model fidelity. If your team needs to specify

Figure 3.14 Blocks with operations

03_0321927866_Ch03.indd 40 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams42

parameters for operations within the system model, be judicious about
which ones you choose to display on any given BDD; the complete
string for an operation could take up a lot of real estate on a BDD if you
display even a few parameters.

3.4.2.2 Receptions

A reception represents a behavior that a block performs when a client
sends a signal that triggers it. Stated formally, a reception is invoked by
a signal event.

The key distinction between a reception and an operation is that a
reception always represents an asynchronous behavior. This means that
a client sends a signal—which triggers a reception upon receipt—and
immediately continues with its own execution; it doesn’t wait for the
reception to complete (or even, necessarily, to begin).

Another key point is that a signal is itself a model element. You can
use a signal to represent any type of matter, energy, or data that one
part of a system sends to another part—generally for the purpose of
triggering a behavior on the receiving end. Like a block, a signal can
own properties. Most often, those properties represent data that the
signal carries from a client to a target. And when the signal arrives at
the target and triggers a reception, the signal’s properties become in-
puts to that reception.

Figure 3.15 displays a signal named AnalogTempDataSampled. This
signal owns two properties: temp (of type ° C) and time (of type Time-
stamp). When a client generates an instance of this signal during system
operation, it can supply values for the two properties. The client can
send the signal instance to a target that’s receptive to it (e.g., the Com-
munication and Data Handling Subsystem block shown in Figure 3.16).

A structure is an eligible target for a signal if it owns a reception
that has the same name as the signal. Additionally, the reception must

Figure 3.15 A signal

03_0321927866_Ch03.indd 43 Achorn International 10/18/2013 12:12AM

ptg11539604

3.4 Blocks 43

have a parameter with a compatible type for each property of the sig-
nal. The Communication and Data Handling Subsystem block meets these
criteria. When an instance of this block in an operational system re-
ceives an instance of the AnalogTempDataSampled signal, the reception
behavior gets invoked, and the values held in the signal’s two proper-
ties become inputs to that behavior.

When you display a reception in the receptions compartment of a
block, the string has the following format:

«signal» <reception name> (<parameter list>)

The keyword «signal» must always precede the reception name. As
mentioned earlier, the reception name must match the name of the sig-
nal in your model that triggers it. You can display as many parameters
as necessary in the parameter list. Each parameter in the list is dis-
played with the following format:

<parameter name> : <type> [<multiplicity>] = <default value>

The parameter name is modeler defined. The type must be the
name of a value type or block that exists somewhere in your model.
The multiplicity is a constraint on the number of instances of the type
that the parameter can represent. The default value is the value as-
signed to the parameter if no value is provided in the corresponding
property of the signal.

Unlike operations, receptions cannot have return types. Receptions
are asynchronous; the client that sent the signal isn’t waiting for a reply.
For the same reason, the parameters of a reception can only be inputs
and never outputs.

Figure 3.16 A block with receptions

03_0321927866_Ch03.indd 42 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams44

3.5 Associations: Another Notation for a Property

Section 3.4, “Blocks,” focuses on blocks and the various kinds of prop-
erties that blocks can own. Blocks are an important part of a structural
model of a system, and the relationships between the blocks are at least
as important.

There are three main kinds of relationships that can exist be-
tween blocks: associations, generalizations, and dependencies. I dis-
cuss generalizations and dependencies in detail in Section 3.6, “Gener-
alizations,” and Section 3.7, “Dependencies.” This section is devoted to
associations.

In discussing reference properties and part properties in Sec-
tion 3.4.1, “Structural Features,” I implicitly address the idea of associa-
tions between blocks. To reiterate the key points: A reference property
represents a structure that’s external to a block—a structure that the
block needs to be connected to for some purpose. A part property in-
stead represents a structure that’s internal to a block—in other words,
a structure that the block is composed of.

Reference properties and part properties correspond to two kinds
of associations that you often create between blocks and display on
BDDs: reference associations and composite associations, respectively.
Associations are simply an alternative notation to convey these kinds
of structural relationships within a system.

Let’s take a look in detail at the two kinds of associations.

3.5.1 Reference Associations

A reference association between two blocks means that a connection
can exist between instances of those blocks in an operational system.
And those instances can access each other for some purpose across the
connection.

The notation for a reference association on a BDD is a solid line
between two blocks. An open arrowhead on exactly one end conveys
unidirectional access; the absence of arrowheads on either end conveys
bidirectional access.

The upper BDD in Figure 3.17 displays a reference association be-
tween the Electrical Power Subsystem block and the Flight Computer
block. Associations can have several labels. You can optionally display
an association name floating near the middle of the line, and you can
optionally display a role name and multiplicity on either end of the
line. The association name is a modeler-defined string that describes

03_0321927866_Ch03.indd 45 Achorn International 10/18/2013 12:12AM

ptg11539604

3.5 Associations: Another Notation for a Property 45

the type of connection that can exist between instances of the two
blocks. In Figure 3.17, for example, the name of the reference associa-
tion shown is Power Cable—a name that describes the type of connec-
tion that could exist between an electrical power subsystem and a flight
computer in a correctly assembled satellite.

Note
I use the phrase “type of connection” deliberately. An association is an element of
definition; it can serve as the type for one or more connectors. A connector is an
element of usage that appears on internal block diagrams (IBDs) (more on this in
Chapter 4).

The role name shown on the end of a reference association corre-
sponds to the name of a reference property—one that belongs to the
block at the opposite end and whose type is the block that it’s next to. In
the upper BDD in Figure 3.17, for example, the role name eps represents
a reference property that belongs to the Flight Computer block and whose
type is the Electrical Power Subsystem block. The role name fc represents
a reference property that belongs to the Electrical Power Subsystem block
and whose type is the Flight Computer block. The lower BDD in Fig-
ure 3.17 displays an equivalent view of the same model using the refer-
ences compartment notation instead of reference associations.

Figure 3.17 Reference associations and reference properties

03_0321927866_Ch03.indd 44 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams46

Similarly, the multiplicity shown on the end of a reference associa-
tion (near a role name) corresponds to the multiplicity of that same
reference property. This correspondence also is reflected in the two
BDDs in Figure 3.17.

Sometimes a block has multiple reference properties of the same
type (as shown in the references compartment of the Flight Computer
block in Figure 3.18). You can convey this equivalently by drawing
multiple reference associations between the same two blocks (as shown
between the Flight Computer block and the Star Sensor block in Fig-
ure 3.18). Each reference association represents a distinct reference
property. Showing both notations on the same diagram is redundant;
I’m doing it here to establish the connection between these related
concepts.

The choice to use the references compartment notation versus refer-
ence associations depends on how much information you need to ex-
pose on the BDD. In Figure 3.18, for example, the reference association
notation lets me expose the value properties of the Star Sensor block; in
contrast, the references compartment notation hides all features of the
Star Sensor block.

Another factor in your decision is the need to specify a type for a
connector on an IBD. If you intend to do this, then you need to create a
reference association between two blocks and give it a name. The com-
partment notation would not meet your needs in this case.

Figure 3.18 Using reference associations to specify multiple reference properties of
the same type

03_0321927866_Ch03.indd 47 Achorn International 10/18/2013 12:12AM

ptg11539604

3.5 Associations: Another Notation for a Property 47

3.5.2 Composite Associations

A composite association between two blocks conveys structural de-
composition. An instance of the block at the composite end is made up
of some number of instances of the block at the part end.

The notation for a composite association on a BDD is a solid line
between two blocks with a solid diamond on the composite end. An
open arrowhead on the part end of the line conveys unidirectional ac-
cess from the composite to its part; the absence of an arrowhead con-
veys bidirectional access (i.e., the part will have a reference to the
composite).

Figure 3.19 displays four examples of composite associations from
the DellSat-77 Satellite block to the subsystem blocks. (It’s permissible
and common practice to overlap the solid diamonds on the composite
end.) This BDD conveys that a correctly manufactured and assembled
DellSat-77 satellite will be composed of one electrical power subsys-
tem, one attitude and orbit control subsystem, one environmental

Figure 3.19 Composite associations and part properties

03_0321927866_Ch03.indd 46 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams48

control subsystem, and one communication and data handling subsys-
tem. The possible numbers of instances are conveyed by the multiplici-
ties on the part ends of the four composite associations.

The role name shown on the part end of a composite association
corresponds to the name of a part property—one that’s owned by the
block at the composite end and whose type is the block at the part end.
In Figure 3.19, for example, the role name aocs represents a part prop-
erty that’s owned by the DellSat-77 Satellite block and whose type is the
Attitude and Orbit Control Subsystem block. This correspondence is
equivalently reflected in the parts compartment of the DellSat-77 Satel-
lite block. It’s redundant to show both the parts compartment notation
and composite associations on the same diagram; I’m doing it here to
reinforce the connection between these concepts.

The multiplicity on the part end of a composite association is not
restricted; a composite structure can be made up of an arbitrary num-
ber of instances of parts—however many a system requires.

However, the multiplicity on the composite end is restricted. A
part—by definition—can belong to only one composite at a time. There-
fore, the upper bound of the multiplicity on the composite end must
always be 1 (as shown in Figure 3.19). The lower bound of that multi-
plicity can be either 0 (zero) or 1. A lower bound of 0 conveys that a part
can be removed from its composite structure; a lower bound of 1 con-
veys that it cannot be removed (it must be attached to a composite
structure at all times in a valid instance of a system).

In Section 3.4.1.1, I state that 1 is almost always the default multi-
plicity for elements in SysML. However, there is an important excep-
tion to this rule, and here it is: The default multiplicity on the composite
end of a composite association is 0..1. (On the part end, however, the
default multiplicity is the usual case, 1.)

Sometimes a block has multiple part properties of the same type (as
shown in the parts compartment of the Communication and Data Han-
dling Subsystem block in Figure 3.20). You can convey this equivalently
by drawing multiple composite associations between the same two
blocks (as shown from the Communication and Data Handling Subsystem
block to the Flight Computer block in Figure 3.20). Each composite as-
sociation represents a distinct part property.

The same factor that I discuss at the end of Section 3.5.1, “Reference
Associations,” affects your choice to use either the parts compartment
notation or a composite association. You should use a composite asso-
ciation when you need to expose the features of the block that types a
part; you should use compartment notation instead when those fea-
tures are not the focus of the diagram.

03_0321927866_Ch03.indd 49 Achorn International 10/18/2013 12:12AM

ptg11539604

3.6 Generalizations 49

3.6 Generalizations

A generalization is another kind of relationship you typically display
on BDDs. This relationship conveys inheritance between two elements:
a more generalized element, called the supertype, and a more specialized
element, the subtype. You use generalizations to create classification
trees (type hierarchies) in your system model.

The notation for a generalization is a solid line with a hollow, trian-
gular arrowhead on the end of the supertype. This relationship is read
in English as “is a type of” going from the subtype to the supertype. For
example, the BDD in Figure 3.21 shows a generalization from the Gyro-
scope block to the Sensor block (among others). This relationship con-
veys that a gyroscope is a type of sensor.

When a supertype has more than one subtype shown on the same
BDD, modelers often overlap the hollow, triangular arrowheads on the
supertype end to conserve space on the diagram (as shown in Fig-
ure 3.21). Purists will tell you that overlapping the arrowheads actually
conveys a special grouping of subtypes called a generalization set.
This is a slightly more advanced feature of the language that you may
find useful later. For now, feel free to overlap the arrowheads purely to
enhance the readability of your diagrams.

One key point is that generalizations are transitive. The model dis-
played in Figure 3.21 shows that a star mapper is a type of star sensor,
and a star sensor is a type of sensor. Therefore, a star mapper is a type
of sensor. Type hierarchies in your model can be arbitrarily deep.

Figure 3.20 Using composite associations to specify multiple part properties of the
same type

03_0321927866_Ch03.indd 48 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams50

A generalization conveys that a subtype inherits all the features of
its supertype: the structural features (properties) and the behavioral
features (operations and receptions). In addition to the features it in-
herits, a subtype may have other features that its supertype doesn’t
have. For this reason, modelers often refer to a subtype as a specializa-
tion of its supertype.

For example, the Star Sensor block is a specialization of the Sensor
block. It inherits the four value properties and three operations from the

Figure 3.21 Generalization relationships between blocks

03_0321927866_Ch03.indd 51 Achorn International 10/18/2013 12:12AM

ptg11539604

3.6 Generalizations 51

Sensor block, and then it adds a fifth value property, resolution, that
the Sensor block doesn’t have. Similarly, the Star Mapper block inherits
the five value properties and three operations from the Star Sensor
block, and then it adds two new value properties (hasAutonomousMode
and maxNumStarsMapped), which neither of its supertypes have.

You create generalizations to define abstractions in your system
design. A supertype (such as Sensor) is an abstraction of its subtypes; it
factors out those features that are common among the subtypes. Ab-
stractions let you define a common feature (such as the initialize opera-
tion) in one place within the model—in the supertype—and that com-
mon feature propagates down the type hierarchy to all the subtypes.
Then, if you later need to change that common feature, you simply go
back to that one place in the model to make the change, and all sub-
types in the model get updated instantly.

Abstraction is a powerful design principle; it conveys substituta-
bility, meaning that a subtype will be accepted wherever its supertype
is required. For example, Figure 3.22 shows that the Flight Computer

Figure 3.22 Designing to an abstraction

03_0321927866_Ch03.indd 50 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams52

block has a reference property named sensorArray of type Sensor. This
model conveys that a flight computer may need access to one or more
of the features—structural or behavioral—that are common to all sen-
sors. Therefore, any of the five subtypes of Sensor would be acceptable
to a flight computer, because all of them inherit those common features
from their supertype, Sensor.

This is an example of designing to an abstraction. This practice cre-
ates extensibility in your design. When the customers’ requirements
change later in the life cycle and you need to add a new type of sensor
to the satellite design, you can simply define a new subtype of the Sen-
sor block within the system model, and that addition will be transpar-
ent to all clients (such as Flight Computer) that reference the Sensor block.
For all these reasons, building generalizations into your model can sig-
nificantly reduce the time it takes to modify your system design as the
life cycle progresses—and that capability directly translates into cost
savings.

3.7 Dependencies

A dependency is the third kind of relationship you can display on
BDDs. It means what it sounds like: One element in the model, the cli-
ent, depends on another element in the model, the supplier. More pre-
cisely, a dependency conveys that when the supplier element changes,
the client element may also have to change.

Most often, you create a dependency between two model elements
solely to establish traceability between them. A dependency relation-
ship lets you use your modeling tool to perform automated down-
stream impact analysis when you make changes to your design. When
you make a change to one element, you can query your modeling tool
to generate a list of the other elements in the model that may be im-
pacted by the change; the modeling tool navigates the set of dependen-
cies that you’ve created between elements to generate that list.

This is a practical reason to create dependencies in your model.
However, you seldom have a reason to display them on BDDs. They
are part of the structure of the model and not of the system that the
model represents. And you will spend most of your time creating BDDs
to convey system structure to your stakeholders.

When a dependency appears on a BDD, the notation is a dashed
line with an open arrowhead, which is drawn from the client to the sup-

03_0321927866_Ch03.indd 53 Achorn International 10/18/2013 12:12AM

ptg11539604

3.8 Actors 53

plier. In Figure 3.23, for example, the Attitude and Orbit Control Subsys-
tem block is the client, and the Data Handling interface is the supplier.
This model conveys that the block depends on the interface; if the inter-
face changes, the block may need to change, too.

Note that SysML defines specialized kinds of dependency relation-
ships (e.g., package import, viewpoint conformance, and several kinds
of requirements relationships). Although you rarely display dependen-
cies on BDDs, you often display these specialized kinds of dependen-
cies on package diagrams and requirements diagrams. I discuss these
topics in detail in Chapter 10, “Package Diagrams,” and Chapter 11,
“Requirements Diagrams.”

3.8 Actors

An actor represents someone or something that has an external inter-
face with your system. The name of an actor conveys a role played by

Figure 3.23 A dependency relationship between two named elements

03_0321927866_Ch03.indd 52 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams54

a person, an organization, or another system when it interacts with
your system.

SysML defines two notations for an actor: a stick figure and a rect-
angle with the keyword «actor» preceding the name. Figure 3.24 shows
examples of both notations. It’s legal to use either notation for any type
of actor—person or system. However, modelers often adopt the con-
vention of using the stick figure notation to represent a person and the
rectangle notation to represent a system, although the language doesn’t
require it.

You will occasionally display actors on BDDs to express the gener-
alizations between actors and the associations between actors and
blocks (as shown in Figure 3.24). It’s far more common, though, to dis-
play actors on use case diagrams, where you express which use cases
each actor participates in. I cover these topics in detail in Chapter 5,
“Use Case Diagrams.”

All the key ideas about generalizations, reference associations, and
composite associations also apply when actors are involved in these
relationships. There are two constraints:

Figure 3.24 Actors on a BDD

03_0321927866_Ch03.indd 55 Achorn International 10/18/2013 12:12AM

ptg11539604

3.9 Value Types 55

•	 You cannot define a generalization between an actor and a
block.

•	 An actor cannot have parts; that is, it cannot appear at the com-
posite end of a composite association. (We always regard an
actor as a “black box.”)

3.9 Value Types

Like a block, a value type is an element of definition—one that generally
defines a type of quantity. I say “generally” because there are two value
types in SysML—Boolean and String—that arguably are not quantities.

You can use a value type in many places throughout your model.
Most often, it appears as the type of a value property, which is a kind
of structural feature of blocks. (Section 3.4.1.3, “Value Properties,” has
more details.) But that’s not the only place where value types make an
appearance; they’re actually ubiquitous in system models. They can
also appear as the types of the following:

•	 Atomic flow ports on blocks and actors
•	 Flow properties in flow specifications
•	 Constraint parameters in constraint blocks
•	 Item flows and item properties on connectors
•	 Return types of operations
•	 Parameters of operations and receptions
•	 Object nodes, pins, and activity parameters within activities

There are three kinds of value types—primitive, structured, and
enumerated—that you typically define in your system model. A primi-
tive value type has no internal structure (it doesn’t own any value
properties). Its notation is a rectangle with the stereotype «valueType»
preceding the name.

SysML defines four primitive value types: String, Boolean, Integer,
and Real. You can, of course, define your own primitive value types as
specializations (subtypes) of these four. For example, Figure 3.25 shows
three value types (°, V, and ° C) that are subtypes of Real.

As its name implies, a structured value type has an internal struc-
ture—generally two or more value properties. As with a primitive
value type, the notation for a structured value type is a rectangle with

03_0321927866_Ch03.indd 54 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams56

the stereotype «valueType» preceding the name. SysML defines one
structured value type: Complex. Its structure consists of two value prop-
erties—realPart and imaginaryPart—that are both of type Real. One
structured value type may, in turn, be the type of a value property
within another structured value type. In this way, you can create arbi-
trarily complex systems of value types.

An enumerated value type—colloquially called an enumeration—
simply defines a set of literals (legal values). If a parameter of an opera-
tion (or some other kind of element shown in the earlier bulleted list) is
typed by an enumeration, then the value it holds at any moment must
be one of the literals in that enumeration. The BDD in Figure 3.25 shows
an enumeration named CommandKind, which defines two literals:
Stored and Real-Time. I could use this enumeration, for example, to type
an input parameter named kind in an operation named buildCommand.
When a client calls this operation (within a running system), the only
legal values it can pass are Stored and Real-Time.

I mentioned earlier that value types can be related to one another
by using generalizations. A value type hierarchy can be arbitrarily
deep, and generalizations—as you may recall—are transitive. For ex-

Figure 3.25 Value types

03_0321927866_Ch03.indd 57 Achorn International 10/18/2013 12:12AM

ptg11539604

3.10 Constraint Blocks 57

ample, Figure 3.25 conveys that the value types VDC and VAC are (in-
directly) subtypes of Real. The principle of substitutability applies here
just as it does in the case of generalizations between blocks: Values of
type VDC and VAC will be accepted wherever their supertypes (V and
Real) are required. These supertypes are abstractions. And the principle
of designing to an abstraction—and its consequent extensibility—also
applies to this practice of creating a value type hierarchy. This is a
widely used and powerful modeling practice.

3.10 Constraint Blocks

Like a block, a constraint block is an element of definition—one that
defines a Boolean constraint expression (an expression that must eval-
uate to either true or false). Most often, the constraint expression you
define in a constraint block is an equation or an inequality: a mathemat-
ical relationship that you use to constrain value properties of blocks.
You would do this for two reasons:

•	 To specify assertions about valid system values in an opera-
tional system

•	 To perform engineering analyses during the design stage of the
life cycle

The variables in a constraint expression are called constraint pa-
rameters. Generally, they represent quantities, and so they’re typed
most often by value types. For example, Figure 3.26 shows a constraint
block named Transfer Orbit Size, which defines a constraint expression
that contains three constraint parameters: semimajorAxis, initialOrbit-
Radius, and finalOrbitRadius. These three constraint parameters are
typed by the value type km.

Constraint parameters receive their values from the value prop-
erties they’re bound to—that is, the value properties that are being
constrained. At any given moment, those values either satisfy the con-
straint expression, or they don’t; the system is either operating nomi-
nally, or it isn’t. Note, however, that a BDD by itself can’t convey which
constraint parameters and value properties are bound to one another.
You would express this piece of information on a parametric diagram.
(I discuss this in detail in Chapter 9.)

The notation for a constraint block on a BDD is a rectangle with the
stereotype «constraint» preceding the name. The constraint expression

03_0321927866_Ch03.indd 56 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams58

always appears between curly brackets ({}) in the constraints compart-
ment. The constraint parameters in the constraint expression are listed
individually in the parameters compartment.

You sometimes build a more complex constraint block from a set of
simpler constraint blocks. You would do this to create a more complex
mathematical relationship from simpler equations and inequalities.
The more complex constraint block can display its constituent parts as
a list of constraint properties in the constraints compartment. Recall
from Section 3.4.1.4 that a constraint property has a name and a type in
the format name : type. The type, as mentioned earlier, must be the name
of a constraint block.

For example, Figure 3.26 shows that the constraint block Hohmann
Transfer is composed of two constraint properties—ttof and tos—which

Figure 3.26 Relationships between constraint blocks

03_0321927866_Ch03.indd 59 Achorn International 10/18/2013 12:12AM

ptg11539604

3.11 Comments 59

represent usages of the constraint blocks Transfer Time of Flight and
Transfer Orbit Size, respectively. This model conveys that Hohmann
Transfer defines a constraint expression that is a composite of two sim-
pler constraint expressions—in effect, defining a more complex math-
ematical relationship.

Note, though, what this BDD doesn’t (and can’t) convey: where
those two simpler constraint expressions are specifically connected to
each other to create the composite constraint expression. A parametric
diagram would convey this additional piece of information (more on
this in Chapter 9).

As an alternative to the constraints compartment notation, you can
use composite associations to convey that one constraint block is com-
posed of other, simpler ones (as shown in Figure 3.26). Note that the
role names shown on the part ends of the two composite associations
correspond to the names of the constraint properties in the Hohmann
Transfer constraint block. These are equivalent notations. You use com-
posite associations when you need to expose the details of the simpler
constraint blocks; in contrast, you use the constraints compartment no-
tation to hide those details when they’re not the focus of the diagram.

3.11 Comments

SysML has a lot of rules (and they all exist to serve the very useful pur-
pose of giving your design unambiguous meaning from one reader to
the next). However, you sometimes need to express information on a
diagram in an unconstrained way as a block of text. You can do this
with a comment.

A comment is, in fact, a model element. It consists of a single attri-
bute: a string of text called the body. You can convey any information
you need to in the body of a comment, and you can optionally attach a
comment to other elements on a diagram to provide additional infor-
mation about them. You can use comments on any of the nine kinds of
SysML diagrams.

The notation for a comment is commonly referred to as a note sym-
bol: a rectangle whose upper-right corner is bent. You use a dashed line
to attach a comment to other elements (as shown at the bottom of the
BDD in Figure 3.27). If you need to, you can attach a comment to sev-
eral model elements simultaneously by using a separate dashed line
for each one.

03_0321927866_Ch03.indd 58 Achorn International 10/18/2013 12:12AM

ptg11539604

 Block Definition Diagrams60

Modelers sometimes put freestanding comments with hyperlinks
on a diagram to enable readers to quickly navigate to a related diagram
in the model (or to an external document). An example of this is shown
in the upper-left corner of the BDD in Figure 3.27. To be clear, though,
this capability is a function of the modeling tool you use; not all tools
do this. And SysML itself says nothing about this capability.

SysML defines some specialized kinds of comments: rationale,
problem, and diagram description. These appear as a note symbol with
the respective stereotype preceding the body of the comment. Fig-
ure 3.27 shows an example of a diagram description comment in the
upper-right corner of the BDD. Modelers often use rationale comments
in conjunction with requirements relationships and allocations. I dis-
cuss these topics in detail in Chapters 11 and 12.

Figure 3.27 Comments on a BDD

03_0321927866_Ch03.indd 61 Achorn International 10/18/2013 12:12AM

ptg11539604

Summary 61

Summary

The BDD is the primary kind of diagram you create to communicate
structural information about a system. A BDD enables you to express
the types of structures that can exist internally within a system and
externally in a system’s environment. You can also use BDDs to express
the types of services each structure provides and requires, the types of
constraints each structure must conform to, and the types of values that
can exist within an operational system.

Generalization relationships between elements let you define type
hierarchies and design to abstractions. This is a powerful design tech-
nique—one that creates extensibility in your system design by decou-
pling the clients of services from any specific implementation of a pro-
vider of those services. As your stakeholders’ requirements evolve over
time, you can modify existing providers or add new ones with minimal
impact on the rest of the system design.

03_0321927866_Ch03.indd 60 Achorn International 10/18/2013 12:12AM

ptg11539604

This page intentionally left blank

ptg11539604

63

Chapter 4

Internal Block
Diagrams

The internal block diagram (IBD) has a close relationship to the BDD.
You can display various elements on an IBD to express aspects of a
system’s structure that complement the aspects conveyed on BDDs.
IBDs also have unique capabilities that make them an essential addi-
tion to your modeling toolbox.

4.1 Purpose

You create an IBD to specify the internal structure of a single block.
Like a BDD, an IBD is a static (structural) view of the system or one of
its parts. Unlike a BDD, an IBD does not display blocks; it displays us-
ages of blocks—that is, the part properties and reference properties of
the block that is named in the header of the IBD.

Recall from Chapter 3, “Block Definition Diagrams,” that you can
display part properties and reference properties on a BDD, too—either
as strings in a block’s compartments or as role names on the ends of
associations. But an IBD enables you to convey additional information
that you can’t convey on a BDD: the connections among part properties
and reference properties; the types of matter, energy, or data that flow
across the connections; and the services that are provided and required
across the connections.

ptg11539604

 Internal Block Diagrams64

An IBD conveys how the parts of a block must be assembled to cre-
ate a valid instance of the block. It also shows how an instance of that
block must be connected to external entities (reference properties) to
create a valid instance of the system as a whole.

This is a powerful capability. It’s important, however, to be aware
of the limitations of SysML. SysML offers no means to model the geom-
etry of your system. An IBD lets you model which parts must be con-
nected to each other, but it doesn’t let you model their shapes or the
proper spacing between them. You would have to use a (non-SysML)
computer-aided design (CAD) tool to accomplish that goal.

4.2 When Should You Create an IBD?

IBDs and BDDs provide complementary views of a block. A BDD lets
you first define a block and its properties. Then you can use an IBD to
display a valid configuration of that block—a specific set of connec-
tions among the block’s properties. Because of this close relationship,
you often create IBDs and BDDs in tandem for various stakeholders at
different points in the system life cycle.

4.3 Blocks, Revisited

I provide a sample IBD in Section 4.5, “BDDs and IBDs—Complemen-
tary Views of a Block.” Then in the remainder of the chapter, I discuss
in detail the kinds of elements and notations that can appear on an IBD.
Before I do that, though, let’s revisit the subject of blocks.

Recall that blocks serve as types for the model elements that appear
on IBDs. Blocks, however, cannot appear on IBDs; they appear on
BDDs. Therefore, I begin by showing you a BDD that displays the sub-
set of blocks used to create the IBD in Section 4.5. The BDD in Figure 4.1
is an excerpt of the larger BDD in Figure 3.1, which appeared at the
beginning of Chapter 3. Note the names of the blocks and the relation-
ships among them; you will see the names of these blocks again in the
IBD in Figure 4.2.

The key point: A BDD and an IBD provide complementary views of
a block.

04_0321927866_Ch04.indd 65 Achorn International 10/18/2013 12:15AM

ptg11539604

4.4 The IBD Frame 65

4.4 The IBD Frame

The diagram kind abbreviation for an internal block diagram is ibd. The
only allowable model element type for an IBD is block. The frame of an
IBD always represents a block that you’ve defined somewhere in your
system model. Inside the frame, you can display that block’s part prop-
erties and reference properties and the connectors that join them.

The name of the IBD in Figure 4.2 is “Flow-Oriented View.” This
IBD represents the Communication and Data Handling Subsystem block in
the system model. That block, therefore, is the owner of the part prop-
erties and reference properties that appear on the diagram.

Figure 4.1 The blocks necessary for an IBD of the Communication and Data
Handling Subsystem block

04_0321927866_Ch04.indd 64 Achorn International 10/18/2013 12:15AM

ptg11539604

 Internal Block Diagrams66

4.5 BDDs and IBDs: Complementary
Views of a Block

The BDD in Figure 4.1 conveys that the Communication and Data Han-
dling Subsystem block has seven part properties: demod, rx, ant, primary-
Computer, backupComputer, mod, and tx. It has one reference property:
eps. These same eight properties appear on the IBD in Figure 4.2; the

Figure 4.2 A sample internal block diagram (IBD)

04_0321927866_Ch04.indd 67 Achorn International 10/18/2013 12:15AM

ptg11539604

4.7 Reference Properties 67

names, types, and multiplicities of these eight properties correspond
between the two diagrams. Simply put, these diagrams present consis-
tent and complementary views of the Communication and Data Handling
Subsystem block.

The IBD in Figure 4.2 provides much of the same information as the
BDD in Figure 4.1, but it provides some additional information that the
BDD cannot: the specific connections among the internal part proper-
ties and their connections to the external reference property, eps. You
use connectors between properties to convey that assembly.

In addition to the connectors between properties, IBDs can convey
the items that flow among the properties and the services that proper-
ties invoke on one another across those connectors. You’ll see each
piece of this IBD in detail in the sections that follow.

4.6 Part Properties

A part property on an IBD has the same meaning as a part property in
the parts compartment of a block on a BDD: It represents a structure
that’s internal to the block named in the IBD header—a structure that
the block is composed of. The notation for a part property on an IBD is
a rectangle with a solid border. The name string that appears inside the
rectangle has the same format as the string that appears in the parts
compartment of a block on a BDD:

<part name> : <type> [<multiplicity>]

You can optionally display a part property’s multiplicity in the
upper-right corner of the rectangle instead of at the end of the name
string in square brackets. I show examples of both notations in Fig-
ure 4.2 for instructional purposes. However, I recommend using one
notation consistently on the diagrams you create in your daily practice.

4.7 Reference Properties

A reference property on an IBD has the same meaning as a reference
property in the references compartment of a block on a BDD: It repre-
sents a structure that’s external to the block named in the IBD header—
a structure that the block needs for some purpose, either to invoke be-
haviors or to exchange matter, energy, or data. The notation for a

04_0321927866_Ch04.indd 66 Achorn International 10/18/2013 12:15AM

ptg11539604

 Internal Block Diagrams68

reference property on an IBD is a rectangle with a dashed border. The
name string that appears inside the rectangle has the same format as
the string that appears in the references compartment of a block on a
BDD:

<reference name> : <type> [<multiplicity>]

As with a part property, you can optionally display a reference
property’s multiplicity in the upper-right corner of the rectangle.

4.8 Connectors

A connector between two properties on an IBD conveys that the two
structures will have some way to access each other within a correctly
assembled and operational system. You can optionally specify a name
and type for a connector to convey additional information about the
medium that connects those two structures. The format for that name
string is as follows:

<connector name> : <type>

The connector name is optional and modeler defined. The type is
also optional, but if you choose to specify one, it must be the name of
an association you’ve created between two blocks somewhere in your
system model. That association must relate the same two blocks that
type the two properties at the ends of the connector.

The IBD in Figure 4.3 conveys that the flight computer (which is a
part of the communication and data handling subsystem) is connected
to the electrical power subsystem (which is a reference with respect to

Figure 4.3 A connector with a name and type

04_0321927866_Ch04.indd 69 Achorn International 10/18/2013 12:15AM

ptg11539604

4.8 Connectors 69

the communication and data handling subsystem). The name of the
connector is pcPower; its type is Power Cable. Specifying the name and
type conveys additional information about the nature of the connection
between these two structures. The type, Power Cable, corresponds to the
name of the association between the Electrical Power Subsystem block
and the Flight Computer block, as shown earlier on the BDD in Fig-
ure 4.1.

The two connected properties can be part properties, reference
properties, or one of each. If the two connected properties have com-
patible ports—standard ports or flow ports—you can optionally attach
the connector to those ports instead of to the properties directly. Doing
so would convey that those properties are connected at specific points
of interaction on their boundaries.

If you connect two properties via flow ports, you can convey the
types of matter, energy, or data that can flow between the properties
through those ports. In Figure 4.4, for example, the connector joins the
eps reference property to the primaryComputer part property via non-
atomic flow ports on their boundaries. These nonatomic flow ports are
compatible, because they are typed by the same flow specification,
Housekeeping Data, and one of the two ports, dataOut, is conjugated (as
conveyed by the tilde [~] preceding its type). Recall from Chapter 3
that conjugated means the directions of the flow properties in the flow
specification are reversed for that port.

If you connect two properties via standard ports, you can convey the
services that each one provides and requires of the other at those ports.
In Figure 4.5, for example, the connector joins the eps part property to
the cdhs part property via standard ports on their boundaries. This IBD
conveys that the electrical power subsystem provides the Power Genera-
tion interface and requires the Status Reporting interface. Reciprocally,

Figure 4.4 A connector joining two properties via flow ports

04_0321927866_Ch04.indd 68 Achorn International 10/18/2013 12:15AM

ptg11539604

 Internal Block Diagrams70

the communication and data handling subsystem provides the Status
Reporting interface and requires the Power Generation interface. These
standard ports are compatible, enabling these structures to exchange
services across this connector during system operation.

You can also display ports on the frame of an IBD. Such ports rep-
resent points of interaction on the boundary of the block that the IBD
represents—the one named in the diagram header. To convey that an
internal part of a composite block is connected to the composite via
some point of interaction at its boundary, you can connect a port on the
frame to a port on a part property. This design conveys that an instance
of the composite structure can pass requests for behaviors and item
flows either from external clients to that internal part or from that inter-
nal part to external providers.

The IBD in Figure 4.6 shows that the eps part property (of the
DellSat-77 Satellite block) is connected to the boundary of that block via
the solarPanel standard ports. This diagram also shows that these stan-
dard ports have a required interface, Light Source. This model conveys
that the satellite’s electrical power subsystem requires a light source,

Figure 4.5 A connector joining two properties via standard ports

Figure 4.6 An IBD with a port on the frame

04_0321927866_Ch04.indd 71 Achorn International 10/18/2013 12:15AM

ptg11539604

4.9 Item Flows 71

which it will access from the satellite’s external environment via two
solar panels on the satellite’s boundary.

4.9 Item Flows

An item flow represents a type of matter, energy, or data that flows
between two structures within a system. The notation for an item flow
on an IBD is a filled-in triangular arrowhead on a connector that joins
two flow ports (see Figure 4.7). The type that the item flow represents
appears in a label near the arrowhead on the connector; the label must
contain the name of a block, value type, or signal that exists somewhere
in the system model.

The type that an item flow represents must be compatible with the
types of the flow ports at either end of the connector. If the flow ports
at the ends are atomic flow ports, then the types of those ports are often
identical to the type of the item flow on the connector. If the flow ports
at the ends are instead nonatomic flow ports, then they will be typed by
a flow specification. The flow specification must contain a flow prop-
erty whose type and direction match the item flow on the connector.

The IBD in Figure 4.7 is substantially similar to the one in Fig-
ure 4.4. This one, however, conveys an additional piece of information:
an item flow that represents a ° C value flowing along the connector
between the two nonatomic flow ports from the eps reference property
to the primaryComputer part property. This item flow is compatible with
these nonatomic flow ports, because the Housekeeping Data flow speci-
fication does, in fact, have a flow property of type ° C with a matching
direction. (If you’re skeptical, take a look at Figure 3.12 in Chapter 3.)

Figure 4.7 An item flow on a connector

04_0321927866_Ch04.indd 70 Achorn International 10/18/2013 12:15AM

ptg11539604

 Internal Block Diagrams72

4.10 Nested Parts and References

IBDs offer a powerful capability: displaying properties that are nested
within other properties. Nesting enables you to convey multiple levels
of the system hierarchy in a single view. This is necessary when your
target audience needs to see the connections among nested parts. (I
recommend you exercise this power judiciously, though; an IBD can
quickly become unreadable.)

Figure 4.8 provides a sample IBD with nested properties. In this
diagram, I’ve chosen to focus on the services that the part properties
provide to one other. To show that, the IBD displays their standard
ports and the interfaces assigned to those ports. This diagram shifts the
focus to a different aspect of the system design from the one expressed
in Figure 4.2, which displays flow ports to convey the types of things
that flow among the properties.

Note
You can display standard ports as well as flow ports on the same IBD. My
preference, though, is to focus on these two aspects of the system in separate
diagrams.

The IBD in Figure 4.8 shows that the DellSat-77 Satellite block owns
a part property named cdhs of type Communication and Data Handling
Subsystem. The cdhs part property, in turn, owns part properties named
primaryComputer and backupComputer.

This view of the model is consistent with the view shown in Fig-
ure 4.2. That IBD represents the Communication and Data Handling Sub-
system block and displays all of its properties. In contrast, the IBD in
Figure 4.8 omits several of the parts of cdhs that are not the focus of this
diagram (ant, tx, rx, mod, and demod). The two parts that are displayed,
however, are consistent with the information conveyed in Figure 4.2.

4.10.1 Dot Notation

SysML imposes no limit on how deeply you can nest properties on an
IBD. The only limits are the dimensions of your canvas and the read-
ability of the diagram. Nesting properties within properties takes up a lot
of real estate on the diagram. SysML offers an alternative notation for
conveying nested properties that overcomes this space constraint prob-

04_0321927866_Ch04.indd 73 Achorn International 10/18/2013 12:15AM

ptg11539604

4.10 Nested Parts and References 73

lem: dot notation. Dot notation enables you to express a structural hier-
archy compactly in the form of a text string. An example is shown in the
property at the top of the IBD in Figure 4.8. The string sensorPayload.x-
axisSS : Star Sensor conveys several pieces of information:

•	 The DellSat-77 Satellite block owns a part property named sensor-
Payload.

•	 The part property sensorPayload, in turn, owns a property named
x-axisSS.

•	 The property x-axisSS is typed by the block named Star Sensor.
•	 The multiplicity of x-axisSS is 1..1 (the default, because no mul-

tiplicity is shown).

Figure 4.8 An IBD with nested properties

04_0321927866_Ch04.indd 72 Achorn International 10/18/2013 12:15AM

ptg11539604

 Internal Block Diagrams74

Just as nesting can be arbitrarily deep, the dot notation string can be
arbitrarily long. This is a very efficient notation for conveying a lot of
information about the hierarchy of the system and the connections be-
tween parts at different levels.

But dot notation does have some drawbacks (in comparison with
nesting). The string sensorPayload.x-axisSS : Star Sensor does not convey
the following pieces of information:

•	 The name of the block that types the part property sensorPayload
•	 The multiplicity of the part property sensorPayload

If your target audience needs to see the type and multiplicity of
each property at every level in the hierarchy, then you should use the
nesting notation instead of dot notation.

4.10.2 Connecting Nested Properties

When you need to attach a connector to a nested property, you have
two options: draw the connector across the boundary that encapsulates
the nested property or stop at a port on that boundary and draw a sec-
ond connector from that port to the nested property. Examples of both
are shown in Figure 4.8.

To show the connections between the electrical power subsystem
and the flight computers, I first created a connector from a standard
port on the eps boundary to a standard port on the cdhs boundary. I
then created connectors from the standard port on the cdhs boundary to
the two nested part properties. In contrast, I showed the connections
between the star sensor and the flight computers by creating connec-
tors directly from the x-axisSS property to the nested primaryComputer
and backupComputer properties, crossing the cdhs boundary in the
process.

The decision to draw connectors across boundaries or stop at ports
on the boundaries is a matter of judgment and should be based on
knowledge of design principles. As mentioned in Chapter 3, ports let
you specify blocks in a modular way, presenting an interface to a client
that hides the internal implementation of a block. This is the object-
oriented principle of encapsulation. And it’s a good principle to adopt
as your default mode of design.

When you draw a connector across a boundary, you’re violating
the principle of encapsulation. There are good reasons for doing this
(such as satisfying performance constraints in a hard real-time embed-
ded system), but those cases should be the exception rather than the

04_0321927866_Ch04.indd 75 Achorn International 10/18/2013 12:15AM

ptg11539604

Summary 75

rule. When you violate the principle of encapsulation, do it knowingly,
and document your rationale in the model.

Summary

An IBD conveys an important aspect of a system’s structure: the spe-
cific parts that will exist in a built system and the connections among
those parts. This aspect of a system’s design strongly complements the
information you can convey on a BDD, and you often create these two
kinds of diagrams in tandem.

An IBD has the unique ability to convey the services that specific
parts provide to one another and the types of matter, energy, and data
that can flow among them across their connections. This aspect of a
system’s structure is universally valued among system stakeholders.

04_0321927866_Ch04.indd 74 Achorn International 10/18/2013 12:15AM

ptg11539604

This page intentionally left blank

ptg11539604

77

Chapter 5

Use Case Diagrams

Specifying system use cases is a common design activity for systems
engineering teams. The SysML use case diagram supports this activity.
Use case diagrams let you display various kinds of elements and rela-
tionships to express information about the services your system pro-
vides and the stakeholders who require those services.

5.1 Purpose

A use case diagram concisely conveys a set of use cases—the externally
visible services that a system provides—as well as the actors that in-
voke and participate in those use cases. A use case diagram is a black-
box view of the system; it is therefore well suited to serve as a system
context diagram.

5.2 When Should You Create a Use Case Diagram?

A use case diagram is an analysis tool and is generally created early in
the system life cycle. System analysts may enumerate use cases and
create use case diagrams during the development of the system con-
cept of operations (ConOps). In some methodologies, analysts create
use cases in lieu of text-based functional requirements during the re-
quirements elicitation and specification stage of the system life cycle.
System architects later analyze system-level use cases to derive and

ptg11539604

 Use Case Diagrams78

allocate subsystem- and component-level use cases during the architec-
tural design stage.

5.3 Wait! What’s a Use Case?

Before I discuss use case diagrams in detail, it’s important for you to
have a clear understanding of use cases. To jump-start this discussion, I
defer to several highly authoritative sources.

In The Unified Modeling Language Reference Manual, second edition,
James Rumbaugh, Ivar Jacobson, and Grady Booch define a use case as
a “specification of sequences of actions, including variant sequences
and error sequences, that a system, subsystem, or class can perform by
interacting with outside objects to provide a service of value.”

In Writing Effective Use Cases, p. 1, Alistair Cockburn explains it this
way:

A use case captures a contract between the stakeholders of a system
about its behavior. The use case describes the system’s behavior under
various conditions as it responds to a request from one of the stake-
holders, called the primary actor. The primary actor initiates an interac-
tion with the system to accomplish some goal. The system responds,
protecting the interests of all the stakeholders. Different sequences of
behavior, or scenarios, can unfold, depending on the particular re-
quests made and the conditions surrounding the requests. The use
case gathers those different scenarios together.

Here are the key ideas to keep in mind when you’re enumerating
your system’s use cases:

•	 A use case is a service—a behavior—that your system will per-
form. The use case name, therefore, is always a verb phrase
(such as Send command).

•	 Not every behavior your system performs is a use case. Rather,
use cases are the subset of system behaviors that external actors
can directly invoke or participate in.

•	 An actor can be a person or an external system that interfaces
with your system.

•	 The actors that invoke a use case are called primary actors. The
actors that participate in the use case are called secondary ac-
tors. A primary actor can also be a secondary actor.

•	 Each use case should represent a primary actor’s goal. Write the
use case name—the verb phrase—from the perspective of the

05_0321927866_Ch05.indd 79 Achorn International 10/18/2013 12:17AM

ptg11539604

5.3 Wait! What’s a Use Case? 79

actor and not your system. For example, if a satellite flight con-
troller needs to send a command, then name the use case Send
command and not Receive command.

•	 The use case name does not convey a lot of information. You
will create a use case specification for each use case to narrate
how your system and its actors collaborate to achieve the use
case goal.

5.3.1 Use Case Specifications

The use case specification conveys the narrative that unfolds when a
primary actor invokes the use case. Traditionally, use case specifica-
tions have been text documents. Alistair Cockburn offers an excellent
use case specification format in his book Writing Effective Use Cases:

•	 Use case name: a verb phrase
•	 Scope: the entity that owns (provides) the use case (for example,

the name of an organization, system, subsystem, or component)
•	 Primary actor: the actor that invokes the use case (the actor

whose goal the use case represents)
•	 Supporting (secondary) actors: actors that provide a service to

the system (participate in the use case by performing actions)
•	 Stakeholder: someone or something with a vested interest in

the behavior of the system
•	 Preconditions: the conditions that must be true for this use case

to begin
•	 Guarantees (postconditions): the conditions that must be true

at the end of the use case
•	 Trigger: the event that gets the use case started
•	 Main success scenario: the scenario (the sequence of steps) in

which nothing goes wrong
•	 Extensions (alternative branches): alternative sequences of

steps branching off of the main success scenario
•	 Related information: whatever your project needs for addi-

tional information

You can also create graphical use case specifications using SysML
activity diagrams. Activity diagrams tend to be more concise and less
ambiguous than the traditional text form of a use case specification.
With that said, many modelers make the mistake of jumping right into

05_0321927866_Ch05.indd 78 Achorn International 10/18/2013 12:17AM

ptg11539604

 Use Case Diagrams80

a modeling tool to create the activity diagram while brainstorming the
use case narrative. This practice tends to stifle creativity. You need to
focus first on the narrative; write a good story that clearly and correctly
conveys how actors will interface with your system when it executes
the use case. Once you begin creating an activity diagram, you will
spend much of your time and energy on the layout of the activity dia-
gram, and that will detract from your ability to tell a clear and correct
story. I always advise the designers on my team to capture the narra-
tive in text form first (using the template shown above), refine the nar-
rative with the stakeholders, and then jump to the modeling tool to ex-
press the narrative visually on an activity diagram. (Read more on
activity diagrams in Chapter 6, “Activity Diagrams.”)

Be forewarned: It’s typical, on the first try, to create use cases that
are too broad and too high level. If you do that, you’ll discover the
problem when you try to write the use case specification. The narrative
will have many decision points and many paths of execution that you
regard as nominal (success) scenarios. Consider this a red flag. You
need to refine each use case either by using more precise verbs or by
including qualifiers in the predicate to create a set of more finely grained
use cases. For example, the narrative for Send command will likely be
too broad, because it encompasses several different ways to generate
the command and multiple channels for transmission, all of which are
simply variations of success scenarios. You could refine that use case to
create the following set of use cases:

•	 Send real-time command via uplink
•	 Send real-time command via forward link
•	 Send stored command via uplink
•	 Send stored command via forward link

You will know that a use case is at an appropriate level of granular-
ity when it has exactly one main success scenario. All other paths of
execution through the use case specification should be error or excep-
tion sequences.

5.3.2 Use Cases versus Scenarios

Use case and scenario are not synonyms. Each path of execution through
a use case from beginning to end is a distinct scenario. A use case there-
fore consists of one or more scenarios. At a minimum, a use case con-
sists of a main success scenario—the nominal path of execution. Often

05_0321927866_Ch05.indd 81 Achorn International 10/18/2013 12:17AM

ptg11539604

5.4 The Use Case Diagram Frame 81

it also contains additional scenarios representing error and exception
sequences, which branch off of the main success scenario.

A SysML sequence diagram is well suited to graphically represent
a single scenario. A common technique is to dissect a single use case
specification—either a text specification or an activity diagram—to cre-
ate a set of sequence diagrams, one per scenario. Those sequence dia-
grams can then pull double duty as test cases if you take the additional
step of specifying values for the inputs and the expected outputs (more
on sequence diagrams in Chapter 7, “Sequence Diagrams”).

5.4 The Use Case Diagram Frame

The diagram kind abbreviation for a use case diagram is uc. The model
element type that the diagram frame represents can be any of the
following:

•	 package
•	 model
•	 modelLibrary
•	 view

The name of the use case diagram in Figure 5.1 is “System Use
Cases.” The diagram header also tells us that this diagram represents
the Behavior package in the system model. The Behavior package, there-
fore, is the namespace for the use cases shown on the diagram. That is
equivalent to saying that the Behavior package contains the use cases
shown on the diagram.

Of course, I could have organized this model differently. I could
have chosen to segregate the system’s use cases into separate packages
with names that correspond to the stages of the mission life cycle: a
Manufacturing Use Cases package, a Launch Use Cases package, and an
Operations Use Cases package. In that case, I would have created a sepa-
rate use case diagram for each of the packages and changed the model
element name in the header for each one accordingly. I also would have
given each diagram a unique name to convey which aspect of the model
was in focus.

I say all this simply to point out that there are many ways to orga-
nize your model. The key idea is that the organization of your model
generally affects what appears in the header and the contents area of
each diagram you create.

05_0321927866_Ch05.indd 80 Achorn International 10/18/2013 12:17AM

ptg11539604

 Use Case Diagrams82

5.5 Use Cases

The notation for a use case is an ellipse (oval). You can display the name
of a use case—generally, a verb phrase—either inside or beneath the
ellipse. (Putting the name inside the ellipse is much more common.)

As with a block, a use case can be generalized and specialized, and
this means that you can create and display generalization relationships
from one use case to another. A generalization means here exactly what
it means in the context of blocks: inheritance. As mentioned in Chap-
ter 3, “Block Definition Diagrams,” you read this relationship in En-
glish as “is a type of.” The notation for a generalization is the same as
in Chapter 3: a solid line with a hollow, triangular arrowhead on the
end of the generalized element, the supertype. The specialized element,
the subtype, appears at the tail end of the line.

Figure 5.1 A sample use case diagram

05_0321927866_Ch05.indd 83 Achorn International 10/18/2013 12:17AM

ptg11539604

5.7 Actors 83

Figure 5.1 displays a generalization from the Send stored command
use case to the Send command use case. The Send stored command use case
is a subtype of the Send command use case. The same is true of the Send
real-time command use case. These two subtypes inherit everything the
supertype has, including its relationships with other use cases and with
actors as well as any behaviors (activities, interactions, or state ma-
chines) that may be associated with it. The subtypes may optionally
redefine what they inherit with more specific definitions or add new
relationships and behaviors that the supertype doesn’t have.

5.6 System Boundary

The system boundary (also called the subject) represents the system
that owns and performs the use cases on the diagram. The notation for
the system boundary is a rectangle that encloses the use cases (not to be
confused with the diagram frame). The name of the subject—shown at
the top inside the rectangle—must always be a noun phrase. In Fig-
ure 5.1, shown earlier, the system boundary is DellSat-77 Satellite.

During ConOps development, the name of the system boundary
will be the name of the system you’re designing. At that stage, your
goal is to represent the system as a black box and specify the services it
will provide to the actors in its environment.

Later, during architectural design, you will structurally decompose
the system into subsystems (possibly) and components (definitely). At
that stage, you will create new use case diagrams for each subsystem
and eventually for each component. When you do, the name of the
system boundary will be the name of the subsystem or component
you’re working on. (And if it bothers you to refer to it as the “system”
boundary at that point, feel free to call it the “subject” instead.)

5.7 Actors

As discussed in Section 3.8, “Actors,” there are two notations for an
actor: (1) a stick figure or (2) a rectangle with the keyword «actor» pre-
ceding the name. I use both notations in Figure 5.1. Recall that either
notation is legal for any type of actor—a person or a system. However,
modelers typically adopt the convention of using the stick figure

05_0321927866_Ch05.indd 82 Achorn International 10/18/2013 12:17AM

ptg11539604

 Use Case Diagrams84

notation to represent a person and the rectangle notation to represent
a system.

As with a BDD, you can display generalizations among actors on a
use case diagram. As before, it means that a subtype (at the tail end)
inherits all the structural and behavioral features of its supertype (at
the triangular arrowhead end). If the supertype has an association with
a use case, then the subtype also inherits that association and has access
to that use case.

5.8 Associating Actors with Use Cases

You would show that an actor interacts with your system to invoke or
participate in a use case by creating an association between the actor
and the use case. I discuss associations in detail in Chapter 3. They
mean the same thing on use case diagrams: A link could exist between
instances of the associated elements during system operation; an in-
stance of an actor may invoke or participate in an instance of a use case
(i.e., an execution of a use case).

Recall that multiplicity represents a constraint on how many in-
stances can be involved in a relationship at any given time. Figure 5.2
shows a multiplicity of 1..* on the Ground Station Radar end of an asso-
ciation and a multiplicity of 1..2 on the Radar Operator end of an asso-
ciation. This conveys that a single execution of the Track satellite trajec-
tory use case can involve one or more ground station radar units and
either one or two radar operators.

This figure also shows a multiplicity of 0..* on the use case end of
the two associations. This conveys that any particular radar operator or
ground station radar unit may be involved in zero or more executions
of Track satellite trajectory at any given moment.

Be careful to avoid the following illegal things with associations on
use case diagrams:

•	 You cannot create a composite association between an actor and
a use case.

•	 You cannot create an association (of any kind) between two
actors.

•	 You cannot create an association (of any kind) between two use
cases.

05_0321927866_Ch05.indd 85 Achorn International 10/18/2013 12:17AM

ptg11539604

5.10 Included Use Cases 85

5.9 Base Use Cases

A base use case is any use case that is connected to a primary actor via
an association relationship. This means that a base use case is one that
represents a primary actor’s goal.

Four base use cases are shown in Figure 5.1: Generate electricity from
solar panels, Execute Hohmann transfer, Point infrared sensor at target, and
Get payload health and status. The other three use cases are included use
cases, as discussed in the next section.

5.10 Included Use Cases

An included use case is any use case that is the target—the element at
the arrowhead end—of an include relationship. The notation for an
include relationship is a dashed line with an open arrowhead and the
keyword «include» floating next to it. In Figure 5.1, the Send command
use case is an example of an included use case.

Despite the similarity in the notations for an include relationship
and a dependency relationship, an include relationship is not a kind of
dependency; the client–supplier semantics of a dependency do not
apply here. The include relationship instead conveys that when the use
case at the source end—the tail end of the relationship—gets invoked,
the included use case at the target end is also executed. Stated differ-
ently, the included use case behavior is a required part of the use case
at the source end.

Figure 5.2 Associations with multiplicity specified

05_0321927866_Ch05.indd 84 Achorn International 10/18/2013 12:17AM

ptg11539604

 Use Case Diagrams86

For example, when an actor invokes either Execute Hohmann trans-
fer, Point infrared sensor at target, or Get payload health and status, the Send
command use case (or one of its subtypes) will also be executed.

The include relationship unfortunately does not convey where the
included behavior is executed within the source use case—beginning,
middle, or end—only that it is executed. To determine where the in-
cluded use case occurs in the sequence, a reader would have to look at
the text description, activity diagram, or sequence diagram associated
with the source use case.

You can use the include relationship only from one use case to an-
other. It is generally drawn from a base use case—a use case associated
with a primary actor—to an included use case.

Note
It is legal to draw an include relationship from one included use case to an-
other (thus creating a chain of included use cases), but it’s best to avoid this
practice. I’ve seen beginning modelers create unreadable use case diagrams in
the process.

You should create an included use case only when you want to rep-
resent a common chunk of behavior that you’ve factored out of several
base use cases. Many beginning modelers make the mistake of using
include relationships gratuitously to show a functional decomposition
of a single base use case. That is not the intended purpose of the in-
clude relationship.

As a rule, I don’t create included use cases in my first iteration on a
use case model. I begin by brainstorming the base use cases, which
represent the primary actors’ goals. Then, with input from the system
stakeholders, I begin writing the text narratives for those use cases. A
pattern then begins to emerge. I will notice that several base use cases
perform a common step (or steps); that is when I factor out that chunk
of common behavior and represent it as an included use case.

One last pitfall to avoid: Never create an association relationship
between a primary actor and an included use case. A primary actor
should be associated only with the base use cases that represent its
goals. For example, the flight controller’s goal is to execute a Hohmann
transfer and not to send a command. Sending a command is simply a
necessary step along the way to accomplishing the actor’s goal.

05_0321927866_Ch05.indd 87 Achorn International 10/18/2013 12:17AM

ptg11539604

5.11 Extending Use Cases 87

5.11 Extending Use Cases

An extending use case is any use case that is the source—the element
at the tail end—of an extend relationship. The notation for an extend
relationship is a dashed line with an open arrowhead and the keyword
«extend» floating next to it. In Figure 5.3, the Switch to TDRS telemetry
feed use case is an example of an extending use case.

Like an include relationship, an extend relationship is not a kind of
dependency, despite the similarity in their notations. Rather, the extend
relationship conveys that when the use case at the target end—the ar-
rowhead end of the relationship—gets invoked, the extending use case
at the source end may optionally be executed, too. This means that the
use case at the target end of the extend relationship is complete by
itself.

For example, each time a radar operator invokes the Track satellite
trajectory use case, the Switch to TDRS telemetry feed use case may also
be executed—or it may not; execution of that extending use case de-
pends on whether some triggering condition in the Track satellite trajec-
tory use case is satisfied.

You can specify that triggering condition in a comment anchored to
the extend relationship. In most cases, though, I prefer to specify the

Figure 5.3 An extending use case

05_0321927866_Ch05.indd 86 Achorn International 10/18/2013 12:17AM

ptg11539604

 Use Case Diagrams88

triggering condition in the activity diagram that I create for the target
use case rather than clutter the use case diagram itself.

You can also specify the extension point where the extending use
case branches off within the behavior of the target use case. That exten-
sion point is named in a compartment of the target use case.

My advice, though, is to do this sparingly. I generally like to keep
my use case diagrams as clean as possible and specify all the details of
the extending use case (the extension point and the triggering condi-
tion) on the activity diagram associated with the target use case. The
activity diagram will contain a decision node that corresponds to the
extension point. The extending use case behavior branches off from
that decision node.

In the preceding section, I state that I never create included use
cases in my first iteration on a use case model. The same is true about
extending use cases. As mentioned, I begin by writing the text specifi-
cations for the base use cases. When I notice that several base use cases
contain the same optional behavior, I factor out that chunk of common
behavior and represent it as an extending use case.

Summary

A use case diagram presents a black-box view of the services that a
system provides and the actors who require those services and partici-
pate in their execution after they’re invoked. For this reason, modelers
often create use case diagrams to serve as system context diagrams—a
view of the system that stakeholders expect early in the life cycle.

A use case diagram lets you display the generalizations among ac-
tors and among use cases—a technique for designing to behavioral ab-
stractions. You can also display the include relationships and extend
relationships among use cases—a technique for factoring out behaviors
that several higher-level services have in common.

ptg11539604

89

Chapter 6

Activity Diagrams

Activity diagrams are one of three kinds of SysML diagrams that you
can use to express information about a system’s dynamic behavior. An
activity diagram can display various kinds of actions, enabling you to
convey even the most complex behavioral narratives. Object nodes let
you model the flow of matter, energy, and data through an activity,
and you can use control nodes to steer the execution of an activity. Ac
tivity partitions enable you to allocate system behaviors to system
structures.

6.1 Purpose

An activity diagram is a kind of behavior diagram; it’s a dynamic
view of the system that expresses sequences of behaviors and event
occurrences over time. This is in contrast to structure diagrams (BDDs,
IBDs, and parametric diagrams), which are static views that convey no
sense of the passage of time or change within the system and its
environment.

Activity diagrams, sequence diagrams, and state machine diagrams
are the three options that SysML offers you to specify system behavior.
All three can express sequential and concurrent behaviors and event
occurrences over time. However, each one has strengths and weak
nesses that make it more or less appropriate based on the needs of your
target audience.

ptg11539604

 Activity Diagrams90

An activity diagram is particularly good at expressing the flow of
objects—matter, energy, or data—through a behavior, with a focus on
how the objects can be accessed and modified in an execution of that
behavior during system operation. One of its key advantages is its read
ability; activity diagrams can express complex control logic better than
sequence diagrams and state machine diagrams. And activity diagrams
are uniquely capable of expressing continuous system behaviors.

Activity diagrams do have a disadvantage: moderate ambiguity.
Activity diagrams express the order in which actions are performed,
and they can optionally express which structure performs each action.
They do not, however, offer any mechanism to express which structure
invokes each action. (Sequence diagrams, in contrast, can express all
three pieces of information.)

For these reasons, modelers typically use activity diagrams as analy
sis tools when working with stakeholders to define the problem space
and specify the required behavior of the system. Activity diagrams are
not particularly useful tools for detailed design—that is, unambiguous
specifications of behavior suitable for system implementation.

6.2 When Should You Create an Activity Diagram?

Because an activity diagram is most effective as an analysis tool, it often
is the first kind of behavior diagram you turn to when you need to
communicate with stakeholders and capture the expected behaviors of
the system and its actors. You also use activity diagrams to communi
cate with other members of your team and capture the expected behav
iors of the system’s internal parts. In short, creation of activity diagrams
is not tied to any particular stage of the system life cycle.

Some modeling methodologies prescribe that you create activity
diagrams to serve as graphical use case specifications (either instead of
or in addition to the text specifications discussed in Chapter 5, “Use
Case Diagrams”). If you adopt this practice, you will create activity dia
grams whenever you add new use cases to your system model.

6.3 The Activity Diagram Frame

The diagram kind abbreviation for an activity diagram is act. The only
allowable model element type for an activity diagram is activity. The

06_0321927866_Ch06.indd 91 Achorn International 10/18/2013 12:18AM

ptg11539604

6.3 The Activity Diagram Frame 91

Figure 6.1 A sample activity diagram

06_0321927866_Ch06.indd 90 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams92

frame of an activity diagram always represents a single activity that
you’ve defined somewhere in your system model.

An activity is itself a model element; it’s a kind of behavior. It’s also
a kind of namespace, like a block and a package. It can therefore con
tain a set of named elements—nodes and edges—within the model hi
erarchy. You can display those contained elements within the frame of
the associated activity diagram.

Please be aware that activity and activity diagram are not synonyms.
When I use the term activity, I’m referring to a model element and not
its associated diagram. Remember from Chapter 2 the fundamental
precept of modelbased engineering: A diagram of the model is never
the model itself; it is merely one view of the model. It’s entirely permis
sible to define an activity in your system model without displaying it
on an activity diagram. Most often, though, you will display it.

The diagram header in Figure 6.1 tells us that the frame of this ac
tivity diagram represents the activity named Execute Hohmann Transfer,
which exists somewhere in the model hierarchy. The name of this dia
gram is “Use Case Specification.” This name conveys the purpose of
this diagram: to serve as a graphical specification for the use case of the
same name.

Note
Typically, modeling tools nest an activity under its associated use case in the
model hierarchy when the activity serves as the specification for that use case.
SysML itself, however, does not require you to organize your model in this way.

6.4 A Word about Token Flow

Throughout this chapter, I use the term token, because activities are
based on the concept of token flow. And the rules for the various kinds
of nodes and edges in an activity are stated in terms of token flow.

Token flow is an abstract concept. Tokens are not model elements.
You don’t create them in your system model, and you don’t display
them on activity diagrams. The idea of tokens is inherent in the mean
ing that SysML defines for activities, nodes, and edges. You must rely
on your imagination to envision the flow of tokens through an activity
based on the rules for each kind of node and edge.

06_0321927866_Ch06.indd 93 Achorn International 10/18/2013 12:18AM

ptg11539604

6.5 Actions: The Basics 93

I find it helpful to think of a token as a Monopoly game piece mov
ing across the activity diagram, traversing edges from one node to the
next. There can be multiple tokens flowing through a single execution
of an activity. Each token moves independently of the others based on
the type and state of the token itself, the actions and control logic that
define the activity, and any events that occur during an execution of the
activity. (All this will become clearer in the sections that follow. I
promise.)

What does a token represent? The answer comes in two parts. First,
there are two kinds of tokens: object tokens and control tokens. I’ll start
with the easier one.

An object token represents an instance of matter, energy, or data
that flows through an activity. It can represent an input or an output of
the activity as a whole, and it can represent an input or an output of an
action within the activity. Formally, an object token represents an in
stance of a block, value type, or signal that you’ve created somewhere
in your model hierarchy (to define a type of matter, energy, or data). As
you might expect, there can be multiple object tokens flowing through
a single execution of an activity.

A control token represents . . . nothing. Nothing physical, that is. It
has no type (block, value type, or signal). A control token simply indi
cates which action in an activity is currently enabled at a particular
moment during an execution of the activity. Potentially, there could be
multiple control tokens flowing through a single execution of an activ
ity. If so, it simply means that multiple actions in the activity are en
abled concurrently.

I know that this is rather abstract stuff at this point, but with this
foundation in place at the beginning, you’ll be able to make better sense
of the explanations and examples that follow in this chapter. As I dis
cuss each kind of element that can appear on an activity diagram, I ex
plain the rules for that element in terms of token flow. And there are a
lot of rules; it may seem overwhelming at first. But as you practice
reading and creating activity diagrams, you will synthesize the rules
into a meaningful whole that will enable you to interpret and express
even the most complex system behaviors.

6.5 Actions: The Basics

An action is one kind of node that can exist within an activity; it’s a
node that models a basic unit of functionality within the activity. An

06_0321927866_Ch06.indd 92 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams94

action represents some form of processing or transformation that will
occur when the activity gets executed during system operation.

The notation for a basic action is a roundcornered rectangle (col
loquially called a round-angle). I say “basic” because there are several
specialized kinds of actions, each with its own notation (more on that
in Section 6.8).

You can enter any behavioral description you like in an action; your
description gets displayed as a string inside the roundangle on an ac
tivity diagram. Most often, system modelers write actions as verb
phrases expressed in a natural language (such as English). Figure 6.2
shows examples.

Although SysML does not require it, I recommend as a best prac
tice that you always write an action as a phrase that begins with a
strong, unambiguous verb. Also, you should avoid putting multiple
verbs into a single action; break it up into several atomic actions in
stead. For example, instead of a single action, “Validate and save com
mand,” create two sequential, atomic actions: “Validate command”
and “Save command.”

As an alternative to natural languages, you can use formal lan
guages (such as C, Java, Verilog, or Modelica) for an action in an activ
ity. SysML calls such a statement an opaque expression. This jargon
isn’t important, but you should know that an opaque expression has
two parts: a language and a body. You specify the language in curly
brackets preceding the body. Figure 6.3 shows an example of an action
with an opaque expression written in the C programming language.
(But note that opaque expressions are not limited to programming lan
guage statements.)

Figure 6.2 Actions with natural language expressions

Figure 6.3 An action with an opaque expression

06_0321927866_Ch06.indd 95 Achorn International 10/18/2013 12:18AM

ptg11539604

6.6 Object Nodes 95

System modelers seldom write actions as opaque expressions. De
velopment teams do this more often in the activity diagrams they cre
ate to communicate their designs. But, as a stakeholder to those devel
opment teams, you should be prepared to interpret activity diagrams
that contain opaque expressions when you see them.

A useful and meaningful activity always consists of more than one
action (as shown in Figure 6.1). You connect the actions in an activity by
using edges that define ordered (and sometimes concurrent) sequences.
Those sequences convey the larger narrative of the activity as a whole.
Like the text narratives described in Chapter 5, a good activity diagram
tells a clear story.

The story you tell using an activity diagram can convey more than
sequences of actions; it can also convey the flow of objects—the inputs
and outputs of those actions and of the activity as a whole. (You can
read more on this in the next section.)

6.6 Object Nodes

An object node, another kind of node that can exist within an activity,
models the flow of object tokens through an activity (where each object
token, again, represents an instance of matter, energy, or data). An ob
ject node most often appears between two actions to convey that the
first action produces object tokens as outputs, and the second action
consumes those object tokens as inputs.

The notation for an object node is a rectangle. The name string that
appears inside an object node has the following format:

<object node name> : <type> [<multiplicity>]

The object node name is modeler defined. The type must match the
name of a block, value type, or signal that you’ve defined somewhere
in your model hierarchy; it specifies the nature of the object tokens that
the object node can hold. The multiplicity specifies how many object
tokens the object node can hold at any given moment during an execu
tion of the activity. If not shown in the name string, the default multi
plicity for an object node is 1..1.

The activity fragment in Figure 6.4 displays an example of an object
node named currentAltitude. It holds object tokens that represent in
stances of the value type km. The multiplicity shown at the end of the
string conveys that the first action will produce exactly one object token

06_0321927866_Ch06.indd 94 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams96

as an output, and the second action requires exactly one object token as
an input (in order for it to start).

Another useful feature of an object node is that it can optionally
display compartments—just as a block or a part property can—to con
vey the internal properties of the object tokens it holds. Of course, this
is useful only when the specified type is a block, value type, or signal
that actually owns internal properties. A primitive value type, such as
km, does not.

6.6.1 Pins

A pin is a specialized kind of object node. You attach a pin to an action
to represent an input or output of the action. The notation for a pin is a
small square attached to the boundary on the outside of an action, as
shown in Figure 6.5.

You can optionally display an arrow inside the square to specify
whether the pin represents an input or an output. This is redundant,
though, if you join two pins with an edge, and most of the time you
will. The format of the name string is the same for a pin as for an object
node, but it floats near the pin instead of being displayed inside the pin
(for obvious reasons).

The activity fragment in Figure 6.5 is an alternative view of the very
same model shown in Figure 6.4. Pins mean exactly what object nodes
mean; pins are simply alternative notations that you can choose case
bycase to meet the specific needs of your target audience. Each has a
strength and a weakness.

The object node notation lets you display compartments to convey
the internal properties of the object tokens it holds. However, it takes

Figure 6.4 An object node between two actions

Figure 6.5 Actions with pins

06_0321927866_Ch06.indd 97 Achorn International 10/18/2013 12:18AM

ptg11539604

6.6 Object Nodes 97

up more real estate on an activity diagram than the pin notation. The
pin notation does not allow you to display compartments, but it’s a
much more spaceefficient notation. As a rule, I recommend that you
adopt the pin notation as your default option and switch to the object
node notation only on those rare occasions when you need to show the
internal properties of an object token.

Figure 6.6 shows an example of an input pin and an output pin,
each having a lower multiplicity of zero. This is how you would model
an action that has optional inputs or outputs. An action with an op
tional input pin can start even with no object tokens at that pin. An ac
tion with an optional output pin can execute and possibly produce no
object tokens at that pin. Although it’s redundant, SysML requires you
to apply the «optional» stereotype to a pin (preceding the name) when
its lower multiplicity is zero.

6.6.2 Activity Parameters

An activity parameter is another specialized kind of object node. You
attach it to the frame of an activity diagram to represent an input or an
output of the activity as a whole. The notation for an activity parameter
is a rectangle straddling the frame of an activity diagram, as shown in
Figure 6.7. The format of the name string is the same for an activity
parameter as for an object node (and a pin).

SysML does not dictate where you must place an activity parame
ter on the frame of the diagram. A common modeling convention, how
ever, is to place input activity parameters either on the top or left side of
the frame and output activity parameters either on the bottom or right
side of the frame. In fact, the only definitive way to tell the difference is
the direction of the edge that’s attached to an activity parameter.

Like a pin, an activity parameter can have a lower multiplicity of
zero. This is how you would model an optional parameter for the activ
ity as a whole. An activity with an optional input activity parameter

Figure 6.6 An action with optional pins

06_0321927866_Ch06.indd 96 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams98

(e.g., sensorSelection) can start even with no object tokens at that param
eter. An activity with an optional output activity parameter (e.g., error
Msg) can execute and possibly return no object tokens via that pa
rameter to the client that invoked the activity. As with pins, SysML
requires you to apply the «optional» stereotype to an activity parame
ter (preceding the name) when its lower multiplicity is zero.

Given the examples in Figures 6.6 and 6.7, you’ve likely inferred that
there’s a relationship between pins and activity parameters. I discuss
that relationship in more detail in Section 6.8, “Actions, Revisited.”

6.6.3 Streaming versus Nonstreaming

By default, actions and activities consume their input object tokens
only at the moment they begin executing. Similarly, they deliver their
output object tokens only at the moment they finish executing. We refer
to this as nonstreaming behavior.

However, the systems you design won’t always behave this way;
sometimes they will receive inputs and produce outputs even while
behaviors continue to execute. We refer to this as streaming behavior.
You can model streaming behavior by specifying {stream} at the end of
the name string for a pin or an activity parameter.

Let’s look at the nonstreaming case first. Figure 6.8 shows an action
with a nonstreaming input pin and a nonstreaming output pin. When

Figure 6.7 An activity diagram frame with activity parameters attached

Figure 6.8 An action with nonstreaming pins

06_0321927866_Ch06.indd 99 Achorn International 10/18/2013 12:18AM

ptg11539604

6.7 Edges 99

an object token of type Transfer Command arrives at the input pin cur
rentCommand, the action vc will begin executing and consume that ob
ject token. If a second instance of Transfer Command arrives at the input
pin while vc is currently executing, it will not get consumed until vc
completes and then starts a second time.

When vc executes, it will internally generate an object token of type
Boolean, but that object token will not get posted to the output pin is
CommandValid until vc finishes executing. Thus, any actions that follow
vc (and require that Boolean value as an input) cannot begin until vc
completes.

That’s the nonstreaming case. Now let’s look at the streaming case.
Figure 6.9 shows an action, ma, with a streaming output pin, current
Altitude. When ma executes, it will internally generate an object token
of type km. That object token will get posted to the output pin even
while ma is executing. Thus, any actions that follow ma (and require
that km value as an input) can begin even while ma continues to execute
(and potentially produce additional object tokens). This is one way to
model two or more actions that execute concurrently.

Streaming has a similar meaning on the input side of an action.
Object tokens that arrive at a streaming input pin are immediately
available to the action even if it’s already executing due to the arrival of
object tokens earlier.

Streaming and nonstreaming mean the same thing in the context of
activity parameters as they do for pins, except that the rules apply to
the activity as a whole. Streaming pins and activity parameters enable
you to model continuous system behaviors.

6.7 Edges

Activities can contain two general kinds of elements: nodes and edges.
In the previous sections, I introduce two kinds of nodes: actions and
object nodes. In this section, I introduce two kinds of edges that you
can use to connect nodes to form ordered sequences in an activity: ob
ject flows and control flows.

Figure 6.9 An action with a streaming pin

06_0321927866_Ch06.indd 98 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams100

6.7.1 Object Flows

An object flow is the kind of edge that transports object tokens. You
use object flows to convey that instances of matter, energy, or data flow
through an activity from one node to another when the activity exe
cutes during system operation.

The notation for an object flow is a solid line with an open arrow
head. Object flows generally connect two object nodes to each other.

Note
Pins and activity parameters are kinds of object nodes; they are implicitly in-
cluded in this discussion.

In addition to an object node, though, you can have a decision node,
merge node, fork node, or join node at one end of an object flow to di

Figure 6.10 Object flows

06_0321927866_Ch06.indd 101 Achorn International 10/18/2013 12:18AM

ptg11539604

6.7 Edges 101

rect the flow of the object tokens. I discuss these in detail in Section 6.9,
“Control Nodes.”

Figure 6.10 displays an excerpt of the larger activity diagram shown
earlier in Figure 6.1. This excerpt shows seven examples of object flows.
They convey that the actions in this activity fragment require objects as
inputs and produce objects as outputs.

You must ensure that the object nodes at the ends of an object flow
have compatible types; the object token produced as an output on the
tail end must be acceptable as an input on the arrowhead end. You can
satisfy this constraint in one of two ways:

•	 The types can be identical (as shown in Figure 6.10).
•	 The upstream type can be a subtype of the downstream type (as

shown in Figure 6.11).

The activity diagram fragment in Figure 6.11 shows a valid variant
of the behavior displayed in Figure 6.10. Transfer Command is a subtype
of Command (as conveyed by the generalization relationship between
them, which is displayed in the BDD). And generalization relationships
imply substitutability (meaning that the subtype will be accepted
wherever its supertype is required). The action vc requires an input of
type Command. It will therefore accept any of its subtypes, including an
instance of Transfer Command.

This is an example of designing to an abstraction (e.g., Command).
You should become comfortable with this practice; it creates extensibil
ity in your system design, and that minimizes the cost of changes that
inevitably occur later in the life cycle.

Figure 6.11 Ensuring compatibility via generalizations

06_0321927866_Ch06.indd 100 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams102

6.7.2 Control Flows

A control flow is the kind of edge that transports control tokens. And
the arrival of a control token enables an action that’s waiting for one.
You therefore use control flows to convey sequencing constraints
among a set of actions when the object flows in your activity do not by
themselves convey the intended sequence.

SysML allows two notations for a control flow: a dashed line with
an open arrowhead or a solid line with an open arrowhead. I recom
mend that you stick with the dashedline option if your modeling tool
supports it. In that way, your readers can easily distinguish control
flows from object flows in your activity diagrams.

Figure 6.12 displays an excerpt of the larger activity diagram shown
in Figure 6.1. This excerpt shows seven examples of control flows,
which connect the nodes in the activity to define an ordered sequence
among them. Four of the nodes are actions: two call behavior actions,
one wait time action, and one accept event action (specialized kinds of
actions discussed in detail in Section 6.8). When one action completes,
it offers a control token on its outgoing control flow, and that enables
the next action in the sequence to begin.

6.8 Actions, Revisited

Now that you know about object nodes and edges, let’s look at the rest
of what you need to know about actions. Let’s look at when actions

Figure 6.12 Control flows

06_0321927866_Ch06.indd 103 Achorn International 10/18/2013 12:18AM

ptg11539604

6.8 Actions, Revisited 103

start and discuss four specialized kinds of actions: call behavior ac
tions, send signal actions, accept event actions, and wait time actions.

6.8.1 When Does an Action Start?

To correctly interpret and create activity diagrams, it’s essential that
you understand when an action will start. Three conditions must be
satisfied for an action to start:

•	 The activity that owns the action is currently executing.
•	 A control token arrives on each of the incoming control flows.
•	 A sufficient number of object tokens arrive on each of the in

coming object flows to satisfy the lower multiplicity of the re
spective input pin.

Let’s look at these rules in the context of a few sample actions, as
shown in Figure 6.13.

The action ma has one incoming control flow and one incoming ob
ject flow. The object flow is attached to an input pin, sensorSelection,
which has a lower multiplicity of zero. This action therefore starts the
moment a control token arrives on the incoming control flow, whether
or not an object token also is available on the pin sensorSelection.

The action vc has one incoming control flow and one incoming ob
ject flow. The object flow is attached to an input pin that requires object
tokens of type Transfer Command. There’s no multiplicity displayed for
this pin. The multiplicity is therefore 1..1 by default. This means that

Figure 6.13 Actions with incoming edges

06_0321927866_Ch06.indd 102 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams104

the action will start when one control token and one object token arrive
on their respective incoming edges. These tokens need not arrive at the
same time (and likely will not). However, both must be present on the
incoming edges for the action to start.

The action rs has one incoming object flow, which is attached to an
input pin, newAttitude. This input pin is optional; it has a lower multi
plicity of zero. To start, this action requires no tokens (of either kind). In
this case, only the first of the three conditions applies; this action will
start the moment its owning activity begins executing.

The most common mistake that modelers make on activity dia
grams is drawing multiple incoming edges to an action to convey alter
native paths to that action. They mistakenly believe that multiple in
coming edges represents an or condition. As you now know, it represents
an and condition. Please be vigilant in looking for this error in your
own activity diagrams; it’s an easy mistake. If you need to model alter
native paths to a given action, you must insert a merge node preceding
the action (more on that in Section 6.9.4, “Merge Nodes”).

Be aware, also, that an action need not have any incoming edges at
all. In that case, you’re conveying that the action is not waiting for any
input tokens; it will start as soon as its owning activity starts. And if
there are multiple actions in the activity with no incoming edges, they
all start concurrently.

6.8.2 Call Behavior Actions

A call behavior action is a specialized action that invokes another be
havior when it becomes enabled. Call behavior actions let you decom
pose a higherlevel behavior into a set of lowerlevel behaviors.

A call behavior action becomes enabled according to the same rules
just discussed. The behavior that it calls can be any one of the three
kinds: an interaction, a state machine, or another activity.

The notation for a call behavior action is the same as the one for an
action—a rectangle with rounded corners—except that the name string
inside has a particular format:

<action name> : <Behavior Name>

The action name is modeler defined. The behavior name must
match the name of an interaction, a state machine, or an activity that
you’ve defined somewhere in your model hierarchy.

06_0321927866_Ch06.indd 105 Achorn International 10/18/2013 12:18AM

ptg11539604

6.8 Actions, Revisited 105

All three of the actions shown in Figure 6.13 are call behavior ac
tions. You can conclude from this that Measure altitude, Validate com
mand, and Rotate satellite are the names of three behaviors defined
within the system model. If a rake symbol () appears in the lower
right corner of a call behavior action (such as ma or vc), it conveys that
the behavior getting called (Measure altitude, Validate command) is an
activity. A call behavior action without a rake symbol (such as rs) is
ambiguous; the called behavior (Rotate satellite) can be either an interac
tion or a state machine. With that said, it’s rare for modelers to use call
behavior actions to invoke state machines.

Figure 6.14 shows an example of a call behavior action named open
telemetry stream, which invokes the behavior Stream telemetry data. The
rake symbol conveys that Stream telemetry data is an activity. This call
behavior action has one output pin named frame, which holds an object
token of type Transfer Frame. Because this pin is a streaming pin, the
object token can emerge from the called activity and become available
on the pin—for downstream actions to consume—even while Stream
telemetry data is executing. This action could therefore produce multiple
object tokens of type Transfer Frame in the course of a single execution.

When a call behavior action invokes another activity, the pins of the
call behavior action must match the activity parameters of the called
activity. Figure 6.15 shows the definition of the Stream telemetry data
activity, which owns an output activity parameter that matches the out
put pin shown in Figure 6.14. Once invoked, this activity will continu
ally transform object tokens of type Source Packet from multiple data
sources into a single stream of object tokens of type Transfer Frame. As
each object token arrives at the output activity parameter, frame, it is
immediately posted to the corresponding output pin of the call behav
ior action, open telemetry stream.

You can use call behavior actions to factor out a common chunk of
functionality that appears in multiple places and instead define it in a
separate behavior that you simply invoke multiple times. This design

Figure 6.14 A call behavior action that invokes the behavior Stream telemetry data

06_0321927866_Ch06.indd 104 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams106

Figure 6.15 The definition of the Stream telemetry data behavior

06_0321927866_Ch06.indd 107 Achorn International 10/18/2013 12:18AM

ptg11539604

6.8 Actions, Revisited 107

practice facilitates easy reuse of common lowerlevel behaviors. For ex
ample, the Stream telemetry data activity contains three call behavior ac
tions, all of which invoke the Create virtual channel frame behavior. That
behavior is defined once—as an activity somewhere in the model hier
archy—and executed here multiple times. (And in this particular case,
those three distinct executions occur in parallel.)

6.8.3 Send Signal Actions

To satisfy scalability and performance requirements, systems engineers
often design systems that are distributed and concurrent. Such systems
use asynchronous mechanisms to transfer matter, energy, or data and
to synchronize the actions of parts that operate in parallel. You can
model this type of system behavior on activity diagrams using send
signal actions and accept event actions.

A send signal action is a specialized kind of action that asynchro
nously generates and sends a signal instance to a target when it be
comes enabled. A send signal action becomes enabled according to the
same rules discussed in Section 6.8.1.

The notation for a send signal action is a convex pentagon shaped
like a signpost (as shown in the lower half of the activity diagram in
Figure 6.16). The string displayed inside a send signal action (e.g., Orbit
Radius Updated) must match the name of a signal that you’ve defined
somewhere in your model hierarchy.

Figure 6.16 A signal and a send signal action

06_0321927866_Ch06.indd 106 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams108

Recall from Chapter 3, “Block Definition Diagrams,” that a signal is
a kind of model element. Like a block, a signal can own properties.
Those properties generally represent data that a signal instance carries
from a sender to a target. The BDD in Figure 6.16 displays the Orbit
Radius Updated signal. This signal owns one property, currentOrbit
Radius, of type km. An instance of this signal can therefore carry a single
km value from a sender to a target.

The activity diagram in Figure 6.16 displays an excerpt of the Exe
cute Hohmann Transfer activity shown in Figure 6.1, with a focus on the
send signal action. When this send signal action becomes enabled—
upon the arrival of an incoming object token at its input pin—it asyn
chronously generates an instance of the Orbit Radius Updated signal,
which carries the currentOrbitRadius value to a target that’s waiting for
it. Because the send signal action is asynchronous, it doesn’t wait for a
response from that target; instead, it completes immediately and offers
a control token on its outgoing edge. The send signal action is again
enabled each time a new object token arrives at its input pin.

6.8.4 Accept Event Actions

An accept event action is the partner of the send signal action in asyn
chronous behaviors; an accept event action is the element you use in an
activity to convey that the activity must wait for an asynchronous event
occurrence before it can continue its execution. Typically, that asyn
chronous event occurrence is the receipt of a signal instance.

Note
An accept event action is not limited to receiving signal instances (from send
signal actions); it can also receive asynchronous time event occurrences (for
details, see Section 6.8.5, “Wait Time Actions”).

The notation for an accept event action is a concave pentagon that
looks like a rectangle with a triangular notch cut out on one side (as
shown centerleft in the activity diagram in Figure 6.17). The string dis
played inside an accept event action (e.g., Orbit Radius Updated) often
matches the name of a signal that you’ve defined somewhere in your
model hierarchy. This is how you convey that the accept event action
waits for an instance of that signal to arrive asynchronously. When it
does, the accept event action completes, and the flow of control pro
ceeds to the next node in the activity.

06_0321927866_Ch06.indd 109 Achorn International 10/18/2013 12:18AM

ptg11539604

6.8 Actions, Revisited 109

Note
The accept event action that receives a signal instance may appear in the same
activity as the send signal action that generates it. Or it may instead appear in a
separate activity; in this way, you can model asynchronous communication be-
tween two distinct system behaviors.

Figure 6.17 displays an excerpt of the Execute Hohmann Transfer ac
tivity shown in Figure 6.1. This excerpt focuses on the asynchronous
communication that occurs between two concurrent flows of control
through the activity. Concurrent flows proceed independently, but
sometimes they must be synchronized at certain points in the behavior.

In this example, the accept event action becomes enabled when
a control token arrives on its incoming control flow, something that
happens only after the enter transfer orbit action completes. If the send
signal action on the right side has already generated an Orbit Radius

Figure 6.17 An activity fragment containing an accept event action

06_0321927866_Ch06.indd 108 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams110

Updated signal instance, then the accept event action completes imme
diately and offers a control token on its outgoing control flow; then
execution proceeds to the next node.

On the other hand, if the send signal action on the right side has not
generated an Orbit Radius Updated signal instance, then the accept event
action simply waits for an Orbit Radius Updated signal instance; the Ex
ecute Hohmann Transfer activity cannot proceed to the enter final orbit
action until that occurs.

Accept event actions, like other kinds of actions, need not have any
incoming edges at all. And the rules in Section 6.8.1 state that an action
with no incoming edges becomes enabled the moment the activity be
gins executing. An accept event action is no exception in this respect; an
accept event action with no incoming edges becomes enabled and begins
listening for a signal instance as soon as the activity begins executing.

However, there is one difference: An accept event action with no
incoming edges remains enabled even after the first signal instance ar
rives, and the accept event action continues to listen for additional in
stances. This is one way to model a system behavior that continually
responds to asynchronous event occurrences.

6.8.5 Wait Time Actions

An accept event action that waits for a time event occurrence is collo
quially called a wait time action. The notation for a wait time action is
a stylized hourglass symbol with a time expression string beneath it (as
shown in Figure 6.18). The notations and the event types are the only
differences between wait time actions and other accept event actions;
everything else stated in the preceding section applies to wait time ac
tions, too.

The time expression beneath the hourglass can specify either an ab
solute time event or a relative time event. An absolute time event ex
pression begins with the keyword at—for example, at (1430 GMT) or at
(14 NOV 2106, 1200 CST) or at (transferStartTime). A relative time event
expression begins with the keyword after, as in after (30 days) or after (50
ms) or after (timerCount).

The activity fragment displayed in Figure 6.18 is an excerpt of the
Execute Hohmann Transfer activity shown in Figure 6.1. This excerpt fo
cuses on the wait time action in the activity, which waits for an asyn
chronous occurrence of an absolute time event. The specific value for
the time event is held in the executionTime value property. The use of
dot notation in the time expression conveys that the executionTime value
property is nested within the currentCommand object.

06_0321927866_Ch06.indd 111 Achorn International 10/18/2013 12:18AM

ptg11539604

6.8 Actions, Revisited 111

This wait time action becomes enabled when a control token ar
rives on its incoming control flow—upon completion of the upstream
action that generates a valid command response. If the absolute time
event—specified by executionTime—has already occurred, then the wait
time action completes immediately and offers a control token on its
outgoing control flow; then execution proceeds to the next node. If ex
ecutionTime has not occurred, then the wait time action simply waits for
that time event to occur; the Execute Hohmann Transfer activity cannot
proceed to the enter transfer orbit action before that moment occurs.

When a wait time action has a relative time event expression—as
shown in Figure 6.19—the clock for the time event begins when the
wait time action becomes enabled. Because the wait time action shown
has no incoming edges, it becomes enabled as soon as the Sample system
temperature activity begins executing. Two seconds later, the relative
time event occurs, and the wait time action offers a control token on its

Figure 6.18 A wait time action with an absolute time event expression

Figure 6.19 A wait time action with a relative time event expression

06_0321927866_Ch06.indd 110 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams112

outgoing control flow, enabling the downstream call behavior action,
which calls the Read temperature behavior.

A wait time action is a special kind of accept event action. And an
accept event action with no incoming edges remains enabled even after
the first occurrence of the named event. The wait time action shown in
Figure 6.19 therefore continues to output a control token (and invoke
the Read temperature behavior) every two seconds until the Sample sys
tem temperature activity as a whole terminates. This is an example of
how to model a continuous periodic behavior.

6.9 Control Nodes

In this chapter I’ve discussed two kinds of nodes that can exist within
an activity: an action node and an object node. Now let’s look at one
final kind of node: a control node. You use control nodes to steer the
execution of an activity along paths other than a simple sequence of
actions. Control nodes can direct the flow of control tokens as well as
object tokens within an activity.

There are seven kinds of control nodes: initial nodes, activity final
nodes, flow final nodes, decision nodes, merge nodes, fork nodes, and
join nodes. You can, of course, use combinations of these nodes to de
fine arbitrarily complex control logic in your activities as necessary to
satisfy your system’s functional requirements.

Let’s look at how each one works.

6.9.1 Initial Nodes

An initial node marks the starting point within an activity. Formally, it
marks a place in the activity where the flow of a control token begins.
The notation for an initial node is a small, filledin circle, and it gener
ally has exactly one outgoing control flow.

The activity fragment shown in Figure 6.20 is an excerpt of the
Stream telemetry data activity shown earlier in Figure 6.15. This frag
ment focuses on the start of three concurrent sequences of actions, be
ginning at an initial node at the top of the diagram. When the Stream
telemetry data activity begins, a single control token is placed at this ini
tial node. It immediately traverses the outgoing control flow to a fork
node, and the activity’s execution continues. (I discuss fork nodes in
detail in Section 6.9.5, “Fork Nodes.”)

06_0321927866_Ch06.indd 113 Achorn International 10/18/2013 12:18AM

ptg11539604

6.9 Control Nodes 113

Note that an activity need not have an initial node. The flow of a
control token can begin instead at an action with no incoming edges.
Recall that such actions start as soon as the activity begins executing.

It’s also possible that the flow of object tokens alone will be suffi
cient to define the correct sequences of actions within an activity. Object
tokens generally begin at input activity parameters (on the frame of an
activity diagram). In such cases, you don’t need an initial node in your
activity.

6.9.2 Flow Final Nodes and Activity Final Nodes

Flow final nodes and activity final nodes are control nodes that mark
the end of the flow of a control token. However, there’s a key difference
between them: When a control token arrives at a flow final node, that
token is destroyed, marking the end of a single flow of control. Alterna
tively, when a control token arrives at an activity final node, the entire
activity terminates, marking the end of all flows of control (no matter
where they are currently in their execution).

The notation for a flow final node is a circle containing an X. The
notation for an activity final node is a circle that contains a smaller,
filledin circle. Figure 6.17 (presented earlier) shows an example of each
one.

The two sequences of actions shown in Figure 6.17 execute in paral
lel. The ma call behavior action continually streams object tokens on its
output pin. The two actions downstream from ma may therefore exe
cute multiple times. And each time the send signal action completes, a

Figure 6.20 An activity fragment containing an initial node

06_0321927866_Ch06.indd 112 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams114

control token emerges, arrives at the flow final node, and is destroyed.
No other token in the activity is affected. The Execute Hohmann Transfer
activity continues until the enter final orbit action completes and out
puts a control token, which arrives at the activity final node. At that
point, the entire activity terminates (even if the action ma is in the
middle of streaming object tokens).

Note
You’re allowed to add multiple activity final nodes to an activity. However, you
should be careful to avoid inadvertently modeling a race condition between con-
current flows of control; the first control token that arrives at any activity final node
will terminate the entire activity. You should use flow final nodes instead of activity
final nodes to avoid modeling a race condition.

6.9.3 Decision Nodes

A decision node marks the start of alternative sequences in an activity.
The notation is a hollow diamond (as shown in Figure 6.21). A decision
node must have a single incoming edge and generally has two or more
outgoing edges. Each outgoing edge is labeled with a Boolean expres

Figure 6.21 An activity fragment containing a decision node

06_0321927866_Ch06.indd 115 Achorn International 10/18/2013 12:18AM

ptg11539604

6.9 Control Nodes 115

sion called a guard, which is displayed as a string between square
brackets (e.g., isCommandValid = = False in Figure 6.21).

When a token—either an object token or a control token—arrives at
a decision node, the guards on the outgoing edges are evaluated. The
token is offered to the outgoing edge whose guard evaluates to true at
that moment.

The onus is on you to ensure that the set of guards on the outgoing
edges is complete and disjoint so that exactly one guard evaluates to
true each time a token arrives. SysML allows you to use else as a guard
on (at most) one outgoing edge to ensure the “complete” criterion is
met. (If all the other guards evaluate to false, the else evaluates to true.)

6.9.4 Merge Nodes

A merge node marks the end of alternative sequences in an activity.
The notation is the same as the one for a decision node: a hollow dia
mond. You can distinguish one from the other by the number of incom
ing and outgoing edges; a merge node has two or more incoming edges
and a single outgoing edge. When a token—either an object token or a
control token—arrives at a merge node via any of its incoming edges,
the token is immediately offered to the outgoing edge.

Most often, you will use a merge node in conjunction with a deci
sion node to model a loop within an activity (as shown in Figure 6.22).
A merge node is, in fact, essential for modeling a loop. If the merge
node in this figure were removed (and its two incoming edges were
connected directly to the accept event action), then the accept event ac
tion would never become enabled. To begin, it would need a control
token on each of those incoming edges, and that would never happen in
a loop.

Figure 6.22 Using a merge node to model a loop

06_0321927866_Ch06.indd 114 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams116

You can also use a merge node to model the interleaving of tokens
from multiple concurrent sources into a single output stream (as shown
in Figure 6.23). The three call behavior actions that invoke the Create
virtual channel frame activity execute concurrently in this activity. They
independently output object tokens of type Virtual Channel Frame,
which arrive at the merge node in a nondeterministic order. As each
one arrives, it is immediately offered to the outgoing edge and becomes
an input to the next action. That action, in turn, outputs a single stream
of object tokens of type Transfer Frame.

6.9.5 Fork Nodes

A fork node marks the start of concurrent sequences in an activity. The
notation for a fork node is a line segment (oriented in any direction you
like), and it must have a single incoming edge and two or more outgo

Figure 6.23 Using a merge node to model the interleaving of tokens

06_0321927866_Ch06.indd 117 Achorn International 10/18/2013 12:18AM

ptg11539604

6.9 Control Nodes 117

ing edges (as shown in Figure 6.24). When a token—either an object
token or a control token—arrives at a fork node, it is duplicated on all
of the outgoing edges. Each of those copies of the original token repre
sents an independent, concurrent flow of control along its respective
path.

The activity fragment shown in Figure 6.24 is an excerpt of the Ex
ecute Hohmann Transfer activity shown earlier in Figure 6.1. This excerpt
focuses on the fork node in the activity. When a control token arrives at
the fork node, it gets duplicated on the two outgoing edges. Those two
copies then proceed to their respective downstream actions: vc and ma.
The action ma begins immediately; it’s not waiting on any other input.
The action vc begins as soon as an object token of type Transfer Com
mand arrives on its input pin. Depending on when that occurs, the two
actions may execute concurrently for some period.

An important general point about concurrency is that the order of
completion of concurrent actions is nondeterministic. You cannot know
ahead of time whether vc or ma will complete first in a given execution
of the Execute Hohmann Transfer activity during system operation. More
precisely, it doesn’t matter which one completes first; you should model
actions as concurrent only when they have no dependencies on one
another.

6.9.6 Join Nodes

A join node marks the end of concurrent sequences in an activity. The
notation for a join node is the same as the one for a fork node: a line

Figure 6.24 An activity fragment containing a fork node

06_0321927866_Ch06.indd 116 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams118

Figure 6.25 Using a join node to synchronize the end of concurrent sequences of
actions

06_0321927866_Ch06.indd 119 Achorn International 10/18/2013 12:18AM

ptg11539604

6.10 Activity Partitions: Allocating Behaviors to Structures 119

segment. You can distinguish one from the other by the number of in
coming and outgoing edges; a join node generally has two or more in
coming edges and a single outgoing edge (as shown at the bottom of
the activity diagram in Figure 6.25).

You use a join node to model a synchronization point for concur
rent sequences of actions in an activity. When a token arrives on each of
the incoming edges, a single token is offered on the outgoing edge. The
concurrent sequences end, and a single flow of control proceeds past
the point marked by the join node.

The activity shown in Figure 6.25 has three concurrent sequences of
actions, which begin at the fork node at the top of the diagram. These
sequences of actions model the starting and stopping of three reaction
wheels, each of which rotates the satellite about one axis independently
of the other two. The presence of the join node at the bottom of the dia
gram conveys that all three sequences of actions must complete before
the activity can come to an end.

6.10 Activity Partitions: Allocating Behaviors to
Structures

Activity diagrams can convey not only the order of the actions within
an activity but also the structure that performs each action. You use
activity partitions to convey this. The notation for an activity partition
is a large rectangle (which contains one or more nodes) with a header
at one end; the header specifies what the activity partition represents.
An activity partition may be oriented either vertically or horizontally,
although some modeling tools may support only one direction or the
other.

Most often, an activity partition represents either a block or a part
property that exists somewhere in the system model. Placing an action
inside an activity partition conveys that the action is allocated to the
structure named in the header. Simply put, that structure is responsible
for performing that action when the activity executes during system
operation.

When an activity partition represents a block, it conveys that all
instances of that block can perform the contained actions. When an ac
tivity partition represents a part property, only that one part property
is responsible for performing the contained actions.

06_0321927866_Ch06.indd 118 Achorn International 10/18/2013 12:18AM

ptg11539604

 Activity Diagrams120

Figure 6.26 Using activity partitions to allocate actions to structures

06_0321927866_Ch06.indd 121 Achorn International 10/18/2013 12:18AM

ptg11539604

Summary 121

Figure 6.26 provides an alternative view of the complete Execute
Hohmann Transfer activity shown in Figure 6.1. All of the same actions
as before are displayed here. However, this view also displays three
activity partitions, which convey the allocations of those actions to
three different blocks in the system model: Microcosm Autonomous Navi
gation System (MANS), Propulsion Subsystem, and Flight Computer. This
view conveys a more comprehensive narrative of the Execute Hohmann
Transfer behavior—a narrative that links behaviors to structures.

Summary

An activity diagram is a powerful medium for communicating infor
mation to your stakeholders about a system’s behavior over time. This
diagram is a good choice when you need to display a continuous sys
tem behavior and when you need to put the focus on the flow of matter,
energy, and data among a set of actions, whether sequential or concur
rent. An important strength of an activity diagram is its readability,
even when displaying a behavior having complex control logic.

You can create call behavior actions in an activity to model be
havioral decomposition. Send signal actions and accept event actions
enable you to model asynchronous communication among the struc
tures within a distributed system. You can use wait time actions to
model behaviors that occur periodically or begin at particular moments
in time. Activity partitions let you allocate responsibility for the actions
in an activity to specific structures within a system. All these features
make an activity diagram a richly expressive medium for conveying
system behavior.

06_0321927866_Ch06.indd 120 Achorn International 10/18/2013 12:18AM

ptg11539604

This page intentionally left blank

ptg11539604

123

Chapter 7

Sequence Diagrams

Sequence diagrams are a second kind of SysML diagram that you can
use to express information about a system’s dynamic behavior. You
can use elements called lifelines to model the participants in a system
behavior and then use messages between lifelines to model interac-
tions among those participants. You can specify time constraints and
duration constraints on interactions. You can also use various kinds of
interaction operators to steer the execution of an interaction. Interac-
tion uses let you model behavioral decomposition among a set of
interactions.

7.1 Purpose

A sequence diagram is a kind of behavior diagram; like an activity dia-
gram, it presents a dynamic view of the system, a view that expresses
sequences of behaviors and event occurrences over time. A sequence
diagram is a good choice for specifying a behavior when you want the
focus to be on how the parts of a block interact with one another via
operation calls and asynchronous signals to produce an emergent be-
havior. That behavior is formally called an interaction.

In Chapter 6, “Activity Diagrams,” you learned that SysML gives
you three kinds of behavior diagrams for specifying a behavior: se-
quence diagrams, activity diagrams, and state machine diagrams. Each
one has strengths and weaknesses that you should be aware of to make
the best choice based on the needs of your target audience.

ptg11539604

 Sequence Diagrams124

A sequence diagram is a precise specification of a behavior. It is
therefore well suited to serve as a detailed design artifact—an input
into development. Many commercial-grade modeling tools blur the
line between design and development; they let you autogenerate
production-quality source code based on the interactions displayed on
sequence diagrams. This is possible because sequence diagrams con-
vey the three requisite pieces of information needed to automate a
transformation into source code: the order in which behaviors are per-
formed, which structure performs each behavior, and which structure
invokes each behavior.

That precision, however, comes at the cost of readability. A sequence
diagram quickly becomes unreadable as the complexity of the control
logic in the behavior increases. For this reason, modelers often use a
sequence diagram as a graphical test case specification that displays
only a single scenario of a larger (more complex) use case behavior.
However, it’s not limited to this conventional use. A sequence diagram
is a sufficiently rich medium to serve as a general-purpose behavior
specification tool.

7.2 When Should You Create a Sequence Diagram?

Because a sequence diagram is a versatile behavior diagram, you can
create one to specify a behavior at any level in the system hierarchy.
Sequence diagrams are useful early in the life cycle during ConOps
development to specify the intended interactions between the system
of interest and the actors in its environment. These diagrams are useful
early in the architectural design stage to specify the interactions be-
tween subsystems. And they’re useful at the end of architectural design
to specify the interactions between components in preparation for the
hand-off to the teams producing detailed designs of components.

If your team chooses to use sequence diagrams as graphical test
case specifications, you would also create sequence diagrams in place
of the traditional text-based test case specifications. The exact point in
the life cycle when this occurs varies greatly from one project team to
the next. Teams that practice test-driven design and development, for
example, create their test case specifications in parallel with the re-
quirements specification (or use case specification) activity.

Sequence diagrams are a good choice whenever you need to pre-
cisely specify the interactions between entities, within either the prob-
lem space or the solution space for your system of interest. In short,

07_0321927866_Ch07.indd 125 Achorn International 10/18/2013 12:20AM

ptg11539604

7.4 Lifelines 125

you can potentially create a sequence diagram at any point in the sys-
tem life cycle.

7.3 The Sequence Diagram Frame

The diagram kind abbreviation for a sequence diagram is sd. The only
allowable model element type for a sequence diagram is interaction.
The frame of a sequence diagram always represents a single interaction
that you’ve defined somewhere in your system model.

An interaction is itself a model element; like an activity, it’s a kind
of behavior. Like an activity, a block, and a package, an interaction is
also a kind of namespace. It can therefore contain a set of named ele-
ments (such as lifelines, event occurrences, and messages) within the
model hierarchy. Those contained elements can appear within the
frame of the associated sequence diagram.

The diagram header in Figure 7.1 tells us that the frame of this se-
quence diagram represents the interaction named Execute Hohmann
Transfer, Main Success Scenario, which is defined somewhere in the sys-
tem model. The elements that appear within the frame are contained
within (nested under) this interaction within the model hierarchy.

Figure 6.26 (in Chapter 6) displays the complete Execute Hohmann
Transfer use case specification. The sequence diagram in Figure 7.1 dis-
plays the main success scenario within that use case specification—the
behavior that occurs when the satellite receives a valid transfer com-
mand. Because these two figures show substantially similar behaviors,
they provide a fair comparison of the readability of sequence diagrams
compared with activity diagrams.

As mentioned earlier in this chapter, the precision of a sequence
diagram comes at the cost of readability; the sequence diagram in Fig-
ure 7.1 is quite cluttered. In this chapter, I analyze this diagram to ex-
plain in detail each kind of element that can appear on a sequence
diagram.

7.4 Lifelines

A lifeline is an element that represents a participant in an interaction
(see Figure 7.2). More precisely, a lifeline represents a single instance
that participates in an interaction by exchanging messages with other

07_0321927866_Ch07.indd 124 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams126

Figure 7.1 A sample sequence diagram

07_0321927866_Ch07.indd 127 Achorn International 10/18/2013 12:20AM

ptg11539604

7.4 Lifelines 127

lifelines. The lifelines that appear in a given interaction correspond
to part properties of the block that owns the interaction. That block
may be the system of interest as a whole, a subsystem, or a single
component.

The notation for a lifeline is a rectangle with a dashed line attached
to it, flowing down the sequence diagram. The dashed line represents
the lifetime of the part property (with respect to its participation in the
interaction, and not necessarily its entire existence in an operational
system). Time proceeds down the lifeline; an event occurrence that ap-
pears higher on a lifeline happens before one that appears lower on
that same lifeline.

A sequence diagram, however, conveys only the relative passage of
time between event occurrences. The linear distance between two event
occurrences on a lifeline means nothing; all that matters is which one is
higher and which one is lower. (You can read more on event occur-
rences later in this section.)

The rectangle is referred to as the head of the lifeline. It contains a
name string that identifies the part property that the lifeline represents.
That name string appears in the following format:

<part property name> [<selector expression>] : <type>

The type of the named part property is a block or an actor you’ve
defined somewhere in your model hierarchy. Most often, it is a block.
However, if your team chooses to use sequence diagrams to display the
interactions at the domain level (between the system of interest and the
actors in its environment), then you will also have lifelines typed by
actors.

Figure 7.2 Lifelines

07_0321927866_Ch07.indd 126 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams128

The selector expression is an optional part of the name string.
When displayed, it appears in square brackets immediately following
the name of the lifeline. The selector expression specifies a particular
instance the lifeline represents.

This concept requires a bit of elaboration. Recall that a lifeline rep-
resents a single instance, and the name of a lifeline must correspond to
the name of a part property. You learned in Chapter 3, “Block Defini-
tion Diagrams,” that a single part property may represent an entire col-
lection of instances (if the upper multiplicity of the part property is
greater than 1). With that in mind, I repeat the following: The selector
expression specifies a particular instance (in a collection) that the life-
line represents.

The BDD at the right in Figure 7.3 shows that the Software Subsystem
block owns a part property named ssdd of type Star Sensor Device Driver.
This part property has a multiplicity of 3, which conveys that it repre-
sents exactly three instances of Star Sensor Device Driver; the ssdd part
property therefore represents a collection of instances. The sequence
diagram in Figure 7.3 has a lifeline named ssdd, which corresponds to
the part property of the same name. This lifeline specifies a selector
expression, x-axis, to name the particular instance in the ssdd collection
that the lifeline represents in this interaction.

As mentioned earlier, however, a selector expression is optional;
you need to add one to a lifeline only when it actually matters which
instance in the collection participates in the interaction. If you omit the
selector expression, the lifeline represents an arbitrarily chosen in-
stance; you’re conveying that it doesn’t matter which instance is the
one that actually participates in the interaction.

Figure 7.3 A lifeline with a selector expression

07_0321927866_Ch07.indd 129 Achorn International 10/18/2013 12:20AM

ptg11539604

7.5 Messages 129

Earlier in this section, I state that a lifeline conveys the passage of
time (going down the diagram). I then reference the concept of event
occurrences, which appear on lifelines. The key idea is this: The set of
lifelines in an interaction convey ordered sequences of event occur-
rences, and those sequences form the narrative of the interaction.

There are six kinds of event occurrences that can appear on
lifelines:

•	 Message send occurrences
•	 Message receive occurrences
•	 Lifeline creation occurrences
•	 Lifeline destruction occurrences
•	 Behavior execution start occurrences
•	 Behavior execution termination occurrences

In the following sections, I discuss how to represent each of these
kinds of event occurrences on a sequence diagram to convey a mean-
ingful narrative.

7.5 Messages

A message represents a communication between a sending lifeline and
a receiving lifeline. That communication may be an invocation of a be-
havior, a reply at the end of a behavior, the creation of a lifeline, or the
destruction of a lifeline. I discuss these various types of messages in
detail in Section 7.5.2, “Message Types.”

The notation for a message generally is a line with an arrowhead,
connecting the sending and receiving lifelines. The tail end of the mes-
sage is always connected to the sending lifeline; the arrowhead end of
the message is always connected to the receiving lifeline. Each type of
message has a distinctive line style (such as dashed or solid) and ar-
rowhead style (such as open or filled in).

A message also has a name string floating above it that specifies the
name of the message, along with other optional pieces of information
(such as parameter names, argument values, and return value). The
exact format of the name string depends on the message type. I provide
the formats when I discuss each message type in Section 7.5.2.

Most often, the sending lifeline and the receiving lifeline are two
distinct lifelines. However, it’s entirely permissible for one lifeline to be
both the sender and the receiver of a message. Four examples of this are

07_0321927866_Ch07.indd 128 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams130

shown in Figure 7.1. This conveys either that the lifeline sends a com-
munication to itself (for example, to invoke an internal behavior) or
that the lifeline is a black-box representation of an entity composed of
internal parts that are communicating with each other.

When systems engineers use the term message, it often connotes
some kind of data format. Please do not carry this predisposition into
your study of SysML. In the context of interactions, the term message
has no such connotation. A message between two lifelines could repre-
sent a call to an operation, for example, even if no data are passed in
with that message. You can, of course, convey to your readers that data
(or objects generally) are passed between lifelines (by displaying argu-
ments in the name string for a message). However, the term message
never implies that.

7.5.1 Message Occurrences

There are six kinds of event occurrences that can appear on lifelines in
an interaction. Two of those kinds of event occurrences are message
send occurrences and message receive occurrences. We can refer to ei-
ther of these kinds more generally as message occurrences.

Every time you create a message from one lifeline to another (or
from one lifeline back to itself), you are modeling both a message send
occurrence and a message receive occurrence. A message send occur-
rence exists on a lifeline at the point where the tail end of a message
meets the lifeline. A message receive occurrence exists on a lifeline at
the point where the arrowhead end of a message meets the lifeline. To
be clear, there’s no notation for a message occurrence; one is implicitly
there at the point where a message end connects to a lifeline.

The sequence diagram in Figure 7.4 is an excerpt of the larger inter-
action shown in Figure 7.1. This excerpt displays a lifeline named fc

Figure 7.4 A message send occurrence and a message receive occurrence

07_0321927866_Ch07.indd 131 Achorn International 10/18/2013 12:20AM

ptg11539604

7.5 Messages 131

sending a measureAltitude message to a lifeline named mans. A message
send occurrence exists on the fc lifeline at the point of intersection with
the tail end of the measureAltitude message. Similarly, a message receive
occurrence exists on the mans lifeline at the point of intersection with
the arrowhead end of the measureAltitude message.

The measureAltitude message in Figure 7.4 happens to be an asyn-
chronous message (discussed in more detail in the next section). How-
ever, all the key ideas here about message occurrences remain true for
the other message types as well.

7.5.2 Message Types

There are four types of messages that commonly appear in interactions:
asynchronous messages, synchronous messages, reply messages, and
create messages. (SysML defines two other message types—found mes-
sages and lost messages—but you’ll rarely use these in daily practice.)
Each type of message has a distinctive notation. And each type serves
a unique purpose in the context of the larger interaction. Let’s look at
each one in detail.

7.5.2.1 Asynchronous Messages

An asynchronous message represents a communication between a
sending lifeline and a receiving lifeline wherein the sender immedi-
ately proceeds with its own execution after sending the message. The
sender does not wait for the receiver to finish executing the invoked
behavior, and it does not wait for the receiver to send a reply upon
completion of the behavior.

The notation for an asynchronous message is a solid line with an
open arrowhead (drawn from the sending lifeline to the receiving life-
line) and a label floating above the line with the following format:

<message name> (<input argument list>)

The message name must match the name of a reception owned by
the receiving lifeline. (Recall from Chapter 3 that a reception is a kind
of behavioral feature that a block can own—a behavioral feature that is
always invoked asynchronously.)

The input argument list is an optional piece of information. If you
choose not to display it, you can show an empty set of parentheses after
the message name—or nothing at all. If you choose to display argu-
ments, they appear in a comma-separated list, and each argument in
the list has the following format:

07_0321927866_Ch07.indd 130 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams132

<input parameter name> = <value specification>

The input parameter name is optional; if shown, it must match the
name of an input parameter of the reception that’s being invoked. Most
often, modelers omit this information and simply display a value speci-
fication, which can be either a literal value or the name of a property
that holds a value. And, of course, the value that’s passed must match
the type of its corresponding input parameter (for example, Integer,
Real, Boolean, String, Complex, or a custom value type or block that
you’ve defined somewhere in your model).

The sequence diagram in Figure 7.5 shows an excerpt of the interac-
tion displayed in Figure 7.1, with an additional message on the fc lifeline
that doesn’t appear in the original interaction. The interaction fragment
shown here contains three asynchronous messages: measureAltitude,
currentAltitudeUpdated, and orbitRadiusUpdated. The measureAltitude
message and the currentAltitudeUpdated message each correspond to a
reception owned by the Microcosm Autonomous Navigation System
(MANS) block. Similarly, the orbitRadiusUpdated message corresponds
to a reception owned by the Flight Computer block.

The measureAltitude message has no argument list displayed (either
because the measureAltitude reception has no input parameters or be-
cause the arguments for this message are not an important piece of
information for this diagram’s target audience). The currentAltitude-

Figure 7.5 Asynchronous messages in an interaction

07_0321927866_Ch07.indd 133 Achorn International 10/18/2013 12:20AM

ptg11539604

7.5 Messages 133

Updated message, however, does have an argument displayed: a
property named currentAltitude. The value held by this property is the
input to the reception; that value can be accessed by the receiving life-
line when it executes the behavior associated with the currentAltitude-
Updated reception.

The orbitRadiusUpdated message, similarly, displays an argument: a
property named currentOrbitRadius. The mans lifeline passes this value
in the message to the fc lifeline. The fc lifeline can therefore access that
value when it executes the behavior associated with the orbitRadius-
Updated message.

Earlier in the chapter, I mention that modelers often create sequence
diagrams to serve as graphical test case specifications. When a sequence
diagram serves in this role, it’s appropriate for the message arguments
to be literal values (e.g., 35,786) instead of property names (e.g., current-
Altitude). The set of input values throughout the interaction defines a
specific test case and enables you to determine (and specify) the set of
expected output values. You can then compare that sequence diagram
to the results of an actual test execution (or simulation) to deliver a
verdict (pass or fail).

The key idea to take away: The sender of an asynchronous mes-
sage doesn’t wait for the receiver to finish executing the invoked
behavior; instead, the sender immediately proceeds with its own
execution. In Figure 7.5, for example, fc sends an asynchronous mes-
sage, measureAltitude, to mans. Upon receipt of that message (or at
some nondeterministic time thereafter), mans begins executing the
behavior associated with the measureAltitude reception. The fc life-
line, however, does not wait for that behavior to complete; upon
sending the measureAltitude message, fc immediately proceeds with
its own execution and sends another message, checkSensorStatus.

If measureAltitude were instead a synchronous message, the fc life-
line would have to wait for mans to finish executing the measureAltitude
behavior and send a reply back to fc before fc could then proceed to
send the checkSensorStatus message. And with that, it’s time to examine
synchronous messages in more detail.

7.5.2.2 Synchronous Messages

A synchronous message represents a communication between a send-
ing lifeline and a receiving lifeline wherein the sender waits for the
receiver to finish executing the invoked behavior and send a reply
message before the sender can proceed with its own execution. The
notation for a synchronous message is a solid line with a filled-in

07_0321927866_Ch07.indd 132 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams134

arrowhead (drawn from the sending lifeline to the receiving lifeline).
The label for a synchronous message has the same format as the label
for an asynchronous message:

<message name> (<input argument list>)

This time, however, the message name must match the name of an
operation owned by the receiving lifeline.

The input argument list remains optional. If you choose to display
the arguments, each one has the same format as before:

<input parameter name> = <value specification>

Everything I state about the arguments of asynchronous messages
is also true for the arguments of synchronous messages. It’s worth re-
peating, however, that the value specification part of this string can be
either a literal value or the name of a property that holds a value. (And
as I mention earlier, when a sequence diagram serves as a graphical test
case specification, it’s appropriate for the message arguments to be lit-
eral values.)

The sequence diagram in Figure 7.6 shows an excerpt of the interac-
tion displayed in Figure 7.1. The interaction fragment shown here con-
tains two synchronous messages that represent two distinct calls to the
fireThrusters operation, which is owned by the Propulsion Subsystem
block.

Figure 7.6 Synchronous messages in an interaction

07_0321927866_Ch07.indd 135 Achorn International 10/18/2013 12:20AM

ptg11539604

7.5 Messages 135

These messages have no argument lists displayed. However, all the
same key ideas about the arguments of asynchronous messages apply
here as well. Any arguments passed in a synchronous message are ac-
cessible to the receiving lifeline when it executes the behavior associ-
ated with the operation that’s being invoked.

The key idea about a synchronous message is that the sender of the
message waits for the receiver to finish executing the invoked behavior
before the sender proceeds with its own execution. In Figure 7.6, for
example, fc sends the first fireThrusters synchronous message to ps.
Upon receipt of that message (or at some nondeterministic time there-
after), ps begins executing the behavior associated with the fireThrusters
operation. The fc lifeline must wait for that behavior to complete (and
it must wait for the reply message that ps will send back, marking the
completion of that behavior) before fc can proceed with its own execu-
tion and send the second fireThrusters message at some later time.

You might be wondering what that string is that’s shown hovering
over the fc lifeline in between the two fireThrusters messages. That string
is an example of a state invariant. I talk about these in detail in Sec-
tion 7.8.3, “State Invariants.”

7.5.2.3 Reply Messages

A reply message represents a communication that marks the end of a
synchronously invoked behavior. It’s always sent from the lifeline that
performed the behavior to the lifeline that invoked the behavior (via a
synchronous message earlier in the interaction).

The notation for a reply message is a dashed line with an open ar-
rowhead. Figure 7.6 shows two examples of reply messages—one after
each of the corresponding synchronous messages. You can optionally
display a label above a reply message. That label has the following
format:

<assignment target> = <message name>
(<output argument list>) : <value specification>

The message name must match the name of the corresponding syn-
chronous message (which is also the name of the operation that was
invoked by that synchronous message).

The value specification after the colon represents the return value
of the behavior that just finished executing. Of course, this piece of the
string would be present only if the operation that was invoked actually
had a declared return type. (Recall from Chapter 3 that operations need
not declare a return type.)

07_0321927866_Ch07.indd 134 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams136

The assignment target is an optional piece of information. If shown,
it conveys the name of the property that catches the return value—
a property owned by the lifeline that invoked the operation (the one
receiving the reply message). However, modelers often omit this
information.

The output argument list is also optional. If you choose to display
the arguments, they appear in a comma-separated list, and each argu-
ment has the following format:

<output parameter name> : <value specification>

The output parameter name is optional; if shown, it must match the
name of an output parameter of the operation that was invoked. Mod-
elers often omit this information, too, and simply display the value
specification that’s being passed back to the caller as an output of the
operation that was invoked.

Note
SysML also allows you to optionally display an assignment target for each output
argument in the list. But doing so would make the reply message label even more
unwieldy than it already is.

Note that showing the reply message itself is optional. The interac-
tion fragment shown in Figure 7.7 is equivalent to the interaction frag-
ment shown in Figure 7.6. Modelers often omit reply messages to con-

Figure 7.7 Synchronous messages with implicit reply messages

07_0321927866_Ch07.indd 137 Achorn International 10/18/2013 12:20AM

ptg11539604

7.5 Messages 137

serve real estate on a sequence diagram. To be clear, though, a reply
message still gets sent to the caller; it’s implicit when not shown. The
lifeline that sends a synchronous message always receives a reply mes-
sage upon completion of the invoked behavior, even if that reply mes-
sage is not shown on the sequence diagram.

7.5.2.4 Create Messages

A create message represents a communication that creates a new in-
stance within a system—an instance that then participates in the inter-
action. The notation for a create message is a dashed line with an open
arrowhead. The tail end of the message is connected to the sending
lifeline (as usual). The arrowhead end of the message is connected to
the head of the lifeline that’s getting created.

As mentioned, there are six kinds of event occurrences that can ap-
pear on lifelines. Thus far, I’ve discussed two of them: message send
occurrences and message receive occurrences. Now it’s time for the
third: lifeline creation occurrences. A lifeline creation occurrence ex-
ists on a lifeline at the point where the arrowhead end of a create mes-
sage meets the head of that lifeline. (A message receive occurrence also
exists at that point; it is therefore coincident with the lifeline creation
occurrence.)

Figure 7.8 A create message in an interaction

07_0321927866_Ch07.indd 136 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams138

The sequence diagram in Figure 7.8 displays the Initialize MANS,
Main Success Scenario interaction. This interaction contains a create
message drawn from the fc lifeline to the head of a new lifeline, mansdd.
This conveys that a new instance of the MANS Device Driver block gets
created at that point in the interaction. The mansdd lifeline then receives
and sends messages (i.e., participates in the interaction) following its
lifeline creation occurrence.

7.6 Destruction Occurrences

The fourth kind of event occurrence that can appear on a lifeline is a
lifeline destruction occurrence (or destruction occurrence, for short). A
destruction occurrence represents the termination of a lifeline and the
destruction of the instance within a system that the lifeline represents.

SysML does not define what “destruction” means in any particular
context. For a software object, destruction typically refers to the act of
freeing the memory that was allocated for that object. For a hardware
object, destruction may refer to the removal of an object from the sys-
tem or to the actual physical destruction of an object (such as pyrotech-
nic devices that separate a spacecraft from a launch vehicle).

The notation for a destruction occurrence is a cross in the form of an
X at the bottom of the lifeline that’s getting destroyed (see Figure 7.9).
The X may appear at the bottom of a lifeline without any message at-

Figure 7.9 A destruction occurrence in an interaction

07_0321927866_Ch07.indd 139 Achorn International 10/18/2013 12:20AM

ptg11539604

7.7 Execution Specifications 139

tached to it. This indicates that the lifeline self-terminates at a particu-
lar point in the interaction.

The X may also be connected to the arrowhead end of a message.
This conveys that the destruction occurrence is the result of the lifeline
receiving a special type of message referred to as a delete message. The
SysML (and UML) specification is oddly silent about the required line
style and arrowhead style of a delete message. The language states
only that a delete message must end in a destruction occurrence.

The sequence diagram in Figure 7.9 displays the Shut Down MANS,
Main Success Scenario interaction. This interaction contains a destruc-
tion occurrence at the bottom of the mansdd lifeline. This particular de-
struction occurrence is the result of the mansdd lifeline receiving an un-
install message from the fc lifeline. This destruction occurrence conveys
that an instance of the MANS Device Driver block gets destroyed at that
point in the interaction. A destruction occurrence is the last event oc-
currence that can appear on a lifeline. The mansdd lifeline, therefore,
can neither send nor receive any messages at any point in the interac-
tion after its destruction occurrence.

7.7 Execution Specifications

The last two kinds of event occurrences that can appear on a lifeline are
behavior execution start occurrences and behavior execution termina-
tion occurrences. A behavior execution start occurrence is generally
implicit at the point where a lifeline receives a synchronous or asyn-
chronous message. A behavior execution termination occurrence is
generally implicit at the point where a lifeline sends a reply message.

It’s often useful, however, to eliminate any ambiguity by explicitly
conveying to your readers where behaviors begin and end on a lifeline.
SysML provides an optional mechanism to do just that: execution
specifications.

The notation for an execution specification is a thin, vertical rect-
angle—either white or shaded—that covers a lifeline for the period of
time within an interaction when that lifeline is actively executing a be-
havior. The top of the rectangle explicitly marks a behavior execution
start occurrence. The bottom of the rectangle explicitly marks a behav-
ior execution termination occurrence.

Although it’s not required by the language, a behavior execution
start occurrence is usually coincident with a message receive occurrence.

07_0321927866_Ch07.indd 138 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams140

Therefore, you normally see the arrowhead end of a synchronous or
asynchronous message connected to the top of an execution specifica-
tion. Similarly, a behavior execution termination occurrence is usually
coincident with the sending of a reply message, so you normally see
the tail end of a reply message connected to the bottom of an execution
specification. (But, of course, this applies only for a behavior that
was invoked via a synchronous message and not an asynchronous
message.)

Figure 7.10 displays an alternative view of the same interaction
shown earlier in Figure 7.8. Here, execution specifications are displayed
to explicitly convey when the three lifelines begin and end execution of
behaviors. The fc lifeline executes the initializeMANS behavior during
the period of time from the receipt of the initializeMANS synchronous
message to the sending of the corresponding reply message.

While the initializeMANS behavior is executing, the fc lifeline cre-
ates the mansdd lifeline and then sends an initialize synchronous mes-
sage, and that causes the corresponding behavior to begin executing on
the mansdd lifeline. This behavior finishes executing at the point when
the mansdd lifeline sends a reply message back to the fc lifeline.

While the initialize behavior is executing on the mansdd lifeline, that
lifeline sends two synchronous messages—initialize and calibrate—to

Figure 7.10 An interaction with execution specifications displayed

07_0321927866_Ch07.indd 141 Achorn International 10/18/2013 12:20AM

ptg11539604

7.8 Constraints 141

the mans lifeline. The receipt of those messages on the mans lifeline
causes the corresponding behaviors to begin executing.

Note that no reply messages are shown at the points when those
behaviors finish executing. Recall from Section 7.5.2.3, “Reply Mes-
sages,” that it’s optional to display a reply message; when not shown, a
reply message is implicit at the end of each behavior that was invoked
via a synchronous message.

Sometimes a lifeline executes a nested behavior within the context
of an outer behavior. You can convey this by using a smaller execution
specification that partially overlaps a larger execution specification on
the same lifeline. Examples are shown in the interaction displayed ear-
lier in Figure 7.1.

7.8 Constraints

Sequence diagrams allow you to specify various kinds of constraints.
In Chapter 3, you learned that a constraint is a Boolean expression
that’s generally displayed between a pair of curly brackets and can ap-
pear on various kinds of SysML diagrams. In the context of interac-
tions, there are three kinds of constraints you will use in daily practice:
time constraints, duration constraints, and state invariants.

7.8.1 Time Constraints

Figure 7.11 displays an excerpt of the larger interaction shown in Fig-
ure 7.1. This interaction fragment contains at least one example of each
of the three kinds of constraints.

The constraint {currentCommand.executionTime} in Figure 7.11 is an
example of a time constraint. A time constraint specifies a required
time interval for a single event occurrence. That time interval may be a
single time value (that is, min. and max. are equal) or even a property
that holds a time value. And the event occurrence that it’s attached to
can be any one of the six kinds listed at the end of Section 7.4.

The key idea here: When the interaction executes during system
operation, it’s considered to be a valid execution only if that event oc-
currence happens within the time interval specified by the time
constraint.

The time constraint in Figure 7.11 is attached to the first fireThrusters
message send occurrence on the fc lifeline. This conveys that an execu-
tion of this interaction is considered a valid execution only if fc sends

07_0321927866_Ch07.indd 140 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams142

the first fireThrusters message at the time held in the executionTime prop-
erty (which is a part of the currentCommand property, as conveyed by
the use of dot notation).

7.8.2 Duration Constraints

The two constraints {2min..5min} in Figure 7.11 are examples of dura-
tion constraints. A duration constraint specifies a required time inter-
val for a pair of event occurrences. Again, that time interval may be a
single time value or a property that holds a time value. And the pair of
event occurrences that it’s attached to can be any two of the six kinds
listed at the end of Section 7.4.

The key idea here: When the interaction executes during system
operation, it’s considered a valid execution only if the lapse between
that pair of event occurrences falls within the time interval specified by
the duration constraint.

Each duration constraint in Figure 7.11 is attached to both the be-
havior execution start occurrence and the behavior execution termina-
tion occurrence for the fireThrusters behavior, which is executed by the
ps lifeline. This conveys that an execution of this interaction is consid-
ered a valid execution only if ps executes the fireThrusters behavior for

Figure 7.11 Specifying constraints in an interaction

07_0321927866_Ch07.indd 143 Achorn International 10/18/2013 12:20AM

ptg11539604

7.8 Constraints 143

a minimum duration of two minutes and a maximum duration of
5 minutes (each time that behavior is invoked).

It’s also common practice to apply a duration constraint to a mes-
sage send occurrence and its corresponding message receive occur-
rence. This constrains the allowable transmission time of the message.
When applying a duration constraint for this purpose, you display it in
curly brackets floating above or below the constrained message.

7.8.3 State Invariants

The following constraint in Figure 7.11 is an example of a state
invariant:

{currentOrbitRadius == currentCommand.orderedOrbitRadius}

A state invariant is a condition that you apply to a specific lifeline at a
point preceding (immediately above) a particular event occurrence.
That condition must hold true for that lifeline at the moment of that
event occurrence in a valid execution of the interaction.

The state invariant in Figure 7.11 is applied to the fc lifeline preced-
ing the second fireThrusters message send occurrence. This conveys that
an execution of this interaction is considered a valid execution only if
the value held in the currentOrbitRadius property is equal to the value
held in the orderedOrbitRadius property at the moment when fc sends
the second fireThrusters message.

You can also express a state invariant using the state notation (the
round-cornered rectangle) that commonly appears on state machine
diagrams. As before, this notation appears on a specific lifeline at a
point preceding a particular event occurrence. In this form, however,
the state invariant does not contain a Boolean expression; instead, it
contains the name of a state that the lifeline must be in at the moment of
that event occurrence. However, this notation is meaningful only if the
block (whose name appears after the colon in the head of the lifeline)
actually owns a state machine behavior having a defined set of states.

The interaction fragment shown in Figure 7.12 is a variant of the
one shown in Figure 7.11. In this variant, the Flight Computer block
owns a state machine behavior (defined somewhere in the model hier-
archy), and this behavior contains a state named At Transfer Orbit Apo-
gee. This state is named in the state invariant on the fc lifeline to convey
that the lifeline must be in that state at the moment when it sends the
second fireThrusters message. If it’s not, then the execution of the inter-
action is invalid.

07_0321927866_Ch07.indd 142 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams144

7.9 Combined Fragments

A combined fragment is a mechanism that allows you to add control
logic (such as decisions, loops, parallel behaviors) to an interaction.
The notation for a combined fragment is a rectangle that appears some-
where within the frame of the sequence diagram. The rectangle is
placed over one or more lifelines and encapsulates one or more mes-
sages that pass between those lifelines—messages that are subject to
the control logic defined by that combined fragment.

You specify the kind of control logic by using a string that appears
in a pentagon in the upper-left corner of the rectangle. We call that
string an interaction operator. SysML defines 11 interaction operators.
There are four, however, that you’re likely to use in your daily model-
ing work: opt, alt, loop, and par. I discuss each of these in detail in the
coming sections.

Before we dive into those details, you should know that each com-
bined fragment is made up of one or more interaction operands (or
operands, for short). Operands appear as regions within a combined
fragment—regions that are separated by dashed lines running horizon-

Figure 7.12 Specifying a state invariant using the state notation

07_0321927866_Ch07.indd 145 Achorn International 10/18/2013 12:20AM

ptg11539604

7.9 Combined Fragments 145

tally across the rectangle. Each operand (each region) within a com-
bined fragment contains one or more messages that may or may not
occur based on the control logic defined by that combined fragment.
This will become clearer when you see concrete examples of combined
fragments in the sections that follow.

I discuss each of the four common kinds of interaction operators
separately in the next four sections, respectively. It’s important to know
up front that you can nest combined fragments within other combined
fragments to create arbitrarily complex control logic. You can see ex-
amples of this in the sequence diagram in Figure 7.1 presented earlier.

7.9.1 Opt Operator

A combined fragment with an opt interaction operator (in the upper-
left corner) represents an optional set of event occurrences that could
happen during an execution of the interaction if a condition—called
the guard—evaluates to true. An opt combined fragment has exactly
one operand (region), so you don’t see a dashed line running horizon-
tally across the rectangle. The event occurrences in that one operand
either happen, or they don’t (based on the evaluation of the guard dur-
ing system operation).

The guard is a Boolean expression that you display between square
brackets near the top of the opt combined fragment. You must place the
guard on a lifeline directly above the first event occurrence in the com-
bined fragment. Any properties that appear in the Boolean expression
must be properties of that lifeline or properties of the block that owns
the interaction as a whole.

Figure 7.13 displays an excerpt of the larger sequence diagram
shown in Figure 7.1, here focusing on the opt combined fragment. This
combined fragment contains many event occurrences—specifically,
message send occurrences, message receive occurrences, behavior ex-
ecution start occurrences, and behavior execution termination occur-
rences. If the guard, isCommandValid == True, evaluates to true during
an execution of this interaction, then this enclosed set of event occur-
rences becomes part of that execution. If the guard evaluates to false,
then the enclosed set of event occurrences is skipped entirely.

The guard contains the property isCommandValid. This is either a
property of the fc lifeline (which corresponds to a property of the Flight
Computer block) or a property of the block that owns the interaction as
a whole (which is never named on a sequence diagram). You can, how-
ever, convey this additional information on a BDD.

07_0321927866_Ch07.indd 144 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams146

7.9.2 Alt Operator

A combined fragment with an alt interaction operator represents two
or more alternative sets of event occurrences that could happen during
an execution of an interaction. An alt combined fragment must have
two or more operands (regions) that contain those alternative sets of
event occurrences. As mentioned previously, each operand is separated
by a dashed line running horizontally across the rectangle.

Figure 7.13 An opt combined fragment in an interaction

07_0321927866_Ch07.indd 147 Achorn International 10/18/2013 12:20AM

ptg11539604

7.9 Combined Fragments 147

Each operand in an alt combined fragment has its own guard. At
most one of the guards is allowed to evaluate to true, and the set of
event occurrences in that guard’s operand becomes part of the execu-
tion; the sets of event occurrences in all of the other operands are
skipped entirely. The onus is on you to ensure that the set of guards in
an alt combined fragment is mutually exclusive. If multiple guards
could evaluate to true simultaneously, your model is considered ill
formed (a diplomatic way of saying you didn’t follow SysML’s rules).

You’re allowed to use the predefined guard else for (at most) one
operand. This guard evaluates to true only when all the others evaluate
to false. But you aren’t required to use the else guard. It’s possible (and
permissible) for none of the guards to evaluate to true (in which case
the entire alt combined fragment is skipped).

Figure 7.14 shows the Initialize MANS interaction, which consists of
both the main success scenario (first shown in Figure 7.8) and an error

Figure 7.14 An alt combined fragment in an interaction

07_0321927866_Ch07.indd 146 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams148

scenario. This interaction contains an alt combined fragment to model
the differences in the endings of these two scenarios.

When the mansdd lifeline sends the initialize reply message to the fc
lifeline, the return value of that message is stored in the property
sensorStatus (which is either a property of the fc lifeline or a property of
the block that owns the interaction). This property is then read to eval-
uate the guard in the first operand of the alt combined fragment. If that
guard evaluates to true, then the fc lifeline sends the initializeMANS
reply message with a return value of “Ready” (and all the event occur-
rences in the other operand are skipped). If that guard evaluates to
false, then the else guard instead evaluates to true, and the event occur-
rences in the second operand become part of the execution.

7.9.3 Loop Operator

A combined fragment with a loop interaction operator represents a set
of event occurrences that could happen multiple times during a single
execution of an interaction. Like an opt combined fragment, a loop com-
bined fragment has exactly one operand (region).

You can specify a min. and max. number of iterations of the loop
between parentheses immediately to the right of the loop interaction
operator. That range is specified in the format

(<min.>, <max.>)

If min. and max. are equal, you can simply display a single number
as a shorthand form.

Note that this range does not specify how many iterations will occur
during a single execution of an interaction. Rather, it’s a constraint on
how many iterations can occur (and still result in a valid execution of
the interaction). To specify that any number of iterations would be
valid, you set the range to (0, *), where the asterisk means “no upper
bound.” And, in fact, (0, *) is the default range if none is specified to the
right of the loop interaction operator.

As usual, the operand contained within the loop combined frag-
ment is allowed to have a guard (which is displayed between square
brackets near the top of its operand). The guard is evaluated after the
loop has iterated at least the min. number of times specified in paren-
theses. Once it has, the loop continues, until either the guard evaluates
to false or the loop has iterated the max. number of times specified in
parentheses.

Figure 7.15 displays an excerpt of the larger sequence diagram
shown in Figure 7.1, with one difference: The loop combined fragment

07_0321927866_Ch07.indd 149 Achorn International 10/18/2013 12:20AM

ptg11539604

7.9 Combined Fragments 149

shown here has a guard specified. This combined fragment encapsu-
lates the message send and message receive occurrences for three mes-
sages, as well as a behavior execution start and a behavior execution
termination occurrence. This entire sequence of occurrences could hap-
pen any number of times during a single execution of the Execute Hoh-
mann Transfer, Main Success Scenario interaction (as conveyed by the
range displayed after the loop interaction operator). This loop will ter-
minate, however, the moment the guard sensorStatus == “Ready” eval-
uates to false.

7.9.4 Par Operator

A combined fragment with a par interaction operator represents two or
more sets of event occurrences that happen in parallel with each other
during an execution of an interaction. Like an alt combined fragment, a
par combined fragment has two or more operands (regions), which
contain those concurrent sets of event occurrences.

In Section 7.4, you learned that an event occurrence that appears
higher on a lifeline happens before one that appears lower on the same
lifeline. However, the presence of a par combined fragment changes

Figure 7.15 A loop combined fragment in an interaction

07_0321927866_Ch07.indd 148 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams150

that. If two event occurrences appear in different operands of a par
combined fragment, then a reader cannot conclude anything about
their order. Stated more formally, those two event occurrences can hap-
pen in either order during an execution of the interaction, and the re-
sulting execution would be valid. To be clear, though, the event occur-
rences that appear in the same operand of a par combined fragment
must still happen in the order shown going down a given lifeline.

You can optionally specify a guard for each operand of a par com-
bined fragment. If present, it means what it did before: The event oc-
currences in that operand happen only if the guard evaluates to true.
With that said, modelers seldom specify guards for the operands of a
par combined fragment.

Figure 7.16 displays a greatly simplified variant of the interaction
shown in Figure 7.1. This interaction contains a par combined fragment.

Figure 7.16 A par combined fragment in an interaction

07_0321927866_Ch07.indd 151 Achorn International 10/18/2013 12:20AM

ptg11539604

7.10 Interaction Uses 151

In the first operand, there are two event occurrences on the fc lifeline. In
the second operand, there are eight event occurrences on the fc lifeline.
The par combined fragment conveys that these sets of event occur-
rences happen in parallel with each other.

It’s possible that the two event occurrences in the first operand
could happen before the eight event occurrences in the second oper-
and. It’s also possible that all eight event occurrences in the second
operand could happen before the two event occurrences in the first op-
erand. And, of course, it’s possible that these two sets of event occur-
rences could be interleaved in some nondeterministic way. That’s the
nature of concurrent behaviors; their relative order cannot be deter-
mined ahead of time.

7.10 Interaction Uses

In Chapter 6, you learned that you can decompose a high-level activity
into lower-level behaviors—behaviors that get invoked via call behav-
ior actions. Similarly, you can decompose a high-level interaction into
lower-level behaviors—behaviors that get invoked via an element
called an interaction use.

The notation for an interaction use is a rectangle that appears some-
where within the frame of the sequence diagram. A pentagon appears
in the upper-left corner of the rectangle containing the string ref, which
conveys that the interaction use is a reference to another interaction
that you’ve defined somewhere in your model hierarchy. The name of
that referenced interaction appears inside the rectangle. The rectangle
must be placed over the lifelines that participate in that referenced in-
teraction. (The participating lifelines disappear behind the rectangle.)

Modelers generally add an interaction use to an interaction for one
of two reasons:

•	 To factor out a subset of event occurrences that are common to
several high-level interactions and put that subset in one place
in a single, lower-level interaction

•	 To decompose a complex set of event occurrences (in a high-
level interaction) into a more readable sequence of lower-level
interactions

Figure 7.17 displays the Initialize MANS, Main Success Scenario in-
teraction originally shown in Figures 7.8 and 7.10. In this sequence dia-

07_0321927866_Ch07.indd 150 Achorn International 10/18/2013 12:20AM

ptg11539604

 Sequence Diagrams152

gram, however, I’ve factored out a subset of event occurrences, placed
them in a lower-level interaction named Bring MANS Hardware Online,
and added an interaction use to show the lower-level interaction get-
ting invoked.

Figure 7.18 displays the Bring MANS Hardware Online interaction,
which contains the subset of event occurrences that I factored out of the
interaction in Figure 7.17. Referenced interactions can themselves con-

Figure 7.17 An interaction use with actual gates

Figure 7.18 An interaction with formal gates

07_0321927866_Ch07.indd 153 Achorn International 10/18/2013 12:20AM

ptg11539604

Summary 153

tain interaction uses, letting you create an arbitrarily deep decomposi-
tion of behaviors.

If an interaction use has messages entering it or leaving it (as shown
in Figure 7.17), then the interaction it references must have matching
messages coming in from the frame or going out to the frame (as shown
in Figure 7.18). Formally, SysML states that a message enters (or leaves)
an interaction use at an actual gate. And SysML states that a message
enters (or leaves) the referenced interaction at a formal gate.

There’s no distinct notation for actual gates or formal gates; they
are implicit at the points where messages intersect an interaction use or
the diagram frame, respectively. The key idea: There must be a one-to-
one correspondence between the actual gates and formal gates. (As
long as you remember to make the messages match, though, you can
get by without knowing this jargon.)

Summary

A sequence diagram conveys information about a system’s behavior
over time, with a focus on the communications that occur among spe-
cific parts within a system. Modelers often create a sequence diagram
to model a test case—a single path of execution through a use case
with specified input values and expected output values. An impor-
tant strength of a sequence diagram is its ability to completely and
unambiguously specify a system behavior. It conveys all three essen-
tial pieces of information: the order of the behaviors that occur, which
structure performs each behavior, and which structure invokes each
behavior. For this reason, sequence diagrams often serve as inputs
into the development stage of the system life cycle.

07_0321927866_Ch07.indd 152 Achorn International 10/18/2013 12:20AM

ptg11539604

This page intentionally left blank

ptg11539604

155

Chapter 8

State Machine
Diagrams

State machine diagrams are the last of the three kinds of SysML dia-
grams that you can use to express information about a system’s dy-
namic behavior. You can display various kinds of states on a state ma-
chine diagram, and you can specify four kinds of events to trigger
transitions among those states in a running system. SysML also lets
you use orthogonal regions to model concurrent state-based behavior.

8.1 Purpose

A state machine diagram is a kind of behavior diagram; like an activity
diagram and a sequence diagram, it presents a dynamic view of a sys-
tem. Unlike an activity diagram and a sequence diagram, a state ma-
chine diagram focuses attention on how a structure within a system
changes state in response to event occurrences over time.

The behavior displayed on a state machine diagram most often rep-
resents a block’s classifier behavior, a formal term that refers to the
behavior that begins executing the moment a block is instantiated and
generally finishes executing when that instance is destroyed. It’s also
legal for a state machine behavior to be associated with a single opera-
tion or reception of a block, but this is rare.

ptg11539604

 State Machine Diagrams156

A state machine diagram is well suited to serve as a detailed design
artifact (that is, an input into development). Like a sequence diagram,
a state machine diagram is a precise and unambiguous specification of
behavior. Many commercial-grade modeling tools let you autogenerate
production-quality source code based on the behavior displayed on a
state machine diagram.

The drawback to a state machine diagram is that its use is limited to
describing the behavior of blocks that actually have defined states (that
is, they exhibit state-based behavior in response to event occurrences).
Not all blocks have such defined states.

8.2 When Should You Create a State Machine
Diagram?

Because a state machine behavior most often serves as a block’s classi-
fier behavior, you can create a state machine diagram to describe the
behavior of a block at any level in the system hierarchy (such as the
system of interest itself, a subsystem, or a single component). There-
fore, you can potentially create a state machine diagram at any point in
the system life cycle.

8.3 The State Machine Diagram Frame

The diagram kind abbreviation for a state machine diagram is stm. The
only allowable model element type for a state machine diagram is
stateMachine. The frame of a state machine diagram always represents
a single state machine that you’ve defined somewhere in your system
model.

A state machine is itself a model element; like an interaction and an
activity, it’s a kind of behavior. Like an interaction, an activity, a block,
and a package, a state machine is also a kind of namespace. It can there-
fore contain a set of named elements—specifically, vertices and transi-
tions—within the model hierarchy. Those contained elements can ap-
pear within the frame of the associated state machine diagram.

A key idea here is that state machine and state machine diagram are not
synonyms. When I use the term state machine throughout this chapter,
I’m referring to a model element and not the diagram it’s dis played on.

08_0321927866_Ch08.indd 157 Achorn International 10/18/2013 12:24AM

ptg11539604

8.3 The State Machine Diagram Frame 157

The diagram header in Figure 8.1 tells us that the frame of this state
machine diagram represents the state machine named Attitude Control,
which is defined somewhere in the system model. The elements that
appear within the frame—the vertices and transitions—are contained
within (nested under) this state machine within the model hierarchy.

The name of this diagram is “Attitude Control Subsystem Classifier
Behavior.” This name conveys the purpose of the diagram: It displays
the classifier behavior of the Attitude Control Subsystem block. To be
clear, you’re not required to specify on the state machine diagram the
name of the block that the state machine is associated with. However, if
you feel it adds value, the diagram name in the header is the only place
on the diagram where you can provide that information.

Figure 8.1 A sample state machine diagram

08_0321927866_Ch08.indd 156 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams158

8.4 States

A system (or a part within a system) sometimes has a defined set of
states in which it can exist during system operation. The concept of
state is difficult to define formally but easy to infer from real-world
examples. One of the simplest examples is a lamp that turns on and off
via a pull chain. The lamp has two defined states: On and Off. The state
that it’s in at a given moment determines how it will respond to event
occurrences (such as unscrewing the light bulb, pulling the chain, or
knocking the lamp over).

Software objects, too, can have a defined set of states. A file, for ex-
ample, can exist in the following states: Open, Closed, Modified, Unmodi-
fied, Encrypted, Unencrypted, and others. Sometimes states have mean-
ing only in the context of other states. For example, Modified and
Unmodified are meaningful only when a file is in the Open state. For-
mally, we would refer to Open as a composite state; Modified and Un-
modified would be substates of the Open state. A state that has no sub-
states is called a simple state.

In addition to simple states and composite states, another common
kind of state is the final state. Examples of all three kinds are shown in
Figure 8.1. Let’s take a closer look.

8.4.1 Simple States

The notation for a simple state is a round-cornered rectangle, colloqui-
ally referred to as a round-angle. The Orbit Insertion, Acquisition, Slew,
and Safe Mode states shown in Figure 8.1 are examples of simple states.
At a minimum, a state must display a name compartment, which con-
tains a string that names the state. SysML does not dictate any naming
conventions for states. (And coming up with meaningful names for
states is often the hardest part of creating a state machine.)

A simple state may optionally display a second compartment that
lists its internal behaviors and internal transitions. SysML defines three
internal behaviors that a state can perform: entry, exit, and do. Figure 8.2
displays an excerpt of the Attitude Control state machine, with a focus
on two states that have these three kinds of internal behaviors.

These three internal behaviors are displayed as strings in a state’s
second compartment. Each one is optional in a given state. When pres-
ent, the string begins with one of those three keywords—entry, exit, or
do—followed by a forward slash and then either an opaque expression

08_0321927866_Ch08.indd 159 Achorn International 10/18/2013 12:24AM

ptg11539604

8.4 States 159

or the name of a behavior that you’ve created somewhere in the system
model.

Opaque expressions are language-specific statements of behavior.
I discuss these in greater detail in Section 6.5, “Actions: The Basics,” in
the context of activity diagrams. If you instead specify the name of a
behavior that exists in your model, it can be any one of the three kinds
defined in SysML: an activity, an interaction, or another state machine.
(It’s rare, though, for an entry, exit, or do behavior to be another state
machine.)

A state’s entry behavior, if present, is the first behavior executed
upon entering that state. The entry behavior is regarded as atomic
(uninterruptible). This means that it’s guaranteed to finish executing
before the state machine can process a new event occurrence (and po-
tentially transition out of that state).

A state’s exit behavior, if present, is the last behavior executed be-
fore leaving that state, which happens when an event occurrence causes
the state machine to transition to a new state. Like an entry behavior, an
exit behavior is regarded as atomic. It’s guaranteed to finish executing;
no new event occurrence can interrupt its execution.

It’s important to understand that a state machine may rest in a given
state for some nondeterministic period before transitioning to a new
state. This means that other behaviors can execute in between a state’s
entry and exit behaviors.

A state’s do behavior, if present, begins executing upon entering the
state, immediately following the state’s entry behavior. The key differ-
ence between the do behavior and the entry behavior is that the do be-
havior is nonatomic; its execution can be interrupted by a new event
occurrence that causes a transition to a new state. A do behavior there-
fore continues executing until either it’s interrupted by an event occur-
rence (and the state machine transitions to a new state) or it terminates
on its own (which may happen before the next event occurs).

Figure 8.2 Entry, exit, and do behaviors in simple states

08_0321927866_Ch08.indd 158 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams160

If a do behavior is interrupted by an event occurrence, the do behav-
ior is aborted and the exit behavior for that state is executed (right be-
fore leaving that state). If a do behavior terminates on its own before the
next event occurs, one of two things could happen:

•	 The state machine could continue to rest in that state while
waiting for the next event occurrence, if all of the outgoing tran-
sitions require a trigger.

•	 The state machine could immediately transition to a new state,
if there’s an outgoing transition that doesn’t require a trigger.

I discuss the concept of a trigger in detail in Section 8.5,
“Transitions.”

Note
A do behavior is formally called a do activity in SysML. I find this term mislead-
ing, though, because a do behavior could be an interaction or a state machine,
and not necessarily an activity. You need to be aware of this in case you ever need
to dive into the SysML specification (or UML specification) to learn more about
state machines.

8.4.2 Composite States

The notation for a composite state is the same as the one for a simple
state: a round-cornered rectangle. Like a simple state, a composite state
has a name compartment and a compartment where you can display
the optional entry, exit, and do behaviors. The difference is that a com-
posite state has nested substates, which you would display in a third
compartment (below the second compartment).

There are also several similarities between a composite state in a
state machine and a state machine as a whole. When a composite state
is inactive, all its substates are inactive, too. When a composite state is
active, exactly one of its substates is also active.

While active, a composite state can transition from one substate to
another in response to event occurrences. Transitions between sub-
states behave in exactly the same manner as transitions between states.
(You can read more on this in Section 8.5.)

Figure 8.3 shows an excerpt of the larger Attitude Control state ma-
chine in Figure 8.1—here, with a focus on the composite state On-

08_0321927866_Ch08.indd 161 Achorn International 10/18/2013 12:24AM

ptg11539604

8.4 States 161

Station. This composite state has two substates: Have Comm Link and
No Comm Link. While On-Station is active, it can transition between its
two substates in response to commLinkRestored and commLinkLost event
occurrences.

 Transitions out of a composite state can originate either from the
boundary of the composite state or from a specific nested substate. Fig-
ure 8.3 shows examples of both cases. Transitions that originate from
the boundary of a composite state can fire when an event occurs, no
matter which substate the composite state is in at a given moment.
Transitions that originate from a specific nested substate can fire—
when an event occurs—only if the composite state happens to be in
that substate at that moment. (In Section 8.5, I discuss the general rules
governing when a transition fires.)

8.4.3 Final States

The notation for a final state is a small, filled-in circle surrounded by a
larger circle. Figure 8.4 shows an excerpt of the Attitude Control state
machine shown earlier in Figure 8.1, this time with a focus on the tran-
sitions leading to the final state. If the Attitude Control state machine is

Figure 8.3 A composite state in a state machine

08_0321927866_Ch08.indd 160 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams162

in either the Slew state or On-Station state when a deorbit event occurs,
the state machine will transition to the final state. This represents com-
pletion of the state machine behavior as a whole; it will not react to any
new event occurrences from that point forward.

8.5 Transitions

A transition represents a change from one state to another. What’s less
intuitive is that it can also represent a change from one state back to it-
self—what SysML calls a self-transition. The notation for a transition is
a solid line with an open arrowhead drawn from a source vertex to a
target vertex (where source and target may be the same vertex, in the
case of a self-transition).

Most often, the source and target vertices are states. However,
they can also be pseudostates, which I discuss in detail in Section 8.6,
“Pseudostates.” For now, we focus strictly on transitions between
states.

Each transition can specify three optional pieces of information: a
trigger, a guard, and an effect. When present, these pieces of informa-
tion appear in a single string that floats above or below the transition.
The format of that string is as follows:

<trigger> [<guard>] / <effect>

The trigger must match the name of an event that you’ve defined in
your system model. SysML defines four types of events: signal events,
call events, time events, and change events, as discussed in detail in

Figure 8.4 A final state in a state machine

08_0321927866_Ch08.indd 163 Achorn International 10/18/2013 12:24AM

ptg11539604

8.5 Transitions 163

Section 8.5.2. For now, it’s sufficient to know that an instance of an
event (during system operation) is called an event occurrence, and an
event occurrence can trigger a transition between states.

The guard is a Boolean expression always expressed between
square brackets. That expression evaluates to true or false at any given
moment. A transition fires only if its guard is true at the moment when
the state machine receives an event occurrence that matches its trigger.
If its guard is false at that moment, then the transition does not fire and
that event occurrence is consumed without any resulting change in
state.

The effect is a behavior that gets executed during the transition.
Like an entry, exit, and do behavior, an effect can be either an opaque
expression or the name of a behavior that you’ve defined somewhere in
the system model. And that behavior can, once again, be an activity, an
interaction, or another state machine. (Most often, though, it is an activ-
ity or an interaction.)

The transition from the Offline state to the Online state in Figure 8.5
has a trigger, a guard, and an effect. The trigger is the event named
startUp, which passes a value into the state machine via the argument
sensorID. This particular event happens to be a call event (which I dis-
cuss shortly), but the discussion of transitions in this section applies
equally to the other three types of events.

This transition has the guard isPowerAvailable == True. If this guard
evaluates to false at the moment when the startUp event occurs, then
that startUp event occurrence is consumed and the state machine re-
mains in the Offline state. If this guard evaluates to true at the moment
when the startUp event occurs, then the transition fires (the state ma-
chine transitions from the Offline state to the Online state).

This transition has an effect named calibrate. This behavior can be
an activity, an interaction, or another state machine that exists some-
where in the system model. A state machine diagram, unfortunately,

Figure 8.5 A transition with a trigger, a guard, and an effect

08_0321927866_Ch08.indd 162 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams164

does not provide a way to specify which kind of behavior it is. The key
point is that this effect gets executed when the transition fires (as de-
scribed in the preceding paragraph).

A transition effect is part of a larger sequence of behaviors that ex-
ecutes when a transition fires. We call that sequence of behaviors the
run-to-completion step. The run-to-completion step consists of the fol-
lowing behaviors in the order listed:

•	 The exit behavior of the source state
•	 The effect specified for the transition itself
•	 The entry behavior of the target state

This entire sequence of behaviors is regarded as atomic and instan-
taneous. It’s guaranteed to finish executing; no new event occurrence
can interrupt any of the behaviors in this sequence. A state machine can
receive and process a new event occurrence only after the entire run-to-
completion step finishes executing and the state machine is at rest in
the new (target) state.

Systems engineers know that no real-world system behavior truly
executes in zero time. However, when you choose to model a behavior
as part of a run-to-completion step—as an entry behavior, a transition
effect, or an exit behavior—you are asserting to your stakeholders that
the system will be implemented so that the behavior will be uninter-
ruptible and that no other behavior will run concurrently during its
execution, creating the illusion that it runs in zero time.

Keep in mind that each of the three behaviors in the run-to-
completion step is optional; any combination of the three can be pres-
ent for a given transition between two states. When present, however,
they get executed in the order shown when that transition fires.

When the state machine shown in Figure 8.5 transitions from the
Offline state to the Online state, the initialize behavior gets executed, fol-
lowed by the calibrate behavior, and then the updateSensorStatus behav-
ior. When that entire run-to-completion step has finished executing, the
state machine will be at rest in the Online state and ready to receive a
new event occurrence.

8.5.1 External Transitions versus Internal Transitions

There are two kinds of transitions: external transitions and internal
transitions. In the preceding section, I describe external transitions
without calling them that. (That was a good place to start because

08_0321927866_Ch08.indd 165 Achorn International 10/18/2013 12:24AM

ptg11539604

8.5 Transitions 165

they’re the more common kind.) To be clear, whenever you see an arrow
drawn from one state to another (or from one state back to itself), you’re
looking at an external transition. And everything I state about them in
the preceding section applies.

The string format for an internal transition is the same as for an
external transition. However, the string for an internal transition is
displayed in the second compartment of a state (along with the three
optional internal behaviors); in contrast to an external transition, the
string for an internal transition is not displayed next to an arrow.

That difference in notation reflects the conceptual difference be-
tween internal transitions and external transitions: When an internal
transition in a state fires, the state machine doesn’t leave that state as a
result of the transition. And this implies another key difference be-
tween internal transitions and external transitions: When an internal
transition in a state fires, neither the exit behavior nor the entry behav-
ior for that state, if present, gets executed. In short, when an internal
transition fires, the only behavior that gets executed is the effect speci-
fied for that internal transition.

Figure 8.6 displays a refinement of the Sensor Control state machine
from Figure 8.5. In this version, the Online state has an internal transi-
tion. The trigger for this internal transition is a change event:

when (availableMemory < dataPerOrbit)

This transition has no guard. (If it did, it would be shown in square
brackets after the trigger, as it is for external transitions.) Therefore,

Figure 8.6 A state with an internal transition

08_0321927866_Ch08.indd 164 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams166

when the specified change event occurs—that is, when the Boolean ex-
pression in parentheses becomes true—this internal transition fires.
And when it does, the only behavior that gets executed is the effect
specified for the transition: the purgeOldestDataFiles behavior.

8.5.2 Event Types

As mentioned earlier in the chapter, SysML defines four types of events:
signal events, call events, time events, and change events. Before I dis-
cuss the details of each type, it’s important to understand a fundamen-
tal point about events generally: An event is an element of definition
within a system model—an element that defines a type of occurrence
that can trigger a behavior within an operational system. A defined
event could potentially occur multiple times during system operation.
And each time an event occurs, the occurrence could potentially trigger
a new execution of a behavior.

This is true in the context of activities and interactions, as discussed
in those chapters. And it remains true in the context of state machines.
The difference here is that the focus shifts to how event occurrences
trigger transitions between states—transitions that potentially result in
behaviors getting executed.

8.5.2.1 Signal Events

A signal event represents the receipt of a signal instance by a target
structure that’s receptive to it; the target in this context would be the
structure that’s executing a state machine behavior. If the state machine
has a transition with a signal event trigger, then the structure that’s
executing the state machine must own a reception that has the same
name. Recall from Chapter 3, “Block Definition Diagrams,” that a re-
ception is a kind of behavioral feature that a block can own; it’s the
kind of behavioral feature that’s invoked upon receipt of a signal
instance.

The state machine diagram in Figure 8.7 displays an excerpt of the
larger state machine shown in Figure 8.1. This excerpt focuses on two
transitions that have signal event triggers: transferComplete and
commLinkRestored. I state earlier in the chapter that this state machine
behavior is the classifier behavior of the Attitude Control Subsystem
block. The Attitude Control Subsystem block must therefore have recep-
tions that correspond to those two signal event triggers. (The BDD in
Figure 8.7 conveys this correspondence explicitly.)

08_0321927866_Ch08.indd 167 Achorn International 10/18/2013 12:24AM

ptg11539604

8.5 Transitions 167

If a reception owns parameters (which are shown in parentheses to
the right of its name), then the corresponding signal event in the state
machine can specify an argument for each of those parameters. The
arguments that are passed into a state machine via signal events can
then be used both in guards and in behaviors that the state machine
invokes. The signal events (and receptions) in Figure 8.7 do not specify
any arguments (or parameters). However, the attitudeUpdated signal
event in Figure 8.1 does specify an argument, currentAttitude. That ar-
gument is later accessed to evaluate the guard, currentAttitude ==
orderedAttitude.

8.5.2.2 Call Events

A call event represents the receipt of a request to invoke an operation
in a target structure—a request that’s sent from a calling structure. The
target in this context would be the structure that’s executing a state
machine behavior. If the state machine has a transition with a call event
trigger, then the structure that’s executing the state machine must own
an operation that has the same name. Recall from Chapter 3 that an
operation is a kind of behavioral feature that a block can own; it’s the
kind of behavioral feature that’s generally invoked by a synchronous
call (one wherein the caller waits for the behavior to finish).

The state machine diagram in Figure 8.8 displays an excerpt of
the larger state machine shown in Figure 8.1. This excerpt contains a
transition with a call event trigger: acquireTarget. The Attitude Control

Figure 8.7 Signal event triggers and corresponding receptions

08_0321927866_Ch08.indd 166 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams168

Subsystem block, which owns this state machine behavior, must have
an operation that corresponds to that call event trigger. The BDD in
Figure 8.8 conveys this correspondence explicitly.

The acquireTarget operation owns the parameter orderedAttitude
of type Attitude. The corresponding call event in the state machine,
therefore, specifies an argument for that parameter. In this particular
example, the parameter and its corresponding argument have the
same name. SysML doesn’t require that, but it’s a good idea in daily
practice.

As with signal events, the arguments that are passed into a state
machine via call events can be used both in guards and in behaviors
that the state machine invokes. The excerpt shown in Figure 8.8 omits
those guards. Figure 8.1, though, shows many guards that access the
orderedAttitude argument.

You may have noticed the similarity in the notations for call event
triggers and signal event triggers. They’re identical, in fact. Your read-
ers therefore have no reliable way to tell the two apart based on a state
machine diagram alone. They would have to query the model to find
the block that owns the state machine and look at its operations and
receptions to know for sure.

Figure 8.8 A call event trigger and a corresponding operation

08_0321927866_Ch08.indd 169 Achorn International 10/18/2013 12:24AM

ptg11539604

8.5 Transitions 169

8.5.2.3 Time Events

A time event is quite intuitive; it represents an instant in time. When
that moment comes during system operation, we say that the time
event occurred. And that occurrence, of course, may trigger a transition
in a state machine. It’s also possible that a time event can occur mul-
tiple times during system operation. If so, each occurrence can poten-
tially trigger another transition between states.

There are two types of time events: relative and absolute. In con-
trast to the ambiguity in the notations for call event triggers and sig-
nal event triggers, it’s easy to identify a time event trigger. A relative
time event trigger always begins with the keyword after. An abso-
lute time event trigger always begins with the keyword at. Both types
are then followed by a time expression in parentheses.

Time expressions for absolute time events can be as specific or as
general as you need them to be—for example, at (3:00 a.m. GMT), at
(Monday), at (3:00 a.m. GMT, Monday, March 4, 2013). Remember, how-
ever, that a time event will occur multiple times if your time expression
is general enough to allow it. The time expression at (3:00 a.m. GMT)
will result in a new event occurrence every time that moment arrives.
And each occurrence of that time event can trigger another transition in
a state machine.

Time expressions for relative time events are written as time dura-
tions—for example, after (1 min), after (50 ns), after (1 month). When that
specified amount of time elapses, the relative time event occurs, and
that occurrence can trigger a transition in a state machine.

Figure 8.9 displays an excerpt of the Attitude Control state machine
in Figure 8.1. This excerpt shows an example of a relative time event
trigger on the transition from the No Comm Link substate (within the
On-Station state) to the Safe Mode state. The relative time event counter
starts when the state machine transitions from the Have Comm Link
state to the No Comm Link state. If two minutes elapse while the system
is in the No Comm Link state, that relative time event occurs, and the
outgoing transition to the Safe Mode state fires.

Of course, that may not happen. While the system is in the No Comm
Link state, it’s possible that the commLinkRestored signal event will occur
before two minutes elapse. If so, the transition back to the Have Comm
Link state will fire. If the state machine later returns to the No Comm
Link state, the relative time event counter will be reset upon reentry
into that state.

An external self-transition (an external transition drawn from a
state back to itself) counts as exiting and reentering that state; it will

08_0321927866_Ch08.indd 168 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams170

therefore reset any relative time event counter for that state. In contrast,
an internal transition within a state does not result in exiting and
reentering that state; it will not reset a relative time event counter for
that state.

Also remember that, like event occurrences of all types, a time event
occurrence could potentially interrupt a do behavior in a state that has
one. If the No Comm Link state had a do behavior and its execution lasted
for two minutes or more, then that execution would be interrupted
when the relative time event occurrence caused the transition to the
Safe Mode state to fire. Be cautious in your daily practice about inad-
vertently modeling race conditions.

A state’s entry behavior, in contrast, is regarded as atomic and in-
stantaneous; it’s part of the run-to-completion step that constitutes the
transition between two states. A relative time event counter starts only
when the run-to-completion step finishes executing. An entry behavior,
therefore, will not be interrupted by a time event occurrence.

8.5.2.4 Change Events

A change event is defined as a Boolean expression. A defined change
event occurs during system operation each time the specified Boolean
expression toggles from false to true. As with a time event trigger, it’s
easy to identify a change event trigger; it always begins with the key-
word when, followed by a Boolean expression in parentheses. That
Boolean expression is allowed to contain arguments passed into the
state machine via other event occurrences, as well as properties owned

Figure 8.9 A time event trigger in a state machine

08_0321927866_Ch08.indd 171 Achorn International 10/18/2013 12:24AM

ptg11539604

8.6 Pseudostates 171

by the state machine itself and properties owned by the block that ex-
ecutes the state machine.

Figure 8.10 displays an excerpt of the Sensor Control state machine
in Figure 8.6, this time with a focus on the Online state. This state has an
internal transition with a change event trigger, when (availableMemory <
dataPerOrbit). This change event occurs every time the specified Boolean
expression toggles from false to true. And each time it does, the transi-
tion effect—the purgeOldestDataFiles behavior—gets executed. (To be
clear, a change event trigger can also appear on external transitions; it’s
not limited to internal transitions.)

8.6 Pseudostates

In Section 8.5, I indicate that a state machine can contain two kinds of
vertices: states and pseudostates. The difference between them is straight-
forward. A state machine can rest in a state; it cannot rest in a pseudo-
state. You add pseudostates to a state machine to impose control logic
on the transitions among states.

SysML defines nine kinds of pseudostates. Most of the time, how-
ever, you need only two kinds: initial pseudostates and junction pseu-
dostates. Figure 8.11 shows examples of both kinds.

An initial pseudostate simply indicates the first state that the state
machine will be in when it begins executing (or the first substate that a
composite state will be in when it becomes active). The notation for an
initial pseudostate is a small, filled-in circle. It’s not allowed to have an
incoming transition, and the outgoing transition is not allowed to have
a trigger or a guard. If it did, that would imply that the state machine
might have to rest in the initial pseudostate while waiting for an event

Figure 8.10 A change event trigger in a state machine

08_0321927866_Ch08.indd 170 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams172

to occur or for the guard to become true . . . and state machines are not
allowed to rest in pseudostates. The outgoing transition can, however,
have an effect.

Figure 8.11 conveys that when the Camera Control state machine
gets invoked, the initialize behavior will get executed and the state ma-
chine will start in the Idle state. Recall that a transition effect is part of
the run-to-completion step, which is regarded as atomic and instanta-
neous. The state machine therefore starts immediately in the Idle state;
there is no passage of time during the execution of the initialize
behavior.

The other kind of pseudostate that you will commonly use is a
junction pseudostate. A junction pseudostate enables you to combine
multiple transitions between states into a single (more readable) com-
pound transition. The notation for a junction pseudostate is also a
small, filled-in circle—often smaller than an initial pseudostate (though
this depends on the modeling tool you’re using). Unlike an initial
pseudostate, a junction pseudostate must have one or more incoming
transitions and one or more outgoing transitions. A single junction
pseudostate may, in fact, have multiple incoming transitions and mul-
tiple outgoing transitions simultaneously.

Figure 8.11 Pseudostates in a state machine

08_0321927866_Ch08.indd 173 Achorn International 10/18/2013 12:24AM

ptg11539604

8.7 Regions 173

A junction pseudostate with multiple incoming transitions serves
to merge transitions from multiple source vertices, all of which have a
common target vertex. The junction pseudostate that leads to the Idle
state in Figure 8.11 is an example.

A junction pseudostate with multiple outgoing transitions serves as
a decision point that leads to one of several alternative target vertices.
In this case, each of the outgoing transitions must have a guard speci-
fied. The transition whose guard evaluates to true when the trigger
event occurs is the one that will fire. If all of the guards happen to be
false at that moment, the state machine will remain in its current state.
You can optionally specify the guard else on (at most) one transition to
guarantee that a transition will fire each time the decision is made.

The state machine in Figure 8.11 displays a junction pseudostate (im-
mediately following the Data Acquisition state) that serves as a decision
point. Because one outgoing transition has the guard “else,” the com-
pound transition out of the Data Acquisition state is guaranteed to fire
each time the daqComplete signal event occurs. And when it does, the
saveImage behavior will get executed as part of the run-to-completion
step.

Note that you’re allowed to chain several junction pseudostates to-
gether to construct an arbitrarily complex compound transition be-
tween states. And each segment along that path can have its own guard
and effect. However, I recommend that you avoid doing this if possible.
The rules for the guards and effects on compound transitions are a bit
nuanced, and a diagram is only as good as your stakeholders’ ability to
interpret it.

8.7 Regions

Like an activity and an interaction, a state machine can convey concur-
rent behaviors. You do this by adding multiple regions to the state ma-
chine. Each region contains its own set of vertices and transitions. And
each region responds to event occurrences independently of the others.
For this reason, we describe regions as orthogonal to each other.

You convey that a state machine has multiple regions by using
dashed lines that divide the contents area of the state machine diagram,
as shown in Figure 8.12. (A state machine with only one region—the
most common case—wouldn’t display any dashed lines.) You can op-
tionally specify a name for each region; that name would appear as a
label floating somewhere inside the region, typically off in a corner.

08_0321927866_Ch08.indd 172 Achorn International 10/18/2013 12:24AM

ptg11539604

 State Machine Diagrams174

Everything I state about transitions, states, and pseudostates earlier
in the chapter also applies when a state machine has multiple regions.
What’s new is the key idea that each region must have exactly one ac-
tive state at any given moment during system operation. To state this
differently, a state machine is concurrently in multiple states (one state
per region) during an execution of the state machine behavior.

This key idea has implications for the way you construct your state
machine diagram. Specifically, it is illegal to draw a transition between
two vertices that are in different regions. If such a transition existed, it’s
possible that a region would be left without an active state at some
point—and that’s not permissible.

As stated earlier, each region responds to event occurrences inde-
pendently of the others. To put this more concretely, an event occur-
rence may cause a transition to fire in one region, but not the others. It’s
also possible for a single event occurrence to cause multiple transitions
to fire, but at most one transition per region. This could happen if two
or more regions contained transitions with the same event trigger.

The state machine shown in Figure 8.12 has two orthogonal regions.
When the Telemetry Stream Control state machine executes, it will be in
the Streaming or Suspended state and concurrently in the Unencrypted or
Encrypted state. These two regions will respond to event occurrences
independently of each other. In this particular state machine, the or-

Figure 8.12 A state machine with orthogonal regions

08_0321927866_Ch08.indd 175 Achorn International 10/18/2013 12:24AM

ptg11539604

Summary 175

thogonal regions have no transition triggers in common. Therefore,
only one region will have a transition that fires each time an event
occurs.

Summary

A state machine diagram enables you to express information about a
system’s state-based behavior in response to event occurrences. Not all
structures within a system have a defined set of states with transitions
among those states. For those that do, the state machine diagram is a
uniquely capable medium for communicating the behaviors of those
structures to your stakeholders.

08_0321927866_Ch08.indd 174 Achorn International 10/18/2013 12:24AM

ptg11539604

This page intentionally left blank

ptg11539604

177

Chapter 9

Parametric Diagrams

The parametric diagram is a unique kind of SysML diagram, one that’s
used to express information about a system’s constraints. These con
straints generally take the form of mathematical models that deter
mine the set of valid values within a running system. A parametric
diagram is uniquely capable of conveying these mathematical models
to stakeholders.

9.1 Purpose

SysML allows you to model equations and inequalities as constraint
blocks. In Chapter 3, “Block Definition Diagrams,” you learned that a
constraint block is a special kind of block that encapsulates a constraint
expression: the equation or inequality you need to model.

Capturing a constraint expression in your SysML model, however,
is simply a means to an end. The power of this capability emerges when
you apply the constraint expression to a block somewhere in your
model to impose a fixed mathematical relationship on that block’s
value properties.

What do you achieve by imposing a fixed mathematical relation
ship on a block’s value properties? You gain these abilities:

•	 To specify assertions about valid system values within an op
erational system (and therefore detect exceptional conditions
when they occur)

ptg11539604

 Parametric Diagrams178

•	 To use the blocks in your system model to provide the inputs
for (and capture the outputs of) engineering analyses and simu
lations during the design stage

These advanced modeling practices are among the most powerful
capabilities SysML offers. It’s worth your time to become comfortable
with the practice of capturing constraint expressions in your model
and applying them to blocks.

You apply a constraint expression to a block by binding each vari
able in the expression (formally called a constraint parameter) to a
value property that exists somewhere in your model. That value prop
erty may belong to the block itself, or it may belong to one of the block’s
part properties or reference properties. In this way, SysML allows you
to create an arbitrarily complex mathematical model and then “wire” it
(colloquially speaking) to various parts of an arbitrarily complex struc
tural model.

Where do parametric diagrams fit into all this? They serve two
purposes:

•	 To display the bindings between constraint parameters in differ
ent constraint expressions to create a composite system of equa
tions (or inequalities)

•	 To display the bindings between constraint parameters and
value properties to apply a constraint expression to a block
(and, in so doing, impose a fixed mathematical relationship on
a set of value properties)

In this chapter, I discuss in detail how to create parametric diagrams
that fulfill these purposes. I provide concrete examples of parametric
diagrams as well as their corresponding BDDs to help you more easily
understand the relationships between the kinds of elements that ap
pear on each kind of diagram.

9.2 When Should You Create a Parametric Diagram?

SysML defines a parametric diagram as a special kind of internal block
diagram (IBD). Like an IBD, a parametric diagram displays the internal
structure of a block—but with a focus on the bindings between value
properties and constraint parameters. Just as IBDs and BDDs provide
complementary views of blocks, so do parametric diagrams and BDDs.

09_0321927866_Ch09.indd 179 Achorn International 10/18/2013 12:24AM

ptg11539604

9.3 Blocks, Revisited 179

Because of this close relationship, you can potentially create para
metric diagrams during any stage of the system life cycle. I say “poten
tially” because not all modeling teams will necessarily create a SysML
parametric model. This is an advanced modeling practice; it requires
a high degree of fidelity in your system model, something that has
an associated cost. You would incur the cost of creating a parametric
mo del (and displaying it on parametric diagrams) only if it’s within the
model scope required to fulfill the model’s purpose as defined in your
team’s project plan.

9.3 Blocks, Revisited

To fully make sense of what you will see on the parametric diagrams
that appear later in this chapter, it’s helpful first to see the correspond
ing BDDs. A BDD is the kind of diagram you create to display the defini
tions of blocks and constraint blocks. A parametric diagram then dis
plays the usages of those blocks and constraint blocks, with a focus on
the bindings between value properties and constraint parameters. The
BDDs in Figures 9.1 and 9.2 display the blocks and constraint blocks
that are needed to construct corresponding parametric diagrams.

The BDD in Figure 9.1 is a repeat of the one shown in Figure 3.26 in
Chapter 3. This BDD displays three constraint blocks: Hohmann Trans
fer, Transfer Orbit Size, and Transfer Time of Flight. The Hohmann Transfer
constraint block is composed of the other two; it owns one constraint
property named ttof of type Transfer Time of Flight and another con
straint property named tos of type Transfer Orbit Size. These constraint
properties are displayed on this diagram in two ways:

•	 Name strings displayed in the constraints compartment of
Hohmann Transfer

•	 Role names on the part ends of the composite association
relationships

Transfer Orbit Size and Transfer Time of Flight each encapsulate a con
straint expression. And each of those constraint expressions contains
three constraint parameters, which are displayed as name strings in the
parameters compartments. These constraint parameters (like most con
straint parameters) are typed by value types that exist somewhere in
the system model.

The BDD in Figure 9.1 conveys that the Hohmann Transfer constraint
block defines a constraint expression that is a composite of the two

09_0321927866_Ch09.indd 178 Achorn International 10/18/2013 12:24AM

ptg11539604

 Parametric Diagrams180

simpler ones. But this diagram doesn’t convey where those two simpler
constraint expressions are specifically connected to each other to create
the composite constraint expression; that’s what a parametric diagram
is for. The parametric diagram in Figure 9.3 displays this complemen
tary piece of information.

The BDD in Figure 9.2 displays the subset of blocks that are needed
to create a parametric diagram for a transfer time analysis (shown later
in Figure 9.4). I’ve employed the common and useful technique of cre
ating a block, Transfer Time Analysis, to represent the analysis context it
self. (Some modeling teams even define the custom stereotype «analysis
Context» to distinguish this block from the others in the model; please
note that this stereotype is not defined in SysML.)

Figure 9.1 Block definitions needed to create a parametric diagram for Hohmann
Transfer

09_0321927866_Ch09.indd 181 Achorn International 10/18/2013 12:24AM

ptg11539604

9.3 Blocks, Revisited 181

By convention, the analysis context block has composite associa
tions with one or more constraint blocks that represent the types of the
constraint properties that are needed for the analysis. Also by conven
tion, the analysis context block has reference associations with one or
more blocks that own the value properties that will supply the values
needed to perform the analysis.

Figure 9.2 Block definitions needed to create a parametric diagram for Transfer
Time Analysis

09_0321927866_Ch09.indd 180 Achorn International 10/18/2013 12:24AM

ptg11539604

 Parametric Diagrams182

Each of the four constraint parameters within the Hohmann Transfer
constraint block must get bound to a value property somewhere in the
system model. Those four value properties do not necessarily have to be
owned by a single block; it’s permissible for each of them to be owned
by a different block, as long as there are association relationships in
place to form pathways to them from the analysis context block. (It’s
also common for the analysis context block itself to own one of the re
quired value properties: the value property that will hold the result of
the analysis.)

The BDD in Figure 9.2 conveys that the Transfer Time Analysis block
uses the Hohmann Transfer constraint block to supply the constraint ex
pression needed for the analysis. This diagram also conveys which
blocks own the value properties that will supply the values to the con
straint parameters in that constraint expression. But this view doesn’t
convey which value properties and constraint parameters are bound to
each other; again, that’s what a parametric diagram is for. The paramet
ric diagram in Figure 9.4 presents this complementary view.

9.4 The Parametric Diagram Frame

The diagram kind abbreviation for a parametric diagram is par. The
model element type that the diagram frame represents can be either of
these:

•	 block
•	 constraintBlock

When a parametric diagram represents a constraint block, the dia
gram displays only the constraint properties and bindings that form
the internal structure of that constraint block. A parametric diagram
that represents a constraint block is shown in Figure 9.3.

When a parametric diagram represents a block, it primarily dis
plays the bindings between the block’s value properties and constraint
properties. But it may also show that block’s part properties and refer
ence properties if they contain nested value properties of interest. A
parametric diagram that represents a block is shown in Figure 9.4.

The diagram header in Figure 9.3 tells us that the frame of this para
metric diagram represents the Hohmann Transfer constraint block (which
appears on the BDDs in Figures 9.1 and 9.2). The name of this diagram

09_0321927866_Ch09.indd 183 Achorn International 10/18/2013 12:24AM

ptg11539604

9.4 The Parametric Diagram Frame 183

Figure 9.3 Parametric diagram of the Hohmann Transfer constraint block

Figure 9.4 Parametric diagram of the Transfer Time Analysis block

09_0321927866_Ch09.indd 182 Achorn International 10/18/2013 12:24AM

ptg11539604

 Parametric Diagrams184

is “Structure of the Hohmann Transfer expression.” This name draws the
reader’s attention to the focus and purpose of the diagram: displaying
the lowerlevel constraint properties and bindings that make up the in
ternal structure of the composite constraint block.

The frame of the parametric diagram in Figure 9.4 represents the
Transfer Time Analysis block (which appears on the BDD in Figure 9.2).
The name of this diagram is “Constraint ParameterValue Property
Bindings.” Again, this name specifies the focus and purpose of this dia
gram: displaying the constraint property owned by the Transfer Time
Analysis block and the bindings between its constraint parameters and
the value properties that supply values to them.

9.5 Constraint Properties

In Chapter 3 you learned that a constraint property is a usage of a con
straint block in the context of some owning block. This is equivalent to
saying that a constraint property is typed by a constraint block that
you’ve defined somewhere in your model.

On a BDD, a constraint property can be displayed as a string in the
constraints compartment of the owning block. You can also display it
in the form of a role name on the part end of a composite association
relationship (where the element at the part end is the constraint block
that types the constraint property). I use the constraints compartment
notation in Figure 9.1, and I use the role name notation in Figures 9.1
and 9.2.

On a parametric diagram, however, a constraint property is dis
played as a roundangle. The format of the name string that appears
inside the roundangle is the same as the format of the string in the
constraints compartment:

<constraint name> : <type>

The constraint name is modeler defined. The type of a constraint
property must be a constraint block.

When a given constraint property appears on both a BDD and a
parametric diagram, the appearance of that constraint property in each
of those views must be consistent in name, type, and the set of owned
constraint parameters. For example, the constraint property tos appears
on the BDD in Figure 9.1 and on the parametric diagram in Figure 9.3.
Both views of tos convey that it is a usage of (that is, typed by) the

09_0321927866_Ch09.indd 185 Achorn International 10/18/2013 12:24AM

ptg11539604

9.7 Value Properties 185

Transfer Orbit Size constraint block. Both views also convey that tos
owns three constraint parameters. The constraint property ht, which
appears on the BDD in Figure 9.2 and on the parametric diagram in
Figure 9.4, provides another example of this correspondence between
views.

9.6 Constraint Parameters

As mentioned in Chapter 3, constraint parameter is the formal term for
a variable that appears in a constraint expression. On a BDD, a con
straint parameter can be displayed as a string in the parameters com
partment of the owning constraint block. On a parametric diagram, a
constraint parameter is displayed as a small square attached to the
boundary on the inside of a constraint property. A constraint parameter
can also be attached to the frame of a parametric diagram when the dia
gram represents a constraint block.

The format of the name string for a constraint parameter is the same
on both a BDD and a parametric diagram:

<parameter name> : <type> [<multiplicity>]

The parameter name is modeler defined. The type is almost always
a value type that you’ve defined somewhere in your model. (SysML
allows for a constraint parameter to be typed by a block, but the mean
ing of this is poorly defined, and modelers rarely do it in daily prac
tice.) The multiplicity represents a constraint on the number of values
of the specified type that the constraint parameter can hold. The default
multiplicity, if not shown, is 1..1.

I mention in Section 9.5, “Constraint Properties,” that the appear
ances of a constraint property on a BDD and on a parametric diagram
must be consistent. Similarly, the appearance of the name strings for
the constraint parameters must be consistent in both of these views of
the model.

9.7 Value Properties

A value property is a usage of a value type in the context of an owning
block. This is equivalent to saying that a value property is typed by a
value type that you’ve defined somewhere in your model. A value

09_0321927866_Ch09.indd 184 Achorn International 10/18/2013 12:24AM

ptg11539604

 Parametric Diagrams186

property could represent a quantitative characteristic of a block as well
as a Boolean value or a string. Value properties matter in the context of
a parametric model, because they supply values to constraint parame
ters so that you (or an equationsolving tool) can evaluate constraint
expressions.

On a BDD, a value property is displayed as a string in the values
compartment of the owning block. On a parametric diagram (one that
represents a block), a value property is displayed as a rectangle with a
solid boundary. (You wouldn’t display a value property on a paramet
ric diagram that represents a constraint block, because constraint blocks
can’t own value properties.)

The format of the name string that appears inside the rectangle on
the parametric diagram is the same as the format of the string in the
values compartment:

<value name> : <type> [<multiplicity>] = <default value>

The value name is modeler defined. The type, again, must be a value
type that you’ve defined somewhere in your model. The multiplicity
means the same thing that it does in Section 9.6, “Constraint Parame
ters.” The default value is an optional piece of information; when shown,
it represents the specific value assigned to the value property before any
other value gets assigned during system operation (or at analysis time).

When a value property is owned by the block that’s named in the
parametric diagram header, the rectangle notation for that value prop
erty floats somewhere inside the diagram frame. Stated more precisely,
the diagram frame itself is the boundary that encapsulates the value
property. For example, the BDD in Figure 9.2 conveys that the Transfer
Time Analysis block owns a value property named timeOfFlight. The
parametric diagram in Figure 9.4 represents the Transfer Time Analysis
block. The timeOfFlight value property therefore appears nested within
the diagram frame; it’s not encapsulated by any other boundary.

The value properties that supply values to constraint parameters
do not necessarily have to be owned by the block that’s named in the
parametric diagram header; they may be owned instead by that block’s
part properties and reference properties. In fact, the value properties of
interest may be deeply nested within the block’s structure.

You can display a deeply nested value property on a parametric
diagram by using either dot notation or nesting notation. (I discuss
both notations in detail in Chapter 4, “Internal Block Diagrams,” in the
context of IBDs.) On the parametric diagram shown in Figure 9.4, I use
dot notation to display the orderedOrbitRadius value property, and I use

09_0321927866_Ch09.indd 187 Achorn International 10/18/2013 12:24AM

ptg11539604

9.8 Binding Connectors 187

nesting notation to display the gravitationalParameter and currentOrbit
Radius value properties.

When you use dot notation, the rectangle for the value property is
nested within the diagram frame; it does not appear encapsulated by
any other boundary. However, the string within the rectangle conveys
that the value property is, in fact, deeply nested. The dot notation string
contains the names of all the part properties (and reference properties)
in the hierarchy, down to the name of the value property itself. The
type of the value property appears after a colon at the end of the string.

Note
Be aware that dot notation allows you to display only the names of the part prop-
erties and reference properties in the hierarchy and not their types. If your target
audience needs to see that information on the parametric diagram, then you
should use nesting notation instead.

When you use nesting notation, the value property appears encap
sulated by the boundary of the part property or reference property that
owns it. Recall from Chapter 4 that a part property is displayed as a
rectangle with a solid boundary; a reference property is displayed as a
rectangle with a dashed boundary.

The BDD in Figure 9.2 conveys that the Transfer Time Analysis block
has a reference property named systemOfInterest (of type DellSat77 Sat
ellite), which in turn owns a part property named aocs (of type Attitude
and Orbit Control Subsystem), which in turn owns a value property
named currentOrbitRadius (of type km). The parametric diagram in Fig
ure 9.4 therefore displays systemOfInterest with a dashed boundary and
aocs with a solid boundary. The value property currentOrbitRadius ap
pears nested within its owner, aocs.

You likely noticed that the notations for a value property and a part
property are the same: a rectangle with a solid boundary. This may
strike you as ambiguous. However, there is a way to definitively distin
guish one from the other: Value properties get bound to constraint pa
rameters, and part properties do not.

9.8 Binding Connectors

I’ve used the terms bound and binding repeatedly throughout this chap
ter. This word choice is not arbitrary. SysML defines a special kind of

09_0321927866_Ch09.indd 186 Achorn International 10/18/2013 12:24AM

ptg11539604

 Parametric Diagrams188

connector called a binding connector, which simply represents an
equality relationship between the two elements attached at either end.
One of those two bound elements must be a constraint parameter. The
other bound element can be either a value property or another con
straint parameter (in a different constraint expression).

A binding connector can appear only on a parametric diagram. The
notation for a binding connector is a solid line attached to the bounda
ries of the two bound elements. All the connectors on the parametric
diagrams in Figures 9.3 and 9.4 are binding connectors.

Note that binding connectors convey no notion of direction. When
a value is assigned to a value property—during either system opera
tion or analysis execution time—the constraint parameter at the other
end of the binding connector instantaneously assumes the same value.
That value is then available to the constraint property that owns the
constraint parameter, and one of two things can happen:

•	 The constraint property evaluates to true or false (if values are
supplied to all of the parameters in the expression).

•	 A value is calculated for the constraint parameter that didn’t
receive a value across its binding connector (if values are sup
plied to all of the others).

This implies a more general point: Constraint properties are non
causal; no constraint parameter in the expression is assumed ahead of
time to be the dependent variable. And this is true even if the constraint
expression is written with a variable isolated on one side. The depen
dent variable can change in each analysis run based on which value
properties receive assignments.

Summary

A parametric diagram expresses a set of constraints—generally, equa
tions and inequalities—that determine the values that are valid in a
system that’s operating nominally. A parametric diagram is the only
one of the nine kinds of SysML diagrams that can convey this aspect of
a system’s design. Not all modeling teams need to create a mathemati
cal model of a system to fulfill the model’s purpose defined in the proj
ect plan. For those that do, the parametric diagram is an essential me
dium for communicating this kind of information to stakeholders.

ptg11539604

189

Chapter 10

Package Diagrams

You can display various kinds of elements and relationships on a pack-
age diagram to express information about the structure of a system
model. To correctly interpret (and create) package diagrams, you need
to understand the concept of namespace containment as well as the
various notations that you can use to convey namespace containment
on diagrams. There are four specialized kinds of packages, each with
its own purpose, and certain kinds of dependencies can exist among
them. You need to know the similarities and differences between a
package diagram and a BDD to determine which one is best depending
on where you want the focus to be.

10.1 Purpose

A package diagram is the kind of diagram you create when you need
to display the organization of the system model. The organization of
the system model is determined by the package hierarchy you create to
partition the elements in the model into logically cohesive groups.
There is no one right way to structure your system model. Different
methodologies propose various model structures, and they will be
more or less effective for your team depending on your project’s unique
goals.

Once you decide on an effective model structure for your project—
and it may take several iterations—it’s useful to create package dia-
grams to provide your stakeholders an easily understood view of that

ptg11539604

 Package Diagrams190

structure. Package diagrams can display packages nested within pack-
ages to convey the containment hierarchy of the model.

10.2 When Should You Create a Package Diagram?

Package diagrams convey information about the structure of the model
itself. You would therefore create new package diagrams when you
modify the model structure in significant ways (as determined by the
concerns of your stakeholders). You’ll create many new packages (and
many new package diagrams) at the beginning of your project when
you first create the model structure. And, of course, the design of the
model structure—like the design of your system’s structure—will
evolve over time.

As the design stage of the life cycle progresses, you will decompose
higher-level structural elements into lower-level structural elements.
It’s typical to add new packages to the model structure to contain those
new, lower-level structural elements. When you do, you will also create
new package diagrams at that time.

10.3 The Package Diagram Frame

The diagram kind abbreviation for a package diagram is pkg. The model
element type that the diagram frame represents can be any of the
following:

•	 package
•	 model
•	 modelLibrary
•	 view
•	 profile

As I discussed in Section 2.4, “General Diagram Concepts,” the
model element that’s named in the diagram header serves as the name-
space for the elements shown on the diagram. I mention in Chapter 3,
“Block Definition Diagrams,” that a namespace is simply a model ele-
ment that’s allowed to contain other named elements. To state this dif-
ferently, a namespace can have named elements nested under it within
the model hierarchy. A namespace, therefore, is a concept that has

10_0321927866_Ch10.indd 191 Achorn International 10/18/2013 12:25AM

ptg11539604

10.4 Notations for Namespace Containment 191

meaning only within your system model and not within an instance of
your system.

The package diagram shown in Figure 10.1 represents the model
named DellSat-77 System Model. A model is one of four specialized
kinds of packages; it’s the kind of package that serves as the root of a
containment hierarchy. Therefore, it’s also correct to say that the pack-
age diagram in Figure 10.1 represents the package named DellSat-77 Sys-
tem Model. And this package serves as the default namespace for the
elements shown on the diagram.

10.4 Notations for Namespace Containment

That term default namespace merits elaboration. It’s correct to conclude
that the package named in the diagram header is the owner (the con-
tainer) of the elements shown in the contents area—unless another
namespace containment relationship is explicitly shown on the dia-
gram. SysML provides three notations to explicitly convey namespace
containment: crosshair notation, nesting notation, and qualified name

Figure 10.1 A sample package diagram

10_0321927866_Ch10.indd 190 Achorn International 10/18/2013 12:25AM

ptg11539604

 Package Diagrams192

string notation. The presence of these notations on the diagram over-
rides the default namespace shown in the diagram header.

The notation for a package is a folder symbol—a rectangle with a
tab on the upper-left side. Figure 10.1 shows seventeen packages that
exist somewhere in the system model. Six of those seventeen packages
(Test Cases, Requirements, Satellite Constraints, Value Types, Behavior, and
Domain) are contained within the default namespace, the DellSat-77
System Model package. The other eleven packages are not contained
within the default namespace; in each case, one of the three namespace
containment notations is used to override the default namespace.

The crosshair notation appears as a solid line with a circled plus
sign on the namespace end of the relationship. I use this notation to
convey that the Structure package is contained within the Domain pack-
age (instead of the default namespace for this diagram).

The next notation for namespace containment is the nesting nota-
tion. I used this notation to convey that the Behavior package contains
the three use case packages. Similarly, I used nesting to convey that the
Structure package contains the five subsystem packages as well as the
Sensor Library package.

Note
I could have used the crosshair notation again to express these same relation-
ships. The decision to use the crosshair notation or the nesting notation is purely
a stylistic choice. Note, however, that when you choose to use the nesting nota-
tion, SysML requires that you display the name of the parent package in the tab
of the folder symbol, as shown in Figure 10.1.

The final notation for namespace containment—the qualified name
string notation—is the most space-efficient notation. The string
Domain::Actors in Figure 10.1 is an example of a qualified name string.
The element being named—the Actors package—is at the end of the
string. The double colon in the string conveys that the Actors package
is contained within the Domain package.

A qualified name string can, of course, be arbitrarily long to specify
multiple levels of containment down to an element that is deeply nested
within the system model. And even though I am discussing qualified
name strings in the context of packages, note that you can use a quali-
fied name string for any element to precisely specify its location in the
model hierarchy, no matter which diagrams it appears on.

10_0321927866_Ch10.indd 193 Achorn International 10/18/2013 12:25AM

ptg11539604

10.6 Importing Packages 193

If a qualified name string begins with the name of the model itself
(e.g., DellSat-77 System Model::Domain::Actors), we refer to it as a fully
qualified name. If a qualified name string does not begin with the name
of the model (e.g., Domain::Actors), we refer to it as a relative qualified
name; the path down to the element named at the end of the string is
relative to (begins with) the element named in the diagram header.
Based on this, you can conclude from Figure 10.1 that the Actors pack-
age is contained within the Domain package, which is, in turn, con-
tained within the DellSat-77 System Model package.

I could have used the crosshair notation or the nesting notation to
express the relationship between the Domain package and the Actors
package. Modelers generally use the qualified name string notation
only when the element’s owner is not shown on the same diagram.

10.5 Dependencies between Packages

Figure 10.1 shows three dependencies—the dashed lines with open ar-
rowheads—drawn between packages. I discuss dependencies in detail
in Section 3.7, “Dependencies,” in the context of BDDs. Dependencies
mean the same thing here: A change in the supplier element (at the
arrowhead end) may result in a change to the client element (at the
tail end).

The package diagram shown in Figure 10.1 conveys that a change
to the contents of the Requirements package may result in a change to
the contents of the Test Cases, Behavior, and Structure packages. Display-
ing the full set of dependencies among the packages shown on this dia-
gram would make the diagram unreadable. I chose to display these
three dependencies to demonstrate that you can use this relationship to
relate packages, too. SysML, in fact, imposes no constraints on the
kinds of elements that can appear at either end of a dependency.

10.6 Importing Packages

When you create your model hierarchy, you will likely import pack-
ages (and their contents) into your system model from other models
and packages. You might do this to reuse model libraries that you cre-
ated earlier in other models. Or you might do it to vertically or horizon-
tally integrate a set of models that you’ve decentralized (for example,

10_0321927866_Ch10.indd 192 Achorn International 10/18/2013 12:25AM

ptg11539604

 Package Diagrams194

integrating a system architectural model with a set of subsystem archi-
tectural models).

SysML provides a mechanism on package diagrams to convey that
one package imports the contents of another. The relationship is intui-
tively called a package import relationship. The notation for this rela-
tionship is a dashed line with an open arrowhead with the keyword
«import» hovering near the line.

An example of this relationship is shown in Figure 10.2. This pack-
age diagram fragment conveys that the Value Types package in the
DellSat-77 System Model package imports the contents of the Value Types
package contained within the Libraries package. (The Libraries package
could be a separate model entirely, although that’s not clear from this
diagram fragment.)

All commercial-grade SysML modeling tools provide package im-
port functionality, and you will perform this operation often in the
early stages of design. With that said, I do not recommend spending
your time creating package diagrams to display that you’ve performed
this operation. It’s more important to create package diagrams that ex-
press the finished model hierarchy than it is to create diagrams that
express where each piece of that hierarchy came from.

Next, let’s look at specific reasons for importing packages in the
context of the various specialized kinds of packages.

10.7 Specialized Packages

As mentioned earlier, a package is simply a container for a set of named
elements, some of which may be other packages. It’s a mechanism for
partitioning the elements in your system model into logically cohesive
groups. SysML defines four specialized kinds of packages: model,
model library, profile, and view. Each has a distinct purpose beyond its
basic function as a container.

Figure 10.2 Package import relationship

10_0321927866_Ch10.indd 195 Achorn International 10/18/2013 12:25AM

ptg11539604

10.7 Specialized Packages 195

10.7.1 Models

A model is a kind of package that serves as the root of a containment
hierarchy. This is equivalent to saying that it’s the top-level package in
a hierarchy. The notation for a model is the same as the one for a pack-
age—a folder symbol—but a model must have either the keyword
«model» preceding the name or a small triangle in the upper-right cor-
ner of the folder symbol.

10.7.2 Model Libraries

A model library is a kind of package that contains a set of elements you
intend to reuse in multiple models. The notation for a model library is
the same as the one for a package—a folder symbol—but it must have
the keyword «modelLibrary» displayed above the name.

You need not create any particular package as a model library; com-
mon examples of model libraries include ones for value types and con-
straint blocks. You might also create model libraries to contain the defi-
nitions (blocks) for low-level hardware and software components that
are common to many kinds of systems, such as items on an approved
parts list (APL), sensors, operating system libraries, and programming
language libraries.

Your project team will cumulatively develop a set of model librar-
ies over time. I recommend that you diligently archive all your model
libraries within a separate model dedicated to that purpose (a Libraries
model). You can then import model libraries as needed from that model
into the various system models you create.

10.7.3 Profiles

A profile is a kind of package that contains a set of stereotypes. A ste-
reotype defines a new kind of model element by adding properties,
constraints, or semantics to an existing kind of model element. When
you create a profile—a package of stereotypes—you are, in effect, de-
fining a new modeling language that is an extension of an existing
modeling language.

You can then apply a profile to a package, model, or model library.
This means that the package is allowed to contain the new kinds of
model elements that exist in the modeling language defined by that
profile. The package diagram in Figure 10.3 shows that the model Reli-
ability Markov Model applies the SysML4Modelica profile. This conveys

10_0321927866_Ch10.indd 194 Achorn International 10/18/2013 12:25AM

ptg11539604

 Package Diagrams196

that Reliability Markov Model can contain the new kinds of model ele-
ments defined in the SysML4Modelica modeling language.

Creating new profiles and stereotypes is an advanced modeling
practice that you will not engage in on a daily basis. To gain a deeper
understanding of these concepts, I refer you to the excellent book A
Practical Guide to SysML: The Systems Modeling Language by Sanford
Friedenthal, Alan Moore, and Rick Steiner.

10.7.4 Views

A view is a kind of package that contains a filtered subset of a model. It
is a package that selectively imports other packages, elements, and dia-
grams in the system model that together represent an aspect of the
model that is of interest to a particular set of stakeholders.

In formal terms, a view conforms to a defined viewpoint. A view-
point is a model element that contains five properties: stakeholders, con-
cerns, purpose, languages, and methods. The stakeholders property is a string
that lists the stakeholders that would find this viewpoint relevant to
their concerns. The concerns property is a string that expresses the stake-
holder questions that will be answered by the elements and diagrams
contained within a conforming view. The purpose property is a string
that specifies the reason you’re defining this viewpoint. The languages
property is a string that lists the modeling languages that will be used in
a conforming view. The methods property is a string that specifies the set
of rules that you (or the modeling tool) will follow to construct a con-
forming view.

If you intend to build a conforming view yourself (by manually
performing package import operations), then your methods string can
be a phrase or sentence expressed in an informal natural language
(such as English). If you intend to have your SysML modeling tool con-
struct a conforming view in an automated way, then your methods
string will have to be a set of statements expressed in a formal query
language that is supported by that tool.

The package diagram in Figure 10.3 displays a viewpoint, Reliabil-
ity Viewpoint, with values specified for its five properties that together
define a particular aspect of the system model that is relevant to the
listed stakeholders. This diagram also displays the view (Reliability
View) that conforms to that viewpoint.

A «conform» relationship is simply a special kind of dependency—
a dashed line with an open arrowhead—drawn from the view to the
viewpoint. This relationship conveys that Reliability View is a view—a

10_0321927866_Ch10.indd 197 Achorn International 10/18/2013 12:25AM

ptg11539604

10.7 Specialized Packages 197

Figure 10.3 A viewpoint and a conforming view

special kind of package—that is constructed according to the rules
listed in the methods property of Reliability Viewpoint; “constructed” in
this context means that Reliability View imports other packages (and
their elements and diagrams) to create a filtered subset of the system
model that together addresses the listed concerns of the applicable
stakeholders.

10_0321927866_Ch10.indd 196 Achorn International 10/18/2013 12:25AM

ptg11539604

 Package Diagrams198

You can, of course, create multiple viewpoints (and their conform-
ing views) for the various stakeholders on your project; you’re not lim-
ited to one. Creating views and viewpoints is a powerful capability that
allows you to capture all the details of the system design in a single
model repository while simultaneously enabling your stakeholders to
quickly navigate through the subset of the model they need to see to
get their questions answered.

10.8 Shades of Gray: Are You Looking at a Package
Diagram or a Block Definition Diagram?

Package diagrams can display packages as well as the elements they
contain: blocks, actors, value types, constraint blocks, interfaces, and
flow specifications. Block definition diagrams (BDDs) can display ele-
ments of definition—blocks, actors, value types, constraint blocks, in-
terfaces, and flow specifications—as well as the packages that contain
them.

You may wonder, then: What’s the real difference between package
diagrams and BDDs? Or to phrase the question in practical terms:
Which one should you create when you need to show packages as well
as the elements they contain on the same diagram?

My advice—not SysML law—is to create a BDD when you want the
primary focus of the diagram to be on the elements of definition and
the relationships between them; in contrast, create a package diagram
when you want the focus of the diagram to be on the packages and the
relationships between them. And even though it’s legal, I recommend
that you avoid displaying packages on BDDs. If you need to specify the
namespaces of the elements on the diagram, use qualified name strings
instead.

Summary

A package diagram expresses information about the structure of a sys-
tem model (a package containment hierarchy); this is in contrast to
BDDs and IBDs, which convey information about the structure of a
system you’re designing. Modelers often create package diagrams to
convey the logical groupings of model elements and to aid stakehold-

10_0321927866_Ch10.indd 199 Achorn International 10/18/2013 12:25AM

ptg11539604

Summary 199

ers in navigating the model structure when they need to locate particu-
lar elements.

There are four specialized kinds of packages defined in SysML. A
model is the kind of package that serves as the root of a containment
hierarchy. A model library is the kind of package that contains a set of
elements that you intend to reuse in multiple models. A profile is the
kind of package that contains a set of stereotypes—extensions to an
existing modeling language that define a new modeling language that’s
better suited for a particular design domain. A view is the kind of pack-
age that contains a filtered subset of a model—a subset that conforms
to a defined viewpoint and addresses specific stakeholder concerns.
You can create package diagrams to display these specialized kinds of
packages and the dependencies that exist among them.

10_0321927866_Ch10.indd 198 Achorn International 10/18/2013 12:25AM

ptg11539604

This page intentionally left blank

ptg11539604

201

Chapter 11

Requirements
Diagrams

Another essential kind of SysML diagram is the requirements diagram.
Modelers typically use six kinds of relationships to establish traceabil-
ity among requirements as well as traceability from requirements to
structures and behaviors in the system model. You can use several no-
tations on requirements diagrams to express these relationships, and
each has strengths and weaknesses.

A system’s requirements inform every other aspect of its design.
The requirements diagram is the primary medium in SysML for con-
veying this kind of information to your stakeholders.

11.1 Purpose

Text-based requirements (and the requirements specifications that
contain them) have traditionally been staples in systems engineering.
This is not to imply that all methodologies require text-based require-
ments or that your project team must create them. An increasingly
widespread technique is to create use cases (and their associated use
case narratives) in lieu of text-based functional requirements, and con-
straint expressions in lieu of text-based nonfunctional requirements. If
your project team does write text-based requirements, however, the re-
quirements diagram is the kind of SysML diagram you would create

ptg11539604

 Requirements Diagrams202

when you need to display those requirements and their relationships to
other model elements.

This diagram is particularly valuable when your target audience
needs to see the traceability from the requirements to the elements in
your system model that are dependent on them. SysML imposes no
constraints on what those dependent elements may be. The most com-
mon kinds include blocks, use cases, test cases, and other requirements.

11.2 When Should You Create a
Requirements Diagram?

As you add new elements to the model, you will create relationships
from those elements back to the requirements that drove the need for
their creation. Establishing requirements traceability in this manner is
an ongoing activity throughout design and development. And you
may need to create a requirements diagram to display those relation-
ships at any point during this work.

11.3 The Requirements Diagram Frame

The diagram kind abbreviation for a requirements diagram is req. The
model element type that the diagram frame represents can be any of
the following:

•	 package
•	 model
•	 modelLibrary
•	 view
•	 requirement

The model element that’s named in the diagram header is the de-
fault namespace for the elements shown in the contents area. You know
from earlier chapters that a namespace is simply a model element that’s
allowed to contain other named elements. This means that a name-
space can have named elements nested under it in the model hierarchy.
As before, a namespace is a concept that has meaning only within your
system model and not in an instance of your system.

11_0321927866_Ch11.indd 203 Achorn International 10/18/2013 12:26AM

ptg11539604

11.3 The Requirements Diagram Frame 203

Figure 11.1 A sample requirements diagram

The requirements diagram in Figure 11.1 is named “Hohmann
Transfer Requirement Traceability.” This diagram represents the Re-
quirements package that exists somewhere in the system model. The
Requirements package therefore is the default namespace for the ele-
ments shown in the contents area.

Recall from Chapter 10, “Package Diagrams,” however, that SysML
provides three notations to explicitly convey namespace containment,
and these notations (crosshair notation, nesting notation, and qualified
name string notation) override the default namespace. Two of these
notations—crosshair notation and qualified name string notation—are
legal on a requirements diagram as well.

In the sections that follow I discuss in detail the elements shown
on this diagram and the relationships between them. Spend a few

11_0321927866_Ch11.indd 202 Achorn International 10/18/2013 12:26AM

ptg11539604

 Requirements Diagrams204

moments now focusing on how I used the crosshair notation and the
qualified name string notation in Figure 11.1 to specify where each of
these elements is located in the model hierarchy. You will see that only
two elements on this diagram—Mission Requirements Specification and
DellSat-77 System Requirements Specification—are contained within the
default namespace, the Requirements package. All the other elements
shown are nested elsewhere in the model hierarchy.

11.4 Requirements

The notation for a requirement is a rectangle with the stereotype «re-
quirement» preceding the name. A requirement has two properties—id
and text—both of type String. Those strings are entirely user defined;
SysML imposes no constraints on what they can be. (I refer you, though,
to the INCOSE Systems Engineering Handbook for authoritative guide-
lines on how to write good text requirements.)

SysML does not dictate precisely what a requirement represents. It
is legal for a single requirement in your model to represent an atomic
requirement, a compound requirement, or an entire requirements spec-
ification. This decision is a matter of methodology. Your team should
have a modeling standards and conventions document that captures
this decision so that all members of the team are modeling consistently.

The requirements diagram in Figure 11.1 displays five requirements.
Three of those—Hohmann Transfer, Thruster Burn, and Altimetry—repre-
sent atomic requirements. The other two—Mission Requirements Specifi-
cation and DellSat-77 System Requirements Specification—represent entire
requirements specifications (as their names imply).

If your team chooses to adopt the convention of using a require-
ment to represent an entire specification, I strongly recommend adopt-
ing the practice of naming the element appropriately to convey that
information to your reader. A common alternative practice is to use a
package to represent a requirements specification. In fact, most model-
ing tools do this by default when you import a requirements specifica-
tion into your system model.

As mentioned, SysML requirements have only two properties: id
and text. In daily practice, though, requirements commonly have other
properties that you care about (such as rationale, priority, verification
method, criticality). SysML does not define these properties for require-
ments, because they vary from organization to organization. You can,

11_0321927866_Ch11.indd 205 Achorn International 10/18/2013 12:26AM

ptg11539604

11.5 Requirements Relationships 205

of course, define your own custom stereotype that specializes the pre-
defined «requirement» stereotype and adds any additional properties
your team may need. However, this is an advanced technique that goes
beyond the scope of this book. A Practical Guide to SysML: The Systems
Modeling Language, by Sanford Friedenthal, Alan Moore, and Rick
Steiner, offers a comprehensive discussion of this topic.

Although SysML does not define a rationale property for require-
ments, it does define an alternative mechanism for documenting ra-
tionale. I provide a concrete example of this mechanism in Section 11.7,
“Rationale.”

11.5 Requirements Relationships

Capturing requirements in your system model is useful. However, the
greater value lies in the relationships you create among the require-
ments and other model elements. There are six kinds of requirements
relationships that you’re likely to use in your modeling work: contain-
ment, trace, derive requirement, refine, satisfy, and verify.

Note
SysML defines a seventh requirement relationship—the copy relationship—but
you’ll rarely use it in daily practice.

These relationships establish requirements traceability within the
system model, which is commonly a process requirement in systems
engineering organizations. Practically speaking, however, capturing
these relationships in your model will enable you to use your modeling
tool to autogenerate requirement traceability and verification matrices
(RTVMs) and perform automated downstream impact analysis when
the requirements change (as they inevitably will). These capabilities are
huge time-savers, and that directly translates into cost savings.

11.5.1 Containment Relationships

I discuss the concept of containment extensively in Chapter 10. I state
that a package is a kind of namespace; it can contain other named ele-
ments within the model hierarchy. A requirement is also a kind of

11_0321927866_Ch11.indd 204 Achorn International 10/18/2013 12:26AM

ptg11539604

 Requirements Diagrams206

namespace; it, too, can contain other named elements within the model
hierarchy. But it has a constraint that a package doesn’t have: A require-
ment can contain only other requirements.

Chapter 10 also introduces the three notations you can use to con-
vey namespace containment: crosshair notation, nesting notation, and
qualified name string notation. In Section 11.3, “The Requirements Dia-
gram Frame,” I mention that you can use two of these notations—cross-
hair notation and qualified name string notation—to relate require-
ments. (Requirements do not have a graphical compartment, so the
nesting notation is not an option.)

I use the crosshair notation in Figure 11.1 to convey that the
DellSat-77 System Requirements Specification element contains the Hoh-
mann Transfer requirement. I use the qualified name string notation to
convey that the Propulsion Subsystem Requirements Specification element
contains the Thruster Burn requirement. Similarly, a qualified name
string conveys that the Sensor Payload Requirements Specification element
contains the Altimetry requirement.

Those two qualified name strings do not begin with the name of the
model. We therefore refer to them as relative qualified name strings; the
path begins with the default namespace for this diagram: the Require-
ments package.

In contrast, the test case, use case, and block that are shown on this
diagram display qualified name strings that do begin with the name of
the model; we refer to those as fully qualified name strings. (I discuss
these three elements in more detail in the context of the other require-
ments relationships shortly.)

11.5.2 Trace Relationships

Formally, the trace relationship is a kind of dependency. The notation
for a trace relationship is the same as the one for a dependency—a
dashed line with an open arrowhead—except that it has the «trace»
stereotype applied to it.

I use the trace relationship in Figure 11.1 to convey that the DellSat-77
System Requirements Specification traces back to the Mission Requirements
Specification. The trace relationship, however, is a weak relationship. It
conveys nothing more than a basic dependency would: A modification
to the supplier element (at the arrowhead end) may result in the need to
modify the client element (at the tail end).

The trace relationship is still useful insofar as a modeling tool can
navigate that relationship to autogenerate an RTVM or perform auto-

11_0321927866_Ch11.indd 207 Achorn International 10/18/2013 12:26AM

ptg11539604

11.5 Requirements Relationships 207

mated downstream impact analysis. In your daily practice, however, I
recommend that you instead use one of the other (more meaningful)
requirements relationships discussed shortly.

11.5.3 Derive Requirement Relationships

A derive requirement relationship is another kind of dependency. The
notation for a derive requirement relationship is therefore the same as
the one for a dependency, but it has the «deriveReqt» stereotype ap-
plied to it. This relationship must have a requirement at both the client
and the supplier ends. The derive requirement relationship conveys
that the requirement at the client end is derived from the requirement
at the supplier end.

The requirements diagram in Figure 11.1 displays two derive re-
quirement relationships. This model conveys that the Thruster Burn and
Altimetry requirements are derived from the Hohmann Transfer require-
ment. Thruster Burn and Altimetry are the client elements in the rela-
tionships shown; Hohmann Transfer is the supplier.

It’s entirely legal to have multiple levels of derivation. And de-
pendencies are transitive. Therefore, if a primary requirement changes,
the downstream impact may ripple through the entire chain of derive
requirement relationships.

It’s also important to note that a derived requirement does not need
to be contained in the same namespace as its supplier; it may be nested
elsewhere in the model hierarchy. That’s the case in the model shown
in Figure 11.1 (as conveyed by the containment relationship notations).

11.5.4 Refine Relationships

A refine relationship is another kind of dependency. The notation for
a refine relationship is the same as the one for a dependency, but with
the «refine» stereotype applied to it. A refine relationship conveys that
the element at the client end is more concrete (i.e., less abstract) than the
element at the supplier end.

SysML imposes no constraints on the kinds of elements that can
appear at either end of a refine relationship. The common convention,
however, is to refine a textual, functional requirement by using a use
case. A use case—more precisely, its accompanying specification—pro-
vides detail and clarity that a text requirement by itself cannot express.

The requirements diagram in Figure 11.1 conveys that the Measure
altitude use case refines the Altimetry requirement. The text use case

11_0321927866_Ch11.indd 206 Achorn International 10/18/2013 12:26AM

ptg11539604

 Requirements Diagrams208

specification (or the activity diagram) that accompanies the use case
contains a detailed sequence of steps that specifies the required behav-
ior of the system more precisely than the Altimetry requirement does by
itself.

11.5.5 Satisfy Relationships

A satisfy relationship is another kind of dependency. The notation for
a satisfy relationship is the same as the one for a dependency, but with
the «satisfy» stereotype applied to it. This relationship must have a re-
quirement at the supplier end. SysML imposes no constraints on the
kind of element that can appear at the client end. By convention, how-
ever, the client element is always a block.

The requirements diagram in Figure 11.1 conveys that the Micro-
cosm Autonomous Navigation System (MANS) block satisfies the Altime-
try requirement. The satisfy relationship is an assertion that an instance
of the block at the client end will fulfill the requirement at the supplier
end.

An important point, however, is that an assertion doesn’t constitute
proof. The satisfy relationship is simply a mechanism to allocate a re-
quirement to a structure. The proof of that satisfaction will come from
test cases.

11.5.6 Verify Relationships

A verify relationship is another kind of dependency. The notation for
a verify relationship is the same as the one for a dependency, but with
the «verify» stereotype applied to it. Like the satisfy relationship, the
verify relationship must have a requirement at the supplier end. SysML
imposes no constraints on the kind of element that can appear at the
client end. By convention, however, the client element is always a test
case.

A test case is simply a behavior that you define somewhere in your
model—one that you create for the purpose of invoking a particular
structure’s functionality to verify that it satisfies one or more of the re-
quirements allocated to it. A test case can be any one of the three kinds
of behaviors: activity, interaction, or state machine. However, a test
case is most often modeled as an interaction (and displayed on a se-
quence diagram).

The requirements diagram in Figure 11.1 conveys that the test case
named Hohmann Transfer Simulation, Main Success Scenario verifies the

11_0321927866_Ch11.indd 209 Achorn International 10/18/2013 12:26AM

ptg11539604

11.6 Notations for Requirements Relationships 209

Hohmann Transfer requirement. This test case is a behavior that, when
executed, will prove that the system implementation actually satisfies
the Hohmann Transfer requirement. (Of course, a system model typi-
cally contains many sets of test cases to fully verify all system and com-
ponent requirements.)

A comprehensive discussion of modeling test cases is beyond the
scope of this book. When you’re ready to expand your modeling reper-
toire into the testing domain, I recommend the excellent book Model-
Driven Testing: Using the UML Testing Profile by Paul Baker et al.

11.6 Notations for Requirements Relationships

SysML offers a variety of notations to display the requirements rela-
tionships on diagrams: direct notation, compartment notation, callout
notation, matrices, and tables. Each notation has pros and cons that
make it better suited than the others depending on your needs and
constraints. These notation options, however, are available only for the
dependency-based requirements relationships: trace, derive require-
ment, refine, satisfy, and verify. (The containment relationship is lim-
ited to the crosshair notation and qualified name string notation, which
I discuss earlier.)

11.6.1 Direct Notation

Direct notation refers to the dependency notation itself: a dashed line
with an open arrowhead, with a stereotype applied to it to convey the
specific relationship. There are several examples of this notation in Fig-
ure 11.1.

The advantage of this notation is that it puts the relationship itself
into focus on the diagram (because it takes up so much of the reader’s
visual field). And that, of course, is its disadvantage; it consumes a lot
of real estate on the diagram.

11.6.2 Compartment Notation

Any element that can display compartments (e.g., blocks, require-
ments, test cases) can use compartment notation to display require-
ments relationships. Each relationship appears in a separate compart-
ment. The compartment name specifies both the kind of relationship
and the direction with respect to the element at the other end.

11_0321927866_Ch11.indd 208 Achorn International 10/18/2013 12:26AM

ptg11539604

 Requirements Diagrams210

The advantage of this notation is that it’s more compact than direc-
tion notation and callout notation. Several requirements relationships
can be displayed, all within the boundary of a single element (as shown
in the Altimetry requirement in Figure 11.2). And each compartment
can list multiple elements, as long as they all participate in the kind of
relationship named in that compartment (as shown in the Hohmann
Transfer requirement in Figure 11.2). This notation option is a good
choice when you need to put the primary focus on the features of the
elements, with a secondary focus on their relationships.

The disadvantage of this notation is that it’s limited to the kinds of
elements that can display compartments. And even though it’s more
compact than direct notation and callout notation, it still consumes
more diagram real estate per relationship than do matrices and tables.

11.6.3 Callout Notation

Callout notation refers to a comment anchored to an element (see Fig-
ure 11.3). The contents of the callout notation are identical to the con-
tents of the compartment notation: It specifies the kind of relationship
and the direction with respect to the element at the other end. It then
specifies the kind and name of that element at the other end. Like a
single compartment, a single callout can list multiple elements if they
all participate in that same kind of relationship.

Figure 11.2 Displaying requirements relationships using compartment notation

11_0321927866_Ch11.indd 211 Achorn International 10/18/2013 12:26AM

ptg11539604

11.6 Notations for Requirements Relationships 211

The advantage of this notation is its versatility; a callout can be an-
chored to any kind of element on any kind of diagram. The disadvan-
tage is that it is the least space-efficient notation option.

11.6.4 Matrices

Matrices are a staple in systems engineering documentation. A matrix
is not a graphical notation (as most SysML notations are). However,
SysML supports matrix notation because it is simply the best mecha-
nism for expressing many relationships in the least amount of space.
The matrix shown in Figure 11.4 expresses all of the dependency-based
requirements relationships that are displayed in Figure 11.1.

Now that you know that SysML supports matrix notation for re-
quirements relationships, I caution you not to get attached to the par-
ticular format shown in Figure 11.4. Matrix format is not explicitly

Figure 11.3 Displaying requirements relationships using callout notation

Figure 11.4 Displaying requirements relationships using matrix notation

11_0321927866_Ch11.indd 210 Achorn International 10/18/2013 12:26AM

ptg11539604

 Requirements Diagrams212

defined in the SysML specification. Different modeling tools, therefore,
implement matrix notation in different ways.

Some tools, for example, name a specific kind of relationship in the
upper-left cell and show arrows in the cells at the intersections of rows
and columns to specify the direction of that relationship between a pair
of elements. This implementation is considerably less versatile than the
format shown in Figure 11.4 because a given matrix is limited to dis-
playing a single kind of relationship.

Matrix notation has two disadvantages to keep in mind when you
make your decision. It does not display the features of the elements—
only the relationships between them. And even though it’s very space
efficient and readable in your modeling tool (where the reader has
scroll bars), it becomes much less readable when the need arises to in-
sert it into printed documentation.

11.6.5 Tables

Tables, like matrices, are commonplace in systems engineering docu-
mentation. And like matrices, SysML supports tables because they are
a space-efficient mechanism for expressing a lot of information. Tables
are not quite as compact as matrices. However, table notation allows
you to display the properties of elements (e.g., id) as well as the rela-
tionships between them, as shown in Figure 11.5.

Another similarity between tables and matrices is that no particular
table format is defined in the SysML specification. The implementation

Figure 11.5 Displaying requirements relationships using table notation

11_0321927866_Ch11.indd 213 Achorn International 10/18/2013 12:26AM

ptg11539604

11.7 Rationale 213

of the table notation is left to the discretion of the various modeling tool
vendors.

Commercial-grade modeling tools let you define your own custom
table format, including the insertion of extra columns for any proper-
ties that you need to display. Keep in mind, however, that a table be-
comes cumbersome to read in printed documentation when its width
spans multiple pages.

11.7 Rationale

As mentioned earlier in Section 11.4, “Requirements,” a SysML require-
ment has two properties: id and text. The language, unfortunately, does
not define a “rationale” property for requirements. It does, however,
provide an alternative mechanism to document rationale in your
model—a mechanism that applies to all kinds of elements and relation-
ships, and not only requirements.

Rationale is captured in a SysML model as a specialized kind of
comment. Recall from Section 3.11, “Comments,” that the notation for
a comment is a note symbol—a rectangle with the upper-right corner
bent. The notation for a rationale element is simply a note symbol with
the stereotype «rationale» preceding the body of the comment, as
shown in Figure 11.6.

It is legal to attach a rationale to any kind of element and any kind
of relationship between two elements. However, you’re most likely to
use this feature of the language in the context of requirements and al-
locations (I talk about the latter in detail in the next chapter).

Figure 11.6 Capturing rationale in a SysML model

11_0321927866_Ch11.indd 212 Achorn International 10/18/2013 12:26AM

ptg11539604

 Requirements Diagrams214

Summary

A requirements diagram is the primary medium in SysML for commu-
nicating system requirements that are specified in text. Modelers com-
monly create requirements diagrams to convey traceability among re-
quirements and traceability from requirements to system structures
and behaviors.

Capturing this traceability within a SysML model enables you to
use a modeling tool to perform automated downstream impact analy-
sis—generating a targeted list of system structures and behaviors that
you may need to modify when the requirements they depend on change
over time. This capability significantly reduces the time and cost to im-
plement changes to a design over the course of the system life cycle.

ptg11539604

215

Chapter 12

Allocations:
Cross-Cutting
Relationships

A useful relationship in system design is the allocation relationship.
This relationship is not specific to any one of the nine kinds of SysML
diagrams. It’s a versatile relationship that you and your team can use in
various ways across all aspects of a system model.

I begin with a discussion of the conventional ways in which sys-
tems engineers have used allocations historically. Then I present sev-
eral notations that you can use on diagrams to express allocations
among model elements, and I discuss the strengths and weaknesses of
each option.

12.1 Purpose

Systems engineers often speak of allocations in the course of perform-
ing system design. The INCOSE Systems Engineering Handbook discusses
allocations in the following contexts: allocating requirements to struc-
tures, allocating behaviors to structures, allocating logical structures to
physical structures, and allocating resources to structures (e.g., mass,
power, cost, throughput).

ptg11539604

 Allocations: Cross-Cutting Relationships 216

SysML supports the concept of allocations, enabling you to capture
the results of allocation activities directly in your system model. Creat-
ing allocation relationships in your model ensures consistency in the
flow-down of design inputs from one architectural level to the next
and, more importantly, allows you to revisit those decisions efficiently
and systematically as the life cycle progresses.

12.2 There’s No Such Thing as an Allocation
Diagram

Allocations are commonly referred to as cross-cutting relationships. You
can create an allocation relationship between any two model elements,
no matter where they are contained within your system model or which
kinds of diagrams they appear on. An allocation relationship cuts across
the various aspects of your model: requirements, behaviors, structures,
and constraints. To facilitate this, SysML allows you to display alloca-
tion relationships on any of the nine kinds of SysML diagrams. There’s
no diagram kind devoted specifically to this relationship.

12.3 Uses for Allocation Relationships

The SysML specification does not define what any particular usage of
an allocation relationship actually means; it’s intentionally silent on
this point. The specification simply states the following:

The allocation relationship can provide an effective means for navi-
gating the model by establishing cross relationships, and ensuring the
various parts of the model are properly integrated. [SysML] does not
try to limit the use of the term “allocation,” but provides a basic capa-
bility to support allocation in the broadest sense.

This flexibility in the language gives you the freedom to use alloca-
tions in any way that is meaningful for your project team. The key word
there, of course, is meaningful.

The modeling methodology that your team adopts will specify
meaningful uses for allocations. These uses should be explicitly cap-
tured in your team’s modeling standards and conventions document to
ensure that all members of the team are using allocations consistently
in the system model.

12_0321927866_Ch12.indd 217 Achorn International 10/18/2013 12:27AM

ptg11539604

12.3 Uses for Allocation Relationships 217

In the remainder of this section, I discuss some common uses for
allocations and show concrete examples of this relationship. Keep in
mind, however, that the language does not specify any meaning for
these uses. These are simply conventional ways that systems engineers
use allocations.

12.3.1 Behavioral Allocation

Behavioral allocation (also known as functional allocation) refers gen-
erally to the activity of allocating a behavioral element to a structural
element. Most often, this takes one of two specific forms:

•	 Allocating an activity, an interaction, or a state machine behav-
ior to a block

•	 Allocating an action (in an activity) to a part property (owned
by a block)

The notation for an allocation relationship is the same as the one for
a dependency—a dashed line with an open arrowhead—but with the
«allocate» stereotype applied to it. The element being allocated appears
at the tail end of the line; the element receiving the allocation appears
at the arrowhead end of the line.

The BDD in Figure 12.1 conveys that the Measure altitude activity
and the Determine attitude activity are allocated to the Microcosm Au-
tonomous Navigation System (MANS) block. These relationships tell the
reader that all instances of this block will be able to perform these two
behaviors (for any client that requires them).

Figure 12.1 Allocations of activities to a block (behavioral allocation)

12_0321927866_Ch12.indd 216 Achorn International 10/18/2013 12:27AM

ptg11539604

 Allocations: Cross-Cutting Relationships 218

I provide a concrete example of the other form of behavioral alloca-
tion—actions to part properties—when I discuss allocation activity
partitions in Section 12.4.6, “Allocation Activity Partitions.”

12.3.2 Structural Allocation

Structural allocation refers to the activity of allocating a structural ele-
ment to another structural element. Common forms of structural allo-
cation include the following:

•	 Allocating a logical block to a physical block
•	 Allocating a software property to a hardware property

It’s a common technique in system design to define a logical system
architecture early in the life cycle to better understand what the system
must do and then later define one or more candidate physical architec-
tures that demonstrate how the system will do it. If your team has
adopted this methodology, you can use the SysML allocation relation-
ship to map elements in the logical architecture to their corresponding
elements in the physical architecture.

Specifying the deployment of software components to hardware
nodes is a common need in system development. UML offers a kind of
diagram—the deployment diagram—dedicated to this purpose; SysML
does not. Instead, you can use the allocation relationship to meet this
need in a SysML model.

The IBD in Figure 12.2 displays two allocation relationships from
software components to hardware nodes. Allocation relationships are

Figure 12.2 Allocation of software to hardware (structural allocation)

12_0321927866_Ch12.indd 219 Achorn International 10/18/2013 12:27AM

ptg11539604

12.4 Notations for Allocation Relationships 219

used in this context to convey the deployment of software in a distrib-
uted system.

The «software» and «hardware» stereotypes are not defined in
SysML; they are custom stereotypes that modeling teams commonly
define and apply to blocks, part properties, and reference properties to
clarify the nature of those elements. The allocations shown in Fig-
ure 12.2 are from reference properties to part properties—all of which
are structural elements. These allocations, therefore, are examples of
structural allocations.

12.3.3 Requirements Allocation

Requirements allocation—the activity of allocating requirements to
structures—is perhaps the most common form of allocation. Ironically,
you don’t use the SysML allocation relationship to perform requirements
allocation in a system model; instead, you use one of the requirements
relationships discussed in Chapter 11, “Requirements Diagrams”—
specifically, the «satisfy» relationship.

When you create a «satisfy» dependency from a block to a require-
ment, you’re asserting that all instances of that block will, in fact, sat-
isfy that requirement. You are, in effect, allocating that requirement to
that block. Take a look at Figure 11.1 to see a concrete example of this
relationship.

12.4 Notations for Allocation Relationships

All the notation options discussed in Chapter 11 are also available for
allocations: direct notation, compartment notation, callout notation,
matrices, and tables. And there’s one additional notation option that
you can use for allocations that you can’t use for the requirements rela-
tionships: allocation activity partitions.

12.4.1 Direct Notation

Direct notation refers to the notation shown in Figures 12.1 and 12.2.
This notation puts a strong focus on the relationship itself. However, its
use is limited to allocations between pairs of elements that you can le-
gally display on the same diagram. Given the nature of an allocation as
a cross-cutting relationship, that isn’t always the case.

12_0321927866_Ch12.indd 218 Achorn International 10/18/2013 12:27AM

ptg11539604

 Allocations: Cross-Cutting Relationships 220

12.4.2 Compartment Notation

You can use compartment notation with any kind of element that can
display compartments (e.g., blocks and activities on BDDs; part prop-
erties and reference properties on IBDs). The compartment name tells
the reader the direction of the allocation relationship. If the compart-
ment name is allocatedTo, then the elements listed in the compartment
are at the arrowhead end of the relationship (i.e., they are the targets of
the allocation). If the compartment name is allocatedFrom, then the ele-
ments listed in the compartment are at the tail end of the relationship
(i.e., they are the elements being allocated). Figure 12.3 provides an
example of compartment notation.

Compartment notation is more compact than direct notation or
callout notation. You can list multiple elements in a single compart-
ment (as long as they’re all at the same end of an allocation relationship
with respect to the element that owns the compartment).

The drawback to compartment notation is that its use is limited to
the kinds of elements that can display compartments (e.g., blocks, part
properties, activities). This notation is not an option for the kinds of ele-
ments that can’t display compartments (e.g., actors, item flows).

12.4.3 Callout Notation

As discussed in Chapter 11, callout notation is simply a comment (i.e.,
a note symbol) anchored to an element (see Figure 12.4). The contents
of the callout notation are identical to the contents of the compartment
notation: It specifies the direction of the allocation relationship and lists
the elements at the other end.

Callout notation is the most versatile notation option; a callout can
be anchored to any kind of element on any kind of diagram. However,
it’s the least space-efficient option.

Figure 12.3 Displaying allocation relationships using compartment notation

12_0321927866_Ch12.indd 221 Achorn International 10/18/2013 12:27AM

ptg11539604

12.4 Notations for Allocation Relationships 221

12.4.4 Matrices

A matrix is a traditional medium for expressing relationships in a sys-
tem design. SysML supports matrix notation because it’s the most effi-
cient way to express a large number of relationships in the least amount
of space.

I mention in Chapter 11 that the SysML specification does not ex-
plicitly define a format for matrix notation. Tool vendors are free to
implement matrix notation in their own way in their respective model-
ing tools. The format shown in Figure 12.5 will likely differ from what
you see in your particular modeling tool.

Matrix notation is very compact, but you should be aware of its
limitations. It can display the relationships between elements but not
the features of each element. It’s also difficult to preserve the readabil-
ity of a large matrix when you insert it into printed documentation.

12.4.5 Tables

A table is another traditional medium for expressing relationships in a
system design. Tables are not quite as compact as matrices. However,

Figure 12.4 Displaying allocation relationships using callout notation

Figure 12.5 Displaying allocation relationships using matrix notation

12_0321927866_Ch12.indd 220 Achorn International 10/18/2013 12:27AM

ptg11539604

 Allocations: Cross-Cutting Relationships 222

table notation lets you add multiple columns to display the features of
elements as well as the relationships between them (see Figure 12.6).

As with matrix notation, the SysML specification is silent on a for-
mat for table notation. The specific implementation of table notation is
again left to the discretion of tool vendors. Modeling tools typically
allow you to define your own custom table format, enabling you to add
as many columns as you need. However, a wide table will be difficult
to read when you insert it into printed documentation.

12.4.6 Allocation Activity Partitions

I discuss activity partitions in Chapter 6, “Activity Diagrams.” I state
that activity partitions are mechanisms for allocating behaviors to
structures. An allocation activity partition is an activity partition with
the «allocate» stereotype preceding the name in the header. The distinc-
tion between an activity partition with the «allocate» stereotype and
one without the stereotype is subtle and has no impact on your daily
modeling work; it would be perfectly fine if you and your team re-
garded all activity partitions as allocation activity partitions, whether
or not you’ve applied the stereotype.

An allocation activity partition is a space-efficient notation for con-
veying allocation relationships; you can express many allocations on a
single diagram. Its drawback, however, is its limited applicability. You
can use an allocation activity partition only on an activity diagram, and
you can use it only to perform one kind of allocation: behavioral alloca-
tion (an allocation of a behavioral element to a structural element).

With an allocation activity partition, the behavioral element that’s
getting allocated is always a node in an activity (most commonly, an

Figure 12.6 Displaying allocation relationships using table notation

12_0321927866_Ch12.indd 223 Achorn International 10/18/2013 12:27AM

ptg11539604

12.4 Notations for Allocation Relationships 223

action); the structural element that’s receiving the allocation—which is
named in the partition header—may be either a block or a part prop-
erty. If the structural element is a block, then the allocation applies to all
instances of that block. If the structural element is a part property, then
the allocation applies only to the set of instances that the part property
represents within a built system. (Recall from Chapter 3, “Block Defini-
tion Diagrams,” that the number of instances a part property can repre-
sent is specified by its multiplicity.)

Figure 12.7 Displaying allocation relationships using allocation activity partitions

12_0321927866_Ch12.indd 222 Achorn International 10/18/2013 12:27AM

ptg11539604

 Allocations: Cross-Cutting Relationships 224

Note
Although the language doesn’t require it, I recommend that you adopt the prac-
tice of having all partitions in a given activity represent either part properties or
blocks. Don’t mix the two.

Despite its limited applicability, an allocation activity partition is a
common and useful way to express behavioral allocations. It enhances
the narrative power of activity diagrams; stakeholders often value
knowing who or what performs each action and not only which actions
are performed.

Figure 12.7 shows an excerpt of the Change satellite attitude activity
that appears in Figure 6.25 in Chapter 6. This excerpt additionally
shows allocation activity partitions to convey which structures in the
system are responsible for each node in the activity. The fork node and
decision nodes are allocated to a part property that represents a reac-
tion wheel device driver. The actions are allocated to three part proper-
ties—x-axisMC, y-axisMC, and z-axisMC—which represent three dis-
tinct motor controllers that operate in parallel. The use of allocation
activity partitions here adds valuable structural information to the be-
havioral narrative conveyed by the activity diagram.

12.5 Rationale

In Chapters 3 and 11, I state that you can capture rationale in a SysML
model as a special kind of comment—a note symbol—with the stereo-
type «rationale» preceding the body of the comment. You can attach a
rationale to any kind of element or relationship in your system model.
It’s particularly useful, however, to attach a rationale to an allocation
relationship to document your reasoning for the allocation so that you
can revisit and reevaluate that decision later in the life cycle.

Summary

An allocation is a useful and versatile relationship that you can create
between any two model elements—no matter where they exist in a sys-
tem model or which diagrams they appear on. For this reason, we refer
to allocations as cross-cutting relationships.

12_0321927866_Ch12.indd 225 Achorn International 10/18/2013 12:27AM

ptg11539604

Summary 225

Systems engineers have traditionally used allocations for three spe-
cific purposes in system design—behavioral allocation, structural allo-
cation, and requirements allocation—as defined in the INCOSE Systems
Engineering Handbook. SysML itself, however, imposes no constraints
on how you can use this relationship in a system model; you are free to
define new uses for this relationship in any way that is meaningful for
you and your stakeholders.

12_0321927866_Ch12.indd 224 Achorn International 10/18/2013 12:27AM

ptg11539604

This page intentionally left blank

ptg11539604

227

Appendix A

SysML Notation
Desk Reference

This appendix provides a concise summary of the SysML graphical no-
tations covered in this book. The notations are presented in tables, or-
ganized by diagram kind. The order of the tables corresponds to the
order of the associated chapters in this book.

Each table has three columns: “Element Kind,” “Notation,” and
“Section.” The “Element Kind” column provides the formal name for
the kind of element shown in that row. The “Notation” column shows
the graphical representation of that kind of element. The “Section” col-
umn references the section number in the book where I discuss that
kind of element in detail.

ptg11539604

Appendix A SysML Notation Desk Reference228

Table A.1 Graphical Notations for Block Definition Diagrams (BDDs)

Element Kind Notation Section

Block 3.4

Actor 3.8

Flow
Specification

3.4.1.5

Constraint
Block

3.4.1.4,
3.10

13_0321927866_AppA.indd 229 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 229

Element Kind Notation Section

Interface 3.4.1.5

Signal 3.4.2.2

Standard Port
(with Provided
and Required
Interfaces)

3.4.1.5

Atomic Flow
Port

3.4.1.5

Nonatomic
Flow Port

3.4.1.5

Comment 3.11

Value Type 3.4.1.3,
3.9

Table A.1 (continued)

(continues)

13_0321927866_AppA.indd 228 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference230

Element Kind Notation Section

Enumeration 3.9

Reference
Association

3.5.1

Composite
Association

3.5.2

Generalization 3.6

Dependency 3.7

Table A.1 (continued)

13_0321927866_AppA.indd 231 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 231

Table A.2 Graphical Notations for Internal Block Diagrams (IBDs)

Element Kind Notation Section

Part Property 4.6,
4.10

Reference
Property

4.7,
4.10

Connector 4.8, 4.9,
4.10

Item Flow 4.9

13_0321927866_AppA.indd 230 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference232

Table A.3 Graphical Notations for Use Case Diagrams

Element Kind Notation Section

Use Case 5.5, 5.8

Actor 5.7, 5.8

System
Boundary (or
Subject)

5.6

Reference
Association

5.8

Generalization 5.5, 5.7

Include 5.10

Extend 5.11

13_0321927866_AppA.indd 233 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 233

Table A.4 Graphical Notations for Activity Diagrams

Element Kind Notation Section

Basic Action 6.5

Object Node 6.6,
6.6.3

Pin 6.6.1,
6.6.3

Activity
Parameter

6.6.2,
6.6.3

Object Flow 6.7.1

Control Flow 6.7.2

Call Behavior
Action

6.8.2

Send Signal
Action

6.8.3

(continues)

13_0321927866_AppA.indd 232 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference234

Element Kind Notation Section

Accept Event
Action

6.8.4

Wait Time
Action

6.8.4.1

Initial Node 6.9.1

Activity Final
Node

6.9.2

Flow Final
Node

6.9.2

Decision Node 6.9.3

Merge Node 6.9.4

Fork Node 6.9.5

Join Node 6.9.6

Activity
Partition

6.10

Table A.4 (continued)

13_0321927866_AppA.indd 235 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 235

Table A.5 Graphical Notations for Sequence Diagrams

Element Kind Notation Section

Lifeline 7.4

Asynchronous
Message

7.5.2.1

Synchronous
Message

7.5.2.1

Reply Message 7.5.2.3

Create
Message

7.5.2.4

Destruction
Occurence

7.6

Execution
Specification

7.7

Time
Constraint

7.8.1

(continues)

13_0321927866_AppA.indd 234 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference236

Element Kind Notation Section

Duration
Constraint

7.8.2

State Invariant 7.8.3

Combined
Fragment

7.9

Interaction
Use

7.10

Table A.5 (continued)

13_0321927866_AppA.indd 237 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 237

Table A.6 Graphical Notations for State Machine Diagrams

Element Kind Notation Section

Simple State 8.4.1

Composite
State

8.4.2

Final State 8.4.3

External
Transition

8.5,
8.5.2.1,
8.5.2.2,
8.5.2.3,
8.5.2.4

(continues)

13_0321927866_AppA.indd 236 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference238

Element Kind Notation Section

Internal
Transition

8.5.1,
8.5.2.1,
8.5.2.2,
8.5.2.3,
8.5.2.4

Initial
Pseudostate

8.6

Junction
Pseudostate

8.6

Table A.6 (continued)

Table A.7 Graphical Notations for Parametric Diagrams

Element Kind Notation Section

Constraint
Property

9.5

Constraint
Parameter

9.6

Value Property 9.7

13_0321927866_AppA.indd 239 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 239

Element Kind Notation Section

Binding
Connector

9.8

Table A.7 (continued)

Table A.8 Graphical Notations for Package Diagrams

Element Kind Notation Section

Package 10.4

Model 10.7.1

Model Library 10.7.2

Profile 10.7.3

View 10.7.4

(continues)

13_0321927866_AppA.indd 238 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference240

Table A.8 (continued)

Element Kind Notation Section

Viewpoint 10.7.4

Namespace
Containment

10.4

Dependency 10.5

Package
Import

10.6

Conform 10.7.4

Profile
Application

10.7.3

13_0321927866_AppA.indd 241 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 241

Table A.9 Graphical Notations for Requirements Diagrams

Element Kind Notation Section

Requirement 11.4

Rationale 11.7

Namspace
Containment

11.5

(continues)

13_0321927866_AppA.indd 240 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference242

Element Kind Notation Section

Trace (Direct
Notation)

11.5

Trace (Callout
Notation)

11.6

Derive
Requirement
(Direct
Notation)

11.5

Derive
Requirement
(Callout
Notation)

11.6

Refine (Direct
Notation)

11.5

Refine (Callout
Notation)

11.6

Satisfy (Direct
Notation)

11.5

Satisfy
(Callout
Notation)

11.6

Verify (Direct
Notation)

11.5

Verify (Callout
Notation)

11.6

Table A.9 (continued)

13_0321927866_AppA.indd 243 Achorn International 10/17/2013 11:57PM

ptg11539604

Appendix A SysML Notation Desk Reference 243

Table A.10 Graphical Notations for Allocations

Element Kind Notation Section

Allocation
(Direct
Notation)

12.3

Allocation
(Compartment
Notation)

12.4

Allocation
(Callout
Notation)

12.4

Allocation
Activity
Partition

12.4

Rationale 12.5

13_0321927866_AppA.indd 242 Achorn International 10/17/2013 11:57PM

ptg11539604

This page intentionally left blank

ptg11539604

245

Appendix B

Changes between
SysML Versions

SysML is a living language; it evolves continually to resolve errors and
ambiguities in the specification and to better meet the needs of the sys-
tems modeling community. All practitioners have the right and the
ability to submit issues about the SysML specification to the OMG. If
you discover any errors or ambiguities in the specification or if you feel
that the current version of SysML lacks a modeling feature you need
for your work, you can write up the issue and submit it by e-mail to
issues@omg.org.

A SysML Revision Task Force (RTF) convenes on an eighteen- to
twenty-four-month cycle to review, discuss, and vote on a final disposi-
tion of the issues submitted during the preceding cycle. The result is
a revision to the SysML specification incorporating the approved
changes. The OMG then posts the finalized revision on its website,
granting free access to all members of the modeling community.

The body of this book focuses on SysML v1.2, which the OMG pub-
lished in June 2010. At the time of this writing, the current version of
SysML is v1.3, which the OMG published in June 2012. Some modeling
tools have already implemented the new language features introduced
in SysML v1.3; others lag behind. All of them, however, continue to
support SysML v1.2 features, including the small subset of features that
became deprecated in v1.3. (And modeling practitioners who created
models prior to v1.3 continue to use those features in their models.) For

ptg11539604

Appendix B Changes between SysML Versions246

these reasons, I focus on SysML v1.2 in the body of this book; I discuss
the differences between v1.2 and v1.3 in this appendix.

The biggest changes introduced in v1.3 (and the ones most likely to
impact your daily work) are in the “Ports and Flows” clause of the
SysML specification. In Chapter 3, “Block Definition Diagrams,” and
Chapter 4, “Internal Block Diagrams,” I discuss standard ports, flow
ports, and flow specifications. These language features are deprecated
in SysML v1.3 and are retained solely for backward compatibility.

SysML v1.3 no longer distinguishes between standard ports (as a
means to specify the services that are provided and required) and flow
ports (as a means to specify flow properties). These concepts are re-
placed by the unified concept of a port, which consolidates the features
of standard ports and flow ports into one; any port that a block owns
can now specify the flow properties across that port as well as the ser-
vices provided and required at that port.

As it did in SysML v1.2, a port still represents a distinct interaction
point at the boundary of its owning block. The difference now is that a
port is always typed by some other block that you’ve defined some-
where in the model hierarchy. The port therefore represents one or
more instances of that other block—instances that exist at the boundary
of the first block (the block that owns the port).

The BDD in Figure B.1 displays a block named Solar Panel. This
block serves as the type of the solarArray port, which is owned by the
DellSat-77 Satellite block. The solarArray port has a multiplicity of 2.
This model conveys that each instance of DellSat-77 Satellite will own
two instances of Solar Panel—and those two instances will exist at the
boundary between the satellite system and its environment.

Figure B.1 Ports in SysML v1.3

14_0321927866_AppB.indd 247 Achorn International 10/17/2013 11:59PM

ptg11539604

Appendix B Changes between SysML Versions 247

In SysML v1.2, flow specifications (which type nonatomic flow
ports) own flow properties. In SysML v1.3, flow specifications (as well
as flow ports) are no longer supported; blocks are now augmented with
the ability to own flow properties directly. And you can optionally dis-
play them in the flow properties compartment of a block.

In Figure B.1, the Solar Panel block displays three features that it
owns: one operation and two flow properties. Because the Solar Panel
block types the solarArray port, those three features are accessible to all
structures that interface with the satellite via its solar array; those struc-
tures can invoke the generateElectricity operation, and they can ex-
change items with the satellite that are consistent (in direction and
type) with the flow properties.

The IBD in Figure B.2 displays an ssc part property (of type Solar
Simulation Chamber) and a ds77 part property (of type DellSat-77 Satel-
lite). A connector joins the radiationSource port (on ssc) to the solarArray
port (on ds77). An item flow exists on this connector, which conveys
that values of type W/m2 can flow from radiationSource to solarArray
during system operation. And this item flow is consistent in direction
and type with the solarInputPowerDensity flow property of the Solar
Panel block.

Figure B.2 also shows a part property, db (of type Distribution Bus),
nested inside ds77. More precisely, the use of dot notation conveys that
ds77 owns a part property, eps, which in turn owns the part property db.
A connector joins the solarArray port (on the boundary of the satellite)
to the db part property (internal to the satellite). This connector has
an item flow, W, which conveys that the output of the solar array is
routed internally to the satellite’s distribution bus. And this item flow

Figure B.2 Item flows between ports and properties

14_0321927866_AppB.indd 246 Achorn International 10/17/2013 11:59PM

ptg11539604

Appendix B Changes between SysML Versions248

is consistent in direction and type with the powerOutput flow property
of the Solar Panel block.

Another change that SysML v1.3 introduces is a port nesting capa-
bility; you can display a port on the boundary of another port. The
BDD in Figure B.3 shows that the solarArray port has a nested port, cells.
This conveys that the cells port is owned by the Solar Panel block, which
types the solarArray port. (I display the Solar Panel block with its cells
port on the same diagram for instructional purposes; it’s redundant in
this case.)

I recommend displaying nested ports sparingly. The port labels
take up a lot of real estate on a diagram. Any value you gain from
showing nested ports will be lost if your diagram becomes unreadable.
Nested ports can be useful on IBDs when a single connector attached to
a single port doesn’t convey a sufficient degree of detail for your target
audience. Showing nested ports allows you to display multiple connec-
tors and specific attachment points for each one.

Thus far in this appendix, I’ve covered the key ideas about this new
(unified) port concept in SysML v1.3. As mentioned earlier, SysML sim-
ply refers to it as a “port” (no qualifier required). However, I refer to it
as a non-stereotyped port. That qualifier allows me to discuss the next
topic more clearly.

A non-stereotyped port will meet your modeling needs in most
cases where you feel a port is even necessary. However, you should
know that SysML v1.3 introduces two new specialized kinds of ports—
full ports and proxy ports—that you can use if you feel that a non-
stereotyped port doesn’t provide a sufficient degree of fidelity.

Figure B.3 A port with a nested port

14_0321927866_AppB.indd 249 Achorn International 10/17/2013 11:59PM

ptg11539604

Appendix B Changes between SysML Versions 249

The IBD in Figure B.4 shows a full port at the top of the diagram
and a proxy port at the bottom. A full port has the stereotype «full» at
the beginning of the name string; a proxy port has the stereotype
«proxy» at the beginning of the name string. Otherwise, the notations
for these kinds of ports are the same as for a non-stereotyped port.

A full port represents a part property of the owning block—a part
property that just happens to exist at the boundary of that block. Like
other part properties, a full port is typed by a block. And like all part
properties, a full port can own and perform behaviors and can have an
internal structure (i.e., it can have its own nested part properties).

Applying the «full» stereotype to the solarArray port in Figure B.4
conveys that the DellSat-77 Satellite block owns a part property named
solarArray (of type Solar Panel with a multiplicity of 2). It is in every
sense a part property, just like the nested db part property. Modeling
solarArray as a full port (instead of as a nested part property) simply
conveys the additional piece of information that it exists at the satel-
lite’s boundary (i.e., it partially defines the satellite’s external
interface).

As a part property, the solarArray full port can own and perform
behaviors (for example, the generateElectricity operation in the Solar

Figure B.4 Full ports versus proxy ports

14_0321927866_AppB.indd 248 Achorn International 10/17/2013 11:59PM

ptg11539604

Appendix B Changes between SysML Versions250

Panel block). This means that the solarArray full port can receive items,
act on them in some way that potentially transforms them, and then
output other items (possibly of types that differ from those of the in-
puts it received). Figure B.4 shows that the solarArray full port can re-
ceive instances of the value type W/m2 from the external environment
and can output instances of the value type W to the satellite’s distribu-
tion bus. This conveys definitively that the solarArray full port does, in
fact, perform a behavior that transforms its input into a different type
of output.

A proxy port is fundamentally different. It does not represent a part
property of the owning block. In fact, it doesn’t represent anything
physical. Instead, a proxy port represents its owning block’s external
interface. More precisely, it represents the subset of behavioral and
structural features of the owning block (or its part properties) that are
accessible to external blocks.

Unlike a full port, a proxy port neither performs behaviors nor has
an internal structure (i.e., nested part properties). It is what it sounds
like: It’s a proxy for other things—either the owning block itself or its
internal parts. The best comparison I can offer is that a proxy port is like
a portal at the boundary of a block through which that block can ex-
change a subset of services and flow properties with external blocks.

Applying the «proxy» stereotype to the p_solarArray port in Fig-
ure B.4 conveys that this port does not represent a part that can per-
form behaviors or send and receive flow properties. Rather, the
p_solarArray proxy port simply defines an interaction point between an
external object (a solar simulation chamber) and one of the satellite’s
internal parts (the solar array). Instances of the value type W/m2 that
arrive at the proxy port are simply routed to the solarArray part prop-
erty. The proxy port itself cannot act on those instances in any way. The
behaviors that are invoked at that port are actually performed by the
solarArray part property.

A proxy port is typed by a specialized kind of block called an
interface block (which is also new in SysML v1.3). The notation for an
interface block is the same as the one for a block, but with the
«interfaceBlock» stereotype preceding the name of the element. You
would create an interface block in your model to specify the subset of
behavioral and structural features of another block that are accessible
at a particular proxy port.

The BDD in Figure B.5 displays an interface block named Light
Source Interface. This interface block contains a subset of the features
shown in the Solar Panel block: one operation and one flow property.

14_0321927866_AppB.indd 251 Achorn International 10/17/2013 11:59PM

ptg11539604

Appendix B Changes between SysML Versions 251

Light Source Interface types the p_solarArray proxy port on the DellSat-77
Satellite block. This view of the model (coupled with the view shown in
Figure B.4) conveys that the satellite owns an internal part (solarArray)
and offers external access to two of its features via the p_solarArray
proxy port.

The choice to use a non-stereotyped port, a full port, or a proxy port
is purely a methodological decision. My preference is to use non-
stereotyped ports unless there’s a compelling reason to use one of the
specialized kinds. Your team should have a modeling standards and
conventions document to guide all members of the team in modeling
consistently.

Figure B.5 An interface block and a proxy port

14_0321927866_AppB.indd 250 Achorn International 10/17/2013 11:59PM

ptg11539604

This page intentionally left blank

ptg11539604

253

Bibliography

Baker, Paul, et al. Model-Driven Testing: Using the UML Testing Profile. Berlin: Springer,
2010.

Brooks, Jr., Frederick. The Design of Design: Essays from a Computer Scientist. Boston:
Addison-Wesley, 2010.

Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison-Wesley, 2001.
Dori, Dov. Object-Process Methodology: A Holistic Systems Paradigm. Berlin: Springer-

Verlag, 2002.
Estefan, Jeff. Survey of Model-Based Systems Engineering (MBSE) Methodologies, Rev. B.

Seattle: INCOSE, 2008. Available at http://www.incose.org/ProductsPubs/pdf
/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf.

Fortescue, Peter, et al. Spacecraft Systems Engineering, Third Edition. Chichester: John
Wiley & Sons, 2003.

Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Third Edition. Boston: Addison-Wesley, 2004.

Friedenthal, Sanford, et al. A Practical Guide to SysML, Second Edition: The Systems Mod-
eling Language. Boston: MK/OMG Press, 2011.

Haskins, Cecilia, ed. INCOSE Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities, v3.2.2. International Council on Systems Engineering
(INCOSE), October 2011.

Hoffmann, Hans-Peter. “Harmony-SE/SysML Deskbook: Model-Based Systems Engi-
neering with Rhapsody,” Rev. 1.51, Telelogic/I-Logix white paper. Telelogic AB,
May 2006.

Hosken, Robert W., and James R. Wertz. “Microcosm Autonomous Navigation Sys-
tem On-Orbit Operation.” Available at http://www.microcosminc.com/analysis
/manspaper.pdf.

International Council on Systems Engineering. Systems Engineering Vision 2020, v2.03.
September 2007. Available at http://www.incose.org/ProductsPubs/pdf/SEVision
2020_20071003_v2_03.pdf.

Maier, Mark W., and Eberhardt Rechtin. The Art of Systems Architecting, Third Edition.
Boca Raton, FL: CRC Press, 2009.

Object Management Group. OMG Systems Modeling Language (OMG SysML), v1.2. June
2010. Available at http://www.omg.org/spec/SysML/1.2/.

Object Management Group. OMG Systems Modeling Language (OMG SysML), v1.3. June
2012. Available at http://www.omg.org/spec/SysML/1.3/.

Object Management Group. OMG Unified Modeling Language (OMG UML), v2.4.1. Au-
gust 2011. Available at http://www.omg.org/spec/UML/2.4.1/.

http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
http://www.incose.org/ProductsPubs/pdf/techdata/MTTC/MBSE_Methodology_Survey_2008-0610_RevB-JAE2.pdf
http://www.microcosminc.com/analysis/manspaper.pdf
http://www.microcosminc.com/analysis/manspaper.pdf
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://www.omg.org/spec/SysML/1.2/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/UML/2.4.1/

ptg11539604

Bibliography254

Piscitelli, Roberta, and Gianluca Furano. “Definition of a Cryptographic Block for Sat-
ellite Telemetry.” Available at http://staff.science.uva.nl/~roberta/publications
_files/guide.pdf.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. The Unified Modeling Language
Reference Manual, Second Edition. Boston: Addison-Wesley, 2005.

Seidewitz, Ed. “What do models mean?” March 2003. Available at http://www
.semanticcore.org/Docs/WhatDoModelMean.pdf.

Sellers, Jerry Jon. Understanding Space: An Introduction to Astronautics, Third Edition.
New York: McGraw-Hill, 2005.

Simsion, Graeme C., and Graham C. Witt. Data Modeling Essentials, Third Edition. San
Francisco: Elsevier, 2005.

Spinellis, Diomidis, and Georgios Gousios. Beautiful Architecture: Leading Thinkers Re-
veal the Hidden Beauty in Software Design. Sebastopol, CA: O’Reilly Media, 2009.

Weilkiens, Tim. Systems Engineering with SysML/UML: Modeling, Analysis, Design. Bos-
ton: MK/OMG Press, 2008.

Wertz, James R., and Wiley J. Larson. Space Mission Analysis and Design. Third Edition.
Hawthorne, CA: Microcosm Press, 1999.

Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs, NJ: Prentice Hall, 1989.

http://staff.science.uva.nl/~roberta/publications_files/guide.pdf
http://staff.science.uva.nl/~roberta/publications_files/guide.pdf
http://www.semanticcore.org/Docs/WhatDoModelMean.pdf
http://www.semanticcore.org/Docs/WhatDoModelMean.pdf

ptg11539604

255

Index

A
Absolute time events, 110
Abstractions

activity diagrams and, 101
generalization in defining, 51–52

Accept event actions
notation, 108, 234
overview of, 107–108
wait time actions as, 112

Actions
accept event actions, 107–110
call behavior actions, 104 –107
node types in activities, 93–95
notation, 94, 233
overview of, 102–103
send signal actions, 107–108
startup, 103–104
wait time actions, 110–112

Activities. see also Activity diagrams
as behavior type, 92
edges. see Edges
nodes. see Nodes
token flow and, 92–93

Activity diagrams
accept event actions, 107–110
action startup, 103–104
actions, 93–95, 102–103
activity parameters, 97–98
activity partitions, 119–121
call behavior actions, 104 –107
control flows, 102
control nodes, 112
decision nodes, 114 –115
edges, 99
flow final nodes and activity final nodes,

113–114
fork nodes, 116–117
frame, 90–92
illustration of, 91
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
notation, 233–234
object flows, 100–102

object nodes, 95–96
pins, 96–97
purpose of, 16, 89–90
send signal actions, 107–108
streaming vs. nonstreaming behaviors,

98–99
summary, 119–121
token flow and, 92–93
for use case specifications, 79–80
wait time actions, 110–112
when to create, 90

Activity final nodes
notation, 113, 234
types of control nodes, 113–114

Activity parameters
notation, 233
as specialized object node, 97–98

Activity partitions
allocating behaviors to structures,

119–121
allocation activity partitions, 222–224
notation, 234

Actors
associating with use cases, 84 –85
BDD, 53–55
notation, 54, 83–84, 228, 232
in use cases, 78–79, 83–84

Actual gate, 153
ADDs (architecture description documents), 2
Allocation activity partitions, 222–224, 243
Allocations

activity partitions and, 222–224, 243
behavioral, 217–218
callout notation, 220–221
compartment notation, 220
cutting across all types of diagrams, 216
direct notation, 219
matrices in representation of, 221
notation, 243
purpose of, 215–216
rationale comments and, 224
of requirements, 219
structural, 218–219
summary, 224 –225

ptg11539604

Index256

Allocations, continued
tables and, 221–222
when to use, 216–217

Alt interaction operator, 146–148
Analysis, activity diagrams as analysis tool, 90
Architecture description documents (ADDs), 2
Associations

of actors with use cases, 84 –85
composite associations, 47–49
IBD connectors and, 68
reference associations, 44 –46
types of BDD relationships, 44

Asynchronous messages, 131–133, 235
Atomic flow ports, 39, 229

B
Base use cases, 85
BDDs (block definition diagrams)

actors, 53–55
associations, 44
BDD and IBD views of a block, 66–67
behavioral features, 39
blocks, 26–27
comments, 59–60
composite associations, 47–49
constraint blocks, 57–59
constraint properties, 32–34, 184 –185
dependencies, 52–53
flow ports, 37–39
frame, 24 –26
generalizations, 49–52
illustration of, 25
notation, 228–230
operations, 40–42
package diagrams compared with, 198
parametric diagrams and, 179–180
part properties, 28–30
ports, 34 –35
purpose of, 15, 23–24
receptions, 42–43
reference associations, 44 –46
reference properties, 30–31
standard ports, 35–37
structural features or properties, 28
summary, 61
value properties, 31–32
value types, 55–57
when to create, 24

Behavior diagrams
activity diagrams. see Activity diagrams
sequence diagrams. see Sequence diagrams
state machine diagrams. see State machine

diagrams
Behavior execution start occurrence, 139–141
Behavior execution termination occurrence,

139–141

Behavioral (functional) allocations, 119–121,
217–218

Behaviors
activities as, 92
allocating, 119–121, 217–218
behavioral features in BDDs, 27
blocks, 39
classifier behavior for blocks, 155–156
expressing dynamic. see Activity diagrams
invoking with interaction use element,

151–153
operations, 40–42
receptions, 42–43
streaming vs. nonstreaming, 98–99
use cases and, 78

Binding connectors
notation, 239
parametric diagrams and, 187–188

Block definition diagrams. see BDDs (block
definition diagrams)

Blocks. see also BDDs (block definition
diagrams); IBDs (internal block
diagrams)

activity partitions representing, 119
in BDD (block definition diagram), 26–27
BDD and IBD views of, 66–67
behavioral allocations, 217
behaviors, 39
classifier behavior for, 155–156
composite associations, 47–49
constraint blocks, 57–59
flow ports, 37–39
IBD and, 64 –65
notation, 228
operations, 40–42
parametric diagram frame types, 182, 184
parametric diagrams displaying usages

of, 179–182
part properties and, 28–29
ports added to, 34 –35
receptions, 42–43
reference associations, 44 –46
standard ports, 35–37

Body
of comments, 59
of opaque expressions, 94 –95

Boolean values/Boolean expressions
change events defined as, 170
constraint expressions, 57
primitive value types, 55

C
Call behavior actions, 104 –107, 233
Call events

block behaviors, 40
in state machine diagrams, 167–168

16_0321927866_Index.indd 257 Achorn International 10/18/2013 12:01AM

ptg11539604

Index 257

Callout notation
of allocation relationships, 220–221, 243
of requirements relationships, 210–211, 242

Change events
in state machine diagrams, 170–171
triggers and, 165

Classifier behavior, block instantiation and,
155–156

Clients
client element as test case, 208–209
dependencies between client and supplier,

52
Collection (of instances), part properties and,

29–30
Combined fragments, in sequence diagrams

alt operator, 146–148
loop operator, 148–149
notation, 236
opt operator, 145–146
overview of, 144 –145
par operator, 149–150

Comments
BDD, 59–60
notation, 59, 229
rationale comments, 213

Compartment notation
of allocation relationships, 220
of requirements relationships, 209–210

Composite associations
notation, 230
between two blocks, 47–49

Composite states, 160–161, 237
Concept of operations (ConOps)

artifacts of document-based engineering, 2
use cases and, 77

Concerns, viewpoint properties, 196–197
Conform, notation of, 240
Conjugated flow ports, 38
Connectors

binding connectors, 187–188, 239
between IBD properties, 68–71
notation, 231

ConOps (concept of operations)
artifacts of document-based engineering, 2
use cases and, 77

Constraint blocks
in BDD, 57–59
notation, 228
parametric diagram frame types, 182, 184
parametric diagrams displaying usages

of, 179–182
Constraint expressions

applying to blocks, 177
binding to value properties, 177–178, 182
Boolean values and, 57
constraint parameter variable, 185

defining, 179–180
equality/inequality and, 33

Constraint parameters
binding connectors and, 187–188
binding constraint expression to value

properties, 177–178, 182
Boolean values and, 57
notation, 238
parametric diagrams and, 185
variable in constraint expressions, 185

Constraint properties
BDD and, 32–34, 184 –185
noncausal nature of, 188
parametric diagrams and, 184 –185
value properties used in conjunction with,

31
Constraints, in sequence diagrams

duration constraints, 142–143
overview of, 141
state invariants, 143–144
time constraints, 141–142

Containment relationships, requirements
and, 205–206

Contents area, SysML diagram concepts, 17
Control flows

action startup and, 103–104
edges and, 102
notation, 102, 233

Control logic, combined fragments for. see
Com bined fragments, in sequence
diagrams

Control nodes
decision nodes, 114 –115
flow final nodes and activity final nodes,

113–114
fork nodes, 116–117
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
overview of, 112

Control tokens
action startup and, 103–104
flow final nodes and activity final nodes

marking flow of, 113–114
types of tokens, 93

Create messages, in sequence diagrams,
137–138

D
Data types, comparing UML and SysML, 13–14
Decision nodes

notation, 114, 234
types of control nodes, 114 –115

Decoupling, ports and, 34 –35
Default namespace, notations for namespace

containment, 191–193

16_0321927866_Index.indd 256 Achorn International 10/18/2013 12:01AM

ptg11539604

Index258

Definitions, contrasted with instantiation, 26
Dependencies

«conform» relationships as, 196
derive requirement relationships as, 207
direct notation of requirements relation-

ships, 209
matrices in representation of, 211
notation, 230, 240
between packages, 193
refine relationships as, 207–208
satisfy relationships as, 208
trace relationships as, 206–207
types of BDD relationships, 52–53
verify relationships as, 208–209

Derive requirement relationships
notation, 207, 242
types of requirements relationships, 207

Destruction occurrences
notation, 235
sequence diagrams, 138–139

Diagram kind, in format of diagram header,
18

Diagram name, in format of diagram header,
17–18

Diagramming tools, 8
Diagrams, SysML. see also by individual type

concepts in use of, 17–21
types of, 14 –16

Direct notation
of allocation relationships, 219, 243
of requirements relationships, 209, 242

Do behavior, state machines and, 160
Document-based system engineering, 2–4
Dot notation, in expressing structural

hierarchy, 72–74
Duration constraints

notation, 236
in sequence diagrams, 142–143

Dynamic behavior, expressing. see Activity
diagrams

E
Eclipse Public License (EPL), 8
Edges

accept event actions and, 110
control flows, 102
fork nodes and, 116–117
join nodes and, 119
object flows, 100–102
types of activity elements, 99

Effects, behaviors during state transitions, 163
Encapsulation, as design principle, 74 –75
Entry behavior, simple states and, 159
Enumerations (enumerated value types)

notation, 230
overview of, 56

EPL (Eclipse Public License), 8
Equality/inequality

binding connectors and, 187–188
constraint expressions and, 33

Event occurrence, triggers for state transi-
tions, 163

Event types, in state machine diagrams
call events, 167–168
change events, 170–171
overview of, 166
signal events, 166–167
time events, 169–170

Execution, of use cases, 84
Execution specifications

notation, 235
sequence diagrams, 139–141

Exit behavior, simple states, 159
Extend relationship

notation, 232
use cases and, 87

Extensibility
interfaces and, 37
of use cases, 87–88

Extension, SysML as extension of subset of
UML, 12

External transitions
vs. internal, 164 –166, 169–170
notation, 237

F
Final state, 161–162, 237
Flow, in activity diagrams

accept event actions and, 108–109
control flows, 102
object flows, 100–102

Flow final nodes
notation, 113, 234
types of control nodes, 113–114

Flow ports
in BDD (block definition diagram), 37–39
IBD connectors and, 69
SysML v1.3 and, 246

Flow properties, 38
Flow specification

flow ports and, 38
notation, 228
SysML v1.3 vs. SysML v1.2, 247

Fork nodes
notation, 116, 234
types of control nodes, 116–117

Formal gate, 153
Frames

activity diagrams, 90–92
BDD, 24 –26
IBD, 65–66
package diagrams, 190–191

16_0321927866_Index.indd 259 Achorn International 10/18/2013 12:01AM

ptg11539604

Index 259

parametric diagrams, 182, 184
requirements diagrams, 202–204
sequence diagrams, 125
state machine diagrams, 156–157
SysML diagram concepts, 17
use case diagrams, 81–82

Full ports, SysML v1.3 vs. SysML v1.2, 249
Fully qualified names, 193
Functional (Behavioral) allocations, 119–121,

217–218

G
Gates, interaction use at, 153
General Public License (GPL), 8
Generalizations

activity diagrams and, 101
notation, 230, 232
types of BDD relationships, 49–52
use cases and, 82–83

GPL (General Public License), 8
Grammar

of modeling languages, 5
SysML, 12

Graphical modeling languages
SysML as, 11–12
used in MBSE, 5

Guards, state transitions and, 163

H
Header, SysML diagram concepts, 17–18

I
IBD item flow, 71
IBDs (internal block diagrams)

BDD and IBD views of a block, 66–67
blocks and, 64 –65
connecting nested properties, 72–74
connectors, 68–71
dot notation, 72–74
frame, 65–66
item flow, 71
nested parts and references, 72
notation, 231
parametric diagram as special type of, 178
part properties, 67
purpose of, 15, 63–64
reference properties, 67–68
summary, 75
when to create, 64

IBM Telelogic Harmony-SE, 7
IDDs (interface definition documents), 2
Importing packages, 193–194
Include relationship

notation, 85, 232
use cases and, 85

Included use cases, 85–86

INCOSE (International Council on Systems
Engineering)

INCOSE Systems Engineering Handbook, 2,
215

OOSEM (Object-Oriented Systems
Engineering Method), 7

Inequality/equality
binding connectors and, 187–188
constraint expressions and, 33

Inheritance
generalizations and, 49
use cases and, 82–83

Initial nodes
notation, 234
types of control nodes, 112–113

Initial pseudostate
notation, 238
in state machines, 171–172

Instances, part properties and, 29–30
Instantiation, definition contrasted with, 26
Integers, primitive value types, 55
Interaction operators, 144
Interaction use

invoking behavior with, 151–153
notation, 151, 236

Interactions
adding control logic to. see Combined

fragments, in sequence diagrams
asynchronous messages in, 132
create message in, 137
destruction occurrence in, 138
invoking behaviors with interaction use

element, 151–153
lifeline elements, 125, 127–129
model elements in sequence diagrams,

125
synchronous messages in, 134

Interface blocks, 250–251
proxy ports and, 250–251

Interface definition documents (IDDs), 2
Interfaces

assigning to standard ports, 36
extensibility and, 37
notation, 229

Internal block diagrams. see IBDs (internal
block diagrams)

Internal transitions
vs. external transition, 164 –166, 169–170
notation, 238

International Council on Systems Engineer-
ing. see INCOSE (International Council
on Systems Engineering)

Item flow
on IBDs, 71
notation, 231
SysML v1.3 vs. SysML v1.2, 247–248

16_0321927866_Index.indd 258 Achorn International 10/18/2013 12:01AM

ptg11539604

Index260

J
Join nodes

notation, 117, 234
types of control nodes, 117–119

Junction pseudostate
notation, 238
combining multiple transitions, 173

L
Languages, viewpoint properties, 196
Lifelines

asynchronous messages, 131–133
create messages, 137–138
duration constraints, 142–143
execution specifications, 139–141
message occurrences, 130–131
message types, 131
messages and, 129–130
model elements in sequence diagrams,

125, 127–129
notation, 127, 235
reply messages, 135–137
state invariant condition, 143–144
synchronous messages, 133–135
time constraints, 141–142
destruction occurrences, 138–139

Literals, enumerations defining set of, 56
Loop interaction operator, 148–149

M
Mathematical models, constraint properties

used with, 32–33
Mathematical relationships, imposing fixed

relationship on value properties,
177–178

Matrices
of allocation relationships, 221
of requirements relationships, 211–212

MBSE (model-based systems engineering)
modeling languages, 5
modeling methods, 5–7
modeling tools, 7–9
myth regarding, 9
overview of, 1–4
summary, 9–10
three pillars of, 4 –5

Merge nodes
notation, 115, 234
types of control nodes, 115–116

Message occurrence, 130–131
Message receive, 130–131
Message send, 130–131
Messages, in sequence diagrams

asynchronous messages, 131–133
create messages, 137–138

notation, 129
occurrences, 130–131
overview of, 129–130
reply messages, 135–137
synchronous messages, 133–135
types, 131

Methods, viewpoint properties, 196
Model element name, 18–19
Model element type, 18–20
Model libraries

applying profile to, 195
notation, 239
reusing, 193
types of packages, 195

Model-based systems engineering. see MBSE
(model-based systems engineering)

Modeling languages
overview of, 5
SysML as, 13

Modeling methods, 5–7
Modeling tools, 7–9
Models

applying profile to, 195
notation, 195, 239
types of packages, 191, 195
views, 196

N
N2 charts, 2
Namespace

defined, 190–191
defining in SysML diagram header, 19
notation for namespace containment,

191–193, 206, 240–241
overview of, 24
requirements diagrams and, 202

Nested ports, SysML v1.3 vs. SysML v1.2,
248

Nodes
actions, 93–95
activity final nodes, 113–114
control nodes, 112
decision nodes, 114 –115
flow final nodes, 113–114
fork nodes, 116–117
initial nodes, 112–113
join nodes, 117–119
merge nodes, 115–116
object nodes, 95–96

Nonatomic behavior, simple states, 159
Nonatomic flow ports, 37–38, 229
Nonstreaming behavior, 98–99
Notation

callout notation for allocations, 220–221,
243

16_0321927866_Index.indd 261 Achorn International 10/18/2013 12:01AM

ptg11539604

Index 261

callout notation of requirements relation-
ships, 210–211, 242

compartment notation for allocations, 220
compartment notation of requirements

relationships, 209–210
direct notation for allocations, 219, 243
direct notation of requirements relation-

ships, 209, 242
dot notation for expressing structural

hierarchy, 73–74

O
Object flows

notation, 100–102, 233
types of edges, 100–102

Object Management Group. see OMG (Object
Management Group)

Object nodes
activity parameters, 97–98
node types in activities, 95–96
notation, 233
pins, 96–97

Object tokens
object flows, 100–101
object nodes and, 95–96
streaming vs. nonstreaming behaviors,

98–99
types of tokens, 93

Object-Oriented Systems Engineering
Method (OOSEM), 7

Occurrences, event types and, 166
OMG (Object Management Group)

OCSMP (OMG Certified Systems
Modeling Professional) certification, 1

submitting issues to, 245
SysML standards and, 12

OOSEM (Object-Oriented Systems Engineer-
ing Method), 7

Opaque expressions
actions and, 94 –95
state machines and, 159

Operands, in sequence diagrams
alt operator, 146–148
loop operator, 148–149
opt operator, 145–146
overview of, 144 –145
par operator, 149–150

Operations
block behaviors, 40–42
compared with receptions, 42
interfaces defining set of, 36

Opt interaction operator, 145–146
Orthogonal relationship, between regions,

173–175
Ownership, block part properties and, 28–29

P
Package diagrams

comparing with BDDs, 198
dependencies between packages, 193
frame, 190–191
importing packages, 193–194
models and model libraries, 195
notation, 239–240
notation for namespace containment,

191–193
profiles, 195–196
purpose of, 16, 189–190
specialized packages, 194
summary, 198–199
views, 196–198
when to create, 190

Package import relationship, 194, 240
Packages

applying profile to, 195
dependencies between, 193
importing, 193–194
models and model libraries, 191, 195
as namespace, 24
notation, 192, 239
profiles, 195–196
specialized, 194
views, 196–198

Par interaction operator, 149–150
Parameters

activity parameters, 97–98
constraint parameters, 57

Parametric diagrams
binding connectors, 187–188
constraint parameters, 185
constraint properties, 184 –185
displaying usages of blocks and constraint

blocks, 179–182
frame, 182, 184
illustration of, 183
notation, 238–239
purpose of, 16, 177–178
summary, 188
value properties, 185–187
when to create, 178–179

Part properties
BDD, 28–30
composite associations and, 47–49
connectors and, 69–70
IBD, 67
nested parts and references in IBD, 72–74
notation, 231

Pins
call behavior actions and, 105
notation, 233
as specialized object node, 96–97

16_0321927866_Index.indd 260 Achorn International 10/18/2013 12:01AM

ptg11539604

Index262

Planning, modeling methods and, 6
Ports

adding to blocks, 34 –35
flow ports, 37–39
IBD connectors and, 69–70
standard ports, 35–37
SysML v1.3 vs. SysML v1.2, 246–249

Primary actors, in use cases, 78
Primitive value types, 55
Profile application, 240
Profiles

notation, 239
SysML as extension of subset of UML, 12
types of packages, 195–196

Programming languages, opaque expressions
and, 94 –95

Properties
connecting nested, 74 –75
connectors between, 68–71
constraint properties, 32–34
flow ports, 37–39
nested parts and references in IBD,

72–74
overview of, 28
part properties, 28–30
ports, 34 –35
reference properties, 30–31
requirements, 204 –205
standard ports, 35–37
structural features as, 27
value properties, 31–32, 55

Provided interface, compared with required
interface, 36–37

Proxy ports, SysML v1.3 vs. SysML v1.2,
249–251

Pseudostates, 171–173
Purpose

defining for modeling approach, 6
viewpoint properties, 196

Q
Qualified name string notation, 192

R
Rationale

allocations and, 224
notation, 241, 243
requirements diagrams and, 213

Real, primitive value type, 55
Receptions

block behaviors, 42–43
interfaces defining set of, 36

Reference associations
notation, 230, 232
between two blocks, 44 –46

Reference properties
BDD, 30–31
connectors and, 69
IBD, 67–68
nested parts and, 72–74
reference associations and, 45–46

Refine relationships
notation, 242
requirements relationships, 207–208

Regions, adding to state machines, 173–175
Relative time events, wait time actions, 110
Reply messages

notation, 235
in sequence diagrams, 135–137

Required interface, compared with provided
interface, 36–37

Requirement traceability and verification
matrices. see RTVMS (requirement
traceability and verification matrices)

Requirements
allocations, 219
callout notation for requirements

relationships, 210–211
compartment notation for requirements

relationships, 209–210
containment relationships, 205–206
derive relationships, 207
direct notation for requirements relation-

ships, 209
matrices, 211–212
notation, 204, 241
properties, 204 –205
refine relationships, 207–208
satisfy relationships, 208
specifications, 201
tables, 212–213
trace relationships, 206–207
verify relationships, 208–209

Requirements diagrams
callout notation for requirements

relationships, 210–211
compartment notation for requirements

relationships, 209–210
containment relationships, 205–206
derive requirement relationships, 207
direct notation for requirements relation-

ships, 209
frame, 202–204
matrices, 211–212
notation, 241–242
purpose of, 16, 201–202
rationale comments, 213
refine relationships, 207–208
requirements relationships, 205
satisfy relationships, 208

16_0321927866_Index.indd 263 Achorn International 10/18/2013 12:01AM

ptg11539604

Index 263

summary, 214
tables, 212–213
trace relationships, 206–207
verify relationships, 208–209
when to create, 202

Requirements package, dependencies
between packages, 193

Revision Task Force (RTF), 245
Roles, of actors, 53–54
RTF (Revision Task Force), 245
RTVMS (requirement traceability and

verification matrices)
artifacts of document-based engineer-

ing, 2
requirements relationships and, 205
trace relationships and, 206–207

Run-to-completion, state transitions and,
164

S
Satisfy relationships

notation, 208, 242
requirements relationships, 208

Scenarios, use cases compared with, 80–81
Scope, defining for modeling approach, 6–7
Secondary actors, in use cases, 78
Selector expression, lifeline elements and, 128
Self-transition

external, 169
between states, 162

Send signal actions, 107–108, 233
Sequence diagrams

alt operator, 146–148
asynchronous messages, 131–133
combined fragments, 144 –145
constraints, 141
create messages, 137–138
destruction occurrence, 138–139
duration constraints, 142–143
execution specifications, 139–141
frame, 125
illustration of, 126
interaction use, 151–153
lifeline elements, 125, 127–129
loop operator, 148–149
message occurrence, 130–131
message types, 131
messages, 129–130
notation, 235–236
opt operator, 145–146
par operator, 149–150
purpose of, 16, 123–124
reply messages, 135–137
in representation of scenarios, 81
state invariants, 143–144

summary, 153
synchronous messages, 133–135
time constraints, 141–142
when to create, 124 –125

Signals
block reception behaviors, 42–43
notation, 229
send signal actions, 107–108
in state machine diagrams, 166–167

Simple state
notation, 160, 237
overview of, 158–160

Specialization
of supertypes, 50
use cases and, 82–83

Specialized packages, 194
Specialty engineering analyses, 2
Specification

execution specification, 139–141, 235
flow specification, 38, 228, 247
requirements specification, 201
system design and test case specifica-

tions, 2
use case specification, 79–80, 90

Stakeholders
MBSE myths and, 9
viewpoint properties, 196–198

Standard ports
IBD connectors and, 69
in modeling block services (behaviors),

35–37
notation, 229
SysML v1.3 and, 246

State invariants, constraints in sequence
diagrams, 143–144

State machine diagrams
call events, 167–168
change events, 170–171
composite states, 160–161
event types, 166
external vs. internal transitions, 164 –166
final states, 161–162
frame, 156–157
illustration of, 157
notation, 237–238
pseudostates, 171–173
purpose of, 16, 155–156
regions, 173–175
signal events, 166–167
simple states, 158–160
states, 158
summary, 175
time events, 169–170
transitions, 162–164
when to create, 156

16_0321927866_Index.indd 262 Achorn International 10/18/2013 12:01AM

ptg11539604

Index264

State machines
adding regions to, 173–175
composite state in, 161
defined, 156
do behavior and, 160
opaque expressions and, 159
state and pseudostate vertices, 171

States
composite states, 160–161
external vs. internal transitions, 164 –166
final states, 161–162
overview of, 158
pseudostates, 171–173
simple states, 158–160
transitions, 162–164

Stereotypes
creating, 196
in profile packages, 195

Streaming behavior, 98–99
Strings, primitive value types, 55
Structure diagrams

BDDs. see BDDs (block definition
diagrams)

IBDs. see IBDs (internal block diagrams)
parametric. see Parametric diagrams

Structured value types, 55–56
Structures

allocating behaviors to, 119–121
allocating requirements to, 218–219
features. see Properties

Subject (system boundary)
notation, 232
in use cases, 83

Substates, 161–162
Substitutability

abstraction and, 51–52
activity diagrams and, 101

Subtypes
activity diagrams and, 101
generalizations and, 49–51
use cases and, 82–83

Supertypes
activity diagrams and, 101
generalizations and, 49–51
use cases and, 82–83

Suppliers, dependencies between clients and,
52

Synchronous behavior, in blocks, 40
Synchronous messages

notation, 235
in sequence diagrams, 133–135

SysML (Systems Modeling Language),
overview

changes between versions, 245–251
diagram concepts, 17–21
diagram types, 14 –16

modeling languages used in MBSE, 5
notation, 12
summary, 21
UML and, 13–14
what it is and what it isn’t, 11–13

SYSMOD (System Modeling), 7
System boundary (subject)

notation, 232
in use cases, 83

System design specifications, artifacts of
document-based engineering, 2

System model, artifacts of MBSE, 3
System Modeling (SYSMOD), 7
Systems Modeling Language. see SysML

(Systems Modeling Language),
overview

T
Tables

representing allocation relationships,
221–222

of requirements relationships, 212–213
Test case

client element as, 208–209
specifications, 2

Text modeling languages, 5
Text-based requirements, 201
Time constraints

notation, 235
in sequence diagrams, 141–142

Time events, in state machine diagrams, 169–170
Tokens

activities based on concept of token flow,
92–93

decision nodes and, 115
merge nodes and, 115–116
types of, 93

Trace relationships
notation, 242
requirements relationships, 206–207

Transitions
external vs. internal, 164 –166, 169–170
out of composite states, 161
between states, 162–164
combining multiple transitions with

junction pseudostate, 172–173
Triggers

change events as, 165, 170–171
time events as, 169–170
for transitions, 162–163

U
UML (Unified Modeling Language)

deployment diagram, 218
SysML as extension of subset of, 12
SysML compared with, 13–14

16_0321927866_Index.indd 265 Achorn International 10/18/2013 12:01AM

ptg11539604

Index 265

Unified Modeling Language. see UML
(Unified Modeling Language)

The Unified Modeling Language Reference
Manual (Rumbaugh, Jacobson, Booch),
78

Use case diagrams
actors, 83–84
associating actors with use cases, 84 –85
base use cases, 85
extending use cases, 87–88
frame, 81
illustration of, 82
included use cases, 85–86
notation, 82–83, 232
purpose of, 16, 77
specifications, 79–80, 90
summary, 88
system boundary, 83
use cases compared with scenarios, 80–81
what use cases are, 78–79
when to create use cases, 77–78

Use case specification, 79–80, 90
Use cases

associating actors with, 84 –85
base use cases, 85
creating specification for, 79–80, 90
executing, 84
extending, 87–88
included use cases, 85–86
notation, 232
scenarios compared with, 80–81

what they are, 78–79
when to create, 77–78

V
Value properties

BDD, 31–32
binding constraint expression to, 177–178
notation, 238
parametric diagrams and, 185–187
value types represented by, 55

Value types
comparing UML and SysML, 14
notation, 229
overview of, 55–57

Verify relationships
notation, 208–209, 242
requirements relationships, 208–209

Versions, SysML, 245–251
Viewpoint

notation, 240
views conformed to, 196–198

Views
notation, 239
types of packages, 196–198

W
Wait time action, 110, 234
Writing Effective Use Cases (Cockburn), 78–79

X
XMI (XML Metadata Interchange), 8–9

16_0321927866_Index.indd 264 Achorn International 10/18/2013 12:01AM

ptg11539604

This page intentionally left blank

	Contents
	Foreword
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Overview of Model-Based Systems Engineering
	1.1 What Is MBSE?
	1.2 The Three Pillars of MBSE
	1.3 The Myth of MBSE

	Chapter 2 Overview of the Systems Modeling Language
	2.1 What SysML Is—and Isn’t
	2.2 Yes, SysML Is Based on UML—but You Can Start with SysML
	2.3 SysML Diagram Overview
	2.4 General Diagram Concepts

	Chapter 3 Block Definition Diagrams
	3.1 Purpose
	3.2 When Should You Create a BDD?
	3.3 The BDD Frame
	3.4 Blocks
	3.5 Associations: Another Notation for a Property
	3.6 Generalizations
	3.7 Dependencies
	3.8 Actors
	3.9 Value Types
	3.10 Constraint Blocks
	3.11 Comments

	Chapter 4 Internal Block Diagrams
	4.1 Purpose
	4.2 When Should You Create an IBD?
	4.3 Blocks, Revisited
	4.4 The IBD Frame
	4.5 BDDs and IBDs: Complementary Views of a Block
	4.6 Part Properties
	4.7 Reference Properties
	4.8 Connectors
	4.9 Item Flows
	4.10 Nested Parts and References

	Chapter 5 Use Case Diagrams
	5.1 Purpose
	5.2 When Should You Create a Use Case Diagram?
	5.3 Wait! What’s a Use Case?
	5.4 The Use Case Diagram Frame
	5.5 Use Cases
	5.6 System Boundary
	5.7 Actors
	5.8 Associating Actors with Use Cases
	5.9 Base Use Cases
	5.10 Included Use Cases
	5.11 Extending Use Cases

	Chapter 6 Activity Diagrams
	6.1 Purpose
	6.2 When Should You Create an Activity Diagram?
	6.3 The Activity Diagram Frame
	6.4 A Word about Token Flow
	6.5 Actions: The Basics
	6.6 Object Nodes
	6.7 Edges
	6.8 Actions, Revisited
	6.9 Control Nodes
	6.10 Activity Partitions: Allocating Behaviors to Structures

	Chapter 7 Sequence Diagrams
	7.1 Purpose
	7.2 When Should You Create a Sequence Diagram?
	7.3 The Sequence Diagram Frame
	7.4 Lifelines
	7.5 Messages
	7.6 Destruction Occurrences
	7.7 Execution Specifications
	7.8 Constraints
	7.9 Combined Fragments
	7.10 Interaction Uses

	Chapter 8 State Machine Diagrams
	8.1 Purpose
	8.2 When Should You Create a State Machine Diagram?
	8.3 The State Machine Diagram Frame
	8.4 States
	8.5 Transitions
	8.6 Pseudostates
	8.7 Regions

	Chapter 9 Parametric Diagrams
	9.1 Purpose
	9.2 When Should You Create a Parametric Diagram?
	9.3 Blocks, Revisited
	9.4 The Parametric Diagram Frame
	9.5 Constraint Properties
	9.6 Constraint Parameters
	9.7 Value Properties
	9.8 Binding Connectors

	Chapter 10 Package Diagrams
	10.1 Purpose
	10.2 When Should You Create a Package Diagram?
	10.3 The Package Diagram Frame
	10.4 Notations for Namespace Containment
	10.5 Dependencies between Packages
	10.6 Importing Packages
	10.7 Specialized Packages
	10.8 Shades of Gray: Are You Looking at a Package Diagram or a Block Definition Diagram?

	Chapter 11 Requirements Diagrams
	11.1 Purpose
	11.2 When Should You Create a Requirements Diagram?
	11.3 The Requirements Diagram Frame
	11.4 Requirements
	11.5 Requirements Relationships
	11.6 Notations for Requirements Relationships
	11.7 Rationale

	Chapter 12 Allocations: Cross-Cutting Relationships
	12.1 Purpose
	12.2 There’s No Such Thing as an Allocation Diagram
	12.3 Uses for Allocation Relationships
	12.4 Notations for Allocation Relationships
	12.5 Rationale

	Appendix A: SysML Notation Desk Reference
	Appendix B: Changes between SysML Versions
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

