
System Architect Essentials
7.2
Student Guide

© 2017
Pegasystems Inc., Cambridge, MA

All rights reserved.

Trademarks

For Pegasystems Inc. trademarks and registered trademarks, all rights reserved. All other trademarks or service marks are property of
their respective holders.

For information about the third-party software that is delivered with the product, refer to the third-party license file on your
installation media that is specific to your release.

Notices

This publication describes and/or represents products and services of Pegasystems Inc. It may contain trade secrets and proprietary
information that are protected by various federal, state, and international laws, and distributed under licenses restricting their use,
copying, modification, distribution, or transmittal in any form without prior written authorization of Pegasystems Inc.

This publication is current as of the date of publication only. Changes to the publication may be made from time to time at the
discretion of Pegasystems Inc. This publication remains the property of Pegasystems Inc. and must be returned to it upon request.
This publication does not imply any commitment to offer or deliver the products or services described herein.

This publication may include references to Pegasystems Inc. product features that have not been licensed by you or your company. If
you have questions about whether a particular capability is included in your installation, please consult your Pegasystems Inc.
services consultant.

Although Pegasystems Inc. strives for accuracy in its publications, any publication may contain inaccuracies or typographical errors, as
well as technical inaccuracies. Pegasystems Inc. shall not be liable for technical or editorial errors or omissions contained herein.
Pegasystems Inc. may make improvements and/or changes to the publication at any time without notice.

Any references in this publication to non-Pegasystems websites are provided for convenience only and do not serve as an
endorsement of these websites. The materials at these websites are not part of the material for Pegasystems products, and use of
those websites is at your own risk.

Information concerning non-Pegasystems products was obtained from the suppliers of those products, their publications, or other
publicly available sources. Address questions about non-Pegasystems products to the suppliers of those products.

This publication may contain examples used in daily business operations that include the names of people, companies, products, and
other third-party publications. Such examples are fictitious and any similarity to the names or other data used by an actual business
enterprise or individual is coincidental.

This document is the property of:

Pegasystems Inc.
One Rogers Street
Cambridge, MA 02142-1209
USA
Phone: 617-374-9600
Fax: (617) 374-9620
www.pega.com

DOCUMENT: System Architect Essentials Student Guide
SOFTWARE VERSION: Pega 7.2
UPDATED: 02 07 2018

http://www.pega.com/

i
©2017 Pegasystems

CONTENTS

COURSE INTRODUCTION 1
Before you begin 2

PEGA BUSINESS APPLICATION PLATFORM 4
The Pega Platform 5
Introduction to the Pega 7 Platform 5
Pega 7 application platform 6
Model-based application design and development 7
Pega 7 user roles 9
Pega 7 user portals 11
Pega Express 15
Using Pega Express to model the life cycle of a case 17
Designer Studio 19
Using Designer Studio to refine the life cycle of a case 22

Principles of application development 23
Capture objectives directly in the application 24
Build multi-dimensional applications 25
Use a model-driven application design 26

Best practices and Guardrails 27
Introduction to best practices and guardrails 27
Purpose of best practices 28
Pega's best practices for project success 30
Pega guardrails for application design 34

PROTOTYPING AN APPLICATION WITH PEGA EXPRESS 35
Designing a case life cycle 36
Introduction to designing a case life cycle 36
Case life cycle design 37
Case types 39
Stages 40
Processes 42

Assigning work 44
Introduction to assigning work 44
Assignment routing 45
Assigning work to case participants 47

Enforcing service levels 48
Introduction to enforcing service levels 48
Goals and deadlines 49
Adding service levels 50

Creating user views 51
Creating an Application User Interface 51
Planning end-user forms 52
Configuring user views 56

CASE DESIGN USING DESIGNER STUDIO 61
Requirements management 62

ii
©2017 Pegasystems

Introduction 62
Requirements management 63
Managing Requirements 64
Business objectives 65
Application requirements 66
Requirements 101 68
Application specifications 69
Specifications 101 71
Relationship between Pega design artifacts 72
Linking specifications to business objectives and requirements 74

Best practices for case design 77
Introduction to best practices for case design 77
Effective process design: collaborate, elaborate, iterate 78
Designing intent-driven processes 80

Managing case life cycle exceptions 83
Introduction to managing case life cycle exceptions 83
Alternate stages 84
Adding alternate stages to the case life cycle 85
Stage transitions 87
Controlling stage transitions 89

Adding optional business process events 91
Introduction to adding optional business process events 91
User actions 92
Adding user actions to the case life cycle 95

Sending correspondence 97
Introduction to sending correspondence 97
Automating case communications 98
Sending an email from a case 100

Guiding users through a business process 101
Introduction to guiding users through a business process 101
Updating the case status 102
Adding Instructions 104
Adding an Instruction to a step 105

Modeling complex process flows 106
Introduction to designing complex process flows 106
Flow rules 106
Flow shapes 108
Adding shapes to a flow rule 111
Configuring flow shapes and connectors 114

REPORT PLANNING AND DESIGN 117
Process visibility through business reporting 118
Introduction to process visibility through business reporting 118
Business reports 119
About the Report Browser 121
Working with the Report Browser 124
Working with the Report Editor 126

APPLICATION DESIGN 128

iii
©2017 Pegasystems

The role of the System Architect 129
Introduction to the Role of the System Architect 129
The role of the system architect 130

The building blocks of a Pega application 132
Introduction to the Building Blocks of a Pega Application 132
Rules and rule types 133
Rules and rulesets 135
Classes and class hierarchy 138
How to create a rule 140
How to update a rule 142
How to reuse rules through inheritance 144
Reviewing class inheritance 147

Accessing Applications 149
Introduction to accessing applications 149
How to manage user access to an application 149

Assessing Guardrail compliance 152
Introduction to assessing guardrail compliance 152
Compliance Score 153
How to assess guardrail compliance 154
How to address guardrail violations 156
Justifying rule warnings 158

CASE DESIGN 160
Creating cases and child cases 161
Introduction to Creating Cases and Child Cases 161
Case type and case 162
Case type relationships 164
Adding a top-level case type in an application 166
Adding a child case type in an application 167
Creating a case during case processing 169

DATA MODEL DESIGN 171
Data elements in Pega applications 172
Introduction to Data Elements in Pega Applications 172
Data elements in Pega applications 173
How to manage properties 177
How to reference a property 182
Defining properties 183

Setting property values automatically 187
Introduction to Setting Property Values Automatically 187
Data transforms 188
How to set values with data transforms 189
The pyDefault data transform 191
Setting property values using the pyDefault data transform 192
Data transforms and superclassing 194
How to configure superclassing for data transforms 196

Setting property values declaratively 198
Introduction to Setting property values declaratively 198
Declarative processing 199

iv
©2017 Pegasystems

Declare expressions 201
How to set a property value with a declare expression 206
Setting a property value with a declare expression 208

Passing data to another case 214
Introduction to Passing Data to Another Case 214
Data propagation 215
Propagating data to another case 217

Reviewing application data 219
Introduction to Reviewing Application Data 219
Data storage in memory 220
pyWorkPage 222
How to view clipboard data 223
Viewing clipboard data 225
Setting property values using the Clipboard tool 226

PROCESS DESIGN 227
Activities 228
Introduction to Activities 228
Activities 228
Activity execution 229
Activity parameters 230
API activities 231
Activities best practice 232

Configuring a work party 233
Introduction to Configuring a Work Party 233
Work parties 233
How to add a work party to a case 234
Configuring a work party for a case type 236

Configuring a service level agreement 238
Introduction to Configuring Service Levels 238
Service level agreement rules 238
The Passed Deadline interval 239
How to adjust assignment urgency 240
Configuring a service level agreement rule 241

Routing assignments 246
Introduction to Routing Assignments 246
Routing 246
Worklists and workbaskets 247
Routers 248
Configuring routing 250

Configuring correspondence 255
Introduction to Configuring Correspondence 255
How to configure correspondence rules 255
How to configure correspondence in a business process 257
Configuring correspondence rules 261

Circumstancing rules 265
Introduction to circumstancing rules 265
Situational processing 265
Rule circumstancing 266

v
©2017 Pegasystems

Types of circumstancing conditions 267
Circumstancing a rule 268

DECISION DESIGN 271
Automated decisions in Pega applications 272
Introduction to Automated Decisions in Pega Applications 272
Types of decisions available in Pega applications 273

Configuring when rules 277
Introduction to Configuring When Rules 277
When conditions 278
How to configure a when condition using a when rule 280
Configuring a when rule 283

Configuring decision tables and decision trees 285
Introduction to Configuring Decision Tables and Decision Trees 285
Decision tables 286
How to configure a decision table 288
Configuring a decision table 290
Decision trees 294
How to configure a decision tree 296
Configuring a decision tree 297
How to unit test a decision table or decision tree 300

UI DESIGN 302
Designing a UI form 303
Introduction to Designing a UI Form 303
User interface structure 304
Sections and layouts 306
How to build a section 308
Creating a dynamic layout in a section 309
Creating a repeating layout in a section 310
How to build sections for reuse 311
Live UI 312
How to use Live UI 313
Using Live UI 314
Guidelines for designing user forms 317

Reusing text with paragraph rules 320
Introduction to Reusing Text with Paragraph Rules 320
Paragraph rules 321
Reusing text with paragraph rules 323

Configuring responsive UI behavior 327
Introduction to Configuring Responsive UI Behavior 327
Responsive user interface 328
Presentation layer and UI skins 329
How to trigger responsive behavior with responsive breakpoints 330
How to style applications with UI skins 331
Configuring responsive breakpoints on a dynamic layout format 333

Designing a dynamic UI 334
Introduction to Designing a Dynamic UI 334
Dynamic user interface behavior 335

vi
©2017 Pegasystems

Hiding and showing UI elements 337
Action sets 341

Validating user data 348
Introduction to Validating User Data 348
Methods of data validation 349
Controls 351
Validating with controls 354
Dynamic lists of data entry items 357
How to create a dynamic list 359
Creating a dynamic list 360
Validate rules 362
How to use validate rules 364
Validating a flow action with a validate rule 365
Demo: Validating a flow action with a validate rule 368
How to use edit validate rules 370

REPORT DESIGN 372
Creating reports 373
Introduction to Creating Reports 373
Reports 374
Report columns 376
Report filters 377
How to create a report 380
Creating a report 383
Report results organization 388
Organizing report results 392

Optimizing report data 398
Introduction to Optimizing Data 398
Data Storage in Pega applications 399
Property optimization 401
Optimizing properties for reporting 403

DATA MANAGEMENT 404
Caching data with data pages 405
Introduction to caching data with a data page 405
Data pages 406
How to configure a data page 407
Configuring a data page 412

Managing reference data 416
Introduction to managing reference data 416
Reference data 417
How to use local data storage 418
Defining reference data for an application 419

Integration in Pega applications 423
Introduction to Integration in Pega Applications 423
Connectors 424
Services 426
Connecting to an external database 428

Creating a connector 430

vii
©2017 Pegasystems

Introduction to Creating a Connector 430
Creating a connector 431

APPLICATION DEBUGGING 437
Debugging applications with the Tracer 438
Introduction to Debugging Pega Applications 438
The Tracer 439
How to investigate application errors with the Tracer 440

COURSE SUMMARY 442
Next steps for system architects 443
System Architect Essentials 7.2 Summary 443

COURSE INTRODUCTION

1
©2017 Pegasystems

2
©2017 Pegasystems

Before you begin
System Architect Essentials 7.2 overview
In this course, you learn the core principles of application development on the Pega 7 Platform.
Business users and delivery team members use these principles to plan and deliver
business applications faster and more accurately for maximum business value.

You learn how to perform the most common application development tasks to prepare yourself for
your first Pega development project.

Objectives
After completing this course, you should be able to:

l Apply Pega's principles of application design and development to deliver business applications that
are Built for Change™.

l Use Pega Express to model the life cycle of a case that mirrors the way business people think about
how work is completed.

l Directly capture business objectives to help ensure that business requirements are accurately
captured, and that business and IT stakeholders share a common understanding.

l Use Designer Studio to refine and enhance the case life cycle design.

l Identify the tasks and responsibilities of the system architect on a Pega Implementation.

l Configure a case and case processing behavior.

l Create data classes and properties for use in a Pega application.

l Automate decision-making throughout an application to improve process efficiency.

l Design responsive user forms for use on any platform or browser.

l Design reports to deliver key insights to business users.

l Incorporate and manage reference data to allow applications to adapt to changing business
conditions.

l Test your application design to analyze rule behavior and identify configuration errors.

Intended audience
This course is for system architects who are responsible for developing business applications.

Prerequisites
To succeed in this course, you should:

3
©2017 Pegasystems

l Know the business processes and policies used at your company.

l Have a basic understanding of business application development.

l Be familiar with project methodologies such as Scrum, RUP, or Waterfall.

l Have some experience developing software applications.

PEGA BUSINESS APPLICATION
PLATFORM

4
©2017 Pegasystems

5
©2017 Pegasystems

The Pega Platform

Introduction to the Pega 7 Platform
In this lesson you will learn how the Pega 7 Platform is used to design and run Pega applications.

After this lesson, you should be able to:

l Explain the benefits of using a model-driven application design and development approach

l Describe the user roles and each role's high-level responsibilities associated with the Pega 7
Platform

l Describe the purpose of the run-time portals in Pega 7

l Describe the purpose of the design time portals in Pega 7

l Describe when to use Pega Express vs. Designer Studio

6
©2017 Pegasystems

Pega 7 application platform
The Pega 7 Platform provides a single, unified platform with everything you need to build or modify
enterprise applications. Business and IT stakeholders work together, using visual models to capture
business requirements. With no coding required, Pega 7 automatically generates the application and
its documentation.

Pega 7 provides a unified application development platform for building business applications.
Traditional application development tools focus on creating individual business applications that must
then be integrated with each other. For example, a company may need to integrate a website
application, a mobile application, and a customer relationship management (CRM) application.

Each application has its own requirements, analytics, and business policies.

Existing business applications may be developed and maintained by separate groups that use
different application development languages, tools, methods, and repositories.

Or an company might have a business rules engine to provide business logic, a development
environment to integrate with external systems, or a document management system to manage case
data. Unifying existing business applications might be unobtainable for a company without outside
help. As a result, sharing and reusing application components when building business applications is
difficult.

The Pega 7 Platform is unified. This means that all the functionality needed for business applications is
configured using a consistent set of components that are defined and stored together in the
company's systems of record. Each business application built on top of the Pega 7 Platform uses a
common set of tools, a common vocabulary, and a consistent model to communicate, implement, and
validate requirements. Business processes and policies, integrations with external systems, mobile
interfaces, business performance monitoring, and reporting are all defined using a consistent, model-
based application development approach. This makes sharing and reusing artifacts easier when
building business applications.

KNOWLEDGE CHECK

What is the significance of a unified platform?

With a unified platform, you configure applications using a consistent set of components. The use of
a consistent set of components reduces application development time.

7
©2017 Pegasystems

Model-based application design and
development
The Pega 7 application development platform uses a model-based approach to application
development.

You use visual, form-based definitions of application components in a model-based approach. No
coding is required.

Application architects can see where application components are placed and how each piece is
leveraged by the rest of the application. By improving the visibility architects have to the overall
application design, all team members can communicate more effectively about the impact of new or
modified requirements. Team members can also identify potential gaps. As a result, updating
processes, user interfaces, and other business rules is easier.

8
©2017 Pegasystems

KNOWLEDGE CHECK

To ensure visibility among all team members to an overall application design, which
application development approach does Pega 7 use?

Pega 7 uses a model-based application approach.

9
©2017 Pegasystems

Pega 7 user roles
Building a successful business application requires collaboration between two parties: case
participants and case designers.

Case participants
Case participants are the business users of the application, processing and closing cases. Case
participants are usually organized by roles. For example, in a credit card dispute case, the roles might
include a customer service representative, a dispute agent, and a fraud investigator.

There are two groups of case participants:

Case workers are responsible for creating, viewing, and working on their own cases and assignments.
A case worker cannot monitor or manage work among other case workers, or view work statistics.

Case managers are responsible for working on cases and monitoring work group status, goals, and
deadlines. Case managers are also responsible for generating work manager reports.

Each case participant group uses a Pega run-time Pega portal specific to the group. Case workers use
the Case Worker portal. Case managers use the Case Manager portal.

KNOWLEDGE CHECK

If a case manager oversees the efforts of a case worker, what does a case worker do?

Case workers are responsible for creating, viewing, and working on their own cases and assignments.

Case designers
Case designers are part of the delivery team responsible for designing and building business
applications. Case designers use Pega’s design time portals, Pega Express and Designer Studio.

There are two groups of case designers:

Business architects (BAs), the first group of case designers, work with case participants and other
stakeholders to define business objectives and application requirements. BAs plan application
behavior to address the business objectives and requirements with specifications. These specifications
describe how the application manages and automates work.

10
©2017 Pegasystems

System architects (SAs), the second group of case designers, provide the technical skills needed to
complete the application. SAs configure application assets such as User Interface (UI) forms, automated
decisions, and correspondence. SAs then review the application with business stakeholders for
approval.

The SAs and BAs work together to ensure the new application reflects business needs. SAs often
prototype application features to help refine the specifications captured by the BAs. These prototypes
help align the application with the business needs.

KNOWLEDGE CHECK

If business architects (BAs) gather business objectives and application requirements, for
which tasks are the system architects (SAs) responsible?

SAs provide the technical skills needed to complete the application. They configure application assets
such as User Interface (UI) forms, automated decisions, and correspondence. SAs then review the
application with business stakeholders for approval.

11
©2017 Pegasystems

Pega 7 user portals
Pega 7 includes four user portals that provide intuitive, results-focused work spaces.

Design time portals
Application designers can use either of two design time portals, Pega Express or Designer Studio, to
build applications that support a wide range of business objectives at all levels of complexity.

Pega Express
Pega Express is an accelerated application development environment that exposes key elements and
features of the Pega 7 Platform. Use Pega Express to quickly build the case structure and process
steps. Streamlined capabilities let you create a basic application that you can demonstrate to
stakeholders and get their feedback.

12
©2017 Pegasystems

Designer Studio
Designer Studio is a robust application development environment that exposes more advanced
features of the Pega 7 platform. Use Designer Studio to refine the case life cycle design. For example,
you can add predefined utilities used to automatically send an email.

Design time users can toggle between Pega Express and Designer Studio.

13
©2017 Pegasystems

Run-time portals
Case participants are assigned run-time portal access based upon each participant's role. Run-time
portals users do not have design privileges.

Case Worker portal
An end user with case worker privileges is able to access to the Case Worker portal. Case worker
privileges enable the user to work on assigned cases.

Case Manager portal
An end user may be assigned case manager privileges.

14
©2017 Pegasystems

Case manager privileges enable the user to manage their assigned cases and view the status of the
cases assigned to all of their direct reports.

15
©2017 Pegasystems

Pega Express
Pega Express is a design time portal that enables you to quickly create and run applications that model
processes business users follow.

Pega Express allows you to:

l Create cases

l Create user views and fields

l Add or remove existing users from your application

l Define settings for theme, mobile apps, and other tools

In addition to the portal's design capabilities, you may also use the portal to run an application in
simulation mode. This features allows you to test your design as a user would experience it. For
example, you may add fields to a form that is presented to the business user. To test your updates, run
Pega Express in simulation mode. This displays the form as a user would see it while working on a
case. As a user, you enter information in the fields to ensure that your design works as expected.

Designing with Pega Express
To create an application in Pega Express, start by building out the high-level case structure and
processes.

You define the phases in the life cycle of a case type, and the processes or work flows that users follow.
By incorporating stages, processes, and steps into your case-type designs, you build robust business
solutions in your application.

Next, you create forms that are associated with assignments or approval steps in the life cycle of a
case.

16
©2017 Pegasystems

By defining the fields that are displayed at run time, you can collect information from users or present
case information for review.

This allows you to build the data model in the context of the life cycle of the case.

Pega Express is ideal for initial Grooming/Elaboration sessions where business and IT stakeholders
collaboratively define the primary case type life cycle. This may include importing existing
specifications and linking them to process steps as you go, or defining new specifications in the context
of the case life cycle.

KNOWLEDGE CHECK

Pega Express allows you to run an application in ___________ so that you can test your design
as a user would experience using the application.

simulation mode

17
©2017 Pegasystems

Using Pega Express to model the life cycle of
a case
Using Pega Express, you can easily define the high-level case structure and steps of a case.

Transcript
Click Cases.

Click Create new case type.

Enter Auto Loan as case type name.

Click Next.

Click + Add field.

Enter First Name and Last Name.

Click Got it.

Click Life cycle.

Click Add stages.

Enter New Loan as the name of the first stage.

Click + Add stage, and then enter Loan Review as the name of the second stage.

Click + Add stage, and then enter Loan Offer as the name of the final stage.

Click Got it.

Click Add process?.

Click Add processes.

Click + Add process.

Enter Enter Loan Details in the first step of the first stage.

Click +Add Process in the second stage.

Rename the step to Review Loan Details

Click + Add process in the third stage.

Rename the step to Present Loan Offer.

Click Done.

Click + New and select the Auto Loan case.

Enter Irshad as the first name, and James as the last name.

Click Done.

Click No, advance this case.

Click No, advance this case, and then click No, Advance this case again.

18
©2017 Pegasystems

You now have a basic case type, which you can further refine by adding user views and other details.

19
©2017 Pegasystems

Designer Studio

Designer Studio is a powerful design-time portal for architects who wish to build and extend Pega 7
applications.

After you create initial case life cycle designs in Pega Express, move to Designer Studio to extend the
application and refine your designs.

Designer Studio user portal consists of a:

1. Work area

2. Header bar

3. Explorer area

4. Developer toolbar

Designer Studio work area
Use the work area to view landing pages. A landing page presents information or tools that help
developers to build an application or view specific information on the application. You may open,
review, and edit application artifacts such as requirements, case types, user views, data models, and
reports. Multiple items open in the work area display in separate tabs.

20
©2017 Pegasystems

Designer Studio header
The Designer Studio header provides tools to create and manage application assets.

Use the header to create cases, search for records and launch secondary portals.

Designer Studio explorer area
The Explorer area appears as a panel on the left side of the Designer Studio and provides navigation to
specific record types.

Icon Explorer Purpose
Recent Display and access up to the last 20 recently opened records, wizard

items, instance lists, landing pages.

Cases Open and review case types in the current application. The tree
structure helps you identify parent-child relationships. Advanced
options allow you to edit case types and create new ones.

Data Review data types in the current application and the data pages
associated with them. You can filter the results by application or
applies to class.

App Review or open the records that belong to the current and built-on
applications. The tree structure organizes rules by class, category, rule
type, and instance.

Records Open a list of records in the system organized by category and type.

Private Review your checked-out rules.

Favorite Review and update your personal or access group favorites.

21
©2017 Pegasystems

Designer Studio developer toolbar

The Developer toolbar helps users debug applications, tune performance and quickly analyze the
composition of user interface (UI) components.

Use the:

l Tracer tool to debug rule execution.

l Clipboard tool to view data in memory.

l Live UI tool to identify user interface elements.

l Performance tool to analyze application performance.

l Alerts tool to view system alerts generated by Pega.

KNOWLEDGE CHECK

Use the _____________________________ to open, review and edit application artifacts such as
requirements, case types, user views, data models and reports.

Work area

22
©2017 Pegasystems

Using Designer Studio to refine the life cycle
of a case
Using Designer Studio, you can easily refine the high-level case structure and steps of a case.

From Pega Express, you can seamlessly to Designer Studio to further refine the life cycle of your case.

Designer Studio provides the same case life cycle view as Pega Express.

You can further refine the basic case life cycle by adding stages that represent exceptions to the
normal life cycle of a case.

Add process steps to the alternate stages. Pega 7 provides predefined utilities for actions such as
sending an email.

Easily reorder steps in a process.

Save your changes and continue refining the case life cycle design.

Easily edit user views.

Add new data fields.

Your changes are immediately available.

Seamlessly transition back to Pega Express. Changes you make in Designer Studio are available in Pega
Express.

23
©2017 Pegasystems

Principles of application development
Introduction to principles of application development
In this lesson, you will learn five key principles of application development.

Objectives
At the end of this lesson, you should be able to:

l State the importance of using Pega's Directly Capture Objectives™ approach to managing
requirements

l State the benefits of using Pega's Situational Layer Cake™ architecture to design an application

l State the benefits of using a model-driven application design

24
©2017 Pegasystems

Capture objectives directly in the application
Business application development teams can find it difficult to communicate business requirements.

There may be no common language between the business and IT stakeholders. And, there may not be
a common view of the business goals.

Often, business stakeholders are not sure of what their business needs are. When this happens, IT
stakeholders find it difficult to get the details they need. Business and IT stakeholders must share a
common understanding of the business requirements. You also need a way to ensure business
requirements are current and available to all stakeholders

In Pega 7, you capture business requirements directly in the application. This practice is called Directly
Capture Objectives, or DCO.

DCO ensures business and IT stakeholders share a common understanding of the business
requirements. DCO also ensures the business requirements are up-to-date and available to everyone.

25
©2017 Pegasystems

Build multi-dimensional applications
The critical dimensions of any business are product, region, channel, and customer.

When you conduct business in different countries, you must manage the regulations of each
jurisdiction, and the cultural differences in each region. When you sell multiple products through
multiple channels, you must manage the business rules for selling each product in each channel
separately. When you sell to different types of customers, you must manage each customer's
expectations and preferences.

With some application development platforms, you must create separate copies of the application for
each product, region, or channel. Or, you must create an application that treats all business
transactions the same, regardless of the business context. The result is enterprise applications that are
hard to maintain, and even harder to change

Pega uses a unique application architecture called a situational layer cake.

The Situational Layer Cake allows you to organize your application using the same dimensions as
your business. The situational layer cake makes reusing common policies and procedures easy while
allowing for differences between products, regions, channels, and customer segments.

Pega's unique approach to enterprise application architecture - the Situational Layer Cake - can help
turn the complexity of an ordinary enterprise application into a simple and coherent end-to-end
customer experience.

26
©2017 Pegasystems

Use a model-driven application design
Ask any business person to explain their needs for an enterprise business application.

As they explain their needs, you will notice they do not dive into the details about any particular part of
the application. And, they do not discuss the behind-the-scene technologies needed to make the
business application useful.

When business people explain their needs for an enterprise business application, they describe the
major steps of how work gets done. They talk in terms of a case and a desired outcome, and the stages
that case may go through until the desired outcome is achieved.

What they describe is the life cycle of a case.

To be effective, your application design and development efforts must match the way business people
naturally talk about their work. A case, and its life cycle, is the central metaphor in Pega's model-driven
approach to building business applications.

Rather than drawing complex end-to-end diagrams, Pega 7 allows you to build a visual representation
of the life cycle of a case essentially building the skeleton on which you hang the more detailed
processes. This allows you to establish a business view of the case before debating the details.

27
©2017 Pegasystems

Best practices and Guardrails

Introduction to best practices and guardrails
In this lesson, you will learn best practices for designing and building applications.

Some best practices help you deliver business application development projects successfully. Other
best practices help you design business applications with fewer defects. Following best practices
increases your chances of overall project success.

Objectives
At the end of this lesson, you should be able to:

l Explain the purpose and benefits of best practices.

l Identify Pega best practices

l Identify the most important best practices when building a Pega application

l Explain how Pega guardrails indicate flaws in an application design

l Describe the information provided in guardrail warnings

l Locate guardrail warnings in Designer Studio

28
©2017 Pegasystems

Purpose of best practices
Best practices are well-defined methods or techniques that lead to
desired results. Every best practice has at least one goal. A best
practice is proven to make progress towards achieving its goals. If an
organization follows best practices, it can predict a desired result with
minimal problems or complications.

Best practices are used in everyday life. For example, when preparing
a meal, a best practice is to always use a potholder when touching a
hot pot. The goal is to not burn yourself, and using a potholder is a
proven way to prevent you from burning yourself.

As you design and build your application, establish and follow best
practices to increase your chances of project success. Look for existing
best practices used by your organization and by Pega. Select existing
best practices or create new best practices to meet your goals.
Applying best practices increases the likelihood that your application is
delivered on time and meets all of its design requirements.

Tips for establishing best practices
The standards for establishing best practices can vary, depending upon the needs of the organization
and who is making the choices. You can use several criteria to help choose best practices that will
deliver measurable and predictable performance improvements for your application development
projects.

Is the best practice appropriate for your organizational goals?
To be effective, best practices must address the specific goals of your organization. For example, if an
organizational goal is to ensure the protection of sensitive customer information, a best practice to
outsource developers may not be appropriate — the developers may also be working for the
organization's competitors.

Does the best practice fit with the structure of your organization?
If a best practice places authority in a single person or part of the organization, it does not provide
value if your project teams are supposed to be able to make their own decisions.

Do you have the necessary resources to use the best practice?
Understanding what a particular best practice requires in regard to resources — whether money,
personnel, or skills — is essential. Make sure that your organization can provide those resources
before committing to a specific best practice.

29
©2017 Pegasystems

Is the best practice cost-effective?
If a best practice works well for other organizations but requires an unacceptable amount of money or
time to reproduce in your organization, it will be hard to justify the use of that best practice.

30
©2017 Pegasystems

Pega's best practices for project success
With experience from thousands of Pega project implementations, Pega has defined best practices that
are key to delivering successful Pega projects. Using some of the best practices identified below can
help increase your chances of project success.

Leverage DCO to improve product quality
Directly Capture Objectives (DCO) enables a project team to directly enter business requirements for
an application into Pega.

DCO helps eliminate translation errors, saves the team time and effort, facilitates direct engagement of
business and IT resources around visible working models, and enables project participants to optimally
review work progress.

Pega recommends that all projects leverage DCO as a core part of the delivery process.

Use standard Pega capabilities
Pega 7 has many features and capabilities built into the product. Use Pega capabilities, which have
been tested and proven reliable.

For example, assume part of a case's life cycle requires increasing levels of review. Rather than
building a custom review process, use an approval process available in Pega 7. You can design the life
cycle of a case to support your requirements in a fraction of the time needed to build custom
processes.

Iterate and test as you build
Use the most agile, iterative delivery model that your organization can adopt. First, separate large
applications into smaller, more manageable components. For example, instead of building the
complete application and then testing the completed application all at once, build and test individual

31
©2017 Pegasystems

processes incrementally. Then, demonstrate completed features to interested parties who can provide
feedback.

Begin testing early in the project life cycle to drive higher levels of product quality. Test each new
feature or capability to make sure it works. Then, test the system for processing issues that may affect
performance. Also, check to see if the new features work together without error. Finally, have analysts
test the application to make sure the application meets the requirements and business objectives.

Communicate project progress at all levels
Regular communication among all project participants helps teams focus on the right issues in a timely
manner. Pega recommends the following:

l Daily standup meetings to set priorities for the day, ensure alignment, and eliminate any blockers.

l Weekly project updates to track issues and update the status report. Flag conditions that need
immediate attention to keep projects moving on schedule.

l Biweekly or monthly meetings to review the entire project and determine whether the application
conforms to the original design objectives. Promptly incorporate feedback into project design, and
revise project plan if necessary.

Ensure project team members are certified
Project success depends on a complete and capable team. As a guideline, Pega recommends that all
team members hold the appropriate certifications for their roles.

32
©2017 Pegasystems

Pega recommends that business architect and project management resources pass the Certified
Business Architect exam. All developers should, at a minimum, pass the Certified System Architect
exam.

Follow Pega guardrails
Pega guardrails help ensure that you use best practices for configuring Pega applications. Pega's
powerful capabilities offer many possible approaches to create a specific design requirement. Not all
of those approaches are the best solution. Pega provides standard guardrail capabilities that enable
development team members to track compliance with Pega best practices. Compliance with the
guardrails results in applications that are easier to maintain and upgrade, and have significantly fewer
defects than non-compliant applications.

Collaborate with everyone invested in the success of the
project
Collaborate with individuals interested in making your project succeed. Bring business users, business
analysts, and system architects together so they can share their unique skills and viewpoints. For
example, business users and business analysts who have in-depth knowledge of the business process
can help capture accurate requirements as well as design and optimize business processes. System
architects can help provide guidance on the best way to implement a business requirement.

33
©2017 Pegasystems

KNOWLEDGE CHECK

What are the possible consequences of not following best practices and guardrails when
designing and building an application on the Pega 7 platform?

When not following best practices, you may spend more time re-creating existing functionality, or
debugging a component that is not well designed. There is also the risk that you will implement a
feature that does not work correctly.

34
©2017 Pegasystems

Pega guardrails for application design
Following best practices when designing and building an application is important. To help ensure your
project's success, Pega guardrails help you and your team track whether an application conforms to
Pega's best practices.

Following best practices can help you deliver applications that require less maintenance, have fewer
defects, and can be easily upgraded compared to applications that deviate from best practices.

As you work with Pega 7 you will see messages.

These messages are important; they are known as guardrails.

Guardrails help to ensure that the application you create follows the known best practices for Pega 7
development.

When creating an application it is always a good idea to follow the best practices for whatever
technology we are working with. What happens if we don’t follow known best practices?

By not following best practices we add increased risk that our application development effort could go
off course and not. The application does not work as well as it could or should. It can also make the
application difficult to maintain and update.

It is also possible that our application can get out of control and crash the project entirely.

Guardrails are best practices and guidance about situations that contain risky conditions or that might
result in an undesirable outcome.

Guardrails ensure you and your team use Pega 7 the right way and help you avoid troublesome
situations.

PROTOTYPING AN APPLICATION
WITH PEGA EXPRESS

35
©2017 Pegasystems

36
©2017 Pegasystems

Designing a case life cycle

Introduction to designing a case life cycle
Effective case management requires individual contributors to complete steps in a coordinated
manner so they can resolve cases efficiently. A case life cycle design is a visual model used to define
the major steps of how work gets done. Case life cycle design provides a more natural, business-
friendly way to develop an application.

Objectives
At the end of this lesson, you should be able to:

l Explain the purpose of case life cycle design

l Describe the elements of a case life cycle

l Explain the relationship between case types, stages, and process steps

l Create a case type using Pega Express

l Add stages and process steps to a case type using Pega Express

37
©2017 Pegasystems

Case life cycle design
Business applications are the foundation of every organization. Business applications automate work
that must be completed to achieve specific business outcomes. For example, opening a new account,
filing an accident claim, or ordering merchandise online.

Traditional business applications are based on individual transactions and are built as standalone
applications for different departmental functions.

These separate applications make it hard for business users to complete work in a coordinated
manner. When working with separate applications, business users lack the visibility they need to
effectively achieve business outcomes.

A business view of work
To help business users effectively achieve business outcomes, business users need a way to work in a
coordinated manner. Business applications should function in the same way business users naturally
think about and describe their work.

Business users often think of the work they do — investigating a fraud claim, processing a loan
application — as a case.

A case is work that delivers a business outcome. The outcome of a case is a meaningful deliverable
provided to a customer, partner, or internal stakeholder. A deliverable can be processing an auto-
insurance claim, onboarding a new mortgage, or designing and releasing a new product. In all these

38
©2017 Pegasystems

examples, the work to be done can be defined in terms of its resolution (the insurance claim is paid,
the new account is opened, or the new product is released).

Business users understand, and work with the case as it moves from one person to the other, from one
part of the organization to another. What business users are describing is the life cycle of a case —
how they manage the case as it is opened, worked on, and resolved.

Design your application using a business view of work
A case is the central metaphor in Pega's model-driven approach to application design.

Case life cycle design is a modeling technique Pega uses to describe, in business terms, how a
business application should work. Case life cycle design allows business users to see, and interact with
a case in the same way they think about it.

Cases are organized into high-level milestones, known as stages. Stages are the first level of organizing
the different tasks, or processes required to complete work associated with a case. Stages help to
organize the life cycle of a case around the key events that support the primary goal of the case.

Stages are further organized into processes which define one or more paths the case must follow.
Processes contain a series of actions, or steps that must be completed to resolve the case.

KNOWLEDGE CHECK

A _______________ delivers a meaningful business outcome to a customer, partner, or
internal stakeholder.

case

39
©2017 Pegasystems

Case types
A case type is an artifact in Pega used to define the tasks and decisions needed to resolve a case.

Each case type captures the life cycle of a specific type of case, from creation to resolution.

Guidelines for identifying and naming case types
Case types are generally named after the case they represent. For example, a case type used to
process loan applications for a new vehicle might be named Auto Loan, while a case type used to
process mortgage applications might be named Home Loan.

The name given to the case type is usually only one or two words. For example, a case type used to
open new accounts might be named New Account.

Use names that are relevant and meaningful to the business users. For example, a case type used to
process auto accident claims might be named Accident Claim.

Use a singular context when naming case types. For example, a case type used to process a fraudulent
credit card charge might be named Fraud Claim.

40
©2017 Pegasystems

Stages
A stage is the first level of organizing work in your case type. It contains the workflows, or processes,
that users follow before they can move a case to the next phase in the case life cycle.

By capturing business requirements in stages, you get a sense of what needs to be done first, what
must happen in sequence, and what can happen in parallel during case processing. In a case life cycle,
stages that lead to the expected outcome are called primary stages. The sequence of primary stages
is often referred to as the happy path.

As an example, consider the construction of a new home. If you were asked to organize the tasks
required to build a house into key phases of construction, you might organize the tasks in a series of
three stages. The foundation of any building is always the first phase. Then the house itself — the
frame — is constructed. Finally, the roof is added.

Each stage represents a distinct phase of the home construction case life cycle. In the home
construction example, foundation, framing, and roofing are primary stages that lead to the completion
of the house which is the business outcome.

Guidelines for defining stages
To define stages, consider the following guidelines.

Organizing stages

Stages typically represent the transfer of the case from one authority to another, or from one part of
the organization to another. Stages may also represent a significant change in the status of the case.

41
©2017 Pegasystems

Naming stages

Use names that are most meaningful and relevant to the business users. Use a noun, or noun phrase,
to describe the context of the stage. As much as possible, try to limit the stage name to no more than
two words.

Number of stages

Consider limiting the number of stages in any given case type to 7, plus or minus 2. If you find yourself
needing more than 10 or so stages, consider combining one or more stages, or using a separate case
type.

On the minimum side, do not be concerned if a case has only one or two stages. Focus on maintaining
a maximum number of stages in any given case type and the minimum will work itself out.

KNOWLEDGE CHECK

A ________________ is used as a first level of organizing work in a case.

stage

42
©2017 Pegasystems

Processes
In a case life cycle, processes are organized within stages and define one or more paths the case must
follow. You add a process to a stage in a case type to define a set of tasks that users accomplish as they
work on a case.

Process steps
A process contains a series of tasks, or steps. A step can be an action that a user performs, an
automatic action performed by the application, or other processes that contain a separate set of
actions.

By organizing related tasks into processes, you can control how, when, and by whom work is performed
in each stage of the case life cycle.

Guidelines for defining processes

Naming processes and steps
When naming processes and steps, use a “verb + noun” naming convention (ex. perform “this action”
on “this object.”)

43
©2017 Pegasystems

Consider every process as a distinct action taken to help resolve a case. Every process should have a
goal that can be expressed as a singular outcome.

Organizing process steps
Consider limiting the number of steps in each process to five, plus or minus two.

If more than seven obvious steps are needed, consider breaking down some steps into other
processes.

KNOWLEDGE CHECK

In Pega 7, ___________________ are organized within stages and define one or more paths
the case must follow.

processes

44
©2017 Pegasystems

Assigning work

Introduction to assigning work
In most business applications, more than one user works on a case until the case is resolved. Effective
case design includes routing the right information to the right individuals at the right time.

Assignments allow you to determine the order in which users perform different tasks. The order in
which the assignments are completed is managed through routing. Correctly routing work allows the
right decisions to be made in a timely manner.

In this lesson, you will learn how to route an assignment to the correct user.

Objectives
At the end of this lesson, you should be able to:

l Describe the role of routing in a case

l Assign work to case participants

45
©2017 Pegasystems

Assignment routing
When processing a case, it is common that more than one person completes works on the case. For
example, when creating an expense report, an employee creates the report, a manager approves it,
and payroll sends the money. That's three sets of people working on the same case.

As part of modeling a process you define where the work should go. Assignment steps define the work
to do. The question you need to ask yourself when designing your assignment is: who should do the
work?

You route the task to a single user if the current user should perform the task or you know the user to
route the work to. For example, you would route to the current user if you have several data collection
screens since the current user would likely perform them all. You would route to a specific user in the
situation where you have an expense report approval process. The user who starts the expense report
can't approve their own expenses. Instead you route the approval task to the manager of the employee
to approve it.

46
©2017 Pegasystems

You route a task to a group of users if a set of users could complete the task and it does not matter
which user completes the task. For example, after a user completes an auto insurance claim, it does
not matter which claim processor reviews the claim. The task can be routed to a work queue where
claim processors go to get claims.

47
©2017 Pegasystems

Assigning work to case participants
You configure routing as part of the step configuration. When you configure routing, you specify what
user or group of users should complete the assignment. You configure routing using the context
properties panel for the step.

The table below provides a list of who you can route assignments to.

Value Description
Current
user

The task is routed to the user who completed the previous task.

Specific
user

The task is routed to a specific user— either a user name or reporting manager.

Work
queue

The task is routed to a queue where any user with access to that queue can complete
the task.

Follow these steps to configure routing:

1. From a case type, select the step you want to configure routing for.

2. Select who to route the task to.

3. Click Done to save your changes.

48
©2017 Pegasystems

Enforcing service levels

Introduction to enforcing service levels
End users complete assignments and resolve cases to achieve performance milestones. These
milestones are called service-level agreements (SLAs).

SLAs outline an expectation of service provided by a business to their customers. They stipulate the
amount of time in which the business intends to respond to the issue. For example, end users must
resolve customer complaints within 24 hours or complete cases in five business days.

Objectives
At the end of this lesson, you should be able to:

l Explain the purpose of goals and deadlines

l Explain how goals and deadlines can be used to improve case processing

l Explain the effect of urgency

l Describe the effect of an escalation action

49
©2017 Pegasystems

Goals and deadlines
Case types model how and by whom work is completed, but equally important is how timely the work is
completed. For example, if a customer submits a loan application, the customers should be able to
expect a response withing a reasonable amount of time

A Service Level Agreement (SLA) helps ensure work completes within the expected time intervals.

You define service levels to define the expected resolution times for a step or case. An SLA contains
three time interval milestones.

A goalmilestone defines how long the assignment should take and is typically measured from when
the step or case started.

A deadline milestone defines the longest amount of time the step or case may take before it is
considered late. It is also measured from when the step or case was started.

A past deadline milestone defines when you may take further action if the step or case is too far past
the deadline.

You define an urgency from between 10 and 100 for each milestone. The higher the value, the higher
the urgency. Typically, the urgency increases as an assignment advances to the next milestone.

Note: You cannot configure the Past Deadline milestone in the Case Designer. If you have a
requirement to use that time interval, document the details in the user story so a system architect can
implement it.

KNOWLEDGE CHECK

You are designing an SLA for a mortgage request life cycle that includes a step in which a
user collects the applicant's loan history. It is expected that the user completes this step within 24
hours when they receive the case. If the step is not completed within 48 hours, the case is considered
late. What milestones and values do you use to support this requirement.

You enter a value of 24 hours in the goal milestone, and enter a value of 48 hours in the deadline
milestone.

50
©2017 Pegasystems

Adding service levels

Adding a service level to a case
To create a service level for an entire case:

1. In a case type, click Life cycle

2. Click Settings.

3. Click Goal and Deadline to configure a service level.

4. Select Consider goal and deadline.

5. Select when the timer for the goal starts.

Option Description
This case Starts the calculation when an instance of your case type is created
Parent case Starts the calculation when the parent of your case type is created
Top level case Starts the calculation when the top-level parent of your case type is created

6. Enter the goal.

7. Enter the deadline.

8. Click Save.

Adding a service level to a step
To add a service level to a step:

1. In a case type, select the step to add a service level to.

2. Click Goal and Deadline to configure a service level.

3. Enter the goal.

4. Enter an Increase urgency by value.

5. Choose an escalation action.

6. Enter the deadline.

7. Enter an Increase urgency by value.

8. Choose an escalation action.

9. Click Save.

51
©2017 Pegasystems

Creating user views

Creating an Application User Interface

Introduction
Users perform tasks by entering information in forms. Application developers design forms so that
users can enter the correct information to complete a specific task. This lesson helps you learn how to
collect the necessary information when planning a new form, use a Pega configuration tool to map the
information to your new form, and configure the fields..

Objectives
At the end of this lesson, you should be able to:

l Describe the role of user forms in completing tasks

l Remember the three questions to ask when planning the information you need on a user form

l Map the information to fields when creating a user form in the application

l Configure the fields to support your requirements

l Design a picklist field

52
©2017 Pegasystems

Planning end-user forms
Enterprise applications typically require some human interaction. As a case goes through a process,
end-users perform a variety of tasks along the way. To perform tasks, end-users enter or review
information on end-user forms.

Not all end-users perform the same tasks. Forms are designed so that end-users can complete specific
tasks. In order to complete the tasks, end-users enter information in fields on the forms. The system
stores the values entered by end-users as data. The application uses this data to process a case. This
data can be included on other forms so that a different set of end-users can perform their own specific
tasks.

Forms designed for specific tasks
Consider a process for making loans. In this example, there are two steps and two forms.

The first step in the process requires customers to enter a loan application. The form contains fields
for entering information such as the customer's name, the loan amount, and the loan type. After
customers complete the form, the system sends the request to loan officers for review.

In the second step of the process, loan officers see a loan-officer form that displays the data collected
from the application form. Loan officers can read the information but not update it. The loan-officer
form also contains fields that allow officers to enter information such as loan insurance eligibility and
the reason for approval.

53
©2017 Pegasystems

Identify the tasks a user will perform
As the business analyst or architect, you must determine what information end-users need to see or
collect in order to perform their specific tasks. When you have defined the information end-users need,
you create a form in which end-users enter the information.

Before you create a form, ask the following questions:

l What fields do end-users need to see?

l How will end-users enter values in those fields?

l Can end-users modify the field values or only read the values?

Record the values end-users enters in a specification. The following example shows the fields included
in a loan application form.

Creating forms in your application
After you have your analysis, you are ready to create the form using the View Configuration tool. The
tool enables you to define the data elements that the system uses for processing cases.

The View Configuration tool contains an array of rows — one for each UI field. Each row has three
fields. The fields define the data element, format, and enable edit setting (required or optional).

54
©2017 Pegasystems

Field 1: Which field do you want end-users to see in the form?
In the first field on a row, select the data element you want end-users to see in the UI field. Pega
provides a large number of standard data elements to choose from such as Customer ID and Company.
The list may also contain data elements that a system architect created for your application such as
LoanOfficer ID or LoanOffice.

If the list does not contain the data element you need, type a name in the field. For example, assume
your application does not have a data element for loan type. To create a loan type data element, enter
the name Loan Type in the field. End-user sees the name as a label next to the new UI field.

When your form is complete, new data elements are saved to your application. You can reuse those
data elements when you create new views.

Field 2: How do end-users enter the value in the field?
In the second field on a row, select a format. The format defines how end-users enter a value in the
UI field. For example, if you want end-users to enter a date UI field, select the Date & time format. This
format lets end-users select a date from a calendar icon. If you want to add a field that lets end-users
select only one of two possible options, enter a Boolean format.

If you want end-users to select values from a list in the UI, select the Picklist format. A list enables you
to define valid values the application uses for processing a case. Picklist formats have an extra field
that lets you display the items either in a drop-down list or as radio buttons. This additional field also
lets you enter the items you want to display in the list.

55
©2017 Pegasystems

Selecting a Text format is incorrect for this field. This format allows end-users to enter free-form text in
a box. End-users probably do not know which loan type names are valid. Entering incorrect names
triggers error messages and creates an unsatisfactory user experience.

Field 3: Can end-users edit the field value?
In the third field on a row, select either Optional or Required if you want to allow end-users to enter a
value in a field. Select Required if end-users must enter a value in order to complete the task and
advance the case to the next step. Otherwise, select Optional so end-users do not have to enter a value
to complete the task.

If you do not want end-users to enter or update the field value, select Read-only.

56
©2017 Pegasystems

Configuring user views
After you add steps to the case life cycle design, you can configure user views for each of the steps.

Before you configure a user view, remember to answer these questions:

l What fields do end-users need to see in the UI?

l How do end-users enter values in those fields?

l Can end-users modify the field values or are the fields read-only?

Configure a user view using Pega Express
To configure a user view using Pega Express:

1. Confirm editing is enabled by looking at the upper right corner of the Pega Express dashboard. Look
for the text Turn editing off as shown in the following image.

If editing is not enabled, click Turn editing on.

2. In the Navigation panel on the left, click Cases to view a list of current case types.

3. From the list of available case types, select the case type for which you want to configure a user
view.

4. Select the step for which you want to configure a user view to display Contextual Properties panel
for that step. The Contextual Properties panel displays to the right of the case life cycle.

5. In the contextual properties panel, click Configure view. The Views configuration page is displayed.

Add default fields to a user view
To view the default fields and select fields to add to the user view:

57
©2017 Pegasystems

1. In the left panel, select Fields to view the default data elements.

2. If you require any of the default fields, select the row for the field, and then click the plus sign to the
right of the field name.

3. Repeat steps 1 and 2 to add more default fields.

Add new fields to the user view
To add new fields to the user view:

1. In the Label field, type a name for the new field. the following image shows a new Loan types field:

Note: After you add the required data element and save your view, the system adds any new data
elements to your application. You can then reuse those data elements when you create new views.

2. Use the Tab key to move to the second field on the row.

3. Select a data type for the data element. The data type defines how users enter a value in the
UI field.

For example, if you want the user to select a type of loan from a drop-down list in the Loan types UI
field, select Picklist from the drop-down in the data type field as shown in the following image:

58
©2017 Pegasystems

The Picklist data type has an additional field for you to choose the type of list (drop-down list or
radio buttons) and the names of the items on the list. To learn how to choose the type of list and to
configure item names, see the steps under Designing a picklist.

4. Use the Tab key to move to the third field, select either Optional or Required if you want to allow
users to enter a value in a field. If you do not want users to enter or update the field value, select
Read-only. In the following example, the developer is selecting Required to ensure the user selects a
value from the Loan Types list.

5. To add more fields, click Add Field beneath the bottom row.

Save and verify your work
To save your work and review the view:

1. On the bottom right corner of the View configuration page, click Submit. When you click Submit, the
system saves your updates and creates the view that users see when they work on an assignment.
The system also saves the data elements that you can reuse in the application.

2. Click Save to save your changes to the case type.

59
©2017 Pegasystems

3. In the upper right corner, click Run to run the application. The new fields in the standard Create
view display.

Designing a picklist
If you selected the picklist data type, you need to use an additional field to choose how to display the
list and the names of the items you want to include on the list. To design the list, do the following:

1. From the end of the row containing the picklist data type, click the Gear icon.

2. In the Display As field, select one of the following:
a. Drop-down list if you want to users to select an item from a drop-down list.

b. Radio buttons if you want users to select an item by clicking a radio button.

3. Under List Choices, enter the name of the first list item.

4. Click Add choice to add more fields for items in the list. The following example shows list choices
for loan types.

60
©2017 Pegasystems

5. Click Submit in the dialog box to save your list. The items you entered in the List Choices column
display in the Loan Types drop-down list in the user view.

CASE DESIGN USING DESIGNER
STUDIO

61
©2017 Pegasystems

62
©2017 Pegasystems

Requirements management

Introduction
When creating an application, everyone must know what to build. Everyone should know what
currently exists in the application and how the application relates to the requirements or
specifications.

This lesson reviews how to build better applications by understanding the importance of requirements
management. The lesson also reviews how business objectives, requirements, and specifications relate
to one another. You will learn how DCO is used to ensure that your application continually meets
business needs.

Objectives
At the end of this lesson, you should be able to:

l Describe the relationship between requirements and specifications in an application

l Describe how requirements management improves the effectiveness of application development

l Explain the role of business objectives in application design

l Describe the purpose of requirements

l Describe the purpose of specifications

l Explain how DCO helps to ensure that applications match business needs

63
©2017 Pegasystems

Requirements management
Requirements management is the process of collecting, analyzing, refining, and prioritizing product
requirements, and then planning for their delivery. Requirements management helps ensure the
business application you build validates and meets the needs of all customers and stakeholders.
Requirements management is a continuous process throughout a project.

When building an application, you follow a set of requirements that define what the application must
be able to do. The success of an implementation depends on your ability to understand, track, and
trace these requirements.

Requirements management helps keep the project team organized and provides visibility into every
aspect of the project. In Pega, you use DCO throughout a project to keep your requirements up to date.

KNOWLEDGE CHECK

How does requirements management improve your implementation process?

Having the ability to write, track, and trace a requirement allows for increased collaboration and
accountability during the process.

64
©2017 Pegasystems

Managing Requirements
Managing requirements, and other artifacts, for any project can be a daunting task - And it certainly is
NOT for lack of trying. The challenges faced when trying to manage requirements isn’t so much the
requirements themselves.

It’s the tracking and coordination – the management - of those requirements. And the other, inevitable,
artifacts created to support and implement the requirements.

With any application development project, it takes many types of artifacts to produce the final product.
For example, there is typically a product requirement document that defines the scope of what the
application should be.

This document might be stored on a collaboration site for easy accessibility.

From that document, business requirements and use cases are usually written.

It is not uncommon to see these artifacts stored on a network drive somewhere so all project team
members have access to them.

There will undoubtedly be functional and technical requirements.

Given the nature of these artifacts, they may end up in a versioning control system.

Finally, there will almost certainly be business processes – or, flow – diagrams and UI wireframes.

It would come as no surprise to see these artifacts stored locally on a process owner’s local drive.

With so many important artifacts scattered across so many different locations,

under the control of so many different authorities, well….it’s enough to make anyone scream.

Pega’s Direct Capture of Objectives – or, D C O - can help bring order to this chaos.

Pega’s DCO is a set of features that enable project team members to directly capture, organize and
manage requirements

- and associate them with the specific parts of the application that are implementing them.

This visual representation and traceability of how requirements interact and depend on one another is
very powerful. Designed to be an enabling technology,

Pega’s DCO can be used collaboratively and productively by project teams that include members of the
business analyst, developer, quality assurance and IT and end user communities of your organization.

65
©2017 Pegasystems

Business objectives
To successfully run any business application development project, you must establish clear business
objectives.

Business objectives are statements that describe the business value the application must provide, or
the business needs the application must address. Business objectives may apply to the organization as
a whole, lines of business, departments, employees, customers, and even marketing efforts. Business
architects review the current state of a business process to identify inefficiencies. Business architects
then create business objectives to fix the inefficiencies.

For example, a business determines that the existing process to manage purchase requests takes too
long. You define the following business objective: Processing time for purchase requests must be no
longer than 3 business days.

In another example, a business objective for an insurance claim application may state that the
application must be able to reduce inaccurate claims to less than 10% of all claims.

Business objectives also help establish the scope of the application development project. Using clear,
measurable objectives helps ensure that all stakeholders share a common understanding of the
business application's abilities.

66
©2017 Pegasystems

Application requirements
The term requirement has different meanings within different organizations. Gathering requirements
is the most critical part of any business application development effort. When building the application
nothing should be left to interpretation.

The IEEE Standard Glossary of Software Engineering Terminology defines a requirement as:

l A condition or capability needed by a user to solve a problem or achieve an objective;

l A condition or capability that must be met or possessed by a system to satisfy a contract, standard
or specification.

In the simplest terms, Pega defines a requirement as an agreement between stakeholders on what a
business application will do.

A requirement uses business language to describe what the application must do to meet your
business needs.

Requirements can range from high-level abstract statements of services to more detailed functional
specifications.

Requirements can also provide benchmarks to test your application against.

67
©2017 Pegasystems

Think of requirements as an inventory of events, conditions, or functions that must be implemented
and tracked in a development project.

At Pega, requirements are categorized into one of five types:

Type Description
Business rule Identifies requirements usually associated with a specific use case or step in a

process

Change
Control

Identifies how to manage changes in the application

Enterprise
Standard

Identifies requirements that apply across the enterprise, or are an industry standard
that all applications must adhere to

Functional Identifies a function that will be used in the application, such as calculations or data
manipulation

Non-
functional

Identifies performance metrics, such as screen-to-screen interaction times

68
©2017 Pegasystems

Requirements 101
Knowing what a good requirement looks like is important. What seems like a good requirement to one
person may not necessarily be understandable to another. Here you see a team creating requirements
for browser support for their application.

Requirements should use business terms.

Using business terms allows all members of the implementation team to understand the requirement.

This is a good start. It uses business terms to define the requirement. The requirement does use
business terms, but there are some things wrong with it.

First, requirements should be atomic. If a requirement needs to implement multiple elements
separately, it is not atomic.

Our example is not atomic. The need for backwards compatibility should be in a separate requirement.

Requirements also should be clear and concise.

Write requirements so that they are clear to those who implement them. The use of specific and
appropriate language can help avoid ambiguity in interpretation.

In the example, the word 'all' may seem clear, but it is not.

Requirements should also be verifiable. You must write requirements so they can be tested by
inspection, analysis, or demonstration.

Besides 'all' not being clear, you could not likely test every version of every browser.

This is an example of a good requirement.

The requirement uses business terms.

The requirement is atomic.

The requirement is clear and concise.

The requirement is verifiable.

There is one last characteristic of good requirements. Requirements must be consistent. Consistent
requirements do not conflict with other requirements. Make it a habit to inventory the existing
requirements before adding new ones.

This is not an exhaustive list for writing good requirements. You should now be able to identify a good
requirement.

69
©2017 Pegasystems

Application specifications
Once you understand what you want to do, you need to turn your attention to how you are going to do
it. Specifications define how you implement your application.

Specifications use business language to describe the steps needed to meet a requirement.

For example, you have a requirement that states employees should be able to enroll for healthcare
benefits online.

The example defines what you need to build, but does not help you do it. Use specifications to define
how to implement that requirement.

You first determine that to enroll for healthcare benefits online you need to capture an employee’s
personal information.

Next, you have employees select medical benefits from a list of available plans. Then, employees
should enroll for dental benefits.

You continue documenting the steps needed to achieve the goal of the requirement.

If applicable, a requirement can be related to many specifications.

A single specification can also reference many requirements.

70
©2017 Pegasystems

71
©2017 Pegasystems

Specifications 101
Knowing what a good specification looks like is important. What seems like a good specification to one
person is not necessarily understandable to another. For example, the requirement An employee should
be able to enroll in benefits online has several specifications associated with it. Here you see a team
creating a specification to collect employee information.

First, the system architect suggests a specification.

Like requirements, you write specifications in business terms. Using business terms allows "all”
members of the implementation team to understand the specification. This specification is not in
business terms and would not be clear to an end user or a business analyst.

Next, the end user suggests a specification.

Specifications need to be complete and not left open to interpretation. This example is not clear as to
what information should be collected.

The team now comes up with another version of the specification.

The team is getting closer, but a specification should never involve a change of ownership until the
step is complete. In this specification, the team suggests what should happen after the information is
collected.

The team now decides to take out the part about manager review.

While close, this version of the specification is still missing something. A specification provides enough
detail for an architect to implement the specification. A specification also needs enough detail so a
tester can test the implementation.

The team now suggests yet another version of the specification.

The team has hit the mark! This is a good specification.

The specification uses business terms.

The specification is complete.

The specification does not change ownership.

The specification can be implemented and tested.

Creating good specifications makes your application easier to build. Good specifications also document
what is in the application.

72
©2017 Pegasystems

Relationship between Pega design artifacts
Your assignment is to work on the next version of an application. You need to see what already exists
in the application and, more importantly, why it exists. To do this you need to examine how the
specifications, requirements, business objectives, and implementation artifacts relate to one another.

Traceability is the ability to link specifications back to business objectives and requirements, and
forward to implementation artifacts, and test cases.

In Pega, specifications are the center of traceability. With specifications at the center, it allows anyone
to look backwards to see the requirements and business objectives, and forwards to see the artifacts
that implement the specification. This gives a complete picture of what the business wants and IT
builds.

In Pega, you link your business objectives, requirements, and specifications as you create them. To see
how this works, consider the following example.

73
©2017 Pegasystems

Business objectives are identified at the inception of the project. In the example the business objective
identified was Eliminate errors in personal information.

A business architect elaborates on the Enroll in benefits online requirement and generates a set of
specifications. At this time you link specifications to the requirements they link to. By doing this now
you have an accurate picture that they relate to one another and you save time from having to do it
later when there are more requirements and specifications to manage. When the specification is
implemented, it is the system architects job to link the implementation to the specification. In the
example that is mapping the UI screen to the collect personal info specification.

74
©2017 Pegasystems

Linking specifications to business objectives
and requirements
The Application Profile allows you to link specifications to requirements, business objectives, and the
artifacts that implement the specification.

By tracking all of these artifacts in the Application Profile, you gain complete traceability in your
application.

The table below displays the three tabs contained in the Application Profile.

Tab Description
Requirements Review existing, create, or delete application requirements.

Specifications Review existing, create, copy, or delete application specifications.

Analysis Work with interactive charts to understand the distribution of specifications in your
application across case type and status.

Linking a specification to a business objective
Follow these steps to link a specification to a business objective:

1. In Designer Studio, click Designer Studio > Application > Profile > Specifications.

2. Select a specification.

75
©2017 Pegasystems

3. Select a primary business objective.

4. Click Submit.

Linking a requirement to a specification
Follow these steps to add a requirement to a specification:

1. In Designer Studio, click Designer Studio > Application > Profile > Specifications.

2. Select a specification.

3. Click Advanced.

4. Click Requirements.

5. Click the plus icon.

76
©2017 Pegasystems

6. In the name field, select an existing requirement.

7. Click Submit.

77
©2017 Pegasystems

Best practices for case design

Introduction to best practices for case design
There is no real right or wrong way to model the life cycle of a case, and the decision about which way
is best usually comes down to opinion.

Establishing best practices helps ensure you are consistent in how you represent a specific event or
action when translating a business process into a case type – including building the individual flows.

After this lesson, you should be able to:

l State the best practices for case design

78
©2017 Pegasystems

Effective process design: collaborate,
elaborate, iterate
Designing an individual process is a trial-and-error process. When case designers design a process,
the result does not always align to the true needs of the business. To minimize the time spent
designing incorrect processes, you must engage the business throughout the design process.

Collaborate with the business
The best way to ensure that you design what the business wants is to involve the business in the
design process. You must engage business stakeholders at the beginning of the project, and keep
them engaged throughout the project.

When you involve business in the design from the beginning, the design more accurately reflects the
desired process. Also, by involving the business early in the design process, stakeholders can identify
errors, mistakes, and misconceptions before they become costly to fix. A process playback during
elaboration is a much more efficient use of project resources than fixing a broken process immediately
before you release the application.

Elaborate your design
Case design on the Pega platform is a continuous process of elaboration at every level of the design.
This elaboration is especially important when designing individual processes.

In the early stages of application development, you lack most of the rules that describe case behavior.
Each process is only a collection of flow shapes arranged into a sequence of steps, and your UI is
nonexistent. A lot of work remains to be done.

In Pega, the key to efficient process design is elaboration. Prototype the process and review the
prototype with business stakeholders to identify errors or omissions in specifications.

Focus on the important components first: your data needs, and the processes in the primary path.

l Start with the most important aspects of process design, and make sure that your steps are named
clearly and sequenced correctly. Add business context to the process through the use of
instructions, audit notes, and work status. Use Pega's draft flow capabilities to play back the process
with the business to review and correct the design.

l Once the process order is correct, further elaborate the design by determining your data needs and
adding the user interface.

l Once the data and UI needs are well-established, continue the elaboration by focusing on the
policies and reports that depend upon the data model. Correspondences that incorporate case
data, service levels that enforce deadlines and escalate overdue tasks, decisions that evaluate case
data, and reports that measure productivity should all be configured once the data model and UI
are well-understood.

Typically, once case designers complete the primary processes, UI and data designers take over. This
allows the case designers to start designing the less critical processes.

79
©2017 Pegasystems

Iterate until the design is correct
Elaboration is a lot of work, and overwhelms case designers with details when they should instead
focus on ensuring that the process is correct. Unfortunately, most of these details are not available at
the beginning of elaboration. This leaves a development team with a quandary: start elaborating the
design immediately and iterate the design as details are agreed upon, or wait until all of the details are
known and elaborate the design once.

To avoid this quandary, take advantage of Pega's draft flow capability. With a draft flow, you
bypass normal process validation to save and run a process without creating any of the rules that
the process would call. Draft flow execution allows case designers to test a process even though
the UI and decisions that normally guide case processing are not yet created. Instead, the application
provides an alternative UI that allows the case designer to pick the outcome of a decision or
assignment.

Thanks to the draft flow capability, you do not need to worry about creating the correct design right
away. Rather, you can iterate your design throughout the elaboration process, starting with the most
important aspects of the design and gradually incorporating rules as they are created, until the
process design is complete. Refining a process through successive iterations allows stakeholders and
case designers to identify issues, propose solutions, and test implementations early on, before the
ramifications of a change ripple throughout the case design.

Remember that process modeling is an iterative process of discovery, construction, and assessment
that yields the correct design. If you focus first on the design of your process, and then configure the
shapes and subordinate rules, your processes are more understandable, and easier to maintain and
update as business needs change.

View Transcript

When designing a business process, collaboration is key. Understanding how to define and represent
each step is best accomplished when both the business stakeholders and the development team
contribute to the process design.

Effective process design can only be accomplished when business stakeholders are engaged
throughout the entire development cycle.

In the early stages of development, when the focus of the application build effort is on elaboration,
business architects are usually the primary drivers of the design patterns.

Business stakeholders are key allies for business architects, helping to accurately capture business
needs. Stakeholders can verify that the case and individual processes reflect the correct design, and
that the steps are in the correct order and named clearly.

Once the design is correct, system architects become the primary drivers of the development cycle.
System architects configure the behavior outlined in the specifications, and help to improve the design
by identifying portions of the process that may be reusable and looking for manual steps that can be
automated.

As system architect configure a process, they perform “playbacks” to review the partially implemented
process with the business stakeholders, with the goal of discussion, consensus building, collaborative
improvement and, ultimately, approval of the model.

80
©2017 Pegasystems

Designing intent-driven processes
When you design a process, ensure that all project team members and stakeholdersshare an
understanding of the process. An intent-driven process fosters a common understanding between
developers, stakeholders, and end users. With a common understanding, case designers collaborate
efficiently with business stakeholders to review processes. Well-understood processes allow case
workers to process cases with minimal application training.

When you create any process you first select the shape for the task. Next you ensure there is a single
purpose for the shape and clearly label the shape and associated actions. intent-driven process, you
add cues that guide business stakeholders and case workers through the process.

Label flow shapes and actions
To avoid confusion about a process, label flow shapes and actions to identify intent. Create labels that
use terms familiar to the business. The label clarifies flow logic for project stakeholders during
playbacks. The label also clarifies application documentation for case workers and other case
designers.

Ambiguous labels cause confusion and doubt about the behavior of a process. For example, do not
label a shape with Send Response. Instead, use the label Notify Employee of Approval, which is easier
to understand.

Assign a single purpose to each shape
When you design a process, use as few shapes as possible . If two shapes perform the same task,
determine whether you can reduce the two shapes to one. Review the use case for the process. Ask
yourself, "Does each shape need a unique specification?"If the answer is yes, then use two shapes to
develop your process. Otherwise, remove one of the shapes from the process to eliminate unnecessary
complexity.

For example, an application sends an email whenever an expense report is approved or rejected. The
approval email identifies the next step in the process. The rejection email lists the reason for the
rejection. Since the two notifications contain different content, the requirement indicates two different

81
©2017 Pegasystems

specifications. As a result, you must use two shapes; each shape serving a single purpose to approve
or reject.

Use the right shape for the task
Each type of flow shape represents a specific type of event. For example:

l An assignment represents a task performed by a person. The person performing the selects one of
the actions provided to complete the assignment.

l A utility represents an action performed by the application, with a single outcome.

l A decision represents a choice made by the application. Using provided logic, the application
determines the appropriate result.

When you need to model an automated decision in a process, use a decision shape rather than a utility
shape or an assignment shape.

When designing a process, use smart shapes rather than generic utility shapes whenever possible.
Each smart shape represents a specific type of automated action. So if a process must send an email,
use the Send Email smart shape.

82
©2017 Pegasystems

When you clearly identify the intent of each step in a process, you create a process that is easy for
business stakeholders and case workers to understand.

83
©2017 Pegasystems

Managing case life cycle exceptions

Introduction to managing case life cycle
exceptions
Cases progress from one primary stage to the next as work is completed. However, under certain
circumstances, a case may require work to be completed that is not part of the primary flow.

Alternate stages provide a way to model out-of-sequence events in the life cycle of a case. Using
alternate stages, you can separate expected behavior from exceptions in life cycle of a case.

After this lesson, you should be able to:

l Explain the purpose of alternate stages

l Add alternate stages to a case type

l Explain the purpose of managing transitions from one stage to another

l Add a transition from one stage to another

84
©2017 Pegasystems

Alternate stages
Cases usually progress in order from one primary stage to the next. In some situations, work does not
always go according to plan. When that happens, use an alternate stage to describe the actions
needed to resolve the situation. Alternate stages are used to organize process steps that are not part
of the “normal course of events” but must be available under certain circumstances.

For example, when modeling the life cycle of an online ordering application, you must consider that
orders can be canceled prior to being shipped. If an order is canceled, a number of tasks must be
completed before the order is considered canceled. The first task is to process the order for
cancellation, then the payment must be refunded and, finally the customer must be notified that the
order was canceled.

Use alternate stages to organize the process steps used to manage exceptions from the primary path.

Guidelines for defining and naming alternate stages
To define alternate stages, consider the following guidelines.

Use names that are most meaningful and relevant to the business users. Use a noun, or noun phrase,
to describe the context of the alternate stage. As much as possible, try to limit the stage name to no
more than two words.

Consider limiting the number of alternate stages in any given case type to between three and five
stages. If you find yourself needing more than five stages, consider combining one or more alternate
stages, or using a separate case type.

85
©2017 Pegasystems

Adding alternate stages to the case life cycle
You use alternate stages to model out-of-sequence events in the life cycle of a case. By using alternate
stages, you can separate exceptions from expected behavior in life cycle of a case.

Important: Although alternate stages are displayed in a sequence, alternate stages are not ordered.
You must model specific behavior in each alternate stage, using a process, that defines how to
transition out of the alternate stage.

Configuring a case type with alternate stages
To configure a case life cycle with alternate stages:

1. In Designer Studio, open a case type.

2. In the upper right corner of Designer Studio, on the Actionsmenu, click Configure alternate
stages to display alternate stages below the primary stages.

Editing alternate stage labels
When you configure alternate stages for the first time, a single alternate stage is added with a
placeholder labeled Alternate Stage A.

To edit the text label of an alternate stage:

1. Click the label in the alternate stage, then enter a new name.

86
©2017 Pegasystems

Adding additional alternate stages
To add additional alternate stages to a case life cycle:

1. Click + Add alternate stage.

2. In the text box, enter a unique name for the alternate stage.

3. Click Save.

87
©2017 Pegasystems

Stage transitions
Stage transitions allow you to further refine the run-time order of stages.

For primary stages, when all steps in a stage are completed, the default option is an automatic
transition to the next primary stage.

To allow transitions to other stages before the completion of the current stage, you can add a
controlled transition to a stage. Controlled transitions can be configured for any primary or alternate
stage, and can occur either as an action in a step​ or as a specific step in a process.

You can configure a step to allow a user to select the stage to which the case transitions. This type of
configuration is most useful for steps that require a Yes/No decision. For example, a case worker must
review a request and can either approve or reject the request. If the request is approved, normal
processing continues, and the case advances to the next step or stage in the primary path. If the
request is rejected, the case advances to a predefined stage, which may or may not be in the primary
path.

88
©2017 Pegasystems

You can use a Change Stage process step to automatically transition the case flow to a specified stage.
This type of configuration is most useful for automating transitions to and from alternate stages. For
example, a rejected request is sent back to the originator to be updated. The process steps for
updating the request are organized in an alternate stage. When the Change Stage step is encountered,
the case flow automatically transitions to the stage defined in the Change Stage step.

89
©2017 Pegasystems

Controlling stage transitions
To allow transitions to alternate stages, or before the completion of a stage, you can add a controlled
transition to a stage. Controlled transitions can be added as a process step using the Change Stage
smart shape, or as an optional user action in a process step.

Use the Change Stage smart shape to control the stage
to which a case transitions
Follow these steps to add a Change Stage smart shape.

1. In the process where you want to add the Change Stage smart shape, click + Add step.

2. In the palette that is displayed, clickMore.

3. Click Utilities to display a list of available smart shapes.

4. Click Change Stage, and then click Select to add the smart shape to the process.

5. In the contextual property panel, select the Select a stage option.

6. In the Stage drop-down list, indicate which stage the case transitions to when the Change Stage
shape is executed.

Use the Approve/Reject step to control the stage to
which a case transitions
Follow these steps to allow a user to select the stage to which a case transitions.

1. In the process where you want to add the Approve/Reject step, click + Add step.

2. In the palette that is displayed, select the Approve/Reject step.

3. On the Flow tab of the contextual property panel, set the option for If APPROVED then or If

90
©2017 Pegasystems

REJECTED then to Change stage, and then select the stage to which the case transitions when the
Approve/Reject step is executed.

91
©2017 Pegasystems

Adding optional business process
events

Introduction to adding optional business
process events
As a user works on a case, situations arise that may require the user to stray from the primary path to
perform a task. These tasks are called user actions. In this lesson, you learn about the different types
of user actions and how to configure those actions in a case.

Objectives
At the end of this lesson, you should be able to:

l Explain the role of user actions in a case

l Differentiate between local actions and optional processes

l Add user actions to a case

92
©2017 Pegasystems

User actions
User actions supplement the tasks users can do as they work on a case. User actions allow users to
leave the primary path of a case to complete another process. The key is that the user makes the
determination to execute the user action; the user action is not automated.

For example, a customer gives you a new cell phone number while you are processing the car details of
an Auto Loan. You can use the Update Contact Info user action to update the number. By using the
user action, you do not need to move the Auto Loan case to an earlier step or stage.

When determining if you need to use a user action, consider the following questions:

l Should the user be allowed to update the information at any time during a case or stage?

l Do you need multiple steps to update the information?

l Can the information be updated in a single screen?

User actions can be made available for a stage or an entire case. By adding a user action to a case, the
action is available to a user while the case is open. By adding a user action in a stage, the action is
available only in the stage where the action is defined.

You can add two types of user actions: optional processes and local actions. You use a local action to
display a single screen to a user, whereas you use an optional process to launch an entire process.

Optional process
You use an optional process when multiple steps are needed to update information. An optional
process allows a user to run a new process from within the case. The only difference between an
optional process and the other processes in a case is that the user determines when the optional
process is executed.

An optional process allows a user to perform a series of tasks outside of the primary path of a case.
After completion of the optional process, a user may or may not return to the primary path.

For example, in a commerce application you could have a Cancel Order optional process that allows the
user to cancel an order as long as it has not been shipped.

93
©2017 Pegasystems

1. After shopping, a user starts the check-out process. While confirming the billing details, a user
might decide to cancel the order. The user could launch a Cancel Order optional process.

2. The Cancel Order process executes. The configuration of the process determines if the case
completes or it is transitioned back to continue the original flow.

Local actions
You configure a local action when the case information can be updated in a single screen. A local
action allows the user to make a change but not interrupt the processing of the case. Think of a local
action as a screen that is accessible to the user. A local action allows the user to perform a single task
outside of the primary path of a case. After completion of the local action, the user returns to the
primary path of the case.

The Update Contact Info example illustrates using a local action. You want to give the users the ability
to change a customer's contact information at any time in the case, but you do not want the users to
lose where they are in processing the case.

94
©2017 Pegasystems

1. A user enters the personal information for a customer. While entering in the loan information, the
customer asks to update a cell phone number. The user launches the Update Contact
Information local action.

2. The user completes Update Contact Information.

3. After completing the local action, the user sees the loan information screen.

KNOWLEDGE CHECK

What are the main differences between a local action and an optional process?

Local actions are single tasks and return to the primary path of a case, whereas an optional process
is a series of steps that is not required to return to the primary path of a case.

95
©2017 Pegasystems

Adding user actions to the case life cycle

Adding a user action to a case
You can define user actions that are available to a user throughout the entire case. These user actions
can be optional processes or local actions.

Follow these steps to add a local action or optional process to a case:

1. In the Case Designer, select a case type.

2. Click the Settings tab.

3. Select either User Actions to add a local action or Case-wide supporting processes to add an
optional process.

4. Select the local action or the process to add to the case.

Adding a user action to a stage
Stages can define both local actions and optional processes.

Follow these steps to add a local action or an optional process:

96
©2017 Pegasystems

1. In the Case Designer, select a case.

2. Select a stage.

3. Click User Actions.

4. In the Processes (Optional) list, Select the optional process or local action to add to the stage.

5. Optionally, add an Allowed when condition to modify when the optional process or local action
should be displayed.

97
©2017 Pegasystems

Sending correspondence

Introduction to sending correspondence
Pega allows you to automate and create timely and clear communication with participants in a case. As
a result, the right person receives the right information at the right time.

Objectives
At the end of this lesson, you should be able to:

l Explain how correspondence improves a process

l Add correspondence to a case type

l Send a correspondence while processing a case

98
©2017 Pegasystems

Automating case communications

Common reasons for communicating with users
Organizations depend on timely communication to establish a shared understanding of transactions or
assignments.

For example, consider a requirement for an auto claims application in which customers must be
notified when their claims are successfully filed, or anytime the status of the claims changes.

Another common notification requirement is keeping case workers up-to-date. For example, you must
notify case workers when they have a new claim to process. Also, you may want to notify them on the
progress of the previous claim.

Finally, you may have a requirement to communicate with someone who is indirectly involved in the
case, such as an external agency.

To achieve effective communication, answer three simple questions. First, who is the user that receives
the communication? Second, how will the communication be sent? Third, when does the
communication need to be sent?

Identifying users to communicate with
When sending a correspondence first determine 'who do I need to communicate with?' You can send a
correspondence to a specific address, but what if that address is no longer valid? You would have to
update the application anytime that address changed. To avoid this Pega uses a set of roles to use with
correspondences.

Pega defines the following roles for a correspondence:

Role Description

Owner The person who created the case.

Customer The person on whose behalf the case is transacted. This
person may not process the case, but may want – or need –
notification of any changes.

Interested A person who tracks the progress of a case but does not
process the case.

You are not limited to specifying a single role for a correspondence. For example, you may want to send
a correspondence to the customer and all interested parties. To do this Pega uses something called a
party. A party identifies the recipient of the communication and may contain one or more of these
roles.

99
©2017 Pegasystems

Identifying how to communicate with users
To generate correspondence, you need to know “how” you want to communicate with the recipient. In
other words, what's the right channel a user should receive a correspondence.

Pega provides four correspondence types to communicate with users: email, text message, fax and
regular mail. Each correspondence type provides unique functionality but share the same basic
template.

Pega provides a rich text editor to create formatted correspondence. You create one or more
correspondence templates for each type of correspondence.

Identifying when to communicate with users
The last question you need to answer is “when” do you communicate. Pega simplifies sending a
correspondence by allowing you to simply add a step to your case. Then you just configure who to send
it to and the content of the message.

100
©2017 Pegasystems

Sending an email from a case
A common use case for sending a correspondence during a case is sending a confirmation email after
the user has completed a series of steps. You probably experienced this many times while completing
a purchase online.

You accomplish this in Pega by adding a Send Email step to your case and then configuring the step.

Adding a Send Email step
To add a Send Email step:

1. Click Add Step.

2. ClickMore > Utilities.

3. Select Send Email.

4. Click Select.

Configure the Send Email step
Email configuration has two parts: Send to and Message. To configure the Send Email Step:

1. Complete the Send to by specifying an email address or a party.

2. Enter a subject for the email.

3. Complete the body of the Message by specifying either a Correspondence template or using the rich
text editor to create a message.

4. Click Save.

101
©2017 Pegasystems

Guiding users through a business
process

Introduction to guiding users through a
business process

In this lesson, you learn how to add work statuses and instructions to a case. Adding work statuses and
instructions keeps the user informed about a case. By using these options, you can help users
complete their work more productively.

Objectives
At the end of this lesson, you should be able to:

l Explain how work status adds context to a case

l Update the work status for a case

l Explain how instructions add context to a case

l Add instructions to assignments

102
©2017 Pegasystems

Updating the case status

Case status
Consider what would happen if you placed an online order, and the status of that order could only be
identified as Open.

You would have difficulty determining the status of your online order.

Every case, whether it is an online order, a loan origination request, or an insurance claim, has a status.
The case status is the primary indicator of the progress of a case towards resolution.

The case status is updated as the case moves through the case life cycle.

For example, a case status of New is assigned to each case when the case is created. As the case
progresses through the case life cycle, the status of the case is updated at each step.

You can set the case status on each step in the case life cycle. When the case advances to a step, Pega
automatically updates the status of the case to the value defined for that step.

Pega includes standard case status values, such as Open, Pending-Approval, and Resolved-Completed.
You can also add custom status values.

103
©2017 Pegasystems

Updating the status of a case
To update the status of a case:

1. In a case type, select a step where you want to change the status.

2. In the General settings, update the Set Status field.

104
©2017 Pegasystems

Adding Instructions
Imagine you are a loan processing agent. Your company offers car loans, home mortgages, and
personal loans. When it is time for you to work on your next case, you could see many cases with
arbitrary IDs like B-5, I-23, N-33, G-57, or O-62. Which case do you choose? These case IDs by
themselves give you no help in determining what work you need to perform in those cases. Some could
take 5 minutes, others 1 hour. Pega solves this problem by allowing an architect to setup an instruction
for each step in a process.

An instruction for a step identifies to an end user what should be accomplished in an assignment. End
users see instructions in their worklist or when they open a case. For example, in a loan application
there is a step for a manager to approve a loan. You would want to add instruction called Approve this
item so it's clear what the work needs to be done on the case.

105
©2017 Pegasystems

Adding an Instruction to a step
System architects create instructions based on the requirements defined by the business. Once
created you add them to a step in a process.

To add an instruction to a step:

1. In a case type, select a step.

2. In the General settings, update the Instructions field.

106
©2017 Pegasystems

Modeling complex process flows

Introduction to designing complex process
flows
You use Pega Express and the Case Designer to define and configure processes used in a business
transaction. You can then use the Process Modeler to add advanced features to the processes.

After this lesson, you should be able to:

l Explain how flow rules relate to processes in the case life cycle

l Choose the correct flow shape to accurately model a complex business process

l Design an intent-driven process

l Use the Process Modeler to add additional flow shapes and connectors to a flow

l Model a complex business process

Flow rules
When you add a process to a case life cycle in Case Designer, Pega automatically creates a flow rule. A
flow rule provides a visual method for modeling a process in your application using shapes and
connectors to define a sequence of events.

Each process step in the case life cycle is represented by a flow shape. A flow shape represents a task
that is accomplished as part of a business process. Flow shapes are differentiated by color, symbol,
and name.

107
©2017 Pegasystems

Use Case Designer to add standard processes used to define the case life cycle. You can then use the
Process Modeler to add advanced features to the processes such as data-driven decisions, or parallel
or iterative processing.

108
©2017 Pegasystems

Each flow shape represents a specific processing action that you can configure to perform a specific
action, such as an assignment an end user must complete, automated decisions used to determine the
path a case takes, or other automated actions such as transitioning to a stage.

KNOWLEDGE CHECK

Flow rules represent a ____________ in the case life cycle.

process

KNOWLEDGE CHECK

Flow shapes represent ____________.

tasks to be completed as part of a business process

Flow shapes
You add shapes to a flow rule using the Process Modeler. You use the shapes to define a sequence of
events in a flow that accurately models a business process in your application.

Standard shapes in a flow rule
Pega provides standard shapes that enable you to accurately model a business process using a flow
rule.

Shape Name Use
Start The Start shape indicates the beginning of flow processing.

Each flow rule must contain a single Start shape. A single Start
shape is automatically added to every flow rule.

Assignment The Assignment shape creates a task in a work list or
workbasket so a user can provide input to the case. Typically,
the user either provides information or selects an outcome.

Subprocess The Subprocess shape indicates a reference to another flow
rule from the current flow rule. Portions of a process can be
divided into a smaller process to enable reuse in other flow
rules.

Utility The Utility shape indicates an automated system action. Pega
executes automated system actions, without requiring human
intervention. Examples of automated system actions include
changing the stage of the current case, sending an email, or
creating a new case.

109
©2017 Pegasystems

Shape Name Use
Decision The Decision shape indicates an automated step used to

determine the path a case takes. A Decision shape evaluates an
expression or calls a decision rule to determine which step is
next in the flow progression.

End The End shape indicates the end of flow processing. Each flow
rule may include one or more End shapes to represent the
potential end points of the process.

Connector Each flow shape connects to other flow shapes through the use
of a connector. The Connector is used to define the sequence
of flow execution. The flow execution begins with the Start
shape and proceeds from one shape to the next in the order
the shapes are connected to each other.

KNOWLEDGE CHECK

Which standard flow shape creates a task in a work list or workbasket?

Assignment

KNOWLEDGE CHECK

Which standard flow shape represents an automated system action?

Utility

KNOWLEDGE CHECK

How many Start shapes can a flow rule contain?

One

Smart Shapes
Pega provides smart shapes to help speed up development. Smart shapes are preconfigured shapes
that perform a specific task, such as sending an email, attaching a file to a case, or changing to a
different case stage.

Shape Name Use
Change
Stage

Transitions the case to a different stage in the case life cycle

110
©2017 Pegasystems

Shape Name Use
Send Email Sends an email to one or more work parties

Attach
Content

Attaches a file, URL, or note to a case

Create PDF Creates a PDF file from a specified section and attaches it to the
case

Create Case
(s)

Creates a top-level case or one or more child cases

Persist Case Converts a temporary case to a permanent object in the
database

Post to Pulse Creates a message that is sent to the Pulse social stream

Update a
case

Updates the case or all child cases and descendants

Approval Routes a case to one or more reviewers, based on a user name,
reporting structure, or authority matrix

Duplicate
Search

Returns a list of cases that match the search criteria that are
defined in the case type

KNOWLEDGE CHECK

Smart shapes are ____________________.

predefined shapes configured to perform a specific task

111
©2017 Pegasystems

Adding shapes to a flow rule
You use the Process Modeler to add shapes and connectors to the diagram to indicate the sequence of
events in the process flow. When Pega executes the process flow, processing begins with the Start
shape and follows the connectors from shape to shape until reaching an End shape. If a shape has one
or more connectors, the process branches based on either user selection or the result of an automated
decision.

The Diagram tab of a flow rule displays the process in graphical form.

The following example shows a complex process where the sequence of events is determined by one
or more decisions.

Each unique decision — Needs VP review? and Requires audit?— is represented by a single shape with
connectors indicating multiple paths for the decisions and associated steps.

Add a shape to a process flow
To add a shape to a flow rule, open the flow rule, and then add a shape using one of the following
methods.

112
©2017 Pegasystems

Add a shape using the Flow Shapes menu
1. On the Diagram tab of the flow rule, click the Flow Shapesmenu.

2. Click and drag a shape onto the diagram. A dashed rectangle follows the mouse cursor to indicate
where the flow shape is added.

3. Release the mouse button.

The flow shape is added to the process, with a generic name that identifies the purpose of the flow
shape.

Note: To quickly add a shape to the diagram, click the shape once. After the shape is added to the
diagram, drag the shape to the desired position on the diagram.

113
©2017 Pegasystems

Add a shape using the sub-context menu
1. On the Diagram tab of the flow rule, right-click the flow diagram where you want to add the shape.

2. Click the appropriate shape to add it to the diagram.

Connect flow shapes with a connector
Connectors indicate the order of steps in a process flow.

1. Position the cursor over the flow shape from which you want to connect. A set of connector points is
displayed on the border of the flow shape.

2. Click the connector point from which you want to start the connector. The connector point is
highlighted with a green square.

114
©2017 Pegasystems

3. Click the mouse button and drag the cursor to draw the connector. A green dashed line indicates
the path of the connector.

4. Position the cursor over the shape on which you want to end the connector. The connector points
are displayed on the border of the flow shape.

5. Release the mouse button to connect the connector to the shape.

Configuring flow shapes and connectors
To configure the behavior of a flow shape or connector, open the Properties dialog for the shape.

In the Properties dialog you can associate a flow shape or connector with a specific rule and add
additional processing instructions. For example, you can add a likelihood to a connector to identify the
probability of the process following the connector during case processing or add an Audit note.

To configure a flow shape or connector using the Properties dialog:

115
©2017 Pegasystems

1. Double-click the flow shape or connector to open the Properties dialog .

2. Complete the Properties dialog.

Note: Fields marked with an asterisk (*) are required fields.

3. Click Submit to close the Properties dialog.

4. Click Save to commit your configuration changes.

Draft mode
When you create a flow rule, Pega defaults the flow rule to draft mode.

Draft mode enables you to add flow shapes and connectors that reference other rules, even when
those other rules do not yet exist. Using draft mode, you can run a process even if the rules that would
otherwise be required, such as user interfaces and automated decisions, are missing.

Note: Flows with draft mode enabled will not run in a production environment and will display a
Guardrail warning. To resolve the warning, turn off draft mode before releasing the application.

To disable draft mode for a flow rule, click Draft onon the toolbar. When draft mode is disabled, the
label of the button updates to Draft off.

116
©2017 Pegasystems

KNOWLEDGE CHECK

Draft mode enables you to ___________________.

Save, and run a flow rule even if other referenced rules do not yet exist.

REPORT PLANNING AND DESIGN

117
©2017 Pegasystems

118
©2017 Pegasystems

Process visibility through business
reporting

Introduction to process visibility through
business reporting
You need ways of understanding how business processes are functioning — where the bottlenecks are,
where there are opportunities to improve response time, and what emerging trends need attention. A
report that asks the correct questions, and therefore provides relevant information rather than an
unsorted heap of data, can show you what’s going on now, what has been going on over a period of
time, or how what is going on matches or differs from what was planned.

After this lesson, you should be able to:

l Explain the difference between business data and process data used in reports

l Describe the different types of reports available for Pega applications

l Use the Report Browser to customize an existing report

119
©2017 Pegasystems

Business reports
Business applications often target performance gains in time spent and process efficiency as a method
of reducing the cost of performing work. But poor work quality may indicate a poorly designed
application, rather than poor effort from end users. You need ways of understanding how complex
processes are functioning — where the bottlenecks are, where there are opportunities to improve
response time, and what emerging trends need attention.

A business report that asks the correct questions, and therefore provides us with relevant information
rather than an unsorted heap of data, can show us what’s going on now, what has been going on over a
period of time, or how what is going on matches or differs from what was planned.

Business reports and process reports
There are two types of metrics associated with report data, business metrics and process metrics.

Business metrics represent the data you define for an application. For example, business metrics are
the number of orders for a certain item, or how many orders of a certain type get canceled.

Process metrics are defined and tracked by Pega. For example, process metrics include how long it
takes to complete an assignment, how often a path is followed in a flow, or how often Service Level
Agreements (or SLAs) are violated.

Business reports
Organizations can design business reports that describe and measure what the organization's work is.
Organizations can use these business metrics to make informed decisions about improving its
business performance. This data that provides the metrics is collected from outside the application
and is stored in a database. The system retrieves the information when users generate a report.

The following table gives examples of business report information and how the information can be
used in business decisions.

What is being measured? What is the business decision?
What was the average profit
margin for all automobile sales
last year?

The average margin was below the target percentage. The sales
department decides to train its sales staff on promoting cars
and options that have the highest margins.

How many auto loans are made in
a month as compared to personal
loans for the same period?

The number of personal loans is significantly lower than the
number of auto loans. The goal is to have the numbers
approximately equal. The marketing department increases
marketing resources for personal loans.

How many orders for office desks
were shipped each week for the
past month and how many are
now left in inventory?

The number of orders shows an upward trend. As a result,
inventory levels are unacceptably low. The purchasing
department decides to restock more desks on a weekly basis.

120
©2017 Pegasystems

Process reports
Process reports track statistics on how work is performed in Pega applications. Unlike business metrics,
process data is automatically defined and generated within the application. Having this information
enables business analysts and business managers to discover issues that may affect processing
performance.

The following tables gives examples of process report information and how the information can be
used in process design decisions.

What is being measured? What is the process design decision?
Which open loan application cases
have exceeded the standard three-
day service level deadline?

Most of the cases were for loan amounts greater than $300,000.
Loan amounts that exceed this amount must go through an
additional review step, which accounted for the delay. The
department manager decides to increase the service level
deadline for loans exceeding $300,000 from 3 to 4 days.

What is the average duration and
by assignment type and action?

This report might help identify which user actions take the
longest to complete, and which are used more or less often
than expected.

KNOWLEDGE CHECK

A sales manager is required to run weekly performance reports on how long it takes for a
car to be prepared for customer delivery after the sale has been signed. Which type of report metrics
does this report apply to?

Business metrics.

121
©2017 Pegasystems

About the Report Browser
Work managers use the Report Browser to search for, organize, schedule, and run reports.

Use the Report Browser to review the library of available reports. Reports are grouped into public and
private categories.

l The public category group include hundreds of standard process reports provided by Pega. Public
category reports are available to all managers in an application.

l The private category group includes reports that are created and saved for individual work
managers. Managers can share their reports with other managers by putting them into the public
categories group.

The Report Browser organizes the report categories into Private categories and Public categories lists.
The lists are displayed on the right side of the Report Browser.

When you select a category from a category list, the available reports within the report category are
displayed in a list on the left side of the Report Browser. The following screenshot shows the list of
standard Analyze Performance reports when the category is selected in the Public categories list.

Standard Pega reports
Standard Pega process reports are grouped into eight categories.

Report category Information the reports provide
Analyze Performance Resolved cases in an application at the level of each individual step, or

actions, within a business process. The reports analyze the completed work
to determine whether business processes are efficient and effective. For
example, there is a report that tracks processing time in hours by task and
action.

Analyze Quality Resolved cases in an application. Similar to reports that analyze

122
©2017 Pegasystems

Report category Information the reports provide
performance, quality reports analyze completed work to determine if
business processes are efficient and effective. For example, there is a
quality report that measures the average elapsed time per status.

Case Metrics The number of cases created each day for the last seven days and the time
per stage for resolved cases.

Monitor Assignments Assignments for open (or unresolved) cases in an application. The reports
tracks the work based on the user to whom the case is assigned. For
example, there is a report that measures time lines by task.

Monitor Processes Assignments for open (or unresolved) cases. The reports focus on the work
and not individual users. For example, there is a report that measures
throughput in the past week by work type.

Open Cases Case-level SLA status for open cases. This report focuses on the timeliness
of a case from the time a case is created to the time the case is resolved.

Service Level
Performance

Assignment SLA status grouped by assignment or by operator.

Step Performance Assignment-level SLA status grouped by assignment, and an historical view
of the time it took an operator to complete a step.

Viewing reports in lists, summary layouts, or charts
When you select a report in a category, the report opens in the Report Viewer. The data can be
displayed in a list, in a summary format, or in a chart.

l List reports display a list of cases whose data is organized into columns and rows.

l Summary reports aggregate case data into categories by use of a summarizing function, such as
counting the number of results in a particular column or averaging the values in the column.

Add charts to summary reports to help end users visualize report data, and allow users to “drill”
down into the report data for greater insight.

l The checkboxes at the top of the report list

As shown in the following screenshot, checkboxes at the top of the report list lets you filter the list
based on how the reports are presented

123
©2017 Pegasystems

124
©2017 Pegasystems

Working with the Report Browser
Use the Report Browser to review, run, and edit the library of available reports.

Running reports from the Report Browser
In the Case Manager portal, the Report Browser provides report shortcuts to the reports that are
available for you to run. Report shortcuts are organized into categories.

1. Open the Report Browser by clicking Reports in the left navigation pane.

2. To run a report immediately, click the title of the report shortcut. The results display in the Report
Viewer.

Note: The Report Viewer provides options for working with the results, such as formatting, filtering,
saving, printing, and exporting the report.

After a report runs, the results display in the Report Viewer. The Report Viewer shows the title of the
report, and the date and time when the results were generated. The Report Viewer also provides
options for working with the results.

From the Report Viewer, you can complete the following tasks:

l View the results of a report and the filters applied to generate the results.

l Expand and collapse all group headings.

l Search for text within the report by using the search field. Click the search icon repeatedly to move
from instance to instance of the search string in the report.

l Drill down to view detailed information about a row or cell by clicking on the row or cell of a
summarized report.

l Interact with the data displayed in a chart.

l Sort results by the values in a column by clicking the column heading.

l Filter which rows of data are included in a report.

l Initiate actions from the Actions menu. Actions might include editing the report in the Report Editor,
printing the report, and exporting the report.

Note: For more information about the available actions, refer to the Actions menu options Help
topic.

Scheduling reports in the Case Manager portal
You can schedule reports to run at a time, interval, and frequency that you define. When you schedule
a report, you are subscribed to that report by default. You receive a copy of the report by email each
time the report runs.

1. In the Report Browser, click the gear icon for the report shortcut and select Schedule to open the
Schedule Reporting Task form.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#reporting/rpt-reporting-actions-menu-ref.htm?TocPath=Reporting|Running%2520reports%2520from%2520the%2520Report%2520Browser|_____2

125
©2017 Pegasystems

2. On the Schedule Reporting Task form, specify the task definition and description.

Note: To learn more about how to schedule reports, refer to the Scheduling reports Help topic.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#reporting/rpt-scheduling-reports-tsk.htm?TocPath=Reporting|Scheduling%2520reports%2520in%2520Case%2520Manager|_____0

126
©2017 Pegasystems

Working with the Report Editor
The Report Editor displays a report and provides options for editing it. The Report Editor also displays
the name of the report, the date and time when the report ran, and whether simulated or actual data
is being used.

Using the Data Explorer
The Data Explorer panel on the left of the screen provides a quick way to find a property or calculation
to include as a column in the report, or to use in defining a filter condition.

Enter a value in the search box of the Data Explorer and click the magnifying glass to limit the display
in the current tab to only properties whose name or label match the search string you entered. Click
the X to clear the search box and display all properties.

The Data Explorer includes three tabs:

Best Bets
The Best Bets tab displays the properties that you are most likely to use in your report, organized in a
tree structure. Expand any subfolders (representing page lists and other embedded properties) to see
more properties.

All Matches
The All Matches tab displays all the properties that are available for use in the report, organized in a
tree structure. Navigate the tree and add a property to populate a column in the report.

Calculations
The Calculations tab allows you to select an SQL function and identify one or more properties for it to
work with. The result of the calculation can populate a column in the report.

Using the Actions menu
The Actions menu provides additional options such as:

127
©2017 Pegasystems

Report Details
Edit the description or change the category of the report.

Summarize
Displays the Summarize form. The form displays all columns in the report, and you can specify sorting
information and a summarization function for each column.

List
Converts a summarized report to list report.

APPLICATION DESIGN

128
©2017 Pegasystems

129
©2017 Pegasystems

The role of the System Architect

Introduction to the Role of the System
Architect
Enterprise application development is a team effort. A successful project requires that each member of
the team know and perform their duties.

In this lesson, you learn about the system architect role, and how this role relates to other roles during
application development. You also learn the types of tasks that system architects perform on projects.
Finally, you learn about the different types of system architects, and how they work together on an
application.

After this lesson, you should be able to:

l Explain the role of the system architect during application development.

l Identify system architect tasks during application development.

130
©2017 Pegasystems

The role of the system architect
A successful Pega application requires collaboration between three parties — business stakeholders,
business architects, and system architects — to solve business problems.

l Business stakeholders define a business problem.

l Business architects plan the application to address the problem.

l System architects configure the application to resolve the problem.

To start, business architects and business stakeholders outline business objectives and application
requirements. The goal is to describe what the application must do to address the business problem.

Next, business architects and system architects plan application behavior with specifications. These
specifications describe how the application manages and automates work. System architects often
prototype application features to help refine the specifications. These prototypes help align the
application with the business needs.

Finally, system architects provide the technical skills needed to complete the application. System
architects configure application assets such as UI forms, automated decisions, and correspondence.
System architects then review the application with business stakeholders for approval.

131
©2017 Pegasystems

Types of system architects
Most Pega projects staff the system architect role with three levels of system architects. These three
levels of system architects work together on application design and configuration.

Lead System Architects
Lead System Architects (LSAs) are the most experienced system
architects. LSAs have the following responsibilities on a Pega project:

l Direct the technical effort on a project.

l Work with business architects (BAs) to design an application
architecture.

l Design the architecture to reuse application assets as much as
possible.

l Meet quality goals, including application performance.

Senior System Architects
Senior System Architects (SSAs) supervise development on the
application. SSAs have the following responsibilities on a Pega project:

l Focus on a particular process or UI form, and supervise the
development of that process or form.

l Add technical details to specifications, translating application
requirements into guardrail-compliant feature designs.

l Identify opportunities to reuse existing assets within the application
design.

System Architects
Finally, System Architects (SAs) perform much of the
development work. SAs have the following responsibilities on a
Pega project:

l Configure and unit test individual application elements such
as correspondence and automated decisions.

l Help draft processes and user interfaces during DCO
sessions.

132
©2017 Pegasystems

The building blocks of a Pega
application

Introduction to the Building Blocks of a Pega
Application
The key to efficient application development is to only develop the assets you need to develop. You can
reuse existing assets to limit development of new assets. Pega delivers an impressive array of
application assets. Reusing application assets is more efficient than creating their equivalents.

When an application requires new assets, you only need to create key features and functions once.
Pega's inheritance structure lets you reuse the new resources wherever they are needed in your
application. Eliminating redundant assets simplifies maintaining and extending the application.

In this lesson, you learn how Pega manages application assets and how you can reuse assets through
application design and Pega's principle of inheritance.

After this lesson, you should be able to:

l Describe the relationship between an application and rules.

l Differentiate between a rule and a rule type

l Explain the principles of rule inheritance and scope

l Differentiate between pattern inheritance and directed inheritance

l View class inheritance

133
©2017 Pegasystems

Rules and rule types
When you play a game of chess, you and your opponent agree to
follow a specific set of instructions. These instructions govern
game play, such as how each piece moves on the game board.
These basic instructions are the rules of chess.

When you model a case type in a Pega application, you
configure the application with instructions to create, process,
and resolve a case. These instructions are rules. Rules describe
the behavior of individual cases. The Pega platform uses the
rules you create to generate application code.

Pega provides wizards that create and modify many of the rules
in an application for you. For example, the Case Designer
automatically creates rules to describe cases, processes, and UI
forms. Much of the work of designing an application can be
completed by using these wizards, although you may need to access a rule directly.

The following screenshot shows an example of a flow rule. A flow rule is used to describe a process.
Pega Express and the Case Designer automatically create a flow rule whenever you add a process to a
case life cycle.

Each rule is an instance of a rule type. Pega provides many rule types, with each type tailored to a
specific type of case behavior. For example, Pega provides one type of rule to describe a process flow,
and another type of rule to describe an automated email notification.

You create an individual rule from one of the rule types provided by Pega. Each rule you create
describes specific aspects of case behavior, such as a submission form or an audit process. The use of
individual rules makes your application modular. By describing case behavior with modular, task-
focused rules, you can combine and reuse rules as needed. In this manner, rules are analogous to
classes in Java or other object-oriented programming languages. For example, you create a rule to
describe the content of an email to send to a customer regarding the status of a change of address.
Your application automatically sends this email after the customer enters the old and new address. By
creating the message as a separate rule, rather than embedding the message in the case life cycle, you
can update the content of the email without impacting the rest of the business process.

This modularity provides three significant benefits:

134
©2017 Pegasystems

1. Versioning— System architects create a new version of a rule whenever case behavior needs to
change. Pega maintains a history of changes to a rule, allowing system architects to review the
change history and undo changes if needed. Since each rule describes a specific case behavior, the
rest of the case is unaffected. For example, a system architect updates a UI form with instructions
and removes a critical field. You can review the history of the form and revert back to the version
before the changes were made, without changing other rules in the application.

2. Delegation — System architects delegate rules to business users to allow business users to update
case behavior as business conditions change. The business user updates the delegated rule, while
other parts of the application remain unchanged. For example, expense reports that total USD25 or
less are approved automatically. You create a rule to test whether an expense report totals USD25
or less and delegate the rule to the Accounting department. The Accounting department can then
update the rule to increase the threshold for automatic approval increases to USD50, without
submitting a change request for the application.

3. Reuse — System architects reuse rules whenever an application needs to incorporate existing case
behavior. Otherwise, you must reconfigure the behavior every time the behavior is needed. For
example, you create a UI form to collect policyholder information for auto insurance claims. You can
then reuse this UI form for property insurance claims and marine insurance claims.

KNOWLEDGE CHECK

What is the purpose of a rule in a Pega application?

A rule is an instruction for describing a specific case behavior, such as a process or automated
decision.

135
©2017 Pegasystems

Rules and rulesets
To package rules for distribution as part of an application, you collect rules into a group called a
ruleset. If a rule is similar to a song, a ruleset is similar to an entire album. Just as you can copy the
album to share with a friend and allow your friend to listen to your favorite song, you can share a
ruleset between applications to allow several applications to use the same rules.

Ruleset versioning
System architects collect individual rules into a subset of a ruleset, called a ruleset version. To update
the contents of the ruleset, you create a new ruleset version. Ruleset versioning allows system
architects to easily update applications by providing access to an entire set of rules at once.

You identify each ruleset by its name and version number. For example, an application to process
expense reports includes a ruleset named Expense. You refer to the ruleset as Expense:01-02-03,
where Expense is the name of the ruleset and 01-02-03 is the version number.

The version number is divided into three segments: a major version, a minor version, and a patch
version.

l The major version represents a substantial release of an application. A major version change
encompasses extensive changes to application functionality. For example, the Accounting
department uses an application to manage expense reports. If Accounting wants to extend the
application to track employee time off for payroll accounting, you create a new major version of the
ruleset.

l The minor version represents an interim release or enhancements to a major release. For example,
you need to update an expense reporting application to automatically audit travel reimbursements.
You create a new minor version of the ruleset.

l The patch version typically consists of fixes to address bugs in an application. For example, you
notice that a field in the current version of an application is labeled incorrectly. You create a new
minor version to correct the field label.

Each segment is a two-digit number starting at 01 and increasing to 99. Ruleset version numbering
starts at 01-01-01, and increments upward.

136
©2017 Pegasystems

Each application consists of a sequence of rulesets, called a ruleset stack. The ruleset stack
determines the order in which Pega looks through rulesets to find the rule being used. Each entry in
the ruleset stack represents all the versions of the specified ruleset, starting with the listed version and
working down to the lowest minor and patch version for the specified major version.

Each version of an application contains a unique ruleset stack. This allows an updated application to
reference new ruleset versions that contain updates and new features.

Bob is a system architect working on the first version of an
application to manage expense reports. Bob creates rules for
the first version of the application, such as processes, UIs, and
notifications. Bob collects these rules into the first version of
the Expense ruleset, Expense:01-01-01.

Months later, Tanya receives an enhancement request to
update a UI in the application to collect extra information from
employees due to a policy change. This update enhances the
rules created earlier by Bob. Tanya creates rules to model this
new behavior in a second version of the ruleset, Expense:01-02-
01. She then uses the Expense:01-02-01 ruleset in the updated
expense reporting application.

Employees who use the first version of the application view the
UI that Bob created. Only employees who use the updated
application view the UI that Tanya created. This allows users to
use the first version of the application while the second version
is in development.

KNOWLEDGE CHECK

A ruleset version is identified with a string of three numbers. What do these three
numbers indicate?

137
©2017 Pegasystems

The three numbers used to identify a ruleset version indicate the major version, minor version, and
patch version of the ruleset.

138
©2017 Pegasystems

Classes and class hierarchy
One strength of the Pega platform is the reuse of rules between case types and applications. System
architects often reuse rules — from single data elements to entire processes — in applications. The
reuse of rules improves application quality and reduces development time. Organizations that adopted
the Pega 7 Platform reduced development costs by 75 percent and time-to-market by 50 percent,
launching new business applications up to 90 days earlier (1).

Within an application, Pega groups rules according to their capacity for reuse. Each grouping is a class.
Each application consists of three types of classes.

l Work class— The work class contains the rules that describe how to process a case or cases, such
as processes, data elements, and user interfaces.

l Integration class— The integration class contains the rules that describe how the application
interacts with other systems, such as a customer database or a third-party web server.

l Data class— The data class contains the rules that describe the data objects used in the
application, such as a customer or collection of order items.

A class can also contain other classes. A class that contains
another class is called a parent class, while a class that is
contained by another class is called a child class. A child class
can reuse, or inherit, any of the rules defined for its parent
class.

The work class contains a child class for each case type in your
application. Each child class contains all of the rules unique to
a case type, such as an auto insurance claim. The data class
contains a child class for each data object.

139
©2017 Pegasystems

The classes that comprise an application are called a class hierarchy. The
class hierarchy determines how system architects can reuse rules within
the application. The class hierarchy consists of several groups of classes:

l Classes that describe a specific case type, such as expense reports or
auto insurance claims

l Classes that collect common rules and data elements. These classes
allow the reuse of rules at the division and organization level, such as an
approval process shared across the entire IT department.

l Classes from other applications, such as industry-specific Pega
applications. So you can create a generic application for policy
administration to use as a base for customizing versions for different
countries.

l Base classes provided by the Pega platform. These classes contain rules
that provide basic functionality for processing cases. For example, the
Pega platform provides data elements that record who created a case
and the time needed to complete an assignment.

Any rule available to an application through the class hierarchy is
considered in scope. Rules that an application can not access through the
class hierarchy are considered out of scope.

Pega names each class to identify the position of the class within the class
hierarchy. Consider the class TGB-HR-Work. Each level of the class
hierarchy is separated by a hyphen (-). So TGB-HR-Work is a child of the
class TGB-HR, which is a child of the class TGB.

KNOWLEDGE CHECK

What is the purpose of a class in a Pega application?

A class organizes rules within an application. The position of a class within the class hierarchy
determines the reusability of the rules in that class.
1Forrester Consulting. (2015). The Total Economic Impact™ Of The Pega 7 Platform. Retreived from
https://www.pega.com/forrester-tei

140
©2017 Pegasystems

How to create a rule
When you create a rule, Pega provides you with the New Record form. The New Record form allows you
to create either a rule or a data instance.

When you create a rule, the New Record form prompts you to provide four pieces of information: rule
type, identifier, class, and ruleset. This information is used to identify the rule uniquely within your
application.

1. The rule type determines the type of behavior modeled by the rule. Each rule type models a
specific type of behavior, such as automated decisions, UI design, or data storage. For example, to
model a process, you use a specific type of rule called a flow rule. You determine the rule type when
you open the New Record form.

2. The identifier identifies the purpose of the rule. For example, to model the process for approving
insurance claims, you use a identifier such as ClaimsApproval. This identifier allows you to
differentiate the approval process from a submission process. Pega automatically determines the
identifier from your entry in the Label field.

3. The class identifies the scope of the rule. You specify the class of a rule in the Apply to field. The
class you select determines how extensively you can use the rule — within one case type, or across
case types.

4. The ruleset is the container for the rule. The ruleset identifies, stores, and manages the set of rules
that define an application or a major portion of an application.

The combination of rule type, name, class, and ruleset allows Pega to uniquely identify each rule. This
combination allows an application to call the correct rule during case processing, through a process

141
©2017 Pegasystems

called rule resolution. With rule resolution, Pega determines the appropriate rule to run when an
application calls a rule.

You can access the New Record form several ways. Based on your choice, Pega provides default values
in some or all of the fields on the form. You can change these values before you create the rule.

How to access the New Record form Default values provided
From the +Create menu, select the rule
category, then the rule type.

Rule type, ruleset

In the Application Explorer, select the class in
which you want to create the rule, then select
the rule category, then select the rule type.

Rule type, apply to class,
ruleset

In a field on a form, enter the name of the rule
to create, then click the Target icon.

Rule type, identifier, apply to
class, ruleset

After you complete the New Record form, click Create and open to configure the rule behavior.

142
©2017 Pegasystems

How to update a rule
System architects often secure rulesets to prevent unauthorized or unintended changes to rules. When
you edit the rules in a secured ruleset, you either check out the rule or perform a private edit.

Rule check out and check in
The check-out feature is used to manage changes to rules when multiple developers work on an
application. This feature allows a system architect to update a rule while preventing updates by other
system architects. Rule check out creates a copy of a rule in a ruleset that is only visible to you, called a
personal ruleset. After you update the rule and test the changes, you check in the rule. This updates
the application ruleset with a new version of the rule.

Checking out a rule
On the rule form header, click Check out to check out the rule.

Checking out a rule creates a copy of the original rule in your personal ruleset and prevents other
system architects from checking the rule out until you check in your changes.

The personal ruleset occupies the top spot in the ruleset stack. The rules in your personal ruleset
override rules in the rest of the application. This allows you to test your changes to the rule without
affecting other system architects.

In the rule header, click Private to view a list of the rules you have checked out.

Checking in a rule
When you check out a rule, the rule header updates with three new buttons: Save, Check in, and
Discard.

When you finish editing the rule, click Save to save your changes to the checked out rule. This commits
the updated rule to your personal ruleset. After you save the rule, you can test your changes.

143
©2017 Pegasystems

After you test the rule and confirm that your configuration works as expected, click Check in to replace
the original rule with the version in your personal ruleset. Unless approval is required, your changes
immediately affect application behavior.

You are not required to check in your changes immediately. You can log off and return to a checked out
rule later or click Discard to remove the rule from your personal ruleset.

Select Private > Bulk actions to check in several records at the same time.

Private edit
A private edit provides a nonexclusive check out of a rule. This allows other system architects to edit a
rule at the same time. Private edits are useful for quick debugging without interrupting development
by other team members.

As a best practice, older versions of a ruleset are locked to prevent
changes. For rules in a locked ruleset, a lock icon is displayed on the rule
form. To update a rule in a locked ruleset version, save the rule to an
unlocked ruleset version, then check out the rule if necessary.

144
©2017 Pegasystems

How to reuse rules through inheritance
Inheritance allows your application to reuse rules that have already been created for other cases or
applications. By reusing a rule through inheritance, rather than creating an identical copy of the rule,
you reduce development and testing time without sacrificing application quality.

Pega provides two methods for inheriting rules: pattern inheritance and directed inheritance.

Pattern Inheritance
Pattern inheritance describes the business relationship between classes. Pattern inheritance allows
your application to share rules with other applications throughout an organization. The following
image demonstrates a basic pattern inheritance hierarchy.

1. Rules for a specific type of case are stored at the lowest level of the hierarchy. Rules at this level
only affect a single type of case, such as IT service tickets or onboarding requests.

2. The next level is the class group. The class group contains all of the case types in an application. In
the previous image, TGB-IT-Work contains all of the case types for the IT department, while TGB-HR-
Work contains all of the case types for the human resources (HR) department. Rules at this level
affect all the case types in the class group.

3. Above the class group is the division layer. The division layer contains the work, data, and
integration classes for the division.

4. Above the division layer is the organization layer. The organization layer contains all of the classes
for applications across an entire business or other organization. The organization layer often
contains data and integration classes that can be applied across the entire organization

For example, an organization creates an application to manage IT requests. In this application, you use
a data element to record the due date for the request. The concept of a due date is not unique to IT
requests. Other business processes also use due dates, such as expense reports. You create the data

145
©2017 Pegasystems

element for the due date in the organization layer, so the application to track expense reports can
reuse this data element.

KNOWLEDGE CHECK

What type of relationship is described by pattern inheritance?

Pattern inheritance describes the business relationship between classes. Pattern inheritance
indicates the reusability of rules throughout an organization, such as whether a rule is usable by a
single case type, an entire department, or even an entire organization.

Directed inheritance
Directed inheritance describes the functional relationship between classes. Directed inheritance
allows your application to reuse rules from classes in other applications and standard rules provided
with the Pega platform. For example, a class that describes automobile insurance policies can inherit
from a class that describes a generic insurance policy, and even the generic case type defined by the
Work-Cover class provided by the Pega platform. For example, directed inheritance allows you to reuse
the standard data element to record the case ID, provided as part of the Pega platform, in your
application.

KNOWLEDGE CHECK

How does directed inheritance differ from pattern inheritance?

Pattern inheritance allows you to reuse rules within a single application. Directed inheritance allows
you to reuse rules in other applications, including standard rules provided as part of the Pega
platform.

Reusing rules through inheritance
When attempting to reuse rules through inheritance, Pega first searches through the parent classes
indicated by pattern inheritance. If unsuccessful, Pega then searches the parent class indicated by
directed inheritance as the basis for another pattern inheritance search. This process repeats until
Pega reaches the last class in the class hierarchy, called the ultimate base class or @baseclass. If the
rule cannot be found after searching @baseclass, Pega returns an error.

Consider the following example in which an auto insurance claim case references the data element
that stores the case ID. This data element belongs to the ultimate base class,@baseclass. The
application containing the auto insurance claim is built on a generic policy administration application.
That generic application is built upon the Pega platform.

146
©2017 Pegasystems

1. An auto claim case, described by the class Inscorp-PA-Work-AutoClaim, references the case ID data
element.

2. The data element is not found in the class Inscorp-PA-Work-AutoClaim, so Pega searches through the
parent classes using pattern inheritance.

3. The data element is not found though pattern inheritance, so Pega searches the parent class
specified by directed inheritance, InsApp-PA-Work-Claim. This class belongs to the generic policy
administration application.

4. The data element is not found in the class InsApp-PA-Work-Claim, so Pega searches its parent classes
using pattern inheritance.

5. The data element is not found though pattern inheritance, so Pega searches the parent class
specified by directed inheritance,Work-Cover-. This class belongs to the Pega platform.

6. The data element is not found in the class Work-Cover-, so Pega searches its parent classes using
pattern inheritance, finally locating the data element in @baseclass.

KNOWLEDGE CHECK

From which class does @baseclass inherit?

None. In a Pega application,@baseclass is the ultimate base class. All other classes inherit from
@baseclass.

147
©2017 Pegasystems

Reviewing class inheritance
Before you create rules, review the inheritance tree for your application. This allows you to determine
the appropriate class to use when creating rules, and allows you to review the rules already available
in the application.

To review inheritance for a class:

1. Open the Application Explorer.

2. If necessary, use the application scoping control to enter or select the name of the class. In the
following example, PegaSample-SupportRequest is entered into the control to display the contents
of the class PegaSample-SupportRequest and its child classes.

3. Right-click the class to review, and select Inheritance. The Inheritance Viewer for the selected class
opens in a pop-up window. The following example shows the Inheritance Viewer for the
PegaSample-SupportRequest class.

4. Review the classes listed as parents for the selected class. The Inheritance Viewer lists each parent

148
©2017 Pegasystems

class in hierarchy order, and the inheritance method that provides access to the class.

5. Optional: Click a class to open the class rule. The History tab of the class rule provides
documentation about the class, such as the purpose and recommended usage of the class.

6. If necessary, click Close to close the Inheritance Viewer.

149
©2017 Pegasystems

Accessing Applications

Introduction to accessing applications
In Pega, application developers use the integrated developer environment to configure their
application. This environment, known as the Designer Studio, provides tools to manage and analyze the
application configuration.

To ensure that only application developers access the Designer Studio, Pega provides a system to
manage user privileges for an application.

After this lesson, you should be able to:

l Explain the relationship between a user and an application.

l Switch between applications.

How to manage user access to an application
When users log on to Pega — either through the Designer Studio or an end-user portal — Pega
provides the user with access to an application. Pega manages user access through a combination of
three items of information: an operator, an access group, and an application. To ensure that users
access the correct application, you configure the operator to reference the correct access group.

In Pega, each user is represented by an operator record. The operator record contains information
such as the operator's name, position, organizational hierarchy, and location.

Each operator is a member of an access group. The access group record describes a set of privileges.
These privileges are available to users who belong to the access group. Any operator can belong to a
number of access groups. However, only one access group is active at any time. The access group also
indicates the portal through which the user interacts with Pega.

150
©2017 Pegasystems

Each access group references a specific application. The privileges available to members of the access
group apply only to the referenced application. So, a human resources (HR) analyst may have
developer access to an HR application, and user access to an IT application.

How Pega determines the application a user opens
When users log on to a Pega server, they enter their ID and password. The ID corresponds to a unique
operator record, and the password authenticates the users.

The operator record lists a set of access groups. The users belong to each access group listed on their
operator record, but only one access group is active at any time.

Finally, Pega uses the active access group to determine the application to run.

Allowing a user to access an application
To allow a user to access an application, you add the appropriate access group to the user's operator
ID record. Each access group has a unique name that references both the application name and the
access level. The following access groups are created automatically for each Pega application.

Access Group Usage
[application]:Administrators Developer access to the application. Configured to

open the application in Designer Studio.

[application]:Authors Developer access to the application. Configured to
open the application in Pega Express.

[application]:Managers Manager access to the application. Configured to
open the application in the Case Manager portal.

[application]:Users User access to the application. Configured to open
the application in the Case Worker portal.

For example, a Pega application named TimeTracker manages time-off requests for users. To gain
developer access to the application , you add the TimeTracker:Administrators access group your

151
©2017 Pegasystems

operator ID record. To open the application when you log on, select the radio button to the left of the
access group on the operator ID record.

152
©2017 Pegasystems

Assessing Guardrail compliance

Introduction to assessing guardrail
compliance
When you develop an application in Pega, Pega monitors your application for configurations that lead
to maintenance or performance issues. By addressing these issues, you improve application quality
and prevent performance issues for users.

After this lesson, you should be able to:

l Navigate to the Application Guardrails landing page.

l Review guardrail compliance for an application.

l Address application design warnings.

l Justify application designs that violate guardrails.

153
©2017 Pegasystems

Compliance Score
When you develop an application, you want to ensure that the application meets established standards
for quality and performance. Users quickly adapt to applications that meet established standards,
resulting in faster adoption and fewer user errors. The key to releasing quality applications is to
identify potential issues during development. By doing this, you can correct these issues before they
affect users.

To help you develop high-quality applications, Pega monitors
your application for compliance with application design best
practices. These best practices, or guardrails, guide you to
design applications that avoid potential maintenance and
performance issues. When a rule in your application violates
one or more guardrails, Pega notifies you with a rule warning.
This warning prompts you to review the deviation and allows
you to update your application prior to release. Similar to the
lane-departure warning system in a vehicle, these warnings
alert you to dangerous or risky behavior before they cause a
serious problem.

To help you develop high-quality applications, Pega
continuously monitors the rules in your application for
compliance with established best practices. If a rule violates a
best practice, Pega applies a warning to the rule. This warning
indicates the severity and type of error that may result, and
often describes how to address the violation. Each warning
indicates a particular issue with the configuration of the rule,
and each rule may indicate multiple warnings.

To quickly assess the overall quality of an application, Pega provides a compliance score. Pega
assesses the rule warnings for an application to measure overall compliance with Pega Platform best
practices. The compliance score measures the number of rules with severe or moderate warnings in
an application, compared to the number of rules with no warnings or caution-level warnings. Use the
compliance score to quickly assess the quantity and severity of rule warnings in your application.

KNOWLEDGE CHECK

What is the purpose of the compliance score for an application?

The compliance score provides a quantifiable assessment of application quality by indicating the
amount and severity of rule warnings in an application.

154
©2017 Pegasystems

How to assess guardrail compliance
During application development, the Application Guardrails landing page provides a single point for
assessing application quality. To open the Application Guardrails landing page, open the Designer
Studio menu and select Application > Guardrails.

The best tool for assessing overall compliance with guardrails is the application's compliance score.
The compliance score indicates the impact of complex or custom code on application maintenance and
performance. Pega assesses the rules in your application and calculates the compliance score on a
scale of 0-100, where 100 is the best possible score.

l A score of 90 or greater indicates your application is in good standing.

l A score of 80-89 indicates your application needs review for improvement.

l A score below 80 indicates that your application requires immediate action.

To generate the compliance score, Pega assesses the rule warnings for an application to measure
overall compliance with Pega Platform best practices. The compliance score measures the number of
rules with severe or moderate warnings in an application, then compares this result to the number of
rules with caution level or no warnings. The more rules with severe or moderate warnings in your
application, the lower the compliance score.

The Guardrails landing page also categorizes the rules in your application that include warnings. The
Warning Summary tab presents two bar charts that report the number and severity of rule warnings
in your application, organized by rule type. Use the information on this tab to determine which parts of
your application generate the greatest number of rules with warnings.

KNOWLEDGE CHECK

155
©2017 Pegasystems

The compliance score for an application is 85. Is the application ready to be deployed to
users?

A compliance score of 85 indicates that the application requires review before deployment to
users. Warnings should be reviewed and addressed to raise the compliance score to 90 or greater.

156
©2017 Pegasystems

How to address guardrail violations
Address guardrail violations to improve the quality of your application. Each time you address a
guardrail violation, you improve the compliance score for your application and eliminate issues that
may impact end users. To improve the compliance score for your application, you resolve rule warnings
by correcting the indicated configuration issue.

To address guardrail warnings, you start on the Compliance Details tab of the Guardrails landing
page. The Compliance Details tab provides three options to analyze the risk areas in your application:

1. Warning impact: The severe and moderate configuration issues to address before releasing the
application

2. Warning age: The age of the warnings in your application

3. Application risk introduced by operator: The developer(s) responsible for introducing the
behavior generating the warnings

The Warning impact section lists the number of rules with severe (Resolve now) or moderate (Resolve
before production) warnings. When preparing to release an application, focus on resolving these
issues first. The list is organized by warning type, and highlights the warnings with the greatest impact
on the compliance score. The preceding example shows an application with 26 rule warnings that

157
©2017 Pegasystems

should be addressed before releasing the application — 21 warnings for maintainability issues, and
five warnings for performance issues. You can click each number to view the rules that violate
guardrails.

When you click a rule warning in one of these lists, you open the rule that contains the warning. Pega
displays the rule warning at the top of the rule form, as seen in the following example.

To address a guardrail violation, you either resolve or justify the rule warning.

To resolve a rule warning, you eliminate the cause of the guardrail violation. When you eliminate the
cause of a guardrail violation and save the rule, the warning is removed from the rule form and the
compliance score improves. For example, Pega displays a warning on any flow rule with draft mode
enabled. Once you disable draft mode and save the flow, the warning is removed from the rule, and
the compliance score improves.

Not all rule warnings can be resolved. A requirement may force a design approach that results in a
warning on a rule. For example, your application may require that you output data to a system of
record, such as an external database. To output data to an external database, you use a specific type of
rule called an activity. But since activity rules are difficult to maintain, Pega applies a rule warning
whenever you use an activity in an application. In this case, you must use the activity to output data to
the system of record, so you cannot resolve the warning.

If you cannot resolve a rule warning, you justify the configured behavior instead. When you add a
justification to a rule warning, you acknowledge the guardrail violation and explain the limitation of
your application design. Justifying a warning provides a reduced improvement to the compliance score
compared to resolving the warning.

158
©2017 Pegasystems

Justifying rule warnings
Justifying rule warnings documents the required application behavior that does not adhere to Pega
guardrails. Justifying rule warnings improves the compliance score for your application and prepares
the application for release.

1. Open the rule containing the warning. The presence of a rule warning is indicated in the rule
header.

2. Click review/edit to review the warning. A pop-up displays the reason for the rule warning.

3. In the pop-up, click Add justification. A text field displays in the pop-up.

4. In the text field, enter the justification for keeping the current configuration. For example, the
configuration is necessary to satisfy a requirement, and you cannot satisfy the requirement in a
guardrail-compliant manner.

5. Click OK to close the pop-up.

159
©2017 Pegasystems

6. Click Save to record your justification on the rule. The compliance score updates to reflect the
justification you entered for the rule.

CASE DESIGN

160
©2017 Pegasystems

161
©2017 Pegasystems

Creating cases and child cases

Introduction to Creating Cases and Child
Cases
When you represent a business process in Pega, you create a template for processing work. This
template, called a case type, is used to create individual instances of work, called cases.

Some business processes are too complicated to model with a single case type. To address this
situation in Pega, you create more than one case type. Each case type you create represents a part of
the business process, so you establish relationships between case types to reflect dependencies in the
business process.

After this lesson, you should be able to:

l Explain the relationship between a case type and a case.

l Explain the relationship between a parent case and a child case.

l Add a case type to an application.

l Create additional cases during case processing.

162
©2017 Pegasystems

Case type and case
A case type is an abstract model of a business transaction, while a case is a specific instance of the
transaction. You can think of a case type as a template for creating and processing cases. When a new
transaction starts, a new case is created based on the case type definition.

In a Pega application, you model repeatable business transactions with case types. Each case type
captures the life cycle of a specific type of transaction, from creation to resolution. A case type defines
data structures, processes, tasks, and user interfaces required for processing the transaction.

For example, a Dental Claim case type models the filing and processing of patient claims of dental
procedures. The case type contains data models for holding patient information and dental procedure
information. The case type defines processes for reviewing and approving or rejecting claims. The case
type also provides user forms for attaching medical documents.

Each time a patient files a dental claim, a new case is created. There can be a case for John Smith for
teeth cleaning performed on May 3, and another case for Linda Wise for a new crown applied on
January 15. Each case moves through the processes such as review and approval as defined in the case
type.

163
©2017 Pegasystems

Each case can hold different data and progress through the case life cycle on a different path. One
claim case can go through the approval process quickly since it is on a common procedure. Another
case might require review since it is on a rare procedure and the claim amount exceeds a certain limit.

164
©2017 Pegasystems

Case type relationships
A business transaction can be complicated and involve multiple cases. For example, consider the new
hire process. During the interview process, the human resources (HR) department opens a Candidate
case for each job applicant. The applicant may be interviewed. If the interview is successful, the
applicant receives a job offer. When the candidate accepts the job offer, then HR considers the
candidate hired and is now an employee. The Candidate case is completed and creates a Onboarding
case to prepare for the new employee's start date. In this example, the Onboarding case is
independent of the Candidate case.

Sometimes, the created case is closely related to the original case. In the previous example, part of the
onboarding process is to enroll the new employee in a benefits plan. You create a Benefits Enrollment
case type because it is a separate business transaction. The outcome of the transaction is an
employee's benefits plan — a business transaction that is distinct from the onboarding transaction.
However, before an Onboarding case can be approved the Benefits Plan case must be resolved. In this
example, the Onboarding case type and the Benefits Enrollment case type are of a parent-child
relationship. The system associates the Benefits Enrollment information with the Onboarding case.
This allows you to join this associated information when reporting or auditing Onboarding cases. For
example, you can create a report for a set of employees showing the medical, dental, and vision plans
each employee has.

In a Pega application, you can model this parent-child relationship with a case type hierarchy that
contains a top-level case type and child case type.

l Top-level— A case type that does not have any parent case type, but can cover, or become a parent
of, other case types.

l Child— A case type that is covered by a parent case type. When you configure a case type as a child
case, Pega maintains a relationship between the parent and child cases. Child case types represent
work that must be completed to resolve the parent.

For example, an Auto Insurance application has a top-level case type Accident Claim. The Accident
Claim includes two child case types — Vehicle Damage and Bodily Injury. For any Accident Claim case,
both of its child cases — vehicle damage and bodily injury — must be addressed before the Accident
Claim can be closed. In addition, reports can associate a parent case with any or all of its child cases.

A parent case creating multiple child cases allows for work to be processed in parallel. Each child case
can be handled by different parties with different expertise. Under the cover of an Accident Claim
case, the Vehicle Damage child case can be handled between a customer service representative, an

165
©2017 Pegasystems

adjustor, and a repair shop. Meanwhile, the Bodily Injury child case can be handled by a medical claim
specialist and certain medical providers.

Implementing a business process in a separate case type also allows you to reuse the case type as
needed. For example, claims for both automobile and property insurance may involve a bodily injury
claim. By implementing bodily injury claims as a separate case type, you can use the bodily injury case
type with both automobile and property claims.

166
©2017 Pegasystems

Adding a top-level case type in an application
You can add a top-level case type to your application in the Case Designer.

Follow these steps to add a top-level case type to your application:

1. In the navigation panel, click Cases to view the list of current case types in your application.

2. Click + Add a case type.

The Add case type dialog opens.

3. In the Name field, enter a name for the case type.

4. Optional: Expand the Advanced Settings section to configure the rule resolution for the case type.
Accepting default settings should suffice in most cases.

5. Click Submit.

167
©2017 Pegasystems

Adding a child case type in an application
You can define a parent-child relationship by either reusing an existing case type or adding a new case
type.

Adding a new child case type to your application
Add a new case type as a child case when no existing case types meet your business requirements.

Follow these steps to add a new child case:

1. Open the Case Type Explorer.

2. Hover over a parent case type name and click the optionsmenu.

3. Select Add a child case type.

The add case type dialog opens.

4. Click New case type.

5. In the Name field, enter a name for the child case type.

6. Optional: Expand the Advanced Settings section to configure the rule resolution for the case type.

7. Click Submit.

Adding an existing child case type to your application
Review existing case types and case-type dependencies before reusing a case type for a child case,
since demoting top-level case types can introduce unexpected complexity.

Follow these steps to use an existing case type for a child case:

168
©2017 Pegasystems

1. Open the Case Type Explorer.

2. Hover over a parent case type name and click the optionsmenu.

3. Select Add a child case type.

4. Click Existing case type.

5. Select a case type from the list.

6. Click Submit.

169
©2017 Pegasystems

Creating a case during case processing
Create new cases during case processing to begin a new business process or a portion of the existing
business process.

Creating another case during the case life cycle
Follow these steps to add and configure a process step to create a case during case processing:

1. In the Life cycle tab of the case designer, identify the process where you want to add a step for
creating a case.

2. Click + Add step. A pop-up opens to select the type of step to add.

3. SelectMore > Utilities > Create Case(s).

4. Click this new step to configure the Create Case shape.

5. Indicate how to create the new case: as a top-level case, as a child case, or as multiple child cases.

Creating a top-level case
Create a top-level case when you want the new case to be independent of the current case.
Processing on the current case can finish while the new case is still open.

a. Click Create a case.

b. In the Case type list, select the case type to create. Specify the name of the case type, or select
[Other] to specify the case type using a parameter or property.

c. In the Starting process list, select a flow that creates the case.

d. Optional: In the Property to store ID of case field, enter the name of a single-value property
that you can reference from the current case to open the new case.

Creating a child case
Create a child case when you want the current case to be dependent upon the new case. Processing
on the current case cannot be completed until the child case is resolved.

a. Click Create a child case.

b. In the Case type list, select a case type that is a child of your current case type.

If you do not know which case type to select at design time, you can select [Other] from the list
to create a case based on the run-time value of a parameter or property.

c. In the Starting process list, select a flow that creates the child case.

Creating multiple child cases
Create multiple child cases when you want to create a child for each item in a list. Processing on the
current case cannot be completed until each of the child cases are resolved.

a. Click Create multiple child cases.

b. Enter a page list property in the For each item in list field.

170
©2017 Pegasystems

At run time, a child case is created for each entry that is found in the page list.

c. In the Case type list, select a case type that is a child of your current case type.

If you do not know which case type to select at design time, you can select [Other] from the list
to create a case based on the run-time value of a parameter or property.

If no case type is selected, the class of the page list that is provided in the For each item in list
field is used to create the child cases.

d. In the Starting process list, select a flow that creates each child case.

e. Optional: Enter a page name in the Source page parameter name field that you can reference
in a data transform to copy information to each child case.

6. In the Data transform field, enter a data transform that sets initial property values for the case.

If you are creating more than one child case, you can select the Copy page data to new child case
check box instead.

7. Optional: In the Audit note field, press the down arrow key and select the name of a field value
that is added to the history, or audit trail, of the case when the Change Stage shape is processed.

8. Click Save.

DATA MODEL DESIGN

171
©2017 Pegasystems

172
©2017 Pegasystems

Data elements in Pega applications

Introduction to Data Elements in Pega
Applications
Pega 7 applications allow users to create, process, and resolve cases. The applications collect data that
is important to the case. Based on the data collected, decisions on how to best process and resolve the
case are made.

For example, if you want to create a case to process a change of address for a customer, you need data.
The data includes the identity of the customer and the new address.

The fundamental unit of the Pega data model — the element that stores the data — is called a
property.

After this lesson, you should be able to:

l Explain the relationship between data and a case.

l Describe the role of a data object.

l Explain how data elements relate to an object.

l Describe the relationship between properties and data objects and data elements.

l Define the components of a data model.

173
©2017 Pegasystems

Data elements in Pega applications

Data in Pega applications
All applications collect data to use for case processing. Decisions on how to best process and resolve
cases are made based on the data collected. If you want to create a purchase request case, the data
includes, for example, the customer and line items.

A case type's data model defines the data structure for the case. The following table provides the data
model for a purchase request.

A data model is built from single value elements or collections of related single value elements. A
collection of related elements is called a data object.

A purchase request case has a unique identifier, date, customer, list of line items, and total. The
unique identifier, date, and total are single value data elements. The customer and line item elements
consist of more than one related property. Therefore, the customer and line item elements are data
objects.

There is a one-to-one relationship between purchase request and customer, and a one-to-many
relationship to line items. The customer has a name and lists of phone numbers, addresses, and
discounts. A name is a single value element and there is a one-to-many relationship to the phone
number, address, and discount code elements.

174
©2017 Pegasystems

Properties
In Pega 7, data elements are called properties or fields. Property and field are different names for the
same thing. Properties can be either single value with no intended correlation with any other value, or
a collection of related values. This distinction is explained by the mode of a property. System architects
typically work with two types of property modes: value modes and page modes. Value modes describe
a single piece of information such as a total. Page modes describe a data object such as a customer.
The screenshot highlights the value and page mode property types.

Value mode properties
Use value mode for properties with no correlation to other properties. For example, the identifier and
date in the purchase request are value mode properties. There are three value mode properties
available: single value, value list, and value group.

l A property of mode single value - also known as a single value property - stores text, numbers,
dates, Boolean values, and amounts.

l A value list acts as a container for an ordered list of text values. The discount codes property is an
example of a value list. Each code is a single piece of information, but a clear relationship exists
between the codes.

175
©2017 Pegasystems

l A value group acts as a container for an unordered list of text values. The customer's phone
numbers are defined as a value group identifying the contextual meaning of each number: home,
work, or mobile.

When you create a value property, you can assign it to one of 10 different Property types. This
identifies the type of information the property stores. By assigning a type to a property, you ensure
that users provide valid information. For example, users provide a number for an age, and a date for a
date of birth.

The table below provides a list of property types and the information each type stores.

Property type Stores Example
Text Any text Steve

Identifier Text strings that do not contain double quotation marks
(“”), tabs, carriage returns, or line breaks

XYZ

Password Encrypted graphical characters Password

Encrypted text Similar to the password type, but can be decrypted for
display

Password

Date Calendar date in the format YYYYMMDD 20131202

TimeOfDay Local time in the format HHMMSS 052709

DateTime UTC (Coordinated Universal Time) value normalized to
Greenwich Mean Time (GMT)

20131202T052709

Integer Positive and negative whole numbers, and zero 4

Decimal Non-whole numbers 23,55

TrueFalse Boolean value True

Page mode properties
If you need to establish a contextual relationship between single value properties, you can use one of
the three page-mode properties: pages, page lists, and page groups.

Page mode properties are organized similar to value mode properties.

l A page is a single entity. The customer is an example of a page property.

l A page list is a numerically ordered list. The line items that make up the purchase request is an
example of a page list.

l A page group is a semantically ordered list. The address property is an example of a page group.

176
©2017 Pegasystems

The page mode properties require you to specify a definition, or a data type, that defines the structure
of the page property.

177
©2017 Pegasystems

How to manage properties
Pega provides several tools that help manage properties. The tools provide easy-to-use interfaces that
add, update, and remove classes and properties. This section looks at the Data Explorer and the Data
Model tab as well as the property rule form.

The Data Explorer
Use the Data Explorer to add or remove data types. Always check if a suitable data type is available
before creating a new one. Pega comes with many standard classes you can use directly in your
application. Select an existing data type and specify the data type you want to use.

178
©2017 Pegasystems

You can extend an existing data type if it only partly meets your needs. For example, you might want to
create an employee data type based on the Party-Person data type. Select a new data type and specify
the data type you want to extend as the parent in the advanced settings. You can use all properties
defined in the parent in addition to the ones you create in your new data type.

179
©2017 Pegasystems

The Data model tab
You can use the Data model tab in the Case Designer to add or remove properties from your case type.
Properties are called fields in the Data model tab. Select Show reusable fields to display all fields
inherited and available in the case type.

The Data model tab for a data type looks very similar.

180
©2017 Pegasystems

Selecting the field type
When creating a new field, you need to specify a type. The options in the list pair the field with a
control in the user interface. The type options are divided into three categories: simple, fancy, and
complex.

The simple types are similar to the property types defined on the property itself. Use a picklist if you
need to display a static list of options to the user. For example, if you want to capture a phone number,
you might want to specify a list of types, such as home, work, and mobile.

The fancy types allow you to provide the capability to upload an attachment, show a location on a map,
or reference a user on the system.

Use the complex types to define page and page list properties. A field group is a page and a field
group (list) is a page list.

181
©2017 Pegasystems

The Property rule form
The property rule form contains the property definition. Because a property definition is a rule, it
shares the benefits of versioning, inheritance, and access control that the Pega 7 Platform provides to
all rules.

The property has one of 11 types.

Note: The property type cannot be changed after the property has been saved.

Use the Data Access section to configure automatic data access and persistence settings. Use Manual if
you are explicitly setting the value (for example, in a user interface). Other options depends on the
property type selected and are not covered in this lesson.

The Display and validation section allows you to define how the property should appear on the screen
by specifying a UI control. You also have the option to specify a table with valid values for the property.

Pega comes with a set of standard property rules. The standard properties have names that start with
px, py, or pz. You cannot create new properties starting with px, py, or pz.

The table below provides a list of the prefixes for standard rules.

Prefix Meaning
px Identifies special properties — your application can read but not write to these

properties.

py You can use these properties in your application.

pz Supports internal system processing — the meaning of values may change with new
product releases. Your application can read but not write to these properties.

182
©2017 Pegasystems

How to reference a property
You have learned about two property modes: value and page. Value mode properties store single
strings of data such as text, numbers, or dates. Page mode properties act as a container for value mode
properties. You refer to a property in Pega 7 by prefixing the property name with a period (or dot, ".").

l To refer to a single value property named OrderDate, type .OrderDate.

l To refer to an entry in a value group property, such as the mobile phone number, type .Phone
(Mobile), where Mobile is the group subscript.

l To refer to the first entry in a value list property, such as one of the discount codes, type
.DiscountCode(1), where 1 is the list index.

Page mode properties are similar.

l To refer to a page that contains customer information, type .Customer.

l To refer to an entry in a page group property, such as the work address, type .Address(Work).

l To refer to the third page of a page list that contains purchase request line items, type .LineItems(3).

To refer to a specific property on the page, use the name of the page as a prefix for the property name.
By doing this, you establish an important piece of information about that property — its context. The
context of a page — by itself or as part of a page list or page group — acts as a container for the
properties it contains. If you want the city in the work address, specify .Address(Work).City.

183
©2017 Pegasystems

Defining properties
You can use the Data Explorer to create a data type and the Data Model tab to manage properties. You
will also look at how to create a static list of data entry options.

Creating a data type
Follow these steps to create data types from the Data Explorer:

1. Select Data in the left pane to open the Data Explorer.

2. Select Add data type.

3. Select New Data Type if you want to create a new data type, or select Existing Data Type to
include an existing one.

4. Provide a label and description.

5. Click Submit to create the data type.

184
©2017 Pegasystems

Managing properties in a case or data types
Use the Data Model tab in the Case Designer to add or remove properties from your case type.
Properties are called fields in the Data model tab.

The Data Model tab for a data type looks very similar.

Adding a field to a case or data type
Follow these steps to add a field:

1. Open the Data model tab in the Cases Explorer.

2. Click the Add field link.

3. Specify a name for the field (property).

185
©2017 Pegasystems

4. The ID field is automatically populated by the system. You can choose to edit the ID field.

5. Select the type.

6. If you select a field group or field group list, you need to provide a data type in the options field.

Updating a field in the case or data type
Click the row to update the name of a field.

Remove a field from the case or data type
Click the trash can icon to remove a field.

Property rules are automatically added, removed, or updated as you use the Data Model tab.

Define a static list of data entry options
You can define a static list of data entry options for a field. For example, to capture a phone number,
you can specify a list of types such as home, work, and mobile.

Follow these steps to create a picklist:

1. Open the Data model tab in the Cases Explorer.

2. Click Add field and enter a name and ID.

3. Select the Picklist type.

4. Click the gear icon to configure the picklist.

186
©2017 Pegasystems

5. Select whether you want the list to display as a drop-down or as radio buttons.

6. Enter the list options.

7. The property is now ready to be used in the application.

187
©2017 Pegasystems

Setting property values automatically

Introduction to Setting Property Values
Automatically
As you process a case, you may need to copy or manipulate data. For example, you collect an
individual’s first name and last name, but want to combine them into a full name. In other situations,
you might want to set default values for fields, or add two numbers together.

After this lesson, you should be able to:

l Explain the use of data transforms in an application.

l Identify situations in which to set property values automatically.

l Set initial property values using the pyDefault data transform.

l Explain how data transform superclassing works.

188
©2017 Pegasystems

Data transforms
When you create and process a case, you need data. You collect, process, act upon, and present that
data back to the user. Sometimes, you need to copy data from one place to another. Other times, your
data is not in the form you require, so you need to find a way to manipulate that data into an
acceptable form.

In a purchasing application, for example, items are
added to a cart and the checkout process begins.
The customer provides a shipping address and
credit card information, and is prompted to provide
a billing address.

The shipping address might be the customer's
home address — the billing address and shipping
address are likely to be the same. Reusing rather
than having to reenter the shipping address is
helpful and more efficient. Similarly, you might
collect an individual’s first name and last name, but
need to combine the two into a full name for credit
card processing.

One option for copying and manipulating data is
the data transform. The purpose of a data
transform is self-explanatory: it transforms data in
the application. This example uses a data
transform to copy the shipping address to another
page — in this case, the billing address — and to
copy the first and last name properties into a
single property full name.

You can use data transforms in several ways. For
example, you can call a data transform from a flow
action rule or from a connector. Also, you can use a
special data transform rule — pyDefault — to
initialize property values when creating a case.
Data transforms can be used to iterate over page
lists or page groups, and copy entire pages at a
time.

189
©2017 Pegasystems

How to set values with data transforms
Use a data transform to define how to take source data values — data that is in one format and class —
and turn those values into data of another target format and class. In general, data transformation
involves mapping data from a source to a target as well as performing transformations on that data
required to achieve the intended mapped results.

The first thing you do when configuring a data transform is specify an action. Actions are the individual
operations that are specified in each row on the Definition tab of a data transform. The system invokes
the actions at run time. Most actions do some kind of data manipulation. Other actions perform
conditional processing and iterate through page lists and page groups. Consult the Developer Help in
your system for additional details on actions.

Select the appropriate action for what you want to do.

Next, enter the Target, Relation and Source. Depending on the action selected, the target field has a
different meaning. For the Set and Update Page actions, the Target field identifies a property or page
reference, and the Source column provides an expression that results in a value or values. For the
when action, a when condition needs to be specified.

In the data transform below, the first step checks if the billing address is the same as the shipping
address. If the two addresses are the same, the shipping address is copied to the billing address.
Otherwise, the billing address is set to empty values.

190
©2017 Pegasystems

If you want to refer to a property on a specific page, use the name of the page as a prefix for the
property name. For example, the shipping address on the customer page becomes .Customer.Address
(Shipping). Also, the type of the third asset on an asset list becomes .Asset(3).Type.

The most important thing to remember when using a data transform is to establish the context
correctly when reading and writing property values.

191
©2017 Pegasystems

The pyDefault data transform
Often when you create a case, you want to set default values for some properties. For example, in an
insurance claims application, you might want to set the date of loss to today's date. In other situations,
you might want to use data from the operator record — such as the organizational structure — to
initiate properties with default values.

The Pega 7 Platform invokes a data transform called pyDefault whenever a new case is created. The
pyDefault data transform allows you to set properties as the case is created. For example, you can use
the pyDefault data transform to default the date of loss to today's date in a claim case. The pyDefault
has no specific characteristics and the name is not reserved. You can create data transforms called
pyDefault in any class or ruleset.

The Pega 7 Platform comes with standard pyDefault data transforms in the work classes that case
types inherit from. If you do not create a pyDefault for your case, the standard pyDefault in the
inheritance path is invoked.

192
©2017 Pegasystems

Setting property values using the pyDefault
data transform
Create a pyDefault data transform in your case type class to set properties when the case is created.
This example shows how to add an item to the items of loss list and set the date of loss to today's date
in an insurance claim.

Create a pyDefault data transform
1. In the Application Explorer, right-click the case type and select Create > Data Model > Data

Transform in the case type class.

193
©2017 Pegasystems

2. Enter pyDefault as the Label, and then select Context.

3. Click Create and open to create the data transform.

Set Property values with the pyDefault data transform
1. Add an item to the list using the Append to action.

2. Use the Set action to set the date of loss. Use the gear icon and select the CurrentDateTime
function to set to today's date.

194
©2017 Pegasystems

Data transforms and superclassing
You can combine several data transforms using the superclass feature to set values at multiple levels
of the class hierarchy. For example, you can have a class Claim with a subclass Home. The subclass
Home in turn has a subclass Rental with data transforms at each level that sets default values. You can
set up your data transforms so that common default values are set in the claim class and specific
values are set in the subclasses. Taking advantage of this feature improves the maintainability of data
transforms.

Here the date of loss and prefix are in the Claim class, address is set in the Home class, and name on
the lease in the Rental class.

The system first identifies parents until the highest parent is reached. In this case, the highest parent
is the Claim class. The system locates the data transforms with the same name in the parent class and
invokes it.

The system then goes down to the second highest parent and locates the data transforms with the
same name and invokes it. Note that the prefix is overwritten.

195
©2017 Pegasystems

Finally, the data transform in the Rental class is invoked. Note that the prefix is overwritten again.

196
©2017 Pegasystems

How to configure superclassing for data
transforms
You can use the superclass feature in a data transform to set values at different levels in the class
hierarchy. For example, if you have a claim class with two subclasses, home and auto, you can set
values common to the subclasses in the superclass and specific values in the subclasses.

Use the superclass feature by creating a data transform with the same name at each level and
selecting the Call super data transform options. In this example, the parent claim has a data
transform called SetDefaults. This data transform sets values common to the subclasses. The
subclasses have a data transform with the same name. This data transform sets any values specific to
the subclasses. If properties are specified in both the super and child classes, the data transform in
the subclass overwrites anything already set by the data transform in the superclass.

You must select the Call superclass data transform option to cause the system to invoke data
transforms with the same name in any of its parent classes before the data transform get invoked
itself.

197
©2017 Pegasystems

198
©2017 Pegasystems

Setting property values declaratively

Introduction to Setting property values
declaratively
When a user enters a value in a form, related values can also change. When you buy an item like a
laptop online, you enter the quantity you want to purchase. The system displays the amount of your
order automatically. Declarative processing allows you to easily configure your application so that the
system can automatically update property values such as an order amount.

After this lesson, you should be able to:

l Describe the declarative processing model.

l Describe the procedural processing model.

l Calculate a property value with a declare expression.

l Explain how forward chaining works to update property values.

l Explain how backward chaining works to update property values.

199
©2017 Pegasystems

Declarative processing
When a user enters a property value in a form, related values on the same form or on other forms can
change as a result. The application must make the changes automatically so that users see the most
current information. For example, assume you are purchasing a laptop online. On the form, you enter
"1" as the quantity. A total order amount field displays the price of one laptop. However, when you
change the quantity to "2", the total order amount automatically doubles.

Declarative processing allows you to configure your application so that the system automatically
updates property values such as a total order amount. Declarative processing identifies and maintains
computational relationships among properties. When input values change, the declarative process
automatically updates related property values. In the previous example, a declarative process
maintains a relationship between the total order amount property value with the quantity and price
property values. When a user orders laptops, the system multiplies the price of one laptop times the
quantity of laptops to calculate the total order amount.

The primary benefit of declarative processing is that updates occur only when triggered in the
application. You use declarative rules to define the trigger event. The system monitors the application
to determine when a trigger event occurs. Using the previous example, the system is always monitoring
changes to the item quantity property. When the value changes, the system triggers a computation to
update the order total.

The following video describes how declarative processing works and provides an example.

Procedural processing
A single declarative expression can monitor trigger events no matter where that expression is used in
the application. Declarative processing rules do not depend upon other rules, such as data transforms,
activities, or user interface (UI) rules, to perform updates.

Procedural processing depends upon rules, such as data transforms, activities, or user interface (UI)
rules, to instruct the application when to look for a trigger event. For instance, to trigger updates to the
order total, you add a data transform to a flow action. When a user enters values, nothing changes
until the user submits the form. The updates are not automatic. The submit process triggers the data
transform to perform the update. In order to make the changes visible to users as they enter values,
you must configure sections to use the data transform to refresh the fields.

Procedural processing maintenance
Procedural processing is more difficult to configure and maintain than declarative processing. For
example, assume you have designed an Enter Order form that uses a data transform to calculate the
total order amount based on the item price and order quantity. Then, you add a Review Order form to
your application. This form reuses the fields for calculating the total order amount. If you do not add
the same data transform to the Review Order form, the Total order amount is not updated when the
user changes the order quantity from 2 to 3.

200
©2017 Pegasystems

When you use a declare expression, the system only monitors changes to the source property values.
In the following example, when a user updates the quantity from 2 to 3 in the Review Order form, the
declare expression recalculates the total.

Pega provides many types of standard declarative rules that support declarative processing. For more
information, see the PDN article Declaratives, Decisions, and Validation.

https://pdn.pega.com/declaratives-decisions-and-validation-overview/declaratives-decisions-and-validation-overview

201
©2017 Pegasystems

Declare expressions
You most often use declare expressions to calculate and make immediate updates to property values
on user forms. Declare expressions contain an expression and atarget property. The expression
calculates and updates the target property value. The expression uses source property values in its
calculation. Referencing a source property used in the expression initiates the calculation. The
calculation then updates the target property value.

For example, assume an office furniture purchase order form includes fields for three target properties
items: chairs, desks, and lamps. Each item has fields in which users select an item and enter the
quantity. A declare expression uses the two source properties, item cost, and quantity to calculate the
target property — item total. The expression multiplies the item cost times the number of quantity to
calculate the item total. When the user changes the quantity, the expression recalculates the item
total.

Declarative networks
You can use a sequence of interdependent declare expressions in a declarative network. A declare
expression in a network can use a target property from another declare expression as a source

202
©2017 Pegasystems

property.

For example, assume you added an Order Total field to your purchase order form. This field uses a
declare expression to calculate its target property — order total. The source property in this expression
uses the item total target value.

When a user updates a Quantity value, the system updates the Order Total value.

203
©2017 Pegasystems

Pega provides the Declarative Network Analysis tool to display a list of declarative networks in your
application. Access this tool by selecting the Designer Studio > Process & Rules > Business Rules
menu. For more information about using the Declarative Analysis Network tool, see the help topic
Business Rules landing page.

Forward and backward chaining
Forward chaining in a declare expression updates the target property value when a source property
value changes. When you display a shopping cart where users add items to it and the cart should
reflect the total based on the changes immediately, choose forward chaining. By default, declare
expressions use forward chaining. Declarative networks are commonly designed with declare
expressions that are configured for forward chaining.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#basics/v6portal/landingpages/processrules/businessrules.htm

204
©2017 Pegasystems

Backward chaining in a declare expression means that a target property value is not automatically
updated when other declare expressions in a network update their target values. An expression using
backward chaining only updates its target property when the application references the property by
name. A form, a decision table, or a data transform can reference the property. When the property is
referenced, the expression goes back in the network to reference the source property or properties the
expression needs to update its target.

205
©2017 Pegasystems

Chaining and performance
To optimize the chaining modes, consider where the source property is referenced and how the target
property is referenced. Forward chaining can slow system performance if an expression uses many
source properties that change frequently. For example, assume you are calculating the value of a home
insurance quote based on more than 20 property values such as location, tax assessment, appraisal
value, and land area. These values are collected in a large number of forms. When you use forward
chaining, the home insurance quote declare expression recalculates the value every time users enter
or change any of these 20 values. The impact to performance might affect response time when the
user enters values or submits forms.

If you are only going to display the insurance quote after you collect all the values, use backward
chaining for the home insurance quote expression. When you display the home insurance quote on
the form, the expression performs the update only once. If you use forward chaining, the system
performs the calculation even if the user does not see or need the value.

For more information about declare expressions and chaining, see the help topic More about Declare
Expression rules.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-declare-/rule-declare-expressions/related.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-declare-/rule-declare-expressions/related.htm

206
©2017 Pegasystems

How to set a property value with a
declare expression
Creating a declare expression involves three major steps. You first define the target property — the
value that is updated when a declare expression calculation is performed. Then, you define the
expression that calculates the target property value. Finally, you configure the declare expression to
use either forward or backward chaining.

Create the declare expression and target property
When you create a declare expression rule, you enter the target property as a key part. The available
properties are defined by the Apply to key part. The easiest way to create a declare expression is to
select the target property in the Application Explorer. Right-click and select the Define Expression
option.

Configure the expression
After you have created the declare expression, on the Expression tab, configure an expression in a row
as shown in the following example. The row consists of three fields.

The target property is the one you specified when you created the declare expression. In the previous
example, the target property is Total Benefit Cost.

The drop-down allows you to select the type of computation for the expression. The default is Value of
as shown in the previous example. This means that the source for the expression is one or more
property values. You can select other options. The choices available depend upon the target property
type. Options for numeric types include a summing or greater than/less than operators. You can also
use the result of a decision tree, decision table, or a map value to provide a value.

You enter an expression in the form of a function and its inputs. You can also use the gear icon on the
right side of the field if you want to build your expression using Pega standard functions such as
CompareDates or getLocalizedValue.

Specify the chaining method
On the Change Tracking tab, configure the declare expression to calculate the target value using either
forward or backward chaining. Use the Whenever Inputs Change option for forward chaining. There

207
©2017 Pegasystems

are three backward chaining options. For example, selectWhenever used if you want the declare
expression target value to be updated whenever the property is referenced in a form.

208
©2017 Pegasystems

Setting a property value with a declare
expression
Defining a property value with a declare expression has three steps:

1. Identify the target property when you create the declare expression.

2. Identify the source properties when you define the expression.

3. Specify the chaining direction.

Identify the target property and create the declare
expression
1. In the Application Explorer, select the class that contains the property you want to use as the target.

2. Select Data Model > Property to display the properties in the class.

3. Select the target property, right-click, and select Define expression.

The Create Declare Expression form is displayed.

209
©2017 Pegasystems

4. In the Label field, enter the name for the declare expression. Note that the property you selected in
the Application Explorer is the target property. As a best practice, use the target property name to
label the declare expression. The label is used to name the expression on the rule form.

210
©2017 Pegasystems

5. Click Create and open. The Declare Expression form opens.

Note: The label Whenever inputs change indicates that the expression is configured for forward
chaining. This is the default setting.

Define the expression
On the Expression tab, define the expression. Each expression is defined in three fields in a row. The
target property is displayed at the beginning of the row.

1. From the drop-down field, define the expression. select a type of computation. Select the Value ofif
you want to use property values as the source of the computation. For numerical values, you can
use computations such as sum, minimum, maximum, or average. You can also use the result of a
decision table, decision tree, or map value.

2. In the following example, the target property value — total benefit cost — equals the summed value
of the three source properties — employee medical, dental, and vision costs.

3. Optional: On the right side of the expression field, select the gear icon if you want to use functions
from the selection list.

211
©2017 Pegasystems

For more information about expressions you can use in declare expressions, see the help topic
Declare Expressions form Completing the Expression tab.

Specify forward or backward chaining
1. On the form, select the Change Tracking tab to specify whether you want to use forward chaining

or backward chaining. By default, the declare expression uses forward chaining.

2. Select the Calculate Valuedrop-down to display the chaining options.

3. Do either of the following:

l SelectWhenever inputs change to use forward chaining. The target property is computed
when one of the expression source property values change.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-declare-/rule-declare-expressions/expressions.htm

212
©2017 Pegasystems

l Select one of the backward chaining options, listed in the following table:
Option Description
When used, if property is
missing

Compute when the target property is not present on the
clipboard.

When used, if no value is
present

Compute when the value is null, blank, zero, or does not yet
appear on the page. Later requests for the target property do
not cause the declare expression to run.

Whenever used Compute even when the property has a value.

For more information about the options in the Change Tracking tab, see the help topic Declare
Expression form Completing the Change Tracking tab.

4. Click Save.

Test your declare expression
1. On the rule form header, select Actions > Run to test your declare expression. The test page is

displayed.

2. On the declare expression tree, select a source property.

3. In the Property area on the bottom right of the page, enter a value and click Update. The value
appears in the tree on the left.

http://10.61.9.195:9080/prhelp/rule-/rule-declare-/rule-declare-expressions/changetracking.htm
http://10.61.9.195:9080/prhelp/rule-/rule-declare-/rule-declare-expressions/changetracking.htm

213
©2017 Pegasystems

4. Enter values for all of the source properties. The target value (Total Benefit Cost) is the sum of the
source values.

If the calculations perform as expected, you have successfully configured your declare expression.

214
©2017 Pegasystems

Passing data to another case

Introduction to Passing Data to Another Case
Data propagation maps run-time values of properties in your parent case type to properties in child or
spin-off case types. For example, you can propagate the urgency of an accident claim case to ensure
that subcases or spin-off cases gets the same urgency. By sharing information among case types, you
can make data-driven decisions.

After this lesson, you should be able to:

l Identify the role of data propagation in creating cases.

l List the options for passing data from one case to another.

l Copy data from a parent case to a subcase or spin-off case.

215
©2017 Pegasystems

Data propagation

The role of data propagation
Data propagation is the mechanism of copying data within the case hierarchy. By sharing data among
cases, you save time and provide relevant information to caseworkers.

Data propagation ensures that the appropriate information is propagated to a subcase. For example, a
purchase request case may initiate an inventory selection subcase when units in stock must be
confirmed. In the purchase request case, each line item in the purchase request contains a product
identifier and a quantity. The inventory selection subcase then uses the product identifier and
quantity to verify that the units are in stock.

Data propagation is not limited to subcases. Data can also be propagated when creating spin-off cases.
For example, a purchase request case might spin off a supplier case if a new supplier is provided in
the purchase request.

Data propagation happens on case creation. When you propagate a property from a parent case to a
child case or spin-off case, and the property value later changes on the parent case, the property on
the child case does not get updated.

For example, the product identifier is set to 0211 and the quantity is set to 3 in a purchase request.
These values are propagated to the inventory selection subcase on creation. If the quantity in the
purchase request later changes to 4, the value is not automatically propagated to the inventory
selection subcase. The quantity in the inventory case will remain set to 3. You need to handle the
subsequent synching of data between the cases manually.

Data propagation options
You can specify the properties to propagate from a parent to a subcase in the case explorer in two
ways. You can define properties directly one by one or specify a data transform. If you need some
conditional logic to determine what to propagate, use a data transform. For example, use a data
transform to loop through a list and only propagate items that were selected.

216
©2017 Pegasystems

You can create subcases and spin-off cases using the create cases utility in a stage step. The create
cases utility allows you to propagate properties using a data transform.

217
©2017 Pegasystems

Propagating data to another case

Define data propagation in the Case Explorer
Review how data can be propagated from a purchase request case to a purchase order subcase. In this
scenario, the parent case is the purchase request case.

Follow these steps to configure data propagation on the parent case:

1. Select the parent case in the Case Explorer.

2. Click the Settings tab.

3. Click Data propagation.

4. Click the Add Property link to specify the properties you want to propagate into the purchase
order.

5. Select Apply data transform if you specify a data transform with the data propagation settings.

Configure data propagation for the create case utility
You can use the create cases step utility to create subcases and spin-off cases. In this scenario, a
supplier case is spun off. Follow these steps to configure data propagation for the create cases utility:

1. Select the parent case in the Case Explorer.

2. Select the step with create cases utility.

218
©2017 Pegasystems

3. Specify a data transform for the create cases utility in the settings.

You can specify a data transform regardless of if you want to create a spin-off, child, or multiple child
cases.

219
©2017 Pegasystems

Reviewing application data

Introduction to Reviewing Application Data
Applications generate large amounts of data: data about cases, data from outside sources, and data
about users. While developing applications, you may need to review the data generated by your
application. This information, if incorrect, can cause errors that lead to undesired results for cases.

To verify that cases are processed correctly, you may need to review the data generated by your
application. To view data in memory, you use a tool called the Clipboard tool. The Clipboard tool allows
you to review the information currently in memory to determine whether rule behavior is configured
correctly.

After this lesson, you should be able to:

l Explain how data is stored in memory for use in Pega applications.

l Describe the relationship between pyWorkPage and case data.

l Explain how the Clipboard tool organizes data in memory.

l Use the Clipboard tool to review case data in memory.

l Use the Clipboard tool to set values for case data.

220
©2017 Pegasystems

Data storage in memory
Cases are collections of data. To process and resolve a case, Pega applications capture, manipulate and
present data throughout a business process. While processing a case, this data remains in memory for
use by one or more users.

Each data element in a Pega application is a pairing of two pieces of information: the name of the
data element, and the value assigned to the data element. For example, when you use a data element
to capture the date of birth of an person, the data element name is date of birth, and the
corresponding value is a date such as July 20, 1969.

Name of the data element Value assigned to the data element
First Name: Neil

Date of Birth: July 20, 1969

Occupation: Astronaut

Each data element is stored in memory on a page. A page is a structure for organizing data elements
in an application. Some pages are created by the system to track user or session data. Other pages are
created by system architects to describe a data object, such as a hotel reservation or a customer.

During case processing, each page remains in memory in a structure known as the clipboard. The
clipboard is the portion of memory on the server reserved by Pega for the data generated by
applications. The clipboard consists of all of the pages used to track the name-value pairs that
represent case and session data. The clipboard receives its name because pages can be added to or
removed from memory as needed to track case or session data. So, when a value is assigned to a data
element, the data element and its value are said to be on the clipboard.

As you run a process, Pega sends information to the clipboard, adding or removing pages and
properties from memory. Your application uses this information to populate fields on UI forms,
perform calculations, and evaluate decisions.

KNOWLEDGE CHECK

221
©2017 Pegasystems

How is information, such as the color of a vehicle, stored in memory for use in a Pega
application?

Information such as the color of a vehicle is associated with a data element. The data element
(property and value) is stored on the clipboard in a structure called a page.

222
©2017 Pegasystems

pyWorkPage
When you debug case behavior, you often need to view the case data that is in memory. By viewing this
data, you can determine whether your application is functioning as expected. If your application
functions in an unexpected way, viewing the data on the clipboard can help you identify the cause of
the issue. For example, if a declare expression returns an unexpected result, you can review the
contents of the clipboard to determine if one of the input properties has been set with an unexpected
value.

All the data generated as you create and process a case is stored on pyWorkPage, which is a specific
page on the clipboard. For example, data such as the date the case was created or the ID number for a
case is stored on pyWorkPage. Data that describes a data type is stored on an embedded page within
pyWorkPage. For example, if a case uses a data type named Customer, then Customer is considered an
embedded page within pyWorkPage. All the properties that describe the Customer data type — such as
first name — are written to the embedded page, rather than pyWorkPage.

Each page on the clipboard is an instance of a specific class, including pyWorkPage. When you refer to
data on pyWorkPage, you may need to specify the class of the page. If you omit the class information,
Pega cannot obtain property values from the correct page. Pega does not know whether the properties
are valid or not, and the rule that references the properties does not function correctly. To ensure that
the report obtains the correct information whenever you reference pyWorkPage, you need to specify
the class of pyWorkPage.

For example, consider an application to process automobile insurance quotes. To price the quote, you
need to know the accident history of the driver. Each accident record is an instance of a specific data
type. You create a report to return the accident history for a driver, and use a filter to return only
accidents for the driver requesting the quote. If the report filter uses the UserName property from
pyWorkPage, you must tell the report the class for pyWorkPage. This allows Pega to reference the
UserName property and the report filter functions as intended. Otherwise, Pega assumes that
UserName is part of the data type, rather than the case, and the filter does not work correctly.

When you open a child case, the clipboard also contains the page pyWorkCover. pyWorkCover
contains the case data for the parent case. This allows you to copy data between the parent case and
the child case.

223
©2017 Pegasystems

How to view clipboard data
As users process a case, Pega sends information to the clipboard, adding or removing pages and
properties from memory. Your application uses this information to populate fields on UI forms,
perform calculations, and evaluate decisions. Pega also uses clipboard information to track the
progress of a case through its life cycle, and to record information about the current operator.

If your application behaves unexpectedly, viewing the data on the clipboard can help you identify the
cause of the issue. To view data that is in memory, you use the Clipboard tool. The Clipboard tool
organizes and presents all the pages on the clipboard. When you select a page, the Clipboard tool lists
all the properties on each page and the value of those properties. To open the Clipboard tool, click the
Clipboard icon on the Developer toolbar in Designer Studio.

The Clipboard tool is organized into three parts: the header, the left pane, and the right pane.

1. The header allows you to select the thread to view. Each thread corresponds to a unique action
currently managed by Pega. The clipboard contains one thread dedicated to the Designer Studio
environment. Other threads are dedicated to open rule forms. Pega assigns each open case a
unique thread. By assigning each case or action its own thread, Pega ensures that the data for one
case or action does not affect data for another case or action.

2. The left pane lists each page defined on the clipboard for the selected thread. For each page, the
Clipboard tool identifies the name and class of the page. If a page contains embedded pages, an
expand arrow is displayed to the left of the page name. To view the embedded pages, click the
expand arrow.

Pages on the clipboard are organized into four categories:

224
©2017 Pegasystems

l The User Pages category contains pages created due to user action, either directly or indirectly.
User pages contain data related to work being performed in the selected thread. While a user
processes a case, all the pages used to store data about the case are listed in the User Pages
category. Likewise, when a system architect configures or tests a rule, all the pages that store
data used by the rule are listed in this category. For example, the data you enter onto a form is
stored on the user page pyWorkPage.

l The Data Pages category contains read-only data pages defined by data page rules. Data pages
are persistent pages in memory, used to cache data. This data is often sourced from outside the
application, such as from a third-party or a system of record. For example, your application
converts currency from one type to another, such as converting US dollars to Euros. The
conversion rates, which are determined by the currency markets, are cached to a data page for
use by one or more users of the application.

l The Linked Property Pages category contains read-only pages created by linked properties,
which contain information from data objects referenced by a linked property. Linked properties
are advanced data constructs, typically created and configured by Senior System Architects
(SSAs) or Lead System Architects (LSAs).

l The System Pages category contains pages that describe the current user session, such as the
active user and the active application. For example, while a user is logged in to Pega, Pega
maintains a clipboard page containing information about the user, such as their current time
zone.

3. The right pane lists all of the properties defined on the selected page, and their values. In the right
pane, you view data in memory. You can also update property values and even add new properties
to the page to represent data not captured in your application. This allows you to test application
features that rely on data that has not been added to the case type, such as decisions and UI forms.
For example, in an expense report case you want to branch a flow based on the project type. The
application currently lacks a field in the UI to allow the user to select the project type. In this
situation, you can use the clipboard to set a value for the property and verify that the flow branches
properly.

When you view data with the Clipboard tool, you see a snapshot of the contents in memory. As you
navigate your process, refresh pages in the Clipboard tool to ensure that the Clipboard tool always
displays current property values and page contents.

KNOWLEDGE CHECK

While testing case behavior for an online shopping application, you want to confirm that the
application properly generates a list of the customer's previous orders when querying the company's
order management system. In which category of clipboard pages would you expect to find the page
that contains this list?

This page should be located in the Data Pages category.

225
©2017 Pegasystems

Viewing clipboard data
Use the clipboard to view data in memory and determine whether rules are generating or updating
case data as expected.

To view case data on the clipboard:

1. Create a case and note the case ID.

2. On the Developer toolbar, click the Clipboard button to open the Clipboard tool. By default, when
you open the Clipboard tool, the tool displays the thread that corresponds to the active tab in
Designer Studio.

3. Optional: In the Clipboard tool, in the header use the thread selector to select the thread that
corresponds to the case you want to review.

4. In the left pane, select the page to view. For example, to view data from a form used in the case,
select pyWorkPage. To view the contents of a node-level data page, expand Data Pages > Node
and select the data page to view.

5. In the right pane, locate the property name in the alphabetical list and confirm the value.

226
©2017 Pegasystems

Setting property values using the Clipboard
tool
Set data values on the clipboard to test rules that rely on case data to function correctly.

To set a property value using the Clipboard tool:

1. Create a case and note the case ID.

2. On the Developer toolbar, click the Clipboard button to open the Clipboard tool. The Clipboard tool
defaults to displays the thread that corresponds to the active tab in Designer Studio.

3. Optional: In the Clipboard tool, in the header use the thread selector to select the thread that
corresponds to the case you want to review.

4. In the left pane, select the page that contains the data element you want to update. The page opens
in the right pane, displaying the value for each property defined on the page.

5. In the toolbar, click Edit. The page contents update to display fields for editable properties.

6. Locate the property that you want to update, and enter an updated value in the field.

7. Optional: to set the value of a property that has not been defined on the page, position the cursor in
the upper-left corner of the right pane and click Add. The Add properties dialog opens, allowing you
to enter the name and value of the property.

8. Click Save to update the clipboard with your changes.

9. In Designer Studio, return to the case that corresponds to the thread you edited in the Clipboard
tool.

10. From the Actionsmenu, select Refresh to reload data from the Clipboard. The contents of the active
form update to reflect the updated values you provided in the Clipboard tool.

PROCESS DESIGN

227
©2017 Pegasystems

228
©2017 Pegasystems

Activities

Introduction to Activities
The Pega platform provides rules to model almost any type of application behavior, from defining data
values to automating decisions to connecting with other systems. One such rule is an activity, used to
describe the logic for an automated procedure. Application developers new to the Pega platform often
write new activities, rather than embracing more suitable and easier to maintain alternatives, such as
reusing Pega defined activities.

In this lesson, you learn about activity rules, and how activities automate certain types of system
actions. You also learn how to use the contents of Pega's activity library and how to avoid writing
custom activities in Pega applications.

After this lesson, you should be able to:

l Identify the uses for activities in applications.

l Explain the activity execution model.

l Use API activities in an application.

l Identify options for minimizing the use of activity rules in applications.

Activities
During case processing, an application often needs to perform automated procedures. For example,
saving a case record might require multiple operations to be carried out in sequence as one single
step. The sequence can include updating case property values in memory, making a database
connection, writing the case record to the database, handling errors, and writing messages to a log file.
In Pega, you implement this kind of procedural logic in the form of activities. This form is similar to
conventional programming language.

Activities are the primary processing rules in Pega. An Activity is an automated procedure, structured
as a series of steps that execute in sequence. Each step can call a method, transfer control to another
activity, or execute custom Java code.

Activities are often used to implement complicated logic. Some typical use cases for using activities
are:

l Case processing related functions — To perform case-related functions such as creating a case
instance, routing the case, or updating the work status

l Integration — To send requests to external systems or to receive requests from external systems

l Ancillary functions — To perform functions such as writing to a log file or to the history database

A Methodis an operation that can be performed by one step of an activity. A method contains a
predefined set of basic operations that perform computations, update properties and other aspects of
the clipboard, or move data between memory and the database.

Some common methods are:

229
©2017 Pegasystems

l Property-Set— Set the value of one or more properties.

l Page-New — Create a page.

l Page-Remove — Delete a page from the clipboard.

l Apply-Data-Transform— Update property values based on a data transform.

l Call— Call another activity.

As an activity executes, it can create or remove clipboard pages, create and update properties on these
pages, save data to the database, and interact with end users by sending and receiving HTML
documents and forms.

Activity execution
By default, an activity executes its steps in sequence. You can control the flow of execution by
repeating a group of steps, defining a set of preconditions for a step, or jumping to a later step.

Each step of an activity contains multiple parts. There are nonaction items such as Label, Description,
and Step Page. There are also action items such as Loop, When, Method, and Jump to indicate an action
or condition for an action.

Use the following options to control how the activity processes a step at run time:

l The Label provides an identifier for the step that can be referenced from other steps.

l The Loop allows you to set up an iteration through the elements of a Value List, Page List, Value
Group, or Page Group, and performs the provided activity method on each value or each embedded
page.

l The When allows you to define a precondition that controls whether the step is executed or
skipped.

l The Method indicates which method or activity the step will execute.

l The Step Page identifies a page to be used as the context for referenced properties within the step.

230
©2017 Pegasystems

l The Description is text that explains to other developers the action that the step is performing.

l The Jump condition or post-condition is similar to the When precondition. The Jump condition
defines how this step transitions, or jumps, to a later step.

The following image shows the standard activity CorrNew as an example. The activity executes four
steps to send emails.

l Step 1 executes another activity with the Call method.

l Step 2 executes some Java code to check if the email is a broadcast.

l Step 3 loops through a page group and creates emails for matching targets.

l Step 4 executes the Page-Remove method to clean up clipboard pages.

Page context of activity execution
During execution, an activity can access data from three data pages: Primary page, Step page, and
Parameter page.

A Primary page is a clipboard page which has the same class as the Applies To class of the activity
and is designated when the activity is called. The Primary page provides data context for the whole
activity.

Each step in an activity may have a designated Step page. This step page provides data context during
the execution of this step. If a step page is not specified for a step, the primary page become the step
page.

A Parameter page contains parameter names and values, as listed in the parameters tab. An activity
can access incoming parameters and update outgoing parameters, as a way of communicating
information with callers.

Activity parameters
Activities may have parameters that can be accepted as inputs, used to convey results, or serve as both
inputs and outputs. Not every activity has a parameter.

231
©2017 Pegasystems

Parameters allow the execution of an activity to vary at run time, which promotes reuse. Think of an
activity with a parameter as an instruction with a missing object, such as "Go to the market to buy _____
______________." For a trip to the market, you can specify any object, such as strawberries, flour, or eggs.
The activity is the general instruction — in this example, "Go to the market to buy". The parameter is
the object that you provide to complete the instruction. You complete the instruction by telling
someone to go to the market to buy eggs, or strawberries, or flour.

For example, Pega provides a parameterized activity for updating the work status of a case, named
UpdateStatus. Whenever you apply a work status to a case, Pega runs this activity to update the work
status of the case. This activity accepts the work status as a parameter. Without the use of a parameter,
Pega would need an activity for each work status value. If you define a new work status, you would
need to create a copy of the activity to set that work status. By using the parameter, Pega only needs
one activity to set any work status value, even a custom work status value you define for your
application.

Parameters to an activity are listed in the Parameters tab of the Activity form. If a parameter is an
input to the activity, you can access the value received from the calling activity. If a parameter is an
output, or result, of the activity, you can set values for it using the Property-Set method.

API activities
Pega provides many predefined activities that perform standard functions. These standard activities
are called API activities. Prior to creating any new activities, explore the API activities to see if one exists
that can meet your requirements. Some of the commonly used API activities are CorrNew for creating
and sending emails, AddWork for creating a new case instance, and UpdateStatus for setting the
status of a case instance.

The Process API is a group of such standard activities that you can use to start and advance work flows
without implementing user forms.

To see a list of the Process API rules, select Designer Studio > Process & Rules > Processes > APIs.
Expand each row to learn more about each activity.

You can invoke API activities from a flow shape or a flow action. To invoke an API activity from a custom
activity rule, use the Call method from an activity step.

232
©2017 Pegasystems

Activities best practice
While activities can appear to be an easy and flexible way to automate the work process, they can
become very complex to analyze, execute, debug, and maintain.

As a best practice, consider alternatives such as data transforms and linked property references before
creating activity rules. The alternatives are easier to understand and maintain.

Consider the following approaches before you write new activities:

l Look for alternatives. Refrain from writing new activities simply because it is easy to relate activities
with programming languages that you know from experience.

l For data manipulation, use Data Transforms instead of activities.

l For data calculation, use Declare Expressions instead of activities.

l For queries from an external database, use Report Definitions instead of activities.

l Use activities only when none of the standard or out-of-the-box activities are available and
appropriate for your requirement.

Refer to this PDN article — Nine tactics to reduce your need for custom activities— for extended
discussion on this topic.

https://pdn.pega.com/nine-tactics-reduce-your-need-custom-activities-prpc-62-sp2

233
©2017 Pegasystems

Configuring a work party

Introduction to Configuring a Work Party
Pega applications allow system architects to describe the people and organizations interested in a case
by their role, such as Customer or Manager. Identifying a party to the case by their role allows you to
describe their participation in a business process, such as receiving correspondence. For example, you
can notify the Customer party of the status of their insurance claim throughout the claims adjustment
process.

In this lesson, you learn how Pega describes the participants or interested parties for a case, and how
you can design cases to interact with these parties throughout a business process.

After this lesson, you should be able to:

l Explain how work parties are used in an application

l List the standard work party classes available in Pega applications

l Configure a work party for a case type

l Populate a work party with case data

Work parties
Accomplishing work requires participants with different roles, such as managers, case workers, and
customers. For example, an automobile insurance claim management process includes roles such as:
the customer service representative (CSR) who creates the claim; the customer, on whose behalf the
claim is filed; and the claims adjustor who reviews the claim.

In Pega, you create a work party to describe each role. Work parties allow you to refer to a case
participant by role, without knowing any identifying information. For this reason, applications
commonly use a work party as the recipient of correspondence. Also, work parties are sometimes used
to assign work.

Imagine your automobile insurance claims management process requires that an email be sent to
every customer who submits a claim. You would need the email address for every person submitting a
claim in your application. There is no practical way to get this information prior to the claim. Instead,
you model correspondence by role during development, and provide the identifying information, in
this case, email address, for each case. So, you configure your claims management process to send
email to the "Customer" party to confirm receipt of the insurance claim. For each case, the application
populates the work party with information about the customer submitting the claim, and sends the
email to the correct customer.

In the following image, you see how the work party is defined by a system architect during
development, but the information about the party is provided only when a user processes a case.

234
©2017 Pegasystems

KNOWLEDGE CHECK

How is a work party used in an application?

A work party represents a case participant. A work party allows you to refer to the participant by
their role, and is often used to send correspondence during case processing.

How to add a work party to a case
Adding a work party to a case requires you to perform two actions: define the party using a Work
Parties rule, and populate the party when performing a case. Pega creates a Work Parties rule named
pyCaseManagementDefault for each case type. When you need to add or modify a work party for a case
type, use the copy of pyCaseManagementDefault created in the class of the case type.

Define the work party using a work parties rule
First, you add the work party to the pyCaseManagementDefault work parties rule for the case type. Each
row on the work parties rule lists a party available for a case type and describes the relationship of the
party to a case. For example, a customer is the subject of a dispute resolution case, while a customer
service representative (CSR) is the owner of the case and responsible for resolving the dispute.

235
©2017 Pegasystems

When you create a work party, consider the following information:

l What type of case participant do you need to model? Is the participant an individual or an
organization? Does the party work on the case, or just receive status updates?

In Pega, work parties are derived from the Data-Party class. Data-Party contains rules to describe a
party, such as properties to store identifying information. Pega also provides five child classes that
build upon the rules in Data-Party. These child classes represent specific types of persons and
organizations. The party class for a work party describes the person or entity participating in the
case and determines how the participant interacts with other participants in the business process.

Data-Party-Com models a business that has a web domain ending in ".com", such as a
corporation.

Data-Party-Gov models a government agency, such as the Department of Revenue.

Data-Party-Orgmodels a non-profit organization that has a web domain ending in ".org", such as
a charity.

Data-Party-Operator models a case participant with a Pega login and represents a case
participant, such as a case worker or case manager.

236
©2017 Pegasystems

Data-Party-Personmodels a case participant who lacks a Pega login, such as a customer. Typically
this class is used to describe a work party that receives correspondence about a case, but who
does not perform any actions on the case.

l What information do you need to know about the party? For example, do you only need the name
and email address, or do you also need to know their marital status?

l How will you obtain the information to populate the party details? Do you expect the user to enter
this information? Can you copy the information from session information or case data?

l Is the information available when the case is created? Or does the information become available
during case processing?

l Are multiple instances of the party associated with the case? For example, does the case involve one
customer, or several customers?

Populate the work party with case data
Next, configure your process to populate the work party with participant-specific information. Pega
provides several options for populating work party information during case processing.

l If your cases already include the data needed to populate the party, use the addWorkObjectParty API
activity. For example, a case creates several child cases to manage IT tasks prior to an employee's
first day at a company. Each child case includes the HR representative assigned to the parent case
as a work party. You use the addWorkObjectParty API activity to create an HR Partner work party
using information already included in the case. The activity parameters allow you to specify the
information needed to create the work party. Add this activity to the Action tab of a flow action rule,
or call the activity by adding a utility shape to the appropriate process.

l If you want to allow case workers to add party information during case processing, use the AddParty
flow action. Add this flow action to an assignment or stage as a local action. Users select the action
during case processing to add information for a work party. For example, a customer wants to add a
lawyer to a dispute resolution case. The CSR selects the flow action to add the lawyer as an
interested party.

l If you want case workers to provide party information when creating a case, select the VOE? option
for the party on the Work Parties rule form. When you enable this option, Pega automatically
presents users with a form to enter the information needed to create the work party. For example, a
CSR must enter customer information to open a new savings account for the customer. The initial
form in the new account case allows CSRs to create a work party using information provided by the
customer.

Configuring a work party for a case type
In Pega 7 applications, work parties are defined using the work parties rule pyCaseManagementDefault.
To use a work party in a case, add the work party to the pyCaseManagementDefault rule in the class for
the case type.

Defining a work party for a case type
Create a work party to describe the role of an individual or organization in a business process.

237
©2017 Pegasystems

1. In the Application Explorer, expand the appropriate case type, then select Process > Work Parties
> pyCaseManagementDefault.

2. Click the Add a party icon to add a work party to the rule.

3. In the Party label field, enter a unique name that indicates your work party's relationship to a case,
such as Lawyer or Design Manager. The party label identifies the party role, and appears on the
case to identify the work party. The party label must be a unique value. The Owner party label is
reserved to describe the operator who creates the case.

Once you exit the Party Label field, the Role field populates with the party label, with any spaces
and special characters omitted. The role identifies the party on the clipboard. Each work party is a
page within the WorkParty page group, and the role is used as the page index. For example, a work
party with the role Customer is identified on the clipboard as WorkParty(Customer).

4. Select an option from the Party class list to identify the class used to describe the party. The party
class must be either the Data-Party class or one of its descendants.

5. Optional: Enter a label in the Party Prompt field that displays on user forms for a case. The Party
Prompt field allows you to enter an optional descriptor for the party. You specify a party prompt to
differentiate the party from another party with the same party label. For example, you can enter
Real Estate to distinguish Real Estate Lawyers from Family Lawyers. On the work item entry form, a
user sees Lawyer — Real Estate.

6. Optional: Press the Down Arrow key in the Data transform field and select the name of a data
transform that runs when users add the work party to a case. The data transform defines initial
values for the work party. You can use a data transform to copy information such as a first name or
email address to the work party. Specify a data transform if you plan to create the work party upon
creating a case. The data transform must be in the party class or a parent class.

7. Optional: Select the VOE? (Visible on Entry) check box to prompt users to add this work party every
time a case is created. Selecting this check box adds required fields to the work item entry form, to
collect information about the party.

8. Optional: Select the Required? check box to indicate that this work party must be present in every
new case.

9. Optional: Add the party role to the Party list in the List parties that may repeat section to allow
more than one instance of your work party to participate in a case.

10. Click OK.

11. Click Save.

Tip: You can also define a work party from the Case Designer. To do so, open a case type in Case
Designer, navigate to the Settings tab, and click Parties.

238
©2017 Pegasystems

Configuring a service level agreement

Introduction to Configuring Service Levels
When modeling service level agreements (SLAs), goals and deadlines are not always sufficient. Some
SLAs include behavior for work that has passed its deadline and is considered late. And some
assignments or cases are more urgent than others.

In these situations, you configure a service level rule. Service level rules allow you to model behavior
for work that is past its deadline or to customize the urgency of work.

After this lesson, you should be able to:

l Explain how a service level rule relates to goals and deadlines.

l Describe the role of the Passed Deadline interval in service level processing.

l Explain how assignment urgency is calculated.

l Configure a service level rule to enforce processing expectations.

Service level agreement rules
Organizations often establish service level agreements to enforce obligations on the timely
performance of work. These obligations range from informal promises of response times to negotiated
contracts. A service level agreement establishes a deadline for when the specified work must be
completed. Service level agreements may also establish a more aggressive goal to reflect [something].
For example, an IT help desk may have a requirement to respond to service requests within 24 hours,
with a goal of 8 hours.

In Pega, you use a service level agreement rule to represent the performance expectations for an
assignment, process, or entire case. When you establish a goal and deadline in Pega Express or the
Case Designer, Pega creates a service level agreement rule for you. For processes, stages, and case
types, goal and deadline intervals are often sufficient. In these situations, you can configure a service
level from the Case Designer.

Service level agreements for assignments are often more complex. A service level agreement for an
assignment may dictate actions to perform after a deadline passes. For example, a company
establishes a deadline to respond to a customer inquiry in 48 hours. For any inquiry open after 48
hours, the company notifies a customer service manager every 24 hours until a representative
responds to the customer.

A service level agreement for an assignment may also affect the start of the goal and deadline
intervals. For example, a stock brokerage establishes a deadline of two hours to price assets in
customer accounts. However, associates cannot begin pricing assets until after the stock market closes
for the day. In this case, the start time for the service level agreement occurs after the stock market
closes for the day. If the stock market closes at 4:30 PM, the deadline is 6:30 PM, even if the case
reaches the assignment at 1 PM.

239
©2017 Pegasystems

For complex performance obligations such as these, you configure the service level agreement rule,
rather than using the Goal & deadline tab in the Case Designer.

KNOWLEDGE CHECK

What capabilities do you gain by configuring a service level agreement using the rule
form, rather than using the Goal & deadline tab in the Case Designer?

The service level agreement rule form allows you to add behavior for assignments that are
considered late, and to determine when an assignment is considered ready for the user to perform.

The Passed Deadline interval
Some service level agreements specify behavior for work that is considered "late". For example, a
company requires that employees submit a record of their hours worked within two days of the end of
the work week. This record of hours worked, called a time sheet, allows the Payroll department to credit
the employee for hours worked during the week. Until an employee submits their time sheet, the
Payroll department cannot pay the employee. To ensure that the employee is paid, the company must
remind employees to submit their time sheet, even after the deadline to submit the time sheet is
reached.

240
©2017 Pegasystems

In Pega, you describe the behavior for late work using the passed deadline interval of a service level
agreement rule. The passed deadline interval measures the time that has passed since the deadline
for a still-open assignment.

Unlike the goal and deadline intervals, which occur once per assignment, the passed deadline interval
repeats. This repetition allows you to continue to increase the assignment urgency and perhaps
remind a user of a late assignment. You configure the passed deadline interval to repeat a fixed
number of times, or repeat indefinitely until the user completes the assignment.

KNOWLEDGE CHECK

How does the passed deadline interval differ from the goal and deadline intervals?

The passed deadline interval begins once the deadline interval ends. Also, the passed deadline can
repeat, unlike the goal and deadline intervals.

How to adjust assignment urgency
To perform assignments in a timely manner, users must know the priority for each assignment. This
allows users to perform the assignments that are most important first, before assignments that are of
lower priority.

In Pega, the priority of an assignment is indicated by the assignment urgency. For each assignment,
Pega calculates an urgency on the scale 0 to 100, with 100 the highest allowed urgency. The greater the
urgency, the more pressing the assignment is. The assignment urgency allows users to determine
which assignments to perform first. An assignment with an urgency of 60 is considered more pressing
than an assignment with an urgency of 30.

The assignment urgency is also used by Pega to select assignments for users from team or department
queues. When a user queries Pega for their next assignment, Pega identifies all of the assignments
that the user is qualified to perform and selects the assignment with the greatest urgency.

Once the urgency reaches 100, Pega ignores any further urgency adjustments. When this occurs, other
service level agreement behavior is unaffected. For example, a deadline interval is configured to
increment assignment urgency by 30 and notify the assigned user that the deadline has been
exceeded. If the assignment urgency is 100 when the assignment reaches the deadline, Pega ignores
the urgency increment but still sends the notification.

In Pega, the assignment urgency is recorded using the property .pxUrgencyAssign. Pega calculates
.pxUrgencyAssign, the assignment urgency, as a sum of three input properties: .pxUrgencyWork,
.pxUrgencyAssignSLA, and .pyUrgencyAssignAdjust.

l .pxUrgencyWork is the default urgency for the case type. The default value of .pxUrgencyWork is
10. This ensures that each assignment has a default urgency of 10, even when no service level is
applied to the assignment. You change the value of .pxUrgencyWork to indicate that assignments for
a specific type of case are more important than other cases. For example, if transaction dispute
cases are a higher priority than other types of cases, you set the value of .pxUrgencyWork to 20 for
transaction dispute cases. Assignments for transaction dispute cases then default to a greater
urgency than assignments for other types of cases.

l .pxUrgencyAssignSLA is the urgency calculated from the service level rule. This value is the sum of

241
©2017 Pegasystems

the initial urgency and the urgency increments for the goal, deadline, and passed deadline
intervals. As an assignment ages in a workbasket or worklist, Pega increases the value of
.pxUrgencyAssignSLA according to the configuration of the service level agreement.

For an Account review assignment, a service level agreement may establish an initial urgency of 10
and further increments of 15 for the goal, 20 for the deadline, and 25 for the passed deadline. When
the user receives the Account review assignment, .pxUrgencyAssignSLA is set to 10, which increases
.pxUrgencyAssign to 20. When each interval is exceeded, Pega increases .pxUrgencyAssignSLA as
directed by the service level agreement, which further increases .pxUrgencyAssign.

l .pyUrgencyAssignAdjust is a manual adjustment for the assignment urgency. This value allows a
user to increase the urgency of an assignment by running a local action. For example, a customer
service representative (CSR) runs a local action to increase the urgency of an assignment if a
customer reports that their credit card was stolen while on vacation. The CSR runs the local action,
which increases the value of .pyUrgencyAssignAdjust to 50. This increases the overall assignment
urgency, .pxUrgencyAssign, by 50 to increase the likelihood that the assignment is completed before
other assignments.

Configuring a service level agreement rule
Configure a service level agreement rule to add a passed deadline interval for assignments considered
late, or a delay before an assignment is considered ready for a user.

Add a service level agreement to an assignment in the
Case Designer
Apply a custom service level agreement to an assignment or reuse a service level agreement already
available in your application.

Follow these steps to add a service level agreement rule to an assignment:

242
©2017 Pegasystems

1. Open the case type in the Case Designer.

2. Select the assignment to which to apply the service level.

3. In the properties panel for the step, click Goal & deadline.

4. Select the Consider goal and deadline check box.

5. From the Service level agreement drop-down list, select Use Existing.

6. In the empty field under the Service level agreement drop-down list, enter the name of the service
level agreement rule to apply to the assignment.

7. To the right of the field containing the name of the service level agreement rule, click the crosshair
icon.

8. If the rule has not been created, the New Record form opens. Click Create and open to create the
service level agreement rule.

Configure the starting behavior for the service level
Specify an initial urgency for the service level agreement and any delay before tracking performance
against the goal and deadline intervals.

Follow these steps to configure the starting behavior for service level agreement rule:

1. On the service level agreement rule form, in the Initial Urgency field, enter an initial urgency for
the service level. The assignment urgency increments by the entered value when the assignment is
ready for the user to perform.

2. From the Assignment Ready drop-down list, select when the assignment is considered available
for a user to perform.

243
©2017 Pegasystems

Option Description Usage
Immediately Sends the assignment to a worklist or

workbasket as soon as the case reaches the
assignment. This is the default option.

Allow a user
to perform
the
assignment
immediately.

Dynamically
defined on a
Property

Delays sending the assignment to a worklist
or workbasket until the specified delay
interval elapses. Use the Get Date Time
From field to specify a property that
represents the optimal start time.

Delay the
assignment
until a
specified
time.

Timed delay Delays sending the assignment to a worklist
or workbasket until the specified delay
interval elapses. Use the Days, Hours, and
Minutes fields to enter the duration of the
delay.

Delay the
assignment
for a
specified
amount of
time.

3. From the Calculate service levels drop-down list, select whether to track the service level intervals
against a fixed interval or against the value of a property. Use a property reference to adjust the
intervals for each case. Use fixed intervals to ensure that the intervals are the same length of time
for each case.

Configure the goal and deadline intervals
Add a goal and deadline to measure whether the assignment is performed according to schedule.

Follow these steps to configure the behavior for either the goal or deadline interval:

1. Enter a time for the interval. Depending on the selection in the Calculate service levels drop-down
list, either specify the interval using the four fields labeled Days, Hrs,Mins, and Secs, or reference
a property that represents the length of the interval.

2. Optional: click the Only calculate using business days check box to only measure elapsed time for
the interval in business days. Enabling this option prevents Pega from counting non-work days, such

244
©2017 Pegasystems

as weekends, against the interval limit. Pega determines non-work days from information in the
user's operator ID record.

3. In the Amount to increase urgency field, enter an urgency adjustment for the interval. The
assignment urgency increases by the specified amount until reaching 100.

4. Optional: click the Add an action icon to add an escalation action for the interval.

From the Perform Action drop-down list, select an escalation action to perform when the interval
ends. If necessary use the When field to use a when condition or when rule to determine whether
to perform the escalation action.

Configure the passed deadline interval
Add a passed deadline interval to describe behavior for assignments that are considered late.

Follow these steps to configure the behavior for the passed deadline interval:

1. In the Limit passed deadline events to field, enter the number of passed deadline events to apply
to the assignment. To apply the passed deadline behavior indefinitely until the assignment is
completed, leave the field empty.

2. Enter a time for the interval. Depending on the selection in the Calculate service levels drop-down
list, either specify the interval using the four fields labeled Days, Hrs,Mins, and Secs, or reference
a property that represents the length of the interval.

3. Optional: click the Only calculate using business days check box to only measure elapsed time for
the interval in business days. Enabling this option prevents Pega from counting non-work days, such
as weekends, against the interval limit.

4. In the Amount to increase urgency field, enter an urgency adjustment for the interval. The
assignment urgency increases by this value each time a passed deadline cycle completes, until the
assignment urgency reaches 100. Once the assignment urgency reaches 100, further urgency
adjustments are ignored, though escalation actions are processed, and the Passed Deadline interval
repeats if configured to do so.

5. Optional: click the Add an action icon to add an escalation action for the interval.

245
©2017 Pegasystems

From the Perform Action drop-down list, select an escalation action to perform when the interval
ends. If necessary use the When field to use a when condition or when rule to determine whether
to perform the escalation action.

246
©2017 Pegasystems

Routing assignments

Introduction to Routing Assignments
An efficient process design routes assignments to users who can best perform the work. Sometimes,
the correct user is an individual who has a specific role. At other times, anyone in a specific group of
users can perform the assignment. Design your process so that it routes assignments to the best
qualified users. This approach helps ensure that work is done correctly and completed on time.

After this lesson, you should be able to:

l Explain the role of worklists in routing

l Explain the role of workbaskets in routing

l Explain the role of a router in routing assignments

l List common standard Pega routers

l Route an assignment to the appropriate user

Routing
Routing identifies who will work on an assignment as a case moves through a life cycle. When you
create a case , the case initiates a starter flow. The starter flow moves from one step to another until it
reaches an assignment. The starter flow stops at the assignment and does not continue unless a user
performs an action. This action completes the assignment task. Routing instructions in the assignment
control who performs the assignment task.

In most applications, more than one user works on a case until the case is resolved. For example, a
customer requesting a car loan calls a customer service representative (CSR). The CSR enters the
information collected from the customer. Then, the CSR routes the case to the manager to work on the
customer’s request. The manager is now tasked to review the information. Routing information in the
CSR assignment routes the assignment to the manager.

247
©2017 Pegasystems

Worklists and workbaskets
Users complete assignments as a case moves toward resolution. When you configure the router setting
in an assignment, you specify either a specific user or a queue accessible to a group of users.

Defining worklists
A worklistis a list of all open assignments for specific users. A user see an assignment on their
worklist until the user performs an action that completes the assignment. Each user has a worklist that
the user can access from user portals. For example, an assignment might allow only a human
resources manager to approve employee time off requests. The assignment appears on the manager's
worklist.

Note: Managers can access and assign work to the worklists of users who report to the managers.

Defining workbaskets
When assignments are queued for a team of users, the assignments are stored in workbaskets. A
team associated with a workbasket is called a work group

Assignments stay in the workbasket until a team member selects an assignment or a manager sends
an assignment to a specific user. For instance, any user who belongs to the company benefits team can
add a dependent to an employee's medical insurance policy. Requests for updates to an employee's
benefits would be queued and stored in the workbasket for the employee benefit team. A user selects
an assignment from the workbasket and begins work.

248
©2017 Pegasystems

Summary
The following table describes the relationships between who receives the work and how the
assignment is accessed.

Who receives the assignment How assignment is accessed
A user Worklist

A team Workbasket

Routers
When you add an assignment to your process, you specify the assignment's router. A router is a special
type of activity that progresses an assignment based on the routing destination and assignment type.
The activities use parameters to control routing behavior.

Standard routers
Two common routers send assignments to an individual (ToWorklist) or to a workbasket
(ToWorkbasket). Worklist assignments use a user ID as the destination. Workbasket assignments use a
workbasket name as the destination.

249
©2017 Pegasystems

Other routers have parameters that are configured to suit specific requirements. Routing by user roles
or user skills are two examples.

Routing by user roles
Routers can use user roles to control routing behavior. For example, use the ToWorkGroupManager
router to route assignments to a work group manager defined in your application. The user with the
work group manager role receives the assignment. You do not need a user ID to identify the manager.

Routing by user skills
Routers can use user skills to direct assignments. For example, a routing activity named ToSkilledGroup
has parameters for the skill rating of the users belonging to the group. For instance, a user in the
group might speak German in order to process a loan request created in a German-speaking location.
When you use the ToSkilledGroup activity, the user with the skill (German language) and the maximum
skill rating performs the assignment.

Decision routing
Routers use the results of a process decision rule to route assignments. The ToDecisionTable router
uses the results of a decision table to route an assignment. For example, assume you specify the
following decision table in the ToDecisionTable router. If the Engineering department handles the case,
the assignment routes to John Smith.

250
©2017 Pegasystems

Identifying Pega routers
Pega provides a large set of preconfigured routers to suit specific requirements. For descriptions of the
routers provided by Pega, see the Route Activities section in the help topic Standard activities for use
in flows (interactive).

Configuring routing
You can specify routing directions in any one of the following locations:

Where you define routing When to use
Case life cycle When adding assignment steps to your design

Assignment shape When working with assignment shapes in an flow
diagram

Approval process SmartShape When determining where assignments will be routed in
an Approval process

Configuring routing in the case life cycle
Specify assignment routing on a case life cycle diagram as follows:

1. Select an assignment step.

2. On the General tab of the contextual property panel, select a Route to option to indicate how to

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#zstandardrules/rule-obj-activityforflows.htm?TocPath=Reference|Standard%2520rules%2520|Activity%2520rules|_____2
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#zstandardrules/rule-obj-activityforflows.htm?TocPath=Reference|Standard%2520rules%2520|Activity%2520rules|_____2

251
©2017 Pegasystems

route the assignment at run time.

The Route to options are as follows:

l Click Current user to route the assignment to the worklist of the user who last updated the case.

l Click Specific user to route the assignment to the worklist of another user in your application. Then,
in the autocomplete field, press the Down Arrow key and select the name of a user.

l ClickWork queue to route the assignment to a work queue that is processed by users with the
same role. Then, in the autocomplete field, press the Down Arrow key and select the name of a
work queue.

l Click Custom to provide custom routing options.

Then, do the following:

252
©2017 Pegasystems

3. In the Assignment type list, select an activity that creates an assignment. This list is populated with
activities that have the Usage field set to Assign on the Activity form.

4. In the Router field, press the Down Arrow key and select the name of an activity that determines
how the assignment is routed. For example, you can use the ToDecisionTree activity to route an
assignment based on the value that is returned by a decision tree.

5. If the routing activity accepts parameters, pass values for those parameters by entering values in
the fields in the Parameters section.

Configuring routing in an Assignment shape
To specify routing on an Assignment shape, right-click the shape to open the Assignment properties
dialog. Use the drop-down list in the Routing section to select a routing option. The options are the
same as the options that appear in the case life cycle General tab.

253
©2017 Pegasystems

Note: The menu values Current operator, Operator, and Workbasket are the same as values named
Current user, Specific user, and Work queue used in the case life cycle.

Configuring routing in an Approval process
You can specify routing for assignments within an Approval process.

On an Approval Smart Shape, right-click to open the Approval properties panel to specify the routing
behavior. The process has two levels of approval: single or cascading.

Single-level approval
When only one level of approval is required, you can route an assignment to a specific operator,
workbasket, or type of approval manager.

To specify single-level routing, do the following:

1. In the Approval type field, select Single level.

2. In the Approval to be complete by field, select the user or workbasket that receives the approval
assignment.

3. If you select Operator or Work Basket, select the operator ID or workbasket name in the autocomplete
field.

Cascading approval
When you use a cascading approval process, you route assignments to managers based on the current
user's reporting structure, or using the results of an authority decision table.

254
©2017 Pegasystems

To route assignments based on a cascading process, do the following:

1. In the Approval typefield, select Cascading.

2. In the Approval based on field, select Reporting structure.

3. Select a manager in the Approval to be completed by field.

4. When you route assignments based on an authority matrix, select a decision table in the Decision
table for matrix field. The outcome of the decision table determines where the assignment is
routed.

255
©2017 Pegasystems

Configuring correspondence

Introduction to Configuring Correspondence
During a business process, organizations often need to communicate with parties associated with a
case. This communication ranges from simple notifications of assigned tasks to complex
communications that contain case-specific data and calls-to-action. Adding correspondence to a
business process keeps stakeholders and case workers engaged throughout the business process.

In Pega, you configure emails, letters, fax, and text messages with correspondence rules. You can
configure your application so that the system can send correspondence automatically or enable users
to send correspondence manually. Correspondence rules allow you to add case data to your
communication to provide richer, more relevant communication to stakeholders and case workers.

After this lesson, you should be able to:

l Describe the process for creating correspondence.

l Configure a correspondence rule.

l Incorporate case content into correspondence.

l Send correspondence from a business process.

How to configure correspondence rules
Create correspondence rules to define, in HTML, templates for the content of outgoing
correspondence. Each correspondence rule contains text for one type of correspondence such as
email, letter, SMS phone text, or fax. JavaServer Pages (JSP) tags or directives allow correspondence to
incorporate property values and calculations.

Informally, correspondence rules are sometimes called templates, as they define form letters for
property values.

For simple notifications, you might add text directly in the rule. For richer content, you can enter
dynamic fields that reference properties, or rules such as sections, paragraphs, or correspondence
fragments. During flow processing, the system uses the source content in the correspondence rule to
generate a customized message for the recipient.

Identify the correspondence type
When you create a correspondence rule, you specify the correspondence type as a key identifier. A
correspondence type rule indicates whether a piece of correspondence is a printed letter, fax, email, or
SMS phone text. Each type is associated with a different Data- subclass, such as Data-Corr-Email, that
holds the content of correspondence items.

Be careful when selecting the correspondence type. Your specification should state who is receiving
the correspondence and how the correspondence is sent. Before sending correspondence, the system

256
©2017 Pegasystems

references work party contact information to make sure the recipient can receive the correspondence.
For example, the system cannot send email to a customer party that does not have an email address.

Add the content
Add the message for the correspondence on the Corr tab of the rule form. The tab presents a rich text
editor in which you create the source content for the correspondence.

The toolbar includes controls for setting text styles, spell checking, list formatting, alignment, and for
inserting images and graphic elements.

The toolbar also contains controls for viewing the source HTML in the text area, and for inserting
properties and rules that contain correspondence content. You can use a combination of text and
referenced content sources to create your correspondence.

l Click Source to view or update the source as HTML codes. In source mode, you can add HTML
elements and JSP tags directly. For example, you can add the when JSP tag to conditionalize a
portion of the HTML code.

Note: When the correspondence is an email, the outgoing email includes HTML formatting, even if
no HTML elements appear within the source. When the correspondence is phone text, the message
does not contain HTML formatting.

l Click the Insert Property icon to include properties in your application such as pyID, LastName,
and Department. For example, you may want to inform the recipient that the case is currently under
review by the auditing department. You can reference the property .pyID to insert the case ID into
the correspondence, rather than providing a generic message.

l Click the Insert Rule icon to include content in other rules such as paragraphs, sections, and
correspondence fragments. You can also include other correspondence rules.

Paragraphs present formatted text that can include colors, fonts, styles, and images. Paragraphs
allow you to reuse content that is used elsewhere. For example, you use a paragraph rule to present
instructions on a form. You can then use that paragraph rule in correspondence to describe the
action the recipient is expected to perform. Referencing shared content ensures that your
correspondence includes the most current version.

Sections allow you to reproduce part or all of a form in the correspondence. Use a section to achieve
greater control over the positioning of content in the correspondence.

Correspondence fragments are useful for reusing boilerplate content, such as a mandatory
disclosure or links to an organization's social media channels.

The editor uses angle << >> brackets to mark properties and rules. During flow processing, these
elements are replaced with the values. The following example shows inserted properties .Office and
.Employee.Manager.

257
©2017 Pegasystems

When the correspondence is sent, the system replaces the properties with their values.

How to configure correspondence in a
business process
When you have created your correspondence, you can configure your application to send the
correspondence in various ways. For example, you can automatically send an email to a user when a
new assignment has arrived in the user's worklist. You can automatically notify a customer when a
request for a loan has been approved.

You can configure your application to automatically send:

l Emails, faxes, letters, or text messages when a case advances in the process using the Send Email
Smart Shape or a correspondence Utility.

l Email notifications when a case reaches an assignment.

l Email service level (SLA) notifications when an assignment has gone past its goal or deadline.

You use flow actions so that users can select and send correspondence as needed.

Using the Send Email Smart Shape
You can add the Send Email Smart Shape to your flow diagram to automatically send emails as a case
advances during the business process. This Smart Shape is useful if you want to notify or send
information to users after an action has been performed on a case. For example, the system can notify
a manager that, as the result of an automated decision, a purchase request does not need approval.

You can use the Smart Shape to create simple text messages that you configured using the rich text
editor. You can also send emails that you configured in a correspondence rule.

You can add the Smart Shape directly to your flow diagram. You can also add the Send Email step in
the case life cycle — the system automatically adds the shape to your diagram.

To add a Send Email Smart Shape from the case life cycle, select Utilities > Send Email, and then click
Select.

258
©2017 Pegasystems

The system displays the Send Email properties panel on the right side of the case life cycle. To use a
correspondence template that was previously created, select Correspondenceand select the rule
name.

When you add the Send Email step, the system adds to the flow diagram a Send Email Smart Shape in
the position you specified in the stage. For example, the above configuration inserts and connects the
Send Welcome Email Smart Shape to the Select Orientation assignment, as shown in the following flow
diagram.

259
©2017 Pegasystems

You can also add the Send Email Smart Shape directly to the flow diagram. In the following example,
notice the Send Email Smart Shape is the outcome of a decision shape. The email automatically notifies
a manager that the case did not require approval.

Send correspondence using a Utility shape
Similar to the Send Email Smart Shape, you can use a Utility shape to automatically send
correspondence. A Utility shape configured with the CorrNew activity offers greater flexibility than the
Send Email Smart Shape. You can use the activity to send all types of correspondence including mail,
fax, and text messages.

When you add a Utility shape to your process, open the properties panel and select CorrNew in the
Rule field. Select your correspondence rule in the CorrName field as shown in the following example.
When a case reaches the utility, the system sends the Thank you letter correspondence.

260
©2017 Pegasystems

Send notifications from assignments
You can automatically send email notifications when a case reaches an assignment using a Notify
activity. This technique is useful if you want to notify users of new work that is waiting in their
worklists. On the Assignment properties panel in the Notifications section, enter the party you want to
notify. Then, enter the subject line text and select the correspondence rule in the CorrName field.

Send reminders from SLAs
You can set reminders in SLAs so that when the goal or deadline of a service level agreement has been
reached, a notification email is sent out. You add the reminder by adding a row in the escalation

261
©2017 Pegasystems

actions area on the SLA form. In the Perform Action drop-down, you select a standard Notify
notification. When you select Notify Party, you specify a party role and reference a correspondence
rule.

Manually send emails using flow actions
Users often encounter questions or issues that are not part of the usual business process. For
example, users, while working on an assignment, may need to send a request for sales receipts that
were not attached to the user form. You can add the standard SendCorrespondence local action to
your application so that users can select the correspondence they need when they need it.

KNOWLEDGE CHECK

Name the four standard types of correspondence you can use in Pega applications?

Emails, fax, phone text, and letters

Configuring correspondence rules
Configure a correspondence rule if you want to automatically or manually send email, fax, letters, or
text messages during business processing.

Follow these steps in the Application Explorer to configure a correspondence rule:

262
©2017 Pegasystems

1. Locate the class in which you want to create the correspondence rule.

2. Right-click on the class and select +Create > Process > Correspondence to open the Create
Correspondence form.

3. Enter a name for the correspondence in the Label field and select the correspondence type, as
shown in the following screenshot.

4. Click Create and Open. The Correspondence form is displayed.

5. Enter the text you want to include in your email correspondence. In the following example,
placeholder text shows where properties are inserted.

263
©2017 Pegasystems

6. Select the field you want to replace with a dynamic reference to a property and click the Insert
Property icon on the toolbar to open the Property Parameters dialog.

7. Select the name of the property in the Name field and click Save.

The property name is displayed in brackets, as shown in the following example.

264
©2017 Pegasystems

8. Insert the other properties in the form, as shown in the following example.

9. Click Save to commit your updates.

To preview the email, on the rule form header, select Actions > Preview. The message is displayed.
Values do not appear in the reference property fields. The system populates the property fields during
flow processing when the correspondence is sent.

265
©2017 Pegasystems

Circumstancing rules

Introduction to circumstancing rules
Applications often need to customize behavior to match the needs of a specific situation or
circumstance. For example, a call center may need to enforce one set of performance objectives for
clients with elite status, and a different set of performance objectives for clients without elite status.

In this lesson, you learn how to specialize case behavior through the use of circumstanced rules.

After this lesson, you should be able to:

l Explain how rule circumstancing supports rule specialization.

l Differentiate between base rules and circumstanced rules.

l Circumstance a rule.

Situational processing
Business processes must account for exceptions to typical case behavior. Exceptions make a business
process more complex. This complexity makes processes difficult to maintain and update as business
conditions change.

For example, a company promises to respond to customer complaints within one business day. For
customers with silver status, the company promises a response in 12 hours. For customers with gold
status, the company promises a response in only six hours. Reduced response times for customers
with elite status are exceptions to normal business processing.

266
©2017 Pegasystems

Simple exceptions like these can be difficult — or impossible — to model with a single rule. For
example, a service level only defines one set of service expectations, and an assignment only applies
one service level. To apply three different response intervals, you might design a process with three
assignments, and apply the correct service level to each assignment. If the process changes, you need
to update three assignments, instead of one.

Complex exceptions that depend on combinations of factors become difficult to maintain and update.
Consider a bank that offers different promotions that reduce or waive fees for customers who meet
specific conditions.

l A new customer receives 100 commission-free trades for the first three months after opening an
investment account.

l A customer receives a rebate on commissions as long as the daily balance in their investment
account exceeds certain thresholds — but the rebate amount, balance threshold, and number of
rebate tiers vary by account type and country.

l A customer who refers a friend to the bank receives 10 commission free trades per month for six
months.

A rule that models these commission discounts according to account type, account balance, and
country can become complex. This complexity may lead to configuration errors and dissatisfied
customers.

In Pega applications, you model complex exceptions through circumstancing. With circumstancing,
you create a variant of a rule — such as a decision or a service level — tailored to a specific
circumstance. When an application uses a circumstanced rule, the system determines which rule
variant best satisfies the need. Circumstancing allows you to customize the behavior of your
application to address each exception condition you identify using a collection of targeted rules rather
than one complex, difficult-to-maintain rule.

KNOWLEDGE CHECK

How does circumstancing solve the problem of configuring exception behavior in an
application?

Circumstancing allows you to describe exception behavior with a set of targeted rules rather than
one complex rule. Each targeted rule configures behavior to address a specific exception.

Rule circumstancing
Circumstancing establishes a baseline for expected case behavior, and adds variants to address
exceptions to the behavior. The goal of circumstancing is to create a variant for each anticipated
situation. Pega selects the appropriate variant, or circumstance, to use based on the details of the case.

When you circumstance a rule, you create a set of focused rules to address exceptions to case
processing, rather than one all-encompassing rule. Since each rule focuses on a specific exception,
application maintenance and updates are easier and can be delegated to business users. And you can
more easily reuse the rules you create at the application or enterprise level.

267
©2017 Pegasystems

How to circumstance a rule
To circumstance a rule, you start by creating a base rule to define the expected behavior. Pega uses
this base rule unless a circumstanced version is more appropriate.

Consider a company with different response-time obligations for elite and non-elite customers. The
response time for non-elite customers is the expected behavior. In this situation, the response-time
goal is 24 hours. So you create a base rule — in this case, a service level — to enforce the response-
time goal for non-elite customers.

Then, you identify any exceptions to the expected behavior. For each exception, you circumstance the
base rule to addresses the difference from the expected behavior. For example, elite customers with
silver status have a response time goal of 12 hours. You circumstance the base rule to enforce the
response-time goal for customers with silver status. You can then create another circumstance to
address the goal time for customers with gold status, who have a service level response goal of 6
hours.

Types of circumstancing conditions
You can circumstance a rule according to the value of one or more conditions. You define a condition
based on one variable, multiple variables, or the processing date, then apply the condition to a variant
of the rule. When using the rule, the application evaluates the conditions defined on all the
circumstanced variants. If one of the circumstancing conditions is satisfied, the application uses the
corresponding rule variant. Otherwise the application uses the base rule.

Pega supports the following types of circumstance conditions.

l Single value — the rule variant is effective whenever the value of a single property satisfies the
circumstancing condition. You specify the property to evaluate and a comparison value when
circumstancing a rule. If the value of the property matches the specified value for a case, the

268
©2017 Pegasystems

application applies the circumstanced variant of the rule, rather than the base rule.

l Multiple value — the rule variant is effective whenever a combination of property values satisfies
the circumstancing condition. Multiple value circumstances are based on a circumstance template
and circumstance definition. The circumstance template defines the properties on which the rule
is circumstanced. The circumstance definition defines the combination of conditions in which a
variant of a rule is used. You apply the circumstance template and circumstance definition to the
rule variant. If the case matches a combination in the circumstance definition, the application uses
the circumstanced variant of the rule, rather than the base rule.

l Date property— the rule variant is effective whenever the value of a date property satisfies the
circumstancing condition. This condition can be either a single date or a range of dates. If the value
of the property is later than the specifies date or falls within the range of dates, the application uses
the circumstanced variant of the rule, rather than the base rule.

l As-of date — the rule variant is effective after a certain date, or during a range of dates. After the
specified date or during the specified range, the application applies the circumstanced variant of
the rule, rather than the base rule.

Circumstancing a rule
To circumstance a rule, you first create a base rule and then create specialized versions of the rule.
Each version is tailored to a specific exception in case behavior.

Follow these steps to circumstance a rule:

1. Open the base rule.

2. On the base rule, open the pull-down menu on the Save button and select Specialize by
circumstance. The New Record form opens, with two circumstancing options: Template and
Property and Date.

3. On the New Record form, identify the type of circumstance. To circumstance on one variable, select
Property and Date. To circumstance on more than one variable, select Template.

4. Specify the condition under which the rule is used. The following example shows a service level

269
©2017 Pegasystems

circumstanced to run whenever the value of .CustomerStatus is "silver". The value must be entered
within quotation marks.

To circumstance by date, use the following table to configure the circumstancing condition to meet
various business requirements.

Business requirement Specify date
property

Specify
start date

Specify
end date

Rule to be effective only if the value of the specified date
property occurs within a date range

Yes Yes Yes

Rule to be effective only if the value of the specified date
property occurs after a certain date

Yes Yes No

Rule to be effective only within a date range No Yes Yes
Rule to be effective only after a certain date No Yes No

To circumstance by more than one property, specify the circumstance definition and circumstance
template rules that define the combination of conditions. For each circumstanced rule, you must
provide a unique circumstance definition.

270
©2017 Pegasystems

5. Click Create and open to open the rule form.

6. Customize rule behavior for the specified circumstance.

To view the circumstancing condition for a rule, locate the rule in the Application Explorer. Pega
indicates a circumstanced rule with a collapse arrow. Clicking the arrow expands the rule entry to
display the supported circumstances. In the following example, the DisputeReponse service level
includes a circumstance used when the value of .CustomerStatus is silver.

You can also review the circumstancing condition for a rule by clicking the Circumstanced link in the
rule header.

DECISION DESIGN

271
©2017 Pegasystems

272
©2017 Pegasystems

Automated decisions in Pega
applications

Introduction to Automated Decisions in Pega
Applications
During the case life cycle, choices affect how each case progresses toward resolution. Choices range
from deciding which processes to run to deciding which fields to complete.

By automating decisions, system architects significantly improve process efficiency. Automated
decisions eliminate delays waiting for users to decide an appropriate outcome. Automated decisions
ensure that decisions are evaluated consistently from case to case. For example, automating decisions
can reduce the time needed to perform a credit check from three weeks to 15 minutes, dramatically
reducing the time needed to process loan requests.

In this lesson, you learn about the types of decisions that Pega allows you to automate, from simple
true/false conditional tests to complex strategies for improving the outcome of customer interactions.

After this lesson, you should be able to:

l Differentiate between the types of decision rules available in Pega applications

273
©2017 Pegasystems

Types of decisions available in Pega
applications
The Pega platform provides many options for automating decisions, from simple true/false tests to
complex decision strategies that rely on predictive or adaptive analytics. The decision rules in Pega
applications are divided into two categories: business rules and decision strategies.

Business rules
Business rules evaluate case data to determine outcomes that direct a business process. These rules
are used in applications to direct flows, hide or display form elements, and even calculate property
values. Pega provides four types of business rule decisions: when conditions,map values, decision
tables, and decision trees.

When conditions
When conditions are the simplest type of decision. A when condition evaluates a relationship among
one or more property values to return a true or false result. When conditions correspond to the "if"
statement in programming languages. When conditions are often used to determine whether an
application performs some action, such as hiding the contents of a form. For example, use a when rule
to test if a user selected "Married" as their marital status. If the result is true, then the form displays
fields to obtain the name and birth date of the user's spouse.

Map values
Map values evaluate one or two criteria to return a result. Unlike a when condition, a map value can
return numeric or text results. Map values are often called from a decision shape in a flow to direct
flow processing, and can also be used as part of a declare expression to set the value of a property.

A map value uses a one- or two-dimensional matrix to derive a result. The inputs to a map value
identify a row and column in the matrix, like latitude and longitude on a map. The intersection of the
two inputs indicates the result of the decision.

274
©2017 Pegasystems

For example, use a map value to test the options packages and colors offered for a vehicle to determine
which combinations are allowed.

Decision tables and decision trees
Decision tables and decision trees evaluate a series of one or more conditions to return a result. Like a
map value rule, decision tables and trees can return numeric or text results.

Decision tables and trees are often called from a decision shape in a process flow to direct case
processing, and can also be used as part of a declare expression to set the value of a property.

Decision tables and trees behave similarly, but differ in how the decision logic is organized: in a table
of conditions organized into rows, or in a tree structure with conditions organized into branches of the
tree.

A decision table returns a result using a series of one or more conditions, organized as rows in a table.
If all the conditions in a row evaluate to true, the decision table returns the result assigned to the row.
If any of the conditions in a row evaluates to false, processing advances to the next row in the table. If
no row in the table evaluates to true, the table returns a default result.

A decision tree returns a result using a series of if-then conditions, organized as a tree-like structure.
Evaluation begins with the trunk of the tree and advances through a series of branches. If a branch
evaluates to true, the decision tree returns the result assigned to the branch. If a false result occurs,
processing returns advances to the next branch in the tree. If no branch evaluates to true, the tree
returns a default result.

275
©2017 Pegasystems

For example, use a decision table or tree to test the total amount of a purchase request and determine
whether to

l approve the request automatically,

l forward the request to a manager for approval, or

l trigger an audit of the purchase request.

Unlike map value rules, which allow you to test one or two variables, decision tables and trees allow
you to test any number of variables. The choice between a map value, decision table, and decision tree
often depends on the number of conditions and the best format for presenting the decision logic: as a
matrix, as a table, or as a tree.

Decision Management rules
Decision Management rule types, such as scorecards and predictive analytics, analyze customer
behavior. These rules tailor offers or propositions to a customer, often as part of a retention or up-sell
strategy.

Decision Management rules are available only in applications built on the PegaDM application or
Decision Management rulesets.

Strategies
Strategies define a result personalized to the interests, risk, and eligibility of an each customer. A
decision strategy consists of interactions, predictive and adaptive models, and scorecards. For example,
you create a strategy rule to provide a customer with enticing offers for a new credit card based on
their spending patterns, income, or other criteria.

Interactions
Interactions define the parameters for running a strategy and the possible outcomes.

Use an Interaction rule to execute a decision strategy and capture the details of the customer
interaction. For example, you use an interaction rule to run a strategy designed to retain a customer
calling to cancel their credit card. Delegate an interaction rule to allow process owners to switch to
another strategy in an released application.

276
©2017 Pegasystems

Predictive models
Predictive models predict behavior for one or more segments, based on customer data. Predictive
models are used in strategies through predictive model components. For example, you use a predictive
model rule to define characteristics that identify customers who are more receptive to a credit card
with travel rewards or a low interest rate.

Adaptive models
Adaptive models capture customer responses in real-time to make and adapt predictions. Adaptive
models are used in the absence of historical records.

You use an adaptive model to collect data from customer interactions, which you then use to generate
predictive models. For example, you use an adaptive model in a retention strategy to determine if the
age of a customer affects the response rate for a credit card with a cash-back reward. As customers
respond to the available offers, the adaptive model collects data that you can use to create a predictive
model for future marketing campaigns.

Scorecards
A scorecard uses one or more conditions and a combining method to return a score and a segment.
You then define cut-off values to map each score range to a result. For example, a scorecard rule
segments customers based on age and income, then maps the score ranges to recommended a
different credit card to each segment. A scorecard allows you to recommend one credit card with a low
interest rate to customers under the age of 25, and another credit card with travel perks to customers
over the age of 40.

More information on Decision Management
For more information on Decision Management rules, see the PDN topic Decision Management.

https://pdn.pega.com/decision-management

277
©2017 Pegasystems

Configuring when rules

Introduction to Configuring When Rules
Applications must evaluate case data and determine the appropriate response to automate case
processing. For example, application logic must often determine whether to:

l Automatically approve a case or assign the case to a user for approval.

l Skip a processing step.

l Display information on a form.

Pega models true/false decisions such as these using a when rule. In this lesson, you learn how to
automate decision-making with when rules.

After this lesson, you should be able to:

l Explain how when rules model true/false decisions.

l Describe the uses of when rules in an application.

l Configure a when rule to evaluate case data and return a result.

278
©2017 Pegasystems

When conditions
Applications often need to decide whether to perform an action, such as skipping a process when a
case satisfies some condition. For each decision, an application tests a condition to return a true or
false result. If the result is true, the application performs the conditional action. If the result is false,
the application skips the action. These true/false decisions allow applications to adapt a business
process to the details of each case.

In Pega, a when condition describes a decision that returns a true or false result. You use a when
condition to compare the value of one property against a constant or the value of another property. For
example, use a when condition to determine whether the total value of an order exceeds EUR100. If
true, the application can then apply a credit for the shipping charge to the order.

You can use when conditions whenever an application requires a true/false outcome. Use when
conditions in flows, UI forms, and data transforms to adjust rule behavior in response to case data.

In flows, use a when condition to branch a flow based on case data. For example, if an employee
submits a purchase request totaling less than USD25, then skip the approval step and automatically
approve the request.

In UI forms, use a when condition to update the appearance of a form in response to user input. For
example, if users indicate that they want to subscribe to a newsletter, an application provides a field
for the users to enter their email address.

279
©2017 Pegasystems

In data transforms, use a when condition to determine whether to perform a step or sequence of
steps. For example, if users indicate on an order that their billing address is the same as their shipping
address, then copy the shipping address information to the corresponding fields for the billing
address.

KNOWLEDGE CHECK

What is the purpose of a when rule?

The purpose of a when rule is to evaluate one or more conditions to return a result of either true or
false.

280
©2017 Pegasystems

How to configure a when condition using a
when rule
In Pega, you can apply a when condition where needed, or configure the when condition using a when
rule. By using a when rule, you can reuse the when condition wherever necessary in the application.

The when rule form
A when rule organizes a set of one or more true/false tests into a tree-like structure. Each node on the
tree represents either a single condition or a group of conditions related with a Boolean AND or OR
operator. The entire conditions tree reduces to a single Boolean operation. The result of this operation
is the result of the when rule.

Use the Conditions tab to enter or revise the conditions tree for a when rule. The when condition is
expressed as either a single Boolean expression or a tree consisting of multiple expressions combined
using Boolean AND or OR operators.

Each expression defines a single comparison that evaluates to True or False. The when rule evaluates
to True only if the entire tree of conditions evaluates to true. In the following example, the when rule
returns a result of True if a work party is an instance of any of the three listed classes: Data-Party-Com,
Data-Party-Org, or Data-Party-Gov.

The when rule form starts you with a single condition to test. To further edit the conditions tree, use
the context menu. From this menu, you either add a condition to the current node or add a new node
to the conditions tree. Each node consists of one or more conditions linked by a Boolean AND or OR
operator. The same operator is applied to all of the conditions within a node.

281
©2017 Pegasystems

The following example demonstrates a when rule with three nodes.

The conditions and logical operators you enter on the Conditions tab also appear on the Advanced
tab, in the Condition array and Logic String field. Each set of parentheses in the logic string groups a
set of conditions to represent a node. The following example shows the same when condition, viewed
from the Advanced tab. The logic string groups each node with a set of parentheses.

282
©2017 Pegasystems

KNOWLEDGE CHECK

An application adds a risk premium to an auto insurance policy whenever the following when
condition returns a result of true.

Which of the following drivers has a risk premium added to the insurance policy?

l Motorcycle rider, age 30

l Any driver, age 67

l Motorcycle rider, age 22

The 67-year-old driver and the 22-year-old motorcycle rider are assessed a risk premium.

283
©2017 Pegasystems

Configuring a when rule
Configure a when rule to perform a true/false test based on the relationship between one or more
property values, literal constants, or functions.

Creating a when condition
The top node in a when conditions tree is labeled When. Follow these steps to configure the top node:

1. Double-click the link beneath the When node.

The system displays the Condition dialog that contains the default condition. The default condition
compares two values.

2. Enter properties, literal constants, or function calls and parameters in the fields, and select a
relational operator.

Optionally, click the down arrow at the end of the row and select from a list of standard conditions.

Tip: If you select [expression evaluates to true], use the Expression Builder for guided
assistance. Click the gear icon to open the Expression Builder.

3. Click Submit to close the dialog and display the condition on the tree.

Adding more conditions to the conditions tree
To further edit the conditions tree, use the Actions menu. From this menu, you can edit the selected
condition, delete the selected condition, or add conditions to the tree. To open the context menu, either
right-click the expression or click Actions to the right of the node.

284
©2017 Pegasystems

Follow these steps to add a condition to the current node:

1. From the Actionsmenu, select Insert Condition.

2. Enter the condition in the Condition dialog.

3. Click Submit. When the Condition dialog closes, the condition appears in the conditions tree,
preceded by a Boolean AND or OR operator. To change the operator, click the operator and select
the appropriate operator from the list.

Follow these steps to add a subnode with a condition:

1. From the Actionsmenu, select Insert Group.

2. Enter the condition in the Condition dialog and optionally add a label for the group.

3. Click Submit. When the Condition dialog closes, the node for the group is indented below the
preceding node.

285
©2017 Pegasystems

Configuring decision tables and
decision trees

Introduction to Configuring Decision Tables
and Decision Trees
Decision tables and decision trees are fundamental to enforcing business decisions. You can use these
decision rules in flows, routers, activities, and declare expressions. For example, a decision rule can
automatically select a connector to advance a case. A decision rule can also automatically route cases
to the correct worklist or workbasket. Decision tables and decision trees allow you to design complex
decision logic that goes far beyond simple yes/no decisioning.

After this lesson, you should be able to:

l Explain how decision tables can model decisions.

l Configure a decision table.

l Explain how decision trees can model decisions.

l Configure a decision tree.

l Describe the options for unit testing decision tables and trees.

l Describe how to test a decision for completeness, conflicts, and decision logic.

286
©2017 Pegasystems

Decision tables
If you are asking a yes/no question when using an automated decision process, then a when rule
serves the purpose. For example, a decision such as “Does this purchase order require additional
approval?” works well with a when condition. However, if you need to test the values of multiple
properties to answer questions such as “What promotional offer should the company offer?”, you can
use a decision table.

For example, you can configure a decision table to determine the discount for customers at different
spending thresholds. Using the decision table, customers who purchased more than USD1,000 in the
previous year and have been a customer for more than five years are entitled to a 20 percent discount
for purchases greater than USD50. Customers who purchase more than USD1,000 but have been a
customer for less than five years are entitled to a 15 percent discount on purchases greater than
USD100. Customers who do not meet either condition are not entitled to a discount.

Decision tables resemble a spreadsheet with rows and columns. This commonly used format helps
non-technical users quickly understand how the decision logic works. Your organization may choose to
delegate to business users responsibility for updating the decision table. For example, when the
organization changes its discount rates, managers need to update the rate. A delegated decision table
allows these users to quickly adjust the table to make the update, rather than waiting for IT to make
the changes required.

You can reference decision tables in decision shapes to decide which connector to use when
advancing a case in a process. You can also use decision tables in declare expressions, activities, or
routers.

Decision table logic
Decision tables are a good approach when you use a set of properties or expressions to arrive at a
decision. Watch the following video to see how the columns and rows are configured in a decision
table.

In the following example, a banking application uses a decision table for determining monthly
maintenance fees. To find the correct fee, the decision table compares the account type and customer
type property values on the table to the input values.

The table has rows for evaluating the correct fee for each combination. For instance, if the account type
equals Checking, and the customer type equals Basic, then the system returns a value of USD10.

The following example shows how the decision evaluation works based on the account type and
customer type property values.

287
©2017 Pegasystems

By default, a condition uses an equal comparison operator (as configured in the previous example). If
you are using numeric conditions, you can also specify greater than or less than comparison operators.
For example, you can create a condition so that if the savings account balance is greater than
USD1,000, then a customer is not charged any fees. You can also use value ranges to define the
comparison. For instance, if the savings account balance is greater than USD500 but less than
USD1,000, the customer can only be charged a checking account fee.

KNOWLEDGE CHECK

What is the main reason for using a decision table rather than a when rule for
automating a decision?

You need to test the values of multiple properties to make the decision.

288
©2017 Pegasystems

How to configure a decision table
To design your decision table, you first specify a property or expression in the Conditions column
header. Then, on the first row, you enter a value in the column that defines the condition. Under the
Return column, enter the result that is returned by the table when the condition evaluates to true.
Finally, in the otherwise row, enter a value that is returned if none of the conditions evaluate to true.

To create a decision table, in the Application Explorer, select a class. Then, right-click and select
+Create > Decision > Decision Table.

Specify a condition property or expression
Configure a cell in the header row to define the property or expression used in the evaluation. Clicking
the cell opens the Decision Table property chooser tool.

The tool allows you to:

l Select a property or create an expression used for the evaluation.

l Enter a label that appears on the table.

l Select the comparison operator. The default is the equals sign (=). If you select a numeric property,
you can use greater than/less than operators. You can also use these operators to define a range.

You can add columns to create multiple conditions.

Specify the condition
In the rows under the conditions column, enter the value you want to compare during the evaluation.
You can enter a literal value, a property, or an expression. For example, if the condition property is

289
©2017 Pegasystems

Account Type, you can enter checking as a value. You can add multiple rows for each combination of
conditions. If you have more than one condition column, you must enter a condition in at least one
column.

Specify the return value
Under the Return column, enter a literal value, a property, or an expression. This is the result the
table returns if all the conditions in the row evaluate to true.

Add an otherwise value
Be sure to add a value in the otherwise row to ensure that the decision always returns a result. A
processing error can occur If there is no result.

Adding or deleting columns and rows
You can add or delete columns and rows using the following controls that are available above the
table. Select any cell in the table to activate the controls.

290
©2017 Pegasystems

Configuring a decision table
Create a decision table to derive a value that has one of a few possible results, where each result can
be detected by a comparison condition. A decision table lists two or more rows, each containing one or
more conditions and a result.

Follow these steps to create and configure a decision table for automating a decision:

1. Open the Application Explorer.

2. Select the class in which you want to create the decision table.

3. Right-click and select +Create > Decision > Decision Table. The New Record form opens.

4. In the Label field, enter a name that describes the purpose of the table.

5. Click Create and open. The decision table rule form opens.

6. On the table under Conditions, click the empty header cell. The Decision Table property chooser
dialog opens.

291
©2017 Pegasystems

7. In the Property field, enter or select a property. You can alternately click the gear icon to build an
expression.

8. In the Label field, enter the name of the property that you entered in the column header.

9. In the Use Operator drop-down, select a comparison operator.

The following example shows a competed dialog.

10. Click Save. The Decision Table property chooser dialog closes, returning you to the decision table
rule form.

11. If you want to add another condition property, add a column to the right of the first column by
selecting the add column icon on the control header.

12. Add a second property to the new column.

13. In the if row, click the empty cell under the first property and enter a value.

292
©2017 Pegasystems

14. In the Return column, enter a return result. The following image shows the first condition set.

Note: If you are using two or more conditions, you must enter at least one condition in the row. In
the previous example, only the Credit Score condition must be true in order to return Approval Level
1. The Outstanding Balance value does not affect the decision.

15. If you want to add conditions, select the add row icon on the control.

16. Enter values in the first and second columns and a return value. In this example, values for Credit
Score and Outstanding Balance are entered.

17. Enter another row and return action. Repeat this process until you add all the rows required to
create the decision table.

293
©2017 Pegasystems

18. Add a return value to the otherwise row.

19. Click Save.

294
©2017 Pegasystems

Decision trees
As an alternative to decision tables, you can use decision trees to handle logic that calculates a value
from a set of test conditions. Both decision tables and decision trees evaluate conditions and return
results when a comparison evaluates to true. Only decision trees let you apply if... then... else logic.
This means that a true comparison can result in more than one comparison.

For example, a human resources application contains a process for assessing a job candidate. The
candidate receives a set of ratings during the interviews. These ratings are evaluated to determine
whether to extend a job offer to the candidate. A decision tree can be configured to automatically use
the ratings to decide whether the candidate is qualified. The decision starts at the top of the tree and
proceeds downward. Each yes advances the evaluation.

1. Job history and reference rating must be greater than 60 percent.

If yes, then continue to condition 2.

Else, not qualified.

2. Interview rating must be greater than 40 percent.

If yes, then continue to condition 3.

Else, not qualified.

3. Interpersonal skills must be greater than 20 percent.

If yes, then the candidate is eligible for a job offer.

Else, not qualified.

Like decision tables, you can reference decision tables in flow shapes, declare expressions, activities, or
routers.

The following video describes the structure of a decision tree.

Decision tree logic
Decision trees contain condition branches — a comparison value, a comparison operator, and an
action. The action can be to return a result, to continue the evaluation, or stop the evaluation. The
branches are organized in a hierarchical tree structure. Typically, you specify common conditions and
results at the trunk of the tree. You then extend the tree outward to more-specific conditions and their
actions. When the decision tree is invoked, the system evaluates the top row, and continues until it
reaches a result that evaluates to true. The result is returned to the system. If the system processes
through all the branches but does not reach a returned result, the system returns the final otherwise
value.

Nesting branches
You can organize decision tree branches in a nested structure. For example, assume that when a
purchase request is submitted, three possible outcomes exist. The first condition states that if the

295
©2017 Pegasystems

request is for more than USD100, then the request must be approved. Two possible approval results
exist. If the request is submitted by the Consulting department, the request advances to the
Compliance department for approval. Otherwise, the request advances to the work manager for
approval. If the request is for less than USD100, then approval is not needed.

The following image shows how the decision tree would be configured to advance the request to the
correct connector. Note that the Compliance and Work Manager approval conditions are nested
beneath the purchase request condition. This condition must be true before the other conditions are
evaluated. If the request is for less than USD100, the tree does not need to evaluate the request any
further and returns the result Not Needed.

KNOWLEDGE CHECK

When would you use a decision tree rather than a decision table to automate a decision?

When you want to apply if...then...else logic to evaluate a set of conditions.

296
©2017 Pegasystems

How to configure a decision tree
To design your decision tree, enter the If/Then logic in the three-column array for each branch. Each
column consists of an unlabeled field. The columns are comparison, action, and next value.

To create a decision tree, in the Application Explorer, select a class. Then, right-click and select +Create
> Decision > Decision Tree.

Configure the columns
In the comparison column, select the property to evaluate. Use the drop-down to select the comparison
operator.

In the action column, specify the literal value or property to compare against.

In the next value column, use the drop-down to select the outcome of the comparison. The options are:

l return— If the condition evaluates to true, the system returns a result value that you define in the
field to the right of the drop-down.

l continue— Causes the next branch of the decision tree to nest within this branch. The system
indents the next branch on the form.

l otherwise— Select only as the bottom of the tree. The value in the right column of this row becomes
the result of this decision tree evaluation. Typically, you use this option when configuring indented
branches.

As a best practice, enter a default return value in the otherwise row at the bottom of the tree. This
helps ensure that there is a returned value if no other conditions evaluate to true.

You can add rows to by selecting the crosshair icon next to the Show Conflictsbutton on the form.

To reorder rows, hover your mouse over a row, and then drag and drop it.

297
©2017 Pegasystems

Configuring a decision tree
Create a decision tree to use if... then... else decision logic that calculates a value from a set of test
conditions organized as a tree structure.

Follow these steps to create and configure a decision table for automating a decision:

1. Create the decision tree.

2. Add a condition and result.

3. Optionally, nest the conditions.

Create the decision tree
1. Open the Application Explorer.

2. Select the class in which you want to create the decision table.

3. Right-click and select +Create > Decision > Decision Tree. The New Record form opens.

4. In the Label field, enter a name that describes the purpose of the tree.

5. Click Create and open. The decision tree rule form opens.

Add a condition and the result
1. On the form, select the branch to display the columns.

2. In the first field, enter a property or a literal value.

3. In the drop-down to the right of the field, select a comparison operator.

4. In the next field, enter a property or literal value used in the comparison.

298
©2017 Pegasystems

5. In the then drop-down, select the action you want the system to perform when the condition
evaluates to true. To return a result when the condition evaluates to true, select return.

6. In the field to the right of the drop-down, enter a property or value result that you want the system
to return. The following shows a completed condition.

When you click out of the branch, the condition is displayed on the form.

Nest the conditions
1. When you create a condition, in the then drop-down, select continue to create a nested branch. The

return field to the right of the drop-down is removed. An indented condition branch is displayed
under the first row.

2. Select the second branch to display the columns.

3. Specify a condition and result in this branch. The following condition is an example of an indented
branch.

4. To add an otherwise condition to the indented branch, select the crosshair icon.

5. In the second branch, select otherwisein the then drop-down. The system changes the branch to

299
©2017 Pegasystems

otherwise.

6. Select the otherwise row to display the result field and to enter a value.

7. Enter a value in the otherwise field at the bottom of the table. This is the result when neither of the
nested conditions evaluate to true. The following image provides an example of a completed
decision tree.

8. Click Save.

300
©2017 Pegasystems

How to unit test a decision table or decision
tree
Testing a decision table or decision tree on its own before testing it in the context of the entire
application is called unit testing. Since decisions are evaluated automatically, they can have a
significant impact on case processing. Ensuring that the decision logic is correct helps avoid
troubleshooting the process if you get unexpected results. You can unit test decision rules by testing
the logic, checking for conflicts in the logic, and checking for completeness.

Test for logic
You can test the logic of a decision rule by entering test values and running the rule to observe the
results. If you do not see the expected results, make sure that the properties and comparison
operators are correct.

To test for logic, on a decision rule form, select the Actions > Run. The system displays a test page for
entering test values. On the form, click Run Again after you enter each value as shown in the following
example.

After you have entered values for all the conditions and click Run Again, the form returns the
corresponding result from the decision table or tree. The following logic test shows that the input
values returned the correct result.

Test for conflicts
Checking for conflicts shows you if your decision rule prevents one or more of its rows or branches
from ever being used. For example, assume your decision table contains a row that tests for purchase

301
©2017 Pegasystems

requests that exceed USD300. The next row tests for purchase requests that exceed USD500. The
second row may never be evaluated, because the upper row includes that condition.

To test for conflicts, on the decision form, click Show Conflicts. If a conflict exists, a warning is
displayed on the row causing the conflict. In the following example, the condition Credit Score >1000
cannot be evaluated because it is a larger value than the 900 condition that is evaluated first.

Test for completeness
To test for completeness, on the decision form, click Show completeness. The system adds rows to
indicate values that will not be evaluated. The results are suggestions. You can add return results to
additional rows if you think the decision rule needs a more detailed evaluation of the values.

UI DESIGN

302
©2017 Pegasystems

303
©2017 Pegasystems

Designing a UI form

Introduction to Designing a UI Form
A user interface (UI) is the means by which users interact with a system. A UI can be a data entry form
in which users provide information for filing a claim, a screen that displays the legal terms that users
must accept before opening a bank account, or a list of transactions during the past month. Users
receive information from and provide data to an application through a UI.

In this lesson, you learn how to build a Pega UI with sections, and how to arrange UI elements in a
section with layouts.

After this lesson, you should be able to:

l Understand the hierarchical structure of a Pega UI.

l Explain the role of a section in UI design.

l Construct a section.

l Create a dynamic layout inside a section.

l Articulate some guidelines for UI design.

l Inspect a UI with the Live UI tool.

304
©2017 Pegasystems

User interface structure
When you build end-user forms, you need to focus on the user interface (UI) rules you are most likely to
configure. Assume you are developing an application for hiring employees. This process has many
steps, -- for example, collecting applicant information, reviewing the information, and scheduling
interviews. Each step requires its own user form so that users can perform their task. In most
applications, you will create and update many user forms.

To help make designing forms easier, Pega provides a specific set of UI rules. You focus on only two
types of rules when building forms. First, you create a rule that defines the form and contains the
form's contents. Then, inside that rule, you add rules such as fields or buttons so that users can
interact with the form and complete their work.

Then, Pega organizes all UI rules in a nested structure. This structure shows you how all the UI
elements fit together. Most of the UI structure is already built for you. For example, the structure
contains areas in which users monitor reports or manage worklists. Nested within the structure are the
rules you use when you design your forms. You do not need to update any of the other UI rules. The
nested structure helps you find the rules you need when you build forms.

The UI rules
Every Pega UI is built inside a portal rule. A portal rule does not hold any visual elements such as
other UI rules. The main purpose of a portal rule is to set up workspaces for users. Pega provides
standard portals that are built with portal rules. The standard user portal is a workspace that supports
users and managers as they create, update, route, and resolve work items. Portal rules reference
harness rules for content. Harnesses frame the work areas in which users process cases. A harness
provides tools that let users manage the assignment process. Harnesses give users the ability to
cancel, save, or submit their work. While working in the assignment, users can transfer their
assignments to other users, attach files to the case, or send email correspondence.

When a case reaches an assignment, the flow action presents the appropriate harness that allows
users to perform tasks defined for the assignment. The flow action also references a section rule and
displays it in the harness. The section is the form in which users work when they perform their task
and complete their assignment. When you build a user form you create a section rule.

305
©2017 Pegasystems

Pega provides rules called controls that you add to a section to help users interact with the form. For
example, assume you are designing a form for collecting information when users apply for loans. You
add controls that allow users to provide the information. For example, you add text box controls so that
users can enter their name and address, a drop-down control that allows users to select a type of loan,
and a check box that allows users to indicate whether they are existing customers.

Sections use Layouts that organize the controls in a series of rows and columns. Each cell within a
layout can contain a control. You can configure many layout designs in order to make user interactions
intuitive and efficient.

306
©2017 Pegasystems

Sections and layouts
Users interact with an application and perform tasks through user forms. A user form can be a data
entry form in which users provide information for filing an insurance claim, a display of the legal terms
that users must accept before opening a bank account, or a list of bank account transactions during
the past month.

In Pega, you build user forms with sections. Sections group information and functionality by context
and purpose. Inside a section, you organize UI elements with layouts. Layouts contain rows and
columns, defining a set of cells. A cell can be empty or contain any of various fields and controls.

The following picture shows several types of layouts. Different layouts arrange UI elements in different
fashions. A column layout arranges items in a set number of columns. A dynamic layout arranges items
in a flexible form that automatically adjusts to screen size. To display a collection of data that belongs
to a page list or a page group, you can use a repeating layout.

Structurally, a section consists of one or more layouts and embedded sections. The following image
shows a section displaying healthcare coverage for employees. Inside the section is a dynamic layout at
the top that contains a read-only text and a check box. Below the dynamic layout, a section defined in
another class is included. This included section contains a dynamic layout that displays the coverage
plan information.

307
©2017 Pegasystems

The most commonly used layout in building sections is the dynamic layout because it enables a highly
flexible display of UI content. In a dynamic layout, the item arrangement can be one of two types: inline
or inline-grid. The inline arrangement displays items in a row like words in a sentence. The inline-grid
arrangement displays items in a multi-column grid. The inline-grid with one column is equivalent to a
staked format.

Several formats of dynamic layout styles are available, including Default, Stacked, Inline, Inline-grid
double, and Inline-grid triple. You can modify and create additional formats. Changing the format
automatically affects all sections using that format.

308
©2017 Pegasystems

How to build a section
To build a section, you first select a layout type to give the section a skeletal structure. Then, you
populate the cells of the layout with elements such as properties, controls, other layouts, or other
sections.

In the Design tab of a Section rule, the toolbar provides various action icons to perform edit operations
such as cut, copy, paste, add/delete rows or columns, and merge rows or columns. The control groups
(Layout, Basic, and Advanced) contain UI elements you can drag and drop to construct the section.

The Layout group provides various structural elements for organizing UI content.

The Basic and Advanced groups list all the controls that you can use to present application data.

Basic Advanced

309
©2017 Pegasystems

Creating a dynamic layout in a section
A dynamic layout arranges items in a flexible form that automatically adjusts to screen size. This is
useful when your application my be accessed from computers, laptops, tables, or mobile devices.

Follow these steps to create a dynamic layout in a section:

1. In the Design tab of a section, click the Layout group and select Layout.

2. Drag and drop the layout to the desired position in the design area.

3. On theSet layout type dialog, select Dynamic Layout.

4. Click OK. The dynamic layout displays in the section.

5. Click the configuration gear icon to open the Dynamic layout properties panel.

6. Configure settings for the dynamic layout in the General, Presentation, and Actions tabs.

7. Click Save to save your changes.

To inspect the structure of the section, click Show wireframes at the left of the tool bar. The
wireframes display the names of rules referenced and the relationships of elements in the section.

310
©2017 Pegasystems

Creating a repeating layout in a section
When you want to display a collection of data that belongs to a page list or a page group, you use a
repeating layout.

Follow these steps to create a repeating layout in a section:

1. In the Design tab of a section, click the Layoutgroup and select Layout.

2. Drag and drop the layout to the desired position in the design area.

3. On the Set layout type dialog, select Repeating Layout. Choose one of the following repeating
layout types from the Repeating Layout drop-down.

Select... to present...

Grid items in a spreadsheet format.
Tree in a tree format that enables users to expand and collapse branches to find

entries of interest.
Tree Grid a tree navigation control in combination with a grid display of items.
Dynamic each item from the source in the dynamic layout format specified in the skin.
Column each item from the source in vertical columns, typically with labels in the left

most column.
Tabbed each item from the source as a tab, typically with labels in the tab button.

Click OK. The repeating layout of the selected type displays in the section.

4. Click the configuration gear icon to open the Dynamic layout properties panel. Configure
settings for the dynamic layout in the General, Presentation, and Actionstabs.

For a repeating layout, you need to specify the data source in the General tab. The data source can
be a Property, list-type Data Page, or a Report Definition. The following image shows the
configuration for a grid repeating layout with data provided from a property named Courses.

311
©2017 Pegasystems

How to build sections for reuse
When designing a section, ensure that the section contains enough useful information but is small
enough to be reusable. If a section is packed with so much functionality that the section can only be
used for a particular use case, then consider separating it into smaller sections. Reconstruct the
section to render the same amount of information by embedding the smaller sections inside.

You can convert a layout into a section so that the layout can be reused in other harnesses, sections, or
flow actions. Simply click the Save as Section icon, displayed in the following healthcare coverage
section example.

Whenever possible, collocate sections with data classes. A section displaying property content should
be defined in the class where the properties are located. Collocating sections and data classes makes
sections available for reference wherever data class instances are used.

In the above healthcare coverage section example, the section is defined on a work class for benefits
enrollment. The work class has an embedded page containing information about a specific healthcare
plan. The embedded page is of a data class named HRPlan. The portion of the screen displaying plan
information is defined in a section that belongs to the data class HRPlan, instead of the work class, as
indicated by the section include of HealthcareBenefit.

With the section HealthcareBenefit defined on the data class HRPlan, you can use the section anywhere
the data class is referenced during the work processing. You can do this whether the section is an
editable data entry form for employee benefit enrollment or read-only display for HR review. Any
changes you make to the data class UI section automatically propagate to wherever the section is used.

312
©2017 Pegasystems

Live UI
To examine and edit the rule structure of your user interface designs, use the Live UItool. This tool lets
you examine UI rules and elements such as sections, controls, or layouts that you used to build the
form. LiveUI also allows you to locate properties that use declarative values. Rather than examine the
rules individually in Designer Studio, use Live UI to view the form as users see the form. Live UI lets you
review how all the rules and elements fit together.

You can use Live UI to do the following:

l Quickly identify and open a UI rule

l Change the presentation of a layout or a field

l Add or delete elements

l Move elements within the structure

313
©2017 Pegasystems

How to use Live UI
The Live UI tool is located on the bottom of a user form. Click the Live UI icon to start the tool. When you
start Live UI, a panel on the right side of the form displays the hierarchy of elements in a tree.

You can select an element in the tree to highlight the element on the form. You can also select an
element on the form to show where the element is located in the hierarchy.

To relocate elements on the form, select it in the tree and drag and drop it onto the new location.

KNOWLEDGE CHECK

Where and how do you start the Live UI tool?

The Live UI tool is located at the bottom of a user form. Start the tool by clicking the Live UI icon.

314
©2017 Pegasystems

Using Live UI
The following examples show you how to use Live UI to:

l Identify UI rules and change their position on a form.

l Add or delete UI rules.

l Locate properties that use declarative values.

Identifying a UI rule
In the following example, assume you want to identify and examine the section in the harness action
area named pyCaseActionArea.

Follow these steps to find the section in the user form:

1. In the user portal, open the user form.

2. Start Live UI by clicking the Live UI icon.

3. On the user form, hover the mouse pointer over the section you want to review. Note that the
section is also highlighted in the hierarchy tree.

Changing the position of a UI rule
In the following example, assume you want to change the position of a check box control on a form.

1. Start Live UI by clicking the Live UI icon.

315
©2017 Pegasystems

2. In the tree, click the control you want to move. Notice the control highlights on form and in the tree.
In this example, you want to relocate the Former employee check box below the Position applied
for drop-down control so that the check box is above the drop-down control.

3. In the tree, select the control you want to move, then drag and drop it onto the new location. In this
example, you move the check box so it is located above Dropdown-PositionAppliedFor as shown
below.

Adding or deleting UI rules
To add or delete a UI rule, do the following:

1. Select an item in the tree or on the form and click the slide-out icon to open the configuration
menu.

2. In the menu do either of the following:
a. Select Before or After to add an item.

b. Select Delete to delete the item.

316
©2017 Pegasystems

Locate declarative properties
Declarative items are listed with a "D" next to the element's name in the tree as shown in the following
example.

Clicking the is calculated declaratively link on the Info icon popup menu opens the declarative
network display.

For more information about using Live UI, see the PDN article Using the Live UI tool.

https://pdn.pega.com/using-live-ui-tool

317
©2017 Pegasystems

Guidelines for designing user forms
When designing and building a business application, remember that the user interface (UI) is the end
users' view of the application. To be effective, the application UI must meet the needs of the end users,
and be easy to use.

A well-designed application UI provides end users with a better understanding of what the application
is intended to deliver. A good application UI provides the right functionality at the right time to the
right people.

Consider the following guidelines when planning the application UI.

Design an intent-driven UI
This consideration is about providing end users the necessary information when they need it. An
intent-driven UI is a screen where the end users have no problem understanding what they need to
do.

For example, the form used to review a shopping cart for an online order should only display the
relevant information such as the items to purchase, the quantity, and the price of each item. The form
should not contain information for options such as making changes to the billing address. Changing
the billing address is not relevant when reviewing a shopping cart. Making such changes could distract
the user from the task at hand.

By focusing on the intent at any one step in the case life cycle, business users spend less time
searching for the relevant information, thereby becoming more productive.

318
©2017 Pegasystems

Design a model-driven UI
The user interface should be model-driven. This means that UI forms are tightly coupled with the
business process.

The business process determines which user interface is rendered at each step in the process. A
model-driven UI has several benefits, including speedier application development, a UI that is
contextually sensitive to the type of business process you are mapping out, and a UI that responds
rapidly to changes in business rules.

Keep the UI simple and obvious
The best interfaces are almost invisible to the end user. Avoid unnecessary elements and use
meaningful labels that clearly describe the information the business user is working with.

Minimize data elements on the screen to an optimal set that is critical to the intent-driven task.

Focus on what the end users are trying to accomplish. Be aware of where end users are in the process
of achieving their tasks — and what the next preferred action is. End users should not have to guess
how to proceed while looking at a screen.

Use common UI labels and elements
By using common labels and elements in the application UI, end users feel more comfortable and can
get things done more quickly.

319
©2017 Pegasystems

Create patterns in language, layout, and design to help end users complete their tasks. Once end users
learn how to do something, they should be able to transfer that skill to other parts of the application.

320
©2017 Pegasystems

Reusing text with paragraph rules

Introduction to Reusing Text with Paragraph
Rules
Paragraphs enable you to create reusable text pieces that can be used in several different rule types.
For example, you might want to add instructions for the user filling out a form. If the instructions are
defined as paragraphs, those instructions can be reused in other forms or in emails sent by your
application.

After this lesson, you should be able to:

l Identify opportunities for using paragraphs.

l Explain the purpose of paragraphs.

l Configure paragraphs.

l Reuse text with a paragraphs.

321
©2017 Pegasystems

Paragraph rules
To minimize the amount of training that users need to become productive with an application, you
want to add instructions to forms. You also want to notify users of pending assignments with
instructions on what they are expected to do. You can write static text, such as instructions, directly
into the UI and the notification.

Defining static text in paragraph rules allows you to reuse the text across your application. For
example, you can create a paragraph with an instruction and add that paragraph to the form. The
same paragraph can be reused in correspondence.

In addition to reuse, paragraph rules provide the following benefits:

l Paragraphs can convey entire sentences or paragraphs.

l Paragraphs support rich texts including images and links.

322
©2017 Pegasystems

l Paragraphs can include property references. For example, you can include a customer's name in a
paragraph.

The paragraph rule form
Paragraphs are available under the user interface category. Use the paragraph tab to define the
content and appearance of your paragraph. The source button allows you to switch to the HTML source
code. Use the pages and classes tab to identify any clipboard pages from which you want to include
property references.

323
©2017 Pegasystems

Reusing text with paragraph rules
This procedure shows you how to create, reference, and use properties with paragraph rules. In the
purchase application, you want to help users place the order. You create a paragraph containing the
phone number and email of the hotline. The paragraph can then be reused where needed.

Create a paragraph
Follow these steps to create a paragraph:

1. In the User Interface category, select Paragraph.

2. In the Label field, enter a name for your paragraph. Click Create and open.

324
©2017 Pegasystems

3. Enter your text on the Paragraph tab.

Referencing a paragraph
Paragraphs can be inserted in sections, harnesses, and within other paragraph rules. This allows you
to create reusable building blocks of text. In the advanced menu, select Paragraph to include a
paragraph in a section or harness.

325
©2017 Pegasystems

When you include a paragraph within another paragraph or in a correspondence, insert a rule and
select Rule-HTML-Paragraph.

Inserting a property
Instead of hard-coding the phone and email numbers, you can reference properties holding the
values. By referencing properties, you can define the values in a central point.

Click Insert property to specify the parameters for the property you want to insert.

326
©2017 Pegasystems

The values of the properties specified are displayed in the paragraph.

327
©2017 Pegasystems

Configuring responsive UI behavior

Introduction to Configuring Responsive UI
Behavior
Ever-increasing popularity of mobile devices puts high demands on user interface (UI) design.
Applications can no longer restrict themselves to desktop computers. Applications must run on tablets
and smart phones as well.

A responsive UI adapts an application to diverse screen resolutions and sizes. Responsive UI allows
developers to create an optimal user experience regardless of the device.

After this lesson, you should be able to:

l Explain the benefits of a responsive UI.

l Explain the role of skin in UI design.

l Explain how a responsive UI adapts to different display configurations.

l Configure responsive behavior for layouts.

328
©2017 Pegasystems

Responsive user interface
People expect to be able to access applications at any time, not only in the office. Some days a business
person might sit at a desk and enter her expense report on her desktop. Other days, she may use her
smart phone to enter an expense report while waiting at the airport.

You need to account for variations in how users will access an application when designing
applications. Some application development environments require you to create an application for
every device so that the UI renders correctly.

With Pega, you create a single application with a responsive user interface (UI) that adapts to multiple
devices. A Responsive UI enables a layout to automatically adjust to rendering devices. Elements can
move around, resize, or completely disappear depending on the resolution and size of a screen.

There are many benefits of a Responsive UI. You should design applications with a Responsive UI for
the following reasons:

l The layout adapts according to the screen size, and the majority of the application is the same
across all devices. Consistent UI behavior across devices results in a consistent user experience,
easier adoption, faster learning, and fewer errors.

l A Responsive UI leads to lower maintenance costs and easier management. Instead of creating
different layouts for smart phones, tablets, and wide-screen desktops, developers configure a single
form to automatically adjust to different screen sizes.

l With a single code set, a Responsive UI provides an optimal user experience on different devices.
While one user accesses an application on a desktop computer in the office, another user can use a
mobile device during a business trip. This increased accessibility enables an application to reach a
wider user base.

329
©2017 Pegasystems

Presentation layer and UI skins
In Pega UI, a separation between content and presentation exists. The content layer contains data and
structural elements such as sections, layouts, and individual controls. The presentation layer consists
of Skin rules. A Skinrule specifies the visual styling as well as the responsive behavior of the UI.

In a Skin rule, you define style formats that can be applied to UI elements in a section. A style format
specifies a group of styling attributes such as typography, borders, backgrounds, placement, and
alignment.

You can define style formats for UI controls like buttons and links. You can also define style formats for
structural elements like layouts. The layout formats contain configurations for responsive behavior.

330
©2017 Pegasystems

How to trigger responsive behavior with
responsive breakpoints
You build Pega UI with sections. In each section, you arrange the UI elements by placing them inside
layouts. Many layouts in Pega 7 -- such as screen layouts, dynamic layouts, and column layouts --
support configuration of responsive behavior.

For example, you can configure a dynamic layout to arrange UI elements in different formats at
different screen sizes. With dynamic layout configured, the layout arranges content into a double
column on a screen wider than 768 pixels. On a screen narrower than 768 pixels wide the layout
arranges its content in a vertical stack. The screen size thresholds that trigger different UI behaviors
are called responsive breakpoints. You configure these breakpoints in the layout formats defined in
the skin.

Responsive behavior has different meanings in the context of different layouts. When screen size
narrows down, a dynamic layout may change from inline-grid-triple to inline-grid-double, and from
inline-grid-double to stacked. Meanwhile, a repeating grid layout may drop certain columns from the
grid to avoid horizontal scrolling. Refer to the product document when configuring responsive
breakpoints for different layout types.

331
©2017 Pegasystems

How to style applications with UI skins
A UI skin defines the presentation layer of an application. You can associate a Skin rule with an
application or with a portal. The following image shows the skin reference in an Application rule.

The presentation configuration is defined in a Skin rule, in the form of style formats for UI components.
In this example, the skin specifies a list of dynamic layout style formats such as Default, Stacked, and
Inline.

For a style format to take effect, you need to apply the format to a UI element. In the above example,
one of the style formats defined in the skin is named Inline grid double. To apply this format to a
dynamic layout, you reference it from the layout configuration in a section.

332
©2017 Pegasystems

Skin inheritance allows a dependent skin to inherit formats from a parent skin. When a format on the
parent skin is modified, the dependent skin automatically inherits those changes unless the format is
overridden in the dependent skin.

333
©2017 Pegasystems

Configuring responsive breakpoints on a
dynamic layout format
To configure responsive behavior for a dynamic layout, you need to first add and configure responsive
breakpoints on a dynamic layout format. Then, you apply this format to the dynamic layout in a section.

Follow these steps to add and configure responsive breakpoints on a dynamic layout format:

1. To open the skin of the application, select Open Application Skin from the Application menu in the
Designer Studio.

If the style format you want to configure is defined in the parent of the application skin, then open
the parent skin from the Inheritancetab.

2. On the Component Styles tab, select Dynamic layouts from the component drop-down.

3. Select the style format you want to configure in the My Formats column.

4. In the Responsive breakpoints section, check the Enable support for responsive breakpoints.

5. Configure Breakpoint1. Select the format the dynamic layout should use when rendering at the
dimensions specified for this breakpoint. Specify the screen dimension for this breakpoint:

max-width The maximum width at which the dynamic layout will display in the format you
specified for this breakpoint.

min-width The minimum width at which the dynamic layout will display in the format you
specified for this breakpoint. Leave min-width empty when a range is not desired.

6. Click Add breakpoint to add another responsive breakpoint.

7. Save the change.

Applying the dynamic layout format
To apply the style format to a dynamic layout in a section:

1. Open the configuration panel for a dynamic layout in a section rule.

2. From the Layout format drop-down on the General tab, select the dynamic layout format that you
just configured.

3. Save the change.

334
©2017 Pegasystems

Designing a dynamic UI

Introduction to Designing a Dynamic UI
A simple and focused user interface (UI) is immediately intuitive — users know exactly what to do, so
they do not need to guess. Building a dynamic UI is a key component of that simplicity.

A dynamic UI predicts the intention of the user and adjusts the application display to the user context.
The purpose of a dynamic UI is to provide the user with the correct functionality at the correct time. A
dynamic UI efficiently guides the user toward task completion.

After this lesson, you should be able to:

l Describe how a dynamic UI works.

l Configure Visible When conditions to hide/show UI elements.

l Configure action sets for UI interaction.

335
©2017 Pegasystems

Dynamic user interface behavior
In a dynamic user interface (UI), the UI content changes based on a user's interaction with the content.
These changes reduce the UI to the fields essential for the user to maximize efficiency.

While enrolling for a new mobile phone plan, customers may be asked if they are married and if they
have any children. If the answer is yes, the system knows to ask if they are interested in enrolling for a
family plan. The system can then collect personal information for each of their dependents before
moving on to the next question. For single customers with no children, the system skips the family plan
section of the sign-up form and displays the next step, saving customers time and effort.

Using a dynamic UI has many benefits, including the following:

l Real-time response to end-user behavior

l Robust functionality available for most user interactions

l Reduced visual clutter on the screen

l Fewer full page refreshes, resulting in improved UI responsiveness

These benefits lead to a more compelling, modern user experience.

Event-action model
When designing a dynamic UI, you are using an event-action model in the browser-based application.
Think of event and action as a cause-and-effect pair. An event is performed by a user that triggers
changes on the UI. These changes are the action.

During online shopping checkout, users enter the shipping and billing addresses in sequence. After
providing the shipping address, users click a check box labeled use same address for billing. The
section for the billing address then disappears. In this case, clicking the check box is the event, and
hiding the billing address section is the resulting action.

Two types of events exist — property-based events and user events.

336
©2017 Pegasystems

l Property-based events occur either when a data value changes or when a value meets a specific
criteria.

l A user event occurs when an end user takes some action on the page such as selecting an option or
clicking on a link.

Categorizing events into two types simplifies the event-action concept. In practice, these two event
types often overlap. For example, when a user clicks a button (a user event), the action is to set a value
on a property. That action then triggers a property change event.

337
©2017 Pegasystems

Hiding and showing UI elements
Controlling the fields displayed on screen removes irrelevant elements, and that can simplify the UI.
You use visible when conditions to hide or display data fields based on a value entered by the user.

In the following example, users enter marital status in a form. Depending on the value entered in the
Marital Status field, additional fields may be displayed on the screen.

If the user selects Single, no additional input is required.

If the user selects Married, the Date of Marriageand Name of Spouse fields are displayed.

If the user selects Divorced, the Date of Divorce field is displayed.

In the above example, visible when conditions use the Marital Status value to determine when the
Date of Marriage,Name of Spouse, and Date of Divorce fields are displayed.

Configuration options for visible when conditions
You can set Visible When conditions on sections included in another section, on layouts, and on cells.
The conditions are configured in the Visibility field on the General tab of the property panel.

The Visibility options are:

l Always— No visibility condition is on this field, layout, or section; the UI element is always
displayed.

l If not blank— Visible if the value of that field is not blank.

l If not zero— Visible if the value of that field is not zero.

l Condition (expression)— Uses a boolean expression to determine visibility; visible when the
expression returns true.

l Condition (when rule)— Uses a when rule to determine visibility; visible if the when rule returns
true.

Layouts and sections include Always, Condition (expression), and Condition (when rule)options.

338
©2017 Pegasystems

Cells also include If not blank and If not zero options.

Additional options
There are two additional options available when you select a visible when condition.

339
©2017 Pegasystems

The Reserve space when hidden option keeps the space surrounding the control open. This
prevents the UI elements on the screen from repositioning when the visible content is displayed.

The Run visibility condition on clientoption is displayed when you use the If not blank, If not zero, or
Condition (expression)visibility options. When you select the Run visibility condition on clientoption,
all of the possible data that can be displayed is included in the clipboard page.

The system uses the data on the page to refresh the section when the visibility condition is met. If you
do not select this option, the page does not contain the hidden data. The client communicates with the
server to refresh the section. If the hidden content is not likely to change during case processing, select
the Run visibility condition on client option to reduce the number of server trips and avoid page
refreshes.

Configuring Visible When conditions on a UI element
First, identify the UI element target that you want to dynamically show and hide. Then, decide at which
level — section, layout, or field — to apply the visible when condition.

In the following example, you want to display the Date Of Marriage field only when the martial status
is set toMarried. You configure the cell containing the field.

1. Open the configuration panel for the cell containing the marriage date property.

2. Click the Visibility drop-down and select Condition (expression) to control the visibility of the
marriage date property.

3. Configure the visibility expression for the marriage date property so that the expression value is
driven by the marital status value.

340
©2017 Pegasystems

4. Select Run visibility condition on client.

5. Click Submit.

341
©2017 Pegasystems

Action sets
In addition to visible when conditions for showing or hiding fields, you use action sets to configure a
dynamic UI. An action set consists of an event, an action, and (optionally) conditions.

l Event— A trigger performed by the user, such as clicking a button, hovering a mouse pointer over a
field, or entering a value in a grid

l Action — A response performed by the system as a result of the user event (for example, when the
user clicks a button, a case is created.)

l Conditions— Restrictions such as when rules, which can be applied to an event and action
combination (for example, you can configure conditions so that hovering over a field displays a
smart tip message only if the field contains a property value.)

For each action set, you must define at least one event and one action. You define action sets on UI
controls and grids. You can create multiple action sets for a single control or grid.

In most cases, you define action sets on controls. Action sets are configured on the Actions tab of the
control's Cell Properties form.

For grids, action sets are configured on the Actions tab of the Layout Properties form.

342
©2017 Pegasystems

You can define multiple events and actions within an action set. The system executes the actions in the
order the actions are listed.

343
©2017 Pegasystems

An event triggers an action
An insurance claims application includes a Date of loss field. You want to provide a smart tip to explain
the purpose of the field to users. Depending on how long ago the loss occurred, you also want to set a
few property values based on that date.

To implement this behavior, you define one action set for the hover event showing the smart tip, and
another action set to run a data transform that sets the values.

344
©2017 Pegasystems

The smart tip is displayed when the mouse hovers over the date field — regardless of whether the
field is read-only or editable — since you have set the visibility of the hover action set to Both.

When users change the value of the date field that is editable, the change event triggers a data
transform that set the property values.

Implementing action sets
The following table shows a few examples of how you might implement action sets in your UI.

Event Action
Click a control such as button, link, or icon. Opens a new window

Double-click a row in the grid. Opens the row in edit mode

Right-click the entire grid. Shows a menu

Press the Esc key in the keyboard. Closes the assignment and returns to the home
page

Select a value from the state drop-down. Updates the list of counties

Click a check box. Unmasks the password

Enter a value in the quantity field. Calculates the total

345
©2017 Pegasystems

Configuring an action set
Configure an action set if you want a user action (such as clicking a button) to trigger an action (such as
displaying a smart tip message).

1. Open the Properties panel of a UI control.

2. Select the Actionstab.

3. Click Create an action set. An action set section is displayed.

4. Click Add an event in the left column. A menu of events is displayed.

5. Select an event. The event appears in the left column.

346
©2017 Pegasystems

6. Click Add an action in the right column. A menu of actions is displayed.

7. Select an action. The action is displayed in the right column. A section for adding information that is
relevant to the action may also be displayed, as shown in the following example.

347
©2017 Pegasystems

8. Enter the information.

Note: Use the Add an event and Add an action links to include more than one event or action in a
single action set.

9. Click Submit.

Editing or deleting action sets
To edit an action set, double-click the row.

To delete an action set, select the row and click the X.

348
©2017 Pegasystems

Validating user data

Introduction to Validating User Data
When you design a user form, you add all the fields and controls required by the specification.
However, users must enter data that use a format or contain a value the system can process correctly.
Pega provides rules that validate the data and help prevent processing errors when a form is
submitted.

After this lesson, you should be able to:

l Explain the options for ensuring valid data entry by users.

l List the type of user interface (UI) controls that provide data validation.

l Present a dynamic list of data entry options.

l Validate user data using a validate or an edit validate rule.

349
©2017 Pegasystems

Methods of data validation
When you design a user form, you add all the fields and controls that the specification requires. You
must also consider how to ensure that the data values entered by users are valid. Valid data is
required so that the system can process the information without error.

The following list describes a few important design requirements.

l The data must be the right type. For example, a user must enter a number in a total purchase
amount field.

l The data must fit the business logic. For example, a date of birth field is usually in the past.

l The data must be restricted to possible values. For example, a user can only select a valid loan type
by selecting the type from a list of options.

To prevent processing errors, Pega provides property types, controls, and rules that support most
validation requirements.

Properties
Single value properties have property types such as date, decimal, integer, text, or true/false. Selecting
the appropriate property type ensures that users enter a valid value. For example, a purchase price
field that uses a decimal property type ensures that users can enter only numeric values and cannot
enter text.

Controls
Controls are another way you restrict users from entering or selecting invalid values on a form. For
example, when a form requires a date, using a calendar control ensures that users enter a date value.

You can also use controls to allow users to select only valid values. For example, you can use drop-
down lists or radio buttons so that users can only select the available values.

In addition to ensuring valid values, you can make fields required. This ensures that users enter a
value before they can complete an assignment.

Validation rules
You use validation rules when you cannot predict or control the value a user will enter in a form. There
are two types of validation rules: validate and edit validate.

You use validate rules to compare a property against a condition when the user submits a form. A
validate rule is typically referenced from a flow action. If the user enters a value that fails to meet the
condition, the form displays an error when the form is submitted. For example, assume your form
contains a field for date of birth. The property type and control cannot prevent users from entering a
date that is in the future. However, you can design a validate rule to display an error if the user
submits a date that is in the future.

You use edit validate rules with single value, value list, and value group properties to test for patterns.
Edit validate rules are referenced from a property rule. For example, you can configure a zip code
property to reference an edit validate rule that tests whether the entered value has five digits. In

350
©2017 Pegasystems

another example, an email address can reference an edit rule to test whether the entered value
contains an "at" (@) symbol. If the submitted value is invalid, the field displays an error. Edit validate
rules run when the user exits a field if the harness rule is configured to support client-side validation.
Otherwise, edit validate rules are run when the user submits a form.

Note: The standard harnesses provided with the Pega Platform are configured to support client-side
validation.

351
©2017 Pegasystems

Controls
Controls used on forms provide the most common approach to validation. The three most common
ways you can use controls for validation are required fields, editable settings, and control types.

Required fields— Configuring a control as a required field ensures that the user enters a value. If
there is no value, users get an error when they try to submit a form. For instance, assume you design a
form in which users enter a date of birth to qualify for a discounted auto insurance policy. You
configure the date of birth number control as a required field. If the user does not enter a date in the
field, an error message appears when the user attempts to submit the form.

The error message does not appear if there is a date in the field.

352
©2017 Pegasystems

Editable settings— You can use editable settings on controls to restrict the input values to valid
formats. The settings are specific to the control type. For example, you can specify the minimum and
maximum of characters allowed in a text input control. You can also specify that users cannot enter
dates as text — users must select a date from a calender icon control.

Control types— Using the correct control for a specific purpose helps users enter valid values. The
following table shows some example use cases for the different Control types.

Use case Control type How the control helps validation
Users must enter a date that
includes day, month, and
year.

Calendar Selecting a date from a calendar icon helps
ensure that the user enters a date in a valid
format.

Users must select one of
three possible loan types.
The user must see all types
on the form.

Radio buttons Restrict choices to a set of valid values and
allows users to select only one value.
Generally, you use radio buttons when only a
small number of options (for example, fewer
than five) is available.

Users must select one of 10
types of office chairs from a
list. The options do not need
to be displayed on the form.

Drop-down Restricts valid values to the ones that appear
in the list. A drop-down list presents the
options only when the user clicks the control.
This helps reduce the clutter on the form.
Unlike radio buttons, you can configure the
drop-down control so that users can select
multiple values.

353
©2017 Pegasystems

Use case Control type How the control helps validation
Users must select the
country in which they reside
from a list. The user can
enter text in the control to
help find the right country.

Autocomplete When a user enters one or more values in the
control, the control filters the available
options. This helps users find an option in a
list if there is a large number (for example,
more than 20) of possible options.

Users select an option to
purchase extra travel
insurance.

Check box The user can select the check box or leave it
blank. This ensures that a true/false property
is either true (selected) or false (unselected).

For more information about control rules, see the help topic About Controls.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-html-/rule-html-property/main.htm

354
©2017 Pegasystems

Validating with controls
Validating input fields using controls is a simple way to prevent users from entering invalid values in
input fields. Requiring data entry in a field or defining character limits are common methods for
helping users enter the correct values.

Specifying required fields
You can specify one or more controls on a form that requires a user to enter a value. If a user does not
enter or select a value, the form displays an error when the user attempts to submit the form.

Follow these steps to specify a required field.

1. In a section, select the control in which the user must enter a value.

2. Click the gear icon to open the field's properties panel.

3. In the General tab on the Cell Properties panel in the Required drop-down list, select Always so the
user must enter a value under any condition. If you want to make the field required under specific
conditions, select either Condition (expression) or Condition (when rule).

4. In the panel, click Submit.

The field displays an asterisk (*) to indicate that the user must enter a value.

355
©2017 Pegasystems

When a user leaves the field blank and attempts to submit the form, the system displays the
following error message.

Specifying character limits in text controls
You can use editable settings in Text Input or Text Area controls to limit users to a minimum and/or
maximum number of characters.

Follow these steps to specify character limits.

1. In a appropriate section, select the text field you want update as shown in the following example.

2. Open the field's properties panel.

3. In the Presentation tab on the properties panel, enter numeric values in the Min/Max characters
field as shown in the following example. If necessary, you can enter a value in only one field.

4. In the properties panel, click Submit.

When a user enters fewer than 20 characters and submits the form, the following error message

356
©2017 Pegasystems

appears.

357
©2017 Pegasystems

Dynamic lists of data entry items
Autocomplete or drop-down controls display lists of items so users can make valid selections. In many
situations, the items are listed in the control's property. However, if items on the list change frequently,
the list may not display the most current information. For instance, assume your organization lists
office furniture items in a drop-down control. The items may change every few days. When a user
displays the list, that list may not display the most current items.

However, using dynamic lists helps ensure that the items users see on the list reflects the most recent
information. Dynamic lists reference data on the clipboard. Using a data page is the most common
method of sourcing the data. A data page receives the data from a database, and then populates the
clipboard. When the clipboard is refreshed, the data page dynamically updates the list.

Note: A data page is a persistent page on the clipboard, used to cache data for use in an application.
In a future lesson, you learn how to create and populate a data page. In this lesson, you focus on how
to retrieve information from an existing data page.

Using the previous example, assume your organization maintains data for office furniture in a
database. The data includes an item ID and an item name. If you use a data page to refer the data to
the clipboard, a drop-down list can reference the data dynamically and display the items by the item
name. When items are added or removed from the database, the drop-down list displays the currently
available items.

As shown in the following example, when the Shelf item is added to the database, the drop-down list
references the new item from the clipboard.

You can use data page or report definition parameters to filter the clipboard data you want to display.
For example, assume the clipboard contains records for automobile makes and models. When a user

358
©2017 Pegasystems

selects a specific automobile make — such as Ford — in the first drop-down list, the next drop-down
list uses a parameter to display only Ford models.

359
©2017 Pegasystems

How to create a dynamic list
You dynamically list data values in drop-down and autocomplete controls. The dynamic list uses data
on the clipboard that is sourced from a data page, a report definition, or a clipboard page.

There are two major steps to creating a dynamic list. First, specify and identify the source. Then, define
the properties you want to include in your list. To begin the procedure, open the control's properties
panel. The settings are located in the List Source section on the panel.

First, specify the type of list source and identify it. In the Type field, select the type of source. Then,
define the source. The options depend upon the source type. For example, if you select a data page,
enter the name of the data page.

Then, specify the following properties used in the list:

l A property from the source data that identifies the property used in the control

l A property to display the names of the items that appear on the list

l Optionally, a property to use in a tooltip

For example, assume the source data contains information about office furniture products. Each item
is identified by a product ID property, product name property, and product description property. You
can use the properties as follows:

l Product ID — Identify the property that identifies the items in the list (list of office products).

l Product name —Display the names of the items (desk, chair, and lamp).

l Product description — Display tooltip text for each item (for example, a desk item might display "The
desk is solid oak and has three drawers").

For more information
For more information about creating dynamic lists in an autocomplete control, see the help topic
Autocomplete Properties — General tab.

For more information about creating dynamic list in a drop-down control, see the help topic Dropdown
control Properties General tab.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-html-/common/commonlayoutautocomplete_general.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-html-/common/commonlayoutdropdown_general.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-html-/common/commonlayoutdropdown_general.htm

360
©2017 Pegasystems

Creating a dynamic list
You can use a data page, a report definition, or a clipboard page as a source for a drop-down or
autocomplete control. The source provides the data used in the control. You specify the control's
source on the control's property panel. .

Follow these steps to create a dynamic list for a drop-down control:

1. Open the section that contains the control you want to update.

2. In the section layout, select the drop-down control and click the gear icon to open the control's
property panel.

3. Scroll to the List Source section.

4. In the Type field, select a list source type. In the following example, the selected source type is Data
page. The List Source form then displays Data page.

Note: The field(s) that appear after the Type field depend upon the value you selected.

5. In the Data page field, select a data page in this field.

6. In the Property for value field, enter the property you want to use to identify the items on the list.
This is the value you use to set the property specified on the form.

7. Optional: In the Property for display text field, select the property you want to display in the list.

361
©2017 Pegasystems

8. Optional: In the Property for tooltip field, select the property that contains text you want to display
when a user hovers the mouse pointer over an item in the list.

The following image displays a completed List Source section.

9. Click Submitin the properties panel.

10. Click Save in the section.

When users select the Position Applied for drop-down control (beneath the Collect Personal Details
label), the system displays the following items and tooltip.

362
©2017 Pegasystems

Validate rules
Controls and properties help control the type of data users enter. However, these validation methods
cannot ensure that the data is correct in specific business logic. Use validate rules to make sure that
the data conforms to the logic.

For example, you can use a validate rule so users must enter a credit score that is between 600 and
850. An error message is displayed if the value is outside this range.

Validate rules are associated with processes such as flow actions. The association between validate
rules and processes allows you to validate the property based on specific business needs.

For example, two forms may contain the same employee start date property.

l In a job history form, a user enters the start date of an employee who already works at the company.
The user must enter a date before the current date.

l In a new hire form, a user enters a start date for an employee who has not started work. The user
must enter a start date after the current date.

Using two validate rules, you can ensure that the dates conform to the date values on each form. You
do not need to use two versions of the start date property.

363
©2017 Pegasystems

In addition to flow actions, you can use validate rules in other areas of the business process. For
instance, you can use a validate rule in a stage in the case life cycle. A validate rule can ensure that
users have entered the correct data or performed all the processes before the case can enters the next
stage. For example, in an Onboarding application, a resume must be collected in a Collect Information
stage before the case can enter the Interview stage.

KNOWLEDGE CHECK

To ensure that a user selects a value from a drop-down list, you should use a validate
rule.

No. You would configure the drop-down list as a required field.

364
©2017 Pegasystems

How to use validate rules
A validate rule tests an input property against one or more conditions that you specify in the rule. You
use functions to define conditions. Each condition consists of a value to compare, a value to compare
against, and a function that describes the comparison. You associate validate rules with the business
process. Typically, validate rules are associated with a flow action or a stage.

There are two major steps to using validate rules. First, define the conditions. Second, associate the
validate rule with the business process.

Define the conditions
After you have created a validate rule in your ruleset, open the Validate tab. Then, in the Property
field, enter the property that will be compared in a validation condition.

In the Conditions area to the right of the property, use the fields and controls to define a property and
function that defines the comparison condition. You can select from a large set of a standard functions
for you conditions. For example, you can use a standard function to make sure a date is either before
or after the current date.

You can add one or more conditions using the add row icon. Use the AND/OR drop-down field to
indicate the logical relationship between the functions. For instance, you can validate that a user must
have a user score greater than 650 and have a savings account balance greater than USD5,000 in order
to qualify for a promotional credit card interest rate.

You can validate more than one property in the validate rule. Under the a Property field, click the add
row icon to add a property.

Optionally, in the message field, enter a specific text description of the issue so users know how to
correct the issue and successfully submit the form. For example, enter a message that reads, "Value
must be greater than 200," rather than ">200".

Associate the validate rule with the business process
To use a validate rule with a flow action, open your process model. Open the flow action you want to
update. Then, on the Validate tab of the flow action form, select your flow action in the Validate field.

To use a validate with a stage, select the stage in the case life cycle. In the Stage panel on the right side
of the case life cycle, open the Validation tab. Then, select your validation rule in the Set entry
validation field.

l For more information about configuring validate rules, see the help topic Validate form —
Completing the Validate tab

l For more information about using the Validation tab on the flow action form, see the help topic Flow
action form — Completing the Validation tab.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-obj-/rule-obj-validate/validate.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-obj-/rule-obj-validate/validate.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-obj-/rule-obj-flowaction/validate.htm?Highlight=flow action validate
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-obj-/rule-obj-flowaction/validate.htm?Highlight=flow action validate

365
©2017 Pegasystems

Validating a flow action with a validate rule
To validate an input field with a validate rule is a two-step process. First, create and define a validate
rule. Then, update the flow action properties panel to specify the validation rule you want to use.

Create the validate rule
1. In the Application Explorer, right-click the case type in which you want to create the validate rule.

2. Select Create > Process > Validate to open a Create Validate form.

3. Enter a specific name in the Label field. For example, enter "Is Start Date in the Future" for a rule
that validates whether the start date for a new employee is in the future.

4. In the Context area, add the Apply to class and ruleset. Then, select Create and Open. The
Application Explorer displays the Validate form.

5. In the Validate form, enter the property you want to test in the Property field. In the following
example, the value for .Employee.StartDate is tested when a user enters a date and submits the
form.

366
©2017 Pegasystems

6. In the Conditions header, click Add.

7. In the Validation conditions dialog, enter the following information.
Field Information
Select a function [a datetime] is in the [past/future]

If .Employee.StartDate is in the Future

Message Start datemust be later than the current date

The following image displays the completed dialog.

8. In the dialog, click Submit.

The Validation form displays your updates as shown in the following example.

367
©2017 Pegasystems

9. In the validate form, click Save.

Associating the validate rule with a flow action
1. Open the flow diagram for the process you are updating.

2. Right-click the connector that contains the flow action you want to update and select Open Flow
Action. The flow action form opens.

3. On the flow action form, open the Validation tab.

368
©2017 Pegasystems

4. In the Validate field, select your validation rule IsStartDateInTheFuture.

5. Click Save.

When a user enters a date in the Start date field that is not a future date and submits the form,
your error message appears as shown in the following example.

Demo: Validating a flow action with a
validate rule
This video shows you how to configure a validate rule that ensures the date entered by the user on a
form is later than the current date.

Select the Validate rule type in the Application Explorer.

Right-click and select the +Create option.

Enter a name for the validate rule.

Select the property that you want to validate.

Select Add to add a validate condition.

Select the function for the validate condition.

Select the property you want to include in the evaluation.

Add a message that appears if the entered value fails validation.

369
©2017 Pegasystems

Open the flow rule.

Select the flow action and open the flow action rule.

On the Validation tab, select the validate rule.

Create a case to test the validate rule.

In the Start Date field, select a date earlier than the current date.

The validation error appears beneath the Start Date field.

370
©2017 Pegasystems

How to use edit validate rules
Edit validate rules validate character patterns. For example, assume you want users to enter a valid
email address in a field using a decimal property type. However, the field cannot verify that the input
value contains an "at" @ symbol. You can use an edit validate rule to ensure that the field contains the
symbol. If it does not, an error message appears when the form is submitted.

When the email address contains the symbol, the error message does not appear.

371
©2017 Pegasystems

The logic in edit validate rules is written as a Java procedure. Pega provides a large set of the standard
edit validate rules so you do not have to create your own rules.

You can associate a single edit validate rule with a property. You can also reference edit validate rules
in a validate rule. This approach enables you to apply multiple edit rules to a single property.

l To associate an edit validate rule with a property, open the property rule. The property must be a
single value, value list, or value group. Open the Advanced tab and select an edit validate rule in the
Use validate field.

l To use an edit validate rule with a validate rule, open the validate rule. In the Select a function
field, select the function Validation of [Property Name] using [Edit Validate Name]. In the Validation of
field, enter the property you want to validate. Then in the using field, select an edit validate rule.

For more information about standard edit validate rules, see the help topic Standard Edit Validate
rules.

KNOWLEDGE CHECK

You have added a field for entering a U.S. phone number. Do you use a integer data type
or an edit validate rule to validate that the phone number is in the correct format?

An edit validate rule ensures that the phone number contains the correct number of digits. The
integer data type only ensures that the user enters numbers in the field.

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#zstandardrules/rule-edit-validate.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#zstandardrules/rule-edit-validate.htm

REPORT DESIGN

372
©2017 Pegasystems

373
©2017 Pegasystems

Creating reports

Introduction to Creating Reports
Good reports provide the information that business users need to make good decisions. Well-
organized and comprehensive reports help users take advantage of process information stored in a
database. In this lesson, you learn how to use Pega's reporting features to create effective reports that
can support almost any business requirement.

After this lesson, you should be able to:

l Identify the types of reports in applications.

l Explain how columns affect the results of reports.

l Explain how filters affect the results of a report.

l Describe the symbolic options for report filtering.

l Explain how summary reports organize columns.

l Create a report to query and present data.

374
©2017 Pegasystems

Reports
Pega's reporting capabilities allow you to create reports that provide real-time information and analysis
in your application. Business analysts and work managers use reports to assess the performance of
the application. Report information can also be used in the application to allow users to review or
select items from a list or table while working in an assignment.

When you design reports, you must know specifically what information the user or application needs.
You must also know how the information will be used. Business analysts can provide you with
specifications and requirements that were created in project meetings.

For example, the analysts may want a report that shows the number and dates of resolved cases so
managers can monitor process performance. Users who need the reports can get them in their user
portal using the Report Browser feature.

In another example, the analysts may need a report that contains a list of customers and their
purchase orders. The requirement states that when a customer calls a customer service representative
(CSR) to file a complaint, the CSR can view the customer's previous orders on their user forms. You
create a report that populates a grid on the user form that displays the purchase history for that
customer.

When you have your design requirements, you use a report definition to build the report.

375
©2017 Pegasystems

Report definitions
Report definitions retrieve records from a database. You use the report definition to specify the data
from each record that you want to include in the report. The report definition retrieves the data from a
database and returns the results in a table of columns and rows. The rows represent records retrieved
from the database. The columns contain the data values in each record that you want users to see. In
the following example, a report definition returns the case ID, employee name, employee hire date, and
office location for onboarding cases.

376
©2017 Pegasystems

Report columns
Report columns define the report's contents. Each column corresponds to a single data element. The
value in the column can be a value property such as a case ID, last modified date, or work status. You
can format the page in various ways, such as text, currency, or date. For example, you can format
currency properties to include a currency symbol.

The following example demonstrates how you would design report definition to support a report
request.

Transcript
For example, a human resources application processes cases for onboarding newly hired employees.
The organization has three office locations. The facilities manager wants a report to monitor new hires.
The manager wants to see information about new employees so that office space can be prepared for
them. You design a report in the onboarding class that has four columns. Each column includes a
property — case ID, new hire name, date of hire, office location, and salary. When the manager
generates the report, the report populates a list of rows with values for each column.

Defining columns in report definitions is critical to designing reports users need.

Functions
You can use functions in columns to make reports more useful. Functions allow you to calculate results
derived from data in the database. For example, every new hire is evaluated 30, 60, and 90 days from
the start date. A manager wants to see the number of days remaining until each evaluation. The
function calculates the difference between the new hire date and the evaluation date.

You cannot display a page in a column. For instance, if you have an employee data object, you can
return specific properties on the page, but not an entire page.

Pega provides many standard functions you can use without having to create or customize functions.
The available functions appear in a drop-down list when you open the function option in the report
definition.

377
©2017 Pegasystems

Report filters
By default, report queries return all the records that contain data from all the columns. You may want
to only show records that are relevant to your design requirement. For example, your onboarding
application collects information on all new hires. The facilities manager at each location needs a report
that shows when the new hire needs a work space. You use report filters to show only the records your
users need. In this case, the user needs new-hire start dates in the coming month.

A filter compares a data value in the record against a defined condition. If the comparison result is
true, the report includes the record. If the comparison fails the filter tests, the record is not included.

378
©2017 Pegasystems

Assume you work for a company with two locations, Atlanta and Boston. You want to create a report of
onboarding cases only for the Atlanta office location. You create a filter in the report that tests whether
the office location for each onboarding case is Atlanta. When you run the report, the filter returns only
cases for the Atlanta office. If the office is in Boston, that office is excluded.

In the previous example, you use a filter to determine an office location. To create the filter, you define
a filter condition in the report definition. A filtering condition is a logical expression that determines
whether a record is included in the report.

The comparison can be an explicit value or the value of a property. For instance, if you want to create a
report that returns open orders for a customer, you can use the .CustomerName property as the
comparison in the filter condition. The returned records show the open orders for each customer. In
the previous example, the filter condition uses a comparison that states "office location equals

379
©2017 Pegasystems

Atlanta." Therefore, only records that contain the data value Atlanta are included.

You can also use more complex conditions such as testing values that are greater than a specified
threshold, like a date. When you use date or date time column data in your filter, you can select time
periods using symbolic dates. Symbolic dates let you select time periods or dates without having to
build functions. For example, you may want to filter all cases created in the previous month. You can
select the Previous Month symbolic option rather than write a function to define the period.

Sometimes you may need to create a more complex filter to capture multiple filtering conditions.
You can use multiple filters by adding AND/OR conditions. For example, assume you want to filter
out cases with a status of Pending and for the manager Anne Walker. You create two filter conditions.
One filter states the cases equal status of Pending. The other filter states that the manager equals
Anne Walker. Use an AND condition so a record must pass both filters in order to be included in the
report.

Report results for business reports or processes
You can integrate report results in two ways. You can allow users to generate business reports for
monitoring process performance. You can also integrate the results into business processes so users
can generate report information that appears in their user forms.

Processes
You can integrate report results into a business process. For example, you want customers to be able
to review their orders from the past six months. You might add a button to the form that allows users
to review the order history. When the user clicks the button, the application runs the report and
displays a list of previous orders in the form.

Business reports
You can use the results retrieved by a report definition to build business reports. People use reports to
view the status of ongoing or completed work, or to gauge the efficiency of a business process. For
instance, managers use reports to monitor how long cases have been in process or to see which
assignments have taken the longest to complete.

You can use a setting in the report definition that allows users to generate business reports from their
user portal. The portal provides a catalog of reports in a feature called the Report Browser. When you
use the setting, the report is available in the Report Browser. The Report Browser organizes reports by
category so users can quickly identify and run the report they need. Pega provides standard categories
such as Monitor Assignments and Analyze Performances. You can create other categories to help find
reports you have designed to support application-specific requirements.

380
©2017 Pegasystems

How to create a report
Creating a report is a simple process. First, create the report definition rule. Then, add columns in the
report definition form. Finally, add a filter to get the records you want to display.

Optionally, you can make the report available to users in the Report Browser.

Step 1: Create a report definition rule
Create the report definition rule in the same class that contains the records you want to report on. If
you create the report in the wrong class, you do not get results. For example, if you want to report on
cases produced by your application, create the report definition in the application's work class. You can
create report definition rules from the Application Explorer by selecting the specific class and using
the right-click menu Create > Reports > Report Definition.

Give the report a name that clearly describes the report's purpose. For example, use "Monthly New
Employee Space Allocation," not "Facilities." This name enables users to find and identify it when they
search for the name in the Report Browser.

381
©2017 Pegasystems

After you create the report definition, the system displays the rule form as shown in the following
example. The Query tab contains sections for specifying columns, creating filters, and creating
summary reports.

Step 2: Add columns
In the Edit Columns section of the report definition, add a column for each data element you want to
include and select a data element as shown in the following example. The report retrieves from the
database values for each of these data elements. Optionally, use functions if you want to calculate
values not found in the database. Order the columns in the same order you want them to appear in
the report.

When you generate the report, the results show values for each of the column data elements you
defined.

382
©2017 Pegasystems

Step 3: Add a filter
You may want to filter the results so the report definition retrieves the information you need. For
example, you want to display resolved cases instead of all cases. You create filter conditions in the Edit
filters section.

In the Condition field, enter a capital letter to identity the filter. By default, the first filter condition field
is "A." If you add filters, give each filter a unique identifier. When you use more than one filter, you can
specify AND/OR conditions in the filter conditions field.

Name the filter in the Caption field. This name appears in the report header so users know that the
results are filtered.

In the Column source field, select a property reference for the condition.

Identify the data element you want to compare against a defined condition. In the Relationship field,
specify a relationship such as equals or greater than. In the Value field, specify the value you want to
use in the comparison test.

The following example shows a filter for showing only cases resolved by the user.

If you use a date time property in the Column source field, you can use the symbolic date feature to
select a value. The system calculates specific time periods and identifies them by name. This makes
selecting time periods easy. You can also use the feature to select specific dates from a calendar. To
use the feature, click Select values.

Make the report available in the Report Browser (optional)
Use a setting in the Report Viewer tab if you want to make the report available in the Report Browser.
This setting allows users to generate business reports they can use to monitor application
performance.

In the User actions section on the tab, select Display in report browser. In the drop-down list next to
the setting, select the category the report will be located. Categories group reports according to the
type of information the reports contain. Categories enable users to find reports in a user portal Report
Browser.

383
©2017 Pegasystems

Creating a report
When you create a report, you design the report definition in three major steps: create the report
definition rule, add columns, and add a filter. Optionally, you can make the report available in the
Report Browser.

Create a report definition rule
Do the following:

1. In the Application Explorer, navigate to the class in which you want to create the report. The class
determines the cases the report returns. For example, enter TGB-HR-Work to return any of the
cases created in the HR application.

2. Right-click and select Create > Reports > Report Definition. The Create Record form is displayed.

3. In the Label field, enter the name of the report. For example, to create a report that returns cases
resolved the operator running the report, enter WorkResolved byMe.

4. Optional: In the Add to Ruleset drop-down list, select the ruleset in which to save the report. By
default, Pega selects the highest open ruleset and version for the application.

The following image shows an example of a completed Create Report Definition form.

384
©2017 Pegasystems

5. Click Create and open. The Report Definition form is displayed as shown in the following image.

Add columns
In the Edit Columns section on the Query tab, do the following:

1. In the Column source field, select the property to add to the report. For example, to display the
case ID, enter .pyID. This property identifies cases by their ID values. The property values appear in
the first column on the report.

Note: You can also enter the property label to find the rule you are looking for. For example, you
can enter ID to find .pyID.

Optional: In the Column name field, you can keep the default property name or update it. The
property name you select in the Column source field appears by default. This name appears as a
column header on the report.

385
©2017 Pegasystems

2. Click Add column to add columns as needed. For example, add columns as shown in the following
example.

3. Click Actions > Run in the form header to test the report.

The following image shows the generated report.

Add a report filter
In the Edit Filter section on the Query tab, do the following:

1. In the Column source field, select the property to compare in the filter conditions. For example,
enter .pyResolvedUserIDto filter cases by the operator who resolved them.

2. In the Relationship field, specify the relationship between the source and the comparison value.
For example, enter Is equal to only return cases where the source and the comparison match.

386
©2017 Pegasystems

3. In the Value field, enter the value to compare against. For example, to compare against the operator
who runs the report, enter pxRequestor.pyUserIdentifier. This value identifies the user running the
report from session data on the Clipboard.

The following image shows a completed filter.

4. Click Save.

5. Click Actions > Run in the form header to test the report. The following example shows how the
report is displayed. Note that all of the results have a status of Resolved. The following image shows
the filter name Resolved By Me appears in the report header.

Make reports available in the Report Browser (Optional)
In the User actions section on the Report Viewer tab, do the following:

1. Select the Display in report browser check box. When you select the check box, a drop-down field
appears next to the check box.

387
©2017 Pegasystems

2. In the drop-down field, select a report category as shown in the following image.

You can add your own categories by creating a Category rule as shown in the following example.

388
©2017 Pegasystems

Report results organization
The way you format report results helps users easily find and analyze specific information. You can
group and summarize the information for effective business presentations. Additionally, you can
display reports as lists, charts, or graphs to create impact.

Summarizing results
Summarizing reports is useful when users must analyze a large amount of data. While list reports
contain the detailed information a user needs, summary reports allow users to quickly identify the key
statistics they are looking for.

When you generate a report, Pega returns the results as a list of records. You can convert list reports to
summary reports, which summarize one or more columns to calculate counts, totals, or averages. For
example, a user may ask for a count of cases handled by the manager who created them. A list report
could show the same data but would not provide the summary counts that the user is looking for.

389
©2017 Pegasystems

Visualizing summary results
Visual presentation of summary data can be effective for business analysts who want to quickly review
and analyze the data. You can display summary report data in charts or graphs. Using charts and
graphs help users identify trends or statistics quicker than sorting through lists of data. For example,
you can create a line graph that shows the number of cases resolved for each case type over a number
of weeks.

Sorting values in the columns
Users who want to see a sequential ordering of data can sort values in ascending or descending order.
Text characters are sorted alphabetically, and numbers are sorted numerically. You can control which
column is sorted first by specifying the sort order.

For example, the facilities manager wants sort the new hires by start date so that the manager can
prepare the office space. Assume the report orders the columns as Employee, Start Date, and Location.
You select the start date as the column you want to sort first. You then specify the column as the first
one in the sort order. When you generate the report, the employee with the most current date appears
at the top of the list. The other employees are listed in descending order according their start dates.

390
©2017 Pegasystems

391
©2017 Pegasystems

Grouping results
Grouping results helps users easily analyze trends or statistics found on large reports. You can group
report results so that records are grouped in a column you specify. When you group results, the
grouped column values appear once for each group. The rows that contains the column value are
listed under the group by value. For example, you want to show onboarding cases for each office
location. You specify office location as the one you want to group. When you run the report, each
location name appears once in the left column. The cases are grouped in rows next to the location
name.

392
©2017 Pegasystems

Organizing report results
You built your basic report by adding columns and filtering the results. You can organize the results so
that users can easily find and analyze the information in the report.

You can organize report results in three ways:

l Summarize the values in one or more columns. When you summarize report results, you can also
graphically display the summary results.

l Group the results under a column that you specify.

l Sort values in columns.

Summarize the results
To create a summary report, do the following:

1. In the Edit Columns section, identify the data element column you want to summarize.

2. In the Summarize column, select how you want the to summarize the column. If the column
contains text values, you can summarize by count or sum. If the column contains numeric values,
you can summarize them by count, minimum, maximum, average, or sum. In the following example,
you are summarizing the Case ID by count.

3. In the form header, click Actions > Run to test the report.

The results show the count of cases for each of the managers.

393
©2017 Pegasystems

Graphically display summary results
To display a summary report in a chart or graph, do the following:

1. Open the Chart tab.

2. In the Chart editor section, select Include Chart.

3. In the Chart editor, select the type of chart you want. In the following example, you choose a pie
chart.

4. From the Available columns list:
a. Select the column you summarized and drag it to the vertical drop-zone.

b. Select the column you want to measure and drag it to the horizontal drop-zone.

In the following example, you design a pie chart that groups in each section cases by manager.

394
©2017 Pegasystems

5. In the form header, click Actions > Run to test the report.

The chart looks like the following when you run the report.

395
©2017 Pegasystems

Grouping the results
Note: You cannot group summary report results.

To group report results, do the following:

1. On the Query tab, identify the column you want to group the results under and enter 1 in the Sort
order column.

2. Open the Report Viewer tab.

396
©2017 Pegasystems

3. In the Grouping section, select Group results .

4. In the form header, click Actions > Run to test the report.

The following image shows the results.

Sort values in a column
To sort values in a column, do the following:

397
©2017 Pegasystems

1. Open the Query tab.

2. In the Sort order column, enter 1 in the first column you want sorted. Enter 2in the next column you
want sorted, and so on. After column 1 is sorted, then column 2 is sorted.

3. In the Sort type column, select the order to sort the values. The following example sorts the
manager name alphabetically starting with the letter A first. Then, the Case ID values are sorted,
starting with the highest value.

4. In the form header, click Actions > Run to test the report.

The following example shows the results. In the rows under the first column, Manager, the first
letter in the first name begins with "H" and ends with "M" — lowest to highest. The rows under the
second column, Case ID, starts at the highest number for each manager.

398
©2017 Pegasystems

Optimizing report data

Introduction to Optimizing Data
Pega applications allow system architects to improve report performance through a process called
optimization. Optimizing properties allows Pega to extract report data without the need to open each
case.

In this lesson, you learn how Pega stores case data and how data storage affects report performance.
You also learn how to optimize case data to improve report performance for users.

After this lesson, you should be able to:

l Explain the impact of property optimization on report performance.

l Describe how Pega stores case data.

l Explain how property optimization affects properties.

l Optimize case data for reports.

399
©2017 Pegasystems

Data Storage in Pega applications
Pega applications store each case as a unique record in a relational database. Within each record, Pega
stores case data in a binary large object (BLOB) field. Each time an end user completes an action by
clicking OK or Submit, Pega writes the case data to the BLOB field.

Within the database, each record is a row in a database table. Each column in the table displays the
contents of a field from the case record, including the BLOB field. When an end user opens a case,
Pega locates the record in the correct table, then reads the contents of the BLOB column to extract the
case data.

A BLOB field offers three advantages for storing case data:

l Unlimited storage size — BLOB fields are not constrained by size, so a BLOB field can contain any
amount of information.

l Flexibility — Pega writes all case data to the BLOB, so changes to the data model of a case are
contained within the BLOB. Using the BLOB field avoids the need to update the database structure,
or schema, as the data model changes.

l High performance — Since the BLOB field stores all case data, Pega reads and writes the entire case
at one time. This optimizes application performance for end users as they create and process cases.

Using the BLOB penalizes performance for reporting. When an end user runs a report, an application
must decompress the BLOB to extract the required data. For a large number of cases, this process
significantly increases the time needed to run the report.

KNOWLEDGE CHECK

Why is case data stored in a BLOB column?

400
©2017 Pegasystems

The BLOB field provides greater flexibility and performance for case data. The BLOB field is
capable of storing an unlimited amount of data. The BLOB field also allows the data model of a
case to change without impacting database storage. And the BLOB field allows an application to
read or write the entire case at once.

401
©2017 Pegasystems

Property optimization
End users rarely need to retrieve an entire case when running a report. Rather, end users only need
the data elements required by the report. Extracting data from a BLOB impacts performance compared
to reading property values from a database table. This impact is most pronounced when extracting
data for report filters and sorting or grouping the content of a column.

To improve report performance, Pega offers a hybrid data storage model. This model allows
applications to store data both in dedicated data fields and in a BLOB field. To store property values in
a data field, you must optimize the property for reporting.

When you optimize a property, Pega creates a column for the property in a database table. Because the
value of the property is then visible in the table, or exposed, optimizing a property for reporting is also
called "exposing" the property.

When a case uses an optimized property, Pega writes data to both the property field and the BLOB
field. When a report uses optimized data, Pega reads from the property column, rather than the BLOB.
By not decompressing the BLOB field to read case data, optimization reduces the time and memory
needed to run the report.

By default, Pega optimizes properties that store process data such as:

l The creation date of a case

l The status of a case

l The case ID

Properties that store process data begin with the letters px, py, or pz.

Properties created by system architects to store business data are not optimized by default. Reports
that use an unoptimized property display a warning that states the potential impact on performance.
Performance warnings due to an unoptimized property are resolved by running the Property
Optimization tool.

KNOWLEDGE CHECK

402
©2017 Pegasystems

Why are properties exposed, or optimized, for reporting?

Exposing properties allows Pega to read the property value without decompressing the BLOB to
extract the property value.

403
©2017 Pegasystems

Optimizing properties for reporting
Pega provides the Property Optimization tool to optimize properties for reporting.

When you use the Property Optimization tool on a property, Pega exposes the property as a database
column, and populates the new column by extracting values from the BLOB column. For an embedded
property in a page group or page list, the tool automatically creates a new database table for the
property, and the appropriate Index- class and Declare Index rule to update the new table.

To optimize a property:

1. Using the Application Explorer, expand the Data Model node.

2. Right-click a property name and click Optimize for reporting.

3. Select the tables in which you want to create a dedicated database column for this property. You
must select at least one table.

4. If the property is embedded, specify the ruleset and version that is to contain the new Index- class,
the properties in that class, and the Declare Index rule.

5. Select whether to optimize the property now or later. If you select later, click the calendar icon to
select a date within seven days of the current date to optimize the property.

6. Click Next.

7. Review the tables to which the property column will be added and the classes that will be mapped
to each table.

8. Click Next.

9. Click Finish.

Note: Background processing may take minutes or longer, depending on volume. Computations in
your applications involving the property value may fail or produce incorrect results until all
background processing is complete.

You can view the status of your background job by clicking Designer Studio > System > Database >
Column Population Jobs.

You can view the classes for which a property has been optimized on the Advanced tab of the
Property record.

DATA MANAGEMENT

404
©2017 Pegasystems

405
©2017 Pegasystems

Caching data with data pages

Introduction to caching data with a data page
A data page loads data into memory and stores it on the clipboard, making the data accessible to an
application. By storing the information in a data page, you improve application performance since the
data remains on the clipboard for subsequent access. In addition to improving performance, data
pages also increase maintainability of an application by abstracting the data source.

After this lesson, you should be able to:

l Identify the role of data pages in managing data.

l Explain how data pages abstract data from the source.

l Explain the life cycle of a data page.

l Explain the affects of the scope setting of a data page.

l List the sourcing options for a data page.

l List the options for refreshing a data page.

l Configure a data page.

406
©2017 Pegasystems

Data pages
When you create and process a case, you need data. Some data is collected from the user as part of
the case process, while other data is retrieved from the application or from external systems. For
example, if you want to see the claim history for a customer in a claims application, you retrieve
application data. If you need to display customer data held in a system of record, you retrieve data
from an external system.

You use a data page to retrieve data for your application, regardless of the source. Data pages cache
data on demand to a clipboard page and have a scope. The scope defines who can access the data
page. You can make the data retrieved accessible for all applications, or limited to the logged in user or
specific case only.

Every data page defines a refresh strategy. The refresh strategy defines when the data page is
considered stale and needs to be reloaded. Data pages are created and updated on demand. Even if a
data page is considered stale, the page is never reloaded until it is referenced. The available refresh
strategy options depend on the scope of the page.

Data pages can use a variety of sources to load data. A data page provides an abstraction between the
application and data layers. This means that you can use the data page in your application without
knowing the data source. Your application configuration does not need to change if the source does.
For example, you may configure a data page to look up customer data from a database table. If the
interface to the customer data changes to a SOAP web service, you only need to change the data page
source and not the application code.

407
©2017 Pegasystems

How to configure a data page
Before you create a data page, remember to answer the following questions:

l What is the structure of the data page?

l What is the scope of the data page?

l How is the data page sourced?

l When does the data become stale?

You create a data page for a data type from the Data Explorer. The Data Explorer also shows data
pages already defined for the data type.

A data page rule defines the structure, scope, source, and refresh strategy of the cached data.

First, you need to specify the structure of your data page. The structure is either page or list. Choose
page if you want to load a single record (such as a single customer). Choose list if you want to load
multiple records (such as a list of insurance claims filed by a customer). The Object type defines the
class of the page or pages in the list.

A data page is typically read-only, but you can set the Edit mode to editable if you need to update the
data page after it has been loaded. Updates to the data page are only local and not propagated back to
the source.

Next, you need to decide on the scope. You have three options for the scope: thread, requestor, and
node.

1. The thread level scope is useful when the data page is context-sensitive to a particular case. For
example, if a customer service representative (CSR) is simultaneously working on several cases
belonging to different customers, the data page must be defined as thread scope since the
customer data should be limited to a specific case. Setting the scope to thread ensures that the CSR
sees only the data relevant to an individual customer's case. If the data can be shared across cases,
then a broader scope, such as requester or node, should be chosen.

2. The requestor scope allows you to share data pages for a given user session and is often used
when the data page contains data associated with the logged in operator. The work list or local
weather information are both examples of data associated with the logged in operator.

3. The node option makes a single data page instance accessible by all users of the application and
other applications running on a given node. On a multinode system, each Java Virtual Machine
instance has one copy of the node level data page. Node level pages reduce the memory footprint
by storing only a single copy of the data available to all users. Node level pages are an excellent
option for storing common reference data such as currency exchange rates.

408
©2017 Pegasystems

Then, you need to configure the data sources. For list structures the sourcing options include:
connector, data transform, report definition, or a load activity. For page structures, the look-up data
source replaces report definition as an option.

Source Description
Connector Use a connector to obtain data from an external data source as specified

by the connector type.

Data transform Use the data transform option to populate a data page using a data
transform.

Report definition Use a report definition to return a list of data objects mapped in the
application.

Look-up Use the look-up to return a specific data object mapped in the
application.

Load activity The activity can be used for special situations where none of the other
options are suitable.

The Request Data Transform and Response Data Transform allow you to map the outgoing and
incoming data to the application data structure.

409
©2017 Pegasystems

You configure the Refresh strategy on the Load Management tab. The available reload options
depend on the scope of the page. For requestor or thread pages, you can reload the data for each
interaction or upon a when rule evaluating to false. The data page can also be marked for refresh
based on an elapsed time interval calculated from the last load time. If you combine the Do not
reload when and Reload if older than options, the data page refreshes as soon as either condition is
met.

410
©2017 Pegasystems

The refresh strategy for a node level page reloads per interaction and does not reload when options
are not available. Notice the addition of the Load Authorization section prompting you for an Access
Group.

Node level data pages are not executed in the context of a logged in operator since they are available
for all applications on the node. Instead an access group is specified to provide the requestor context
used by the system when loading the node level data page.

Data pages load to memory on demand. A data page remains in memory, on the clipboard, to serve
requests without reloading the data until marked to be reloaded. If a data page is configured to reload

411
©2017 Pegasystems

if older than one hour, then after one hour the page is marked for reload but is not reloaded until the
next request for the page occurs following the one hour mark.

412
©2017 Pegasystems

Configuring a data page
You create and configure a data page by creating the data page, configuring the data page definition,
and configuring the data source. The configuration varies depending on the requirements for the
application. In this example, you configure a data page that holds customer data for a claim case
handled by a customer service representative. The customer data is retrieved from a SOAP connector.

Create data page
Follow these steps to create a new data page for the data type:

1. In the Data Explorer, locate the data type for which you want to create a data page.

2. Right-click the data type to select Add data page. In this example, you add a data page for
Customer data.

3. Enter a Label that is descriptive of the data. The system populates the Identifier based on the Label.
You can leave the default Identifier or change this value.

413
©2017 Pegasystems

4. Select a Context. The system defaults values in the Apply to and Add to ruleset fields.

5. Click Create and open.

Configure data page definition
The data page holds the data for a specific customer record.

Follow these steps to configure the data page definition:

1. In the Structure drop-down, select Page since you want to retrieve data for a single customer.

2. In the Object Type field, enter the class of the page or pages in the list.

3. Leave the Edit mode set to Read Only since the data page will not be manipulated.

414
©2017 Pegasystems

4. Set the Scope to Thread since the customer data is specific to a case.

Configure data source
The data in this example is retrieved from a SOAP service.

Follow these steps to configure the data source for the data page:

1. Provide a System name for your data source.

2. In the Source drop-down, select Connector.

3. In the Type drop-down, select SOAP.

4. Specify the Name of the connector — GetCustomer, in this case.

5. Optionally, specify a Request Data Transform that maps application data to the request.

6. Specify a Response Data Transform to map the data returned by the connector to the application

415
©2017 Pegasystems

data structure.

416
©2017 Pegasystems

Managing reference data

Introduction to managing reference data
Applications often require access to reference data. Reference data is used in the case processing, but
is not directly part of the application. Reference data is often used in the user interface to provide
options for the user. For example, a drop-down can contain a list of store branches for the user to
select from.

Reference data is sometimes retrieved from external systems using connectors. However, in some
cases, the data needs to be stored and distributed as part of the application.

After this lesson, you should be able to:

l Identify the need for reference data in an application.

l Explain the concept of reference data.

l Explain the benefits of incorporating reference data into an application.

l Explain how local data storage manages reference data in an application.

l Incorporate reference data in an application with local data storage.

417
©2017 Pegasystems

Reference data
Every application collects data. Sometimes the values for an input field are limited to a set of values.
For example, a shirt might only be available in the colors white, black, and gray. Similarly, a customer
can typically select standard, express, or next-day shipping options. However, for a specific product the
shipping option might be limited to standard. Reference data defines permissible values for data
fields. Limiting the input values to valid options reduces errors and allows for automation. Reference
data gains in value when it is widely reused and referenced.

Reference data should be distinguished from master data. Master data represents key business
entities, such as customers. Master data contains all the necessary detail — for example, an identifier,
name, address, and date of account creation for a customer. Reference data consists of a list of
permissible options with relevant metadata.

Key Label Description Cost
FREE Free delivery Order arrives 3 to 5 business days after dispatch. 0

STD Standard
delivery

Order arrives 1 to 2 business days after dispatch. 10

EXP Express
delivery

Orders placed before the Express deadline arrive by 1:00 P.M.
the following day.

25

A change to the reference data values may need an associated change in the business process to
support the change. A change in master data is always as part of existing business processes. For
example, adding a new customer is part of the standard business process. Adding a new customer
level — for example, platinum — results in a modification to the business processes to manage
platinum customers.

Reference data is sometimes retrieved from external systems using connectors. In some cases, the
data needs to be stored as part of the application. A local data storage allows you to store reference
data as part of the application. Reference data stored in a local data storage can be packaged and
distributed as part of an application.

418
©2017 Pegasystems

How to use local data storage
Local data storage lets you store data records for a data type without having to manually create or
maintain database tables. The Designer Studio provides a user interface for managing the data. The
reference data in the local data storage can be accessed using a data page in the application.

You can create a local data storage for any data type. To create a local data storage, you first need to
add or identify an existing data type for the reference data. Then, you create a local storage for the
data type. When creating the local storage, you need to specify which property or properties serve as
the unique key for the record. The properties selected as keys form the key in the database table. After
you create the local data source, you can add records to the data source using Designer Studio. The
reference data can be packaged and distributed with the application.

419
©2017 Pegasystems

Defining reference data for an application
To define reference data for an application, you first need to create a local storage for the data type.
Then, add records to the local data storage.

Create a local data source
Follow these steps to create a local data source for a data type:

1. Select the data type for which you want to create a local source in the data explorer. Here you create
a local data source for office branches.

2. Select the Sources tab and click the Create a local source button.

3. The first screen displays the properties that are already available in the selected data type.

a. Click the Plus sign icon to add properties.

b. Click the Trash icon to delete properties.

c. Click and drag the Row icon to the left of the property row, and reposition the property, to
change the order of the properties.

4. Select Use as key on the properties you want to define the key in the database table.

5. You have the option to edit the data page names.

420
©2017 Pegasystems

6. The final screen displays a summary of the created records.

421
©2017 Pegasystems

7. Click Close.

Manage records in the local data source
Follow these steps to add a record to a local data source:

422
©2017 Pegasystems

1. Select the Records tab on the data type.

2. Click the Add record link.

3. Enter the data for the properties. The data is persisted when you leave the field.

4. Click the Trash can icon to remove a record.

423
©2017 Pegasystems

Integration in Pega applications

Introduction to Integration in Pega
Applications
Most businesses have applications that handle a wide variety of business needs. Many of these
applications need to exchange data with each other as well as with external systems. For example, an
enterprise’s order management system handles employee purchases. However, the product system of
record and inventory is maintained in another system. After placing and approving an order, the order
management system needs to communicate the update with the system of record.

Integration enables your application to exchange data with other systems. For example, your
application might need to access data or computations provided by an external system, or respond to
requests from external systems.

After this lesson, you should be able to:

l Explain how connectors exchange data with other systems.

l List the types of connectors available in Pega.

l Explain how services process requests from other systems.

l List the types of services available in Pega.

l Connect to database data using database table class mapping.

424
©2017 Pegasystems

Connectors
Imagine the process of applying for a loan. First, a customer completes a loan application and submits
the application to the bank. The bank enters the customer’s information into the application system.
The bank then verifies the customer's credit score with a credit agency. The bank application must
integrate with the credit agency system to verify the credit score.

In this example, the application requests data from another system. Pega 7 uses Connectors to
facilitate this type of integration. Connectors are protocol specific, and they establish the link to the
external system. Connectors implement the interface of the service running on the external system.
Connectors also map the data structure of the application to the data structure used by the service
called. You can parse, convert, and map data in either direction to or from the clipboard. For example,
you can map data to and from XML, fixed record structure, or a record structure separated by a
delimiter character.

You can invoke Connectors from data pages and activities. Use data pages to read, or pull, data from
the external system. Use activities to write, or push, data to the external system.

How connectors exchange data
The invocation of a connector involves five components:

l Data page or activity — Specifies the connector to use and data transforms for request and
response mapping.

l Data transforms — Maps the data structure of your application to the integration clipboard pages,
which correspond to the format expected by the service.

l Connector rule — Uses the integration clipboard pages to build the request according to the
protocol and service definition, invokes the service, and parses and places the response on the
integration clipboard pages.

l Mapping rules — For most connectors, mapping rules are used to build outgoing and parsing
incoming messages.

l External system — Exposes the service called.

425
©2017 Pegasystems

Look at the steps executed when invoking a connector:

1. The data page or activity executes a data transform to map the data from your application to the
integration clipboard pages.

2. The data page or activity invokes the connector:
a. The connector is initialized based on its type. The type is the protocol the connector supports.

b. The connector maps the request data to the protocol-specific format using the mapping rules
specified for the connector. Do not confuse this mapping with data transforms. This mapping is
between the clipboard and the format required by the protocol.

c. The application sends the request to the external system.

d. The application receives the protocol-specific response. The response data is parsed using the
mapping rules specified in the connector rule and placed on the integration clipboard pages.

e. The connector is finalized and returns control to the data page or activity.

3. Finally, a data transform maps the response data from the integration clipboard data structure to
your application.

Supported connectors
Pega 7 provides connectors for a wide range of industry-standard protocols and standards. Standard
connectors include SOAP, REST, SAP, EJB, JMS, MQ, File, and CMIS.

426
©2017 Pegasystems

Services
To get a 360-degree view of a customer, you must gather information for that customer from several
different systems. One of those systems could be a Pega 7 Platform. For example, if an insurance
claims application is implemented on the Pega 7 Platform, you may need to expose a service that
returns the claims for a specific customer. In this example, an external system requests data from your
application. Pega 7 uses services to facilitate this integration.

Services allow you to expose the data and functionality of your application to external systems. Services
implement the interface of a specific protocol and provide data mapping for outbound and inbound
content. You can parse, convert, and map data in either direction to or from the clipboard. Data can be
in XML, fixed record structure, or separated by a delimiter character format.

How services exchange data
The service listener senses for incoming requests. Service listeners provide the Pega 7 Platform with
information the platform needs to route incoming messages to a specific service. The service listener
establishes a requestor. A requestor is the processing and data associated with the incoming request
initiated by the external system. This functionality is sometimes provided by the underlying Web or
Application Server, and sometimes provided by a Pega 7 listener.

Review the procedure for processing a request from an external system:

1. The service listener instantiates the protocol-specific Service to provide communication with Pega 7
and establish a requestor. The service listener optionally performs authentication.

2. The service parses the incoming request and maps the request onto the clipboard. The service then
invokes the service activity. The service activity provides the logic for the service.

427
©2017 Pegasystems

3. When your service activity is complete, control is returned to the service. The service builds the
response using data on the clipboard, and the service listener sends the response to the external
system.

Supported services
Pega 7 provides services for a wide range of industry-standard protocols and standards, including
SOAP, REST, EJB, JMS, MQ, and File.

428
©2017 Pegasystems

Connecting to an external database
Sometimes your application requires access to reference data in an external database. For example, a
purchase application needs access to currency exchange rates. Exchange rate information is stored in
a table in an external database.

You have two options when integrating with an external database in Pega 7:

l Database Table Class Mapping tool

l SQL connector

The Database Table Class Mapping tool provides a wizard to generate all the artifacts needed to
interact with reference data in an external database. These artifacts include a data class, a database
table instance, and a link between those two artifacts.

The data mapping creates a pass-through from your application to the table in the external database.
When enabled, you can access data in the external database as if the data were within your
application. Using the Database Table Class Mapping tools is preferred when integrating with external
databases.

The SQL connector requires you to write SQL queries to interact with the data in the external database.
Use a SQL connector when you need to perform advanced queries (such as advanced joins), or when
you need to use vendor-specific SQL syntax. Setting up a SQL connector is a Senior System Architect or
a Lead System Architect task. In this course, you use the Database Table Class Mapping tool to set up
your integration.

Database Table Class Mapping tool
Take a look at how you can use the Database Table Class Mapping tool. The tool creates a data class
with the data mapping and a database table instance that references the external table.

Before you begin
Pega 7 requires database record for each database that your application connects to. When the
Database instance has been created and a suitable JDBC library has been installed on the server, you
can connect to and interact with that database.

Run the tool
The Database Class Mappings landing page (Designer Studio > Data Model > Classes & Properties >
Database Class Mappings) shows you all of the existing database table mappings.

1. Click New External Database Table Class Mapping to launch the Database Table Class Mapping
tool.

2. Choose the database, schema, and the name of the table you want to create the mapping for.

3. Enter a ruleset name and version.

4. Enter the name of the data class you want to create. The class cannot exist as the Database Table
Class Mapping tool generates a new class.

429
©2017 Pegasystems

5. Select the columns you want to access and specify the name of the properties you want to map to in
the data class.

6. Click Submit.

The Database Table Class Mapping tool creates a class and properties. The External Mapping tab on
the class record contains the mapping details.

You can use the class created with a data page and the lookup feature to fetch an instance, or with a
report definition to fetch a list of instances. Alternatively, you can use the class created with the Obj-
methods to open, save, and remove rows from the table.

430
©2017 Pegasystems

Creating a connector

Introduction to Creating a Connector
Create and configure a Connector when you want to call a service exposed by an external system. The
connector wizards guide you though the process of setting up the Connector. The wizards generate the
records required to integrate with the service based on the service definition.

After this lesson, you should be able to:

l Explain the role of the connector wizard.

l Explain how connector wizards configure connectors.

l List the connector wizards available in Pega 7.

l Configure a connector to source data for a data page.

l Configure a connector to update a data source with an activity.

431
©2017 Pegasystems

Creating a connector
Pega 7 includes several connector wizards. Using connector wizards speeds up the integration
development. The wizards use metadata, such as a WSDL file or EJB class, to create the connector
records. The created records include classes, properties, mapping rules, data transforms, and an
authentication profile.

All connector wizards follow the same process:

l Upload service metadata

l Configure integration specifics

l Select methods

l Generate records

You can find the connector wizards under Designer Studio > Integration > Connectors:

l Create SOAP Integration — Creates data sources from the operations in external SOAP services
defined in a WSDL file

l Create REST Integration — Creates data sources to obtain data from external REST services

l Create SAP Integration — Creates a data sources from IDoc XSD documents or operations in external
SAP services

l Connector and Metadata Wizard — Creates connectors for EJB, Java, and SQL

Creating a new SOAP integration
The connector wizards follow the same steps when creating an integration. Look at the SOAP
integration wizard as an example. Here, you want to integrate with a weather service.

1. Start the wizard by selecting Designer Studio > Integration > Connectors > Create SOAP
Integration.

2. First, upload the service definition metadata (for SOAP it is the WSDL file). Select Upload WSDL via
URL or Upload WSDL from File and click Next. The wizards analyzes the WSDL and displays the
operations.

432
©2017 Pegasystems

3. Select the operations you want to use in your application. Click the Edit Authentication link to
specify credentials if the service requires authentication.

4. Select a name, parent class, ruleset, and application layer for the integration records. The wizard
adds the new ruleset to your application. Click Create to generate the records.

433
©2017 Pegasystems

5. The last screen displays a summary. Use the Undo Generation button to remove the generated
records.

You can access the wizards used in an application at any time by selecting Designer Studio >
Application > Tools > All Wizards.

6. The wizard creates a base class for the integration. The base class contains the rest of the records.

434
©2017 Pegasystems

In this particular case, you see classes defining the request and response as well as mapping rules.

You can now use the connector in a data page or an activity.

Reading data from an external system
Use the connector with a data page if you want to read, or pull, data from a service. The data page
invokes the connector and makes the data available in your application.

1. Create a data page in your data type. The data returned by the service is mapped to this data type.
Here, the class MyCo-Purchasing-Data-Supplier is used. Select the Connector in the source drop-
down. Then specify the type and name.

435
©2017 Pegasystems

2. The pages are set up in the response data transform if you create the data transform from the data
page form. The DataSource page in the integration clipboard page with the response data.

Your data page is now ready for use in the application.

Writing data to an external system
Use the connector with an activity if you want to write, or push, data to the service. An activity allows
you to call the connector at a specific point in the process. Use an Integrator shape to call the activity in
a flow.

436
©2017 Pegasystems

Assume you have an application in which you want to update a supplier record held in an external
system. Create an activity to map the request data. Invoke the connector and map the response by
following these steps:

1. Set up the integration clipboard page on the Pages & Classes tab. The page should be set to the
class with the integration assets as created by the wizard.

2. Create a new integration clipboard page.

3. Use data transforms to set request data on the integration clipboard page.

4. Invoke the connector. The methods are connector-type specific and start with Connect- (for example,
Connect-SOAP).

See Pega 7 help for details on how to configure each individual step.

APPLICATION DEBUGGING

437
©2017 Pegasystems

438
©2017 Pegasystems

Debugging applications with the
Tracer

Introduction to Debugging Pega Applications
Software applications are rarely — if ever — written free of errors. Finding problems early on and
giving system architects the tools to find problems is instrumental to a successful development cycle.

Some errors in an application are easy to diagnose. Other errors can prove difficult to identify and
resolve. To help you identify and resolve errors in your applications, Pega provides the Tracer to allow
you to review application execution and identify the root cause of errors.

After this lesson, you should be able to:

l Identify the role of the Tracer in debugging applications.

l Use the Tracer to investigate application errors.

439
©2017 Pegasystems

The Tracer
When an error occurs in an application, you need to identify the cause error so you can correct the
application behavior. For example, a declare expression may return an unexpected value. If you forget
to add one of the input properties to a UI form, users cannot provide a value and the declare
expression returns an incorrect result. If you forget to make entry required the field for the input
property, users can submit a form without providing a needed value.

Or, perhaps you use a data page to populate a drop-down list. If the contents of the drop-down list are
incorrect, you need to determine whether the control or the connection to the data source was
configured improperly.

Identifying the root cause of an error is critical to correcting application behavior. You view the events
that lead to the error and determine which behavior to address to fix the issue.

To view events such as these that occur when a case is processed, you use the Tracer. In Pega, the
Tracer allows you to capture and view the events that occur during case processing. Unlike the
Clipboard tool, which presents the current value of properties in memory, the Tracer presents a
complete log of the events that occur during case processing. This allows you to identify the cause of
execution errors, such as Java exceptions or incorrect property values.

To help identify errors in case processing, the Tracer identifies processing steps that lead to an error.
In the Tracer log, most steps return a status of Good, indicating that the step completed successfully. If
a step returns a status of Fail, an error occurred and the step completed unsuccessfully. An error in an
application may indicate only the last step in a sequence of failed steps. Reviewing the sequence of
events in the Tracer helps to identify the root cause that leads to the error seen by users.

440
©2017 Pegasystems

How to investigate application errors with
the Tracer
To investigate an issue with the Tracer, you configure the Tracer to monitor application execution. As
your application executes, Pega logs all the processing events that result from application execution.
You then view the events logged by the Tracer to analyze processing errors and identify their cause.

To open the Tracer, click Tracer on the Developer toolbar. The Tracer logs all of the actions and
events that occur in a requestor session in Designer Studio. Each event is logged in order of
occurrence, and is identified by thread, event type, and status.

Click a line in the Tracer to view details about the event. The details for the step are presented in a
new window. From this window, you can view the contents in memory at the time the event occurred.
When you finish reviewing the event properties, close the window to return to the Tracer.

441
©2017 Pegasystems

Even the events that occur as you use the Designer Studio are logged and displayed in the Tracer. To
suspend the logging of events in the Tracer, click Pause. While the Tracer is paused, the Pause button
is replaced by a Play button. To resume the logging of events in the Tracer, click Play.

When you use the Tracer, you may want to focus on specific parts of your application. The Tracer
provides several options to focus event logging available on the toolbar that runs along the top of the
Tracer window.

Button Function
Settings Select the rule types, rulesets, and events to trace. Also identify

when a step results in a Java exception or a status of Fail or
Warn.

Breakpoints Identify when the application reaches a specific step in an
activity

Watch Monitor a variable to detect when its value changes.

To trace events in another requestor session, click Remote Tracer to connect to the session.

COURSE SUMMARY

442
©2017 Pegasystems

443
©2017 Pegasystems

Next steps for system architects

System Architect Essentials 7.2 Summary
Now that you have completed this course, you should be able to:

l Apply Pega's principles of application design and development to deliver business applications that
are Built for Change™.

l Use Pega Express to model the life cycle of a case that mirrors the way business people think about
how work is completed.

l Directly capture business objectives to help ensure that business requirements are accurately
captured, and that business and IT stakeholders share a common understanding.

l Use Designer Studio to refine and enhance the case life cycle design.

l Identify the tasks and responsibilities of the system architect on a Pega Implementation.

l Configure a case and case processing behavior.

l Create data classes and properties for use in a Pega application.

l Automate decision-making throughout an application to improve process efficiency.

l Design responsive user forms for use on any platform or browser.

l Design reports to deliver key insights to business users.

l Incorporate and manage reference data to allow applications to adapt to changing business
conditions.

l Test your application design to analyze rule behavior and identify configuration errors.

Next Steps
Completion of Pega System Architect 7.2 helps prepare students for the Certified System Architect
exam. To help you study for the exam, enroll in the CSA Practice Exam course in Pega Academy.
Register for the exam.

http://pearsonvue.com/pegasystems

	Course Introduction
	Before you begin
	Pega Business Application Platform

	The Pega Platform
	Introduction to the Pega 7 Platform
	Pega 7 application platform
	Model-based application design and development
	Pega 7 user roles
	Pega 7 user portals
	Pega Express
	Using Pega Express to model the life cycle of a case
	Designer Studio
	Using Designer Studio to refine the life cycle of a case
	Principles of application development

	Capture objectives directly in the application
	Build multi-dimensional applications
	Use a model-driven application design
	Best practices and Guardrails

	Introduction to best practices and guardrails
	Purpose of best practices
	Pega's best practices for project success
	Pega guardrails for application design
	prototyping AN APPLICATION WITH pega express
	Designing a case life cycle

	Introduction to designing a case life cycle
	Case life cycle design
	Case types
	Stages
	Processes
	Assigning work

	Introduction to assigning work
	Assignment routing
	Assigning work to case participants
	Enforcing service levels

	Introduction to enforcing service levels
	Goals and deadlines
	Adding service levels
	Creating user views

	Creating an Application User Interface
	Planning end-user forms
	Configuring user views
	Case Design Using Designer Studio
	Requirements management

	Introduction
	Requirements management
	Managing Requirements
	Business objectives
	Application requirements
	Requirements 101
	Application specifications
	Specifications 101
	Relationship between Pega design artifacts
	Linking specifications to business objectives and requirements
	Best practices for case design

	Introduction to best practices for case design
	Effective process design: collaborate, elaborate, iterate
	Designing intent-driven processes
	Managing case life cycle exceptions

	Introduction to managing case life cycle exceptions
	Alternate stages
	Adding alternate stages to the case life cycle
	Stage transitions
	Controlling stage transitions
	Adding optional business process events

	Introduction to adding optional business process events
	User actions
	Adding user actions to the case life cycle
	Sending correspondence

	Introduction to sending correspondence
	Automating case communications
	Sending an email from a case
	Guiding users through a business process

	Introduction to guiding users through a business process
	Updating the case status
	Adding Instructions
	Adding an Instruction to a step
	Modeling complex process flows

	Introduction to designing complex process flows
	Flow rules
	Flow shapes
	Adding shapes to a flow rule
	Configuring flow shapes and connectors
	Report Planning and Design
	Process visibility through business reporting

	Introduction to process visibility through business reporting
	Business reports
	About the Report Browser
	Working with the Report Browser
	Working with the Report Editor
	Application Design
	The role of the System Architect

	Introduction to the Role of the System Architect
	The role of the system architect
	The building blocks of a Pega application

	Introduction to the Building Blocks of a Pega Application
	Rules and rule types
	Rules and rulesets
	Classes and class hierarchy
	How to create a rule
	How to update a rule
	How to reuse rules through inheritance
	Reviewing class inheritance
	Accessing Applications

	Introduction to accessing applications
	How to manage user access to an application
	Assessing Guardrail compliance

	Introduction to assessing guardrail compliance
	Compliance Score
	How to assess guardrail compliance
	How to address guardrail violations
	Justifying rule warnings
	Case Design
	Creating cases and child cases

	Introduction to Creating Cases and Child Cases
	Case type and case
	Case type relationships
	Adding a top-level case type in an application
	Adding a child case type in an application
	Creating a case during case processing
	Data Model Design
	Data elements in Pega applications

	Introduction to Data Elements in Pega Applications
	Data elements in Pega applications
	How to manage properties
	How to reference a property
	Defining properties
	Setting property values automatically

	Introduction to Setting Property Values Automatically
	Data transforms
	How to set values with data transforms
	The pyDefault data transform
	Setting property values using the pyDefault data transform
	Data transforms and superclassing
	How to configure superclassing for data transforms
	Setting property values declaratively

	Introduction to Setting property values declaratively
	Declarative processing
	Declare expressions
	How to set a property value with a declare expression
	Setting a property value with a declare expression
	Passing data to another case

	Introduction to Passing Data to Another Case
	Data propagation
	Propagating data to another case
	Reviewing application data

	Introduction to Reviewing Application Data
	Data storage in memory
	pyWorkPage
	How to view clipboard data
	Viewing clipboard data
	Setting property values using the Clipboard tool
	Process Design
	Activities

	Introduction to Activities
	Activities
	Activity execution
	Activity parameters
	API activities
	Activities best practice
	Configuring a work party

	Introduction to Configuring a Work Party
	Work parties
	How to add a work party to a case
	Configuring a work party for a case type
	Configuring a service level agreement

	Introduction to Configuring Service Levels
	Service level agreement rules
	The Passed Deadline interval
	How to adjust assignment urgency
	Configuring a service level agreement rule
	Routing assignments

	Introduction to Routing Assignments
	Routing
	Worklists and workbaskets
	Routers
	Configuring routing
	Configuring correspondence

	Introduction to Configuring Correspondence
	How to configure correspondence rules
	How to configure correspondence in a business process
	Configuring correspondence rules
	Circumstancing rules

	Introduction to circumstancing rules
	Situational processing
	Rule circumstancing
	Types of circumstancing conditions
	Circumstancing a rule
	Decision Design
	Automated decisions in Pega applications

	Introduction to Automated Decisions in Pega Applications
	Types of decisions available in Pega applications
	Configuring when rules

	Introduction to Configuring When Rules
	When conditions
	How to configure a when condition using a when rule
	Configuring a when rule
	Configuring decision tables and decision trees

	Introduction to Configuring Decision Tables and Decision Trees
	Decision tables
	How to configure a decision table
	Configuring a decision table
	Decision trees
	How to configure a decision tree
	Configuring a decision tree
	How to unit test a decision table or decision tree
	UI Design
	Designing a UI form

	Introduction to Designing a UI Form
	User interface structure
	Sections and layouts
	How to build a section
	Creating a dynamic layout in a section
	Creating a repeating layout in a section
	How to build sections for reuse
	Live UI
	How to use Live UI
	Using Live UI
	Guidelines for designing user forms
	Reusing text with paragraph rules

	Introduction to Reusing Text with Paragraph Rules
	Paragraph rules
	Reusing text with paragraph rules
	Configuring responsive UI behavior

	Introduction to Configuring Responsive UI Behavior
	Responsive user interface
	Presentation layer and UI skins
	How to trigger responsive behavior with responsive breakpoints
	How to style applications with UI skins
	Configuring responsive breakpoints on a dynamic layout format
	Designing a dynamic UI

	Introduction to Designing a Dynamic UI
	Dynamic user interface behavior
	Hiding and showing UI elements
	Action sets
	Validating user data

	Introduction to Validating User Data
	Methods of data validation
	Controls
	Validating with controls
	Dynamic lists of data entry items
	How to create a dynamic list
	Creating a dynamic list
	Validate rules
	How to use validate rules
	Validating a flow action with a validate rule
	Demo: Validating a flow action with a validate rule
	How to use edit validate rules
	Report Design
	Creating reports

	Introduction to Creating Reports
	Reports
	Report columns
	Report filters
	How to create a report
	Creating a report
	Report results organization
	Organizing report results
	Optimizing report data

	Introduction to Optimizing Data
	Data Storage in Pega applications
	Property optimization
	Optimizing properties for reporting
	Data Management
	Caching data with data pages

	Introduction to caching data with a data page
	Data pages
	How to configure a data page
	Configuring a data page
	Managing reference data

	Introduction to managing reference data
	Reference data
	How to use local data storage
	Defining reference data for an application
	Integration in Pega applications

	Introduction to Integration in Pega Applications
	Connectors
	Services
	Connecting to an external database
	Creating a connector

	Introduction to Creating a Connector
	Creating a connector
	Application Debugging
	Debugging applications with the Tracer

	Introduction to Debugging Pega Applications
	The Tracer
	How to investigate application errors with the Tracer
	Course Summary
	Next steps for system architects

	System Architect Essentials 7.2 Summary

