System Architect Essentials

7.2
Student Guide

© 2017
Pegasystems Inc., Cambridge, MA
All rights reserved.

Trademarks

For Pegasystems Inc. trademarks and registered trademarks, all rights reserved. All other trademarks or service marks are property of
their respective holders.

For information about the third-party software that is delivered with the product, refer to the third-party license file on your
installation media that is specific to your release.

Notices

This publication describes and/or represents products and services of Pegasystems Inc. It may contain trade secrets and proprietary
information that are protected by various federal, state, and international laws, and distributed under licenses restricting their use,
copying, modification, distribution, or transmittal in any form without prior written authorization of Pegasystems Inc.

This publication is current as of the date of publication only. Changes to the publication may be made from time to time at the
discretion of Pegasystems Inc. This publication remains the property of Pegasystems Inc. and must be returned to it upon request.
This publication does not imply any commitment to offer or deliver the products or services described herein.

This publication may include references to Pegasystems Inc. product features that have not been licensed by you or your company. If
you have questions about whether a particular capability is included in your installation, please consult your Pegasystems Inc.
services consultant.

Although Pegasystems Inc. strives for accuracy in its publications, any publication may contain inaccuracies or typographical errors, as
well as technical inaccuracies. Pegasystems Inc. shall not be liable for technical or editorial errors or omissions contained herein.
Pegasystems Inc. may make improvements and/or changes to the publication at any time without notice.

Any references in this publication to non-Pegasystems websites are provided for convenience only and do not serve as an
endorsement of these websites. The materials at these websites are not part of the material for Pegasystems products, and use of
those websites is at your own risk.

Information concerning non-Pegasystems products was obtained from the suppliers of those products, their publications, or other
publicly available sources. Address questions about non-Pegasystems products to the suppliers of those products.

This publication may contain examples used in daily business operations that include the names of people, companies, products, and
other third-party publications. Such examples are fictitious and any similarity to the names or other data used by an actual business
enterprise or individual is coincidental.

This document is the property of:

Pegasystems Inc.

One Rogers Street
Cambridge, MA 02142-1209
USA

Phone: 617-374-9600

Fax: (617) 374-9620

www.pega.com

DOCUMENT: System Architect Essentials Student Guide
SOFTWARE VERSION: Pega 7.2
UPDATED: 02 07 2018

http://www.pega.com/

CONTENTS

COURSE INTRODUCTION 1
Before you begin 2
PEGA BUSINESS APPLICATION PLATFORM ... 4
The Pega Platform 5
Introduction to the Pega 7 Platform ... 5
Pega 7 application platform ... 6
Model-based application design and development 7
Pega 7 USer FOlOS . 9
Pega 7 USer POMalS L 11
PO A EXPI S . e 15
Using Pega Express to model the life cycle of @ case i, 17
DeSigNer STUTIO 19
Using Designer Studio to refine the life cycle of a case .. 22
Principles of application development 23
Capture objectives directly in the application ... 24
Build multi-dimensional applications ... 25
Use a model-driven application design 26
Best practices and Guardrails ... 27
Introduction to best practices and guardrails 27
Purpose of best practiCes | . 28
Pega's best practices for project SUCCESS ... 30
Pega guardrails for application design ... 34
PROTOTYPING AN APPLICATION WITH PEGA EXPRESS 35
Designing a case life cycle 36
Introduction to designing a case life Cycle 36
Case life cycle desigN .. 37
L= 1] < 0] 0= 39
R0 == 40
Pl O LS S S il 42
ASSIgNING WOKK 44
Introduction t0 @sSigNiNg WOIK .. 44
ASSIgNMENt FOULING . 45
Assigning WOork to case partiCiPants 47
Enforcing service levels . . 48
Introduction to enforcing service leVels il 48
Goals and deadlines . 49
Adding serviCe Vel L. 50
Creating USer VieWS . L 51
Creating an Application User Interface ... il 51
Planning end-User fOrmS il 52
CoNfigUINING USer Vi@WS . 56
CASE DESIGN USING DESIGNER STUDIO 61
Requirements management ... 62

©2017 Pegasystems

I OTUC I ON . e e e e e e e e 62

ReqUIreMeNtS MaNa g M Nt | ot 63
Managing ReqUINeMENtS . .ttt 64
BUSINESS 0D C VS 65
Application reqUIremMENtS .. 66
Requirements 10T . 68
Application specifiCations ... 69
SPeCfiCatioNs 10T . 71
Relationship between Pega design artifacts 72
Linking specifications to business objectives and requirements 74
Best practices for case design 77
Introduction to best practices for case design 77
Effective process design: collaborate, elaborate, iterate 78
Designing iNtent-driven ProCeSSeS | 80
Managing case life cycle exceptions 83
Introduction to managing case life cycle exceptions 83
ARErNate Stag S ... 84
Adding alternate stages to the case life cycle 85
A trANS I ONS .. 87
Controlling stage transitioNS 89
Adding optional business process events 91
Introduction to adding optional business process eVentsS 91
[T =T =Tt o] 92
Adding user actions to the case life cycle . 95
Sending correspondence 97
Introduction to sending COrreSPONUENCE e 97
Automating case COMMUNICATIONS ...ttt ettt 98
Sending an email from @ CaSe ... 100
Guiding users through a business process 101
Introduction to guiding users through a business ProCess 101
Updating the Case StatUs e 102
AddiNg INSTrUCTIONS ... 104
Adding an INSTrUCtioN 10 @ STEP - ... e 105
Modeling complex process flows 106
Introduction to designing complex process flows 106
FlOW FULES . 106
FlOW SNaPeS .. . 108
Adding shapes t0 a flowW rUle . 111
Configuring flow shapes and CoNNeCtOrS 114
REPORT PLANNING AND DESIGN 117
Process visibility through business reporting 118
Introduction to process visibility through business reporting 118
o8I L SIS =Y o o] o 119
AboUt the RepOrt BroWS el il 121
Working with the RepOrt BroWS er . 124

Working with the Report EQitOr . il 126

APPLICATION DESIGN

©2017 Pegasystems

The role of the System Architect 129

Introduction to the Role of the System Architect 129
The role of the system architect ... e 130
The building blocks of a Pega application 132
Introduction to the Building Blocks of @ Pega Application 132
RUIES AN FUIE By PO e 133
RUIES AN rUIES TS e 135
Classes and class hierarChy 138
HOW t0 Create @ rUle oo 140
How to Update @ rule il 142
How to reuse rules through inheritance .l 144
Reviewing class iNheritanCe .. il 147
Accessing Applications .l 149
Introduction to accessing appliCations 149
How to manage user access to an application 149
Assessing Guardrail compliance 152
Introduction to assessing guardrail compliance .. il 152
ComMPliaNCe SCOT e il 153
How to assess guardrail compliance 154
How to address guardrail Violations 156
JUSEIfYINg rUle Warning S .. 158
CASE DESIGIN . 160
Creating cases and child cases ... 161
Introduction to Creating Cases and Child Cases L 161
Case tYPe AN CASE ... 162
Case type relatioNShiPS ..o 164
Adding a top-level case type inan application 166
Adding a child case type inan application il 167
Creating a case during Case ProCeSSING e e 169
DATA MODEL DESIGN 171
Data elements in Pega applications 172
Introduction to Data Elements in Pega Applications 172
Data elements in Pega appliCations o i 173
HOW t0 Manag e PrOPeItieS ...ttt et e e e e e e e et e e e e e e e e e 177
HOW t0 referenCe @ ProPeItY ... e 182
DefiNINg PrOPEI S 183
Setting property values automatically 187
Introduction to Setting Property Values Automatically 187
Data tranS OIS 188
How to setvalues with data transforms 189
The pyDefault data transform il 191
Setting property values using the pyDefault data transform 192
Data transforms and sUPerclassing o oo 194
How to configure superclassing for data transforms 196
Setting property values declaratively 198
Introduction to Setting property values declaratively 198
Declarative ProCeSSING 199

iii
©2017 Pegasystems

DeClare EXPreSSIONS ... 201

How to set a property value with a declare exXpression i 206
Setting a property value with a declare eXpressioNn 208
Passing data to another case 214
Introduction to Passing Data to Another Case 214
Data ProPagatioN e 215
Propagating data to another Case il 217
Reviewing application data 219
Introduction to Reviewing Application Data oo 219
Data storage iN MeMO Y L 220
PYWOIKP g e il 222
How to view clipboard data il 223
Viewing clipboard data 225
Setting property values using the Clipboard tool i 226
PROCESS DESIGN 227
ACtIVItIOS 228
INtrodUCtioN 10 ACHIVITIOS 228
ATV S 228
ACHIVITY EXECULION ...ttt e e 229
ACHIVITY PArAIME O S et e e 230
N I Tt 1AV = 231
ACtiVities DSt PraCtiCeo 232
Configuring a work party ... 233
Introduction to Configuring @ Work Party e 233
WV OTK DAt S .. 233
How to add @ Work party t0 @ Case ... oo 234
Configuring @ work party for @ Case P . 236
Configuring a service level agreement 238
Introduction to Configuring Service Levels 238
Service level agreement rUlesS il 238
The Passed Deadline interval ... 239
How to adjust @ssigNment UrgenCY ... 240
Configuring a service level agreement rule 241
ROUtIiNg aSSigNMeNtS . 246
Introduction to RoUting ASSIgNMENtS il 246
(0 1 =S 246
Worklists and WorkbasKets 247
ROU S . 248
CoNfigUINING FOULING . .. e 250
Configuring correspondence ... 255
Introduction to Configuring CorrespONdeNCe i 255
How to configure correspondence rUleSo o e 255
How to configure correspondence in a business ProCess 257
Configuring CorresSpPONdeNCe rUIS e 261
Circumstancing rules . . 265
Introduction to CirCUMStaNCINg FUIES ... e 265
Situational ProCeSSING . il 265
RUle CirCUMS aNCING L. 266
iv

©2017 Pegasystems

Types of circumstancing CoNAitioNS 267

CircUMStaNCiNg @ FUl . 268
DECISION DESIGN 271
Automated decisions in Pega applications 272

Introduction to Automated Decisions in Pega Applications i 272

Types of decisions available in Pega applications 273
Configuring when rules . 277

Introduction to Configuring When RUIeS ... e 277

When CONAitiONS il 278

How to configure a when condition using a when rule ... i 280

Configuring @ When rUle .. 283
Configuring decision tables and decision trees 285

Introduction to Configuring Decision Tables and Decision Trees i 285

DeCiSiON tableS il 286

How to configure a decision table 288

Configuring a decision table 290

DeCiSION tr S . 294

How to configure a decCision tree il 296

ConfiguUring @ deCiSiON tree e 297

How to unit test a decision table or decision tree ...l 300
UL DESIGIN 302
Designing a Ul form . 303

Introduction to Designing a Ul FOorm il 303

Userinterface StrUCtUre il 304

SeCtioNs aNd Y OULS .. 306

How to build @ SeCtioN ...l 308

Creating a dynamic layout in @ SeCtioN 309

Creating a repeating layout in a SeCtiON ... 310

How to build sections for reUSe il 311

LIV Ul 312

HoOW to Use Live Ul . 313

UsSiNg LiVe Ul . 314

Guidelines for designing User fOrmS .. 317
Reusing text with paragraph rules ... 320

Introduction to Reusing Text with Paragraph Rules . . 320

Parag AP TUIES L 321

Reusing text with paragraph rules 323
Configuring responsive Ul behavior 327

Introduction to Configuring Responsive Ul Behavior 327

ReSPONSIVE USer INterface .. 328

Presentation layer and Ul SKiNS ... L 329

How to trigger responsive behavior with responsive breakpoints 330

How to style applications with Ul SKins 331

Configuring responsive breakpoints on a dynamic layout format 333
Designing a dynamic Ul . 334

Introduction to Designing @ Dynamic Ul ... i 334

Dynamic user interface benavior L 335

v

©2017 Pegasystems

Hiding and showing Ul elements e 337

A ON SO e e e 341
Validating user datal 348
Introduction to Validating User Data o 348
Methods of data validation 349
CONIOIS <o 351
Validating With CONtrOlS il 354
Dynamic lists of data @Ntry e L 357
How to create a dynamic ISt . il 359
Creating a dynamiC liSt ... 360
Validate FUIES L 362
How to Use validate rules ... e 364
Validating a flow action with a validate rule 365
Demo: Validating a flow action with a validate rule 368
How to use edit validate rules ... 370
REPORT DESIGN 372
Creating rePOItS 373
Introduction t0 Creating RePOITS 373
RO P OIS . e 374
RO COIUMINS e 376
R PO IS L 377
HOW t0 Create a re POt il 380
Creating @ re PO T L. 383
Report results Organization 388
Organizing rePOrt reSUIS ... 392
Optimizing report data 398
Introduction to Optimizing Data 398
Data Storage in Pega appliCationso 399
Property O IMIZatiON ...t e et 401
Optimizing properties for rePOrtiNg e 403
DATA MANAGEMENT e 404
Caching data with data pages 405
Introduction to caching data with @ data page i, 405
(D=L = N o= =4 406
How to configure @ data Page 407
CoNfigUINNG @ data Page ... oo 412
Managing reference data 416
Introduction to managing reference data, 416
RefereNCe data ... 417
How to use [ocal data StOrageo e 418
Defining reference data for an application 419
Integration in Pega applications ... 423
Introduction to Integration in Pega AppliCations o . 423
CONNE IO S e e e e 424
RS =T T <1 426
Connecting to an external database ... il 428
Creating @ CONNeCtOr 430

vi
©2017 Pegasystems

Introduction to Creating @ CoONNEC 0T o e 430

(@ =T U] == el o o T 1=t o] S 431
APPLICATION DEBUGGING ... 437
Debugging applications with the Tracer 438

Introduction to Debugging Pega Applications
Te TraCOr . 439

How to investigate application errors with the Tracer i 440
COURSE SUMM ARY 442
Next steps for system architects 443

System Architect Essentials 7.2 SUMMarY . 443

vii
©2017 Pegasystems

COURSE INTRODUCTION

©2017 Pegasystems

Before you begin

System Architect Essentials 7.2 overview

In this course, you learn the core principles of application development on the Pega 7 Platform.
Business users and delivery team members use these principles to plan and deliver
business applications faster and more accurately for maximum business value.

You learn how to perform the most common application development tasks to prepare yourself for
your first Pega development project.

Objectives

After completing this course, you should be able to:

Apply Pega's principles of application design and development to deliver business applications that
are Built for Change™.

Use Pega Express to model the life cycle of a case that mirrors the way business people think about
how work is completed.

Directly capture business objectives to help ensure that business requirements are accurately
captured, and that business and IT stakeholders share a common understanding.

Use Designer Studio to refine and enhance the case life cycle design.

Identify the tasks and responsibilities of the system architect on a Pega Implementation.
Configure a case and case processing behavior.

Create data classes and properties for use in a Pega application.

Automate decision-making throughout an application to improve process efficiency.
Design responsive user forms for use on any platform or browser.

Design reports to deliver key insights to business users.

Incorporate and manage reference data to allow applications to adapt to changing business
conditions.

Test your application design to analyze rule behavior and identify configuration errors.

Intended audience

This course is for system architects who are responsible for developing business applications.

Prerequisites

To succeed in this course, you should:

2
©2017 Pegasystems

Know the business processes and policies used at your company.
Have a basic understanding of business application development.
Be familiar with project methodologies such as Scrum, RUP, or Waterfall.

Have some experience developing software applications.

3
©2017 Pegasystems

Pega

~ACADEMY X

PEGA BUSINESS APPLICATION
PLATFORM

©2017 Pegasystems

The Pega Platform

Introduction to the Pega 7 Platform

In this lesson you will learn how the Pega 7 Platform is used to design and run Pega applications.

After this lesson, you should be able to:

Explain the benefits of using a model-driven application design and development approach

Describe the user roles and each role's high-level responsibilities associated with the Pega 7
Platform

Describe the purpose of the run-time portals in Pega 7
Describe the purpose of the design time portals in Pega 7

Describe when to use Pega Express vs. Designer Studio

5
©2017 Pegasystems

Pega 7 application platform

The Pega 7 Platform provides a single, unified platform with everything you need to build or modify
enterprise applications. Business and IT stakeholders work together, using visual models to capture
business requirements. With no coding required, Pega 7 automatically generates the application and
its documentation.

Pega 7 provides a unified application development platform for building business applications.
Traditional application development tools focus on creating individual business applications that must
then be integrated with each other. For example, a company may need to integrate a website
application, a mobile application, and a customer relationship management (CRM) application.

Each application has its own requirements, analytics, and business policies.

Existing business applications may be developed and maintained by separate groups that use
different application development languages, tools, methods, and repositories.

Or an company might have a business rules engine to provide business logic, a development
environment to integrate with external systems, or a document management system to manage case
data. Unifying existing business applications might be unobtainable for a company without outside
help. As a result, sharing and reusing application components when building business applications is
difficult.

The Pega 7 Platform is unified. This means that all the functionality needed for business applications is
configured using a consistent set of components that are defined and stored together in the
company's systems of record. Each business application built on top of the Pega 7 Platform uses a
common set of tools, a common vocabulary, and a consistent model to communicate, implement, and
validate requirements. Business processes and policies, integrations with external systems, mobile
interfaces, business performance monitoring, and reporting are all defined using a consistent, model-
based application development approach. This makes sharing and reusing artifacts easier when
building business applications.

KNOWLEDGE CHECK

./---. 1
[)

What is the significance of a unified platform?

With a unified platform, you configure applications using a consistent set of components. The use of
a consistent set of components reduces application development time.

6
©2017 Pegasystems

Model-based application design and
development

The Pega 7 application development platform uses a model-based approach to application
development.

1. Apply 2. Qualify 3. Approval
Apply Qualify Approval
1. Enter Personal Det... 1. Qualify 1. Approval
2. Enter Job History = -N:H:Ify Candidare H

3. Enter Skills Notify candidate of Qualifying decision via (7)
4 provided email address

Send 1o

Email address
Party

T

LandidateDetails EmailAddress

Subject

*

Interview Results

® Rich text
Correspondenice

I u Font -~ Size

B
A-B- = =2 L H

Your applicaiton for

Send attachments

You use visual, form-based definitions of application components in a model-based approach. No
coding is required.

Application architects can see where application components are placed and how each piece is
leveraged by the rest of the application. By improving the visibility architects have to the overall
application design, all team members can communicate more effectively about the impact of new or
modified requirements. Team members can also identify potential gaps. As a result, updating
processes, user interfaces, and other business rules is easier.

7
©2017 Pegasystems

KNOWLEDGE CHECK

8
©2017 Pegasystems

Pega 7 user roles

Building a successful business application requires collaboration between two parties: case
participants and case designers.

Case participants Case designers
Caseworker Casemanager Business architect System architect

Case participants

Case participants are the business users of the application, processing and closing cases. Case
participants are usually organized by roles. For example, in a credit card dispute case, the roles might
include a customer service representative, a dispute agent, and a fraud investigator.

There are two groups of case participants:

Case workers are responsible for creating, viewing, and working on their own cases and assignments.
A case worker cannot monitor or manage work among other case workers, or view work statistics.

Case managers are responsible for working on cases and monitoring work group status, goals, and
deadlines. Case managers are also responsible for generating work manager reports.

Each case participant group uses a Pega run-time Pega portal specific to the group. Case workers use
the Case Worker portal. Case managers use the Case Manager portal.

KNOWLEDGE CHECK

r

)

If a case manager oversees the efforts of a case worker, what does a case worker do?

Case workers are responsible for creating, viewing, and working on their own cases and assignments.

Case designers

Case designers are part of the delivery team responsible for designing and building business
applications. Case designers use Pega'’s design time portals, Pega Express and Designer Studio.

There are two groups of case designers:

Business architects (BAs), the first group of case designers, work with case participants and other
stakeholders to define business objectives and application requirements. BAs plan application
behavior to address the business objectives and requirements with specifications. These specifications
describe how the application manages and automates work.

9
©2017 Pegasystems

System architects (SAs), the second group of case designers, provide the technical skills needed to
complete the application. SAs configure application assets such as User Interface (Ul) forms, automated
decisions, and correspondence. SAs then review the application with business stakeholders for
approval.

The SAs and BAs work together to ensure the new application reflects business needs. SAs often

prototype application features to help refine the specifications captured by the BAs. These prototypes
help align the application with the business needs.

KNOWLEDGE CHECK

./- : ",
[)

If business architects (BAs) gather business objectives and application requirements, for
which tasks are the system architects (SAs) responsible?

SAs provide the technical skills needed to complete the application. They configure application assets
such as User Interface (Ul) forms, automated decisions, and correspondence. SAs then review the
application with business stakeholders for approval.

10
©2017 Pegasystems

Pega 7 user portals

Pega 7 includes four user portals that provide intuitive, results-focused work spaces.

Design time portals

Application designers can use either of two design time portals, Pega Express or Designer Studio, to
build applications that support a wide range of business objectives at all levels of complexity.

Pega Express

Pega Express is an accelerated application development environment that exposes key elements and
features of the Pega 7 Platform. Use Pega Express to quickly build the case structure and process
steps. Streamlined capabilities let you create a basic application that you can demonstrate to
stakeholders and get their feedback.

All case types =

Sample Case Type

1. First Stage

enera Goal & deadline

Route to
s Current user
Specific user
Work gueue

- Complete this step l .
- 2. Complete next step

‘ Configure view

11
©2017 Pegasystems

Designer Studio

Designer Studio is a robust application development environment that exposes more advanced
features of the Pega 7 platform. Use Designer Studio to refine the case life cycle design. For example,
you can add predefined utilities used to automatically send an email.

:i2. Next Stage v

Step description goes here

A different process

Send to

1. Another step ® Email address

Fa

2. Areview step "
To%

E Send Email
Subject#

Mezzaze

® Rich text

Correspondence

B I U Font ~ Size ~
A- B = = L H

Send attachments ||

Design time users can toggle between Pega Express and Designer Studio.

12
©2017 Pegasystems

Run-time portals

Case participants are assigned run-time portal access based upon each participant's role. Run-time
portals users do not have design privileges.
Case Worker portal

An end user with case worker privileges is able to access to the Case Worker portal. Case worker
privileges enable the user to work on assigned cases.

PEIﬂ' 7] CASE WORKER i SiENMEnT

My Waork L Auto Loan (a1s
My Teams

m Review Loan Loan Offer
Cases
Calendar
Pulse _

Enter Loan Request Details

Tags
Auro Loan Lact Marme

A=15

Case Manager portal

An end user may be assigned case manager privileges.

Pega' J CASE MANAGER + Create > Next Assignment

Dashboard Summary for HR Apps
My Work
My Teams Case stages for Auto Loan v
Calendar
Reports New Loan (1) Review Loan (0) \ Loan Offer (0)
Tags Mew Loan Review Loan Loan Offer
st loan Urgent work
S D Description Category Due =~
A-15 Enter Loan Request Details Auto Loan
13

©2017 Pegasystems

Case manager privileges enable the user to manage their assigned cases and view the status of the
cases assigned to all of their direct reports.

14
©2017 Pegasystems

Pega Express

Pega Express is a design time portal that enables you to quickly create and run applications that model
processes business users follow.

Pega Express allows you to:

« Create cases

« Create user views and fields

« Add or remove existing users from your application

« Define settings for theme, mobile apps, and other tools

In addition to the portal's design capabilities, you may also use the portal to run an application in
simulation mode. This features allows you to test your design as a user would experience it. For
example, you may add fields to a form that is presented to the business user. To test your updates, run
Pega Express in simulation mode. This displays the form as a user would see it while working on a
case. As a user, you enter information in the fields to ensure that your design works as expected.

Designing with Pega Express

To create an application in Pega Express, start by building out the high-level case structure and
processes.

Expense Voucher

E 1. Eriter Expense Det 1. Marager R E1 PNt

You define the phases in the life cycle of a case type, and the processes or work flows that users follow.
By incorporating stages, processes, and steps into your case-type designs, you build robust business
solutions in your application.

Next, you create forms that are associated with assignments or approval steps in the life cycle of a
case.

Expense Vaucher

Enter Expense Details

= B D

Dt cypes

15
©2017 Pegasystems

By defining the fields that are displayed at run time, you can collect information from users or present
case information for review.

Expense Voucher ke N

Hame Type Gpsions

This allows you to build the data model in the context of the life cycle of the case.

Pega Express is ideal for initial Grooming/Elaboration sessions where business and IT stakeholders
collaboratively define the primary case type life cycle. This may include importing existing

specifications and linking them to process steps as you go, or defining new specifications in the context
of the case life cycle.

KNOWLEDGE CHECK

./- . .\.
[~)

Pega Express allows you to run an application in so that you can test your design
as a user would experience using the application.

simulation mode

16
©2017 Pegasystems

Using Pega Express to model the life cycle of
a case

Using Pega Express, you can easily define the high-level case structure and steps of a case.

Transcript

Click

Click

Cases.

Create new case type.

Enter Auto Loan as case type name.

Click

Click

Enter

Click

Click

Click

Enter

Click

Click

Click

Click

Click

Click

Enter

Click

Next.

+ Add field.

First Name and LastName.

Got it.

Life cycle.

Add stages.

New Loan as the name of the first stage.

+ Add stage, and then enter Loan Review as the name of the second stage.
+ Add stage, and then enter Loan Offer as the name of the final stage.
Got it.

Add process®?.

Add processes.

+ Add process.

Enter Loan Details in the first step of the first stage.

+Add Process in the second stage.

Rename the step to Review Loan Details

Click

+ Add process in the third stage.

Rename the step to PresentlLoan Offer.

Click

Click

Enter

Click

Click

Click

Done.

+ New and select the Auto Loan case.

Irshad as the first name, and James as the last name.
Done.

No, advance this case.

No, advance this case, and then click No, Advance this case again.

17
©2017 Pegasystems

You now have a basic case type, which you can further refine by adding user views and other details.

18
©2017 Pegasystems

Designer Studio

Designer Studio is a powerful design-time portal for architects who wish to build and extend Pega 7

a

pplications.

After you create initial case life cycle designs in Pega Express, move to Designer Studio to extend the

a

pplication and refine your designs.

Designer Studio user portal consists of a:

1.

2
3.
4

Work area
. Header bar
Explorer area

. Developer toolbar

Pega® 7 £
Designer Studio @ # vO® 4

Designer Studio work area

Use the work area to view landing pages. A landing page presents information or tools that help
developers to build an application or view specific information on the application. You may open,
review, and edit application artifacts such as requirements, case types, user views, data models, and
reports. Multiple items open in the work area display in separate tabs.

19
©2017 Pegasystems

Designer Studio header

The Designer Studio header provides tools to create and manage application assets.

Use the header to create cases, search for records and launch secondary portals.

(o] [owms]
v v 5

Pﬂga' 7 ODELIEMER STUDIO™

Landing Page menu Liunch Portal meu Saarch fid REESOUFTES THEIL

Designer Studio explorer area

The Explorer area appears as a panel on the left side of the Designer Studio and provides navigation to
specific record types.

Icon Explorer Purpose

Recent Display and access up to the last 20 recently opened records, wizard
items, instance lists, landing pages.

Cases Open and review case types in the current application. The tree
structure helps you identify parent-child relationships. Advanced
options allow you to edit case types and create new ones.

b ©

1 1 Data Review data types in the current application and the data pages
: : : associated with them. You can filter the results by application or

applies to class.

App Review or open the records that belong to the current and built-on
applications. The tree structure organizes rules by class, category, rule
type, and instance.

Records Open a list of records in the system organized by category and type.

Private Review your checked-out rules.

Favorite Review and update your personal or access group favorites.

O <« -

20
©2017 Pegasystems

Designer Studio developer toolbar

SoTracer [ElCipboard [OJLiveUl (@ Performance [Alerts

The Developer toolbar helps users debug applications, tune performance and quickly analyze the
composition of user interface (Ul) components.

Use the:

» Tracer tool to debug rule execution.

» Clipboard tool to view data in memory.

« Live Ul tool to identify user interface elements.

« Performance tool to analyze application performance.
« Alerts tool to view system alerts generated by Pega.
KNOWLEDGE CHECK

.'{ _.\.
| » |
W

Use the to open, review and edit application artifacts such as
requirements, case types, user views, data models and reports.

Work area

21
©2017 Pegasystems

Using Designer Studio to refine the life cycle
of a case

Using Designer Studio, you can easily refine the high-level case structure and steps of a case.
From Pega Express, you can seamlessly to Designer Studio to further refine the life cycle of your case.
Designer Studio provides the same case life cycle view as Pega Express.

You can further refine the basic case life cycle by adding stages that represent exceptions to the
normal life cycle of a case.

Add process steps to the alternate stages. Pega 7 provides predefined utilities for actions such as
sending an email.

Easily reorder steps in a process.

Save your changes and continue refining the case life cycle design.
Easily edit user views.

Add new data fields.

Your changes are immediately available.

Seamlessly transition back to Pega Express. Changes you make in Designer Studio are available in Pega
Express.

22
©2017 Pegasystems

Principles of application development

Introduction to principles of application development

In this lesson, you will learn five key principles of application development.

Objectives

At the end of this lesson, you should be able to:

» State the importance of using Pega's Directly Capture Objectives™ approach to managing
requirements

«» State the benefits of using Pega's Situational Layer Cake™ architecture to design an application

«» State the benefits of using a model-driven application design

23
©2017 Pegasystems

Capture objectives directly in the application

Business application development teams can find it difficult to communicate business requirements.

There may be no common language between the business and IT stakeholders. And, there may not be
a common view of the business goals.

Often, business stakeholders are not sure of what their business needs are. When this happens, IT
stakeholders find it difficult to get the details they need. Business and IT stakeholders must share a
common understanding of the business requirements. You also need a way to ensure business
requirements are current and available to all stakeholders

In Pega 7, you capture business requirements directly in the application. This practice is called Directly
Capture Objectives, or DCO.

DCO ensures business and IT stakeholders share a common understanding of the business
requirements. DCO also ensures the business requirements are up-to-date and available to everyone.

24
©2017 Pegasystems

Build multi-dimensional applications

The critical dimensions of any business are product, region, channel, and customer.

When you conduct business in different countries, you must manage the regulations of each
jurisdiction, and the cultural differences in each region. When you sell multiple products through
multiple channels, you must manage the business rules for selling each product in each channel
separately. When you sell to different types of customers, you must manage each customer's
expectations and preferences.

With some application development platforms, you must create separate copies of the application for
each product, region, or channel. Or, you must create an application that treats all business
transactions the same, regardless of the business context. The result is enterprise applications that are
hard to maintain, and even harder to change

Pega uses a unique application architecture called a situational layer cake.

The Situational Layer Cake allows you to organize your application using the same dimensions as
your business. The situational layer cake makes reusing common policies and procedures easy while
allowing for differences between products, regions, channels, and customer segments.

Pega's unique approach to enterprise application architecture - the Situational Layer Cake - can help
turn the complexity of an ordinary enterprise application into a simple and coherent end-to-end
customer experience.

25
©2017 Pegasystems

Use a model-driven application design

Ask any business person to explain their needs for an enterprise business application.

As they explain their needs, you will notice they do not dive into the details about any particular part of
the application. And, they do not discuss the behind-the-scene technologies needed to make the
business application useful.

When business people explain their needs for an enterprise business application, they describe the
major steps of how work gets done. They talk in terms of a case and a desired outcome, and the stages
that case may go through until the desired outcome is achieved.

What they describe is the life cycle of a case.

To be effective, your application design and development efforts must match the way business people
naturally talk about their work. A case, and its life cycle, is the central metaphor in Pega's model-driven
approach to building business applications.

Rather than drawing complex end-to-end diagrams, Pega 7 allows you to build a visual representation
of the life cycle of a case essentially building the skeleton on which you hang the more detailed
processes. This allows you to establish a business view of the case before debating the details.

26
©2017 Pegasystems

Best practices and Guardrails

Introduction to best practices and guardrails

In this lesson, you will learn best practices for designing and building applications.

Some best practices help you deliver business application development projects successfully. Other
best practices help you design business applications with fewer defects. Following best practices
increases your chances of overall project success.

Objectives

At the end of this lesson, you should be able to:

Explain the purpose and benefits of best practices.

Identify Pega best practices

Identify the most important best practices when building a Pega application
Explain how Pega guardrails indicate flaws in an application design
Describe the information provided in guardrail warnings

Locate guardrail warnings in Designer Studio

27
©2017 Pegasystems

Purpose of best practices

Best practices are well-defined methods or techniques that lead to
desired results. Every best practice has at least one goal. A best
practice is proven to make progress towards achieving its goals. If an
organization follows best practices, it can predict a desired result with
minimal problems or complications.

Best practices are used in everyday life. For example, when preparing
a meal, a best practice is to always use a potholder when touching a
hot pot. The goal is to not burn yourself, and using a potholder is a
proven way to prevent you from burning yourself.

As you design and build your application, establish and follow best
practices to increase your chances of project success. Look for existing
best practices used by your organization and by Pega. Select existing
best practices or create new best practices to meet your goals.
Applying best practices increases the likelihood that your application is
delivered on time and meets all of its design requirements.

Tips for establishing best practices

The standards for establishing best practices can vary, depending upon the needs of the organization
and who is making the choices. You can use several criteria to help choose best practices that will
deliver measurable and predictable performance improvements for your application development
projects.

Is the best practice appropriate for your organizational goals?

To be effective, best practices must address the specific goals of your organization. For example, if an
organizational goal is to ensure the protection of sensitive customer information, a best practice to
outsource developers may not be appropriate — the developers may also be working for the
organization's competitors.

Does the best practice fit with the structure of your organization?

If a best practice places authority in a single person or part of the organization, it does not provide
value if your project teams are supposed to be able to make their own decisions.

Do you have the necessary resources to use the best practice?

Understanding what a particular best practice requires in regard to resources — whether money,
personnel, or skills — is essential. Make sure that your organization can provide those resources
before committing to a specific best practice.

28
©2017 Pegasystems

Is the best practice cost-effective?

If a best practice works well for other organizations but requires an unacceptable amount of money or
time to reproduce in your organization, it will be hard to justify the use of that best practice.

29
©2017 Pegasystems

Pega's best practices for project success

With experience from thousands of Pega project implementations, Pega has defined best practices that
are key to delivering successful Pega projects. Using some of the best practices identified below can
help increase your chances of project success.

Leverage DCO to improve product quality
Directly Capture Objectives (DCO) enables a project team to directly enter business requirements for
an application into Pega.

DCO helps eliminate translation errors, saves the team time and effort, facilitates direct engagement of
business and IT resources around visible working models, and enables project participants to optimally
review work progress.

Pega recommends that all projects leverage DCO as a core part of the delivery process.

Use standard Pega capabilities

Pega 7 has many features and capabilities built into the product. Use Pega capabilities, which have
been tested and proven reliable.

For example, assume part of a case's life cycle requires increasing levels of review. Rather than
building a custom review process, use an approval process available in Pega 7. You can design the life
cycle of a case to support your requirements in a fraction of the time needed to build custom
processes.

Review Case Details
As a reviewer, | want to review the case
1. Decision Case information so | can determine if the case

is walid.

Nera Flow Goal & deadline

Approval tow typ

Cascading -

Autharity matrix ¥

Iterate and test as you build

Use the most agile, iterative delivery model that your organization can adopt. First, separate large
applications into smaller, more manageable components. For example, instead of building the
complete application and then testing the completed application all at once, build and test individual

30
©2017 Pegasystems

processes incrementally. Then, demonstrate completed features to interested parties who can provide
feedback.

-] @

Begin testing early in the project life cycle to drive higher levels of product quality. Test each new
feature or capability to make sure it works. Then, test the system for processing issues that may affect
performance. Also, check to see if the new features work together without error. Finally, have analysts
test the application to make sure the application meets the requirements and business objectives.

Communicate project progress at all levels

Regular communication among all project participants helps teams focus on the right issues in a timely
manner. Pega recommends the following:

« Daily standup meetings to set priorities for the day, ensure alignment, and eliminate any blockers.

« Weekly project updates to track issues and update the status report. Flag conditions that need
immediate attention to keep projects moving on schedule.

« Biweekly or monthly meetings to review the entire project and determine whether the application
conforms to the original design objectives. Promptly incorporate feedback into project design, and
revise project plan if necessary.

Ensure project team members are certified

Project success depends on a complete and capable team. As a guideline, Pega recommends that all
team members hold the appropriate certifications for their roles.

31
©2017 Pegasystems

PecA

CLSA

f

e
=1

Pega recommends that business architect and project management resources pass the Certified
Business Architect exam. All developers should, at a minimum, pass the Certified System Architect
exam.

Follow Pega guardrails

Pega guardrails help ensure that you use best practices for configuring Pega applications. Pega's
powerful capabilities offer many possible approaches to create a specific design requirement. Not all
of those approaches are the best solution. Pega provides standard guardrail capabilities that enable
development team members to track compliance with Pega best practices. Compliance with the
guardrails results in applications that are easier to maintain and upgrade, and have significantly fewer
defects than non-compliant applications.

@

Collaborate with everyone invested in the success of the
project

Collaborate with individuals interested in making your project succeed. Bring business users, business
analysts, and system architects together so they can share their unique skills and viewpoints. For
example, business users and business analysts who have in-depth knowledge of the business process
can help capture accurate requirements as well as design and optimize business processes. System
architects can help provide guidance on the best way to implement a business requirement.

32
©2017 Pegasystems

KNOWLEDGE CHECK

./- .\.
| =

e What are the possible consequences of not following best practices and guardrails when
designing and building an application on the Pega 7 platform?

When not following best practices, you may spend more time re-creating existing functionality, or
debugging a component that is not well designed. There is also the risk that you will implement a
feature that does not work correctly.

33
©2017 Pegasystems

Pega guardrails for application design

Following best practices when designing and building an application is important. To help ensure your
project's success, Pega guardrails help you and your team track whether an application conforms to
Pega's best practices.

Following best practices can help you deliver applications that require less maintenance, have fewer
defects, and can be easily upgraded compared to applications that deviate from best practices.

As you work with Pega 7 you will see messages.
These messages are important; they are known as guardrails.

Guardrails help to ensure that the application you create follows the known best practices for Pega 7
development.

When creating an application it is always a good idea to follow the best practices for whatever
technology we are working with. What happens if we don't follow known best practices?

By not following best practices we add increased risk that our application development effort could go
off course and not. The application does not work as well as it could or should. It can also make the
application difficult to maintain and update.

It is also possible that our application can get out of control and crash the project entirely.

Guardrails are best practices and guidance about situations that contain risky conditions or that might
result in an undesirable outcome.

Guardrails ensure you and your team use Pega 7 the right way and help you avoid troublesome
situations.

34
©2017 Pegasystems

PROTOTYPING AN APPLICATION
WITH PEGA EXPRESS

©2017 Pegasystems

Designing a case life cycle

Introduction to designing a case life cycle

Effective case management requires individual contributors to complete steps in a coordinated
manner so they can resolve cases efficiently. A case life cycle design is a visual model used to define
the major steps of how work gets done. Case life cycle design provides a more natural, business-
friendly way to develop an application.

Objectives

At the end of this lesson, you should be able to:

« Explain the purpose of case life cycle design

« Describe the elements of a case life cycle

« Explain the relationship between case types, stages, and process steps
« Create a case type using Pega Express

« Add stages and process steps to a case type using Pega Express

36
©2017 Pegasystems

Case life cycle design

Business applications are the foundation of every organization. Business applications automate work
that must be completed to achieve specific business outcomes. For example, opening a new account,
filing an accident claim, or ordering merchandise online.

I'm somy you did not receive your order
Let me see if | can find out what
happened. | will call vou back when | find
something out

@ || 33 || ©
33 || %
hd o6

website CRM Accounting Supply Chain
app app app app

e
i

Shipping
Dept app

Traditional business applications are based on individual transactions and are built as standalone
applications for different departmental functions.

These separate applications make it hard for business users to complete work in a coordinated
manner. When working with separate applications, business users lack the visibility they need to
effectively achieve business outcomes.

A business view of work

To help business users effectively achieve business outcomes, business users need a way to work in a
coordinated manner. Business applications should function in the same way business users naturally
think about and describe their work.

New Order >> Processing >> Fulfillment >> Shipping >

A customer Accounting The items are The items are
places an processes the picked from packaged and
order payment inventory shipped

Business users often think of the work they do — investigating a fraud claim, processing a loan
application — as a case.

A case is work that delivers a business outcome. The outcome of a case is a meaningful deliverable
provided to a customer, partner, or internal stakeholder. A deliverable can be processing an auto-
insurance claim, onboarding a new mortgage, or designing and releasing a new product. In all these

37
©2017 Pegasystems

examples, the work to be done can be defined in terms of its resolution (the insurance claim is paid,
the new account is opened, or the new product is released).

Business users understand, and work with the case as it moves from one person to the other, from one
part of the organization to another. What business users are describing is the life cycle of a case —
how they manage the case as it is opened, worked on, and resolved.

Design your application using a business view of work

A case is the central metaphor in Pega's model-driven approach to application design.

Case life cycle design is a modeling technique Pega uses to describe, in business terms, how a
business application should work. Case life cycle design allows business users to see, and interact with
a case in the same way they think about it.

First Stage >> Next Stage >> Stage .. >> Last Stage >

Cases are organized into high-level milestones, known as stages. Stages are the first level of organizing
the different tasks, or processes required to complete work associated with a case. Stages help to
organize the life cycle of a case around the key events that support the primary goal of the case.

Stages are further organized into processes which define one or more paths the case must follow.
Processes contain a series of actions, or steps that must be completed to resolve the case.

KNOWLEDGE CHECK

L
| »r |
W A

ANEWER A delivers a meaningful business outcome to a customer, partner, or
internal stakeholder.

case

38
©2017 Pegasystems

Case types

A case type is an artifact in Pega used to define the tasks and decisions needed to resolve a case.

Accident Claim

Motice of Loss > > Investigation > > Settlement >

Online Order

Mew Order >> Processing >> Fulfillment >> Shipping >

Each case type captures the life cycle of a specific type of case, from creation to resolution.

Guidelines for identifying and naming case types

Case types are generally named after the case they represent. For example, a case type used to
process loan applications for a new vehicle might be named Auto Loan, while a case type used to
process mortgage applications might be named Home Loan.

The name given to the case type is usually only one or two words. For example, a case type used to
open new accounts might be named New Account.

Use names that are relevant and meaningful to the business users. For example, a case type used to
process auto accident claims might be named Accident Claim.

Use a singular context when naming case types. For example, a case type used to process a fraudulent
credit card charge might be named Fraud Claim.

39
©2017 Pegasystems

Stages

A stage is the first level of organizing work in your case type. It contains the workflows, or processes,
that users follow before they can move a case to the next phase in the case life cycle.

1. First Stage >> 2. Next Stage >> 3. Stage .. >> 4. Last Stage

By capturing business requirements in stages, you get a sense of what needs to be done first, what
must happen in sequence, and what can happen in parallel during case processing. In a case life cycle,
stages that lead to the expected outcome are called primary stages. The sequence of primary stages
is often referred to as the happy path.

1. Foundation >> 2. Frame >> 3. Roof

As an example, consider the construction of a new home. If you were asked to organize the tasks
required to build a house into key phases of construction, you might organize the tasks in a series of
three stages. The foundation of any building is always the first phase. Then the house itself — the
frame — is constructed. Finally, the roof is added.

Each stage represents a distinct phase of the home construction case life cycle. In the home
construction example, foundation, framing, and roofing are primary stages that lead to the completion
of the house which is the business outcome.

Guidelines for defining stages

To define stages, consider the following guidelines.
Organizing stages

QPH stomer Loan Officer Ol_lnanl“ Dept OTrtlD fficer
1. Origination > > 2. Pre-Qualify > > 3. Underwriting > > 4. Closing

Stages typically represent the transfer of the case from one authority to another, or from one part of
the organization to another. Stages may also represent a significant change in the status of the case.

40
©2017 Pegasystems

Naming stages

1. Origination > > 2. Pre-Qualify > > 3. Underwriting > > 4. Closing

Use names that are most meaningful and relevant to the business users. Use a noun, or noun phrase,
to describe the context of the stage. As much as possible, try to limit the stage name to no more than
two words.

Number of stages

1. First Stage > > 2. Next Stage > > N. Stage ... > > 7. Last Stage

Consider limiting the number of stages in any given case type to 7, plus or minus 2. If you find yourself
needing more than 10 or so stages, consider combining one or more stages, or using a separate case

type.

On the minimum side, do not be concerned if a case has only one or two stages. Focus on maintaining
a maximum number of stages in any given case type and the minimum will work itself out.

KNOWLEDGE CHECK

v A is used as a first level of organizing work in a case.

stage

41
©2017 Pegasystems

Processes

In a case life cycle, processes are organized within stages and define one or more paths the case must
follow. You add a process to a stage in a case type to define a set of tasks that users accomplish as they

work on a case.

>> 4, Last Stage

Process steps

A process contains a series of tasks, or steps. A step can be an action that a user performs, an
automatic action performed by the application, or other processes that contain a separate set of

actions.

1. First Stage >> 2. Next Stage >> 3. Stage ..
Process Process Process Process
Process Process Process
Process

1. First Stage

3. Stage ..

> > 4. Last Stage

Proces:
@ User action

pp e)

Automated action

@ Otherprocess

By organizing related tasks into processes, you can control how, when, and by whom work is performed
in each stage of the case life cycle.

Guidelines for defining processes

Naming processes and steps

When naming processes and steps, use a “verb + noun” naming convention (ex. perform “this action”

on “this object.”)

42

©2017 Pegasystems

1. First Stage > > 2. Stage ... > > 3. Stage ... >

Submit Loan Review Loan Underwrite Loan
Enter personal details Decision loan Verify financial details
Enter loan details Notify customer

Consider every process as a distinct action taken to help resolve a case. Every process should have a
goal that can be expressed as a singular outcome.

Organizing process steps

Consider limiting the number of steps in each process to five, plus or minus two.

1. First Stage >> 2. Next Stage >> 3. Stage ... >> 4, Last Stage

Froces:

If more than seven obvious steps are needed, consider breaking down some steps into other
processes.

KNOWLEDGE CHECK

ANEWER In Pega 7, are organized within stages and define one or more paths
the case must follow.

processes

43
©2017 Pegasystems

Assigning work

Introduction to assigning work

In most business applications, more than one user works on a case until the case is resolved. Effective
case design includes routing the right information to the right individuals at the right time.

Assignments allow you to determine the order in which users perform different tasks. The order in
which the assignments are completed is managed through routing. Correctly routing work allows the
right decisions to be made in a timely manner.

In this lesson, you will learn how to route an assignment to the correct user.

Objectives

At the end of this lesson, you should be able to:
« Describe the role of routing in a case

» Assign work to case participants

44
©2017 Pegasystems

Assignment routing

When processing a case, it is common that more than one person completes works on the case. For
example, when creating an expense report, an employee creates the report, a manager approves it,
and payroll sends the money. That's three sets of people working on the same case.

EXPENSES

Employee Manager Payroll
Creates Approves Sends
Report Report Money

As part of modeling a process you define where the work should go. Assignment steps define the work

to do. The question you need to ask yourself when designing your assignment is: who should do the
work?

You route the task to a single user if the current user should perform the task or you know the user to
route the work to. For example, you would route to the current user if you have several data collection

screens since the current user would likely perform them all. You would route to a specific user in the
situation where you have an expense report approval process. The user who starts the expense report

can't approve their own expenses. Instead you route the approval task to the manager of the employee
to approve it.

45
©2017 Pegasystems

Manager
A.Ep-ru'-.'es
teport

Employee
Personal
Inficy

ENTER EXPENSES

ENTER EMPLOYEE INFORMATION
Expense Name

First Name
Expense Date
Last Mame
. Amount
Date of Birth Expense Type
SFreet Address Expense Name
gltjf Expense Date
Fate g Amount
Zip Code Expense Type

You route a task to a group of users if a set of users could complete the task and it does not matter

which user completes the task. For example, after a user completes an auto insurance claim, it does
not matter which claim processor reviews the claim. The task can be routed to a work queue where
claim processors go to get claims.

ALAL

46
©2017 Pegasystems

f

Assigning work to case participants

You configure routing as part of the step configuration. When you configure routing, you specify what
user or group of users should complete the assignment. You configure routing using the context
properties panel for the step.

The table below provides a list of who you can route assignments to.

Value Description
Current The task is routed to the user who completed the previous task.
user
Specific The task is routed to a specific user— either a user name or reporting manager.
user
Work The task is routed to a queue where any user with access to that queue can complete
queue the task.

Follow these steps to configure routing:
1. From a case type, select the step you want to configure routing for.

2. Select who to route the task to.

1. stage one General Goal & deadline
Route to
EAStep H » Current user
Specific user
Work queue

f
]
5]
[45)

e}

3. Click Done to save your changes.

47
©2017 Pegasystems

Enforcing service levels

Introduction to enforcing service levels

End users complete assignments and resolve cases to achieve performance milestones. These
milestones are called service-level agreements (SLASs).

SLAs outline an expectation of service provided by a business to their customers. They stipulate the
amount of time in which the business intends to respond to the issue. For example, end users must
resolve customer complaints within 24 hours or complete cases in five business days.

Objectives

At the end of this lesson, you should be able to:

« Explain the purpose of goals and deadlines

« Explain how goals and deadlines can be used to improve case processing
« Explain the effect of urgency

o Describe the effect of an escalation action

48
©2017 Pegasystems

Goals and deadlines

Case types model how and by whom work is completed, but equally important is how timely the work is
completed. For example, if a customer submits a loan application, the customers should be able to
expect a response withing a reasonable amount of time

A Service Level Agreement (SLA) helps ensure work completes within the expected time intervals.

You define service levels to define the expected resolution times for a step or case. An SLA contains
three time interval milestones.

A goal milestone defines how long the assignment should take and is typically measured from when
the step or case started.

A deadline milestone defines the longest amount of time the step or case may take before it is
considered late. It is also measured from when the step or case was started.

A past deadline milestone defines when you may take further action if the step or case is too far past
the deadline.

You define an urgency from between 10 and 100 for each milestone. The higher the value, the higher
the urgency. Typically, the urgency increases as an assignment advances to the next milestone.

Note: You cannot configure the Past Deadline milestone in the Case Designer. If you have a
requirement to use that time interval, document the details in the user story so a system architect can
implement it.

KNOWLEDGE CHECK

| ™ |

o You are designing an SLA for a mortgage request life cycle that includes a step in which a
user collects the applicant's loan history. It is expected that the user completes this step within 24
hours when they receive the case. If the step is not completed within 48 hours, the case is considered
late. What milestones and values do you use to support this requirement.

You enter a value of 24 hours in the goal milestone, and enter a value of 48 hours in the deadline
milestone.

49
©2017 Pegasystems

Adding service levels

Adding a service level to a case

To create a service level for an entire case:

1.

vk wN

In a case type, click Life cycle

Click Settings.

Click Goal and Deadline to configure a service level.
Select Consider goal and deadline.

Select when the timer for the goal starts.

Option Description
This case Starts the calculation when an instance of your case type is created
Parent case Starts the calculation when the parent of your case type is created

Top level case Starts the calculation when the top-level parent of your case type is created

6. Enter the goal.

Enter the deadline.

Click Save.

Adding a service level to a step

To add a service level to a step:

_

© 0 N o Uk~ W N

. In a case type, select the step to add a service level to.

Click Goal and Deadline to configure a service level.
Enter the goal.

Enter an Increase urgency by value.

Choose an escalation action.

Enter the deadline.

Enter an Increase urgency by value.

Choose an escalation action.

Click Save.

50
©2017 Pegasystems

Creating user views

Creating an Application User Interface

Introduction

Users perform tasks by entering information in forms. Application developers design forms so that
users can enter the correct information to complete a specific task. This lesson helps you learn how to
collect the necessary information when planning a new form, use a Pega configuration tool to map the
information to your new form, and configure the fields..

Objectives

At the end of this lesson, you should be able to:

« Describe the role of user forms in completing tasks

« Remember the three questions to ask when planning the information you need on a user form
« Map the information to fields when creating a user form in the application

« Configure the fields to support your requirements

« Design a picklist field

51
©2017 Pegasystems

Planning end-user forms

Enterprise applications typically require some human interaction. As a case goes through a process,
end-users perform a variety of tasks along the way. To perform tasks, end-users enter or review
information on end-user forms.

Not all end-users perform the same tasks. Forms are designed so that end-users can complete specific
tasks. In order to complete the tasks, end-users enter information in fields on the forms. The system
stores the values entered by end-users as data. The application uses this data to process a case. This
data can be included on other forms so that a different set of end-users can perform their own specific
tasks.

Forms designed for specific tasks

Consider a process for making loans. In this example, there are two steps and two forms.

The first step in the process requires customers to enter a loan application. The form contains fields
for entering information such as the customer's name, the loan amount, and the loan type. After
customers complete the form, the system sends the request to loan officers for review.

In the second step of the process, loan officers see a loan-officer form that displays the data collected
from the application form. Loan officers can read the information but not update it. The loan-officer
form also contains fields that allow officers to enter information such as loan insurance eligibility and
the reason for approval.

Loan Application

Mame

Address

Amount

i F 3
Loan Type select an item... -

Requested Term u 30 year '_J 15 year

52
©2017 Pegasystems

Identify the tasks a user will perform

As the business analyst or architect, you must determine what information end-users need to see or
collect in order to perform their specific tasks. When you have defined the information end-users need,
you create a form in which end-users enter the information.

Before you create a form, ask the following questions:

« What fields do end-users need to see?

« How will end-users enter values in those fields?

» Can end-users modify the field values or only read the values?

Record the values end-users enters in a specification. The following example shows the fields included
in a loan application form.

Collect Loan Information

Name of Field How to Enter Field Value User Entry
Amount Enter dollars ($) Required
Select available options from .
Loan Type e Required
Select available options using :
Requested Terms radio buttons Required
Origination Date Entered by system, display date No

Creating forms in your application

After you have your analysis, you are ready to create the form using the View Configuration tool. The
tool enables you to define the data elements that the system uses for processing cases.

The View Configuration tool contains an array of rows — one for each Ul field. Each row has three
fields. The fields define the data element, format, and enable edit setting (required or optional).

53
©2017 Pegasystems

Name of Field How to Enter Field Value User Entry

/ Amount Enter dollars ($) Required
r

Loan Type Select available options from dropdown list Required

Requested Terms | Select available options using radio buttons Required

Entered by system, display date MNo

Origination Date

Data Element Format Edit or Read Only
Amount Currency {(Edit) Required
Loan Type Picklist {(Edit) Required
Requested Terms Picklist (Edit) Required
Origination Date Date Read Only

Field 1: Which field do you want end-users to see in the form?

In the first field on a row, select the data element you want end-users to see in the Ul field. Pega
provides a large number of standard data elements to choose from such as Customer ID and Company.
The list may also contain data elements that a system architect created for your application such as

Loan Officer ID or Loan Office.

If the list does not contain the data element you need, type a name in the field. For example, assume
your application does not have a data element for loan type. To create a loan type data element, enter
the name Loan Type in the field. End-user sees the name as a label next to the new Ul field.

When your form is complete, new data elements are saved to your application. You can reuse those
data elements when you create new views.

Field 2: How do end-users enter the value in the field?

In the second field on a row, select a format. The format defines how end-users enter a value in the
Ul field. For example, if you want end-users to enter a date Ul field, select the Date & time format. This
format lets end-users select a date from a calendar icon. If you want to add a field that lets end-users
select only one of two possible options, enter a Boolean format.

If you want end-users to select values from a list in the Ul, select the Picklist format. A list enables you
to define valid values the application uses for processing a case. Picklist formats have an extra field
that lets you display the items either in a drop-down list or as radio buttons. This additional field also
lets you enter the items you want to display in the list.

54
©2017 Pegasystems

Selecting a Text format is incorrect for this field. This format allows end-users to enter free-form text in
a box. End-users probably do not know which loan type names are valid. Entering incorrect names
triggers error messages and creates an unsatisfactory user experience.

Field 3: Can end-users edit the field value?

In the third field on a row, select either Optional or Required if you want to allow end-users to enter a
value in a field. Select Required if end-users must enter a value in order to complete the task and
advance the case to the next step. Otherwise, select Optional so end-users do not have to enter a value
to complete the task.

If you do not want end-users to enter or update the field value, select Read-only.

55
©2017 Pegasystems

Configuring user views

After you add steps to the case life cycle design, you can configure user views for each of the steps.
Before you configure a user view, remember to answer these questions:

« What fields do end-users need to see in the UI?

« How do end-users enter values in those fields?

« Can end-users modify the field values or are the fields read-only?

Configure a user view using Pega Express
To configure a user view using Pega Express:

1. Confirm editing is enabled by looking at the upper right corner of the Pega Express dashboard. Look
for the text Turn editing off as shown in the following image.

X i Turn editing off g%

If editing is not enabled, click Turn editing on.

X < Turn editingon #*

2. In the Navigation panel on the left, click Cases to view a list of current case types.

Pega’ expPRESS -D. O 0
B | S HRApps +New

Dashboard Dashboard

w

. From the list of available case types, select the case type for which you want to configure a user
view.

4. Select the step for which you want to configure a user view to display Contextual Properties panel
for that step. The Contextual Properties panel displays to the right of the case life cycle.

5. In the contextual properties panel, click Configure view. The Views configuration page is displayed.

Add default fields to a user view

To view the default fields and select fields to add to the user view:

56
©2017 Pegasystems

1. In the left panel, select Fields to view the default data elements.

Q

= Fields >
[E] Views >
sss Data types >

2. If you require any of the default fields, select the row for the field, and then click the plus sign to the
right of the field name.

< Fields
Active Channel ®

Y

Create Date/Time

3. Repeat steps 1 and 2 to add more default fields.

Add new fields to the user view

To add new fields to the user view:

1. In the Label field, type a name for the new field. the following image shows a new Loan types field:

Labe Type Options

Loan types Text (single line) v | Optional v

Note: After you add the required data element and save your view, the system adds any new data
elements to your application. You can then reuse those data elements when you create new views.

2. Use the Tab key to move to the second field on the row.
3. Select a data type for the data element. The data type defines how users enter a value in the
Ul field.

For example, if you want the user to select a type of loan from a drop-down list in the Loan types Ul
field, select Picklist from the drop-down in the data type field as shown in the following image:

57
©2017 Pegasystems

Simple
Loan Types Ele

Text (paragraph)
jd field Boolean
Currency

Date & time
Date only
Decimal

Email

Integer

L 1 P,
[N LT L

Picklist
|_Time

The Picklist data type has an additional field for you to choose the type of list (drop-down list or
radio buttons) and the names of the items on the list. To learn how to choose the type of list and to
configure item names, see the steps under Designing a picklist.

4. Use the Tab key to move to the third field, select either Optional or Required if you want to allow
users to enter a value in a field. If you do not want users to enter or update the field value, select
Read-only. In the following example, the developer is selecting Required to ensure the user selects a
value from the Loan Types list.

COptional

i Loan Types Picklist

Read-only

5. To add more fields, click Add Field beneath the bottom row.

Save and verify your work

To save your work and review the view:

1. On the bottom right corner of the View configuration page, click Submit. When you click Submit, the
system saves your updates and creates the view that users see when they work on an assignment.
The system also saves the data elements that you can reuse in the application.

it Loan Types Picklist ﬂ Required ﬂ

+ Add field

2. Click Save to save your changes to the case type.

58
©2017 Pegasystems

3. In the upper right corner, click Run to run the application. The new fields in the standard Create

view display.

Designing a picklist
If you selected the picklist data type, you need to use an additional field to choose how to display the
list and the names of the items you want to include on the list. To design the list, do the following:

1. From the end of the row containing the picklist data type, click the Gear icon.

2. In the Display As field, select one of the following:
a. Drop-down list if you want to users to select an item from a drop-down list.

b. Radio buttons if you want users to select an item by clicking a radio button.

| & [

DISPLAY A5

Drop-down list
Radio buttons

LIST CHOICES

+ Add choice

Cancel

3. Under List Choices, enter the name of the first list item.
4. Click Add choice to add more fields for items in the list. The following example shows list choices

for loan types.

DISPLAY AS
Drop-down list ﬂ

LIST CHOICES
Home
Auto
Personal Property

+ Add choice

Cancel

59
©2017 Pegasystems

5. Click Submit in the dialog box to save your list. The items you entered in the List Choices column
display in the Loan Types drop-down list in the user view.

Loan Types

Auto
Personal Property

60
©2017 Pegasystems

Pega

~ACADEMY X

CASE DESIGN USING DESIGNER
STUDIO

©2017 Pegasystems

Requirements management

Introduction

When creating an application, everyone must know what to build. Everyone should know what
currently exists in the application and how the application relates to the requirements or
specifications.

This lesson reviews how to build better applications by understanding the importance of requirements
management. The lesson also reviews how business objectives, requirements, and specifications relate
to one another. You will learn how DCO is used to ensure that your application continually meets
business needs.

Objectives

At the end of this lesson, you should be able to:

Describe the relationship between requirements and specifications in an application

Describe how requirements management improves the effectiveness of application development
Explain the role of business objectives in application design

Describe the purpose of requirements

Describe the purpose of specifications

Explain how DCO helps to ensure that applications match business needs

62
©2017 Pegasystems

Requirements management

Requirements management is the process of collecting, analyzing, refining, and prioritizing product
requirements, and then planning for their delivery. Requirements management helps ensure the
business application you build validates and meets the needs of all customers and stakeholders.

Requirements management is a continuous process throughout a project.

When building an application, you follow a set of requirements that define what the application must
be able to do. The success of an implementation depends on your ability to understand, track, and

trace these requirements.

Requirements management helps keep the project team organized and provides visibility into every
aspect of the project. In Pega, you use DCO throughout a project to keep your requirements up to date.

KNOWLEDGE CHECK

How does requirements management improve your implementation process?

Having the ability to write, track, and trace a requirement allows for increased collaboration and
accountability during the process.

63
©2017 Pegasystems

Managing Requirements

Managing requirements, and other artifacts, for any project can be a daunting task - And it certainly is
NOT for lack of trying. The challenges faced when trying to manage requirements isn't so much the
requirements themselves.

It's the tracking and coordination - the management - of those requirements. And the other, inevitable,
artifacts created to support and implement the requirements.

With any application development project, it takes many types of artifacts to produce the final product.
For example, there is typically a product requirement document that defines the scope of what the
application should be.

This document might be stored on a collaboration site for easy accessibility.
From that document, business requirements and use cases are usually written.

It is not uncommon to see these artifacts stored on a network drive somewhere so all project team
members have access to them.

There will undoubtedly be functional and technical requirements.

Given the nature of these artifacts, they may end up in a versioning control system.

Finally, there will almost certainly be business processes - or, flow - diagrams and Ul wireframes.
It would come as no surprise to see these artifacts stored locally on a process owner’s local drive.
With so many important artifacts scattered across so many different locations,

under the control of so many different authorities, well....it's enough to make anyone scream.
Pega’s Direct Capture of Objectives - or, D C O - can help bring order to this chaos.

Pega’'s DCO is a set of features that enable project team members to directly capture, organize and
manage requirements

- and associate them with the specific parts of the application that are implementing them.

This visual representation and traceability of how requirements interact and depend on one another is
very powerful. Designed to be an enabling technology,

Pega’'s DCO can be used collaboratively and productively by project teams that include members of the
business analyst, developer, quality assurance and IT and end user communities of your organization.

64
©2017 Pegasystems

Business objectives

To successfully run any business application development project, you must establish clear business
objectives.

Business objectives are statements that describe the business value the application must provide, or
the business needs the application must address. Business objectives may apply to the organization as
a whole, lines of business, departments, employees, customers, and even marketing efforts. Business
architects review the current state of a business process to identify inefficiencies. Business architects
then create business objectives to fix the inefficiencies.

For example, a business determines that the existing process to manage purchase requests takes too
long. You define the following business objective: Processing time for purchase requests must be no
longer than 3 business days.

In another example, a business objective for an insurance claim application may state that the
application must be able to reduce inaccurate claims to less than 10% of all claims.

Business objectives also help establish the scope of the application development project. Using clear,
measurable objectives helps ensure that all stakeholders share a common understanding of the
business application's abilities.

65
©2017 Pegasystems

Application requirements

The term requirement has different meanings within different organizations. Gathering requirements
is the most critical part of any business application development effort. When building the application
nothing should be left to interpretation.

The IEEE Standard Glossary of Software Engineering Terminology defines a requirement as:
« A condition or capability needed by a user to solve a problem or achieve an objective;

« A condition or capability that must be met or possessed by a system to satisfy a contract, standard
or specification.

In the simplest terms, Pega defines a requirement as an agreement between stakeholders on what a
business application will do.

A requirement uses business language to describe what the application must do to meet your
business needs.

Requirements can range from high-level abstract statements of services to more detailed functional
specifications.

ABSTRACT DETAILED

Modified data in a

users accessing it

within two seconds

REQUIREMENT REQUIREMENT

Requirements can also provide benchmarks to test your application against.

66
©2017 Pegasystems

BENCHMARK

Bank routing
transfer numbers
must be nine digits

REQUIREMENT

Think of requirements as an inventory of events, conditions, or functions that must be implemented
and tracked in a development project.

At Pega, requirements are categorized into one of five types:

Type
Business rule

Change
Control

Enterprise
Standard

Functional

Non-
functional

Description

Identifies requirements usually associated with a specific use case or step in a
process

Identifies how to manage changes in the application

Identifies requirements that apply across the enterprise, or are an industry standard
that all applications must adhere to

Identifies a function that will be used in the application, such as calculations or data
manipulation

Identifies performance metrics, such as screen-to-screen interaction times

67
©2017 Pegasystems

Requirements 101

Knowing what a good requirement looks like is important. What seems like a good requirement to one
person may not necessarily be understandable to another. Here you see a team creating requirements
for browser support for their application.

Requirements should use business terms.
Using business terms allows all members of the implementation team to understand the requirement.

This is a good start. It uses business terms to define the requirement. The requirement does use
business terms, but there are some things wrong with it.

First, requirements should be atomic. If a requirement needs to implement multiple elements
separately, it is not atomic.

Our example is not atomic. The need for backwards compatibility should be in a separate requirement.
Requirements also should be clear and concise.

Write requirements so that they are clear to those who implement them. The use of specific and
appropriate language can help avoid ambiguity in interpretation.

In the example, the word 'all' may seem clear, but it is not.

Requirements should also be verifiable. You must write requirements so they can be tested by
inspection, analysis, or demonstration.

Besides 'all' not being clear, you could not likely test every version of every browser.
This is an example of a good requirement.

The requirement uses business terms.

The requirement is atomic.

The requirement is clear and concise.

The requirement is verifiable.

There is one last characteristic of good requirements. Requirements must be consistent. Consistent
requirements do not conflict with other requirements. Make it a habit to inventory the existing
requirements before adding new ones.

This is not an exhaustive list for writing good requirements. You should now be able to identify a good
requirement.

68
©2017 Pegasystems

Application specifications

Once you understand what you want to do, you need to turn your attention to how you are going to do
it. Specifications define how you implement your application.

Specifications use business language to describe the steps needed to meet a requirement.

For example, you have a requirement that states employees should be able to enroll for healthcare
benefits online.

The example defines what you need to build, but does not help you do it. Use specifications to define
how to implement that requirement.

You first determine that to enroll for healthcare benefits online you need to capture an employee’s
personal information.

Next, you have employees select medical benefits from a list of available plans. Then, employees
should enroll for dental benefits.

Employees should
be able to enroll
for health benefits
online

REQUIREMENT

g I I

As an employee, As an employee, As an employee,

| want to enter my | want to select a | want to select a
personal info to medical plan that dental plan that
enroll for health best suits my needs best suits my needs
benefits online from a list of options from a list of options

SPECIFICATION SPECIFICATION SPECIFICATION

You continue documenting the steps needed to achieve the goal of the requirement.
If applicable, a requirement can be related to many specifications.

A single specification can also reference many requirements.

69
©2017 Pegasystems

Employees should
be able to enroll
for health benefits
online

REQUIREMENT

Employee SSN
is required to
enroll for
healthcare
benefits

REQUIREMENT

4

As an employee,

| want to enter my
personal info to
enroll for health
benefits online

SPECIFICATION

As an employee,

I want to select a
medical plan that
best suits my needs
from a list of options

SPECIFICATION

As an employee,

| want to select a
dental plan that
best suits my needs
from a list of options

SPECIFICATION

70

©2017 Pegasystems

Specifications 101

Knowing what a good specification looks like is important. What seems like a good specification to one
person is not necessarily understandable to another. For example, the requirement An employee should
be able to enroll in benefits online has several specifications associated with it. Here you see a team
creating a specification to collect employee information.

First, the system architect suggests a specification.

Like requirements, you write specifications in business terms. Using business terms allows "all”
members of the implementation team to understand the specification. This specification is not in
business terms and would not be clear to an end user or a business analyst.

Next, the end user suggests a specification.

Specifications need to be complete and not left open to interpretation. This example is not clear as to
what information should be collected.

The team now comes up with another version of the specification.

The team is getting closer, but a specification should never involve a change of ownership until the
step is complete. In this specification, the team suggests what should happen after the information is
collected.

The team now decides to take out the part about manager review.

While close, this version of the specification is still missing something. A specification provides enough
detail for an architect to implement the specification. A specification also needs enough detail so a
tester can test the implementation.

The team now suggests yet another version of the specification.
The team has hit the mark! This is a good specification.

The specification uses business terms.

The specification is complete.

The specification does not change ownership.

The specification can be implemented and tested.

Creating good specifications makes your application easier to build. Good specifications also document
what is in the application.

71
©2017 Pegasystems

Relationship between Pega design artifacts

Your assignment is to work on the next version of an application. You need to see what already exists
in the application and, more importantly, why it exists. To do this you need to examine how the
specifications, requirements, business objectives, and implementation artifacts relate to one another.

Traceability is the ability to link specifications back to business objectives and requirements, and
forward to implementation artifacts, and test cases.

In Pega, specifications are the center of traceability. With specifications at the center, it allows anyone
to look backwards to see the requirements and business objectives, and forwards to see the artifacts
that implement the specification. This gives a complete picture of what the business wants and IT
builds.

BUSINESS

IT

I
I
| —
I
I

N

~ — S

REQUIREMENT / | S—— “
I \
|
|
|
|

In Pega, you link your business objectives, requirements, and specifications as you create them. To see
how this works, consider the following example.

72
©2017 Pegasystems

ANALYSIS DESIGN IMPLEMENTATION
9

BUSINESS OBJECTIVE HEQU|HEMENT SPECIFICATION Collect User Info

[y

Eliminate Enroll in Collect

errors in
personal
information

benefits online Personal
Information

Business objectives are identified at the inception of the project. In the example the business objective
identified was Eliminate errors in personal information.

A business architect elaborates on the Enroll in benefits online requirement and generates a set of
specifications. At this time you link specifications to the requirements they link to. By doing this now
you have an accurate picture that they relate to one another and you save time from having to do it
later when there are more requirements and specifications to manage. When the specification is
implemented, it is the system architects job to link the implementation to the specification. In the
example that is mapping the Ul screen to the collect personal info specification.

73
©2017 Pegasystems

Linking specifications to business objectives
and requirements

The Application Profile allows you to link specifications to requirements, business objectives, and the
artifacts that implement the specification.

By tracking all of these artifacts in the Application Profile, you gain complete traceability in your
application.

The table below displays the three tabs contained in the Application Profile.
Tab Description
Requirements Review existing, create, or delete application requirements.

Specifications Review existing, create, copy, or delete application specifications.

Analysis Work with interactive charts to understand the distribution of specifications in your
application across case type and status.

Linking a specification to a business objective

Follow these steps to link a specification to a business objective:
1. In Designer Studio, click Designer Studio > Application > Profile > Specifications.

2. Select a specification.

74
©2017 Pegasystems

3. Select a primary business objective.

Add/Edit Specification
Mame Application Caze/Supporting Type
Approva HRServices TimeOff
Details Implementations

Short Description

Leave request gats approval

Stetus Type Complexity
Mew v Human Based Step v Low v

Felzaze [teration
Select. v Select. v

Primary business objective Business impact
Eliminate processing delays due to incorrect routing of requests v Medium ¥

Select a2 primary business objective
Improve response time throughout the candidate selection process
Reduce time needed for time-off approvals from thres wesks to...

Eliminate processing delays due to incorrect routing of requests
Enforce company policies regarding allowed time off
Fad'y A T

- ' & bl & s | kel A e

4. Click Submit.

Linking a requirement to a specification

Follow these steps to add a requirement to a specification:
In Designer Studio, click Designer Studio > Application > Profile > Specifications.
Select a specification.
Click Advanced.

Click Requirements.

U

Click the plus icon.

75
©2017 Pegasystems

6. In the name field, select an existing requirement.

Add/Edit Specification

> | AllowReguestorToUpdat Allow requestor to upda
AllowRequestorToWithd Allow requestor to withd
CalculatelengthOfLeave Calculate length of leave
MotifyRequestorOfStatu: Motify requestor of statu
Trigg] ReguireHRVPApprovalFc Require HR VP approval

wet RequireHRVPApprovalFc Require HR VP approval

RequireRequestorDepar Reguire requestor depar
RequireUnitVPApprovalF Require unit VP approva
ReguireUnitVPApprovalF Require unit VP approva
| RequireUnitVPApprovalF Require unit VP approva
SupportedleaveTypes Supported Leave Types

VerifyAllowedBereaveme Verify allowed bereavem

VerifyAllowedPTO Verify allowed PTO
Ml
Category Salact |E| Importance
Status New |Z| External ID

Nescrinrion

7. Click Submit.

76
©2017 Pegasystems

Best practices for case design

Introduction to best practices for case design

There is no real right or wrong way to model the life cycle of a case, and the decision about which way
is best usually comes down to opinion.

Establishing best practices helps ensure you are consistent in how you represent a specific event or
action when translating a business process into a case type - including building the individual flows.

After this lesson, you should be able to:

» State the best practices for case design

77
©2017 Pegasystems

Effective process design: collaborate,
elaborate, iterate

Designing an individual process is a trial-and-error process. When case designers design a process,
the result does not always align to the true needs of the business. To minimize the time spent
designing incorrect processes, you must engage the business throughout the design process.

Collaborate with the business

The best way to ensure that you design what the business wants is to involve the business in the
design process. You must engage business stakeholders at the beginning of the project, and keep
them engaged throughout the project.

When you involve business in the design from the beginning, the design more accurately reflects the
desired process. Also, by involving the business early in the design process, stakeholders can identify
errors, mistakes, and misconceptions before they become costly to fix. A process playback during
elaboration is a much more efficient use of project resources than fixing a broken process immediately
before you release the application.

Elaborate your design

Case design on the Pega platform is a continuous process of elaboration at every level of the design.
This elaboration is especially important when designing individual processes.

In the early stages of application development, you lack most of the rules that describe case behavior.
Each process is only a collection of flow shapes arranged into a sequence of steps, and your Ul is
nonexistent. A lot of work remains to be done.

In Pega, the key to efficient process design is elaboration. Prototype the process and review the
prototype with business stakeholders to identify errors or omissions in specifications.

Focus on the important components first: your data needs, and the processes in the primary path.

« Start with the most important aspects of process design, and make sure that your steps are named
clearly and sequenced correctly. Add business context to the process through the use of
instructions, audit notes, and work status. Use Pega's draft flow capabilities to play back the process
with the business to review and correct the design.

« Once the process order is correct, further elaborate the design by determining your data needs and
adding the user interface.

« Once the data and Ul needs are well-established, continue the elaboration by focusing on the
policies and reports that depend upon the data model. Correspondences that incorporate case
data, service levels that enforce deadlines and escalate overdue tasks, decisions that evaluate case
data, and reports that measure productivity should all be configured once the data model and Ul
are well-understood.

Typically, once case designers complete the primary processes, Ul and data designers take over. This
allows the case designers to start designing the less critical processes.

78
©2017 Pegasystems

Iterate until the design is correct

Elaboration is a lot of work, and overwhelms case designers with details when they should instead
focus on ensuring that the process is correct. Unfortunately, most of these details are not available at
the beginning of elaboration. This leaves a development team with a quandary: start elaborating the
design immediately and iterate the design as details are agreed upon, or wait until all of the details are
known and elaborate the design once.

To avoid this quandary, take advantage of Pega's draft flow capability. With a draft flow, you

bypass normal process validation to save and run a process without creating any of the rules that
the process would call. Draft flow execution allows case designers to test a process even though

the Ul and decisions that normally guide case processing are not yet created. Instead, the application
provides an alternative Ul that allows the case designer to pick the outcome of a decision or
assignment.

Thanks to the draft flow capability, you do not need to worry about creating the correct design right
away. Rather, you can iterate your design throughout the elaboration process, starting with the most
important aspects of the design and gradually incorporating rules as they are created, until the
process design is complete. Refining a process through successive iterations allows stakeholders and
case designers to identify issues, propose solutions, and test implementations early on, before the
ramifications of a change ripple throughout the case design.

Remember that process modeling is an iterative process of discovery, construction, and assessment

that yields the correct design. If you focus first on the design of your process, and then configure the
shapes and subordinate rules, your processes are more understandable, and easier to maintain and
update as business needs change.

View Transcript

When designing a business process, collaboration is key. Understanding how to define and represent
each step is best accomplished when both the business stakeholders and the development team
contribute to the process design.

Effective process design can only be accomplished when business stakeholders are engaged
throughout the entire development cycle.

In the early stages of development, when the focus of the application build effort is on elaboration,
business architects are usually the primary drivers of the design patterns.

Business stakeholders are key allies for business architects, helping to accurately capture business
needs. Stakeholders can verify that the case and individual processes reflect the correct design, and
that the steps are in the correct order and named clearly.

Once the design is correct, system architects become the primary drivers of the development cycle.
System architects configure the behavior outlined in the specifications, and help to improve the design
by identifying portions of the process that may be reusable and looking for manual steps that can be
automated.

As system architect configure a process, they perform “playbacks” to review the partially implemented
process with the business stakeholders, with the goal of discussion, consensus building, collaborative
improvement and, ultimately, approval of the model.

79
©2017 Pegasystems

Designing intent-driven processes

When you design a process, ensure that all project team members and stakeholdersshare an
understanding of the process. An intent-driven process fosters a common understanding between
developers, stakeholders, and end users. With a common understanding, case designers collaborate
efficiently with business stakeholders to review processes. Well-understood processes allow case
workers to process cases with minimal application training.

When you create any process you first select the shape for the task. Next you ensure there is a single
purpose for the shape and clearly label the shape and associated actions. intent-driven process, you
add cues that guide business stakeholders and case workers through the process.

Label flow shapes and actions

To avoid confusion about a process, label flow shapes and actions to identify intent. Create labels that
use terms familiar to the business. The label clarifies flow logic for project stakeholders during
playbacks. The label also clarifies application documentation for case workers and other case
designers.

Avoid Recommended

RESPANSE T UWUAT?
N

RECIPIENT CLEARLY IDENTIFIED
!

Notify Employee
of Approval

CANFIRMS APPROVAL
OF REQUVEST

WHAT'S THE PURPASE?

SEND TO WHAM?

|
l
|
|
|
|
|
Send Response [
|
!
|
|
|
|
l
|

Ambiguous labels cause confusion and doubt about the behavior of a process. For example, do not
label a shape with Send Response. Instead, use the label Notify Employee of Approval, which is easier
to understand.

Assign a single purpose to each shape

When you design a process, use as few shapes as possible . If two shapes perform the same task,
determine whether you can reduce the two shapes to one. Review the use case for the process. Ask
yourself, "Does each shape need a unique specification?"If the answer is yes, then use two shapes to
develop your process. Otherwise, remove one of the shapes from the process to eliminate unnecessary
complexity.

For example, an application sends an email whenever an expense report is approved or rejected. The
approval email identifies the next step in the process. The rejection email lists the reason for the
rejection. Since the two notifications contain different content, the requirement indicates two different

80
©2017 Pegasystems

specifications. As a result, you must use two shapes; each shape serving a single purpose to approve
or reject.

of Rejection

. I
Avoid + Recommended
I
I
I Motify Employee
I of Approval
Notify Employee ! 4
"]
| MENTION NEXT STEP IN PROCESS
T : LIST REASON FOR RETECTION
¥
DAES APPROVAL AND !
RETECTION CONTENT DIFFER? | Notify Employee
I
I

Use the right shape for the task

Each type of flow shape represents a specific type of event. For example:

« An assignment represents a task performed by a person. The person performing the selects one of
the actions provided to complete the assignment.

« A utility represents an action performed by the application, with a single outcome.

« A decision represents a choice made by the application. Using provided logic, the application
determines the appropriate result.

When you need to model an automated decision in a process, use a decision shape rather than a utility
shape or an assignment shape.

Avoid Recommended

o
-

,,H Req u|red'?

il

PECISION SHAPE
INDICATES DECISION POINT

e

Determine if
Approval is
Required

e o o o o e e e e e = e e = = e =)

When designing a process, use smart shapes rather than generic utility shapes whenever possible.
Each smart shape represents a specific type of automated action. So if a process must send an email,
use the Send Email smart shape.

81
©2017 Pegasystems

Avoid Recommended
Send Approval Send Approval
?tn Employee M to Employee

\

Cdm::-l;&ED SPECIFICALLY
T8 SEND EMAIL

When you clearly identify the intent of each step in a process, you create a process that is easy for
business stakeholders and case workers to understand.

82
©2017 Pegasystems

Managing case life cycle exceptions

Introduction to managing case life cycle
exceptions

Cases progress from one primary stage to the next as work is completed. However, under certain
circumstances, a case may require work to be completed that is not part of the primary flow.

Alternate stages provide a way to model out-of-sequence events in the life cycle of a case. Using
alternate stages, you can separate expected behavior from exceptions in life cycle of a case.

After this lesson, you should be able to:
« Explain the purpose of alternate stages

« Add alternate stages to a case type

« Explain the purpose of managing transitions from one stage to another

« Add a transition from one stage to another

83
©2017 Pegasystems

Alternate stages

Cases usually progress in order from one primary stage to the next. In some situations, work does not
always go according to plan. When that happens, use an alternate stage to describe the actions
needed to resolve the situation. Alternate stages are used to organize process steps that are not part
of the “normal course of events” but must be available under certain circumstances.

1. New Order >> 2. Processing >> 3. Fulfillment >> 4. Shipping >

Process Process Process Process

Process Step Process Step Process Step Process Step

Cancellation *
Use alternate stages to organize the process steps
Cancel Order used to manage exceptions from the primary path.

Process Cancellation
Refund Payment

Notify Customer

For example, when modeling the life cycle of an online ordering application, you must consider that
orders can be canceled prior to being shipped. If an order is canceled, a number of tasks must be
completed before the order is considered canceled. The first task is to process the order for
cancellation, then the payment must be refunded and, finally the customer must be notified that the
order was canceled.

Use alternate stages to organize the process steps used to manage exceptions from the primary path.

Guidelines for defining and naming alternate stages

To define alternate stages, consider the following guidelines.

Use names that are most meaningful and relevant to the business users. Use a noun, or noun phrase,
to describe the context of the alternate stage. As much as possible, try to limit the stage name to no
more than two words.

Consider limiting the number of alternate stages in any given case type to between three and five
stages. If you find yourself needing more than five stages, consider combining one or more alternate
stages, or using a separate case type.

84
©2017 Pegasystems

Adding alternate stages to the case life cycle

You use alternate stages to model out-of-sequence events in the life cycle of a case. By using alternate
stages, you can separate exceptions from expected behavior in life cycle of a case.

Important: Although alternate stages are displayed in a sequence, alternate stages are not ordered.
You must model specific behavior in each alternate stage, using a process, that defines how to

transition out of the alternate stage.

Configuring a case type with alternate stages

To configure a case life cycle with alternate stages:

1. In Designer Studio, open a case type.

2. In the upper right corner of Designer Studio, on the Actions menu, click Configure alternate
stages to display alternate stages below the primary stages.

+ Private (i) Resources 2 Administrator

Save Run Actions v ()

Open

Refrash

Configure alternate stages
View la=bnd

Get help

Editing alternate stage labels

When you configure alternate stages for the first time, a single alternate stage is added with a
placeholder labeled Alternate Stage A.

To edit the text label of an alternate stage:

1. Click the label in the alternate stage, then enter a new name.

P&Iternate Stage A v

85
©2017 Pegasystems

Adding additional alternate stages

To add additional alternate stages to a case life cycle:

1. Click + Add alternate stage.

Alternate Stage B v

2. In the text box, enter a unique name for the alternate stage.

3. Click Save.

86
©2017 Pegasystems

Stage transitions

Stage transitions allow you to further refine the run-time order of stages.

'°' Starthere | 1. First Stage >> 2. Stage >> 3. Stage >>4. Last Stage

[®— o — ®— o —
Complete _| @
these tasks ¢ g

L @®— ®—

Then automatically
transitionto next stage

For primary stages, when all steps in a stage are completed, the default option is an automatic
transition to the next primary stage.

To allow transitions to other stages before the completion of the current stage, you can add a
controlled transition to a stage. Controlled transitions can be configured for any primary or alternate
stage, and can occur either as an action in a step or as a specific step in a process.

1. First Stage >> 2. Stage .. >> 3. Stage ... >>4 Last Stage
o —

o — o —
® If Approved, o
o — then continue ® —
If Rejected,
change stageto...

Alternate Stage |«

o —
You can configure a step to allow a user to select the stage to which the case transitions. This type of
configuration is most useful for steps that require a Yes/No decision. For example, a case worker must
review a request and can either approve or reject the request. If the request is approved, normal
processing continues, and the case advances to the next step or stage in the primary path. If the
request is rejected, the case advances to a predefined stage, which may or may not be in the primary
path.

87
©2017 Pegasystems

1. First Stage >> 2. Stage ... >> 3. Stage ... >>4- Last Stage
&

Alternate Stage

. ——

Case flow automatically
transitions to predefined stage.

You can use a Change Stage process step to automatically transition the case flow to a specified stage.
This type of configuration is most useful for automating transitions to and from alternate stages. For
example, a rejected request is sent back to the originator to be updated. The process steps for
updating the request are organized in an alternate stage. When the Change Stage step is encountered,
the case flow automatically transitions to the stage defined in the Change Stage step.

88
©2017 Pegasystems

Controlling stage transitions

To allow transitions to alternate stages, or before the completion of a stage, you can add a controlled
transition to a stage. Controlled transitions can be added as a process step using the Change Stage
smart shape, or as an optional user action in a process step.

Use the Change Stage smart shape to control the stage
to which a case transitions

Follow these steps to add a Change Stage smart shape.

1. In the process where you want to add the Change Stage smart shape, click + Add step.

2. In the palette that is displayed, click More.
3. Click Utilities to display a list of available smart shapes.
4. Click Change Stage, and then click Select to add the smart shape to the process.
5. In the contextual property panel, select the Select a stage option.
@
Go to next stage
® Select a stage
Stage
Heview v

Close open assignments from current stage
on change

Audit note

A

6. In the Stage drop-down list, indicate which stage the case transitions to when the Change Stage
shape is executed.

Use the Approve/Reject step to control the stage to
which a case transitions

Follow these steps to allow a user to select the stage to which a case transitions.

1. In the process where you want to add the Approve/Reject step, click + Add step.

2. In the palette that is displayed, select the Approve/Reject step.

3. On the Flow tab of the contextual property panel, set the option for If APPROVED then or If

89
©2017 Pegasystems

REJECTED then to Change stage, and then
Approve/Reject step is executed.

select the stage to which the case transitions when the

General Flow Goal & deadline

If APPROVED then

Continue T

If REJECTED then
Change stage ¥

To
Rejection v
Get status

Hesolved-Rejected

90

©2017 Pegasystems

Adding optional business process
events

Introduction to adding optional business
process events

As a user works on a case, situations arise that may require the user to stray from the primary path to
perform a task. These tasks are called user actions. In this lesson, you learn about the different types

of user actions and how to configure those actions in a case.

Objectives

At the end of this lesson, you should be able to:
« Explain the role of user actions in a case
« Differentiate between local actions and optional processes

o Add user actions to a case

91
©2017 Pegasystems

User actions

User actions supplement the tasks users can do as they work on a case. User actions allow users to
leave the primary path of a case to complete another process. The key is that the user makes the
determination to execute the user action; the user action is not automated.

For example, a customer gives you a new cell phone number while you are processing the car details of
an Auto Loan. You can use the Update Contact Info user action to update the number. By using the
user action, you do not need to move the Auto Loan case to an earlier step or stage.

When determining if you need to use a user action, consider the following questions:

« Should the user be allowed to update the information at any time during a case or stage?
« Do you need multiple steps to update the information?

« Can the information be updated in a single screen?

User actions can be made available for a stage or an entire case. By adding a user action to a case, the
action is available to a user while the case is open. By adding a user action in a stage, the action is
available only in the stage where the action is defined.

You can add two types of user actions: optional processes and local actions. You use a local action to
display a single screen to a user, whereas you use an optional process to launch an entire process.

Optional process

You use an optional process when multiple steps are needed to update information. An optional
process allows a user to run a new process from within the case. The only difference between an
optional process and the other processes in a case is that the user determines when the optional
process is executed.

An optional process allows a user to perform a series of tasks outside of the primary path of a case.
After completion of the optional process, a user may or may not return to the primary path.

For example, in a commerce application you could have a Cancel Order optional process that allows the
user to cancel an order as long as it has not been shipped.

92
©2017 Pegasystems

@ Confirm
Billing Details

E— ' |:|xf ——
— — —

? T HiH

Cancel Order

Shop Complete Order

1. After shopping, a user starts the check-out process. While confirming the billing details, a user
might decide to cancel the order. The user could launch a Cancel Order optional process.

2. The Cancel Order process executes. The configuration of the process determines if the case
completes or it is transitioned back to continue the original flow.

Local actions

You configure a local action when the case information can be updated in a single screen. A local
action allows the user to make a change but not interrupt the processing of the case. Think of a local
action as a screen that is accessible to the user. A local action allows the user to perform a single task
outside of the primary path of a case. After completion of the local action, the user returns to the
primary path of the case.

The Update Contact Info example illustrates using a local action. You want to give the users the ability
to change a customer's contact information at any time in the case, but you do not want the users to
lose where they are in processing the case.

93
©2017 Pegasystems

Personal © Loan Review Loan

— — —
— e N — e N —
— | — —

e I:I9

I
Update Contact

1. Auser enters the personal information for a customer. While entering in the loan information, the
customer asks to update a cell phone number. The user launches the Update Contact
Information local action.

2. The user completes Update Contact Information.
3. After completing the local action, the user sees the loan information screen.

KNOWLEDGE CHECK

i
| we |

What are the main differences between a local action and an optional process?

Local actions are single tasks and return to the primary path of a case, whereas an optional process
is a series of steps that is not required to return to the primary path of a case.

94
©2017 Pegasystems

Adding user actions to the case life cycle

Adding a user action to a case

You can define user actions that are available to a user throughout the entire case. These user actions

can be optional processes or local actions.

Follow these steps to add a local action or optional process to a case:

1.
2.
3.

4.

In the Case Designer, select a case type.

Click the Settings tab.

Select either User Actions to add a local action or Case-wide supporting processes to add an

optional process.

Select the local action or the process to add to the case.

Edit case type: MyCase

Datamodel Lifecycle Views

General
Properties with basic configuration

Specifications
Descriptions of steps and views

Case-wide supporting processes
Flows to handle out-of-sequence events

User actions
Actions users can take throughout a case

Attachment categories
Categories and security for attachments

Email instantiation
Support for automatic case creation

Settings

User actions

List the actions users can take while processing a case,

pylpdateCaseDetails
pyChange5tage

B - - Tl
+ Add user action

User action

_ALDtaIActiDn y

Allowed when

© 0 0 0 o0 o

Adding a user action to a stage

Stages can define both local actions and optional processes.

Follow these steps to add a local action or an optional process:

95
©2017 Pegasystems

In the Case Designer, select a case.
Select a stage.
Click User Actions.

In the Processes (Optional) list, Select the optional process or local action to add to the stage.

v~ N

Optionally, add an Allowed when condition to modify when the optional process or local action
should be displayed.

Edit case type: MyCase R Ammiced
Data moded Lid E WViews "hl“:I:II'IS"u
Srage
1. first stage LY 2. second stage General or act walidation

myFrocess FROCESSES (0PTIOMNAL)

(=

LOCAL ACTIOME (D PTIOMAL)

Alocaldoricn

96
©2017 Pegasystems

Sending correspondence

Introduction to sending correspondence

Pega allows you to automate and create timely and clear communication with participants in a case. As
a result, the right person receives the right information at the right time.

Objectives

At the end of this lesson, you should be able to:
« Explain how correspondence improves a process
« Add correspondence to a case type

« Send a correspondence while processing a case

97
©2017 Pegasystems

Automating case communications

Common reasons for communicating with users

Organizations depend on timely communication to establish a shared understanding of transactions or
assignments.

For example, consider a requirement for an auto claims application in which customers must be
notified when their claims are successfully filed, or anytime the status of the claims changes.

Another common notification requirement is keeping case workers up-to-date. For example, you must
notify case workers when they have a new claim to process. Also, you may want to notify them on the
progress of the previous claim.

Finally, you may have a requirement to communicate with someone who is indirectly involved in the
case, such as an external agency.

To achieve effective communication, answer three simple questions. First, who is the user that receives
the communication? Second, how will the communication be sent? Third, when does the
communication need to be sent?

Identifying users to communicate with

When sending a correspondence first determine 'who do | need to communicate with?' You can send a
correspondence to a specific address, but what if that address is no longer valid? You would have to
update the application anytime that address changed. To avoid this Pega uses a set of roles to use with
correspondences.

Pega defines the following roles for a correspondence:

Role Description
Owner The person who created the case.

Customer The person on whose behalf the case is transacted. This
person may not process the case, but may want - or need -
notification of any changes.

Interested A person who tracks the progress of a case but does not
process the case.

You are not limited to specifying a single role for a correspondence. For example, you may want to send
a correspondence to the customer and all interested parties. To do this Pega uses something called a
party. A party identifies the recipient of the communication and may contain one or more of these
roles.

98
©2017 Pegasystems

Identifying how to communicate with users

To generate correspondence, you need to know “how” you want to communicate with the recipient. In
other words, what's the right channel a user should receive a correspondence.

Pega provides four correspondence types to communicate with users: email, text message, fax and
regular mail. Each correspondence type provides unique functionality but share the same basic
template.

Pega provides a rich text editor to create formatted correspondence. You create one or more
correspondence templates for each type of correspondence.

Identifying when to communicate with users

The last question you need to answer is “when” do you communicate. Pega simplifies sending a
correspondence by allowing you to simply add a step to your case. Then you just configure who to send
it to and the content of the message.

99
©2017 Pegasystems

Sending an email from a case

A common use case for sending a correspondence during a case is sending a confirmation email after
the user has completed a series of steps. You probably experienced this many times while completing
a purchase online.

You accomplish this in Pega by adding a Send Email step to your case and then configuring the step.

Adding a Send Email step

To add a Send Email step:

1.

Click Add Step.

2. Click More > Utilities.
3.
4. Click Select.

Select Send Email.

Configure the Send Email step

Email configuration has two parts: Send to and Message. To configure the Send Email Step:

1.

Complete the Send to by specifying an email address or a party.

2. Enter a subject for the email.

Complete the body of the Message by specifying either a Correspondence template or using the rich
text editor to create a message.

Click Save.

100
©2017 Pegasystems

Guiding users through a business
process

Introduction to guiding users through a
business process

In this lesson, you learn how to add work statuses and instructions to a case. Adding work statuses and
instructions keeps the user informed about a case. By using these options, you can help users
complete their work more productively.

Objectives

At the end of this lesson, you should be able to:

« Explain how work status adds context to a case
« Update the work status for a case

« Explain how instructions add context to a case

« Add instructions to assignments

101
©2017 Pegasystems

Updating the case status

Case status

Consider what would happen if you placed an online order, and the status of that order could only be
identified as Open.

Order status = Open Order status = Open Order status = Open Order status = Open
1. Mew Order > > 2. Processing > > 3. Fulfillment > > 4. Shipping
oO—— o—— o— o——

You would have difficulty determining the status of your online order.

Every case, whether it is an online order, a loan origination request, or an insurance claim, has a status
The case status is the primary indicator of the progress of a case towards resolution.

Status = Status =

Status = Status =
Mew Order Pending-Processing Preparing for Shipping Order Shipped
1. New Order > > 2. Processing > 3. Fulfillment > 4. Shipping
o— oO— o— o——
o— o— ®o——

The case status is updated as the case moves through the case life cycle.

For example, a case status of New is assigned to each case when the case is created. As the case
progresses through the case life cycle, the status of the case is updated at each step.

1. New Order > > 2. Processing > 3. Fulfillment > 4. Shipping

P . P, Ehin Mirdos
Fultill Order NP Jrder

i dirkg-Fulfillrnent ."’l.l'::l"i-“.' Epare
alalug = Slalus =
i -Fayment . Orcder-Shinoed

You can set the case status on each step in the case life cycle. When the case advances to a step, Pega
automatically updates the status of the case to the value defined for that step.

Pega includes standard case status values, such as Open, Pending-Approval, and Resolved-Completed
You can also add custom status values.

102
©2017 Pegasystems

Updating the status of a case

To update the status of a case:
1. In a case type, select a step where you want to change the status.

2. In the General settings, update the Set Status field.

\ Step description goes here @
2. second stage Genera Goal & deadline
second stage Route to
» Current user
Specific user
Work gueue

Custom

Instructions

103
©2017 Pegasystems

Adding Instructions

Imagine you are a loan processing agent. Your company offers car loans, home mortgages, and
personal loans. When it is time for you to work on your next case, you could see many cases with
arbitrary IDs like B-5, 1-23, N-33, G-57, or 0-62. Which case do you choose? These case IDs by
themselves give you no help in determining what work you need to perform in those cases. Some could
take 5 minutes, others 1 hour. Pega solves this problem by allowing an architect to setup an instruction
for each step in a process.

An instruction for a step identifies to an end user what should be accomplished in an assignment. End
users see instructions in their worklist or when they open a case. For example, in a loan application
there is a step for a manager to approve a loan. You would want to add instruction called Approve this
item so it's clear what the work needs to be done on the case.

104
©2017 Pegasystems

Adding an Instruction to a step

System architects create instructions based on the requirements defined by the business. Once
created you add them to a step in a process.

To add an instruction to a step:
1. In a case type, select a step.

In the General settings, update the Instructions field.

2. second stage Genera Goal & deadline

second stage Route to
» Current user
O :
Specific user
Work queue
Custom

Instructions

105
©2017 Pegasystems

Modeling complex process flows

Introduction to designing complex process
flows

You use Pega Express and the Case Designer to define and configure processes used in a business
transaction. You can then use the Process Modeler to add advanced features to the processes.

After this lesson, you should be able to:

« Explain how flow rules relate to processes in the case life cycle

» Choose the correct flow shape to accurately model a complex business process
» Design an intent-driven process

« Use the Process Modeler to add additional flow shapes and connectors to a flow

« Model a complex business process

Flow rules

When you add a process to a case life cycle in Case Designer, Pega automatically creates a flow rule. A
flow rule provides a visual method for modeling a process in your application using shapes and
connectors to define a sequence of events.

Each process step in the case life cycle is represented by a flow shape. A flow shape represents a task
that is accomplished as part of a business process. Flow shapes are differentiated by color, symbol,
and name.

106
©2017 Pegasystems

1. FirstStage

! A process I A different process
1. Complete this step - 1. Anather step

1 Complere next siep L Areview step

Edit Flow: A cifferent pro [Available]

TGB-Sciencelab Waork-Samiplel P Aldferer

Thits recard has 1 unreviewed warling (reviewdadit This record has 1 urneviewed waming (review/edit)

Magram Paramerers Pages & Classes O

(7o BECECIRY BEEL

AFrocess_0

Diagram Paramjeters F'EIEE'S & Classes DE’SISI‘I

o« Bl xecs [

ADsTerentProcess 0

oR= ks

Complate this slep

Another step

R m

Complele nest slep

Use Case Designer to add standard processes used to define the case life cycle. You can then use the

Process Modeler to add advanced features to the processes such as data-driven decisions, or parallel
or iterative processing.

Assignment to _
Q—’[complete]—{ A review step
+d +

Butomated decision:

An alternate path

Change Stage — Another alternate path
»

107
©2017 Pegasystems

Each flow shape represents a specific processing action that you can configure to perform a specific
action, such as an assignment an end user must complete, automated decisions used to determine the
path a case takes, or other automated actions such as transitioning to a stage.

KNOWLEDGE CHECK

./- . .\'.
[~)

Flow rules represent a in the case life cycle.

process

KNOWLEDGE CHECK

./- o .\.
| ™ |
A

Flow shapes represent

tasks to be completed as part of a business process

Flow shapes

You add shapes to a flow rule using the Process Modeler. You use the shapes to define a sequence of
events in a flow that accurately models a business process in your application.

Standard shapes in a flow rule

Pega provides standard shapes that enable you to accurately model a business process using a flow
rule.

Shape Name Use
Start The Start shape indicates the beginning of flow processing.
Each flow rule must contain a single Start shape. A single Start
shape is automatically added to every flow rule.

Assignment The Assignment shape creates a task in a work list or
workbasket so a user can provide input to the case. Typically,
the user either provides information or selects an outcome.

Subprocess The Subprocess shape indicates a reference to another flow
rule from the current flow rule. Portions of a process can be
divided into a smaller process to enable reuse in other flow
rules.

Utility The Utility shape indicates an automated system action. Pega
executes automated system actions, without requiring human
intervention. Examples of automated system actions include
changing the stage of the current case, sending an email, or
creating a new case.

108
©2017 Pegasystems

Shape Name Use

!,,--”““x‘_“ Decision The Decision shape indicates an automated step used to
,_:::: ::, determine the path a case takes. A Decision shape evaluates an
~ expression or calls a decision rule to determine which step is
- next in the flow progression.
End The End shape indicates the end of flow processing. Each flow
Q rule may include one or more End shapes to represent the

potential end points of the process.

’r Connector Each flow shape connects to other flow shapes through the use
of a connector. The Connector is used to define the sequence
of flow execution. The flow execution begins with the Start
shape and proceeds from one shape to the next in the order
the shapes are connected to each other.

KNOWLEDGE CHECK

./---..\'.
| ™ |

Which standard flow shape creates a task in a work list or workbasket?

Assignment

KNOWLEDGE CHECK

./- 1
[)

Which standard flow shape represents an automated system action?
Utility

KNOWLEDGE CHECK

./-- .'\'.
| |

How many Start shapes can a flow rule contain?

One

Smart Shapes

Pega provides smart shapes to help speed up development. Smart shapes are preconfigured shapes
that perform a specific task, such as sending an email, attaching a file to a case, or changing to a
different case stage.

Shape Name Use
Change Transitions the case to a different stage in the case life cycle
Stage

109
©2017 Pegasystems

Shape Name
Send Email
N\
Attach
@ Content
Create PDF

Create Case
(s)

Persist Case

D)
Post to Pulse

o

Update a
P case

Approval
V)

Duplicate
@ Search

KNOWLEDGE CHECK

./. - .\.
| we |
.\._ __.-"

Smart shapes are

Use
Sends an email to one or more work parties

Attaches a file, URL, or note to a case

Creates a PDF file from a specified section and attaches it to the
case

Creates a top-level case or one or more child cases

Converts a temporary case to a permanent object in the
database

Creates a message that is sent to the Pulse social stream

Updates the case or all child cases and descendants

Routes a case to one or more reviewers, based on a user name,
reporting structure, or authority matrix

Returns a list of cases that match the search criteria that are
defined in the case type

predefined shapes configured to perform a specific task

110
©2017 Pegasystems

Adding shapes to a flow rule

You use the Process Modeler to add shapes and connectors to the diagram to indicate the sequence of
events in the process flow. When Pega executes the process flow, processing begins with the Start
shape and follows the connectors from shape to shape until reaching an End shape. If a shape has one
or more connectors, the process branches based on either user selection or the result of an automated
decision.

The Diagram tab of a flow rule displays the process in graphical form.

The following example shows a complex process where the sequence of events is determined by one
or more decisions.

Edit Flow: Review Expense Report [Available]

CL TGB-HRApps-Work-ExpenseVoucher »» ID ReviewExpenseReport 0 RS HRApps:01-02-01

This record has 1 unreviewed warning (review/edit)

Parameters Pages & Classes

-« @ xea

ReviewExpenseRepori_0

Manager Review p-<Needs VP reviewT>——Mo—p<_ Reguires audit? > &g [Nty :SPIE:"EE o
e, = u

Design Process Specifications Requirements History

um I:E E @ % Overlay Mone =

Yas

¥

Noftify employee of
statusg

Mo

h

Nobify employee of
Status

h

Go to Auditing stage

] »

L

Go lo Process
Payment stage

Go to VP
Reviaw

Each unique decision — Needs VP review? and Requires audit? — is represented by a single shape with
connectors indicating multiple paths for the decisions and associated steps.

Add a shape to a process flow

To add a shape to a flow rule, open the flow rule, and then add a shape using one of the following
methods.

111
©2017 Pegasystems

Add a shape using the Flow Shapes menu

1. On the Diagram tab of the flow rule, click the Flow Shapes menu.

Diagram Parameters Pages & Classes

PR

- Assignment
ReviewExpenseReport_0
<> Decision
Subprocess

Utility

Start

End

Smart Shapes

Advanced Shapes

@mlw B0

Annotation

2. Click and drag a shape onto the diagram. A dashed rectangle follows the mouse cursor to indicate
where the flow shape is added.

3. Release the mouse button.

The flow shape is added to the process, with a generic name that identifies the purpose of the flow
shape.

Note: To quickly add a shape to the diagram, click the shape once. After the shape is added to the
diagram, drag the shape to the desired position on the diagram.

112
©2017 Pegasystems

Add a shape using the sub-context menu

1. On the Diagram tab of the flow rule, right-click the flow diagram where you want to add the shape.

Diagram Paramerers Pages & Classes Design Froce

o+ B xoea [

ReviewExpenseReport_(

vl ¥ v
oo | [rsomen
o] Layout - ’u Decision

Select All Subprocess [

B Specification . Utility

. ”
Q Zeem O Start
O

@ Paste End
n
mm Smart Shapes
& Advanced Shapess

@ Annotation

2. Click the appropriate shape to add it to the diagram.

Connect flow shapes with a connector

Connectors indicate the order of steps in a process flow.

1. Position the cursor over the flow shape from which you want to connect. A set of connector points is
displayed on the border of the flow shape.

2. Click the connector point from which you want to start the connector. The connector point is
highlighted with a green square.

113
©2017 Pegasystems

[Decision]

3. Click the mouse button and drag the cursor to draw the connector. A green dashed line indicates
the path of the connector.

on]

4. Position the cursor over the shape on which you want to end the connector. The connector points
are displayed on the border of the flow shape.

(o)
&

5. Release the mouse button to connect the connector to the shape.

on]

Al

Configuring flow shapes and connectors

To configure the behavior of a flow shape or connector, open the Properties dialog for the shape.

In the Properties dialog you can associate a flow shape or connector with a specific rule and add
additional processing instructions. For example, you can add a likelihood to a connector to identify the
probability of the process following the connector during case processing or add an Audit note.

To configure a flow shape or connector using the Properties dialog:

114
©2017 Pegasystems

1. Double-click the flow shape or connector to open the Properties dialog .

W PR . - Hoity & L
=
2 artie otify empls f status
C Meeds WP reviee? el Matify emnployee of status
O Details £ Automation details
» ail adciness 3
e = -
miployee. e Ackdre
& arte Rep " -
¢ - Fi
Message L e TS]
F | o
B I U A- 3 s i K
ek 4 # P B T y -
] il e i ¥ e Mo

2. Complete the Properties dialog.
Note: Fields marked with an asterisk (*) are required fields.
3. Click Submit to close the Properties dialog.

4. Click Save to commit your configuration changes.

Draft mode

When you create a flow rule, Pega defaults the flow rule to draft mode.

Draft mode enables you to add flow shapes and connectors that reference other rules, even when
those other rules do not yet exist. Using draft mode, you can run a process even if the rules that would
otherwise be required, such as user interfaces and automated decisions, are missing.

Note: Flows with draft mode enabled will not run in a production environment and will display a
Guardrail warning. To resolve the warning, turn off draft mode before releasing the application.

To disable draft mode for a flow rule, click Draft onon the toolbar. When draft mode is disabled, the
label of the button updates to Draft off.

115
©2017 Pegasystems

Edit Flow: Interview Candidate [Available]

TGB-HR-Work-Candidate InterviewCandidate 0

Diagram Parameters Pages & Classes Design

o« @ xora

ntervi andidate_0

£\ (]

KNOWLEDGE CHECK

Ve

ANEwER Draft mode enables you to

éave, and run a flow rule even if other referenced rules do not yet exist.

116
©2017 Pegasystems

REPORT PLANNING AND DESIGN

©2017 Pegasystems

Process visibility through business
reporting

Introduction to process visibility through
business reporting

You need ways of understanding how business processes are functioning — where the bottlenecks are,
where there are opportunities to improve response time, and what emerging trends need attention. A
report that asks the correct questions, and therefore provides relevant information rather than an
unsorted heap of data, can show you what's going on now, what has been going on over a period of
time, or how what is going on matches or differs from what was planned.

After this lesson, you should be able to:

« Explain the difference between business data and process data used in reports
» Describe the different types of reports available for Pega applications

« Use the Report Browser to customize an existing report

118
©2017 Pegasystems

Business reports

Business applications often target performance gains in time spent and process efficiency as a method
of reducing the cost of performing work. But poor work quality may indicate a poorly designed
application, rather than poor effort from end users. You need ways of understanding how complex
processes are functioning — where the bottlenecks are, where there are opportunities to improve
response time, and what emerging trends need attention.

A business report that asks the correct questions, and therefore provides us with relevant information
rather than an unsorted heap of data, can show us what's going on now, what has been going on over a
period of time, or how what is going on matches or differs from what was planned.

Business reports and process reports

There are two types of metrics associated with report data, business metrics and process metrics.

Business metrics represent the data you define for an application. For example, business metrics are
the number of orders for a certain item, or how many orders of a certain type get canceled.

Process metrics are defined and tracked by Pega. For example, process metrics include how long it
takes to complete an assignment, how often a path is followed in a flow, or how often Service Level
Agreements (or SLAs) are violated.

Business reports

Organizations can design business reports that describe and measure what the organization's work is.
Organizations can use these business metrics to make informed decisions about improving its
business performance. This data that provides the metrics is collected from outside the application
and is stored in a database. The system retrieves the information when users generate a report.

The following table gives examples of business report information and how the information can be
used in business decisions.

What is being measured? What is the business decision?

What was the average profit The average margin was below the target percentage. The sales
margin for all automobile sales department decides to train its sales staff on promoting cars
last year? and options that have the highest margins.

How many auto loans are made in The number of personal loans is significantly lower than the

a month as compared to personal number of auto loans. The goal is to have the numbers

loans for the same period? approximately equal. The marketing department increases
marketing resources for personal loans.

How many orders for office desks ~ The number of orders shows an upward trend. As a result,
were shipped each week for the inventory levels are unacceptably low. The purchasing

past month and how many are department decides to restock more desks on a weekly basis.
now left in inventory?

119
©2017 Pegasystems

Process reports

Process reports track statistics on how work is performed in Pega applications. Unlike business metrics,
process data is automatically defined and generated within the application. Having this information
enables business analysts and business managers to discover issues that may affect processing
performance.

The following tables gives examples of process report information and how the information can be
used in process design decisions.

What is being measured? What is the process design decision?

Which open loan application cases Most of the cases were for loan amounts greater than $300,000.

have exceeded the standard three- Loan amounts that exceed this amount must go through an

day service level deadline? additional review step, which accounted for the delay. The
department manager decides to increase the service level
deadline for loans exceeding $300,000 from 3 to 4 days.

What is the average duration and This report might help identify which user actions take the
by assignment type and action? longest to complete, and which are used more or less often
than expected.

KNOWLEDGE CHECK

./-_.\.
| |

A sales manager is required to run weekly performance reports on how long it takes for a
car to be prepared for customer delivery after the sale has been signed. Which type of report metrics

does this report apply to?

Business metrics.

120
©2017 Pegasystems

About the Report Browser

Work managers use the Report Browser to search for, organize, schedule, and run reports.

Use the Report Browser to review the library of available reports. Reports are grouped into public and
private categories.

« The public category group include hundreds of standard process reports provided by Pega. Public
category reports are available to all managers in an application.

« The private category group includes reports that are created and saved for individual work

managers. Managers can share their reports with other managers by putting them into the public
categories group.

The Report Browser organizes the report categories into Private categories and Public categories lists.
The lists are displayed on the right side of the Report Browser.

When you select a category from a category list, the available reports within the report category are
displayed in a list on the left side of the Report Browser. The following screenshot shows the list of
standard Analyze Performance reports when the category is selected in the Public categories list.

Showing reports in category: Analyze Performance

= a4l Charts B 3, Summaries] E= Lists Private Ea!éﬁnriéi

Email Notificazion Puldic categaries

(10

E B

B

Standard Pega reports

Standard Pega process reports are grouped into eight categories.

Report category Information the reports provide

Analyze Performance Resolved cases in an application at the level of each individual step, or
actions, within a business process. The reports analyze the completed work
to determine whether business processes are efficient and effective. For

example, there is a report that tracks processing time in hours by task and
action.

Analyze Quality Resolved cases in an application. Similar to reports that analyze

121
©2017 Pegasystems

Report category

Case Metrics

Monitor Assignments

Monitor Processes

Open Cases

Service Level
Performance

Step Performance

Information the reports provide

performance, quality reports analyze completed work to determine if
business processes are efficient and effective. For example, there is a
quality report that measures the average elapsed time per status.

The number of cases created each day for the last seven days and the time
per stage for resolved cases.

Assignments for open (or unresolved) cases in an application. The reports
tracks the work based on the user to whom the case is assigned. For
example, there is a report that measures time lines by task.

Assignments for open (or unresolved) cases. The reports focus on the work
and not individual users. For example, there is a report that measures
throughput in the past week by work type.

Case-level SLA status for open cases. This report focuses on the timeliness
of a case from the time a case is created to the time the case is resolved.

Assignment SLA status grouped by assignment or by operator.

Assignment-level SLA status grouped by assignment, and an historical view
of the time it took an operator to complete a step.

Viewing reports in lists, summary layouts, or charts

When you select a report in a category, the report opens in the Report Viewer. The data can be
displayed in a list, in a summary format, or in a chart.

« List reports display a list of cases whose data is organized into columns and rows.

« Summary reports aggregate case data into categories by use of a summarizing function, such as
counting the number of results in a particular column or averaging the values in the column.

Add charts to summary reports to help end users visualize report data, and allow users to “drill”
down into the report data for greater insight.

« The checkboxes at the top of the report list

As shown in the following screenshot, checkboxes at the top of the report list lets you filter the list
based on how the reports are presented

122
©2017 Pegasystems

Showing reports in category: Monitor Processes

W gl Charts [¥ Summaries [i= Lists Recent reports All reports

Title
4l Effort by organization unit
= List of processes entered by operator
4l Process average elapsed time per status

Y. Progress in days by organization

123
©2017 Pegasystems

Working with the Report Browser

Use the Report Browser to review, run, and edit the library of available reports.

Running reports from the Report Browser

In the Case Manager portal, the Report Browser provides report shortcuts to the reports that are
available for you to run. Report shortcuts are organized into categories.

1. Open the Report Browser by clicking Reports in the left navigation pane.

2. Torun a reportimmediately, click the title of the report shortcut. The results display in the Report
Viewer.

Note: The Report Viewer provides options for working with the results, such as formatting, filtering,
saving, printing, and exporting the report.

After a report runs, the results display in the Report Viewer. The Report Viewer shows the title of the
report, and the date and time when the results were generated. The Report Viewer also provides
options for working with the results.

From the Report Viewer, you can complete the following tasks:
« View the results of a report and the filters applied to generate the results.
« Expand and collapse all group headings.

« Search for text within the report by using the search field. Click the search icon repeatedly to move
from instance to instance of the search string in the report.

« Drill down to view detailed information about a row or cell by clicking on the row or cell of a
summarized report.

« Interact with the data displayed in a chart.
« Sort results by the values in a column by clicking the column heading.
« Filter which rows of data are included in a report.

« Initiate actions from the Actions menu. Actions might include editing the report in the Report Editor,
printing the report, and exporting the report.

Note: For more information about the available actions, refer to the Actions menu options Help
topic.

Scheduling reports in the Case Manager portal

You can schedule reports to run at a time, interval, and frequency that you define. When you schedule
a report, you are subscribed to that report by default. You receive a copy of the report by email each
time the report runs.

1. In the Report Browser, click the gear icon for the report shortcut and select Schedule to open the
Schedule Reporting Task form.

124
©2017 Pegasystems

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#reporting/rpt-reporting-actions-menu-ref.htm?TocPath=Reporting|Running%2520reports%2520from%2520the%2520Report%2520Browser|_____2

2. On the Schedule Reporting Task form, specify the task definition and description.

Note: To learn more about how to schedule reports, refer to the Scheduling reports Help topic.

125
©2017 Pegasystems

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#reporting/rpt-scheduling-reports-tsk.htm?TocPath=Reporting|Scheduling%2520reports%2520in%2520Case%2520Manager|_____0

Working with the Report Editor

The Report Editor displays a report and provides options for editing it. The Report Editor also displays
the name of the report, the date and time when the report ran, and whether simulated or actual data
is being used.

Using the Data Explorer

The Data Explorer panel on the left of the screen provides a quick way to find a property or calculation
toinclude as a column in the report, or to use in defining a filter condition.

Enter a value in the search box of the Data Explorer and click the magnifying glass to limit the display
in the current tab to only properties whose name or label match the search string you entered. Click
the X to clear the search box and display all properties.

The Data Explorer includes three tabs:

Data Explorer

Drag-and-drop an item next to an existing column
to add it, or to the Filters area to add a filter
condition.

Best Bets All Matches Calculations

Best Bets

The Best Bets tab displays the properties that you are most likely to use in your report, organized in a
tree structure. Expand any subfolders (representing page lists and other embedded properties) to see
more properties.

All Matches

The All Matches tab displays all the properties that are available for use in the report, organized in a
tree structure. Navigate the tree and add a property to populate a column in the report.

Calculations

The Calculations tab allows you to select an SQL function and identify one or more properties for it to
work with. The result of the calculation can populate a column in the report.

Using the Actions menu

The Actions menu provides additional options such as:

126
©2017 Pegasystems

Report Details

Edit the description or change the category of the report.

Summarize

Displays the Summarize form. The form displays all columns in the report, and you can specify sorting
information and a summarization function for each column.

List

Converts a summarized report to list report.

127
©2017 Pegasystems

APPLICATION DESIGN

128
©2017 Pegasystems

The role of the System Architect

Introduction to the Role of the System
Architect

Enterprise application development is a team effort. A successful project requires that each member of
the team know and perform their duties.

In this lesson, you learn about the system architect role, and how this role relates to other roles during
application development. You also learn the types of tasks that system architects perform on projects.

Finally, you learn about the different types of system architects, and how they work together on an
application.

After this lesson, you should be able to:

« Explain the role of the system architect during application development.

« Identify system architect tasks during application development.

129
©2017 Pegasystems

The role of the system architect

A successful Pega application requires collaboration between three parties — business stakeholders,
business architects, and system architects — to solve business problems.

« Business stakeholders define a business problem.
« Business architects plan the application to address the problem.
« System architects configure the application to resolve the problem.

To start, business architects and business stakeholders outline business objectives and application
requirements. The goal is to describe what the application must do to address the business problem.

Next, business architects and system architects plan application behavior with specifications. These
specifications describe how the application manages and automates work. System architects often
prototype application features to help refine the specifications. These prototypes help align the
application with the business needs.

Finally, system architects provide the technical skills needed to complete the application. System
architects configure application assets such as Ul forms, automated decisions, and correspondence.
System architects then review the application with business stakeholders for approval.

@)

Business
Architect

Plans the application
to address the problem.

Outline business objectives Develop specifications
and application requirements and prototypes

@ @

Business “ Review the completed “ System
Stakeholder assets for acceptance Architect

Defines a business problem. Configures the application
to resolve the problem.

130
©2017 Pegasystems

Types of system architects

Most Pega projects staff the system architect role with three levels of system architects. These three
levels of system architects work together on application design and configuration.

Lead System Architects

Lead System Architects (LSAs) are the most experienced system
architects. LSAs have the following responsibilities on a Pega project:

« Direct the technical effort on a project.

« Work with business architects (BAs) to design an application
architecture.

« Design the architecture to reuse application assets as much as
possible.

Lead System Architect (LSA)

« Meet quality goals, including application performance.

Senior System Architects

Senior System Architects (SSAs) supervise development on the
application. SSAs have the following responsibilities on a Pega project:

« Focus on a particular process or Ul form, and supervise the
development of that process or form.

« Add technical details to specifications, translating application

requirements into guardrail-compliant feature designs. Senior System Architect (55A)

« Identify opportunities to reuse existing assets within the application
design.

System Architects

Finally, System Architects (SAs) perform much of the
development work. SAs have the following responsibilities on a
Pega project:

« Configure and unit test individual application elements such
as correspondence and automated decisions.

System Architect (CSA)

» Help draft processes and user interfaces during DCO
sessions.

131
©2017 Pegasystems

The building blocks of a Pega
application

Introduction to the Building Blocks of a Pega
Application

The key to efficient application development is to only develop the assets you need to develop. You can
reuse existing assets to limit development of new assets. Pega delivers an impressive array of
application assets. Reusing application assets is more efficient than creating their equivalents.

When an application requires new assets, you only need to create key features and functions once.
Pega's inheritance structure lets you reuse the new resources wherever they are needed in your
application. Eliminating redundant assets simplifies maintaining and extending the application.

In this lesson, you learn how Pega manages application assets and how you can reuse assets through
application design and Pega's principle of inheritance.

After this lesson, you should be able to:

« Describe the relationship between an application and rules.

« Differentiate between a rule and a rule type

« Explain the principles of rule inheritance and scope

« Differentiate between pattern inheritance and directed inheritance

« View class inheritance

132
©2017 Pegasystems

Rules and rule types

When you play a game of chess, you and your opponent agree to
follow a specific set of instructions. These instructions govern
game play, such as how each piece moves on the game board.
These basic instructions are the rules of chess.

When you model a case type in a Pega application, you
configure the application with instructions to create, process,
and resolve a case. These instructions are rules. Rules describe
the behavior of individual cases. The Pega platform uses the
rules you create to generate application code.

Pega provides wizards that create and modify many of the rules
in an application for you. For example, the Case Designer
automatically creates rules to describe cases, processes, and Ul
forms. Much of the work of designing an application can be
completed by using these wizards, although you may need to access a rule directly.

The following screenshot shows an example of a flow rule. A flow rule is used to describe a process.
Pega Express and the Case Designer automatically create a flow rule whenever you add a process to a
case life cycle.

Edit Flow: Interview Candidate [Available] - Delete Actions v @
cL TGB-HR-Work-Candidate v ID InterviewCandidate 0 RS HR:01-01-01
Diagramn Parameters Pages & Classes Design Process Specifications ~ Requirements History

[+ R~ L ME | © % overlay None ¥

InterviewCandidate_0

O Schedule Interviews Schedule Interviews Conduct Interviews Assess Candidate O
+ e

Each rule is an instance of a rule type. Pega provides many rule types, with each type tailored to a
specific type of case behavior. For example, Pega provides one type of rule to describe a process flow,
and another type of rule to describe an automated email notification.

You create an individual rule from one of the rule types provided by Pega. Each rule you create
describes specific aspects of case behavior, such as a submission form or an audit process. The use of
individual rules makes your application modular. By describing case behavior with modular, task-
focused rules, you can combine and reuse rules as needed. In this manner, rules are analogous to
classes in Java or other object-oriented programming languages. For example, you create a rule to
describe the content of an email to send to a customer regarding the status of a change of address.
Your application automatically sends this email after the customer enters the old and new address. By
creating the message as a separate rule, rather than embedding the message in the case life cycle, you
can update the content of the email without impacting the rest of the business process.

This modularity provides three significant benefits:

133
©2017 Pegasystems

. Versioning — System architects create a new version of a rule whenever case behavior needs to

change. Pega maintains a history of changes to a rule, allowing system architects to review the
change history and undo changes if needed. Since each rule describes a specific case behavior, the
rest of the case is unaffected. For example, a system architect updates a Ul form with instructions
and removes a critical field. You can review the history of the form and revert back to the version
before the changes were made, without changing other rules in the application.

Delegation — System architects delegate rules to business users to allow business users to update
case behavior as business conditions change. The business user updates the delegated rule, while
other parts of the application remain unchanged. For example, expense reports that total USD25 or
less are approved automatically. You create a rule to test whether an expense report totals USD25
or less and delegate the rule to the Accounting department. The Accounting department can then
update the rule to increase the threshold for automatic approval increases to USD50, without
submitting a change request for the application.

Reuse — System architects reuse rules whenever an application needs to incorporate existing case
behavior. Otherwise, you must reconfigure the behavior every time the behavior is needed. For
example, you create a Ul form to collect policyholder information for auto insurance claims. You can
then reuse this Ul form for property insurance claims and marine insurance claims.

KNOWLEDGE CHECK

./ :

"y

[~)

What is the purpose of a rule in a Pega application?

A rule is an instruction for describing a specific case behavior, such as a process or automated

d

ecision.

134
©2017 Pegasystems

Rules and rulesets

To package rules for distribution as part of an application, you collect rules into a group called a
ruleset. If a rule is similar to a song, a ruleset is similar to an entire album. Just as you can copy the
album to share with a friend and allow your friend to listen to your favorite song, you can share a
ruleset between applications to allow several applications to use the same rules.

Ruleset versioning

System architects collect individual rules into a subset of a ruleset, called a ruleset version. To update
the contents of the ruleset, you create a new ruleset version. Ruleset versioning allows system
architects to easily update applications by providing access to an entire set of rules at once.

You identify each ruleset by its name and version number. For example, an application to process
expense reports includes a ruleset named Expense. You refer to the ruleset as Expense:01-02-03,
where Expense is the name of the ruleset and 01-02-03 is the version number.

The version number is divided into three segments: a major version, a minor version, and a patch
version.

« The major version represents a substantial release of an application. A major version change
encompasses extensive changes to application functionality. For example, the Accounting
department uses an application to manage expense reports. If Accounting wants to extend the
application to track employee time off for payroll accounting, you create a new major version of the
ruleset.

« The minor version represents an interim release or enhancements to a major release. For example,
you need to update an expense reporting application to automatically audit travel reimbursements.
You create a new minor version of the ruleset.

« The patch version typically consists of fixes to address bugs in an application. For example, you
notice that a field in the current version of an application is labeled incorrectly. You create a new
minor version to correct the field label.

Each segment is a two-digit number starting at 01 and increasing to 99. Ruleset version numbering
starts at 01-01-01, and increments upward.

135
©2017 Pegasystems

Expense:

Major
Version

Minor

Patch
Version

Version

Each application consists of a sequence of rulesets, called a ruleset stack. The ruleset stack
determines the order in which Pega looks through rulesets to find the rule being used. Each entry in
the ruleset stack represents all the versions of the specified ruleset, starting with the listed version and
working down to the lowest minor and patch version for the specified major version.

Each version of an application contains a unique ruleset stack. This allows an updated application to
reference new ruleset versions that contain updates and new features.

Bob is a system architect working on the first version of an
application to manage expense reports. Bob creates rules for
the first version of the application, such as processes, Uls, and
notifications. Bob collects these rules into the first version of
the Expense ruleset, Expense:01-01-01.

Application Application
Version1 | Version2

Months later, Tanya receives an enhancement request to
update a Ul in the application to collect extra information from
employees due to a policy change. This update enhances the
rules created earlier by Bob. Tanya creates rules to model this
new behavior in a second version of the ruleset, Expense:01-02-
01. She then uses the Expense:01-02-01 ruleset in the updated
expense reporting application.

Ruleset
Version 2

Ruleset Version 1

Employees who use the first version of the application view the
Ul that Bob created. Only employees who use the updated
application view the Ul that Tanya created. This allows users to
use the first version of the application while the second version
is in development.

KNOWLEDGE CHECK

"y
A

[]

-

-
S,

Aruleset version is identified with a string of three numbers. What do these three
numbers indicate?

136
©2017 Pegasystems

137
©2017 Pegasystems

Classes and class hierarchy

One strength of the Pega platform is the reuse of rules between case types and applications. System
architects often reuse rules — from single data elements to entire processes — in applications. The
reuse of rules improves application quality and reduces development time. Organizations that adopted
the Pega 7 Platform reduced development costs by 75 percent and time-to-market by 50 percent,
launching new business applications up to 90 days earlier)

Within an application, Pega groups rules according to their capacity for reuse. Each grouping is a class.
Each application consists of three types of classes.

« Work class — The work class contains the rules that describe how to process a case or cases, such
as processes, data elements, and user interfaces.

« Integration class — The integration class contains the rules that describe how the application
interacts with other systems, such as a customer database or a third-party web server.

« Data class — The data class contains the rules that describe the data objects used in the
application, such as a customer or collection of order items.

A class can also contain other classes. A class that contains
another class is called a parent class, while a class that is

ﬂ Parent Class contained by another class is called a child class. A child class
can reuse, or inherit, any of the rules defined for its parent

class.

(ﬁ:ﬁ,ﬁ,;'ﬁ; from parent dass) The work class contains a child class for each case type in your
b | application. Each child class contains all of the rules unique to
» @ Case Type a case type, such as an auto insurance claim. The data class

b Process contains a child class for each data object.

L V]|

b Data

138
©2017 Pegasystems

The classes that comprise an application are called a class hierarchy. The
class hierarchy determines how system architects can reuse rules within
the application. The class hierarchy consists of several groups of classes:

« Classes that describe a specific case type, such as expense reports or
auto insurance claims

» Classes that collect common rules and data elements. These classes
allow the reuse of rules at the division and organization level, such as an
approval process shared across the entire IT department.

« Classes from other applications, such as industry-specific Pega
applications. So you can create a generic application for policy
administration to use as a base for customizing versions for different
countries.

« Base classes provided by the Pega platform. These classes contain rules
that provide basic functionality for processing cases. For example, the
Pega platform provides data elements that record who created a case
and the time needed to complete an assignment.

Any rule available to an application through the class hierarchy is
considered in scope. Rules that an application can not access through the
class hierarchy are considered out of scope.

Pega names each class to identify the position of the class within the class
hierarchy. Consider the class TGB-HR-Work. Each level of the class
hierarchy is separated by a hyphen (-). So TGB-HR-Work is a child of the
class TGB-HR, which is a child of the class TGB.

KNOWLEDGE CHECK

[e]
J

What is the purpose of a class in a Pega application?

[Case Type}
[D

E:Jther Apps

-

\

-
J

)

A class organizes rules within an application. The position of a class within the class hierarchy

determines the reusability of the rules in that class.

TForrester Consulting. (2015). The Total Economic Impact™ Of The Pega 7 Platform. Retreived from

https://www.pega.com/forrester-tei

139
©2017 Pegasystems

How to create a rule

When you create a rule, Pega provides you with the New Record form. The New Record form allows you
to create either a rule or a data instance.

When you create a rule, the New Record form prompts you to provide four pieces of information: rule
type, identifier, class, and ruleset. This information is used to identify the rule uniquely within your
application.

Create Flow 1 Create and open cancel @

Flow Record Configuration

e Label* dentifier
Describe the purpose for this new recorc To be detarminad

A short description or title for this record

View additional configuration options

Context o o

« HR Apply to* Add to ruleset®

PegaRULES Onboarding ¥ 01-01-01 »

1]

A fien
view a

1. The rule type determines the type of behavior modeled by the rule. Each rule type models a
specific type of behavior, such as automated decisions, Ul design, or data storage. For example, to
model a process, you use a specific type of rule called a flow rule. You determine the rule type when
you open the New Record form.

2. The identifier identifies the purpose of the rule. For example, to model the process for approving
insurance claims, you use a identifier such as ClaimsApproval. This identifier allows you to
differentiate the approval process from a submission process. Pega automatically determines the
identifier from your entry in the Label field.

3. The class identifies the scope of the rule. You specify the class of a rule in the Apply to field. The
class you select determines how extensively you can use the rule — within one case type, or across
case types.

4. The ruleset is the container for the rule. The ruleset identifies, stores, and manages the set of rules
that define an application or a major portion of an application.

The combination of rule type, name, class, and ruleset allows Pega to uniquely identify each rule. This
combination allows an application to call the correct rule during case processing, through a process

140
©2017 Pegasystems

called rule resolution. With rule resolution, Pega determines the appropriate rule to run when an
application calls a rule.

You can access the New Record form several ways. Based on your choice, Pega provides default values
in some or all of the fields on the form. You can change these values before you create the rule.
How to access the New Record form Default values provided

From the +Create menu, select the rule Rule type, ruleset
category, then the rule type.

In the Application Explorer, select the class in Rule type, apply to class,
which you want to create the rule, then select ruleset
the rule category, then select the rule type.

In a field on a form, enter the name of the rule Rule type, identifier, apply to
to create, then click the Target icon. class, ruleset

After you complete the New Record form, click Create and open to configure the rule behavior.

141
©2017 Pegasystems

How to update a rule

System architects often secure rulesets to prevent unauthorized or unintended changes to rules. When
you edit the rules in a secured ruleset, you either check out the rule or perform a private edit.

Rule check out and check in

The check-out feature is used to manage changes to rules when multiple developers work on an
application. This feature allows a system architect to update a rule while preventing updates by other
system architects. Rule check out creates a copy of a rule in a ruleset that is only visible to you, called a
personal ruleset. After you update the rule and test the changes, you check in the rule. This updates
the application ruleset with a new version of the rule.

Checking out a rule

On the rule form header, click Check out to check out the rule.

" Private (i) Resources £ Administrator

|E| Check out | Save as | v Delete Actions)]

Checking out a rule creates a copy of the original rule in your personal ruleset and prevents other
system architects from checking the rule out until you check in your changes.

The personal ruleset occupies the top spot in the ruleset stack. The rules in your personal ruleset
override rules in the rest of the application. This allows you to test your changes to the rule without
affecting other system architects.

In the rule header, click Private to view a list of the rules you have checked out.

Checking in a rule

When you check out a rule, the rule header updates with three new buttons: Save, Check in, and
Discard.

+ Private (i) Resources SA

Checkin Discard Actions @

When you finish editing the rule, click Save to save your changes to the checked out rule. This commits
the updated rule to your personal ruleset. After you save the rule, you can test your changes.

142
©2017 Pegasystems

After you test the rule and confirm that your configuration works as expected, click Check in to replace
the original rule with the version in your personal ruleset. Unless approval is required, your changes
immediately affect application behavior.

You are not required to check in your changes immediately. You can log off and return to a checked out
rule later or click Discard to remove the rule from your personal ruleset.

Select Private > Bulk actions to check in several records at the same time.

Private edit

A private edit provides a nonexclusive check out of a rule. This allows other system architects to edit a
rule at the same time. Private edits are useful for quick debugging without interrupting development
by other team members.

As a best practice, older versions of a ruleset are locked to prevent
changes. For rules in a locked ruleset, a lock icon is displayed on the rule
form. To update a rule in a locked ruleset version, save the rule to an
unlocked ruleset version, then check out the rule if necessary.

&) | poamede | v

143
©2017 Pegasystems

How to reuse rules through inheritance

Inheritance allows your application to reuse rules that have already been created for other cases or
applications. By reusing a rule through inheritance, rather than creating an identical copy of the rule,
you reduce development and testing time without sacrificing application quality.

Pega provides two methods for inheriting rules: pattern inheritance and directed inheritance.

Pattern Inheritance

Pattern inheritance describes the business relationship between classes. Pattern inheritance allows
your application to share rules with other applications throughout an organization. The following
image demonstrates a basic pattern inheritance hierarchy.

o

o TGB-IT TGB-HR
o TGB-IT-Work TGB-HR-Work
1 1
I I I I
TGEB-IT-Work- TGB-HR-Work- TGB-HR-Work-
o TGB-T-Work-Ticket ServerMaintenance Candidate Onboarding

1. Rules for a specific type of case are stored at the lowest level of the hierarchy. Rules at this level
only affect a single type of case, such as IT service tickets or onboarding requests.

2. The next level is the class group. The class group contains all of the case types in an application. In
the previous image, TGB-IT-Work contains all of the case types for the IT department, while TGB-HR-
Work contains all of the case types for the human resources (HR) department. Rules at this level
affect all the case types in the class group.

3. Above the class group is the division layer. The division layer contains the work, data, and
integration classes for the division.

4. Above the division layer is the organization layer. The organization layer contains all of the classes
for applications across an entire business or other organization. The organization layer often
contains data and integration classes that can be applied across the entire organization

For example, an organization creates an application to manage IT requests. In this application, you use
a data element to record the due date for the request. The concept of a due date is not unique to IT
requests. Other business processes also use due dates, such as expense reports. You create the data

144
©2017 Pegasystems

element for the due date in the organization layer, so the application to track expense reports can
reuse this data element.

KNOWLEDGE CHECK

::/-v.\:l

NEwER What type of relationship is described by pattern inheritance?

Pattern inheritance describes the business relationship between classes. Pattern inheritance
indicates the reusability of rules throughout an organization, such as whether a rule is usable by a
single case type, an entire department, or even an entire organization.

Directed inheritance

Directed inheritance describes the functional relationship between classes. Directed inheritance
allows your application to reuse rules from classes in other applications and standard rules provided
with the Pega platform. For example, a class that describes automobile insurance policies can inherit
from a class that describes a generic insurance policy, and even the generic case type defined by the
Work-Cover class provided by the Pega platform. For example, directed inheritance allows you to reuse
the standard data element to record the case ID, provided as part of the Pega platform, in your

application.
KNOWLEDGE CHECK

:'/.v.\'l

N How does directed inheritance differ from pattern inheritance?

Pattern inheritance allows you to reuse rules within a single application. Directed inheritance allows
you to reuse rules in other applications, including standard rules provided as part of the Pega

platform.

Reusing rules through inheritance

When attempting to reuse rules through inheritance, Pega first searches through the parent classes
indicated by pattern inheritance. If unsuccessful, Pega then searches the parent class indicated by
directed inheritance as the basis for another pattern inheritance search. This process repeats until
Pega reaches the last class in the class hierarchy, called the ultimate base class or @baseclass. If the

rule cannot be found after searching @baseclass, Pega returns an error.

Consider the following example in which an auto insurance claim case references the data element
that stores the case ID. This data element belongs to the ultimate base class, @basec/ass. The
application containing the auto insurance claim is built on a generic policy administration application.

That generic application is built upon the Pega platform.

145
©2017 Pegasystems

@baseclass

Inscorp InsApp

Inscorp-PA

InsApp-PA

Inscorp-PA-Work InsApp-PA-Work Work-

Inscorp-PA-Work-
AutoClaim

InsApp-PA-Work-Claim Work-Cover-

1. An auto claim case, described by the class Inscorp-PA-Work-AutoClaim, references the case ID data
element.

2. The data element is not found in the class Inscorp-PA-Work-AutoClaim, so Pega searches through the
parent classes using pattern inheritance.

3. The data element is not found though pattern inheritance, so Pega searches the parent class

specified by directed inheritance, InsApp-PA-Work-Claim. This class belongs to the generic policy
administration application.

4. The data element is not found in the class InsApp-PA-Work-Claim, so Pega searches its parent classes
using pattern inheritance.

5. The data element is not found though pattern inheritance, so Pega searches the parent class
specified by directed inheritance, Work-Cover-. This class belongs to the Pega platform.

6. The data element is not found in the class Work-Cover-, so Pega searches its parent classes using
pattern inheritance, finally locating the data element in @baseclass.

KNOWLEDGE CHECK

(ﬂu-'wz* From which class does @baseclass inherit? W
None. In a Pega application, @basec/ass is the ultimate base class. All other classes inherit from
@baseclass.

146
©2017 Pegasystems

Reviewing class inheritance

Before you create rules, review the inheritance tree for your application. This allows you to determine
the appropriate class to use when creating rules, and allows you to review the rules already available

in the application.

To review inheritance for a class:

1.
2.

Open the Application Explorer.

If necessary, use the application scoping control to enter or select the name of the class. In the
following example, PegaSample-SupportRequest is entered into the control to display the contents
of the class PegaSample-SupportRequest and its child classes.

PEga" / DESIGNER sTUDIO™ & PegaRULES

1 Application =]

PegaSample-SupportRequest -

@ PegaSample-SupportRequest

r Data Model

3. Right-click the class to review, and select Inheritance. The Inheritance Viewer for the selected class

opens in a pop-up window. The following example shows the Inheritance Viewer for the
PegaSample-SupportRequest class.

Inheritance: Support Request (PegaSample-SupportReguest)

Name Label Inheritance type
1 PegaSample-SupportReguest Support Reguest Pattern
2 PegaSample Sample Werk Pattern
3 Work-Cover- Cover classes Both
4 Work- Waork classes Pattern
5 @haseclass @baseclass MA

4. Review the classes listed as parents for the selected class. The Inheritance Viewer lists each parent

147
©2017 Pegasystems

class in hierarchy order, and the inheritance method that provides access to the class.

Optional: Click a class to open the class rule. The History tab of the class rule provides
documentation about the class, such as the purpose and recommended usage of the class.

If necessary, click Close to close the Inheritance Viewer.

148
©2017 Pegasystems

Accessing Applications

Introduction to accessing applications

In Pega, application developers use the integrated developer environment to configure their
application. This environment, known as the Designer Studio, provides tools to manage and analyze the

application configuration.

To ensure that only application developers access the Designer Studio, Pega provides a system to
manage user privileges for an application.

After this lesson, you should be able to:
« Explain the relationship between a user and an application.

« Switch between applications.

How to manage user access to an application

When users log on to Pega — either through the Designer Studio or an end-user portal — Pega
provides the user with access to an application. Pega manages user access through a combination of
three items of information: an operator, an access group, and an application. To ensure that users
access the correct application, you configure the operator to reference the correct access group.

Operator ID

Application

Case Types

Mame

Password

Location
Skills

In Pega, each user is represented by an operator record. The operator record contains information
such as the operator's name, position, organizational hierarchy, and location.

Each operator is a member of an access group. The access group record describes a set of privileges.
These privileges are available to users who belong to the access group. Any operator can belong to a
number of access groups. However, only one access group is active at any time. The access group also
indicates the portal through which the user interacts with Pega.

149
©2017 Pegasystems

Each access group references a specific application. The privileges available to members of the access
group apply only to the referenced application. So, a human resources (HR) analyst may have
developer access to an HR application, and user access to an IT application.

How Pega determines the application a user opens

When users log on to a Pega server, they enter their ID and password. The ID corresponds to a unique
operator record, and the password authenticates the users.

The operator record lists a set of access groups. The users belong to each access group listed on their
operator record, but only one access group is active at any time.

Finally, Pega uses the active access group to determine the application to run.

(>)) SIGN IN|(jpoherey

User ID Access Groups
|Doherty TimeTracker: Users

TIME TRACKER ***

MM TUE WED THU FRI

Password Payroll: Users o
kkkdkkk ki ITRequest: Users

Allowing a user to access an application

To allow a user to access an application, you add the appropriate access group to the user's operator
ID record. Each access group has a unique name that references both the application name and the
access level. The following access groups are created automatically for each Pega application.

Access Group Usage
[application]:Administrators Developer access to the application. Configured to
open the application in Designer Studio.

[application]:Authors Developer access to the application. Configured to
open the application in Pega Express.

[application]:Managers Manager access to the application. Configured to
open the application in the Case Manager portal.

[application]:Users User access to the application. Configured to open
the application in the Case Worker portal.

For example, a Pega application named TimeTracker manages time-off requests for users. To gain
developer access to the application , you add the TimeTracker:Administrators access group your

150
©2017 Pegasystems

operator ID record. To open the application when you log on, select the radio button to the left of the
access group on the operator ID record.

151
©2017 Pegasystems

Assessing Guardrail compliance

Introduction to assessing guardrail
compliance

When you develop an application in Pega, Pega monitors your application for configurations that lead
to maintenance or performance issues. By addressing these issues, you improve application quality
and prevent performance issues for users.

After this lesson, you should be able to:

» Navigate to the Application Guardrails landing page.
« Review guardrail compliance for an application.

« Address application design warnings.

« Justify application designs that violate guardrails.

152
©2017 Pegasystems

Compliance Score

When you develop an application, you want to ensure that the application meets established standards
for quality and performance. Users quickly adapt to applications that meet established standards,
resulting in faster adoption and fewer user errors. The key to releasing quality applications is to
identify potential issues during development. By doing this, you can correct these issues before they
affect users.

To help you develop high-quality applications, Pega monitors
your application for compliance with application design best
practices. These best practices, or guardrails, guide you to
design applications that avoid potential maintenance and
performance issues. When a rule in your application violates
one or more guardrails, Pega notifies you with a rule warning.
This warning prompts you to review the deviation and allows
you to update your application prior to release. Similar to the
lane-departure warning system in a vehicle, these warnings
alert you to dangerous or risky behavior before they cause a
serious problem.

=
)
-

—_—

To help you develop high-quality applications, Pega
continuously monitors the rules in your application for
compliance with established best practices. If a rule violates a
best practice, Pega applies a warning to the rule. This warning
indicates the severity and type of error that may result, and
often describes how to address the violation. Each warning
indicates a particular issue with the configuration of the rule,
and each rule may indicate multiple warnings.

To quickly assess the overall quality of an application, Pega provides a compliance score. Pega
assesses the rule warnings for an application to measure overall compliance with Pega Platform best
practices. The compliance score measures the number of rules with severe or moderate warnings in
an application, compared to the number of rules with no warnings or caution-level warnings. Use the
compliance score to quickly assess the quantity and severity of rule warnings in your application.

KNOWLEDGE CHECK

v What is the purpose of the compliance score for an application?

The compliance score provides a quantifiable assessment of application quality by indicating the
amount and severity of rule warnings in an application.

153
©2017 Pegasystems

How to assess guardrail compliance

During application development, the Application Guardrails landing page provides a single point for
assessing application quality. To open the Application Guardrails landing page, open the Designer
Studio menu and select Application > Guardrails.

grmipliang e Details WA 'I:-' Suammary '|'-'|'|'I'.": Dtails

Historical comphance score

92

96% 654 29 29

Tecal rules Aulas with warnings Rudles with unjusoimied warnin

The best tool for assessing overall compliance with guardrails is the application's compliance score.
The compliance score indicates the impact of complex or custom code on application maintenance and
performance. Pega assesses the rules in your application and calculates the compliance score on a
scale of 0-100, where 100 is the best possible score.

« A score of 90 or greater indicates your application is in good standing.
« A score of 80-89 indicates your application needs review for improvement.
« A score below 80 indicates that your application requires immediate action.

To generate the compliance score, Pega assesses the rule warnings for an application to measure
overall compliance with Pega Platform best practices. The compliance score measures the number of
rules with severe or moderate warnings in an application, then compares this result to the number of
rules with caution level or no warnings. The more rules with severe or moderate warnings in your
application, the lower the compliance score.

The Guardrails landing page also categorizes the rules in your application that include warnings. The
Warning Summary tab presents two bar charts that report the number and severity of rule warnings
in your application, organized by rule type. Use the information on this tab to determine which parts of
your application generate the greatest number of rules with warnings.

KNOWLEDGE CHECK

154
©2017 Pegasystems

155
©2017 Pegasystems

How to address guardrail violations

Address guardrail violations to improve the quality of your application. Each time you address a
guardrail violation, you improve the compliance score for your application and eliminate issues that
may impact end users. To improve the compliance score for your application, you resolve rule warnings
by correcting the indicated configuration issue.

To address guardrail warnings, you start on the Compliance Details tab of the Guardrails landing
page. The Compliance Details tab provides three options to analyze the risk areas in your application:

1. Warning impact: The severe and moderate configuration issues to address before releasing the
application

2. Warning age: The age of the warnings in your application

3. Application risk introduced by operator: The developer(s) responsible for introducing the
behavior generating the warnings

Compliance Score Compliance Details ~ Warning Summary ~ Warning Details

o

Rules modified on or after m | Apply date filter | Reset date filter

Warning impact o

|dentify application risk areas and the appropriate urgency for resolving them.

Impact Resolve now Resolve before production
Maintainability 0
Performance 0

Warning age

|dentify when warnings were introduced and how long they've gone unresolved.

8 12 1 1

Past 15 days 16-30 days ago 31-45 days ago 46-60 days ago

Application risk introduced by operator o

Identify share of application risk introduced by team members.

100%

Administrator

The Warning impact section lists the number of rules with severe (Resolve now) or moderate (Resolve
before production) warnings. When preparing to release an application, focus on resolving these
issues first. The list is organized by warning type, and highlights the warnings with the greatest impact
on the compliance score. The preceding example shows an application with 26 rule warnings that

156
©2017 Pegasystems

should be addressed before releasing the application — 21 warnings for maintainability issues, and
five warnings for performance issues. You can click each number to view the rules that violate
guardrails.

When you click a rule warning in one of these lists, you open the rule that contains the warning. Pega
displays the rule warning at the top of the rule form, as seen in the following example.

Edit Activity: AddEmployeeToSoR [Available]

CL TGB-HR-Work-Onboarding ~+ 1D AddEmployeeToSoR RS HR-01-01-01

This record has 1 unreviewed|warning (review/=dit)

Steps Parameters Pages & Classes Security History

To address a guardrail violation, you either resolve or justify the rule warning.

To resolve a rule warning, you eliminate the cause of the guardrail violation. When you eliminate the
cause of a guardrail violation and save the rule, the warning is removed from the rule form and the
compliance score improves. For example, Pega displays a warning on any flow rule with draft mode
enabled. Once you disable draft mode and save the flow, the warning is removed from the rule, and
the compliance score improves.

Not all rule warnings can be resolved. A requirement may force a design approach that results in a
warning on a rule. For example, your application may require that you output data to a system of
record, such as an external database. To output data to an external database, you use a specific type of
rule called an activity. But since activity rules are difficult to maintain, Pega applies a rule warning
whenever you use an activity in an application. In this case, you must use the activity to output data to
the system of record, so you cannot resolve the warning.

If you cannot resolve a rule warning, you justify the configured behavior instead. When you add a
justification to a rule warning, you acknowledge the guardrail violation and explain the limitation of
your application design. Justifying a warning provides a reduced improvement to the compliance score
compared to resolving the warning.

157
©2017 Pegasystems

Justifying rule warnings

Justifying rule warnings documents the required application behavior that does not adhere to Pega
guardrails. Justifying rule warnings improves the compliance score for your application and prepares

the application for release.

1. Open the rule containing the warning. The presence of a rule warning is indicated in the rule

header.

Edit Activity: AddEmployeeToSoR [Available]

CL TGB-HR-Work-Onboarding v |0 AddEmployeeToSoR RS HR:01-01-01

This record has 1 unreviewed|warning (review/edit)

Security History

Steps Parameters Pages & Classes

2. Click review/edit to review the warning. A pop-up displays the reason for the rule warning.

Maintainability: Moderate
The use of activity rules should be limited. The need for activities can be reduced by using data
transforms, as well as technigues such as case management, the Engine API, and declaratives.

Add Justification

Cancel m

3. In the pop-up, click Add justification. A text field displays in the pop-up.

Maintainahility: Moderate

The use of activity rules should be limited. The need for activities can be reduced by using data
transforms, as well as technigues such as case management, the Engine API, and declaratives.
Add Justification

Cancel m

4. In the text field, enter the justification for keeping the current configuration. For example, the
configuration is necessary to satisfy a requirement, and you cannot satisfy the requirementin a

guardrail-compliant manner.

5. Click OK to close the pop-up.

158
©2017 Pegasystems

6. Click Save to record your justification on the rule. The compliance score updates to reflect the
justification you entered for the rule.

159
©2017 Pegasystems

Pega

ACADEMY X

CASE DESIGN

160
©2017 Pegasystems

Creating cases and child cases

Introduction to Creating Cases and Child
Cases

When you represent a business process in Pega, you create a template for processing work. This
template, called a case type, is used to create individual instances of work, called cases.

Some business processes are too complicated to model with a single case type. To address this
situation in Pega, you create more than one case type. Each case type you create represents a part of
the business process, so you establish relationships between case types to reflect dependencies in the

business process.

After this lesson, you should be able to:

« Explain the relationship between a case type and a case.

« Explain the relationship between a parent case and a child case.
« Add a case type to an application.

« Create additional cases during case processing.

161
©2017 Pegasystems

Case type and case

A case type is an abstract model of a business transaction, while a case is a specific instance of the
transaction. You can think of a case type as a template for creating and processing cases. When a new
transaction starts, a new case is created based on the case type definition.

In a Pega application, you model repeatable business transactions with case types. Each case type
captures the life cycle of a specific type of transaction, from creation to resolution. A case type defines
data structures, processes, tasks, and user interfaces required for processing the transaction.

For example, a Dental Claim case type models the filing and processing of patient claims of dental
procedures. The case type contains data models for holding patient information and dental procedure
information. The case type defines processes for reviewing and approving or rejecting claims. The case
type also provides user forms for attaching medical documents.

Each time a patient files a dental claim, a new case is created. There can be a case for John Smith for
teeth cleaning performed on May 3, and another case for Linda Wise for a new crown applied on
January 15. Each case moves through the processes such as review and approval as defined in the case

type.

162
©2017 Pegasystems

DENTAL CLAIM

— Patient Information —
Name

Date of Birth
Gender

Email

— Procedure Information

Procedure
Claim Date
A)
I - A -)
DC -1 DC-2
—Patient Information —— —Patient Information
Name | John Smith | Name | Linda Wise |
Dateof Birth | March 31,1982 | Dateof Birth | June 19,1980 |
Gender | Male | Gender | Female |
Email | Smith@Pega.com | Email | Wise@Pega.com |
—Procedure Information —Procedure Information
Procedure | Teeth Cleaning | Procedure | Crown Applied |
ClaimDate | May 06,2015 | ClaimDate | January 15, 2015 |
o o

Each case can hold different data and progress through the case life cycle on a different path. One
claim case can go through the approval process quickly since it is on a common procedure. Another
case might require review since it is on a rare procedure and the claim amount exceeds a certain limit.

163
©2017 Pegasystems

Case type relationships

A business transaction can be complicated and involve multiple cases. For example, consider the new
hire process. During the interview process, the human resources (HR) department opens a Candidate
case for each job applicant. The applicant may be interviewed. If the interview is successful, the
applicant receives a job offer. When the candidate accepts the job offer, then HR considers the
candidate hired and is now an employee. The Candidate case is completed and creates a Onboarding
case to prepare for the new employee's start date. In this example, the Onboarding case is
independent of the Candidate case.

Sometimes, the created case is closely related to the original case. In the previous example, part of the
onboarding process is to enroll the new employee in a benefits plan. You create a Benefits Enroliment
case type because it is a separate business transaction. The outcome of the transaction is an
employee's benefits plan — a business transaction that is distinct from the onboarding transaction.
However, before an Onboarding case can be approved the Benefits Plan case must be resolved. In this
example, the Onboarding case type and the Benefits Enrollment case type are of a parent-child
relationship. The system associates the Benefits Enrollment information with the Onboarding case.
This allows you to join this associated information when reporting or auditing Onboarding cases. For
example, you can create a report for a set of employees showing the medical, dental, and vision plans
each employee has.

In a Pega application, you can model this parent-child relationship with a case type hierarchy that
contains a top-level case type and child case type.

« Top-level — A case type that does not have any parent case type, but can cover, or become a parent
of, other case types.

o Child— A case type that is covered by a parent case type. When you configure a case type as a child
case, Pega maintains a relationship between the parent and child cases. Child case types represent
work that must be completed to resolve the parent.

For example, an Auto Insurance application has a top-level case type Accident Claim. The Accident

Claim includes two child case types — Vehicle Damage and Bodily Injury. For any Accident Claim case,
both of its child cases — vehicle damage and bodily injury — must be addressed before the Accident
Claim can be closed. In addition, reports can associate a parent case with any or all of its child cases.

| ﬁ Accident Claim AC-001 9
Resolve
Parent Case
s--- i Vehicle Damage vD-001 e
Resolve

: child €
ree- i Body Injury BI-001 1=

A parent case creating multiple child cases allows for work to be processed in parallel. Each child case
can be handled by different parties with different expertise. Under the cover of an Accident Claim
case, the Vehicle Damage child case can be handled between a customer service representative, an

Create
Child Cases

164
©2017 Pegasystems

adjustor, and a repair shop. Meanwhile, the Bodily Injury child case can be handled by a medical claim
specialist and certain medical providers.

Implementing a business process in a separate case type also allows you to reuse the case type as
needed. For example, claims for both automobile and property insurance may involve a bodily injury
claim. By implementing bodily injury claims as a separate case type, you can use the bodily injury case
type with both automobile and property claims.

165
©2017 Pegasystems

Adding a top-level case type in an application

You can add a top-level case type to your application in the Case Designer.

Follow these steps to add a top-level case type to your application:

1. In the navigation panel, click Cases to view the list of current case types in your application.

2. Click + Add a case type.

Case types

The Add case type dialog opens.

3. In the Name field, enter a name for the case type.

Add case type

Name#
Dnboardingl

ADVAMNCED SETTINGS

4. Optional: Expand the Advanced Settings section to configure the rule resolution for the case type.
Accepting default settings should suffice in most cases.

5. Click Submit.

166
©2017 Pegasystems

Adding a child case type in an application

You can define a parent-child relationship by either reusing an existing case type or adding a new case
type.

Adding a new child case type to your application

Add a new case type as a child case when no existing case types meet your business requirements.
Follow these steps to add a new child case:

1. Open the Case Type Explorer.

2. Hover over a parent case type name and click the options menu.

3. Select Add a child case type.

Open

I Add a child case type

Rename

Remove from Create Menu

The add case type dialog opens.

4. Click New case type.

5. In the Name field, enter a name for the child case type.

Add case type

®) New case type
() Existing case type

Mame*

"u"acatil:m|

> ADVANCED SETTINGS

6. Optional: Expand the Advanced Settings section to configure the rule resolution for the case type.
7. Click Submit.

Adding an existing child case type to your application

Review existing case types and case-type dependencies before reusing a case type for a child case,
since demoting top-level case types can introduce unexpected complexity.

Follow these steps to use an existing case type for a child case:

167
©2017 Pegasystems

—_

o v A W N

Open the Case Type Explorer.

Hover over a parent case type name and click the options menu.
Select Add a child case type.

Click Existing case type.

Select a case type from the list.

Click Submit.

168
©2017 Pegasystems

Creating a case during case processing

Create new cases during case processing to begin a new business process or a portion of the existing
business process.

Creating another case during the case life cycle

Follow these steps to add and configure a process step to create a case during case processing:

1.

v~ wN

In the Life cycle tab of the case designer, identify the process where you want to add a step for
creating a case.

Click + Add step. A pop-up opens to select the type of step to add.
Select More > Utilities > Create Case(s).
Click this new step to configure the Create Case shape.

Indicate how to create the new case: as a top-level case, as a child case, or as multiple child cases.

Creating a top-level case

Create a top-level case when you want the new case to be independent of the current case.
Processing on the current case can finish while the new case is still open.

a. Click Create a case.

b. In the Case type list, select the case type to create. Specify the name of the case type, or select
[Other] to specify the case type using a parameter or property.

c. In the Starting process list, select a flow that creates the case.

d. Optional: In the Property to store ID of case field, enter the name of a single-value property
that you can reference from the current case to open the new case.

Creating a child case

Create a child case when you want the current case to be dependent upon the new case. Processing
on the current case cannot be completed until the child case is resolved.

a. Click Create a child case.
b. In the Case type list, select a case type that is a child of your current case type.

If you do not know which case type to select at design time, you can select [Other] from the list
to create a case based on the run-time value of a parameter or property.

c. In the Starting process list, select a flow that creates the child case.

Creating multiple child cases

Create multiple child cases when you want to create a child for each item in a list. Processing on the
current case cannot be completed until each of the child cases are resolved.

a. Click Create multiple child cases.

b. Enter a page list property in the For each item in list field.

169
©2017 Pegasystems

At run time, a child case is created for each entry that is found in the page list.
c. In the Case type list, select a case type that is a child of your current case type.

If you do not know which case type to select at design time, you can select [Other] from the list
to create a case based on the run-time value of a parameter or property.

If no case type is selected, the class of the page list that is provided in the For each item in list
field is used to create the child cases.

d. In the Starting process list, select a flow that creates each child case.

e. Optional: Enter a page name in the Source page parameter name field that you can reference
in a data transform to copy information to each child case.

In the Data transform field, enter a data transform that sets initial property values for the case.

If you are creating more than one child case, you can select the Copy page data to new child case
check box instead.

. Optional: In the Audit note field, press the down arrow key and select the name of a field value
that is added to the history, or audit trail, of the case when the Change Stage shape is processed.

. Click Save.

170
©2017 Pegasystems

DATA MODEL DESIGN

©2017 Pegasystems

Data elements in Pega applications

Introduction to Data Elements in Pega
Applications

Pega 7 applications allow users to create, process, and resolve cases. The applications collect data that
is important to the case. Based on the data collected, decisions on how to best process and resolve the

case are made.

For example, if you want to create a case to process a change of address for a customer, you need data.
The data includes the identity of the customer and the new address.

The fundamental unit of the Pega data model — the element that stores the data — is called a
property.

After this lesson, you should be able to:

« Explain the relationship between data and a case.

« Describe the role of a data object.

« Explain how data elements relate to an object.

« Describe the relationship between properties and data objects and data elements.

» Define the components of a data model.

172
©2017 Pegasystems

Data elements in Pega applications

Data in Pega applications

All applications collect data to use for case processing. Decisions on how to best process and resolve
cases are made based on the data collected. If you want to create a purchase request case, the data
includes, for example, the customer and line items.

A case type's data model defines the data structure for the case. The following table provides the data
model for a purchase request.

E — Purchase Request ——— —B Customer (Page) — Addresses (Page Group) = ‘:; Phones (Value Group)

~ Identifier / =, Name / =, Street / = Phone1

=, Date E] Addresses/ —, City —, Phone2
B Customer —, Postal Code

i= DiscountCodes ——— [T Codes (Value List) State

=, Discount Code 1 ‘= Phones

E] Line Items =, Discount Code 2 = E-mail

= Total \ :

\ Line Items (Page List)

=, Product Identifier

—, Price

=, Quantity

A data model is built from single value elements or collections of related single value elements. A
collection of related elements is called a data object.

A purchase request case has a unique identifier, date, customer, list of line items, and total. The
unique identifier, date, and total are single value data elements. The customer and line item elements

consist of more than one related property. Therefore, the customer and line item elements are data
objects.

There is a one-to-one relationship between purchase request and customer, and a one-to-many
relationship to line items. The customer has a name and lists of phone numbers, addresses, and
discounts. A name is a single value element and there is a one-to-many relationship to the phone
number, address, and discount code elements.

173
©2017 Pegasystems

Properties

In Pega 7, data elements are called properties or fields. Property and field are different names for the
same thing. Properties can be either single value with no intended correlation with any other value, or
a collection of related values. This distinction is explained by the mode of a property. System architects
typically work with two types of property modes: value modes and page modes. Value modes describe
a single piece of information such as a total. Page modes describe a data object such as a customer.
The screenshot highlights the value and page mode property types.

Genera Advanced History

Property type

Text(change)

Single Value Page Advanced

Data A

& M | DateTime Page Group ava Object Group
AL

D
Ul Cor dentifier Java Property
pxTes

Table1 | Password Value List

Moni

operty through the Ul Data transforms and

Value mode properties

Use value mode for properties with no correlation to other properties. For example, the identifier and
date in the purchase request are value mode properties. There are three value mode properties

available: single value, value list, and value group.

« A property of mode single value - also known as a single value property - stores text, numbers,

dates, Boolean values, and amounts.

« Avalue list acts as a container for an ordered list of text values. The discount codes property is an
example of a value list. Each code is a single piece of information, but a clear relationship exists

between the codes.

174
©2017 Pegasystems

« Avalue group acts as a container for an unordered list of text values. The customer's phone
numbers are defined as a value group identifying the contextual meaning of each number: home,
work, or mobile.

When you create a value property, you can assign it to one of 10 different Property types. This
identifies the type of information the property stores. By assigning a type to a property, you ensure
that users provide valid information. For example, users provide a number for an age, and a date for a
date of birth.

The table below provides a list of property types and the information each type stores.

Property type Stores Example
Text Any text Steve
Identifier Text strings that do not contain double quotation marks ~ XYZ

("), tabs, carriage returns, or line breaks

Password Encrypted graphical characters Password
Encrypted text Similar to the password type, but can be decrypted for Password
display
Date Calendar date in the format YYYYMMDD 20131202
TimeOfDay Local time in the format HHMMSS 052709
DateTime UTC (Coordinated Universal Time) value normalized to 20131202T052709
Greenwich Mean Time (GMT)
Integer Positive and negative whole numbers, and zero 4
Decimal Non-whole numbers 23,55
TrueFalse Boolean value True

Page mode properties

If you need to establish a contextual relationship between single value properties, you can use one of
the three page-mode properties: pages, page lists, and page groups.

Page mode properties are organized similar to value mode properties.
« A page is a single entity. The customer is an example of a page property.

« A page list is a numerically ordered list. The line items that make up the purchase request is an
example of a page list.

« A page group is a semantically ordered list. The address property is an example of a page group.

175
©2017 Pegasystems

The page mode properties require you to specify a definition, or a data type, that defines the structure
of the page property.

Genera Advanced History

Property type
Single Page

MyCo-Purchasing-Data-Address

176
©2017 Pegasystems

How to manage properties

Pega provides several tools that help manage properties. The tools provide easy-to-use interfaces that
add, update, and remove classes and properties. This section looks at the Data Explorer and the Data
Model tab as well as the property rule form.

The Data Explorer

Use the Data Explorer to add or remove data types. Always check if a suitable data type is available
before creating a new one. Pega comes with many standard classes you can use directly in your
application. Select an existing data type and specify the data type you want to use.

Add Data Type
New Data Type ® Existing Data Type
Labe
Address|
PEGARULES
Address Data-Address
Email Address Data-Address-Email
Fax Mumber Data-Address-Fax
PhoneText Address Data-Address-PhoneText

. Postal Address Data-Address-Posta i

177
©2017 Pegasystems

You can extend an existing data type if it only partly meets your needs. For example, you might want to
create an employee data type based on the Party-Person data type. Select a new data type and specify
the data type you want to extend as the parent in the advanced settings. You can use all properties
defined in the parent in addition to the ones you create in your new data type.

Add Data Type

® MNew Data Type Existing Data Type
Label*
Employee
Description#

Employse

ADVANCED

Parent class

Data-Party-Person

Identifier: Data-Party-Person-Employee Edit

Developrnent branch

[No branch] v

Choosa app layer Add 1o ruleset*

® Purchasing MyCo M

178
©2017 Pegasystems

The Data model tab

You can use the Data model tab in the Case Designer to add or remove properties from your case type.
Properties are called fields in the Data model tab. Select Show reusable fields to display all fields
inherited and available in the case type.

Edit case type: Purchase Request Save = Run Adionsv ®
Data model Life cycle Views Settings
Show reusable fields @
Name 1D Type Options
Total Total Decimal Calculated
Customer Customer Field group Data type: Customer
Date Date Date only
D D Text (single ling)
Line items Lineltems Field group (list) Data type: Line item
Phone type PhoneType Picklist Drop down
Add field

The Data model tab for a data type looks very similar.

Data Type: Address Visualize ~ Filer Actions v
CL MyCo-Data-Address » RS MyCo
Data model Usage Sources Records Testcases — Settings
Fields Search Q
Name 1D Type Options
City City Text (single line) |
Add field

179
©2017 Pegasystems

Selecting the field type

When creating a new field, you need to specify a type. The options in the list pair the field with a

control in the user interface. The type options are divided into three categories: simple, fancy, and
complex.

Phone typa PhoneType Text (single ling) v

: Simple
Add field Text (single line)
Text(paragraph)
Boolean
Currency
Date & time
Date only
Decimal
Emai
Integer
Phone
Time only
Fancy
Attachment
Location
User reference
Complex types
Field group
Field group (list) -

The simple types are similar to the property types defined on the property itself. Use a picklist if you
need to display a static list of options to the user. For example, if you want to capture a phone number,
you might want to specify a list of types, such as home, work, and mobile.

The fancy types allow you to provide the capability to upload an attachment, show a location on a map,
or reference a user on the system.

Use the complex types to define page and page list properties. A field group is a page and a field
group (list) is a page list.

180
©2017 Pegasystems

The Property rule form

The property rule form contains the property definition. Because a property definition is a rule, it
shares the benefits of versioning, inheritance, and access control that the Pega 7 Platform provides to
all rules.

Genera Advanced History

Property type

Data access

® Manua At run time, the user adds data to this property through the Ul. Data transforms and

Automartic reference to class instance (linked) 9ther rules may be required 1o support this workflow.

Display and validation

CrAm
il ontro

pxTextinput

None v

The property has one of 11 types.
Note: The property type cannot be changed after the property has been saved.

Use the Data Access section to configure automatic data access and persistence settings. Use Manual if
you are explicitly setting the value (for example, in a user interface). Other options depends on the
property type selected and are not covered in this lesson.

The Display and validation section allows you to define how the property should appear on the screen
by specifying a Ul control. You also have the option to specify a table with valid values for the property.

Pega comes with a set of standard property rules. The standard properties have names that start with
pX, Py, or pz. You cannot create new properties starting with px, py, or pz.

The table below provides a list of the prefixes for standard rules.

Prefix Meaning

pX Identifies special properties — your application can read but not write to these
properties.

py You can use these properties in your application.

pz Supports internal system processing — the meaning of values may change with new

product releases. Your application can read but not write to these properties.

181
©2017 Pegasystems

How to reference a property

You have learned about two property modes: value and page. Value mode properties store single
strings of data such as text, numbers, or dates. Page mode properties act as a container for value mode
properties. You refer to a property in Pega 7 by prefixing the property name with a period (or dot, ".").

« Torefer to a single value property named OrderDate, type .OrderDate.

« Torefer toan entryin a value group property, such as the mobile phone number, type .Phone
(Mobile), where Mobile is the group subscript.

« Torefer to the first entry in a value list property, such as one of the discount codes, type
.DiscountCode(1), where 1 is the list index.

Page mode properties are similar.

« Torefer to a page that contains customer information, type .Customer.

« Torefer toan entryin a page group property, such as the work address, type .Address(Work).

« Torefer to the third page of a page list that contains purchase request line items, type .Lineltems(3).

To refer to a specific property on the page, use the name of the page as a prefix for the property name.
By doing this, you establish an important piece of information about that property — its context. The
context of a page — by itself or as part of a page list or page group — acts as a container for the
properties it contains. If you want the city in the work address, specify .Address(Work).City.

182
©2017 Pegasystems

Defining properties

You can use the Data Explorer to create a data type and the Data Model tab to manage properties. You
will also look at how to create a static list of data entry options.

Creating a data type

Follow these steps to create data types from the Data Explorer:
1. Select Data in the left pane to open the Data Explorer.

2. Select Add data type.

Show or hide existing data types

Show case types

A

Refresh
View extarnal data entities

View all test cases

Introduced by team

3. Select New Data Type if you want to create a new data type, or select Existing Data Type to
include an existing one.

4. Provide a label and description.

Add Data Type X

® Mew Data Type Existing Data Type
Label*

Address

Description

Address

> ADVANCED

5. Click Submit to create the data type.

183
©2017 Pegasystems

Managing properties in a case or data types

Use the Data Model tab in the Case Designer to add or remove properties from your case type.
Properties are called fields in the Data model tab.

Edit case type: Purchase Request Save = Run Adionsv ®
Data model Lifecycle Views Settings
Show reusable fields @

Name 1D Type Options
Total Total Decimal Calculated

Customer Customer Field group Data type: Customer

Date Date Date anly

ID D Text (single ling)

Line items Lineltems Field group (list) Data type: Line item

Phone type PhoneType Picklist Drop down

Add field

The Data Model tab for a data type looks very similar.

Data Type: Address Visualize Filter Actions v~ (®

CL MyCo-Data-Address » RS MyCo

Data model ~ Usage Sources Records — Testcases — Settings

Fields Search Q

Name 1D Type Options

City City Text (single line) |
Add field

Adding a field to a case or data type
Follow these steps to add a field:
1. Open the Data model tab in the Cases Explorer.

2. Click the Add field link.
3. Specify a name for the field (property).

184
©2017 Pegasystems

4. The ID field is automatically populated by the system. You can choose to edit the ID field.

5. Select the type.

6. If you select a field group or field group list, you need to provide a data type in the options field.

Name 1D Type Options
Customer Customer Field group v CLIStDIT‘lE""| Mew Tuf
Updating a field in the case or data type
Click the row to update the name of a field.
Name 1D Type Options
ustome Customer Field group Data type: Customer Im|

Remove a field from the case or data type

Click the trash can icon to remove a field.

Name 1D Type Options

Customer Customer Field group Data type: Customer

Property rules are automatically added, removed, or updated as you use the Data Model tab.

Define a static list of data entry options

You can define a static list of data entry options for a field. For example, to capture a phone number,

you can specify a list of types such as home, work, and mobile.
Follow these steps to create a picklist:

1. Open the Data model tab in the Cases Explorer.

2. Click Add field and enter a name and ID.

3. Select the Picklist type.
4

. Click the gear icon to configure the picklist.

185
©2017 Pegasystems

Picklist Drop down

Phone type PhoneType
Add field Edit options
DISPLAY AS
Drop-down list M
LIST CHOICES
Home
Woark
Mobile

5. Select whether you want the list to display as a drop-down or as radio buttons.

6. Enter the list options.
7. The property is now ready to be used in the application.

186
©2017 Pegasystems

Setting property values automatically

Introduction to Setting Property Values
Automatically

As you process a case, you may need to copy or manipulate data. For example, you collect an
individual's first name and last name, but want to combine them into a full name. In other situations,
you might want to set default values for fields, or add two numbers together.

After this lesson, you should be able to:

« Explain the use of data transforms in an application.

« Identify situations in which to set property values automatically.
« Setinitial property values using the pyDefault data transform.

« Explain how data transform superclassing works.

187
©2017 Pegasystems

Data transforms

When you create and process a case, you need data. You collect, process, act upon, and present that
data back to the user. Sometimes, you need to copy data from one place to another. Other times, your
data is not in the form you require, so you need to find a way to manipulate that data into an
acceptable form.

In a purchasing application, for example, items are
added to a cart and the checkout process begins.
The customer provides a shipping address and
credit card information, and is prompted to provide
a billing address.

Shipping Address
The shipping address might be the customer's

home address — the billing address and shipping Address 1 #321

address are likely to be the same. Reusing rather

than having to reenter the shipping address is Address 2 Main St
helpful and more efficient. Similarly, you might -
collect an individual’s first name and last name, but State Cambridge
need to combine the two into a full name for credit 5

card processing. Country United States
One option for copying and manipulating data is Pin-code

the data transform. The purpose of a data
transform is self-explanatory: it transforms data in e
the application. This example uses a data Billing Address
transform to copy the shipping address to another
page — in this case, the billing address — and to
copy the first and last name properties into a

@” Same as shipping address

single property full name. Address1 W | #321

You can use data transforms in several ways. For Address 2 Main St
example, you can call a data transform from a flow

action rule or from a connector. Also, you can use a State Cambridge
special data transform rule — pyDefault — to

initialize property values when creating a case. Country United States
Data transforms can be used to iterate over page

lists or page groups, and copy entire pages at a Pin-code
time.

188
©2017 Pegasystems

How to set values with data transforms

Use a data transform to define how to take source data values — data that is in one format and class —
and turn those values into data of another target format and class. In general, data transformation
involves mapping data from a source to a target as well as performing transformations on that data
required to achieve the intended mapped results.

The first thing you do when configuring a data transform is specify an action. Actions are the individual
operations that are specified in each row on the Definition tab of a data transform. The system invokes
the actions at run time. Most actions do some kind of data manipulation. Other actions perform
conditional processing and iterate through page lists and page groups. Consult the Developer Help in
your system for additional details on actions.

Select the appropriate action for what you want to do.

Definition ~ Parameters Pages & Classes History

Action Target

apy Remowve
Update Page

Apply Data Transform
Sart

Comment

¥ Call sup|

When
Otherwise When
Otherwise

Append to

Append and Map to
For Each Page In
Exit For Each
Exit Data Transform

Next, enter the Target, Relation and Source. Depending on the action selected, the target field has a
different meaning. For the Set and Update Page actions, the Target field identifies a property or page
reference, and the Source column provides an expression that results in a value or values. For the
when action, a when condition needs to be specified.

In the data transform below, the first step checks if the billing address is the same as the shipping
address. If the two addresses are the same, the shipping address is copied to the billing address.
Otherwise, the billing address is set to empty values.

189
©2017 Pegasystems

Definition Parameters Pages & Classes History
Action Target Relation Source
o 1 When ¥ | BillingSameAsShipping 4
« 11 Set ¥ | Customer.Addressi(Billing) 4 equal to .Customer.Address(Shipping) y
o 2 Otherwise v
e 21 Update Pag v | .Customer.Address(Billing) y M
e 211 Set v AddressLinel 4 equal to 4
« 212 Set ¥ | .Addressline2 4 equal to 4
e 213 Set v City 4 equal to 4
« 214 Set ¥ | .Country 4 equal to 4
» 215 Set ¥ ||| .PostalCode 4 equal to 4
e 216 Set v State 4 equal to 4
Collapse A | | Expand A
Call superclass data transform

If you want to refer to a property on a specific page, use the name of the page as a prefix for the
property name. For example, the shipping address on the customer page becomes .Customer.Address
(Shipping). Also, the type of the third asset on an asset list becomes .Asset(3).Type.

The most important thing to remember when using a data transform is to establish the context
correctly when reading and writing property values.

190
©2017 Pegasystems

The pyDefault data transform

Often when you create a case, you want to set default values for some properties. For example, in an
insurance claims application, you might want to set the date of loss to today's date. In other situations,
you might want to use data from the operator record — such as the organizational structure — to
initiate properties with default values.

The Pega 7 Platform invokes a data transform called pyDefault whenever a new case is created. The
pyDefault data transform allows you to set properties as the case is created. For example, you can use
the pyDefault data transform to default the date of loss to today's date in a claim case. The pyDefault
has no specific characteristics and the name is not reserved. You can create data transforms called
pyDefault in any class or ruleset.

The Pega 7 Platform comes with standard pyDefault data transforms in the work classes that case
types inherit from. If you do not create a pyDefault for your case, the standard pyDefault in the
inheritance path is invoked.

191
©2017 Pegasystems

Setting property values using the pyDefault
data transform

Create a pyDefault data transform in your case type class to set properties when the case is created.
This example shows how to add an item to the items of loss list and set the date of loss to today's date
in an insurance claim.

Create a pyDefault data transform

1. In the Application Explorer, right-click the case type and select Create > Data Model > Data
Transform in the case type class.

@ MyCo-Homelns-Work

b SysAdmin
» @ Claim Introduced by you

Application Definition >
View bl Data Model Data Page am
Definition Decision >

Inheritance Integration-Connectars Edit Input
Creats properties Integration-Mapping Edit Validate

Refactor Integration-Resources Field Value

Refresh Claim Integration-Services Property

Refresh all Organization Property Alias

Property Qualifier

Reports

Security
SysAdmin
Technical

>
>
>
>
>
Process >
>
S
>
>
>

User Interface

192
©2017 Pegasystems

2. Enter pyDefault as the Label, and then select Context.

Create Data Transform Create and open cancel @

Data Transform Record Configuration

Label* Identifier
pyDefault pyDefault Edit

A short description or title for this record

Context
& Home Insurance Apply to* Add to ruleset %
PegaRULES MyCo-Homelns-Work-Claim Homelns 7 01-01-01

View al

3. Click Create and open to create the data transform.

Set Property values with the pyDefault data transform

1. Add an item to the list using the Append to action.

Definition Parameters Pages & Classes History

Action Target Relation Source

o1 Appendto ¥ | ltemsOfLoss 3 new page v

2. Use the Set action to set the date of loss. Use the gear icon and select the CurrentDateTime
function to set to today's date.

. 2 Set ¥ | DateOfloss equal to @DateTime.CurrentDateTimg

193
©2017 Pegasystems

Data transforms and superclassing

You can combine several data transforms using the superclass feature to set values at multiple levels
of the class hierarchy. For example, you can have a class Claim with a subclass Home. The subclass
Home in turn has a subclass Rental with data transforms at each level that sets default values. You can
set up your data transforms so that common default values are set in the claim class and specific

values are set in the subclasses. Taking advantage of this feature improves the maintainability of data
transforms.

Here the date of loss and prefix are in the Claim class, address is set in the Home class, and name on
the lease in the Rental class.

The system first identifies parents until the highest parent is reached. In this case, the highest parent
is the Claim class. The system locates the data transforms with the same name in the parent class and
invokes it.

Date of Loss 04-05-2015
Address

Rental Claim Name on lease
Prefix C

@ MyCo-Ins-Work-Claim SetDefaults

Date of Loss
Prefix

@ MyCo-Ins-Work-Claim-Home SetDefaults

Address

@ MyCo-Ins-Work-Claim-Home-Rental SetDefaults

Name on lease

The system then goes down to the second highest parent and locates the data transforms with the
same name and invokes it. Note that the prefix is overwritten.

194
©2017 Pegasystems

Date of Loss 04-05-2015
Address #45, 1 Roger Street

Rental Claim Name on lease
Prefix H

@ MyCo-Ins-Work-Claim SetDefaults

Date of Loss
Prefix

@ MyCo-Ins-Work-Claim-Home SetDefaults

Address

@ MyCo-Ins-Work-Claim-Home-Rental SetDefaults

Name on lease

Finally, the data transform in the Rental class is invoked. Note that the prefix is overwritten again.

Date of Loss 04-05-2015

Address #45, 1 Roger Street
Rental Claim Name onlease John
Prefix R

@ MyCo-Ins-Work-Claim SetDefaults

Date of Loss
Prefix

@ MyCo-Ins-Work-Claim-Home SetDefaults

Address

@ MyCo-Ins-Work-Claim-Home-Rental SetDefaults

Name on lease

195
©2017 Pegasystems

How to configure superclassing for data
transforms

You can use the superclass feature in a data transform to set values at different levels in the class
hierarchy. For example, if you have a claim class with two subclasses, home and auto, you can set
values common to the subclasses in the superclass and specific values in the subclasses.

Use the superclass feature by creating a data transform with the same name at each level and
selecting the Call super data transform options. In this example, the parent claim has a data
transform called SetDefaults. This data transform sets values common to the subclasses. The
subclasses have a data transform with the same name. This data transform sets any values specific to
the subclasses. If properties are specified in both the super and child classes, the data transform in
the subclass overwrites anything already set by the data transform in the superclass.

& MyCo-Ins-Work

» SysAdmin
~ @ Claim
~ Data Model
~ Data Transform
SetDefaults
F Process
b SysAdmin
~ @ Auto
¥ Data Model
~ Data Transform
SetDefaults
» Process
» Reports
» SysAdmin
~ 7 Home
¥ Data Model
~ Data Transform

SetDefaults

You must select the Call superclass data transform option to cause the system to invoke data
transforms with the same name in any of its parent classes before the data transform get invoked
itself.

196
©2017 Pegasystems

Definition ~ Parameters Pages & Classes History

Action Target Relation Source

s] Set ¥ Driver p equal to .Policyolder

gl doe Al CACI A

[f Call superclass data transform]

197
©2017 Pegasystems

Setting property values declaratively

Introduction to Setting property values
declaratively

When a user enters a value in a form, related values can also change. When you buy an item like a
laptop online, you enter the quantity you want to purchase. The system displays the amount of your
order automatically. Declarative processing allows you to easily configure your application so that the
system can automatically update property values such as an order amount.

After this lesson, you should be able to:

« Describe the declarative processing model.

« Describe the procedural processing model.

« Calculate a property value with a declare expression.

« Explain how forward chaining works to update property values.

« Explain how backward chaining works to update property values.

198
©2017 Pegasystems

Declarative processing

When a user enters a property value in a form, related values on the same form or on other forms can
change as a result. The application must make the changes automatically so that users see the most
current information. For example, assume you are purchasing a laptop online. On the form, you enter
"1" as the quantity. A total order amount field displays the price of one laptop. However, when you
change the quantity to "2", the total order amount automatically doubles.

Declarative processing allows you to configure your application so that the system automatically
updates property values such as a total order amount. Declarative processing identifies and maintains
computational relationships among properties. When input values change, the declarative process
automatically updates related property values. In the previous example, a declarative process
maintains a relationship between the total order amount property value with the quantity and price
property values. When a user orders laptops, the system multiplies the price of one laptop times the
guantity of laptops to calculate the total order amount.

The primary benefit of declarative processing is that updates occur only when triggered in the
application. You use declarative rules to define the trigger event. The system monitors the application
to determine when a trigger event occurs. Using the previous example, the system is always monitoring
changes to the item quantity property. When the value changes, the system triggers a computation to
update the order total.

The following video describes how declarative processing works and provides an example.

Procedural processing

A single declarative expression can monitor trigger events no matter where that expression is used in
the application. Declarative processing rules do not depend upon other rules, such as data transforms,
activities, or user interface (Ul) rules, to perform updates.

Procedural processing depends upon rules, such as data transforms, activities, or user interface (Ul)
rules, to instruct the application when to look for a trigger event. For instance, to trigger updates to the
order total, you add a data transform to a flow action. When a user enters values, nothing changes
until the user submits the form. The updates are not automatic. The submit process triggers the data
transform to perform the update. In order to make the changes visible to users as they enter values,
you must configure sections to use the data transform to refresh the fields.

Procedural processing maintenance

Procedural processing is more difficult to configure and maintain than declarative processing. For
example, assume you have designed an Enter Order form that uses a data transform to calculate the
total order amount based on the item price and order quantity. Then, you add a Review Order form to
your application. This form reuses the fields for calculating the total order amount. If you do not add
the same data transform to the Review Order form, the Total order amount is not updated when the
user changes the order quantity from 2 to 3.

199
©2017 Pegasystems

ITEM PRICE QTY TOTAL ITEM PRICE QTY TOTAL
Desk Lamp $25.00 $50.00 DeskLlamp $2500 [3] $50.00 X
4

v g
DATA TRANSFORM @

Total = Item Price x Qty

When you use a declare expression, the system only monitors changes to the source property values.
In the following example, when a user updates the quantity from 2 to 3 in the Review Order form, the
declare expression recalculates the total.

ITEM PRICE QTY TOTAL ITEM PRICE QTY TOTAL
Desk Lamp $25.00 $50.00 DeskLamp $25.00 | 3 | $:«'5.1:+M/
% » R

DECLARE EXPRESSION

Total = item Price x Qty

Pega provides many types of standard declarative rules that support declarative processing. For more
information, see the PDN article Declaratives, Decisions, and Validation.

200
©2017 Pegasystems

https://pdn.pega.com/declaratives-decisions-and-validation-overview/declaratives-decisions-and-validation-overview

Declare expressions

You most often use declare expressions to calculate and make immediate updates to property values
on user forms. Declare expressions contain an expression and atarget property. The expression
calculates and updates the target property value. The expression uses source property values in its
calculation. Referencing a source property used in the expression initiates the calculation. The

calculation then updates the target property value.

For example, assume an office furniture purchase order form includes fields for three target properties
items: chairs, desks, and lamps. Each item has fields in which users select an item and enter the
guantity. A declare expression uses the two source properties, item cost, and quantity to calculate the
target property — item total. The expression multiplies the item cost times the number of quantity to
calculate the item total. When the user changes the quantity, the expression recalculates the item

total.

Desk 5 600

Item |QUﬂnﬁt1|r Price $ |Item Total £

3000

Chair 3 400

2000

Lamp 4 100

400

Quantity Price $
5 600

Itemn Total

3000

400

2400

100

400

Declarative networks

You can use a sequence of interdependent declare expressions in a declarative network. A declare
expression in a network can use a target property from another declare expression as a source

201

©2017 Pegasystems

property.

For example, assume you added an Order Total field to your purchase order form. This field uses a
declare expression to calculate its target property — order total. The source property in this expression
uses the item total target value.

Declare Expression A Quantity * Unit Price = Item Total

N

. Item Total 1 + Item Total 2 + Item Total 3
Declare Expression B =
Order Total

When a user updates a Quantity value, the system updates the Order Total value.

202
©2017 Pegasystems

Item |QUﬂnﬁt3r Price $ |Item Total $

Desk 5 600 3000

Chair 5 400 2000

Lamp 4 100 400

Order Total $ = $5400

ltem Quantity Price$ |ltem Total $

Desk 5 600 3000

Chair 400 2400

Lamp 4 100 400

Order Total $ = $5800

Pega provides the Declarative Network Analysis tool to display a list of declarative networks in your
application. Access this tool by selecting the Designer Studio > Process & Rules > Business Rules
menu. For more information about using the Declarative Analysis Network tool, see the help topic
Business Rules landing page.

Forward and backward chaining

Forward chaining in a declare expression updates the target property value when a source property
value changes. When you display a shopping cart where users add items to it and the cart should
reflect the total based on the changes immediately, choose forward chaining. By default, declare
expressions use forward chaining. Declarative networks are commonly designed with declare
expressions that are configured for forward chaining.

203
©2017 Pegasystems

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#basics/v6portal/landingpages/processrules/businessrules.htm

!
DECLARE EXPRESSION 4

O O»

DECLARE EXPRESSION 3

C i 8% x Order Total

OO~

DECLARE EXPRESSION1

i O»

Grand Tota

A

prder Total

Lineltem 1 + Line ltem 2

f"'

Unit Price x Quantity

Backward chaining in a declare expression means that a target property value is not automatically
updated when other declare expressions in a network update their target values. An expression using
backward chaining only updates its target property when the application references the property by

name. A form, a decision table, or a data transform can reference the property. When the property is
expression needs to update its target.

referenced, the expression goes back in the network to reference the source property or properties the

204
©2017 Pegasystems

Grand Total

When property
is referenced... ..5ystem returns
Declare Expression Value

+ Order Total

c" D Tax

Chaining and performance

To optimize the chaining modes, consider where the source property is referenced and how the target
property is referenced. Forward chaining can slow system performance if an expression uses many
source properties that change frequently. For example, assume you are calculating the value of a home
insurance quote based on more than 20 property values such as location, tax assessment, appraisal
value, and land area. These values are collected in a large number of forms. When you use forward
chaining, the home insurance quote declare expression recalculates the value every time users enter
or change any of these 20 values. The impact to performance might affect response time when the
user enters values or submits forms.

If you are only going to display the insurance quote after you collect all the values, use backward
chaining for the home insurance quote expression. When you display the home insurance quote on
the form, the expression performs the update only once. If you use forward chaining, the system
performs the calculation even if the user does not see or need the value.

For more information about declare expressions and chaining, see the help topic More about Declare
Expression rules.

205
©2017 Pegasystems

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-declare-/rule-declare-expressions/related.htm
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-declare-/rule-declare-expressions/related.htm

How to set a property value with a
declare expression

Creating a declare expression involves three major steps. You first define the target property — the
value that is updated when a declare expression calculation is performed. Then, you define the
expression that calculates the target property value. Finally, you configure the declare expression to
use either forward or backward chaining.

Create the declare expression and target property

When you create a declare expression rule, you enter the target property as a key part. The available
properties are defined by the Apply to key part. The easiest way to create a declare expression is to
select the target property in the Application Explorer. Right-click and select the Define Expression
option.

Configure the expression

After you have created the declare expression, on the Expression tab, configure an expression in a row
as shown in the following example. The row consists of three fields.

Set Total Benefit Cost= | Value of ﬂ | A

The target property is the one you specified when you created the declare expression. In the previous
example, the target property is Total Benefit Cost.

The drop-down allows you to select the type of computation for the expression. The default is Value of
as shown in the previous example. This means that the source for the expression is one or more
property values. You can select other options. The choices available depend upon the target property
type. Options for numeric types include a summing or greater than/less than operators. You can also
use the result of a decision tree, decision table, or a map value to provide a value.

You enter an expression in the form of a function and its inputs. You can also use the gear icon on the
right side of the field if you want to build your expression using Pega standard functions such as
CompareDates or getLocalizedValue.

Specify the chaining method

On the Change Tracking tab, configure the declare expression to calculate the target value using either
forward or backward chaining. Use the Whenever Inputs Change option for forward chaining. There

206
©2017 Pegasystems

are three backward chaining options. For example, select Whenever used if you want the declare
expression target value to be updated whenever the property is referenced in a form.

207
©2017 Pegasystems

Setting a property value with a declare
expression

Defining a property value with a declare expression has three steps:
1. Identify the target property when you create the declare expression.
2. ldentify the source properties when you define the expression.

3. Specify the chaining direction.

Identify the target property and create the declare
expression

1. In the Application Explorer, select the class that contains the property you want to use as the target.

2. Select Data Model > Property to display the properties in the class.
3. Select the target property, right-click, and select Define expression.

+ ¢ BenefitsEnroliment

+ Data Model
» Data Transform
+ Property
» Dental
» Medical
StartDate
TotalBenefitCost

+Create

Create properties

Define expression

Optimize for reporting

The Create Declare Expression form is displayed.

208
©2017 Pegasystems

Create Declare Expression Create and open

Declare Expression Record Configuration

Label*

T ————

A short description or title for this record

Target Property Page Context
TotalBenefitCost y
Context
® HR Apply to* Add to ruleset#
PegaRULES TGB-HR-Work-BenefitsEnrolimer HR

View all

01-01-01

4. In the Label field, enter the name for the declare expression. Note that the property you selected in
the Application Explorer is the target property. As a best practice, use the target property name to
label the declare expression. The label is used to name the expression on the rule form.

Declare Expression Record Configuration
Label*
Total Benefit Cosd

A short description or title for this record

Target Property Page
TotalBenefitCost

209
©2017 Pegasystems

5. Click Create and open. The Declare Expression form opens.

Edit Declare Expression: TotalBenefitCost [Avai

CL TGB-HR-Work-BenefitsEnrollment » 1D _TotalBenefitCost RS O

Expressions Pages & Classes ~ Change Tracking History

Whenever inputs change

Mo conditions defined

Set Total Benefit Cost= Value of ﬂ

Note: The label Whenever inputs change indicates that the expression is configured for forward
chaining. This is the default setting.

Define the expression

On the Expression tab, define the expression. Each expression is defined in three fields in a row. The
target property is displayed at the beginning of the row.

Set Total Benefit Cost= | Value of ﬂ y

1. From the drop-down field, define the expression. select a type of computation. Select the Value ofif
you want to use property values as the source of the computation. For numerical values, you can
use computations such as sum, minimum, maximum, or average. You can also use the result of a

decision table, decision tree, or map value.

2. In the following example, the target property value — total benefit cost — equals the summed value
of the three source properties — employee medical, dental, and vision costs.

Set Total Benefit Cost= | Value of ﬂ Medical EmployeeCost + .Dental.EmployeeCost + .Vision.EmpIo‘\‘

3. Optional: On the right side of the expression field, select the gear icon if you want to use functions
from the selection list.

210
©2017 Pegasystems

Expression Builder

< DateTime

addCalendar ~
addToDate
CompareDates

CompareDates

For more information about expressions you can use in declare expressions, see the help topic
Declare Expressions form Completing the Expression tab.

Specify forward or backward chaining

1. On the form, select the Change Tracking tab to specify whether you want to use forward chaining
or backward chaining. By default, the declare expression uses forward chaining.

2. Select the Calculate Valuedrop-down to display the chaining options.

Expressions Pages & Classes Change Tracking

Target Property Data

Calculate Value

Whenever inputs change

When used, if no value present
When used, if property is missing
Whenever used

When applied by a Rule Collection
When invoked procedurally

1

3. Do either of the following:

« Select Whenever inputs change to use forward chaining. The target property is computed
when one of the expression source property values change.

21
©2017 Pegasystems

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#rule-/rule-declare-/rule-declare-expressions/expressions.htm

« Select one of the backward chaining options, listed in the following table:

Option
When used, if property is
missing
When used, if novalue is
present

Whenever used

Description
Compute when the target property is not present on the
clipboard.

Compute when the value is null, blank, zero, or does not yet
appear on the page. Later requests for the target property do
not cause the declare expression to run.

Compute even when the property has a value.

For more information about the options in the Change Tracking tab, see the help topic Declare
Expression form Completing the Change Tracking tab.

4. Click Save.

Test your declare expression

1. On the rule form header, select Actions > Run to test your declare expression. The test page is

displayed.

.65,' Total Benefit Cost =0
&k
Employee Cost =

Employee Cost =

Employee Cost =

NAVIGATION
|Cascade Tree|v|

it

._{: g "_
DISPLAY
By Description?

Levels IAII ﬂ

PROPERTY
Employese Cost Q_

2. On the declare expression tree, select a source property.

3. In the Property area on the bottom right of the page, enter a value and click Update. The value

appears in the tree on the left.

212
©2017 Pegasystems

http://10.61.9.195:9080/prhelp/rule-/rule-declare-/rule-declare-expressions/changetracking.htm
http://10.61.9.195:9080/prhelp/rule-/rule-declare-/rule-declare-expressions/changetracking.htm

/) Total Benefit Cost =500 NAVIGATION
1 [|Cascade Tree | v|

Employee Cost =

Employee Cos Medical. EmployeeCost -

""{: g 1_\—
DISPLAY
By Description?

Levels _|h|| vl

PROPERTY
Employee Cost (l

500

Enter values for all of the source properties. The target value (Total Benefit Cost) is the sum of the
source values.

%) Total Benefit Cost =675
ry
Employee Cost =500

Employee Cost =100

Employee Cost =75

If the calculations perform as expected, you have successfully configured your declare expression.

213
©2017 Pegasystems

Passing data to another case

Introduction to Passing Data to Another Case

Data propagation maps run-time values of properties in your parent case type to properties in child or
spin-off case types. For example, you can propagate the urgency of an accident claim case to ensure
that subcases or spin-off cases gets the same urgency. By sharing information among case types, you

can make data-driven decisions.

After this lesson, you should be able to:

« Identify the role of data propagation in creating cases.

« List the options for passing data from one case to another.

« Copy data from a parent case to a subcase or spin-off case.

214
©2017 Pegasystems

Data propagation

The role of data propagation

Data propagation is the mechanism of copying data within the case hierarchy. By sharing data among
cases, you save time and provide relevant information to caseworkers.

Data propagation ensures that the appropriate information is propagated to a subcase. For example, a
purchase request case may initiate an inventory selection subcase when units in stock must be
confirmed. In the purchase request case, each line item in the purchase request contains a product
identifier and a quantity. The inventory selection subcase then uses the product identifier and
guantity to verify that the units are in stock.

Ieem 1D Item ID
Purchase Request Quantity ‘ Purchase Request Quantity
(‘ Billing Address Billing Address |

A= ‘ Inventory Selection tem ID Quantin ‘ Inventory Selection ltem D GQuantity

‘ Purchase Order W ‘ Purchase Order Billing Address

Data propagation is not limited to subcases. Data can also be propagated when creating spin-off cases.
For example, a purchase request case might spin off a supplier case if a new supplier is provided in
the purchase request.

Data propagation happens on case creation. When you propagate a property from a parent case to a
child case or spin-off case, and the property value later changes on the parent case, the property on
the child case does not get updated.

For example, the product identifier is set to 0211 and the quantity is set to 3 in a purchase request.
These values are propagated to the inventory selection subcase on creation. If the quantity in the
purchase request later changes to 4, the value is not automatically propagated to the inventory
selection subcase. The quantity in the inventory case will remain set to 3. You need to handle the
subsequent synching of data between the cases manually.

Data propagation options

You can specify the properties to propagate from a parent to a subcase in the case explorer in two
ways. You can define properties directly one by one or specify a data transform. If you need some
conditional logic to determine what to propagate, use a data transform. For example, use a data
transform to loop through a list and only propagate items that were selected.

215
©2017 Pegasystems

You can create subcases and spin-off cases using the create cases utility in a stage step. The create
cases utility allows you to propagate properties using a data transform.

216
©2017 Pegasystems

Propagating data to another case

Define data propagation in the Case Explorer

Review how data can be propagated from a purchase request case to a purchase order subcase. In this
scenario, the parent case is the purchase request case.

Follow these steps to configure data propagation on the parent case:

1.
2.
3.

Select the parent case in the Case Explorer.
Click the Settings tab.
Click Data propagation.

Click the Add Property link to specify the properties you want to propagate into the purchase
order.

Select Apply data transform if you specify a data transform with the data propagation settings.

Datamodel Life cycle Views

G I i
enera Q Data propagation

Properties with basic configuration
Map property values from this case type to properties in specific child case types.

Specifications

Descriptions of steps and views Into Order (0)

Propagated properties
Case-wide supporting processes

Flows to handle out-of-sequence events No items

+ Add property o
Apply data transform o

User actions
Actions users can take throughout a case

Attachment categories
Categories and security for attachments

Calculations
Computations using values in child cases

Email instantiation
Support for automatic case creation

© 06 06 0 6 o0 o

Data propagaticn
Data copied from parent to child case

Configure data propagation for the create case utility

You can use the create cases step utility to create subcases and spin-off cases. In this scenario, a
supplier case is spun off. Follow these steps to configure data propagation for the create cases utility:

1.

Select the parent case in the Case Explorer.

2. Select the step with create cases utility.

217
©2017 Pegasystems

Create Supplier

1. Create supplier

3. Specify a data transform for the create cases utility in the settings.

® Create a case
Create a child case
Create multiple child cases
Case type *
Supplier v
Starting process
Supplier v
Diata transform
4
Property to store |D of case
A
Audit note
A
Enable navigation link

You can specify a data transform regardless of if you want to create a spin-off, child, or multiple child
cases.

218
©2017 Pegasystems

Reviewing application data

Introduction to Reviewing Application Data

Applications generate large amounts of data: data about cases, data from outside sources, and data
about users. While developing applications, you may need to review the data generated by your
application. This information, if incorrect, can cause errors that lead to undesired results for cases.

To verify that cases are processed correctly, you may need to review the data generated by your
application. To view data in memory, you use a tool called the Clipboard tool. The Clipboard tool allows
you to review the information currently in memory to determine whether rule behavior is configured
correctly.

After this lesson, you should be able to:

« Explain how data is stored in memory for use in Pega applications.
» Describe the relationship between pyWorkPage and case data.

» Explain how the Clipboard tool organizes data in memory.

« Use the Clipboard tool to review case data in memory.

« Use the Clipboard tool to set values for case data.

219
©2017 Pegasystems

Data storage in memory

Cases are collections of data. To process and resolve a case, Pega applications capture, manipulate and
present data throughout a business process. While processing a case, this data remains in memory for
use by one or more users.

Each data element in a Pega application is a pairing of two pieces of information: the name of the
data element, and the value assigned to the data element. For example, when you use a data element
to capture the date of birth of an person, the data element name is date of birth, and the
corresponding value is a date such as July 20, 1969.

Name of the data element Value assigned to the data element
First Name: Neil

Date of Birth: July 20, 1969

Occupation: Astronaut

Each data element is stored in memory on a page. A page is a structure for organizing data elements
in an application. Some pages are created by the system to track user or session data. Other pages are
created by system architects to describe a data object, such as a hotel reservation or a customer.

CUSTOMER

First Name: MNeil
Date of Birth: July 20, 1969

Occupation: Astronaut

During case processing, each page remains in memory in a structure known as the clipboard. The
clipboard is the portion of memory on the server reserved by Pega for the data generated by
applications. The clipboard consists of all of the pages used to track the name-value pairs that
represent case and session data. The clipboard receives its name because pages can be added to or
removed from memory as needed to track case or session data. So, when a value is assigned to a data
element, the data element and its value are said to be on the clipboard.

As you run a process, Pega sends information to the clipboard, adding or removing pages and
properties from memory. Your application uses this information to populate fields on Ul forms,
perform calculations, and evaluate decisions.

KNOWLEDGE CHECK

220
©2017 Pegasystems

221
©2017 Pegasystems

pyWorkPage

When you debug case behavior, you often need to view the case data that is in memory. By viewing this
data, you can determine whether your application is functioning as expected. If your application
functions in an unexpected way, viewing the data on the clipboard can help you identify the cause of
the issue. For example, if a declare expression returns an unexpected result, you can review the
contents of the clipboard to determine if one of the input properties has been set with an unexpected
value.

All the data generated as you create and process a case is stored on pyWorkPage, which is a specific
page on the clipboard. For example, data such as the date the case was created or the ID number for a
case is stored on pyWorkPage. Data that describes a data type is stored on an embedded page within
pyWorkPage. For example, if a case uses a data type named Customer, then Customer is considered an
embedded page within pyWorkPage. All the properties that describe the Customer data type — such as
first name — are written to the embedded page, rather than pyWorkPage.

Each page on the clipboard is an instance of a specific class, including pyWorkPage. When you refer to
data on pyWorkPage, you may need to specify the class of the page. If you omit the class information,
Pega cannot obtain property values from the correct page. Pega does not know whether the properties
are valid or not, and the rule that references the properties does not function correctly. To ensure that
the report obtains the correct information whenever you reference pyWorkPage, you need to specify
the class of pyWorkPage.

For example, consider an application to process automobile insurance quotes. To price the quote, you
need to know the accident history of the driver. Each accident record is an instance of a specific data
type. You create a report to return the accident history for a driver, and use a filter to return only
accidents for the driver requesting the quote. If the report filter uses the UserName property from
pyWorkPage, you must tell the report the class for pyWorkPage. This allows Pega to reference the
UserName property and the report filter functions as intended. Otherwise, Pega assumes that
UserName is part of the data type, rather than the case, and the filter does not work correctly.

When you open a child case, the clipboard also contains the page pyWorkCover. pyWorkCover
contains the case data for the parent case. This allows you to copy data between the parent case and
the child case.

222
©2017 Pegasystems

How to view clipboard data

As users process a case, Pega sends information to the clipboard, adding or removing pages and
properties from memory. Your application uses this information to populate fields on Ul forms,
perform calculations, and evaluate decisions. Pega also uses clipboard information to track the
progress of a case through its life cycle, and to record information about the current operator.

If your application behaves unexpectedly, viewing the data on the clipboard can help you identify the
cause of the issue. To view data that is in memory, you use the Clipboard tool. The Clipboard tool
organizes and presents all the pages on the clipboard. When you select a page, the Clipboard tool lists
all the properties on each page and the value of those properties. To open the Clipboard tool, click the
Clipboard icon on the Developer toolbar in Designer Studio.

] Clipboard o143~ 4
» [D_pzEditConfigurations (Data-Portal)
~ [L) D_pzGetPropertiesForDataType 2

r O D_pzGetPropertiesForDataType[showin
r O D_pzManageExpress (@baseclass)
» [D_pzPreferenceStore (Data-Preference-Op
v [} D_pzReportDefinition

» [D_pzReportDefinition[AppliesTo:"Rule-
» [] D_UITemplateMeta (Pega-Ul-Component)
» [} Declare_CaseTree (Rule-Obj-Class)
» [Declare_pyDisplay (Embed-Ul-RunTime-Di
» [} Declare_pzRecentsCache (Code-Pega-List)
r O Declare_RuleTypeMenu (Data-RuleForm-R
» [newAssignPage (Assign-Worklist)
» [] preActvitiesParameter (@baseclass)
» [pyActioninfo (Embed-UI-RunTime-Element
r O pyDocuments (classless)
» [pyFilterSettings (classless)
» [pyPortal (Data-Portal)
» [pyReportParamPage (Embed-Queryinputs;
» [pyWorkPage (TGB-HR-Work-Onboarding)

xCreateOperator

eOpName

» [ReportParameters (Embed-Queryinputs)
» [ShapeList (Code-Pega-List)

» [} Data Pages

» D Linked Property Pages

» [System Pages

Clipboard page: pyWorkPage

3 Edit Refresh Actions ¥

Value

HR
20160503T202507.848 GMT

20160503T202507.696 GMT
Admin@TGB

Administrator

pega

PRIM1

Pre-Arrival

PRIM1_1

0-143

TGB-HR-WORK 0-143

TGB-HR-Work-Onboarding
20160503T202552.024 GMT

The Clipboard tool is organized into three parts: the header, the left pane, and the right pane.

1. The header allows you to select the thread to view. Each thread corresponds to a unique action
currently managed by Pega. The clipboard contains one thread dedicated to the Designer Studio
environment. Other threads are dedicated to open rule forms. Pega assigns each open case a
unique thread. By assigning each case or action its own thread, Pega ensures that the data for one
case or action does not affect data for another case or action.

2. The left pane lists each page defined on the clipboard for the selected thread. For each page, the
Clipboard tool identifies the name and class of the page. If a page contains embedded pages, an
expand arrow is displayed to the left of the page name. To view the embedded pages, click the

expand arrow.

Pages on the clipboard are organized into four categories:

223

©2017 Pegasystems

« The User Pages category contains pages created due to user action, either directly or indirectly.
User pages contain data related to work being performed in the selected thread. While a user
processes a case, all the pages used to store data about the case are listed in the User Pages
category. Likewise, when a system architect configures or tests a rule, all the pages that store
data used by the rule are listed in this category. For example, the data you enter onto a form is
stored on the user page pyWorkPage.

« The Data Pages category contains read-only data pages defined by data page rules. Data pages
are persistent pages in memory, used to cache data. This data is often sourced from outside the
application, such as from a third-party or a system of record. For example, your application
converts currency from one type to another, such as converting US dollars to Euros. The
conversion rates, which are determined by the currency markets, are cached to a data page for
use by one or more users of the application.

« The Linked Property Pages category contains read-only pages created by linked properties,
which contain information from data objects referenced by a linked property. Linked properties
are advanced data constructs, typically created and configured by Senior System Architects
(SSAs) or Lead System Architects (LSAs).

« The System Pages category contains pages that describe the current user session, such as the
active user and the active application. For example, while a user is logged in to Pega, Pega
maintains a clipboard page containing information about the user, such as their current time
zone.

3. Theright pane lists all of the properties defined on the selected page, and their values. In the right
pane, you view data in memory. You can also update property values and even add new properties
to the page to represent data not captured in your application. This allows you to test application
features that rely on data that has not been added to the case type, such as decisions and Ul forms.
For example, in an expense report case you want to branch a flow based on the project type. The
application currently lacks a field in the Ul to allow the user to select the project type. In this
situation, you can use the clipboard to set a value for the property and verify that the flow branches

properly.

When you view data with the Clipboard tool, you see a snapshot of the contents in memory. As you
navigate your process, refresh pages in the Clipboard tool to ensure that the Clipboard tool always
displays current property values and page contents.

KNOWLEDGE CHECK

::/;]
While testing case behavior for an online shopping application, you want to confirm that the
application properly generates a list of the customer's previous orders when querying the company's
order management system. In which category of clipboard pages would you expect to find the page

that contains this list?

This page should be located in the Data Pages category.

224
©2017 Pegasystems

Viewing clipboard data

Use the clipboard to view data in memory and determine whether rules are generating or updating
case data as expected.

To view case data on the clipboard:

1.
2.

Create a case and note the case ID.

On the Developer toolbar, click the Clipboard button to open the Clipboard tool. By default, when
you open the Clipboard tool, the tool displays the thread that corresponds to the active tab in
Designer Studio.

LA Tas L L

tables

oo Tracer E] Clipboard | IF Live Ul Performance () Alerts

Optional: In the Clipboard tool, in the header use the thread selector to select the thread that
corresponds to the case you want to review.

In the left pane, select the page to view. For example, to view data from a form used in the case,
select pyWorkPage. To view the contents of a node-level data page, expand Data Pages > Node
and select the data page to view.

In the right pane, locate the property name in the alphabetical list and confirm the value.

225
©2017 Pegasystems

Setting property values using the Clipboard
tool

Set data values on the clipboard to test rules that rely on case data to function correctly.
To set a property value using the Clipboard tool:
1. Create a case and note the case ID.

2. On the Developer toolbar, click the Clipboard button to open the Clipboard tool. The Clipboard tool
defaults to displays the thread that corresponds to the active tab in Designer Studio.

LA Tas L L

tables

oo Tracer E] Clipboard | IF Live Ul Performance () Alerts

3. Optional: In the Clipboard tool, in the header use the thread selector to select the thread that
corresponds to the case you want to review.

4. In the left pane, select the page that contains the data element you want to update. The page opens
in the right pane, displaying the value for each property defined on the page.

5. In the toolbar, click Edit. The page contents update to display fields for editable properties.
6. Locate the property that you want to update, and enter an updated value in the field.

7. Optional: to set the value of a property that has not been defined on the page, position the cursor in
the upper-left corner of the right pane and click Add. The Add properties dialog opens, allowing you
to enter the name and value of the property.

8. Click Save to update the clipboard with your changes.

9. In Designer Studio, return to the case that corresponds to the thread you edited in the Clipboard
tool.

10. From the Actions menu, select Refresh to reload data from the Clipboard. The contents of the active
form update to reflect the updated values you provided in the Clipboard tool.

226
©2017 Pegasystems

PROCESS DESIGN

227
©2017 Pegasystems

Activities

Introduction to Activities

The Pega platform provides rules to model almost any type of application behavior, from defining data
values to automating decisions to connecting with other systems. One such rule is an activity, used to
describe the logic for an automated procedure. Application developers new to the Pega platform often
write new activities, rather than embracing more suitable and easier to maintain alternatives, such as
reusing Pega defined activities.

In this lesson, you learn about activity rules, and how activities automate certain types of system
actions. You also learn how to use the contents of Pega's activity library and how to avoid writing
custom activities in Pega applications.

After this lesson, you should be able to:

« Identify the uses for activities in applications.
« Explain the activity execution model.

» Use API activities in an application.

« Identify options for minimizing the use of activity rules in applications.

Activities

During case processing, an application often needs to perform automated procedures. For example,
saving a case record might require multiple operations to be carried out in sequence as one single
step. The sequence can include updating case property values in memory, making a database
connection, writing the case record to the database, handling errors, and writing messages to a log file.
In Pega, you implement this kind of procedural logic in the form of activities. This form is similar to
conventional programming language.

Activities are the primary processing rules in Pega. An Activity is an automated procedure, structured
as a series of steps that execute in sequence. Each step can call a method, transfer control to another
activity, or execute custom Java code.

Activities are often used to implement complicated logic. Some typical use cases for using activities
are:

» Case processing related functions — To perform case-related functions such as creating a case
instance, routing the case, or updating the work status

« Integration — To send requests to external systems or to receive requests from external systems
« Ancillary functions — To perform functions such as writing to a log file or to the history database

A Methodis an operation that can be performed by one step of an activity. A method contains a
predefined set of basic operations that perform computations, update properties and other aspects of
the clipboard, or move data between memory and the database.

Some common methods are:

228
©2017 Pegasystems

Property-Set— Set the value of one or more properties.

Page-New — Create a page.

Page-Remove — Delete a page from the clipboard.

Apply-Data-Transform — Update property values based on a data transform.

Call — Call another activity.

As an activity executes, it can create or remove clipboard pages, create and update properties on these
pages, save data to the database, and interact with end users by sending and receiving HTML
documents and forms.

Add Item Move
and Qty Clipboard send
Properties Page to DB

em
Oty

Correspondence

Activity execution

By default, an activity executes its steps in sequence. You can control the flow of execution by
repeating a group of steps, defining a set of preconditions for a step, or jumping to a later step.

Each step of an activity contains multiple parts. There are nonaction items such as Label, Description,
and Step Page. There are also action items such as Loop, When, Method, and Jump to indicate an action
or condition for an action.

Use the following options to control how the activity processes a step at run time:

The Label provides an identifier for the step that can be referenced from other steps.

The Loop allows you to set up an iteration through the elements of a Value List, Page List, Value
Group, or Page Group, and performs the provided activity method on each value or each embedded

page.

The When allows you to define a precondition that controls whether the step is executed or
skipped.

The Method indicates which method or activity the step will execute.

The Step Page identifies a page to be used as the context for referenced properties within the step.

229
©2017 Pegasystems

« The Description is text that explains to other developers the action that the step is performing.

« The Jump condition or post-condition is similar to the When precondition. The Jump condition
defines how this step transitions, or jumps, to a later step.

The following image shows the standard activity CorrNew as an example. The activity executes four
steps to send emails.

@ Private edit Save as ‘ v Actions v (@

Activity: Creates new correspondence [Final. API]
CL Work-» ID CorrNew RS Pega-ProcessEngine:07-10-17

This record has 1 unreviewad warning (view)

Steps Parameters Pages & Classes Security History

Label Method Step page Description
1 Loop > |call GenerateEmaiIThreadID‘ 4 Generate ID Jump @'
2. Loop When > |Java 4 4 Check if broadcast Jump @'
3 > Java 4 pyWorkParty y Call CorrCreate for all matching parties| Jump @'
4. > Page-Remove y 4 Remaove pyCorrPage Jump im]

« Step 1 executes another activity with the Call method.
« Step 2 executes some Java code to check if the email is a broadcast.
» Step 3 loops through a page group and creates emails for matching targets.

» Step 4 executes the Page-Remove method to clean up clipboard pages.

Page context of activity execution

During execution, an activity can access data from three data pages: Primary page, Step page, and
Parameter page.

A Primary page is a clipboard page which has the same class as the Applies To class of the activity
and is designated when the activity is called. The Primary page provides data context for the whole
activity.

Each step in an activity may have a designated Step page. This step page provides data context during
the execution of this step. If a step page is not specified for a step, the primary page become the step
page.

A Parameter page contains parameter names and values, as listed in the parameters tab. An activity

can access incoming parameters and update outgoing parameters, as a way of communicating
information with callers.

Activity parameters

Activities may have parameters that can be accepted as inputs, used to convey results, or serve as both
inputs and outputs. Not every activity has a parameter.

230
©2017 Pegasystems

Parameters allow the execution of an activity to vary at run time, which promotes reuse. Think of an
activity with a parameter as an instruction with a missing object, such as "Go to the marketto buy __

." For a trip to the market, you can specify any object, such as strawberries, flour, or eggs.
The activity is the general instruction — in this example, "Go to the market to buy". The parameter is
the object that you provide to complete the instruction. You complete the instruction by telling
someone to go to the market to buy eggs, or strawberries, or flour.

For example, Pega provides a parameterized activity for updating the work status of a case, named
UpdateStatus. Whenever you apply a work status to a case, Pega runs this activity to update the work
status of the case. This activity accepts the work status as a parameter. Without the use of a parameter,
Pega would need an activity for each work status value. If you define a new work status, you would
need to create a copy of the activity to set that work status. By using the parameter, Pega only needs
one activity to set any work status value, even a custom work status value you define for your
application.

Parameters to an activity are listed in the Parameters tab of the Activity form. If a parameter is an
input to the activity, you can access the value received from the calling activity. If a parameter is an
output, or result, of the activity, you can set values for it using the Property-Set method.

APl activities

Pega provides many predefined activities that perform standard functions. These standard activities
are called API activities. Prior to creating any new activities, explore the API activities to see if one exists
that can meet your requirements. Some of the commonly used API activities are CorrNew for creating
and sending emails, AddWork for creating a new case instance, and UpdateStatus for setting the
status of a case instance.

The Process APl is a group of such standard activities that you can use to start and advance work flows
without implementing user forms.

To see a list of the Process API rules, select Designer Studio > Process & Rules > Processes > APIs.
Expand each row to learn more about each activity.

Rule Name & T Categorysr Description T AppliesToT
acguireWorkObjectOffline Activity BPM engine APIl: acquire and lock work given assignment handle Assign-
AddCoveredWork Activity BPM engine API: Creates a new covered item Work-
AddHistory Activity Adds history to work object Woark-

¥ | AddWork Activity BPM engine API: add (create) a work object deferred Work-

Description Adds a new work object using the primary page data. This activity saves the new work object on the deferred list.

Usage Call this activity to create a new work object from a Utility or Post-Processing activity. Prior to calling this activity cre
populate a new work objact page using createWorkPage then use it as the primary page to call this activity. Caller
commit changes using commitWithErrorHandling.

Parameters NAME DESCRIPTION
CoverHandle Handle of cover object to add this work object to
CowverPage Page name of cover object

You can invoke API activities from a flow shape or a flow action. To invoke an API activity from a custom
activity rule, use the Call method from an activity step.

231
©2017 Pegasystems

Activities best practice

While activities can appear to be an easy and flexible way to automate the work process, they can
become very complex to analyze, execute, debug, and maintain.

As a best practice, consider alternatives such as data transforms and linked property references before
creating activity rules. The alternatives are easier to understand and maintain.

Consider the following approaches before you write new activities:

» Look for alternatives. Refrain from writing new activities simply because it is easy to relate activities
with programming languages that you know from experience.

« For data manipulation, use Data Transforms instead of activities.
» For data calculation, use Declare Expressions instead of activities.
« For queries from an external database, use Report Definitions instead of activities.

« Use activities only when none of the standard or out-of-the-box activities are available and
appropriate for your requirement.

Refer to this PDN article — Nine tactics to reduce your need for custom activities — for extended
discussion on this topic.

232
©2017 Pegasystems

https://pdn.pega.com/nine-tactics-reduce-your-need-custom-activities-prpc-62-sp2

Configuring a work party

Introduction to Configuring a Work Party

Pega applications allow system architects to describe the people and organizations interested in a case
by their role, such as Customer or Manager. Identifying a party to the case by their role allows you to
describe their participation in a business process, such as receiving correspondence. For example, you
can notify the Customer party of the status of their insurance claim throughout the claims adjustment
process.

In this lesson, you learn how Pega describes the participants or interested parties for a case, and how
you can design cases to interact with these parties throughout a business process.

After this lesson, you should be able to:

» Explain how work parties are used in an application

« List the standard work party classes available in Pega applications
« Configure a work party for a case type

» Populate a work party with case data

Work parties

Accomplishing work requires participants with different roles, such as managers, case workers, and
customers. For example, an automobile insurance claim management process includes roles such as:
the customer service representative (CSR) who creates the claim; the customer, on whose behalf the
claim is filed; and the claims adjustor who reviews the claim.

In Pega, you create a work party to describe each role. Work parties allow you to refer to a case
participant by role, without knowing any identifying information. For this reason, applications
commonly use a work party as the recipient of correspondence. Also, work parties are sometimes used
to assign work.

Imagine your automobile insurance claims management process requires that an email be sent to
every customer who submits a claim. You would need the email address for every person submitting a
claim in your application. There is no practical way to get this information prior to the claim. Instead,
you model correspondence by role during development, and provide the identifying information, in
this case, email address, for each case. So, you configure your claims management process to send
email to the "Customer" party to confirm receipt of the insurance claim. For each case, the application
populates the work party with information about the customer submitting the claim, and sends the
email to the correct customer.

In the following image, you see how the work party is defined by a system architect during
development, but the information about the party is provided only when a user processes a case.

233
©2017 Pegasystems

Deue[upment

-

F'arty'-Dwner F'arty-Dwner

[Email |
J J
Party-Customer Party-Customer

M [Mitra Patil |
~

MPatil11@g..

A
Party-Manager (" Party-Manager
[Name]
[Email |
/ . J

KNOWLEDGE CHECK

P
| = |
A

How is a work party used in an application?

Awork party represents a case participant. A work party allows you to refer to the participant by
their role, and is often used to send correspondence during case processing.

How to add a work party to a case

Adding a work party to a case requires you to perform two actions: define the party using a Work
Parties rule, and populate the party when performing a case. Pega creates a Work Parties rule named
pyCaseManagementDefault for each case type. When you need to add or modify a work party for a case
type, use the copy of pyCaseManagementDefault created in the class of the case type.

Define the work party using a work parties rule

First, you add the work party to the pyCaseManagementDefault work parties rule for the case type. Each
row on the work parties rule lists a party available for a case type and describes the relationship of the
party to a case. For example, a customer is the subject of a dispute resolution case, while a customer
service representative (CSR) is the owner of the case and responsible for resolving the dispute.

234
©2017 Pegasystems

Edit Work Parties: Party Definition for Cover Objects [Available] Save || Delete Amionsv @

CL TGB-HR-Work-Candidate v ID pyCaseManagementDefault RS HR:01-01-01

Valid Parties History

List of valid parties

Party label Role Party class Party prompt Data transform VOE? Required ?
1 | Subject Customer Data-Party-Person 4 Case Subject MNewParty 4
2 | Owner Qwner Data-Party-Operator 4 Case Owner CurrentOperator

4

3 |Interested Interested Data-Party-Persan 4 Interested in the case 4

List parties that may repeat
Party

1 |Interested

When you create a work party, consider the following information:

« What type of case participant do you need to model? Is the participant an individual or an
organization? Does the party work on the case, or just receive status updates?

In Pega, work parties are derived from the Data-Party class. Data-Party contains rules to describe a
party, such as properties to store identifying information. Pega also provides five child classes that
build upon the rules in Data-Party. These child classes represent specific types of persons and
organizations. The party class for a work party describes the person or entity participating in the
case and determines how the participant interacts with other participants in the business process.

Data-Party

Data-Party-Com Data-Party-Gov Data-Party-Org Data-Party-Operator Data-Party-Person

1 1 1 1

— Data-Party-Com models a business that has a web domain ending in ".com", such as a
corporation.

— Data-Party-Gov models a government agency, such as the Department of Revenue.

— Data-Party-Org models a non-profit organization that has a web domain ending in ".org", such as
a charity.

— Data-Party-Operator models a case participant with a Pega login and represents a case
participant, such as a case worker or case manager.

235
©2017 Pegasystems

— Data-Party-Person models a case participant who lacks a Pega login, such as a customer. Typically
this class is used to describe a work party that receives correspondence about a case, but who
does not perform any actions on the case.

« What information do you need to know about the party? For example, do you only need the name
and email address, or do you also need to know their marital status?

« How will you obtain the information to populate the party details? Do you expect the user to enter
this information? Can you copy the information from session information or case data?

o Is the information available when the case is created? Or does the information become available
during case processing?

« Are multiple instances of the party associated with the case? For example, does the case involve one
customer, or several customers?

Populate the work party with case data

Next, configure your process to populate the work party with participant-specific information. Pega
provides several options for populating work party information during case processing.

« If your cases already include the data needed to populate the party, use the addWorkObjectParty API
activity. For example, a case creates several child cases to manage IT tasks prior to an employee's
first day at a company. Each child case includes the HR representative assigned to the parent case
as a work party. You use the addWorkObjectParty API activity to create an HR Partner work party
using information already included in the case. The activity parameters allow you to specify the
information needed to create the work party. Add this activity to the Action tab of a flow action rule,
or call the activity by adding a utility shape to the appropriate process.

« If you want to allow case workers to add party information during case processing, use the AddParty
flow action. Add this flow action to an assignment or stage as a local action. Users select the action
during case processing to add information for a work party. For example, a customer wants to add a
lawyer to a dispute resolution case. The CSR selects the flow action to add the lawyer as an
interested party.

« If you want case workers to provide party information when creating a case, select the VOE? option
for the party on the Work Parties rule form. When you enable this option, Pega automatically
presents users with a form to enter the information needed to create the work party. For example, a
CSR must enter customer information to open a new savings account for the customer. The initial
form in the new account case allows CSRs to create a work party using information provided by the
customer.

Configuring a work party for a case type

In Pega 7 applications, work parties are defined using the work parties rule pyCaseManagementDefault.
To use a work party in a case, add the work party to the pyCaseManagementDefault rule in the class for
the case type.

Defining a work party for a case type

Create a work party to describe the role of an individual or organization in a business process.

236
©2017 Pegasystems

10.
11.

. In the Application Explorer, expand the appropriate case type, then select Process > Work Parties

> pyCaseManagementDefault.
Click the Add a party icon to add a work party to the rule.

In the Party label field, enter a unique name that indicates your work party's relationship to a case,
such as Lawyer or Design Manager. The party label identifies the party role, and appears on the
case to identify the work party. The party label must be a unique value. The Owner party label is
reserved to describe the operator who creates the case.

Once you exit the Party Label field, the Role field populates with the party label, with any spaces

and special characters omitted. The role identifies the party on the clipboard. Each work party is a
page within the WorkParty page group, and the role is used as the page index. For example, a work
party with the role Customer is identified on the clipboard as WorkParty(Customer).

Select an option from the Party class list to identify the class used to describe the party. The party
class must be either the Data-Party class or one of its descendants.

Optional: Enter a label in the Party Prompt field that displays on user forms for a case. The Party
Prompt field allows you to enter an optional descriptor for the party. You specify a party prompt to
differentiate the party from another party with the same party label. For example, you can enter
Real Estate to distinguish Real Estate Lawyers from Family Lawyers. On the work item entry form, a
user sees Lawyer — Real Estate.

Optional: Press the Down Arrow key in the Data transform field and select the name of a data
transform that runs when users add the work party to a case. The data transform defines initial
values for the work party. You can use a data transform to copy information such as a first name or
email address to the work party. Specify a data transform if you plan to create the work party upon
creating a case. The data transform must be in the party class or a parent class.

Optional: Select the VOE? (Visible on Entry) check box to prompt users to add this work party every
time a case is created. Selecting this check box adds required fields to the work item entry form, to
collect information about the party.

Optional: Select the Required? check box to indicate that this work party must be present in every
new case.

Optional: Add the party role to the Party list in the List parties that may repeat section to allow
more than one instance of your work party to participate in a case.

Click OK.

Click Save.

Tip: You can also define a work party from the Case Designer. To do so, open a case type in Case
Designer, navigate to the Settings tab, and click Parties.

237
©2017 Pegasystems

Configuring a service level agreement

Introduction to Configuring Service Levels

When modeling service level agreements (SLAs), goals and deadlines are not always sufficient. Some
SLAs include behavior for work that has passed its deadline and is considered late. And some
assignments or cases are more urgent than others.

In these situations, you configure a service level rule. Service level rules allow you to model behavior
for work that is past its deadline or to customize the urgency of work.

After this lesson, you should be able to:

» Explain how a service level rule relates to goals and deadlines.

« Describe the role of the Passed Deadline interval in service level processing.
« Explain how assignment urgency is calculated.

« Configure a service level rule to enforce processing expectations.

Service level agreement rules

Organizations often establish service level agreements to enforce obligations on the timely
performance of work. These obligations range from informal promises of response times to negotiated
contracts. A service level agreement establishes a deadline for when the specified work must be
completed. Service level agreements may also establish a more aggressive goal to reflect [something].
For example, an IT help desk may have a requirement to respond to service requests within 24 hours,
with a goal of 8 hours.

In Pega, you use a service level agreement rule to represent the performance expectations for an
assignment, process, or entire case. When you establish a goal and deadline in Pega Express or the
Case Designer, Pega creates a service level agreement rule for you. For processes, stages, and case
types, goal and deadline intervals are often sufficient. In these situations, you can configure a service
level from the Case Designer.

Service level agreements for assignments are often more complex. A service level agreement for an
assignment may dictate actions to perform after a deadline passes. For example, a company
establishes a deadline to respond to a customer inquiry in 48 hours. For any inquiry open after 48
hours, the company notifies a customer service manager every 24 hours until a representative
responds to the customer.

A service level agreement for an assignment may also affect the start of the goal and deadline
intervals. For example, a stock brokerage establishes a deadline of two hours to price assets in
customer accounts. However, associates cannot begin pricing assets until after the stock market closes
for the day. In this case, the start time for the service level agreement occurs after the stock market
closes for the day. If the stock market closes at 4:30 PM, the deadline is 6:30 PM, even if the case
reaches the assignment at 1 PM.

238
©2017 Pegasystems

For complex performance obligations such as these, you configure the service level agreement rule,
rather than using the Goal & deadline tab in the Case Designer.

KNOWLEDGE CHECK

-

| = |

b4 What capabilities do you gain by configuring a service level agreement using the rule
form, rather than using the Goal & deadline tab in the Case Designer?

The service level agreement rule form allows you to add behavior for assignments that are
considered late, and to determine when an assignment is considered ready for the user to perform.

The Passed Deadline interval

Some service level agreements specify behavior for work that is considered "late". For example, a
company requires that employees submit a record of their hours worked within two days of the end of
the work week. This record of hours worked, called a time sheet, allows the Payroll department to credit
the employee for hours worked during the week. Until an employee submits their time sheet, the
Payroll department cannot pay the employee. To ensure that the employee is paid, the company must
remind employees to submit their time sheet, even after the deadline to submit the time sheet is

reached.

TIMESHEET DUE -1 2
3 4 5 &6 7 B 9
fio] 11 12 13 14 15 186
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Please submit your timesheet

239
©2017 Pegasystems

In Pega, you describe the behavior for late work using the passed deadline interval of a service level
agreement rule. The passed deadline interval measures the time that has passed since the deadline
for a still-open assignment.

Unlike the goal and deadline intervals, which occur once per assignment, the passed deadline interval
repeats. This repetition allows you to continue to increase the assignment urgency and perhaps
remind a user of a late assignment. You configure the passed deadline interval to repeat a fixed
number of times, or repeat indefinitely until the user completes the assignment.

KNOWLEDGE CHECK

How does the passed deadline interval differ from the goal and deadline intervals?

The passed deadline interval begins once the deadline interval ends. Also, the passed deadline can
repeat, unlike the goal and deadline intervals.

How to adjust assighment urgency

To perform assignments in a timely manner, users must know the priority for each assignment. This
allows users to perform the assignments that are most important first, before assignments that are of
lower priority.

In Pega, the priority of an assignment is indicated by the assignment urgency. For each assignment,
Pega calculates an urgency on the scale 0 to 100, with 100 the highest allowed urgency. The greater the
urgency, the more pressing the assignment is. The assignment urgency allows users to determine
which assignments to perform first. An assignment with an urgency of 60 is considered more pressing
than an assignment with an urgency of 30.

The assignment urgency is also used by Pega to select assignments for users from team or department
gueues. When a user queries Pega for their next assignment, Pega identifies all of the assignments
that the user is qualified to perform and selects the assignment with the greatest urgency.

Once the urgency reaches 100, Pega ignores any further urgency adjustments. When this occurs, other
service level agreement behavior is unaffected. For example, a deadline interval is configured to
increment assignment urgency by 30 and notify the assigned user that the deadline has been
exceeded. If the assignment urgency is 100 when the assignment reaches the deadline, Pega ignores
the urgency increment but still sends the notification.

In Pega, the assignment urgency is recorded using the property .pxUrgencyAssign. Pega calculates
.pxUrgencyAssign, the assignment urgency, as a sum of three input properties: .pxUrgencyWork,
.pxUrgencyAssignSLA, and .pyUrgencyAssignAdjust.

« .pxUrgencyWork is the default urgency for the case type. The default value of .pxUrgencyWork is
10. This ensures that each assignment has a default urgency of 10, even when no service level is
applied to the assignment. You change the value of .pxUrgencyWork to indicate that assignments for
a specific type of case are more important than other cases. For example, if transaction dispute
cases are a higher priority than other types of cases, you set the value of .pxUrgencyWork to 20 for
transaction dispute cases. Assignments for transaction dispute cases then default to a greater
urgency than assignments for other types of cases.

o .pxUrgencyAssignSLA is the urgency calculated from the service level rule. This value is the sum of

240
©2017 Pegasystems

the initial urgency and the urgency increments for the goal, deadline, and passed deadline
intervals. As an assignment ages in a workbasket or worklist, Pega increases the value of
.pxUrgencyAssignSLA according to the configuration of the service level agreement.

For an Account review assignment, a service level agreement may establish an initial urgency of 10
and further increments of 15 for the goal, 20 for the deadline, and 25 for the passed deadline. When
the user receives the Account review assignment, .pxUrgencyAssignSLA is set to 10, which increases
.pxUrgencyAssign to 20. When each interval is exceeded, Pega increases .pxUrgencyAssignSLA as
directed by the service level agreement, which further increases .pxUrgencyAssign.

C R ® ® ® o>

Work Item Assignment Ready Goal Deadline Passed Deadline
Urgency 10 Urgency increases by 10 Urgency increases by 15 Urgency increases by 20 Urgency increases by 25

Onseeareee ® ° © D

Urgency value Urgency value Urgency value Urgency value Urgency value

« .pyUrgencyAssignAdjust is a manual adjustment for the assignment urgency. This value allows a
user to increase the urgency of an assignment by running a local action. For example, a customer
service representative (CSR) runs a local action to increase the urgency of an assignment if a
customer reports that their credit card was stolen while on vacation. The CSR runs the local action,
which increases the value of .pyUrgencyAssignAdjust to 50. This increases the overall assignment
urgency, .pxUrgencyAssign, by 50 to increase the likelihood that the assignment is completed before
other assignments.

Configuring a service level agreement rule

Configure a service level agreement rule to add a passed deadline interval for assignments considered
late, or a delay before an assignment is considered ready for a user.

Add a service level agreement to an assignment in the
Case Designer

Apply a custom service level agreement to an assignment or reuse a service level agreement already
available in your application.

Follow these steps to add a service level agreement rule to an assignment:

241
©2017 Pegasystems

o Uk W N~

Open the case type in the Case Designer.

Select the assignment to which to apply the service level.

In the properties panel for the step, click Goal & deadline.

Select the Consider goal and deadline check box.

From the Service level agreement drop-down list, select Use Existing.

In the empty field under the Service level agreement drop-down list, enter the name of the service
level agreement rule to apply to the assignment.

To the right of the field containing the name of the service level agreement rule, click the crosshair
icon.

If the rule has not been created, the New Record form opens. Click Create and open to create the
service level agreement rule.

Edit case type: Time Off (1

Data model Life cycle Views Settings
Step description goes here @
it File Disability Insur._. Close RegL Define the suggested and required completion
times for this step. Times are calculated from the
ger Approval Complete Paper Work 1. 5t startof the step.

2 Submit Claim # Consider goal and deadline o
Service level agreement
se existing =

Update Payroll o CompletePaperiWork_39 o
1. Update Payroll

2. Manager Approval

Configure the starting behavior for the service level

Specify an initial urgency for the service level agreement and any delay before tracking performance
against the goal and deadline intervals.

Follow these steps to configure the starting behavior for service level agreement rule:

1.

On the service level agreement rule form, in the Initial Urgency field, enter an initial urgency for
the service level. The assignment urgency increments by the entered value when the assignment is
ready for the user to perform.

From the Assignment Ready drop-down list, select when the assignment is considered available
for a user to perform.

242
©2017 Pegasystems

Option Description Usage
Immediately Sends the assignment to a worklist or Allow a user
workbasket as soon as the case reaches the to perform
assignment. This is the default option. the
assignment
immediately.
Dynamically Delays sending the assignment to a worklist ~ Delay the
defined on a or workbasket until the specified delay assignment
Property interval elapses. Use the Get Date Time until a
From field to specify a property that specified
represents the optimal start time. time.
Timed delay Delays sending the assignment to a worklist Delay the
or workbasket until the specified delay assignment
interval elapses. Use the Days, Hours, and for a
Minutes fields to enter the duration of the specified
delay. amount of
time.

3. From the Calculate service levels drop-down list, select whether to track the service level intervals
against a fixed interval or against the value of a property. Use a property reference to adjust the
intervals for each case. Use fixed intervals to ensure that the intervals are the same length of time

for each case.

Start of service level

Immediately r

Service level definitions

LalCulate servic

Interval from when assignment is ready * o

Configure the goal and deadline intervals

Add a goal and deadline to measure whether the assignment is performed according to schedule.
Follow these steps to configure the behavior for either the goal or deadline interval:

1. Enter a time for the interval. Depending on the selection in the Calculate service levels drop-down
list, either specify the interval using the four fields labeled Days, Hrs, Mins, and Secs, or reference
a property that represents the length of the interval.

2. Optional: click the Only calculate using business days check box to only measure elapsed time for
the interval in business days. Enabling this option prevents Pega from counting non-work days, such

243
©2017 Pegasystems

as weekends, against the interval limit. Pega determines non-work days from information in the
user's operator ID record.

3. In the Amount to increase urgency field, enter an urgency adjustment for the interval. The
assignment urgency increases by the specified amount until reaching 100.

4, Optional: click the Add an action icon to add an escalation action for the interval.

From the Perform Action drop-down list, select an escalation action to perform when the interval
ends. If necessary use the When field to use a when condition or when rule to determine whether
to perform the escalation action.

DEADLINE

Days Hrs Mins Secs AMaount To increase urgancy o
2 0 a 0 10

Time interval starts when the associated assignment (or work
item) is created

Only calculate using business days o

Actions When

T
=5

MNotify Assignee EdIT

Perform Action| Motify Assignee v
(nr

When 4

Parameters
(CallsSendEmailToAssigneeQnDeadiineTime)

Configure the passed deadline interval

Add a passed deadline interval to describe behavior for assignments that are considered late.
Follow these steps to configure the behavior for the passed deadline interval:

1. In the Limit passed deadline events to field, enter the number of passed deadline events to apply
to the assignment. To apply the passed deadline behavior indefinitely until the assignment is
completed, leave the field empty.

2. Enter a time for the interval. Depending on the selection in the Calculate service levels drop-down
list, either specify the interval using the four fields labeled Days, Hrs, Mins, and Secs, or reference
a property that represents the length of the interval.

3. Optional: click the Only calculate using business days check box to only measure elapsed time for
the interval in business days. Enabling this option prevents Pega from counting non-work days, such
as weekends, against the interval limit.

4. In the Amount to increase urgency field, enter an urgency adjustment for the interval. The
assignment urgency increases by this value each time a passed deadline cycle completes, until the
assignment urgency reaches 100. Once the assignment urgency reaches 100, further urgency
adjustments are ignored, though escalation actions are processed, and the Passed Deadline interval
repeats if configured to do so.

5. Optional: click the Add an action icon to add an escalation action for the interval.

244
©2017 Pegasystems

From the Perform Action drop-down list, select an escalation action to perform when the interval
ends. If necessary use the When field to use a when condition or when rule to determine whether

to perform the escalation action.

PASSED DEADLIME
Limit passed deadline events 1o o AMOUNT T0 iNCrease urgency o

3 10
Days Hrs Mins Secs o
0 12 0 0 .
Actions When
Time interval starts when the deadline is reached
£ Motify Assignes Edit
Only calculate using business days o
Perform Action| Matify Assignee T
i
When y
Parameters
(Calls5endEmailToAssigneeOnDeadlineTime)

245
©2017 Pegasystems

Routing assignments

Introduction to Routing Assighments

An efficient process design routes assignments to users who can best perform the work. Sometimes,
the correct user is an individual who has a specific role. At other times, anyone in a specific group of
users can perform the assignment. Design your process so that it routes assignments to the best
qualified users. This approach helps ensure that work is done correctly and completed on time.

After this lesson, you should be able to:

« Explain the role of worklists in routing

« Explain the role of workbaskets in routing

« Explain the role of a router in routing assignments
« List common standard Pega routers

« Route an assignment to the appropriate user

Routing

Routing identifies who will work on an assignment as a case moves through a life cycle. When you
create a case, the case initiates a starter flow. The starter flow moves from one step to another until it
reaches an assignment. The starter flow stops at the assignment and does not continue unless a user
performs an action. This action completes the assignment task. Routing instructions in the assignment

control who performs the assignment task.

In most applications, more than one user works on a case until the case is resolved. For example, a
customer requesting a car loan calls a customer service representative (CSR). The CSR enters the
information collected from the customer. Then, the CSR routes the case to the manager to work on the
customer’s request. The manager is now tasked to review the information. Routing information in the

CSR assignment routes the assignment to the manager.

246
©2017 Pegasystems

Worklist Worklist
— —
n]

C5R Manager

Worklists and workbaskets

Users complete assignments as a case moves toward resolution. When you configure the router setting
in an assignment, you specify either a specific user or a queue accessible to a group of users.

Defining worklists

A worklistis a list of all open assignments for specific users. A user see an assignment on their
worklist until the user performs an action that completes the assignment. Each user has a worklist that
the user can access from user portals. For example, an assignment might allow only a human
resources manager to approve employee time off requests. The assignment appears on the manager's
worklist.

Note: Managers can access and assign work to the worklists of users who report to the managers.

Defining workbaskets

When assignments are queued for a team of users, the assignments are stored in workbaskets. A
team associated with a workbasket is called a work group

Assignments stay in the workbasket until a team member selects an assignment or a manager sends
an assignment to a specific user. For instance, any user who belongs to the company benefits team can
add a dependent to an employee's medical insurance policy. Requests for updates to an employee's
benefits would be queued and stored in the workbasket for the employee benefit team. A user selects
an assignment from the workbasket and begins work.

247
©2017 Pegasystems

Summary

The following table describes the relationships between who receives the work and how the
assignment is accessed.

Who receives the assignment How assignment is accessed
A user Worklist

A team Workbasket

Routers

When you add an assignment to your process, you specify the assignment's router. A router is a special
type of activity that progresses an assignment based on the routing destination and assignment type.
The activities use parameters to control routing behavior.

Standard routers

Two common routers send assignments to an individual (ToWorklist) or to a workbasket
(ToWorkbasket). Worklist assignments use a user ID as the destination. Workbasket assignments use a
workbasket name as the destination.

248
©2017 Pegasystems

Other routers have parameters that are configured to suit specific requirements. Routing by user roles
or user skills are two examples.

Routing by user roles

Routers can use user roles to control routing behavior. For example, use the ToWorkGroupManager
router to route assignments to a work group manager defined in your application. The user with the
work group manager role receives the assignment. You do not need a user ID to identify the manager.

)
“ 9

e

~ -

Cost Center Manager HR Manager

0

Y

Review J

— Route To Work

Sales Manager Work Group Manager
Group Manager

Routing by user skills

Routers can use user skills to direct assignments. For example, a routing activity named ToSkilledGroup
has parameters for the skill rating of the users belonging to the group. For instance, a user in the
group might speak German in order to process a loan request created in a German-speaking location.
When you use the ToSkilledGroup activity, the user with the skill (German language) and the maximum
skill rating performs the assignment.

Decision routing

Routers use the results of a process decision rule to route assignments. The ToDecisionTable router
uses the results of a decision table to route an assignment. For example, assume you specify the
following decision table in the ToDecisionTable router. If the Engineering department handles the case,
the assignment routes to John Smith.

249
©2017 Pegasystems

Conditions Actions
Department Return
if Administration | —+ Jane.Doe@MainCo.com
else if Engineering —+ |John.Smithi@MainCo.com
else if Marketing —+ TonyBarker@MainCo.com
otherwise —+ Carol Kane@hainCo.com

Identifying Pega routers

Pega provides a large set of preconfigured routers to suit specific requirements. For descriptions of the
routers provided by Pega, see the Route Activities section in the help topic Standard activities for use
in flows (interactive).

Configuring routing

You can specify routing directions in any one of the following locations:

Where you define routing When to use

Case life cycle When adding assignment steps to your design

Assignment shape When working with assignment shapes in an flow
diagram

Approval process SmartShape When determining where assignments will be routed in

an Approval process

Configuring routing in the case life cycle

Specify assignment routing on a case life cycle diagram as follows:
1. Select an assignment step.

2. On the General tab of the contextual property panel, select a Route to option to indicate how to

250
©2017 Pegasystems

https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#zstandardrules/rule-obj-activityforflows.htm?TocPath=Reference|Standard%2520rules%2520|Activity%2520rules|_____2
https://pdn.pega.com/sites/pdn.pega.com/files/help_v72/procomhelpmain.htm#zstandardrules/rule-obj-activityforflows.htm?TocPath=Reference|Standard%2520rules%2520|Activity%2520rules|_____2

route the assignment at run time.

Collect personal information

1

4 Genera Goal & deadline

Collect Candidate...
Route to

Collect Personal Detail: n @ Current user

U () Specific user

) Work queue

(_) Custom
—_—

The Route to options are as follows:

« Click Current user to route the assignment to the worklist of the user who last updated the case.

« Click Specific user to route the assignment to the worklist of another user in your application. Then,
in the autocomplete field, press the Down Arrow key and select the name of a user.

enera Goal & deadline

Route to

() Current user
(®) Specific user
() Work queue

() Custom

Admin@TGE

e o

« Click Work queue to route the assignment to a work queue that is processed by users with the
same role. Then, in the autocomplete field, press the Down Arrow key and select the name of a
work queue.

—

Genera Goal & deadline

Route to

() Current user
() Specific user
(® Work queue
(O Custom

default@TGEB

o Click Custom to provide custom routing options.
Then, do the following:

251
©2017 Pegasystems

3. In the Assignment type list, select an activity that creates an assignment. This list is populated with
activities that have the Usage field set to Assign on the Activity form.

4. In the Router field, press the Down Arrow key and select the name of an activity that determines
how the assignment is routed. For example, you can use the ToDecisionTree activity to route an
assignment based on the value that is returned by a decision tree.

5. If the routing activity accepts parameters, pass values for those parameters by entering values in
the fields in the Parameters section.

Route to

() Current user
) Specific user
() Work queue
® Custom
Assignment type

Work queue

Router
ToSkilledGroup
" PARAMETERS
workgroup *

T@TG8|

Configuring routing in an Assignment shape

To specify routing on an Assignment shape, right-click the shape to open the Assignment properties
dialog. Use the drop-down list in the Routing section to select a routing option. The options are the
same as the options that appear in the case life cycle General tab.

Assignment properties

Assignment: |Collect Personal Details
A step in your process that requires human judgment and

I-F Routing
Who should complete this step?

Route to:

Current operator
Operator
Workbasket
Custom

252
©2017 Pegasystems

Note: The menu values Current operator, Operator, and Workbasket are the same as values named
Current user, Specific user, and Work queue used in the case life cycle.

Configuring routing in an Approval process

You can specify routing for assignments within an Approval process.

On an Approval Smart Shape, right-click to open the Approval properties panel to specify the routing
behavior. The process has two levels of approval: single or cascading.

Single-level approval

When only one level of approval is required, you can route an assignment to a specific operator,
workbasket, or type of approval manager.

To specify single-level routing, do the following:

1. In the Approval type field, select Single level.

2. In the Approval to be complete by field, select the user or workbasket that receives the approval

assignment.

Approval type

Single level| W]

Single approval configuration

Approval to be completed by

Work group manager

If APPROVED then |Continue |C05t center manager

Update status to

Operator

Waork Basker
=

3. If you select Operator or Work Basket, select the operator ID or workbasket name in the autocomplete

field.

Approval type

Single level| V|

Approval to be completad by
Admin@TGB

Single approval configuration

Operator W

Cascading approval

When you use a cascading approval process, you route assignments to managers based on the current
user's reporting structure, or using the results of an authority decision table.

253
©2017 Pegasystems

To route assignments based on a cascading process, do the following:
1. In the Approval typefield, select Cascading.

2. In the Approval based on field, select Reporting structure.

3. Select a manager in the Approval to be completed by field.

Approvaltype
Cascading |

Cascading approval configuration

Approval based on
Reporting structure| ™

Approval to be completed by

Reporting manager
Workgroup manager
Annroval level

4. When you route assignments based on an authority matrix, select a decision table in the Decision
table for matrix field. The outcome of the decision table determines where the assignment is

routed.

Cascading approval configuration

Approval based on
Authority matrix |V

Decision table for matrix

FacilitiesRouting 4

254
©2017 Pegasystems

Configuring correspondence

Introduction to Configuring Correspondence

During a business process, organizations often need to communicate with parties associated with a
case. This communication ranges from simple notifications of assigned tasks to complex
communications that contain case-specific data and calls-to-action. Adding correspondence to a
business process keeps stakeholders and case workers engaged throughout the business process.

In Pega, you configure emails, letters, fax, and text messages with correspondence rules. You can
configure your application so that the system can send correspondence automatically or enable users
to send correspondence manually. Correspondence rules allow you to add case data to your
communication to provide richer, more relevant communication to stakeholders and case workers.

After this lesson, you should be able to:

« Describe the process for creating correspondence.
« Configure a correspondence rule.

 Incorporate case content into correspondence.

« Send correspondence from a business process.

How to configure correspondence rules

Create correspondence rules to define, in HTML, templates for the content of outgoing
correspondence. Each correspondence rule contains text for one type of correspondence such as
email, letter, SMS phone text, or fax. JavaServer Pages (JSP) tags or directives allow correspondence to
incorporate property values and calculations.

Informally, correspondence rules are sometimes called templates, as they define form letters for
property values.

For simple notifications, you might add text directly in the rule. For richer content, you can enter
dynamic fields that reference properties, or rules such as sections, paragraphs, or correspondence
fragments. During flow processing, the system uses the source content in the correspondence rule to
generate a customized message for the recipient.

Identify the correspondence type

When you create a correspondence rule, you specify the correspondence type as a key identifier. A
correspondence type rule indicates whether a piece of correspondence is a printed letter, fax, email, or
SMS phone text. Each type is associated with a different Data- subclass, such as Data-Corr-Email, that
holds the content of correspondence items.

Be careful when selecting the correspondence type. Your specification should state who is receiving
the correspondence and how the correspondence is sent. Before sending correspondence, the system

255
©2017 Pegasystems

references work party contact information to make sure the recipient can receive the correspondence.
For example, the system cannot send email to a customer party that does not have an email address.

Add the content

Add the message for the correspondence on the Corr tab of the rule form. The tab presents a rich text
editor in which you create the source content for the correspondence.

The toolbar includes controls for setting text styles, spell checking, list formatting, alignment, and for
inserting images and graphic elements.

The toolbar also contains controls for viewing the source HTML in the text area, and for inserting
properties and rules that contain correspondence content. You can use a combination of text and
referenced content sources to create your correspondence.

Corr Prompts Pages & Classes Security History

B I U Font - sze - A- B 2 2 LE M| Qsource X, x* 2 [0 [=

« Click Source to view or update the source as HTML codes. In source mode, you can add HTML
elements and JSP tags directly. For example, you can add the when JSP tag to conditionalize a
portion of the HTML code.

Note: When the correspondence is an email, the outgoing email includes HTML formatting, even if
no HTML elements appear within the source. When the correspondence is phone text, the message
does not contain HTML formatting.

« Click the Insert Property icon to include properties in your application such as pylD, LastName,
and Department. For example, you may want to inform the recipient that the case is currently under
review by the auditing department. You can reference the property .pyID to insert the case ID into
the correspondence, rather than providing a generic message.

« Click the Insert Rule icon to include content in other rules such as paragraphs, sections, and
correspondence fragments. You can also include other correspondence rules.

Paragraphs present formatted text that can include colors, fonts, styles, and images. Paragraphs
allow you to reuse content that is used elsewhere. For example, you use a paragraph rule to present
instructions on a form. You can then use that paragraph rule in correspondence to describe the
action the recipient is expected to perform. Referencing shared content ensures that your
correspondence includes the most current version.

Sections allow you to reproduce part or all of a form in the correspondence. Use a section to achieve
greater control over the positioning of content in the correspondence.

Correspondence fragments are useful for reusing boilerplate content, such as a mandatory
disclosure or links to an organization's social media channels.

The editor uses angle << >> brackets to mark properties and rules. During flow processing, these
elements are replaced with the values. The following example shows inserted properties .Office and
.Employee.Manager.

256
©2017 Pegasystems

n our| << Office>> ffice no later than 9AM. You will be greeted by your manager| <<.Employee Manager=>
at TGE:

When the correspondence is sent, the system replaces the properties with their values.

N in our Atlanta office no later than SAM. You will be greeted by your manager, Sam Rivers ,

How to configure correspondence in a
business process

When you have created your correspondence, you can configure your application to send the
correspondence in various ways. For example, you can automatically send an email to a user when a
new assignment has arrived in the user's worklist. You can automatically notify a customer when a
request for a loan has been approved.

You can configure your application to automatically send:

« Emails, faxes, letters, or text messages when a case advances in the process using the Send Email
Smart Shape or a correspondence Utility.

« Email notifications when a case reaches an assignment.
« Email service level (SLA) notifications when an assignment has gone past its goal or deadline.

You use flow actions so that users can select and send correspondence as needed.

Using the Send Email Smart Shape

You can add the Send Email Smart Shape to your flow diagram to automatically send emails as a case
advances during the business process. This Smart Shape is useful if you want to notify or send
information to users after an action has been performed on a case. For example, the system can notify
a manager that, as the result of an automated decision, a purchase request does not need approval.

You can use the Smart Shape to create simple text messages that you configured using the rich text
editor. You can also send emails that you configured in a correspondence rule.

You can add the Smart Shape directly to your flow diagram. You can also add the Send Email step in
the case life cycle — the system automatically adds the shape to your diagram.

To add a Send Email Smart Shape from the case life cycle, select Utilities > Send Email, and then click
Select.

257
©2017 Pegasystems

Send Email
< Utlities

The Send Email utility is used to automatically generate an
Post to Pulse A email.

Last updated on 12/18/157:52 AM by Pega
Push Notification

Send Email Select

Update a Case

The system displays the Send Email properties panel on the right side of the case life cycle. To use a
correspondence template that was previously created, select Correspondenceand select the rule
name.

1. Pre-Arrival 5enc to
(_) Email address

Create Employee_. @® Party
@ Addltem & Delete

Select Welcome Pa... :
Parties *

1. Identify Home Offi...

Employee

EN 2 select Orientation... Subject *

. Send Welcome Email H Welcome to TGB

leszaze
) Rich text

® Correspondence
Correspondence template*

WelcomeEmail

Send attachments [_|

When you add the Send Email step, the system adds to the flow diagram a Send Email Smart Shape in
the position you specified in the stage. For example, the above configuration inserts and connects the
Send Welcome Email Smart Shape to the Select Orientation assignment, as shown in the following flow
diagram.

258
©2017 Pegasystems

Select agﬁntaﬁnn Select Crientation Plan+ Send Welcome Email

i

You can also add the Send Email Smart Shape directly to the flow diagram. In the following example,
notice the Send Email Smart Shape is the outcome of a decision shape. The email automatically notifies
a manager that the case did not require approval.

Motify no approval
| - needed
Mot needed a4

approve
I

Defermine approvals) Get work \l
» — \Work manager €1 WOrk manager
needed a R J

Send correspondence using a Utility shape

Similar to the Send Email Smart Shape, you can use a Utility shape to automatically send
correspondence. A Utility shape configured with the CorrNew activity offers greater flexibility than the
Send Email Smart Shape. You can use the activity to send all types of correspondence including mail,
fax, and text messages.

When you add a Utility shape to your process, open the properties panel and select CorrNew in the
Rule field. Select your correspondence rule in the CorrName field as shown in the following example.
When a case reaches the utility, the system sends the Thank you letter correspondence.

259
©2017 Pegasystems

Uil 13% Thank you letter]

Perform automated processing in your case.

£} Automation details
Define automation

Rule*
CorrMew

PARAMETERS
CorrMame Thankyouletter

Message

PartyRole * Customer

Send notifications from assignments

You can automatically send email notifications when a case reaches an assignment using a Notify
activity. This technique is useful if you want to notify users of new work that is waiting in their
worklists. On the Assignment properties panel in the Notifications section, enter the party you want to
notify. Then, enter the subject line text and select the correspondence rule in the CorrName field.

Assignment properties

Notifications

Motify MotifyAssignes
PARAMETERS
EmailTo 5am Rivers
Subject® New Hire]
CorrName* WelcomeEmail 4

minimumUrgency

Send reminders from SLAs

You can set reminders in SLAs so that when the goal or deadline of a service level agreement has been
reached, a notification email is sent out. You add the reminder by adding a row in the escalation

260
©2017 Pegasystems

actions area on the SLA form. In the Perform Action drop-down, you select a standard Notify
notification. When you select Notify Party, you specify a party role and reference a correspondence

rule.

DEADLIME
Days Hrs Mins Secs Amount to increase Urgency
5 0 0 0 20
Time interval starts when the associate:
Actions When
Only calculate using business days
i Notify Party Edit
Perform Action| Motify Party ﬂ
When py
Parameters
Correspondence Name# DeadlineTimeReminder
Party Role* Supervisor

Manually send emails using flow actions

Users often encounter questions or issues that are not part of the usual business process. For
example, users, while working on an assignment, may need to send a request for sales receipts that
were not attached to the user form. You can add the standard SendCorrespondence local action to
your application so that users can select the correspondence they need when they need it.

KNOWLEDGE CHECK

."’. .\.
(IR

i Name the four standard types of correspondence you can use in Pega applications?

Emails, fax, phone text, and letters

Configuring correspondence rules

Configure a correspondence rule if you want to automatically or manually send email, fax, letters, or
text messages during business processing.

Follow these steps in the Application Explorer to configure a correspondence rule:

261
©2017 Pegasystems

1.

Locate the class in which you want to create the correspondence rule.

2. Right-click on the class and select +Create > Process > Correspondence to open the Create

Correspondence form.

3. Enter a name for the correspondence in the Label field and select the correspondence type, as

shown in the following screenshot.

Correspondence Record Configuration

Candidate Rejection Email

A short description or title for this record

Correspondence Type

Email|

Click Create and Open. The Correspondence form is displayed.

Corr Prompts Pages & Classes Security History

B I U Font - Size ~ A~ @- 2)= T, Bsoure X% x 2 [0 [E

5. Enter the text you want to include in your email correspondence. In the following example,

placeholder text shows where properties are inserted.

Dear | [candidate’s first name]
We appreciate your interest in Acme and the time you've invested in applying for thz [lob title] dpening.

We have decided to move forward with another candidate. Thank you for giving us the opportunity to leam
about your skills |and accomplishments.

Regards,

[recruiter]

262
©2017 Pegasystems

6. Select the field you want to replace with a dynamic reference to a property and click the Insert
Property icon on the toolbar to open the Property Parameters dialog.

Property Parameters

Mame

Format

7. Select the name of the property in the Name field and click Save.

Property Parameters >
MName
.Candidate.Fir5tName| y
Format
A
When
A
3

The property name is displayed in brackets, as shown in the following example.

Dedr <= Candidate FirstName>> |

We appreciate your interast in Acme and the

We have decided to move forward with anoth

263
©2017 Pegasystems

Insert the other properties in the form, as shown in the following example.

Dear <« Candidate FirstName>> |

We appreciate your interest in Acme and the time you've invested in applying for th: << Position.JobTitle>>| opening.

We have decided to move forward with another candidate. Thank you for giving us the opportunity to leamn about your skills and accomplishments

Regards,

<< Position Recruiter>:

9. Click Save to commit your updates.

To preview the email, on the rule form header, select Actions > Preview. The message is displayed.

Values do not appear in the reference property fields. The system populates the property fields during
flow processing when the correspondence is sent.

Dear

e appreciate your interest in Acme and the time you've invested in applying for the opening.

e have decided to move forward with another candidate. Thank you for giving us the opportunity to learn about
our skills and accomplishments.

Regards,

264
©2017 Pegasystems

Circumstancing rules

Introduction to circumstancing rules

Applications often need to customize behavior to match the needs of a specific situation or
circumstance. For example, a call center may need to enforce one set of performance objectives for
clients with elite status, and a different set of performance objectives for clients without elite status.

In this lesson, you learn how to specialize case behavior through the use of circumstanced rules.
After this lesson, you should be able to:

« Explain how rule circumstancing supports rule specialization.

« Differentiate between base rules and circumstanced rules.

o Circumstance a rule.

Situational processing

Business processes must account for exceptions to typical case behavior. Exceptions make a business
process more complex. This complexity makes processes difficult to maintain and update as business
conditions change.

For example, a company promises to respond to customer complaints within one business day. For
customers with silver status, the company promises a response in 12 hours. For customers with gold
status, the company promises a response in only six hours. Reduced response times for customers
with elite status are exceptions to normal business processing.

After 5 hours After 24 hours

“

momnv
Message r‘

265
©2017 Pegasystems

Simple exceptions like these can be difficult — or impossible — to model with a single rule. For
example, a service level only defines one set of service expectations, and an assignment only applies
one service level. To apply three different response intervals, you might design a process with three
assignments, and apply the correct service level to each assignment. If the process changes, you need
to update three assignments, instead of one.

Complex exceptions that depend on combinations of factors become difficult to maintain and update.
Consider a bank that offers different promotions that reduce or waive fees for customers who meet
specific conditions.

« A new customer receives 100 commission-free trades for the first three months after opening an
investment account.

« A customer receives a rebate on commissions as long as the daily balance in their investment
account exceeds certain thresholds — but the rebate amount, balance threshold, and number of
rebate tiers vary by account type and country.

« A customer who refers a friend to the bank receives 10 commission free trades per month for six
months.

A rule that models these commission discounts according to account type, account balance, and

country can become complex. This complexity may lead to configuration errors and dissatisfied
customers.

In Pega applications, you model complex exceptions through circumstancing. With circumstancing,
you create a variant of a rule — such as a decision or a service level — tailored to a specific
circumstance. When an application uses a circumstanced rule, the system determines which rule
variant best satisfies the need. Circumstancing allows you to customize the behavior of your
application to address each exception condition you identify using a collection of targeted rules rather
than one complex, difficult-to-maintain rule.

KNOWLEDGE CHECK

How does circumstancing solve the problem of configuring exception behavior in an
application?

Circumstancing allows you to describe exception behavior with a set of targeted rules rather than
one complex rule. Each targeted rule configures behavior to address a specific exception.

Rule circumstancing

Circumstancing establishes a baseline for expected case behavior, and adds variants to address
exceptions to the behavior. The goal of circumstancing is to create a variant for each anticipated
situation. Pega selects the appropriate variant, or circumstance, to use based on the details of the case.

When you circumstance a rule, you create a set of focused rules to address exceptions to case
processing, rather than one all-encompassing rule. Since each rule focuses on a specific exception,
application maintenance and updates are easier and can be delegated to business users. And you can
more easily reuse the rules you create at the application or enterprise level.

266
©2017 Pegasystems

How to circumstance a rule

To circumstance a rule, you start by creating a base rule to define the expected behavior. Pega uses
this base rule unless a circumstanced version is more appropriate.

Consider a company with different response-time obligations for elite and non-elite customers. The
response time for non-elite customers is the expected behavior. In this situation, the response-time
goal is 24 hours. So you create a base rule — in this case, a service level — to enforce the response-
time goal for non-elite customers.

Then, you identify any exceptions to the expected behavior. For each exception, you circumstance the
base rule to addresses the difference from the expected behavior. For example, elite customers with
silver status have a response time goal of 12 hours. You circumstance the base rule to enforce the
response-time goal for customers with silver status. You can then create another circumstance to
address the goal time for customers with gold status, who have a service level response goal of 6
hours.

WORKLIST

SUBJECT CUSTOMER STATUS
Inquiry
Inquiry
Inquiry

Assignment

Subject: Inquiry
Status : Gold
Due :6

SUBJECT
Inquiry
Inquiry
Inquiry

Assignment

Subject: Inquiry
Status : Silver
Due :12

WORKLIST

CUSTOMER STATUS

DUE

Inquiry
Inquiry

Types of circumstancing conditions

You can circumstance a rule according to the value of one or more conditions. You define a condition
based on one variable, multiple variables, or the processing date, then apply the condition to a variant
of the rule. When using the rule, the application evaluates the conditions defined on all the
circumstanced variants. If one of the circumstancing conditions is satisfied, the application uses the
corresponding rule variant. Otherwise the application uses the base rule.

Pega supports the following types of circumstance conditions.

« Single value — the rule variant is effective whenever the value of a single property satisfies the
circumstancing condition. You specify the property to evaluate and a comparison value when
circumstancing a rule. If the value of the property matches the specified value for a case, the

267
©2017 Pegasystems

application applies the circumstanced variant of the rule, rather than the base rule.

o Multiple value — the rule variant is effective whenever a combination of property values satisfies
the circumstancing condition. Multiple value circumstances are based on a circumstance template
and circumstance definition. The circumstance template defines the properties on which the rule
is circumstanced. The circumstance definition defines the combination of conditions in which a
variant of a rule is used. You apply the circumstance template and circumstance definition to the
rule variant. If the case matches a combination in the circumstance definition, the application uses
the circumstanced variant of the rule, rather than the base rule.

- Date property — the rule variant is effective whenever the value of a date property satisfies the
circumstancing condition. This condition can be either a single date or a range of dates. If the value
of the property is later than the specifies date or falls within the range of dates, the application uses
the circumstanced variant of the rule, rather than the base rule.

« As-of date — the rule variant is effective after a certain date, or during a range of dates. After the
specified date or during the specified range, the application applies the circumstanced variant of
the rule, rather than the base rule.

Circumstancing a rule

To circumstance a rule, you first create a base rule and then create specialized versions of the rule.
Each version is tailored to a specific exception in case behavior.

Follow these steps to circumstance a rule:
1. Open the base rule.

2. On the base rule, open the pull-down menu on the Save button and select Specialize by
circumstance. The New Record form opens, with two circumstancing options: Template and
Property and Date.

Service Level Agreement Record Configuration

an i =

DisputeResponse not editable

Dispute Response
A short description or title for this record
CIRCUMSTAMNCE BY » Template Property and Date
The caonditions defined in the circumstance definition must evaluate o true for this record to be chosen at run-time.

18}
L]
o

3. On the New Record form, identify the type of circumstance. To circumstance on one variable, select
Property and Date. To circumstance on more than one variable, select Template.

4. Specify the condition under which the rule is used. The following example shows a service level

268
©2017 Pegasystems

circumstanced to run whenever the value of .CustomerStatus is "silver". The value must be entered
within quotation marks.

Service Level Agreement Record Configuration

Dispute Resolution DisputeResclution not editable

A short description or title for this record
CIRCUMSTAMNCE BY Template s Property and Date
Choose a property and/or a date property. All entered conditions must evaluate to true for this record to be chosen at
run-time.

Property Value

Customer5tatus 4 ‘silver”

Date propert Start Date End Date

4 il &

To circumstance by date, use the following table to configure the circumstancing condition to meet
various business requirements.

Business requirement Specify date Specify Specify
property start date end date

Rule to be effective only if the value of the specified date Yes Yes Yes
property occurs within a date range

Rule to be effective only if the value of the specified date Yes Yes No
property occurs after a certain date

Rule to be effective only within a date range No Yes Yes

Rule to be effective only after a certain date No Yes No

To circumstance by more than one property, specify the circumstance definition and circumstance
template rules that define the combination of conditions. For each circumstanced rule, you must
provide a unique circumstance definition.

269
©2017 Pegasystems

Decision Table Record Configuration

Label* dentifier
Cammission Calculation CommissionCalculation not editable

A short description or title for this record

CIRCUMSTANCEBY & Template Property and Date

The conditions defined in the circumstance definition must evaluate to true for this record to be chosen at run-time.
Template Definition
CommissionPromotion FrancePromotion

5. Click Create and open to open the rule form.

6. Customize rule behavior for the specified circumstance.

To view the circumstancing condition for a rule, locate the rule in the Application Explorer. Pega
indicates a circumstanced rule with a collapse arrow. Clicking the arrow expands the rule entry to
display the supported circumstances. In the following example, the DisputeReponse service level
includes a circumstance used when the value of .CustomerStatus is silver.

¥ Service Level Agreement

~ DisputeResponse
_CustomerStatus = "silver"

Base

You can also review the circumstancing condition for a rule by clicking the Circumstanced link in the
rule header.

Edit Service Level Agreement: Dispute Response [Available. Circumstanced]

CIRCUMSTANCE BY PROPERTY

Property CustomerStatus = "silver”

Close

270
©2017 Pegasystems

DECISION DESIGN

©2017 Pegasystems

Automated decisions in Pega
applications

Introduction to Automated Decisions in Pega
Applications

During the case life cycle, choices affect how each case progresses toward resolution. Choices range
from deciding which processes to run to deciding which fields to complete.

By automating decisions, system architects significantly improve process efficiency. Automated
decisions eliminate delays waiting for users to decide an appropriate outcome. Automated decisions
ensure that decisions are evaluated consistently from case to case. For example, automating decisions
can reduce the time needed to perform a credit check from three weeks to 15 minutes, dramatically
reducing the time needed to process loan requests.

In this lesson, you learn about the types of decisions that Pega allows you to automate, from simple
true/false conditional tests to complex strategies for improving the outcome of customer interactions.

After this lesson, you should be able to:

. Differentiate between the types of decision rules available in Pega applications

272
©2017 Pegasystems

Types of decisions available in Pega
applications

The Pega platform provides many options for automating decisions, from simple true/false tests to
complex decision strategies that rely on predictive or adaptive analytics. The decision rules in Pega
applications are divided into two categories: business rules and decision strategies.

Business rules

Business rules evaluate case data to determine outcomes that direct a business process. These rules
are used in applications to direct flows, hide or display form elements, and even calculate property
values. Pega provides four types of business rule decisions: when conditions, map values, decision
tables, and decision trees.

When conditions

When conditions are the simplest type of decision. A when condition evaluates a relationship among
one or more property values to return a true or false result. When conditions correspond to the "if"
statement in programming languages. When conditions are often used to determine whether an
application performs some action, such as hiding the contents of a form. For example, use a when rule
to test if a user selected "Married" as their marital status. If the result is true, then the form displays
fields to obtain the name and birth date of the user's spouse.

Map values

Map values evaluate one or two criteria to return a result. Unlike a when condition, a map value can
return numeric or text results. Map values are often called from a decision shape in a flow to direct
flow processing, and can also be used as part of a declare expression to set the value of a property.

A map value uses a one- or two-dimensional matrix to derive a result. The inputs to a map value
identify a row and column in the matrix, like latitude and longitude on a map. The intersection of the
two inputs indicates the result of the decision.

1 1 1
1 1 1
1 1 1
1
1 1]

273
©2017 Pegasystems

For example, use a map value to test the options packages and colors offered for a vehicle to determine
which combinations are allowed.

Decision tables and decision trees

Decision tables and decision trees evaluate a series of one or more conditions to return a result. Like a
map value rule, decision tables and trees can return numeric or text results.

Decision tables and trees are often called from a decision shape in a process flow to direct case
processing, and can also be used as part of a declare expression to set the value of a property.

Decision tables and trees behave similarly, but differ in how the decision logic is organized: in a table
of conditions organized into rows, or in a tree structure with conditions organized into branches of the
tree.

A decision table returns a result using a series of one or more conditions, organized as rows in a table.
If all the conditions in a row evaluate to true, the decision table returns the result assigned to the row.
If any of the conditions in a row evaluates to false, processing advances to the next row in the table. If
no row in the table evaluates to true, the table returns a default result.

A decision tree returns a result using a series of if-then conditions, organized as a tree-like structure.
Evaluation begins with the trunk of the tree and advances through a series of branches. If a branch
evaluates to true, the decision tree returns the result assigned to the branch. If a false result occurs,
processing returns advances to the next branch in the tree. If no branch evaluates to true, the tree
returns a default result.

274
©2017 Pegasystems

For example, use a decision table or tree to test the total amount of a purchase request and determine
whether to

« approve the request automatically,
» forward the request to a manager for approval, or
« trigger an audit of the purchase request.

Unlike map value rules, which allow you to test one or two variables, decision tables and trees allow
you to test any number of variables. The choice between a map value, decision table, and decision tree
often depends on the number of conditions and the best format for presenting the decision logic: as a
matrix, as a table, or as a tree.

Decision Management rules

Decision Management rule types, such as scorecards and predictive analytics, analyze customer
behavior. These rules tailor offers or propositions to a customer, often as part of a retention or up-sell
strategy.

Decision Management rules are available only in applications built on the PegaDM application or
Decision Management rulesets.

Strategies

Strategies define a result personalized to the interests, risk, and eligibility of an each customer. A
decision strategy consists of interactions, predictive and adaptive models, and scorecards. For example,
you create a strategy rule to provide a customer with enticing offers for a new credit card based on
their spending patterns, income, or other criteria.

Interactions

Interactions define the parameters for running a strategy and the possible outcomes.

Use an Interaction rule to execute a decision strategy and capture the details of the customer
interaction. For example, you use an interaction rule to run a strategy designed to retain a customer
calling to cancel their credit card. Delegate an interaction rule to allow process owners to switch to
another strategy in an released application.

275
©2017 Pegasystems

Predictive models

Predictive models predict behavior for one or more segments, based on customer data. Predictive
models are used in strategies through predictive model components. For example, you use a predictive
model rule to define characteristics that identify customers who are more receptive to a credit card
with travel rewards or a low interest rate.

Adaptive models

Adaptive models capture customer responses in real-time to make and adapt predictions. Adaptive
models are used in the absence of historical records.

You use an adaptive model to collect data from customer interactions, which you then use to generate
predictive models. For example, you use an adaptive model in a retention strategy to determine if the
age of a customer affects the response rate for a credit card with a cash-back reward. As customers
respond to the available offers, the adaptive model collects data that you can use to create a predictive
model for future marketing campaigns.

Scorecards

A scorecard uses one or more conditions and a combining method to return a score and a segment.
You then define cut-off values to map each score range to a result. For example, a scorecard rule
segments customers based on age and income, then maps the score ranges to recommended a
different credit card to each segment. A scorecard allows you to recommend one credit card with a low
interest rate to customers under the age of 25, and another credit card with travel perks to customers
over the age of 40.

More information on Decision Management

For more information on Decision Management rules, see the PDN topic Decision Management.

276
©2017 Pegasystems

https://pdn.pega.com/decision-management

Configuring when rules

Introduction to Configuring When Rules

Applications must evaluate case data and determine the appropriate response to automate case
processing. For example, application logic must often determine whether to:

« Automatically approve a case or assign the case to a user for approval.
« Skip a processing step.
« Display information on a form.

Pega models true/false decisions such as these using a when rule. In this lesson, you learn how to
automate decision-making with when rules.

After this lesson, you should be able to:
» Explain how when rules model true/false decisions.
« Describe the uses of when rules in an application.

« Configure a when rule to evaluate case data and return a result.

277
©2017 Pegasystems

When conditions

Applications often need to decide whether to perform an action, such as skipping a process when a
case satisfies some condition. For each decision, an application tests a condition to return a true or
false result. If the result is true, the application performs the conditional action. If the result is false,
the application skips the action. These true/false decisions allow applications to adapt a business
process to the details of each case.

In Pega, a when condition describes a decision that returns a true or false result. You use a when
condition to compare the value of one property against a constant or the value of another property. For
example, use a when condition to determine whether the total value of an order exceeds EUR100. If
true, the application can then apply a credit for the shipping charge to the order.

You can use when conditions whenever an application requires a true/false outcome. Use when
conditions in flows, Ul forms, and data transforms to adjust rule behavior in response to case data.

In flows, use a when condition to branch a flow based on case data. For example, if an employee
submits a purchase request totaling less than USD25, then skip the approval step and automatically
approve the request.

When Else P Manager Review

Total < 25

l
O

Approval

In Ul forms, use a when condition to update the appearance of a form in response to user input. For
example, if users indicate that they want to subscribe to a newsletter, an application provides a field
for the users to enter their email address.

278
©2017 Pegasystems

Mame I Mr. John Smith Mame I Mr. John Smith

Date of Birth I 0373171982 Date of Birth I 03/31/1982

5
Subscribe to Mewsletter D Subscribe to Mewsletter E

E-mail |

In data transforms, use a when condition to determine whether to perform a step or sequence of
steps. For example, if users indicate on an order that their billing address is the same as their shipping
address, then copy the shipping address information to the corresponding fields for the billing

address.

Shipping Address
Address 1
Address 2 Main St
State Cambridge
Country United States

Pin-code

Billing Address

@f Same as shipping address

Address1 W

Address 2 Main St

State Cambridge
Country United States

Pin-code

KNOWLEDGE CHECK

ANGWER What is the purpose of a when rule?

The purpose of a when rule is to evaluate one or more conditions to return a result of either true or
false.

279
©2017 Pegasystems

How to configure a when condition using a
when rule

In Pega, you can apply a when condition where needed, or configure the when condition using a when
rule. By using a when rule, you can reuse the when condition wherever necessary in the application.

The when rule form

A when rule organizes a set of one or more true/false tests into a tree-like structure. Each node on the
tree represents either a single condition or a group of conditions related with a Boolean AND or OR
operator. The entire conditions tree reduces to a single Boolean operation. The result of this operation
is the result of the when rule.

Use the Conditions tab to enter or revise the conditions tree for a when rule. The when condition is
expressed as either a single Boolean expression or a tree consisting of multiple expressions combined
using Boolean AND or OR operators.

Each expression defines a single comparison that evaluates to True or False. The when rule evaluates
to True only if the entire tree of conditions evaluates to true. In the following example, the when rule
returns a result of True if a work party is an instance of any of the three listed classes: Data-Party-Com,
Data-Party-Org, or Data-Party-Gov.

Conditions ~ Advanced Parameters Pages & Classes History

When...
Object Class of this instance = "Data-Party-Com”
JR Object Class of this instance = "Data-Party-Org”

JR Object Class of this instance = "Data-Party-Gov"

The when rule form starts you with a single condition to test. To further edit the conditions tree, use
the context menu. From this menu, you either add a condition to the current node or add a new node
to the conditions tree. Each node consists of one or more conditions linked by a Boolean AND or OR
operator. The same operator is applied to all of the conditions within a node.

280
©2017 Pegasystems

The following example demonstrates a when rule with three nodes.

Conditions Advanced Parameters Pages & Classes History

When...

MaritalStatus = "Married” o
MNumberOfDependents =1 o
AND

Marital5tatus = "Single” o
OR _MaritalStatus = "Divorced”

The conditions and logical operators you enter on the Conditions tab also appear on the Advanced
tab, in the Condition array and Logic String field. Each set of parentheses in the logic string groups a
set of conditions to represent a node. The following example shows the same when condition, viewed
from the Advanced tab. The logic string groups each node with a set of parentheses.

]
Fh)

Conditions Advanced Parameters Pages & Classes History

-Employee MaritalStatus = ¥ "Married" -

b=

NumberOfDepenadents =¥ -

m

T
T
]

Employee MaritalStatus = ¥ "Single”

Employee. MaritalStatus = ¥ | "Divorced" -

)

Logic string A OR (B AND (C OR D))

281
©2017 Pegasystems

KNOWLEDGE CHECK

When...
Age <18
OR Age=60
¥ OR

Age <25
AND WehicleType = "motorcycle”

¥ OR

Age=d5
AMD VMehicleType = "motorcycle”

282
©2017 Pegasystems

Configuring a when rule

Configure a when rule to perform a true/false test based on the relationship between one or more
property values, literal constants, or functions.

Creating a when condition

The top node in a when conditions tree is labeled When. Follow these steps to configure the top node:

1. Double-click the link beneath the When node.

Conditions ~ Advanced Parameters Pages & Classes History

When...

[Double click to add condition]

The system displays the Condition dialog that contains the default condition. The default condition
compares two values.

2. Enter properties, literal constants, or function calls and parameters in the fields, and select a
relational operator.

Condition

Ppx0bjClass 4d =7 "Data-Party-Com”

Optionally, click the down arrow at the end of the row and select from a list of standard conditions.

Tip: If you select [expression evaluates to true], use the Expression Builder for guided
assistance. Click the gear icon to open the Expression Builder.

3. Click Submit to close the dialog and display the condition on the tree.

Adding more conditions to the conditions tree

To further edit the conditions tree, use the Actions menu. From this menu, you can edit the selected
condition, delete the selected condition, or add conditions to the tree. To open the context menu, either
right-click the expression or click Actions to the right of the node.

283
©2017 Pegasystems

Follow these steps to add a condition to the current node:
1. From the Actions menu, select Insert Condition.
2. Enter the condition in the Condition dialog.

3. Click Submit. When the Condition dialog closes, the condition appears in the conditions tree,
preceded by a Boolean AND or OR operator. To change the operator, click the operator and select
the appropriate operator from the list.

Follow these steps to add a subnode with a condition:
1. From the Actions menu, select Insert Group.
2. Enter the condition in the Condition dialog and optionally add a label for the group.

3. Click Submit. When the Condition dialog closes, the node for the group is indented below the
preceding node.

284
©2017 Pegasystems

Configuring decision tables and
decision trees

Introduction to Configuring Decision Tables
and Decision Trees

Decision tables and decision trees are fundamental to enforcing business decisions. You can use these
decision rules in flows, routers, activities, and declare expressions. For example, a decision rule can
automatically select a connector to advance a case. A decision rule can also automatically route cases
to the correct worklist or workbasket. Decision tables and decision trees allow you to design complex
decision logic that goes far beyond simple yes/no decisioning.

After this lesson, you should be able to:

Explain how decision tables can model decisions.

Configure a decision table.

Explain how decision trees can model decisions.

Configure a decision tree.

Describe the options for unit testing decision tables and trees.

Describe how to test a decision for completeness, conflicts, and decision logic.

285
©2017 Pegasystems

Decision tables

If you are asking a yes/no question when using an automated decision process, then a when rule
serves the purpose. For example, a decision such as “Does this purchase order require additional
approval?” works well with a when condition. However, if you need to test the values of multiple
properties to answer questions such as “What promotional offer should the company offer?”, you can
use a decision table.

For example, you can configure a decision table to determine the discount for customers at different
spending thresholds. Using the decision table, customers who purchased more than USD1,000 in the
previous year and have been a customer for more than five years are entitled to a 20 percent discount
for purchases greater than USD50. Customers who purchase more than USD1,000 but have been a
customer for less than five years are entitled to a 15 percent discount on purchases greater than
USD100. Customers who do not meet either condition are not entitled to a discount.

Decision tables resemble a spreadsheet with rows and columns. This commonly used format helps
non-technical users quickly understand how the decision logic works. Your organization may choose to
delegate to business users responsibility for updating the decision table. For example, when the
organization changes its discount rates, managers need to update the rate. A delegated decision table
allows these users to quickly adjust the table to make the update, rather than waiting for IT to make
the changes required.

You can reference decision tables in decision shapes to decide which connector to use when
advancing a case in a process. You can also use decision tables in declare expressions, activities, or
routers.

Decision table logic

Decision tables are a good approach when you use a set of properties or expressions to arrive at a
decision. Watch the following video to see how the columns and rows are configured in a decision
table.

In the following example, a banking application uses a decision table for determining monthly
maintenance fees. To find the correct fee, the decision table compares the account type and customer
type property values on the table to the input values.

The table has rows for evaluating the correct fee for each combination. For instance, if the account type
equals Checking, and the customer type equals Basic, then the system returns a value of USD10.

The following example shows how the decision evaluation works based on the account type and
customer type property values.

286
©2017 Pegasystems

Customer Name

‘Kate Austin

Customer Type Account Type

Customer Type
‘ Student % Checking $10

Account Type
i Savings $3

‘Checking

Fee Student J Checking J

E

Student Savings $2

By default, a condition uses an equal comparison operator (as configured in the previous example). If
you are using numeric conditions, you can also specify greater than or less than comparison operators.
For example, you can create a condition so that if the savings account balance is greater than
USD1,000, then a customer is not charged any fees. You can also use value ranges to define the
comparison. For instance, if the savings account balance is greater than USD500 but less than
USD1,000, the customer can only be charged a checking account fee.

KNOWLEDGE CHECK

I:/._/-\;I
ANSWER What is the main reason for using a decision table rather than a when rule for

automating a decision?

You need to test the values of multiple properties to make the decision.

287
©2017 Pegasystems

How to configure a decision table

To design your decision table, you first specify a property or expression in the Conditions column
header. Then, on the first row, you enter a value in the column that defines the condition. Under the
Return column, enter the result that is returned by the table when the condition evaluates to true.
Finally, in the otherwise row, enter a value that is returned if none of the conditions evaluate to true.

Conglitions Actions
Return

if

+

+

otherwise I

To create a decision table, in the Application Explorer, select a class. Then, right-click and select
+Create > Decision > Decision Table.

Specify a condition property or expression

Configure a cell in the header row to define the property or expression used in the evaluation. Clicking
the cell opens the Decision Table property chooser tool.

The tool allows you to:

» Select a property or create an expression used for the evaluation.

« Enter a label that appears on the table.

« Select the comparison operator. The default is the equals sign (=). If you select a numeric property,
you can use greater than/less than operators. You can also use these operators to define a range.

You can add columns to create multiple conditions.

Specify the condition

In the rows under the conditions column, enter the value you want to compare during the evaluation.
You can enter a literal value, a property, or an expression. For example, if the condition property is

288
©2017 Pegasystems

Account Type, you can enter checking as a value. You can add multiple rows for each combination of
conditions. If you have more than one condition column, you must enter a condition in at least one
column.

Specify the return value

Under the Return column, enter a literal value, a property, or an expression. This is the result the
table returns if all the conditions in the row evaluate to true.

Add an otherwise value

Be sure to add a value in the otherwise row to ensure that the decision always returns a result. A
processing error can occur If there is no result.

Adding or deleting columns and rows

You can add or delete columns and rows using the following controls that are available above the
table. Select any cell in the table to activate the controls.

2 = W Wt H O e D

289
©2017 Pegasystems

Configuring a decision table

Create a decision table to derive a value that has one of a few possible results, where each result can
be detected by a comparison condition. A decision table lists two or more rows, each containing one or
more conditions and a result.

Follow these steps to create and configure a decision table for automating a decision:

1. Open the Application Explorer.

Select the class in which you want to create the decision table.

Right-click and select +Create > Decision > Decision Table. The New Record form opens.

In the Label field, enter a name that describes the purpose of the table.

vk wenN

Click Create and open. The decision table rule form opens.

able Resulis Parameters Pages & Classes

Condidons ACTons
Return

if '

otherwise "

6. On the table under Conditions, click the empty header cell. The Decision Table property chooser
dialog opens.

Decision Table property chooser

Select a Property

Property

Label

Use Range O

Use Operator = ﬂ

290
©2017 Pegasystems

7. In the Property field, enter or select a property. You can alternately click the gear icon to build an
expression.

8. In the Label field, enter the name of the property that you entered in the column header.

9. In the Use Operator drop-down, select a comparison operator.

The following example shows a competed dialog.

Property |.CreditScore

Label Credit Score

Use Range O]

Use Operator | = ﬂ

10. Click Save. The Decision Table property chooser dialog closes, returning you to the decision table

rule form.
Conditions Actions
Credit Score = Return
if —+
otherwise —*

11. If you want to add another condition property, add a column to the right of the first column by
selecting the add column icon on the control header.

2 > B W H %

Conditions Al
Credit Score Rg

if

i

4

otherwise

12. Add a second property to the new column.

13. In the if row, click the empty cell under the first property and enter a value.

291
©2017 Pegasystems

14. In the Return column, enter a return result. The following image shows the first condition set.

Conditions Actions
Credit Score > Cutstanding Balance < Return
if 200 —+ |Approvallevell
otherwise —*

Note: If you are using two or more conditions, you must enter at least one condition in the row. In
the previous example, only the Credit Score condition must be true in order to return Approval Level
1. The Outstanding Balance value does not affect the decision.

15. If you want to add conditions, select the add row icon on the control.

= & B ¥ B | [snow confiicts | s
Conditions Actions
Credit S5core > Outstanding Balance < Return
if 900 —+ Approvallevell
else if —*
otherwise —*

16. Enter values in the first and second columns and a return value. In this example, values for Credit
Score and Outstanding Balance are entered.

Conditions Actions
Credit S5core > Outstanding Balance < Return
if 900 — Approvallevell
else if 750 2500 —+ Approvallevel2
otherwise —+

17. Enter another row and return action. Repeat this process until you add all the rows required to
create the decision table.

292
©2017 Pegasystems

18. Add a return value to the otherwise row.

Conditions Actions

Credit Score > Outstanding Balance < Return
if Q00 — Approvallevell
else if 750 2500 —+ Approvallevel2
else if 500 1000 —+ Approvallevel3

otherwise —+ Reject
19. Click Save.
293

©2017 Pegasystems

Decision trees

As an alternative to decision tables, you can use decision trees to handle logic that calculates a value
from a set of test conditions. Both decision tables and decision trees evaluate conditions and return
results when a comparison evaluates to true. Only decision trees let you apply if... then... else logic.
This means that a true comparison can result in more than one comparison.

For example, a human resources application contains a process for assessing a job candidate. The
candidate receives a set of ratings during the interviews. These ratings are evaluated to determine
whether to extend a job offer to the candidate. A decision tree can be configured to automatically use
the ratings to decide whether the candidate is qualified. The decision starts at the top of the tree and
proceeds downward. Each yes advances the evaluation.

1. Job history and reference rating must be greater than 60 percent.
If yes, then continue to condition 2.

Else, not qualified.

2. Interview rating must be greater than 40 percent.
If yes, then continue to condition 3.

Else, not qualified.

3. Interpersonal skills must be greater than 20 percent.
If yes, then the candidate is eligible for a job offer.

Else, not qualified.

Like decision tables, you can reference decision tables in flow shapes, declare expressions, activities, or
routers.

The following video describes the structure of a decision tree.

Decision tree logic

Decision trees contain condition branches — a comparison value, a comparison operator, and an
action. The action can be to return a result, to continue the evaluation, or stop the evaluation. The
branches are organized in a hierarchical tree structure. Typically, you specify common conditions and
results at the trunk of the tree. You then extend the tree outward to more-specific conditions and their
actions. When the decision tree is invoked, the system evaluates the top row, and continues until it
reaches a result that evaluates to true. The result is returned to the system. If the system processes
through all the branches but does not reach a returned result, the system returns the final otherwise
value.

Nesting branches

You can organize decision tree branches in a nested structure. For example, assume that when a
purchase request is submitted, three possible outcomes exist. The first condition states that if the

294
©2017 Pegasystems

request is for more than USD100, then the request must be approved. Two possible approval results
exist. If the request is submitted by the Consulting department, the request advances to the
Compliance department for approval. Otherwise, the request advances to the work manager for
approval. If the request is for less than USD100, then approval is not needed.

The following image shows how the decision tree would be configured to advance the request to the
correct connector. Note that the Compliance and Work Manager approval conditions are nested
beneath the purchase request condition. This condition must be true before the other conditions are
evaluated. If the request is for less than USD100, the tree does not need to evaluate the request any
further and returns the result Not Needed.

Purchase Request > $100 then continue
o If Department = Consulting then return Compliance
o otherwise Work Manager

e Otherwise return Not Needed

o Not Needed I O
< Determlne Appm\rals =
Needed /
Work Manager
Get Work Manager Approve
Approval
o Complance

Get Compliance Approve
Approval

KNOWLEDGE CHECK
L¥
anEwER When would you use a decision tree rather than a decision table to automate a decision?

When you want to apply if...then...else logic to evaluate a set of conditions.

295
©2017 Pegasystems

How to configure a decision tree

To design your decision tree, enter the If/Then logic in the three-column array for each branch. Each
column consists of an unlabeled field. The columns are comparison, action, and next value.

il W 4 =M1 4 |theny return b

otherwise RETURN |

To create a decision tree, in the Application Explorer, select a class. Then, right-click and select +Create
> Decision > Decision Tree.

Configure the columns

In the comparison column, select the property to evaluate. Use the drop-down to select the comparison
operator.

In the action column, specify the literal value or property to compare against.
In the next value column, use the drop-down to select the outcome of the comparison. The options are:

« return — If the condition evaluates to true, the system returns a result value that you define in the
field to the right of the drop-down.

« continue — Causes the next branch of the decision tree to nest within this branch. The system
indents the next branch on the form.

» otherwise — Select only as the bottom of the tree. The value in the right column of this row becomes
the result of this decision tree evaluation. Typically, you use this option when configuring indented
branches.

As a best practice, enter a default return value in the otherwise row at the bottom of the tree. This
helps ensure that there is a returned value if no other conditions evaluate to true.

You can add rows to by selecting the crosshair icon next to the Show Conflictsbutton on the form.

To reorder rows, hover your mouse over a row, and then drag and drop it.

296
©2017 Pegasystems

Configuring a decision tree

Create a decision tree to use if... then... else decision logic that calculates a value from a set of test
conditions organized as a tree structure.

Follow these steps to create and configure a decision table for automating a decision:

1.
2.

Create the decision tree.

Add a condition and result.

3. Optionally, nest the conditions.

Create the decision tree

1.

v A~ N

Open the Application Explorer.

Select the class in which you want to create the decision table.

Right-click and select +Create > Decision > Decision Tree. The New Record form opens.

In the Label field, enter a name that describes the purpose of the tree.

Click Create and open. The decision tree rule form opens.

m
—
m
i

-\..'||_-_| ot

if " =""thenreturn [u]

otherwise RETURM ﬂ

Add a condition and the result

1.

2.
3.
4,

On the form, select the branch to display the columns.

| Show Conflicts || Show Completeness |
if i 4 ° ﬂ

y then return ﬂ

4

In the first field, enter a property or a literal value.

In the drop-down to the right of the field, select a comparison operator.

In the next field, enter a property or literal value used in the comparison.

297
©2017 Pegasystems

In the then drop-down, select the action you want the system to perform when the condition
evaluates to true. To return a result when the condition evaluates to true, select return.

In the field to the right of the drop-down, enter a property or value result that you want the system
to return. The following shows a completed condition.

if |.PurchaseRequest 4> v| 100 4 then return |V| Work Manager

L

When you click out of the branch, the condition is displayed on the form.

if .PurchaseRequest = 100then return Work Manager

Nest the conditions

1.

2.
3.

5.

When you create a condition, in the then drop-down, select continue to create a nested branch. The
return field to the right of the drop-down is removed. An indented condition branch is displayed
under the first row.

; 4 > M 100 4 |then continue [V

it ™ =""thenreturn

Select the second branch to display the columns.

Specify a condition and result in this branch. The following condition is an example of an indented
branch.

if .PurchaseRequest = 100then continue

if .Departmen 4 = M| Consulting 4 then rewurn V] Compliance

To add an otherwise condition to the indented branch, select the crosshair icon.

55e Request = 100 then continue

if Department = Consultingthen return Compliance

"k J[-™ "

In the second branch, select otherwisein the then drop-down. The system changes the branch to

298
©2017 Pegasystems

otherwise.

if Purchase Reguest = 100 then continue
if Department = Consultingthen return Compliance

otherwise '@'

6. Select the otherwise row to display the result field and to enter a value.

if Department = Consultingthen return Compliance

ﬂ Work Manager ‘{B imj

7. Enter avalue in the otherwise field at the bottom of the table. This is the result when neither of the
nested conditions evaluate to true. The following image provides an example of a completed
decision tree.

if .PurchaseReguest > 100then continue
if .Department = Consulting then return Compliance

otherwise Work Manager [u]

otherwise FEI:—I'LJFENﬂ Mot Meeded

8. Click Save.

299
©2017 Pegasystems

How to unit test a decision table or decision
tree

Testing a decision table or decision tree on its own before testing it in the context of the entire
application is called unit testing. Since decisions are evaluated automatically, they can have a
significant impact on case processing. Ensuring that the decision logic is correct helps avoid
troubleshooting the process if you get unexpected results. You can unit test decision rules by testing
the logic, checking for conflicts in the logic, and checking for completeness.

Test for logic

You can test the logic of a decision rule by entering test values and running the rule to observe the
results. If you do not see the expected results, make sure that the properties and comparison
operators are correct.

To test for logic, on a decision rule form, select the Actions > Run. The system displays a test page for
entering test values. On the form, click Run Again after you enter each value as shown in the following
example.

Enter required value(s) and click Run Again.

LCreditScore 780

DutstandingBalance 2‘I{Id b4

e] s

After you have entered values for all the conditions and click Run Again, the form returns the
corresponding result from the decision table or tree. The following logic test shows that the input
values returned the correct result.

Conditions Actions Result for Creditdpprovails
Credit Score > Outstanding Balance < Return
if 200 — ApprovalLevell CreditScore 780 %
Ise if 750 2500 — A ILevel 2)
Ese ! - pprovaTeve OutstandingBalance 2100
else if 500 1000 —+ Approvallevel3
otherwise —+ Reject Results for CreditApprovals on page temp TGEB_HR_Work_Onboaraing
Return ApprovalLevel 2

Test for conflicts

Checking for conflicts shows you if your decision rule prevents one or more of its rows or branches
from ever being used. For example, assume your decision table contains a row that tests for purchase

300
©2017 Pegasystems

requests that exceed USD300. The next row tests for purchase requests that exceed USD500. The
second row may never be evaluated, because the upper row includes that condition.

To test for conflicts, on the decision form, click Show Conflicts. If a conflict exists, a warning is
displayed on the row causing the conflict. In the following example, the condition Credit Score >1000
cannot be evaluated because it is a larger value than the 900 condition that is evaluated first.

B [[Snow confics ||

Conditions Actoons
Credit Score > CQutstanding Balance < Return
if 900 — Approvallevell
boelse if 1000 2500 —+ Approvallevel 2
else if 500 1000 —+ Approvallevel3
otherwise —+ Reject

Test for completeness

To test for completeness, on the decision form, click Show completeness. The system adds rows to
indicate values that will not be evaluated. The results are suggestions. You can add return results to
additional rows if you think the decision rule needs a more detailed evaluation of the values.

Conditions Actions
Total Amount Customer level Return
if =1000 1 — Sales VP
else if ==1000 2 — 5ales Manager
else if <=1000 1 —
else if =1000 i —+
otherwise —+ Mot Needed

301
©2017 Pegasystems

Pega

ACADEMY X

Ul DESIGN

302
©2017 Pegasystems

Designing a Ul form

Introduction to Designhing a Ul Form

A user interface (Ul) is the means by which users interact with a system. A Ul can be a data entry form
in which users provide information for filing a claim, a screen that displays the legal terms that users
must accept before opening a bank account, or a list of transactions during the past month. Users
receive information from and provide data to an application through a Ul.

In this lesson, you learn how to build a Pega Ul with sections, and how to arrange Ul elements in a
section with layouts.

After this lesson, you should be able to:

Understand the hierarchical structure of a Pega Ul.
Explain the role of a section in Ul design.
Construct a section.

Create a dynamic layout inside a section.
Articulate some guidelines for Ul design.

Inspect a Ul with the Live Ul tool.

303
©2017 Pegasystems

User interface structure

When you build end-user forms, you need to focus on the user interface (Ul) rules you are most likely to
configure. Assume you are developing an application for hiring employees. This process has many
steps, -- for example, collecting applicant information, reviewing the information, and scheduling
interviews. Each step requires its own user form so that users can perform their task. In most
applications, you will create and update many user forms.

To help make designing forms easier, Pega provides a specific set of Ul rules. You focus on only two
types of rules when building forms. First, you create a rule that defines the form and contains the
form's contents. Then, inside that rule, you add rules such as fields or buttons so that users can
interact with the form and complete their work.

Then, Pega organizes all Ul rules in a nested structure. This structure shows you how all the Ul
elements fit together. Most of the Ul structure is already built for you. For example, the structure
contains areas in which users monitor reports or manage worklists. Nested within the structure are the
rules you use when you design your forms. You do not need to update any of the other Ul rules. The
nested structure helps you find the rules you need when you build forms.

The Ul rules

Every Pega Ul is built inside a portal rule. A portal rule does not hold any visual elements such as
other Ul rules. The main purpose of a portal rule is to set up workspaces for users. Pega provides
standard portals that are built with portal rules. The standard user portal is a workspace that supports
users and managers as they create, update, route, and resolve work items. Portal rules reference
harness rules for content. Harnesses frame the work areas in which users process cases. A harness
provides tools that let users manage the assignment process. Harnesses give users the ability to
cancel, save, or submit their work. While working in the assignment, users can transfer their
assignments to other users, attach files to the case, or send email correspondence.

When a case reaches an assignment, the flow action presents the appropriate harness that allows
users to perform tasks defined for the assignment. The flow action also references a section rule and
displays it in the harness. The section is the form in which users work when they perform their task
and complete their assignment. When you build a user form you create a section rule.

304
©2017 Pegasystems

Pega provides rules called controls that you add to a section to help users interact with the form. For
example, assume you are designing a form for collecting information when users apply for loans. You
add controls that allow users to provide the information. For example, you add text box controls so that
users can enter their name and address, a drop-down control that allows users to select a type of loan,
and a check box that allows users to indicate whether they are existing customers.

Sections use Layouts that organize the controls in a series of rows and columns. Each cell within a
layout can contain a control. You can configure many layout designs in order to make user interactions
intuitive and efficient.

- Shipping Address

Address #321, Main St

State Cambridge

Country United States

'/ Copy as Billing Address

305
©2017 Pegasystems

Sections and layouts

Users interact with an application and perform tasks through user forms. A user form can be a data
entry form in which users provide information for filing an insurance claim, a display of the legal terms
that users must accept before opening a bank account, or a list of bank account transactions during
the past month.

In Pega, you build user forms with sections. Sections group information and functionality by context
and purpose. Inside a section, you organize Ul elements with layouts. Layouts contain rows and
columns, defining a set of cells. A cell can be empty or contain any of various fields and controls.

The following picture shows several types of layouts. Different layouts arrange Ul elements in different
fashions. A column layout arranges items in a set number of columns. A dynamic layout arranges items
in a flexible form that automatically adjusts to screen size. To display a collection of data that belongs
to a page list or a page group, you can use a repeating layout.

Section

Layout

L]
13

- -
Senart Repeating

Structurally, a section consists of one or more layouts and embedded sections. The following image
shows a section displaying healthcare coverage for employees. Inside the section is a dynamic layout at
the top that contains a read-only text and a check box. Below the dynamic layout, a section defined in
another class is included. This included section contains a dynamic layout that displays the coverage
plan information.

306
©2017 Pegasystems

Select your insurance plan from the list below, or elect to waive coverage.

I Waive dental coverage

Section Include [TGB-HR-Data-HR Plan Healthcare Benefif]

Plan name*

Description

Employee Cost
EmployeeCost

The most commonly used layout in building sections is the dynamic layout because it enables a highly
flexible display of Ul content. In a dynamic layout, the item arrangement can be one of two types: inline
or inline-grid. The inline arrangement displays items in a row like words in a sentence. The inline-grid
arrangement displays items in a multi-column grid. The inline-grid with one column is equivalent to a
staked format.

n[]2psum[|3 Dolor[

Inline

- Lorem[] 2 fpsum[]

Inline-grid {multi-column) 3Dolor[] 4St[]

1. Lorem | |

Inline-grid (1 column)

2. lpsum | |

Several formats of dynamic layout styles are available, including Default, Stacked, Inline, Inline-grid
double, and Inline-grid triple. You can modify and create additional formats. Changing the format
automatically affects all sections using that format.

307
©2017 Pegasystems

How to build a section

To build a section, you first select a layout type to give the section a skeletal structure. Then, you
populate the cells of the layout with elements such as properties, controls, other layouts, or other
sections.

In the Design tab of a Section rule, the toolbar provides various action icons to perform edit operations
such as cut, copy, paste, add/delete rows or columns, and merge rows or columns. The control groups
(Layout, Basic, and Advanced) contain Ul elements you can drag and drop to construct the section.

The Layout group provides various structural elements for organizing Ul content.

Layout

Section

mm_ ;. LayoutGroup

D Tab

Accordion

Dynamic Container

The Basic and Advanced groups list all the controls that you can use to present application data.

Check Box I wenu

Radio Buttons

Basic Advanced
Text [Label =—— Paragraph
Formatted Text E Autocomplete
E Text Input E Smart Label
=| TextArea List To List
*A| lcon/Image d‘ Chart
Button n— -
@ L.JF Data Field
M abc
M™e

J
o
2l
+

308
©2017 Pegasystems

Creating a dynamic layout in a section

A dynamic layout arranges items in a flexible form that automatically adjusts to screen size. This is
useful when your application my be accessed from computers, laptops, tables, or mobile devices.

Follow these steps to create a dynamic layout in a section:

In the Design tab of a section, click the Layout group and select Layout.

Drag and drop the layout to the desired position in the design area.

On theSet layout type dialog, select Dynamic Layout.

Click OK. The dynamic layout displays in the section.

Click the configuration gear icon to open the Dynamic layout properties panel.

Configure settings for the dynamic layout in the General, Presentation, and Actions tabs.

N o u ok~ w N~

Click Save to save your changes.

To inspect the structure of the section, click Show wireframes at the left of the tool bar. The
wireframes display the names of rules referenced and the relationships of elements in the section.

Design Settings ~ Parameters Pages & Classes HTML History

= X A & m . 2 = If B! (1 2l B [T Layout ™ Basic ¥ Advanced Vv
Select your insurance plan from the list below, or elect to waive coverage.

Waive dental coverage

309
©2017 Pegasystems

Creating a repeating layout in a section

When you want to display a collection of data that belongs to a page list or a page group, you use a
repeating layout.

Follow these steps to create a repeating layout in a section:
1. In the Design tab of a section, click the Layoutgroup and select Layout.
2. Drag and drop the layout to the desired position in the design area.

3. On the Set layout type dialog, select Repeating Layout. Choose one of the following repeating
layout types from the Repeating Layout drop-down.

Select... to present...

Grid items in a spreadsheet format.

Tree in a tree format that enables users to expand and collapse branches to find
entries of interest.

Tree Grid a tree navigation control in combination with a grid display of items.

Dynamic each item from the source in the dynamic layout format specified in the skin.

Column each item from the source in vertical columns, typically with labels in the left

most column.
Tabbed each item from the source as a tab, typically with labels in the tab button.

Click OK. The repeating layout of the selected type displays in the section.

4. Click the configuration gear icon to open the Dynamic layout properties panel. Configure
settings for the dynamic layout in the General, Presentation, and Actionstabs.

For a repeating layout, you need to specify the data source in the General tab. The data source can
be a Property, list-type Data Page, or a Report Definition. The following image shows the
configuration for a grid repeating layout with data provided from a property named Courses.

Data Source

Source Froperty

List/Group Lourses
Grid
sUmmary

310
©2017 Pegasystems

How to build sections for reuse

When designing a section, ensure that the section contains enough useful information but is small
enough to be reusable. If a section is packed with so much functionality that the section can only be
used for a particular use case, then consider separating it into smaller sections. Reconstruct the
section to render the same amount of information by embedding the smaller sections inside.

You can convert a layout into a section so that the layout can be reused in other harnesses, sections, or
flow actions. Simply click the Save as Section icon, displayed in the following healthcare coverage
section example.

Dynamic Layout (Defaulf)- 1 &

Save As Section
C 1] .

Select your insurance plan from t elect to waive coverage.

Waive medical coverage

Dynamic Layout (Defaulf)- 1

Plan name =

Whenever possible, collocate sections with data classes. A section displaying property content should
be defined in the class where the properties are located. Collocating sections and data classes makes
sections available for reference wherever data class instances are used.

In the above healthcare coverage section example, the section is defined on a work class for benefits
enrollment. The work class has an embedded page containing information about a specific healthcare
plan. The embedded page is of a data class named HRPlan. The portion of the screen displaying plan
information is defined in a section that belongs to the data class HRPlan, instead of the work class, as
indicated by the section include of HealthcareBenefit.

With the section HealthcareBenefit defined on the data class HRPlan, you can use the section anywhere
the data class is referenced during the work processing. You can do this whether the section is an
editable data entry form for employee benefit enrollment or read-only display for HR review. Any
changes you make to the data class Ul section automatically propagate to wherever the section is used.

311
©2017 Pegasystems

Live Ul

To examine and edit the rule structure of your user interface designs, use the Live Ultool. This tool lets
you examine Ul rules and elements such as sections, controls, or layouts that you used to build the
form. LiveUl also allows you to locate properties that use declarative values. Rather than examine the
rules individually in Designer Studio, use Live Ul to view the form as users see the form. Live Ul lets you
review how all the rules and elements fit together.

You can use Live Ul to do the following:

o Quickly identify and open a Ul rule

« Change the presentation of a layout or a field
« Add or delete elements

« Move elements within the structure

312
©2017 Pegasystems

How to use Live Ul

The Live Ul tool is located on the bottom of a user form. Click the Live Ul icon to start the tool. When you
start Live Ul, a panel on the right side of the form displays the hierarchy of elements in a tree.
arness - pyCaseManager?
1 panel - pyPortalHeader

=d Text - pyRecordID

1 cell - pyRecentWorkContent

You can select an element in the tree to highlight the element on the form. You can also select an
element on the form to show where the element is located in the hierarchy.

To relocate elements on the form, select it in the tree and drag and drop it onto the new location.

KNOWLEDGE CHECK

R Where and how do you start the Live Ul tool?

The Live Ul tool is located at the bottom of a user form. Start the tool by clicking the Live Ul icon.

313
©2017 Pegasystems

Using Live Ul

The following examples show you how to use Live Ul to:
« Identify Ul rules and change their position on a form.
« Add or delete Ul rules.

» Locate properties that use declarative values.

Identifying a Ul rule

In the following example, assume you want to identify and examine the section in the harness action
area named pyCaseActionArea.

Follow these steps to find the section in the user form:
1. In the user portal, open the user form.

2. Start Live Ul by clicking the Live Ul icon.

3. On the user form, hover the mouse pointer over the section you want to review. Note that the
section is also highlighted in the hierarchy tree.

L e,y Complete stage «/ L= @ arness - pyCaseManager7
nanel - pyPortalHeader
Collect Personal Lietails o Administrator Section in panel - pyPortalNav

=| - pyPortalContent

N ©
Position applied for#* 1clude - non-auto generated

Select... arness - Perform

LIFormer employee Section - pyCaseContainerWithWarning
Candidate clude - pyCaseContainer
1clude - pyCaseHeader
First Name S 1 include - pzShowAssignmentPageErrors
ude - pyCaseBody
Last Narne o Dynamic Column Layout
zam | :
55M Section in cell - pyCaseContent
pyDisplayStages
Ema = - pyCaseMessage
pyCaseActionArea
Bhons :

Changing the position of a Ul rule

In the following example, assume you want to change the position of a check box control on a form.

1. Start Live Ul by clicking the Live Ul icon.

314
©2017 Pegasystems

2. In the tree, click the control you want to move. Notice the control highlights on form and in the tree.
In this example, you want to relocate the Former employee check box below the Position applied
for drop-down control so that the check box is above the drop-down control.

3. In the tree, select the control you want to move, then drag and drop it onto the new location. In this
example, you move the check box so it is located above Dropdown-PositionAppliedFor as shown
below.

Section include - pyDisplayStages
Collect Personal Details o Administrator) SRR
Section include - pyCaseMessage

e - pyCaseActionArea

CJFormer employee

POt appiea or =

Select...
Candidate

- Nnon-auto generated
First Name " E

- Non-auto generated
Last Name

- non-auto generated

- CollectPersonalDetails 0
55M

Section - CollectPersonalDetails_0

Ema =
Phone

1clude - CollectPersonalDets

Adding or deleting Ul rules

To add or delete a Ul rule, do the following:

1. Select an item in the tree or on the form and click the slide-out icon to open the configuration
menu.

2. In the menu do either of the following:
a. Select Before or After to add an item.

b. Select Delete to delete the item.

315
©2017 Pegasystems

© Text Input - O=

Properties

Before After

Delete

Locate declarative properties

Declarative items are listed with a "D" next to the element's name in the tree as shown in the following
example.
- a2leciMeqicalr.overage_u

1clude - HealthcareBenefit

Boreny- - ©=)

Clicking the is calculated declaratively link on the Info icon popup menu opens the declarative
network display.

C i°l
- - - - A A = e

ment Type - Cell

“_ontrol - Currency

operty - TotalBenefitCost

is calculated declaratively

For more information about using Live Ul, see the PDN article Using the Live Ul tool.

316
©2017 Pegasystems

https://pdn.pega.com/using-live-ui-tool

Guidelines for designing user forms

When designing and building a business application, remember that the user interface (Ul) is the end
users' view of the application. To be effective, the application Ul must meet the needs of the end users,
and be easy to use.

A well-designed application Ul provides end users with a better understanding of what the application
is intended to deliver. A good application Ul provides the right functionality at the right time to the
right people.

Consider the following guidelines when planning the application UL.

Design an intent-driven Ul

This consideration is about providing end users the necessary information when they need it. An
intent-driven Ul is a screen where the end users have no problem understanding what they need to
do.

'Shopping Cart

Price Quantity
! ATllfﬁthera Mechanism 1959 00
Delete Save for later
Rosetta Stone 449.00
Free shipping
E Delete Save for later
Subtotal (2 items) 7708.00

For example, the form used to review a shopping cart for an online order should only display the
relevant information such as the items to purchase, the quantity, and the price of each item. The form
should not contain information for options such as making changes to the billing address. Changing
the billing address is not relevant when reviewing a shopping cart. Making such changes could distract
the user from the task at hand.

By focusing on the intent at any one step in the case life cycle, business users spend less time
searching for the relevant information, thereby becoming more productive.

317
©2017 Pegasystems

Design a model-driven Ul

The user interface should be model-driven. This means that Ul forms are tightly coupled with the
business process.

1. New 2 Review 3. Underwriting

Complete Loan Ap.. Review Loan Applic Underwrite Loan
1. Enter Credit History 1. Review Loan Reque. 1. Verify Financial Inf...
2. Enter Loan Details m 2. Motify Customer 2 Complete Appraisal
3. Enter Co-Signer De... 3. Conduct Title Search

The business process determines which user interface is rendered at each step in the process. A
model-driven Ul has several benefits, including speedier application development, a Ul that is
contextually sensitive to the type of business process you are mapping out, and a Ul that responds
rapidly to changes in business rules.

Keep the Ul simple and obvious

The best interfaces are almost invisible to the end user. Avoid unnecessary elements and use
meaningful labels that clearly describe the information the business user is working with.

Loan Details

=
[

Lo | o i

Minimize data elements on the screen to an optimal set that is critical to the intent-driven task.

Focus on what the end users are trying to accomplish. Be aware of where end users are in the process
of achieving their tasks — and what the next preferred action is. End users should not have to guess
how to proceed while looking at a screen.

Use common Ul labels and elements

By using common labels and elements in the application Ul, end users feel more comfortable and can
get things done more quickly.

318
©2017 Pegasystems

L

Shopping Cart

Piice Ciiantily
Antiloythgra Mechanizm
TSR,
=] o
é Rosetta Stone LET.00
Subrotal {2 items) TH03.00

Continue Shopping

Checkout (2 items)

- Antikythera Mechanism
g Rosetts Stane

Price

T255.00

L4700

Subtotal (2 ivems)

Continue Shopping

Quantity

TT08, 00

Create patterns in language, layout, and design to help end users complete their tasks. Once end users
learn how to do something, they should be able to transfer that skill to other parts of the application.

319

©2017 Pegasystems

Reusing text with paragraph rules

Introduction to Reusing Text with Paragraph
Rules

Paragraphs enable you to create reusable text pieces that can be used in several different rule types.
For example, you might want to add instructions for the user filling out a form. If the instructions are
defined as paragraphs, those instructions can be reused in other forms or in emails sent by your

application.
After this lesson, you should be able to:

« Ildentify opportunities for using paragraphs.
« Explain the purpose of paragraphs.

« Configure paragraphs.

» Reuse text with a paragraphs.

320
©2017 Pegasystems

Paragraph rules

To minimize the amount of training that users need to become productive with an application, you
want to add instructions to forms. You also want to notify users of pending assignments with
instructions on what they are expected to do. You can write static text, such as instructions, directly
into the Ul and the notification.

Defining static text in paragraph rules allows you to reuse the text across your application. For
example, you can create a paragraph with an instruction and add that paragraph to the form. The
same paragraph can be reused in correspondence.

- Paragraph Rule ~
Lorem ipsum dolor sit amet
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nec hoc
ille non vidit, sed verborum magnificentia est et gloria delectatus.

Sed potestne rerum maior esse dissensio? Ne in odium veniam, si
amicum destitero tueri.

Hi,
calling | Lorem ipsum dolor sit amet
paragraph rule Lorem ipsum dolor sit amet, consectetur adipiscing elit.
in email Nec hoc ille non vidit, sed verborum magnificentia est et

gloria delectatus. Sed potestne rerum maior esse
dissensio? Ne in odium veniam, si amicum destitero tueri.

"

Lorem ipsum dolor sit amet

Lorem ipsum dolor sit amet, consectetur
ille mon vidit, sed verborum magnificentia
Sed pOtestne rerum maior esse dissensio?
amicum destitero tueri,

calling
paragraph rule

In addition to reuse, paragraph rules provide the following benefits:
« Paragraphs can convey entire sentences or paragraphs.

« Paragraphs support rich texts including images and links.

321
©2017 Pegasystems

« Paragraphs can include property references. For example, you can include a customer's name in a
paragraph.

The paragraph rule form

Paragraphs are available under the user interface category. Use the paragraph tab to define the
content and appearance of your paragraph. The source button allows you to switch to the HTML source
code. Use the pages and classes tab to identify any clipboard pages from which you want to include
property references.

Para gra ph Pages & Classes Histury

B I U Font - size - A- B = = T, :E % B @ (W
E = = = % M E [Bsoute X, x & 2 [E [E

Check if married filing jointly
(even if onfy one had income)

322
©2017 Pegasystems

Reusing text with paragraph rules

This procedure shows you how to create, reference, and use properties with paragraph rules. In the
purchase application, you want to help users place the order. You create a paragraph containing the
phone number and email of the hotline. The paragraph can then be reused where needed.

Create a paragraph

Follow these steps to create a paragraph:

1. In the User Interface category, select Paragraph.

@ MyCo-Purchasing-Work

Application Definition

View > | Data Model

Introduced H

Definition Decision

Inheritance Integration-Connectors

Introduced

Create proparties Integration-Mapping

Refactor Integration-Resources

Refresh Integration-5Services

Refresh all Organization

Pega Tas

Process

Pinned classes Reports
Security No tasks assi

SysAdmin

Technical
Guided Tour
Harness

Mavigation
Portal

Section

Skin

2. In the Label field, enter a name for your paragraph. Click Create and open.

323
©2017 Pegasystems

Create and open Cancel

Create Paragraph

Paragraph Record Configuration
Label* Identifier
Hotline contact details HotlineContactDetails Edit
A short description or ttle for this record
Context
Development branch
[Mo branch] v
* Purchasing Apply to* Add to ruleset*
PegaRULES MyCo-Purchasing-Work Purchasing ¥ 01-01-01 ¥
View al
Enter your text on the Paragraph tab.
Paragraph Pages & Classes History
B I U Font - Size - A- @ £ 12 L = « B @ @
E = = E B B L [o5ouce x, x = bl P R = . =
Please get in touch with us if you need help with your purchase request.
Phone: 0800 1111 2222
Email: helpi@myco.com

Referencing a paragraph

Paragraphs can be inserted in sections, harnesses, and within other paragraph rules. This allows you
to create reusable building blocks of text. In the advanced menu, select Paragraph to include a

paragraph in a section or harness.

324
©2017 Pegasystems

Layout » Basic % Advanced v
[—_ Paragraph]
E Autocomplete

E Smart Label

List To List
"‘ Chart

When you include a paragraph within another paragraph or in a correspondence, insert a rule and
select Rule-HTML-Paragraph.

Include a Rule
Type
Rule-HTML-Paragraph

Name

HotlineContactDetails

= c
lUzing Page

When

Cancel

Inserting a property

Instead of hard-coding the phone and email numbers, you can reference properties holding the
values. By referencing properties, you can define the values in a central point.

Click Insert property to specify the parameters for the property you want to insert.

325
©2017 Pegasystems

Property Parameters

MName
HotlinePhone

Format

Cancel

The values of the properties specified are displayed in the paragraph.

Paragraph Pages & Classes History

=

Font - Size - A-B- 2 = I, <E E &« DoEE E

w
by
c

C X B s

L BB GEd [Source X, X &

Please get in touch with us if you need help with your purchase request.

Phone: << HotlinePhone>>
Email: << HotlineEmail=>

326
©2017 Pegasystems

Configuring responsive Ul behavior

Introduction to Configuring Responsive Ul
Behavior

Ever-increasing popularity of mobile devices puts high demands on user interface (Ul) design.
Applications can no longer restrict themselves to desktop computers. Applications must run on tablets

and smart phones as well.

A responsive Ul adapts an application to diverse screen resolutions and sizes. Responsive Ul allows
developers to create an optimal user experience regardless of the device.

After this lesson, you should be able to:

« Explain the benefits of a responsive Ul.

« Explain the role of skin in Ul design.

« Explain how a responsive Ul adapts to different display configurations.

» Configure responsive behavior for layouts.

327
©2017 Pegasystems

Responsive user interface

People expect to be able to access applications at any time, not only in the office. Some days a business
person might sit at a desk and enter her expense report on her desktop. Other days, she may use her
smart phone to enter an expense report while waiting at the airport.

You need to account for variations in how users will access an application when designing
applications. Some application development environments require you to create an application for
every device so that the Ul renders correctly.

With Pega, you create a single application with a responsive user interface (Ul) that adapts to multiple
devices. A Responsive Ul enables a layout to automatically adjust to rendering devices. Elements can
move around, resize, or completely disappear depending on the resolution and size of a screen.

There are many benefits of a Responsive Ul. You should design applications with a Responsive Ul for
the following reasons:

« The layout adapts according to the screen size, and the majority of the application is the same
across all devices. Consistent Ul behavior across devices results in a consistent user experience,
easier adoption, faster learning, and fewer errors.

« A Responsive Ul leads to lower maintenance costs and easier management. Instead of creating
different layouts for smart phones, tablets, and wide-screen desktops, developers configure a single
form to automatically adjust to different screen sizes.

« With a single code set, a Responsive Ul provides an optimal user experience on different devices.
While one user accesses an application on a desktop computer in the office, another user can use a
mobile device during a business trip. This increased accessibility enables an application to reach a
wider user base.

328
©2017 Pegasystems

Presentation layer and Ul skins
In Pega Ul, a separation between content and presentation exists. The content layer contains data and
structural elements such as sections, layouts, and individual controls. The presentation layer consists
of Skin rules. A SKinrule specifies the visual styling as well as the responsive behavior of the Ul.

In a Skin rule, you define style formats that can be applied to Ul elements in a section. A style format
specifies a group of styling attributes such as typography, borders, backgrounds, placement, and

alignment.

|

|

Formats Simple links Strong links
in Skin ‘ ‘
Controls [J .

. - | My Link My Link
in Section y J

You can define style formats for Ul controls like buttons and links. You can also define style formats for
structural elements like layouts. The layout formats contain configurations for responsive behavior.

329
©2017 Pegasystems

How to trigger responsive behavior with
responsive breakpoints

You build Pega Ul with sections. In each section, you arrange the Ul elements by placing them inside
layouts. Many layouts in Pega 7 -- such as screen layouts, dynamic layouts, and column layouts --
support configuration of responsive behavior.

For example, you can configure a dynamic layout to arrange Ul elements in different formats at
different screen sizes. With dynamic layout configured, the layout arranges content into a double
column on a screen wider than 768 pixels. On a screen narrower than 768 pixels wide the layout
arranges its content in a vertical stack. The screen size thresholds that trigger different Ul behaviors
are called responsive breakpoints. You configure these breakpoints in the layout formats defined in
the skin.

(<) 2 3

I : | . |
I 5 | | e |

Responsive behavior has different meanings in the context of different layouts. When screen size
narrows down, a dynamic layout may change from inline-grid-triple to inline-grid-double, and from
inline-grid-double to stacked. Meanwhile, a repeating grid layout may drop certain columns from the
grid to avoid horizontal scrolling. Refer to the product document when configuring responsive
breakpoints for different layout types.

330
©2017 Pegasystems

How to style applications with Ul skins

A Ul skin defines the presentation layer of an application. You can associate a Skin rule with an
application or with a portal. The following image shows the skin reference in an Application rule.

Edit Application: HR Delete
HF = 01.01.01 HR [Edit]
Definition Cases &data Mobile Documentation Integration & security Histary
Built on application(s) Presentation
(3 Add applicatior Shin HR 4
Mame Yarsion

W Render in HTMLS
1 PegaRULES P 07.10 y

Application rulesets

Current development branches = Add |
+)Add ru 4

The presentation configuration is defined in a Skin rule, in the form of style formats for Ul components.
In this example, the skin specifies a list of dynamic layout style formats such as Default, Stacked, and

Inline.

Edit Skin: HR [Final. Internal]

HR HR-01-01-01

Component styles Mixins ~ Base settings Included styles Inheritance History

Dynamic layouts [+

FORMATS INLINE GRID DOWBLE in pyEr £ ™ Inline grid double
F Inherived First name
e Ta custamize this format, override itinto your formats.
Default Address
Stacked Layout Settings Srare
Inliree >
et Preferences

Inline grid double 1000 % :l
Inliree grid triple i

Ml

Inling grid dowile

Indiree middle pE W
Portal header group primary Al Widgh
w|laht
Stacked with labels left px [v]
1em arrangerment
Simple kst Inline-grid

For a style format to take effect, you need to apply the format to a Ul element. In the above example,
one of the style formats defined in the skin is named Inline grid double. To apply this format to a
dynamic layout, you reference it from the layout configuration in a section.

331
©2017 Pegasystems

Dynamic layout properties X

General Presentation Actions
Layout format
Stacked

Container format Inline

Inline grid double {5
Inline grid triple
Visibility Other

Refresh condition

[| Defer load contents

[| Display header and title

Skin inheritance allows a dependent skin to inherit formats from a parent skin. When a format on the
parent skin is modified, the dependent skin automatically inherits those changes unless the format is
overridden in the dependent skin.

332
©2017 Pegasystems

Configuring responsive breakpoints on a
dynamic layout format

To configure responsive behavior for a dynamic layout, you need to first add and configure responsive
breakpoints on a dynamic layout format. Then, you apply this format to the dynamic layout in a section.

Follow these steps to add and configure responsive breakpoints on a dynamic layout format:

1. To open the skin of the application, select Open Application Skin from the Application menu in the
Designer Studio.

If the style format you want to configure is defined in the parent of the application skin, then open
the parent skin from the Inheritancetab.

On the Component Styles tab, select Dynamic layouts from the component drop-down.
Select the style format you want to configure in the My Formats column.

In the Responsive breakpoints section, check the Enable support for responsive breakpoints.

oA~ N

Configure Breakpoint1. Select the format the dynamic layout should use when rendering at the
dimensions specified for this breakpoint. Specify the screen dimension for this breakpoint:

max-width The maximum width at which the dynamic layout will display in the format you
specified for this breakpoint.

min-width The minimum width at which the dynamic layout will display in the format you
specified for this breakpoint. Leave min-width empty when a range is not desired.

6. Click Add breakpoint to add another responsive breakpoint.

7. Save the change.

Applying the dynamic layout format

To apply the style format to a dynamic layout in a section:
1. Open the configuration panel for a dynamic layout in a section rule.

2. From the Layout format drop-down on the General tab, select the dynamic layout format that you
just configured.

3. Save the change.

333
©2017 Pegasystems

Designing a dynamic Ul

Introduction to Desighing a Dynamic Ul

A simple and focused user interface (Ul) is immediately intuitive — users know exactly what to do, so
they do not need to guess. Building a dynamic Ul is a key component of that simplicity.

A dynamic Ul predicts the intention of the user and adjusts the application display to the user context.
The purpose of a dynamic Ul is to provide the user with the correct functionality at the correct time. A
dynamic Ul efficiently guides the user toward task completion.

After this lesson, you should be able to:
« Describe how a dynamic Ul works.
« Configure Visible When conditions to hide/show Ul elements.

« Configure action sets for Ul interaction.

334
©2017 Pegasystems

Dynamic user interface behavior

In a dynamic user interface (Ul), the Ul content changes based on a user's interaction with the content.
These changes reduce the Ul to the fields essential for the user to maximize efficiency.

While enrolling for a new mobile phone plan, customers may be asked if they are married and if they
have any children. If the answer is yes, the system knows to ask if they are interested in enrolling for a
family plan. The system can then collect personal information for each of their dependents before
moving on to the next question. For single customers with no children, the system skips the family plan
section of the sign-up form and displays the next step, saving customers time and effort.

Borrower Information Borrower Information

First Mame Last Name First Name Last Mame

Marital Status @ Single Married Marital Status Single (@) Married

Partner Information

First Name Last Name

Using a dynamic Ul has many benefits, including the following:

« Real-time response to end-user behavior

« Robust functionality available for most user interactions

» Reduced visual clutter on the screen

« Fewer full page refreshes, resulting in improved Ul responsiveness

These benefits lead to a more compelling, modern user experience.

Event-action model

When designing a dynamic Ul, you are using an event-action model in the browser-based application.
Think of event and action as a cause-and-effect pair. An event is performed by a user that triggers
changes on the Ul. These changes are the action.

During online shopping checkout, users enter the shipping and billing addresses in sequence. After
providing the shipping address, users click a check box labeled use same address for billing. The
section for the billing address then disappears. In this case, clicking the check box is the event, and
hiding the billing address section is the resulting action.

Two types of events exist — property-based events and user events.

335
©2017 Pegasystems

« Property-based events occur either when a data value changes or when a value meets a specific
criteria.

» Auser event occurs when an end user takes some action on the page such as selecting an option or
clicking on a link.

Event = something happens | Action =something changes

User action event

Display partner information section
Marital Status: _ single ® Married

Categorizing events into two types simplifies the event-action concept. In practice, these two event
types often overlap. For example, when a user clicks a button (a user event), the action is to set a value
on a property. That action then triggers a property change event.

336
©2017 Pegasystems

Hiding and showing Ul elements

Controlling the fields displayed on screen removes irrelevant elements, and that can simplify the UL.
You use visible when conditions to hide or display data fields based on a value entered by the user.

In the following example, users enter marital status in a form. Depending on the value entered in the
Marital Status field, additional fields may be displayed on the screen.

If the user selects Single, no additional input is required.

[¥I0 g

Marital St:

O

Linda Brown Single ¥

If the user selects Married, the Date of Marriageand Name of Spouse fields are displayed.

——— b= it - R Name Of Spouse
JalTie vigrital S2Tatuz Dale U Warriage Nallle U 2DoUSE

Sarah Jones Married 4/30/2010 B | Michael Jones

If the user selects Divorced, the Date of Divorce field is displayed.

P - — e Hf T - 4 — M-+ — i P —
Nalme Jarital Status Date Of Divorece

Sue Smith Divorced ¥ ||3/25/2013 =

In the above example, visible when conditions use the Marital Status value to determine when the
Date of Marriage, Name of Spouse, and Date of Divorce fields are displayed.

Configuration options for visible when conditions

You can set Visible When conditions on sections included in another section, on layouts, and on cells.
The conditions are configured in the Visibility field on the General tab of the property panel.

The Visibility options are:

« Always — No visibility condition is on this field, layout, or section; the Ul element is always
displayed.

« Ifnotblank — Visible if the value of that field is not blank.
o Ifnotzero — Visible if the value of that field is not zero.

« Condition (expression) — Uses a boolean expression to determine visibility; visible when the
expression returns true.

« Condition (when rule) — Uses a when rule to determine visibility; visible if the when rule returns
true.

Layouts and sections include Always, Condition (expression), and Condition (when rule)options.

337
©2017 Pegasystems

Dynamic layout properties

General Presentation Actions

J @ {o

Layout format Inline v
Container format Mone T
Refresh condition

Visibility Always v

Condition (expression)
Condition (when rule)

Cells also include If not blank and If not zero options.

Cell Properties

Text input &) change)

General Presentation Actions

Condition (expression)

¥ IDENTIFIERS Condition (when rule)

Property
Label ¥/ Use property default Text Input
Default value
Placeholder Mone v
Tooltip
Visibility Always ¥
Disable
If not blank
Required If not zero

Additional options

There are two additional options available when you select a visible when condition.

338

©2017 Pegasystems

Visibility If not blank ﬂ

[| Reserve space when hidden

[Run visibility condition on client

The Reserve space when hidden option keeps the space surrounding the control open. This
prevents the Ul elements on the screen from repositioning when the visible content is displayed.

The Run visibility condition on clientoption is displayed when you use the If not blank, If not zero, or
Condition (expression)visibility options. When you select the Run visibility condition on clientoption,
all of the possible data that can be displayed is included in the clipboard page.

The system uses the data on the page to refresh the section when the visibility condition is met. If you
do not select this option, the page does not contain the hidden data. The client communicates with the
server to refresh the section. If the hidden content is not likely to change during case processing, select
the Run visibility condition on client option to reduce the number of server trips and avoid page
refreshes.

Configuring Visible When conditions on a Ul element

First, identify the Ul element target that you want to dynamically show and hide. Then, decide at which
level — section, layout, or field — to apply the visible when condition.

In the following example, you want to display the Date Of Marriage field only when the martial status
is set to Married. You configure the cell containing the field.

1. Open the configuration panel for the cell containing the marriage date property.

2. Click the Visibility drop-down and select Condition (expression) to control the visibility of the
marriage date property.

3. Configure the visibility expression for the marriage date property so that the expression value is
driven by the marital status value.

339
©2017 Pegasystems

General

Property
Default value
Label

Visibility

Cell Properties

Control inherited from property [change)

Presentation Actions

MarriageDate J @
| Use property default Date Of Marriage
Condition (expression) ¥ | | .MaritalStatus = "Married" J@

|| Reserve space when hidden

[l Run visibility condition on client

4. Select Run visibility condition on client.

Visibility

|| Reserve space when hidden

¥ Run visibility condition on client

Condition (expression) ¥ | .MaritalStatus = "Married" J{@“

]

5. Click Submit.

340
©2017 Pegasystems

Action sets

In addition to visible when conditions for showing or hiding fields, you use action sets to configure a
dynamic Ul. An action set consists of an event, an action, and (optionally) conditions.

o Event — A trigger performed by the user, such as clicking a button, hovering a mouse pointer over a
field, or entering a value in a grid

« Action — A response performed by the system as a result of the user event (for example, when the
user clicks a button, a case is created.)

« Conditions — Restrictions such as when rules, which can be applied to an event and action
combination (for example, you can configure conditions so that hovering over a field displays a
smart tip message only if the field contains a property value.)

For each action set, you must define at least one event and one action. You define action sets on Ul
controls and grids. You can create multiple action sets for a single control or grid.

In most cases, you define action sets on controls. Action sets are configured on the Actions tab of the
control's Cell Properties form.

Cell Properties X

Dropdown & change)

General Presentation Actions

Add another action set

Action set 1 Applicability: = Editable ¥ Delete action set
Add an event Add an action
Change Tl i Refresh-This section Tl

For grids, action sets are configured on the Actions tab of the Layout Properties form.

341
©2017 Pegasystems

Layout Properties X

General Operations Presentation Actions

@Add action set

Action set 1 (x)Delete action set
Add an event Add an action

Click Tu = Set Focus

Actionset 2 (x)Delete action set
Add an event Add an action

Up key l e Set focus

Actionset3 (x)Delete action set
Add an event Add an action

Down key] e Set focus

=2
=)

You can define multiple events and actions within an action set. The system executes the actions in the
order the actions are listed.

342
©2017 Pegasystems

Text input £ (change)
General Presentation Actions
Action set 1 Applicability: | Editable |v|
Add an event Add an action
Click E -t Refresh-This section
Enter E o= Post value
Set Focus

An event triggers an action

An insurance claims application includes a Date of loss field. You want to provide a smart tip to explain
the purpose of the field to users. Depending on how long ago the loss occurred, you also want to set a
few property values based on that date.

Provide an estimated date if unknown

To implement this behavior, you define one action set for the hover event showing the smart tip, and
another action set to run a data transform that sets the values.

343
©2017 Pegasystems

Cell Properties
General Presentation Actions

Add another action set

Action set 1 Applicability: | Both v Delete action set
| Editable |
Read-onl

Add an event Add an action y

Hover Tu] H Show smart tip]
Action set 2 Applicability: | Editable v Delete action set
Add an event Add an action

Change m| e Run data transform o}

The smart tip is displayed when the mouse hovers over the date field — regardless of whether the
field is read-only or editable — since you have set the visibility of the hover action set to Both.

When users change the value of the date field that is editable, the change event triggers a data
transform that set the property values.

Implementing action sets

The following table shows a few examples of how you might implement action sets in your Ul.

Event Action
Click a control such as button, link, or icon. Opens a new window
Double-click a row in the grid. Opens the row in edit mode
Right-click the entire grid. Shows a menu
Press the Esc key in the keyboard. Closes the assignment and returns to the home
page
Select a value from the state drop-down. Updates the list of counties
Click a check box. Unmasks the password
Enter a value in the quantity field. Calculates the total
344

©2017 Pegasystems

Configuring an action set

Configure an action set if you want a user action (such as clicking a button) to trigger an action (such as
displaying a smart tip message).

1. Open the Properties panel of a Ul control.

2. Select the Actionstab.

3. Click Create an action set. An action set section is displayed.

Cell Properties

General Presentation Actions
Action set 1 Applicability: Editable |V
Add an event Add an action

Mo items Mo items

4. Click Add an event in the left column. A menu of events is displayed.

Action set 1 Applicability: | Editable |V|
Add an event Add an action
Mouse events Keyboard events Other events
Ln:f Enter key Change
Double-click Up key Focus
Howver Down key
Right-click Left key
Right key
Esc key
Tab key
Any key

5. Select an event. The event appears in the left column.

345
©2017 Pegasystems

Action set 1 Applicability: | Editable [V|

Add an event Add an action

Click TuJ No items

6. Click Add an action in the right column. A menu of actions is displayed.

Action set 1 Applicability: | Editable ﬂ
Add an event Add an action
Click Tl)
Display: Refresh
Display: Set value

Disnlawy-
LIsp oly-

7. Select an action. The action is displayed in the right column. A section for adding information that is
relevant to the action may also be displayed, as shown in the following example.

Action set 1 Applicability: = Editable |V/|
Add an event Add an action
Click] i e Show smart tip
[Display header
Tip Source Message ﬂ
Message * 40
Format
Conditions
When Add a condition

346
©2017 Pegasystems

8. Enter the information.

Note: Use the Add an event and Add an action links to include more than one event or action in a
single action set.

9. Click Submit.

Editing or deleting action sets

To edit an action set, double-click the row.

To delete an action set, select the row and click the X.

347
©2017 Pegasystems

Validating user data

Introduction to Validating User Data

When you design a user form, you add all the fields and controls required by the specification.
However, users must enter data that use a format or contain a value the system can process correctly.
Pega provides rules that validate the data and help prevent processing errors when a form is

submitted.
After this lesson, you should be able to:

» Explain the options for ensuring valid data entry by users.

« List the type of user interface (Ul) controls that provide data validation.
« Present a dynamic list of data entry options.

» Validate user data using a validate or an edit validate rule.

348
©2017 Pegasystems

Methods of data validation

When you design a user form, you add all the fields and controls that the specification requires. You
must also consider how to ensure that the data values entered by users are valid. Valid data is
required so that the system can process the information without error.

The following list describes a few important design requirements.

« The data must be the right type. For example, a user must enter a number in a total purchase
amount field.

« The data must fit the business logic. For example, a date of birth field is usually in the past.

« The data must be restricted to possible values. For example, a user can only select a valid loan type
by selecting the type from a list of options.

To prevent processing errors, Pega provides property types, controls, and rules that support most
validation requirements.

Properties

Single value properties have property types such as date, decimal, integer, text, or true/false. Selecting
the appropriate property type ensures that users enter a valid value. For example, a purchase price
field that uses a decimal property type ensures that users can enter only numeric values and cannot
enter text.

Controls

Controls are another way you restrict users from entering or selecting invalid values on a form. For
example, when a form requires a date, using a calendar control ensures that users enter a date value.

You can also use controls to allow users to select only valid values. For example, you can use drop-
down lists or radio buttons so that users can only select the available values.

In addition to ensuring valid values, you can make fields required. This ensures that users enter a
value before they can complete an assignment.

Validation rules

You use validation rules when you cannot predict or control the value a user will enter in a form. There
are two types of validation rules: validate and edit validate.

You use validate rules to compare a property against a condition when the user submits a form. A
validate rule is typically referenced from a flow action. If the user enters a value that fails to meet the
condition, the form displays an error when the form is submitted. For example, assume your form
contains a field for date of birth. The property type and control cannot prevent users from entering a
date that is in the future. However, you can design a validate rule to display an error if the user
submits a date that is in the future.

You use edit validate rules with single value, value list, and value group properties to test for patterns.
Edit validate rules are referenced from a property rule. For example, you can configure a zip code
property to reference an edit validate rule that tests whether the entered value has five digits. In

349
©2017 Pegasystems

another example, an email address can reference an edit rule to test whether the entered value
contains an "at" (@) symbol. If the submitted value is invalid, the field displays an error. Edit validate
rules run when the user exits a field if the harness rule is configured to support client-side validation.
Otherwise, edit validate rules are run when the user submits a form.

Note: The standard harnesses provided with the Pega Platform are configured to support client-side
validation.

350
©2017 Pegasystems

Controls

Controls used on forms provide the most common approach to validation. The three most common
ways you can use controls for validation are required fields, editable settings, and control types.

Required fields — Configuring a control as a required field ensures that the user enters a value. If
there is no value, users get an error when they try to submit a form. For instance, assume you design a
form in which users enter a date of birth to qualify for a discounted auto insurance policy. You
configure the date of birth number control as a required field. If the user does not enter a date in the
field, an error message appears when the user attempts to submit the form.

Date of Birth *

Must enter date of birth

SUBMIT

The error message does not appear if there is a date in the field.

351
©2017 Pegasystems

Date of Birth *

03/31/2002

SUBMIT

Editable settings — You can use editable settings on controls to restrict the input values to valid
formats. The settings are specific to the control type. For example, you can specify the minimum and
maximum of characters allowed in a text input control. You