
Lawson Fulton (ljfulton) 20381453
Devruth Khanna (dkhanna) 20295702

System Manual !
Marshalling/Unmarshalling of Data

- This is handled in the Message class. Marshalling is handled by the “serialize” functions, while
Unmarshalling is handled by the “deserialize” functions.

- Serialize: Based on the message type (REGISTER, LOC_REQUEST, LOC_SUCCESS, EXECUTE,
EXECUTE_SUCCESS, REGISTER_SUCCESS, REGISTER_FAILURE, LOC_FAILURE,
EXECUTE_FAILURE, TERMINATE), a message is marshalled. Since different parameters depend on the
type of message, there are functions that accommodate the marshalling of strings, integers, and
ArgTypes (which specifies the input and output parameters).

Serializing of Args Array
 The args array is serialized differently depending on whether it is being sent from the client to the
server, or from the server to the client. In the client to server case, only args with corresponding arg type
including ARG_INPUT are serialized. In the server to client, only ars with arg type including
ARG_OUTPUT are serialized. This saves bandwidth as no unnecessary information is transmitted.
- Deserializing:
 Deserializing the args array on the server side is straight forward. Memory is allocated for the
appropriate variables, and the received data is copied into that memory.
 On the client side it is more complicated since args labeled as ARG_OUTPUT must have their
data copied into pre-existing memory locations on the client. This is achieved by keeping the original args
array that the client submitted, and then copying data from the deserialized array into the memory
locations listed in the original args array.

Structure of Binder Database
 Briefly, the binder database is a mapping between function signatures and sets of server
addresses that implement that function. When the binder receives a LOC_REQUEST, it can simply create
a FunctionSignature object from the provided name and argtypes. The binder can then query the
database with that signature to obtain a set of ServerInfo objects, where each ServerInfo stores the
address and port of a server process that implements the given function. !
- The Database is defined as:

std::map<FunctionSignature, std::set<ServerInfo>> database;

- The binder database is defined as a map, where the key of the map is the class FunctionSignature,
and the value is a set of ServerInfo classes.

- The FunctionSignature class defines the registered methods of the form: (char* name, int*
argTypes), where “name” defines the name of the registered method, and “argTypes” defines the types of
the input and output parameters. ServerInfo defines available servers, defined by the address and port
number.

- A map was the ideal datastructure to use, as a lookup can be done in constant time, as a map is
really a hashtable.

Lawson Fulton (ljfulton) 20381453
Devruth Khanna (dkhanna) 20295702

Handling of Function Overloading
 Function overloading was a natural result of making the database key a FunctionSignature object.
Since the < operator for the FunctionSignature class compares on the basis of function argument types,
as well as the function name.

Managing Round-Robin Scheduling
- Round robin scheduling is done in Binder::sendLookupResponse. In the database mentioned above,
which maps FunctionSignatures to a set of ServerInfo objects, there is a member variable that is a
timestamp.

- At the time that a ServerInfo object is created in the constructor, the timestamp is initialized. Whenever a
particular method is executed, its respective ServerInfo object is referenced, its timestamp is updated as
the current time. !
- Whenever there is more than one ServerInfo object registered for a method, the ServerInfo object with
the smaller timestamp value (i.e the older timestamp, which would have a smaller timestamp value),
would be executed first.

- This process of selecting the server that has gone the longest without executing a function effectively
implements the Round Robin scheduling algorithm.

Termination Procedure
 The system can be terminated in a variety of ways. First, the most straight forward way is by the
client calling rpc_terminate. This will send a termination message to the binder, which will in turn send a
termination message to all of the servers and shutdown. The servers will exit immediately upon receiving
a termination message from the binder. !
 The second way this can be accomplished is by terminating the binder directly. The servers are
continuously monitoring their connection with the binder, and upon detecting the connection closing, will
automatically terminate themselves. !
 Each server could also be terminated independently. When the binder detects that a server has
disconnected, that server is removed as a location for any functions it has registered. If it was the only
server for a given function, that function is removed entirely. !
Error Codes

- Error codes are defined in MyExceptions.h: !
CONNECTION_ERROR = -1,
 // Error connecting to a socket !
ENV_VARS_NOT_SET = -2,
 //Environment variables (Binder_Address and Binder_Port) were not set !
RECEIVE_HEADER_ERROR = -3,
 //Header of message was not received !
RECEIVE_BODY_ERROR = -4,

Lawson Fulton (ljfulton) 20381453
Devruth Khanna (dkhanna) 20295702

 //Body of message was not received !
SEND_ERROR = -5,
 //Error with sending a message !
UNKNOWN_HOST_ERROR = -6,
 //Error with trying to lookup host !
SOCKET_ERROR = -7,
 //Error in creating a socket !!
DISCONNECTION_ERROR = -8,
 //Error in trying to disconnect !
UNEXPECTED_MESSAGE_ERROR = -9,
 //Reveived an unexpected message !
SERVER_FUNCTION_NOT_FOUND = -10,
 //Errror - Specified server function is not specified/registered !
BINDER_FUNCTION_NOT_FOUND = -11,
 // Error - binder function not found !
RUNTIME_LOGIC_ERROR = -99999;
 //Never occurs in normal execution, specifies inconsistent program state.

