
Nathan	White
Aron	Kageza
Hanquing	Guo

20180424
Rev	1.0

CS690	Buzzwords	System	Manual:

Introduction:

CS690	Buzzwords	is	a	digital	emulation	of	the	game	Taboo.	It	makes	use	of	a	highly	decoupled
frontend/backend	architecture	and	leverages	the	strengths	of	websockets	to	provide	a	real-
time,	multi-client,	user	experience.	It	has	been	implemented	in	Python3	using	the	Flask
framework	for	backend	functionality	and	ECS6	with	the	Angualr1	framework	for	the	frontend
functionality.	UI	functionality,	style,	and	animations	were	provided	by	the	excellent	Angular
material	design	library	in	conjunction	with	angular-animate.

Hardware	&	System	Requirements:

The	application	has	been	implemented	as	a	web	application,	consequently,	a	network
connected	server	is	necessary.	The	server	should	have	at	least	1	CPU	and	4GB	RAM.	The
system	requires	a	linux	based	operating	system,	but	should	be	relatively	straight	forward	to
adapt	to	a	windows	environment.

Functionality

The	application	presents	first	time	users	with	a	simple	dialog	and	asks	them	to	log	in,
establishing	a	user	name	and	password.	On	the	menu	screen,	a	user	can	decide	to	join	an
existing	game	that	shows	up	in	the	menu,	or	create	a	new	game.	Once	a	user	has
joined/created	a	game,	and	a	game	reaches	a	valid	state,	the	game	flow	will	begin	and	each
player	will	be	selected	for	a	particular	role	in	a	given	turn.	Each	turn,	a	new	team	is	selected	to
be	"on	deck"	and	a	player	from	that	team	is	selected	to	be	the	teller.	A	player	from	one	of	the
other	team	is	selected	to	be	a	moderator	and	all	other	players	are	assigned	as	observers	or
guessers	depending	on	the	team	that	is	"on	deck"	or	the	turn	modifier	that	has	been	assigned
for	a	particular	turn.	Once	a	certain	number	of	points	has	been	achieved	by	a	team,	the	game
will	conclude,	showing	scores	and	allowing	players	to	return	to	the	main	menu.

How	to	use	this	document:

The	following	document	explains	aspects	of	the	setup	and	use	of	our	program.	The	following

document	should	not	be	consumed	all	at	once,	but	referenced	based	on	intended	use.

The	Project:

The	following	section	describes	the	project	development,	the	tools,	subsystems,	languages,
and	environments	that	were	used	in	the	development	of	the	project.	It	also	includes	some
architectural	information	in	the	section	called	Subsystems.

Subsystems:

Frontend:

The	frontend	subsystem	includes	all	of	the	UI	components	of	the	application.

Backend:

The	backend	subsystem	includes	the	database,	game	model,	and	necessary	communications
software	to	implement	the	interface	with	game	clients.

Languages	and	Tools:

Languages:

Python3
Javascript	-	ECS6

Frameworks:

Angular1
Flask/flask-socketio

Key	Modules:

Flask-socketIO	(backend)
Socketio-client	(backend)
CORS	(backend)
socket.io-client
angular-socket-io
winwheel
angular-ui-router
angular-local-storage

Text	Editor:

https://flask-socketio.readthedocs.io/en/latest/
https://github.com/invisibleroads/socketIO-client
http://flask-cors.readthedocs.io/en/latest/
https://github.com/socketio/socket.io-client
https://github.com/btford/angular-socket-io
https://github.com/zarocknz/javascript-winwheel
https://github.com/angular-ui/ui-router
https://github.com/grevory/angular-local-storage

Atom

Databases:

With	regard	to	databases,	the	project	has	been	configured	to	be	very	flexible.	When	running	in
dev	mode	a	sqlite	database	will	be	created	with	a	pre-generated	schema	in	place	in
	./backend/db/		(assuming	you	are	currently	at	project	root).	By	default	this	database	is	called
	dev.sqlite	.	Details	of	this	configuration	can	be	seen	in		./backend/settings.py	.	For	a
production	environment,	a	suggested	MySQL	configuration	has	been	included	in	the	file
	production_settings.py		located	in		./backend/	.	Assuming	the	environment	variable	is
properly	set	up	and	it	points	at	this	file,	any	settings	which	conflict	with		settings.py		will	cause
the	settings	to	be	overridden	with	the	production	settings.	Consequently,	the	MySQL	will	be
used	as	the	db	for	the	applicationn.	See		./backend/run		for	the	code	that	handles	importing
settings	from	the	path	pointed	to	by	the	environment	variable.	(TODO:	implement	this
functionality)

Interfaces:

The	frontend/backend	subsystems	make	use	of	websockets	for	their	communication.	The
websocket	protocol	enables	persistent,	full	duplex	communication	between	server	and	clients.
This	makes	it	simple	to	pass	real	time	events	from	clients	to	the	server	and	back	again	as	is
natural	in	a	game	environment.

For	the	development	and	deployment	of	the	application	we	made	use	of	python	virtual
environments.	This	makes	it	easy	to	ensure	that	your	application's	environment	is	both	portable
and	stable.

Development	Environment	Setup:

In	the	root	level	of	the	project	there	should	be	a	file	called	requirements.txt	this	contains	the
python	packages	that	are	necessary	to	get	the	backend	up	and	running.	To	install	the	packages
set	up	a	virtual	environment	for	the	buzzwords	project.	To	make	this	really	slick,	use	virtualenv
wrapper.

Initialize	env:
(Assuming	virtualenvwrapper)

$	mkvirtualenv	buzzwords		--python=python3

$	cd	./buzzwords/

$	pip3	install	-r	requirements.txt

https://gist.github.com/Geoyi/d9fab4f609e9f75941946be45000632b
http://virtualenvwrapper.readthedocs.io/en/latest/install.html

As	part	of	this	installation	a	package	called	nodeenv	will	be	installed.	This	package	makes	it
possible	to	virtualize	the	node	environment	inside	of	the	virtualenv.	
Add	a	nodeenv:

$	nodeenv	-p

Then	setup	necessary	packages:

$	pwd

.../buzzwords/

$	cd	frontend

$	npm	i

#	wait	for	a	while

$	bower	i

#	wait	a	while	longer

Following	the	above	procedure	should	setup	the	necessary	environment	for	development	work.

Running	in	Development	Mode:

In	the	virtualenv	for	buzzwords,	verify	that	run	is	executable,	then:

$	pwd

.../backend/

./run

When	this	executes	a	new	application	will	be	started	with	the	configuration	specified	in
./backend/settings.py.
Flask	should	spin	up	and	a	socketio	server	should	now	be	listening	on	port	5000	(default	port.
see	settings.py).	At	the	time	of	the	writing	of	this	document	there	were	no	command	line	flags
that	could	be	passed	to	the	./run	command,	though	it	might	be	nice	to	be	able	to	tweak	certain
aspects	of	the	program's	execution	using	flags	in	the	future.

Production	Environment	Setup:

Frontend:

In	order	to	set	up	the	application	for	execution	in	a	production	environment,	the	front	end	files
and	all	necessary	resources	should	be	available	in	some	statically	accessible	web	directory.

Note:	to	get	the	frontend	to	properly	reference	the	socket	server,	it	is	necessary	to	point	the
socketio-angular	client	at	the	backend.	Consult	the	constant		socketIOConfig		in
	frontend/app/scripts/app.js		to	set	the	host	and	the	port.	This	should	probably	be
moved	into	some	sort	of	a	deployment	procedure.

Backend:

A	file	called	serve.py	has	been	built	for	the	purpose	of	running	the	server	in	a	production
environment.	This	will	allow	the	use	of	gunicorn.	From		./backend		run	the	following:

	gunicorn	--worker-class	eventlet	-w	1	serve:app

Alternately,	if	you	want	to	get	something	up	temporarily,	you	should	still	be	able	to	use		./run	
just	be	sure	to	update	the	ip	address	in		settings.py		and		production_settings.py		to	the
publicly	availible	IP	of	the	host.

Running	in	Production:

The	frontend	app	directory	must	be	copied	into	a	web	accessible	location.	Make	sure	all
necessary	bower	and	node	resources	are	also	properly	linked	from	within	the	web	accessible
directory.	See	index	to	figure	out	the	path	that	the	application	expects.

Set	up	the	backend	to	run	as	a	process	on	nginx.

