

Trustonic Application Protection

Developer Manual

TAP Developer Manual

CONFIDENTIAL

1

PREFACE

This specification is the confidential and proprietary information of Trustonic ("Confidential Information").
This specification is protected by copyright and the information described therein may be protected by one
or more EC patents, foreign patents, or pending applications. No part of the Specification may be reproduced
or divulged in any form by any means without the prior written authorization of Trustonic. Any use of the
Specification and the information described is forbidden (including, but not limited to, implementation,
whether partial or total, modification, and any form of testing or derivative work) unless written authorization
or appropriate license rights are previously granted by Trustonic.

TRUSTONIC MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF SOFTWARE
DEVELOPED FROM THIS SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. TRUSTONIC SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION OR ITS DERIVATIVES.

VERSION HISTORY

Version Date Modification

1.0 December 2016 First version for TAP 1.0 release

1.1 March 2017 Updates for TAP 1.1 release; including What’s New, setting the
logging/debug level, TUI API info, and makefile keywords/flags.

1.2 June 2017 Updates for TAP 1.2 release; including key sharing API, and Protected
Client Library.

1.3 December 2017 Updates for TAP 1.3 release

1.4 March 2018 Updates for TAP 1.4 release, including AES-GCM and RSA support

Document code: v1.4, rev1—15/03/18

TAP Developer Manual

CONFIDENTIAL

2

TABLE OF CONTENTS

1 Introduction ... 6

2 TAP API Overview .. 7

2.1 Calling the Trusted Application .. 7

2.2 Implementing the Trusted Application .. 8

2.2.1 Trusted Storage .. 8

2.2.2 Cryptographic Operations API .. 8

2.2.2.1 High-speed AES support for stream ciphers .. 8

2.3 Deploying a TA in production ... 9

2.4 Using the Protected Client Library ... 9

3 TAP API support ... 10

3.1 GlobalPlatform TEE Client API support ... 10

3.2 GlobalPlatform TEE Internal Core API support ... 10

3.2.1 Trusted Core Framework API ... 11

3.2.2 Trusted Storage API for Data and Keys .. 12

3.2.2.1 SWP extension for TEE_OpenPersistentObject .. 13

3.2.3 Cryptographic Operations API .. 13

3.2.3.1 SWP extension for TEE_AllocateOperation .. 15

3.3 Supported Cryptographic Algorithms ... 15

3.4 Extended proprietary API ... 19

3.4.1 Logging ... 19

3.4.1.1 TEE_LogPrintf ... 19

3.4.1.2 TEE_LogvPrintf ... 20

3.4.1.3 TEE_DbgPrintf .. 20

3.4.1.4 TEE_DbgvPrintf ... 20

3.4.2 TEE_TBase_UnwrapObject ... 20

3.4.3 TEE_TBase_DeriveKey .. 21

3.4.4 TEE_TBase_AddEntropy ... 22

3.4.5 SetDeviceId... 22

3.4.6 TEE_TT_Unwrap ... 22

3.4.7 TEE_TT_KDF .. 23

3.4.8 Key sharing API ... 25

3.4.8.1 TEE_TT_Export ... 25

3.4.8.2 TEE_TT_ Import .. 26

3.4.9 Trusted User Interface ... 26

3.4.9.1 Error Codes ... 26

TAP Developer Manual

CONFIDENTIAL

3

3.4.9.2 Types .. 27

3.4.9.2.1 tlApiTuiScreenInfo_t .. 27

3.4.9.2.2 tlApiTuiTouchEventType_t .. 27

3.4.9.2.3 tlApiTuiImage_t ... 28

3.4.9.2.4 tlApiTuiCoordinates_t ... 28

3.4.9.2.5 tlApiTuiTouchEvent_t .. 28

3.4.9.2.6 tlApiTuiImageInfo_t ... 28

3.4.9.2.7 tlApiTuiRectangle_t ... 29

3.4.9.2.8 tlApiTuiRawImage_t .. 29

3.4.9.2.9 tlApiTuiGraphicContext_t .. 30

3.4.9.3 Functions .. 30

3.4.9.3.1 TEE_TBase_TUI_GetScreenInfo ... 30

3.4.9.3.2 TEE_TBase_TUI_OpenSession ... 31

3.4.9.3.3 TEE_TBase_TUI_CloseSession ... 31

3.4.9.3.4 TEE_TBase_TUI_SetImage ... 31

3.4.9.3.5 TEE_TBase_TUI_GetTouchEvent ... 32

3.4.10 DRM API ... 33

3.4.10.1 Structures ... 33

3.4.10.1.1 tlApiDrmOffsetSizePair .. 33

3.4.10.1.2 tlApiDrmAlg .. 33

3.4.10.1.3 tlApiDrmLink .. 33

3.4.10.1.4 tlApiDrmInputSegmentDescriptor ... 34

3.4.10.1.5 tlApiDrmDecryptContext ... 34

3.4.10.1.6 tlApiDRM_headerV1 .. 34

3.4.10.2 Constants ... 35

3.4.10.3 Errors .. 35

3.4.10.4 Functions .. 36

3.4.10.4.1 TEE_TBase_DRM_OpenSession ... 36

3.4.10.4.2 TEE_TBase_DRM_ProcessContent ... 36

3.4.10.4.3 TEE_TBase_DRM_ProcessContentEx ... 37

3.4.10.4.4 TEE_TBase_DRM_CloseSession ... 38

3.4.10.4.5 TEE_TBase_DRM_CheckLink .. 38

4 Using THP Agent .. 40

4.1 Installing or upgrading a TA .. 40

4.2 Uninstalling a TA ... 43

4.3 Setting the debug level ... 43

5 Using the TUI layer library ... 45

5.1 Layout Modes Explained .. 45

TAP Developer Manual

CONFIDENTIAL

4

5.2 Screen size adaptation ... 47

5.2.1 Unit system overview ... 47

5.2.2 Android to TUI units conversion .. 48

5.2.3 Android screen density buckets ... 48

5.2.4 Box model scaleX and scaleY.. 49

5.2.5 Layout ... 49

5.3 Events ... 49

5.4 TUI layer library definitions .. 50

5.4.1 Constant ... 50

5.4.1.1 Boxes dimension mode .. 50

5.4.1.2 Box state... 51

5.4.1.3 Child layout .. 51

5.4.1.4 Box alignment .. 51

5.4.1.4.1 Horizontal alignment ... 51

5.4.1.4.2 Vertical alignment ... 52

5.4.2 Data structures ... 52

5.4.2.1 Box Structure.. 52

5.4.2.2 Box Flags ... 53

5.4.2.3 Properties ... 54

5.5 TUI layer library functions .. 55

5.5.1 Synopsis .. 55

5.5.2 BoxModel_Register .. 55

5.5.3 BoxModel_Layout .. 56

5.5.4 BoxModel_Render ... 56

5.5.5 BoxModel_RenderVisible ... 56

5.5.6 BoxModel_Show .. 56

5.5.7 BoxModel_Hide .. 56

5.5.8 BoxModel_RaiseEvent ... 56

5.5.9 BoxModel_HandleButtonTouchRelease .. 57

5.5.10 BoxModel_GetContent .. 57

5.5.11 BoxModel_Free .. 57

5.5.12 Renderers ... 57

5.5.13 Rendering Functions .. 58

5.5.14 Notes on Rendering Buttons .. 58

6 Fingerprint support for Trusted Applications .. 59

6.1 Architecture .. 59

TAP Developer Manual

CONFIDENTIAL

5

6.2 Usage .. 59

6.3 Prerequisites/Limitations ... 61

6.4 Internal API extension .. 61

6.4.1 Functions .. 61

6.4.1.1 TEE_TT_FingerprintAssociate ... 61

6.4.1.2 TEE_TT_FingerprintVerify .. 61

6.4.1.3 TEE_TT_FingerprintDissociate .. 62

6.5 Client API extension .. 62

6.5.1 class FingerprintAgent .. 62

6.5.1.1 Constructor .. 62

6.5.1.2 Methods ... 62

6.5.1.3 Interface ... 62

6.5.2 class Authentication ... 62

6.5.2.1 Constructor .. 62

6.5.2.2 Methods ... 62

6.5.2.3 Interface ... 63

Appendix I. Makefile keywords and flags.. 64

TAP Developer Manual

CONFIDENTIAL

6

1 INTRODUCTION

Welcome to the Trustonic Application Protection (TAP) Developer Manual.

This guide is for software developers writing TAP applications. It provides information about TAP API support.
Topics include:

• TAP API overview

• TAP API support

• Using THPAgent

• Using the TUI layer library

• Fingerprint support for TAs

• Makefile keywords and flags

For an overview of Trustonic Application Protection (TAP) and the documentation, for a list of what’s new in
this release, and for information about designing a TA and choosing the type of protection (TEE or SWP), see
the Introduction to TAP.

TAP Developer Manual

CONFIDENTIAL

7

2 TAP API OVERVIEW

This chapter provides an overview of the Trustonic Application Protection (TAP) API. It introduces the TEE
Internal API (used to develop TAs), and the TEE Client API (used by CAs to call a TA), and describes the
interface between the TA and CA.

Trustonic Application Protection offers developers a set of APIs which are based on the GlobalPlatform TEE
standard for developing Trusted Applications. Trusted Applications can be isolated and protected through a
Trusted Execution Environment or by using the Software Protection mechanism and the corresponding
Client, or Client Application. The Client Application is a standard Android or iOS application which calls the
Trusted Application to perform security-sensitive operations.

A Trusted Application is command-oriented. Clients access a Trusted Application by opening a session with
the Trusted Application and invoking commands within the session. When a Trusted Application receives a
command, it parses the messages associated with the command, performs any required processing, and then
sends a response back to the client.

The Trusted Application is developed using the TEE Internal API which defines the API for using features such
as cryptography, secure storage of data, memory management, etc.

The Client part (the Client Application) uses the TEE Client API for calling the Trusted Application.

This section outlines the main principles of the Internal API and Client API. For further details, refer to the
GlobalPlatform specifications.

For more information about determining what parts of your application should be incorporated within a TA,
see the Introduction to TAP. After determining the split between the secure and non-secure parts, define the
state in the TA and the interface between the TA and the Client Application (CA). Your design must take into
consideration the restrictions of the TA environment and the CA-TA interfaces.

2.1 CALLING THE TRUSTED APPLICATION

To call and use a Trusted Application, the Client Application calls the Client API and performs the following
actions:

‹ Creates a context

‹ Opens a session on the Trusted Application identified by its unique UUID

‹ Sends a command to the Trusted Application along with parameters and data payload and reads the
response. This can be repeated several times.

‹ Closes the session

‹ Destroys the context

For passing data between the Client Application and the Trusted Application, you can either pass values as
parameters or provide memory buffers containing operation payload. These memory buffers are referred to
as Shared Memory.

A Shared Memory block is a region of memory allocated in the context of the Client Application memory
space that can be used to transfer data between that Client Application and a Trusted Application. A Shared
Memory block can be either an existing Client Application memory which is subsequently registered with the
TEE Client API, or memory which is allocated on behalf of the Client Application using the TEE Client API. A
Shared Memory block can be registered or allocated once and then used in multiple Commands, even in
multiple sessions provided they exist within the scope of the TEE Context in which the Shared Memory was
created. Typically, this pre-registration is more efficient than registering a block of memory using temporary
registration if that memory buffer is used in more than one command invocation.

TAP Developer Manual

CONFIDENTIAL

8

2.2 IMPLEMENTING THE TRUSTED APPLICATION

Each Trusted Application implements the following entry point functions which are called when a Client calls
the Trusted Application:

‹ TA_CreateEntryPoint: this entry point is called when the Trusted Application is instantiated.

‹ TA_DestroyEntryPoint: this entry point is called when the Trusted Application instance is being
destroyed

‹ TA_OpenSessionEntryPoint: this entry point is called when a Client opens a session with the Trusted
Application

‹ TA_CloseSessionEntryPoint: this entry point is called when a Client closes a session with the Trusted
Application

‹ TA_InvokeCommandEntryPoint: this entry point is called when the Client invokes a command of the
Trusted Application, optionally passing parameters and data to the Trusted Application.

When implementing the entry points, use the Internal API to allocate memory, perform cryptographic
computation, store persistent data securely, etc.

Note: Use only the Internal API in the Trusted Application code. Any other third-party API is not guaranteed
to work or to offer the appropriate level of security.

2.2.1 Trusted Storage

The Internal API defines Trusted Storage for keys or general-purpose data. This API provides access to a
storage space for general-purpose data and key material with guarantees on the confidentiality and integrity
of the data stored and atomicity of the operations that modify the storage.

The objects in this storage space are accessible only to the TA that created them and are not visible to other
TAs.

For more information, see the Trusted Storage API for Data and Keys chapter of the Global Platform TEE
Internal API Specification.

2.2.2 Cryptographic Operations API

The Internal API provides the following cryptographic facilities:

• Generation and derivation of keys and key-pairs

• Support for the following types of cryptographic algorithms:
o Digests
o Symmetric Ciphers
o Message Authentication Codes (MAC)
o Authenticated Encryption algorithms such as AES-CCM and AES-GCM
o Asymmetric Encryption and Signature
o Key Exchange algorithms

For more information, see the Cryptographic Operations API chapter of the Global Platform TEE Internal API
Specification.

2.2.2.1 High-speed AES support for stream ciphers

You can use high-speed AES for stream encryption.

Note: high-speed AES support for stream ciphers is available for SWP only.

Because high-speed AES is not as secure as the default high-security version, Trustonic do not
recommend using it unless it is necessary for performance.

https://www.globalplatform.org/
https://www.globalplatform.org/
https://www.globalplatform.org/
https://www.globalplatform.org/

TAP Developer Manual

CONFIDENTIAL

9

To enable high-speed AES in the Trusted Application’s makefile, set:

CRYPTO_ALGORITHMS := HIGHSPEED_AES

Once enabled, high-speed AES is used for everything including the Secure Storage implementation. The
default high-security AES and the high-speed AES versions cannot be used within the same Trusted
Application. If both versions are needed by the application, you must implement two different Trusted
Applications.

2.3 DEPLOYING A TA IN PRODUCTION

This section provides information you need to be aware of when deploying TAs into production.

If you’re deploying TAs commercially on Samsung devices, you must complete a validation process. To do
this, you send information to Trustonic, including the package name and public key from your signed APK.
Trustonic then handles the validation process with Samsung directly. Once approved, Samsung issues a
certificate and license file which is bundled with the application. For more information, see:
https://trustonic.zendesk.com/hc/en-us/articles/200686791. For information about getting support and
accessing zendesk, see the Introduction to TAP.

Tip! Before deploying in a production environment, remember to set the debugging level to ERROR by calling
the setLogLevel(LogLevel.level) method. For more information, see Setting the debug level.

2.4 USING THE PROTECTED CLIENT LIBRARY

The TAP SDK contains a protected version of libTee.so (a TAP Client library). This differs from the standard
library in the following ways:

• It is code-protected with a high-protection level (obfuscation, integrity checking, anti-debug
features)

• SWP choice (TEEC_CHOICE=SWP) is disabled

Note: This is experimental functionality for customers who want to have a protected FALLBACK-mechanism.

To use the protected library in your TAP application build, use the following commands (the example below
assumes that the current working directory is <TAP_SDK_ROOT>/device):

Standard library back up

cp ./internal/ca_build/Bin/arm64-v8a/Release/libTee.so

./internal/ca_build/Bin/arm64-v8a/Release/libTee.so.backup

cp ./internal/ca_build/Bin/armeabi-v7a/Release/libTee.so

./internal/ca_build/Bin/armeabi-v7a/Release/libTee.so.backup

Protected library use

cp ./swp/libs/libTee/arm64-v8a/Release/libTee.so.restricted

./internal/ca_build/Bin/arm64-v8a/Release/libTee.so

cp ./swp/libs/libTee/armeabi-v7a/Release/libTee.so.restricted

./internal/ca_build/Bin/armeabi-v7a/Release/libTee.so

https://trustonic.zendesk.com/hc/en-us/articles/200686791

TAP Developer Manual

CONFIDENTIAL

10

3 TAP API SUPPORT

This chapter describes the set of TAP API supported when using Kinibi TEE or Software Protection. Most of
this API is defined by the GlobalPlatform standard:

• The GlobalPlatform TEE Client API

• The GlobalPlatform TEE Internal Core API

Refer to the GlobalPlatform specifications for details about the GlobalPlatform APIs and how to use these
APIs: http://www.globalplatform.org/specificationsdevice.asp.

Note: In TAP version 1 there is no proper API Level versioning—the one for Kinibi TEE is used. Ensure that
you set the API Level to, at least, the value of 5 in Client and Trusted Application makefiles.

3.1 GLOBALPLATFORM TEE CLIENT API SUPPORT

This section outlines TAP support for the GlobalPlatform TEE Client API specification.

Function Kinibi TEE support SWP support

TEEC_InitializeContext All Kinibi versions From TAP version 1

TEEC_FinalizeContext

TEEC_RegisterSharedMemory

TEEC_AllocateSharedMemory

TEEC_ReleaseSharedMemory

TEEC_OpenSession

TEEC_CloseSession

TEEC_InvokeCommand

TEEC_RequestCancellation Not supported

3.2 GLOBALPLATFORM TEE INTERNAL CORE API SUPPORT

This section outlines TAP support for the GlobalPlatform TEE Internal Core API specifications.

Note: for information about the header file, common data types, and constants, see the TEE Internal header
file.

http://www.globalplatform.org/specificationsdevice.asp

TAP Developer Manual

CONFIDENTIAL

11

3.2.1 Trusted Core Framework API

Memory Management
Functions

Kinibi TEE support SWP support

TEE_GetPropertyAsString All Kinibi versions. See *Note. From TAP version 1. See **Note.

TEE_GetPropertyAsBool

TEE_GetPropertyAsU32

TEE_GetPropertyAsUUID

TEE_GetPropertyAsIdentity

TEE_GetPropertyAsBinaryBlock Kinibi versions with API Level 7,
and later. See *Note.

Not supported.

TEE_GetCancellationFlag All Kinibi versions Not supported

TEE_UnmaskCancellation

TEE_MaskCancellation

TEE_CheckMemoryAccessRights From TAP version 1.

The function verifies only if a
buffer is mapped completely to
the memory of the TA.

TEE_Panic From TAP version 1

TEE_SetInstanceData

TEE_GetInstanceData

TEE_Malloc

TEE_Realloc

TEE_Free

TEE_MemMove

TEE_MemCompare

TEE_MemFill

*Note: Subset of properties depends on Kinibi TEE version.

**Note: Currently supported properties in gpd.tee namespace: apiversion=1.0, description=TAP,
cryptography=true, arith.maxBigIntSize=0; in gpd.ta namespace: singleInstance=true, multiSession=false,
instanceKeepAlive=false, dataSize, stackSize, appID=TA UUID.

TAP Developer Manual

CONFIDENTIAL

12

3.2.2 Trusted Storage API for Data and Keys

Generic Object Functions Kinibi TEE support SWP support

TEE_GetObjectInfo All Kinibi versions. From TAP version 1.

TEE_RestrictObjectUsage

TEE_CloseObject

TEE_GetObjectBufferAttribute From TAP version 1.

Not protected attributes.
TEE_GetObjectValueAttribute

TEE_GetObjectInfo1 Kinibi versions with API
Level 7, and later.

From TAP version 1, when
built with API Level 7, or
later. TEE_RestrictObjectUsage1

Transient Object Functions Kinibi TEE support SWP support

TEE_AllocateTransientObject All Kinibi versions. From TAP version 1.

TEE_FreeTransientObject

TEE_ResetTransientObject

TEE_PopulateTransientObject Not protected attributes.

TEE_InitRefAttribute, TEE_InitValueAttribute From TAP version 1.

TEE_CopyObjectAttributes All Kinibi versions. See:
*Note.

TEE_CopyObjectAttributes1 Kinibi versions with API
Level 7, and later. See:
*Note.

TEE_GenerateKey All Kinibi versions except
with API level 11. See:
**Note.

From TAP version 1.

TEE_TYPE_RSA_KEYPAIR
not supported.

Persistent Object Functions Kinibi TEE support SWP support

TEE_OpenPersistentObject All Kinibi versions. From TAP version 1.

TEE_CreatePersistentObject

TEE_CloseAndDeletePersistentObject

TEE_CloseAndDeletePersistentObject1 Kinibi versions with API
Level 7, and later.

TEE_RenamePersistentObject

TAP Developer Manual

CONFIDENTIAL

13

Persistent Object
Enumeration Functions

Kinibi TEE support SWP support

TEE_AllocatePersistentObjectEnumerator Kinibi versions with API
Level 7, and later.

From TAP version 1.

TEE_FreePersistentObjectEnumerator

TEE_ResetPersistentObjectEnumerator

TEE_StartPersistentObjectEnumerator

TEE_GetNextPersistentObject

Data Stream Access Functions Kinibi TEE support SWP support

TEE_ReadObjectData All Kinibi versions. From TAP version 1.

TEE_WriteObjectData

TEE_TruncateObjectData

TEE_SeekObjectData

*Note: not supported for ECDSA and ECDH key types before API level 11 in TEE mode; the workaround is to
use TEE_GetObjectBufferAttribute() to populate the other Object, or to build the TA using GpTRIC.

**Note: TEE_TYPE_DES and TEE_TYPE_DES3 are not supported on Kinibi versions with API level 11; see note
about DES/DES3 key generation in release notes.

3.2.2.1 SWP extension for TEE_OpenPersistentObject

storageID equal to TEE_STORAGE_PERSO is used to obtain the handle to the keys provisioned at build
time. The following object types are currently supported for the build time provisioning:

• TEE_TYPE_RSA_KEYPAIR (from 1024 to 2048 bits including)
• TEE_TYPE_ECDSA_KEYPAIR

• All symmetric key types

Note: A storageID of TEE_STORAGE_PERSO can also be used by a TEE TA to access data personalized by
the TAM Server plugin and triggered by THP Agent personalizeTA().

3.2.3 Cryptographic Operations API

Generic Operation Functions Kinibi TEE support SWP support

TEE_AllocateOperation All Kinibi versions. From TAP version 1.

TEE_FreeOperation

TEE_GetOperationInfo

TEE_SetOperationKey

TEE_GetOperationInfoMultiple Not supported. Not supported.

TAP Developer Manual

CONFIDENTIAL

14

TEE_ResetOperation

TEE_SetOperationKey2

TEE_CopyOperation

Message Digest Functions Kinibi TEE support SWP support

TEE_DigestUpdate All Kinibi versions. From TAP version 1.

TEE_DigestDoFinal

Symmetric Cipher Functions Kinibi TEE support SWP support

TEE_CipherInit All Kinibi versions. From TAP version 1.

TEE_CipherUpdate

TEE_CipherDoFinal

MAC Functions Kinibi TEE support SWP support

TEE_MACInit All Kinibi versions. From TAP version 1.

TEE_MACUpdate

TEE_MACComputeFinal

TEE_MACCompareFinal

Authenticated Encryption Functions Kinibi TEE support SWP support

TEE_AEInit When TA is built using TAP
1.4 GpTRIC: all Kinibi
versions.

Otherwise: Kinibi versions
with API level 11, and later.

TAP 1.4 and later, when
built with API Level 11, or
later.

Only the AES-GCM
algorithm is supported. The
only nonce length
supported is 12 bytes.

TEE_AEUpdateAAD

TEE_AEUpdate

TEE_AEEncryptFinal

TEE_AEDecryptFinal

Asymmetric Functions Kinibi TEE support SWP support

TEE_AsymmetricEncrypt,
TEE_AsymmetricDecrypt

All Kinibi versions. From TAP version 1.

TEE_AsymmetricSignDigest

TEE_AsymmetricVerifyDigest

Key Derivation Function Kinibi TEE support SWP support

TAP Developer Manual

CONFIDENTIAL

15

TEE_DeriveKey Kinibi versions with API level
API Level 7, and later.

From TAP version 1, when
built with API Level 7, or
later.

Random Data Generation Function Kinibi TEE support SWP support

TEE_GenerateRandom All Kinibi versions. From TAP version 1.

Note: For more information about the cryptographic algorithms, key types, and key parts supported in the
Cryptographic Operations API, see the GlobalPlatform TEE Internal Core API:
http://www.globalplatform.org/specificationsdevice.asp.

3.2.3.1 SWP extension for TEE_AllocateOperation

Software Protection extends Table 6-4: TEE_AllocateOperation Allowed Modes of the GlobalPlatform TEE
Internal Core API specification:

Algorithm Possible Modes

TEE_TT_ALG_UNWRAP_AES_ECB_NOPAD TEE_TT_MODE_UNWRAP

TEE_TT_ALG_UNWRAP_AES_CBC_NOPAD

TEE_TT_ALG_UNWRAP_AES_CTR

TEE_TT_ALG_UNWRAP_AES_CBC_XMLENC

TEE_TT_ALG_KDF_NIST_800_108_COUNTER_CMAC_AES128 TEE_TT_MODE_KDF

TEE_TT_ALG_KDF_NIST_800_108_COUNTER_CMAC_AES128_L16BIT

TEE_TT_ALG_KDF_NO_CONVERSION

TEE_TT_ALG_KDF_SHA_1

TEE_TT_ALG_KDF_SHA_256

TEE_TT_ALG_KDF_SHA_384

3.3 SUPPORTED CRYPTOGRAPHIC ALGORITHMS

The following algorithms are supported in TEE mode or in Software Protection mode:

Algorithm Supported Key Size

TEE_ALG_AES_ECB_NOPAD 128, 192 or 256 bits.

(192 bit only when deployed
on Kinibi with API Level 11, or
with TA built using GpTRIC with
APIO Level 11.)

TEE_ALG_AES_CBC_NOPAD

TEE_ALG_AES_CTR

TEE_ALG_AES_GCM 128, 192 or 256 bits.

http://www.globalplatform.org/specificationsdevice.asp

TAP Developer Manual

CONFIDENTIAL

16

TEE_ALG_DES_ECB_NOPAD Always 64 bits including the
parity bits. 2. See: ***Note.

TEE_ALG_DES_CBC_NOPAD

TEE_ALG_DES3_ECB_NOPAD 128 or 192 bits including the
parity bits. See: ***Note.

TEE_ALG_DES3_CBC_NOPAD

TEE_ALG_RSASSA_PKCS1_V1_5_MD5 256, 512, 768, 1024, 1536,
2048. See: *Note.

TEE_ALG_RSASSA_PKCS1_V1_5_SHA1

TEE_ALG_RSASSA_PKCS1_V1_5_SHA224

TEE_ALG_RSASSA_PKCS1_V1_5_SHA256

TEE_ALG_RSASSA_PKCS1_V1_5_SHA384

TEE_ALG_RSASSA_PKCS1_V1_5_SHA512

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384

TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512

TEE_ALG_RSAES_PKCS1_V1_5

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384

TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512

TEE_ALG_RSA_NOPAD

TEE_ALG_DSA_SHA1 From 1024 bits, multiple of 64
bits.

TEE_ALG_DSA_SHA224 2048 or 3072 bits.

TEE_ALG_DSA_SHA256

TEE_ALG_MD5 NA

TAP Developer Manual

CONFIDENTIAL

17

TEE_ALG_SHA1

TEE_ALG_SHA224

TEE_ALG_SHA256

TEE_ALG_SHA384

TEE_ALG_SHA512

TEE_ALG_HMAC_MD5 Between 64 and 512 bits,
multiple of 8 bits.

TEE_ALG_HMAC_SHA1 Between 80 and 512 bits,
multiple of 8 bits.

TEE_ALG_HMAC_SHA224 Between 112 and 512 bits,
multiple of 8 bits.

TEE_ALG_HMAC_SHA256 Between 192 and 1024 bits,
multiple of 8 bits.

TEE_ALG_HMAC_SHA384 Between 256 and 1024 bits,
multiple of 8 bits.

TEE_ALG_HMAC_SHA512 Between 256 and 1024 bits,
multiple of 8 bits.

TEE_ALG_ECDSA_P192 192 bits. See: **Note.

TEE_ALG_ECDSA_P224 224 bits. See: **Note.

TEE_ALG_ECDSA_P256 256 bits. See: **Note.

TEE_ALG_ECDSA_P384 384 bits. See: **Note.

TEE_ALG_ECDSA_P521 521 bits. See: **Note.

TEE_ALG_ECDH_P192 192 bits. See: **Note.

TEE_ALG_ECDH_P224 224 bits. See: **Note.

TEE_ALG_ECDH_P256 256 bits. See: **Note.

TEE_ALG_ECDH_P384 384 bits. See: **Note.

TEE_ALG_ECDH_P521 521 bits. See: **Note.

*Note: for the TEE_ALG_RSA… algorithms listed above, support is provided for 3K and 4K bit from TAP 1.4,
when deployed on Kinibi with API Level 11 or when the TA is built using GPTRIC with API Level 11.

**Note: for the TEE_ALG_EC… algorithms listed above, support is provided from Kinibi API Level 7 onwards.
If you are using GPTRIC, set the API Level in the TA to 7, even if the targeted device is lower.

TAP Developer Manual

CONFIDENTIAL

18

***Note: See note about DES/DES3 key generation in release notes.

The following algorithms and key size are supported only in TEE mode:

Algorithm Supported Key Size

TEE_ALG_AES_CCM 128, 192 or 256 bits.

TEE_ALG_AES_CTS

TEE_ALG_AES_XTS

TEE_ALG_DSA_SHA1 From 1024 bits, multiple of
64 bits.

TEE_ALG_DSA_SHA224 2048 or 3072 bits.

TEE_ALG_DSA_SHA256

TEE_ALG_DH_DERIVE_SHARED_SECRET From 256 to 2048 bits.

All RSA algorithms above 2048 bits Greater than 2048 bits.

The following algorithms and key size are supported only in Software Protection mode:

Algorithm Supported Key Size

TEE_TT_ALG_UNWRAP_AES_ECB_NOPAD 128, 192 or 256 bits.

TEE_TT_ALG_UNWRAP_AES_CBC_NOPAD

TEE_TT_ALG_UNWRAP_AES_CTR

TEE_TT_ALG_UNWRAP_AES_CBC_XMLENC

TEE_TT_ALG_KDF_NIST_800_108_COUNTER_CMAC_AES128 NA

TEE_TT_ALG_KDF_NIST_800_108_COUNTER_CMAC_AES128_L16BI
T

TEE_TT_ALG_KDF_NO_CONVERSION

TEE_TT_ALG_KDF_SHA_1

TEE_TT_ALG_KDF_SHA_256

TEE_TT_ALG_KDF_SHA_384

TAP Developer Manual

CONFIDENTIAL

19

3.4 EXTENDED PROPRIETARY API

The following functions provide extended features and can be called from Trusted Applications developed
with the TEE Internal API. The header file for the Extended Proprietary API is tee_internal_api_ext.h.

Generic Operation Functions Kinibi TEE support SWP support

TEE_LogPrintf All Kinibi versions. From TAP version 1.

TEE_LogvPrintf

TEE_DbgPrintf

TEE_DbgPrintf

TEE_TBase_UnwrapObject Not supported.

TEE_TBase_DeriveKey

TEE_TBase_AddEntropy

SetDeviceId Not supported. From TAP version 1.

TEE_TT_Unwrap

TEE_TT_KDF

TEE_TBase_TUI_GetScreenInfo All Kinibi versions. Not supported.

TEE_TBase_TUI_OpenSession

TEE_TBase_TUI_CloseSession

TEE_TBase_TUI_SetImage

TEE_TBase_TUI_GetTouchEvent

TEE_TBase_DRM_OpenSession

TEE_TBase_DRM_ProcessContent

TEE_TBase_DRM_ProcessContentEx Kinibi API Level 7, and later.

TEE_TBase_DRM_CloseSession All Kinibi versions.

TEE_TBase_DRM_CheckLink

3.4.1 Logging

3.4.1.1 TEE_LogPrintf

void TEE_LogPrintf (const char* fmt,...);

TAP Developer Manual

CONFIDENTIAL

20

This proprietary function allows writing formatted traces for logging purposes.

3.4.1.2 TEE_LogvPrintf

void TEE_LogvPrintf (const char* fmt, va_list args);

This proprietary function allows writing formatted traces for logging purposes.

3.4.1.3 TEE_DbgPrintf

void TEE_DbgPrintf (const char* fmt,...);

This proprietary function allows writing formatted traces for debugging purposes. It is only compiled in on
debug builds of the TA.

3.4.1.4 TEE_DbgvPrintf

void TEE_DbgvPrintf (const char* fmt, va_list args);

This proprietary function allows writing formatted traces for debugging purposes. It is only compiled in on
debug builds of the TA.

3.4.2 TEE_TBase_UnwrapObject

TEE_Result TEE_TBase_UnwrapObject(
 void *src,
 size_t srcLen,
 void *dest,
 size_t destLen);

Description

Unwraps a secure object.

Note: this API is TEE only.

Decrypts and verifies the checksum of given object for the context indicated in the secure object's header.

Verifies and decrypts a secure object and stores the user data (plain data and the decrypted data) to a given
location.

After this operation, the source address contains the decrypted secure object (whose user data starts
immediately after the secure object header), or the attempt of the decryption, which might be garbage, in
case the decryption failed (due to a wrong context, for instance).

If dest is not NULL, copies the decrypted user data part to the specified location, which may overlap with
the memory occupied by the original secure object.

Parameters

• in, out src: [in] Encrypted secure object, [out] decrypted secure object i.e. the secure object header
data the plain data and the decrypted data (which was earlier encrypted by the wrapper function).

• in srcLen: Length of source buffer i.e. the length of the secure object.

• in, out dest: Address of user data or NULL if no extraction of user data is desired. Note that this
buffer has to be statically allocated (which is the reason it is also set as an input parameter). The
tlApiWrapObjectExt does not allocate the buffer, it only writes to the buffer from the starting address
and maximum of destLen (see parameter below).

TAP Developer Manual

CONFIDENTIAL

21

• in, out destLen: [in] Length of destination buffer. [out] Length of user data. The length of the
statically allocated buffer is sent as input for copying the userdata after the decryption of the secure
object. The length of the userdata is returned.

Return Code

• TLAPI_OK if operation was successful.

• E_TLAPI_INVALID_INPUT if an input parameter is invalid.

• E_TLAPI_CR_WRONG_OUPUT_SIZE if the output buffer is too small.

• E_TLAPI_SO_WRONG_VERSION if the version of the secure object is not supported.

• E_TLAPI_SO_WRONG_TYPE if secure object type is not supported.

• E_TLAPI_SO_WRONG_LIFETIME if the kind of lifetime of the secure object is not supported.

• E_TLAPI_SO_WRONG_CONTEXT if the kind of context of the secure object is not supported.

• E_TLAPI_SO_WRONG_CHECKSUM if (after decryption) the checksum over the whole secure
object (header and payload) is wrong. This is usually an indication that the secure object has been
tampered with, or that the client calling unwrap is not allowed to unwrap the secure object.

• E_TLAPI_UNMAPPED_BUFFER if one buffer is not entirely mapped in Trusted Application
address space.

Panic Reasons

• If the Implementation detects any error which is not explicitly associated with a defined return
code for this function

3.4.3 TEE_TBase_DeriveKey

TEE_Result TEE_TBase_DeriveKey(
 const void *salt,
 size_t saltLen,
 void *dest,
 size_t destLen);

This function is equivalent to tlApiDeriveKey() with context set to MC_SO_CONTEXT_TLT and lifetime
set to MC_SO_LIFETIME_PERMANENT.

Description

Derives a new key from the hardware master key. The key derivation function used by the implementation
may vary across the implementations.

Different salt values provide different keys.

The resulting key is expanded to destLen bytes using RFC5869 expansion.

The derived key can be diversified between Trusted Applications or Service Providers depending on the
context parameter.

The derived key can also be diversified between sessions or powercycles depending on the lifetime
parameter.

Parameters

• salt [in] Salt value for key derivation.

• saltLen [in] Length of salt value.

• dest [out] Resulting key.

• destLen [in] Length of desired key.

Return Code

• TEE_SUCCESS: On success

TAP Developer Manual

CONFIDENTIAL

22

• An error code

Panic Reasons

• If dest or salt buffers is not accessible

• If the Implementation detects any other error which is not explicitly associated with a defined
return code for this function

3.4.4 TEE_TBase_AddEntropy

TEE_Result TEE_TBase_AddEntropy(
 uint8_t* buf,
 uint32_t buflen);

Description

Reseeds the Random Number Generator with the entropy supplied in parameter.

Parameters

• buf Buffer containing the additional entropy.

• buflen Length of buffer.

Return Code

• TLAPI_OK if operation was successful.

3.4.5 SetDeviceId

TEE_TT_SetDeviceId (void* buffer, size_t length);

Description

The function binds the Secure Storage to a specific device ID.

Note: this API is for SWP only.

Parameters

• buffer: Pointer to the byte array containing the device ID. This byte array has to be generated based
on some hardware details or other environment-specific parameters.

• length: Number of bytes in the buffer parameter. The device ID can be of arbitrary length. If the
size is 0, the previously set device ID will be removed.

Panic Reasons

• If the Implementation detects any error.

3.4.6 TEE_TT_Unwrap

TEE_Result TEE_TT_Unwrap(
 TEE_OperationHandle operation,
 void* wrappedKey, size_t wrappedKeyLen,
 TEE_Attribute* attrs, uint32_t attrCount,
 TEE_ObjectHandle unwrappedKey);

‘UNWRAPPING’ cryptographic algorithm must be enabled (CRYPTO_ALGORITHMS := UNWRAPPING).

Description

The function unwraps a buffer that represents a wrapped key and converts it to an object handle.

Note: this API is for SWP only.

The TEE_TT_Unwrap function can only be used with algorithms defined in the table below:

TAP Developer Manual

CONFIDENTIAL

23

Algorithm Operation Parameters

TEE_TT_ALG_UNWRAP_AES_ECB_NOPAD Unwrap algorithm based on AES cipher in ECB
mode without padding

TEE_TT_ALG_UNWRAP_AES_CBC_NOPAD Unwrap algorithm based on AES cipher in CBC
mode without padding

TEE_TT_ALG_UNWRAP_AES_CTR Unwrap algorithm based on AES cipher in CTR
mode

TEE_TT_ALG_UNWRAP_AES_CBC_XMLENC Unwrapping algorithm based on AES cipher
using XML Encryption Padding
(http://www.w3.org/TR/xmlenc-core)

TEE_TTK_Unwrap currently supports only the following object types (wrapped keys):

• TEE_TYPE_RSA_KEYPAIR (from 1024 to 2048 bits including)
• TEE_TYPE_ECDSA_KEYPAIR

• All symmetric key types

Parameters

• operation: A handle on an opened cipher operation setup with a key

• wrappedKey, wrappedKeyLen: Input buffer that contains the wrapped key

• attrs, attrCount: Array of object public attributes.

• unwrappedKey: Handle on an uninitialized transient object to be filled with the unwrapped key

Return Code

• TEE_SUCCESS: On success

• TEE_ERROR_BAD_FORMAT: If an incorrect or inconsistent input wrapped key is detected.

Panic Reasons

• operation is not a valid operation handle of class TEE_TT_OPERATION_UNWRAP

• No key is programmed in the operation

• The operation mode is not TEE_TT_MODE_UNWRAP

• wrappedKey is equal to NULL

• derivedKeySize is not supported or is too large

• unwrappedKey is not a valid opened object handle that is transient and uninitialized

• A mandatory parameter is missing

• Hardware or cryptographic algorithm failure

• If the Implementation detects any other error which is not explicitly associated with a defined
return code for this function.

3.4.7 TEE_TT_KDF

Note: this API is available to SWP mode TAs only; for TEE mode TAs, employ #ifdefs to code around it.

According to the GP specification, the output of the TEE_DeriveKey function, derivedKey, MUST refer to
an object with type TEE_TYPE_GENERIC_SECRET. It cannot be used as the transient object (the key). Use
this key by retrieving its TEE_ATTR_SECRET_VALUE attribute using TEE_GetObjectBufferAttribute
and then populate to a new object with TEE_PopulateTransientObject. Since the key retrieval
operation is not secure for SWP, a new API has been introduced that:

• takes the TEE_TYPE_GENERIC_SECRET (or any object type) and transforms it to another symmetric
type

http://www.w3.org/TR/xmlenc-core

TAP Developer Manual

CONFIDENTIAL

24

• performs a key derivation using a particular derivation algorithm. Since the raw output of Diffie–
Hellman key exchange algorithm is considered as a weak secret, we recommend you perform an
additional conversion afterwards

TEE_Result TEE_TT_KDF(
 TEE_OperationHandle operation,
 TEE_ObjectHandle derivedKey,
 uint32_t derivedKeySize,
 TEE_Attribute* params,
 uint32_t paramCount);

‘KDF’ cryptographic algorithm must be enabled (CRYPTO_ALGORITHMS := KDF).

Description

The key derivation function derives a key object with specified key size from the key object set for the
operation and values passed in parameters.

The TEE_TT_KDF function can only be used with algorithms defined in the table below:

Algorithm Operation Parameters

TEE_TT_ALG_KDF_NIST_800_108_COUNTER_C
MAC_AES128

TEE_TT_ATTR_KDF_NIST_800_LABEL:

label, a binary buffer that identifies the purpose
for the derived key, as defined by the NIST
Special Publication 800-108

TEE_TT_ATTR_KDF_NIST_800_CONTEXT: the
context, a binary buffer containing the
information related to the derived key, as
defined by the NIST Special Publication 800-108

TEE_TT_ALG_KDF_NIST_800_108_COUNTER_C
MAC_AES128_L16BIT

TEE_TT_ALG_KDF_SHA_1

TEE_TT_ALG_KDF_SHA_256 TEE_TT_ATTR_KDF_SHA256_PLAIN1,
TEE_TT_ATTR_KDF_SHA256_PLAIN2: buffers
of bytes that should be prepended or appended
to the key value before calculating the SHA-256
hash value

TEE_TT_ALG_KDF_SHA_384

Parameters

• operation: A handle on an opened cipher operation setup with a key

• derivedKey: Handle on an uninitialized transient object to be filled with the derived key

• derivedKeySize: Requested key size. MUST be less than or equal to the maximum key size
specified when the object container was created. MUST be a valid value as defined in Table 5-9:
TEE_AllocateTransientObject Object Types and Key Sizes of GP specification

• params, paramCount: Parameters for the key derivation as in the table above. The values of all
parameters are copied into the object so that the params array and all the memory buffers it points
to may be freed after this routine returns without affecting the object.

Return Code

• TEE_SUCCESS: On success

• TEE_ERROR_BAD_PARAMETERS: If an incorrect or inconsistent attribute is detected.

Panic Reasons

TAP Developer Manual

CONFIDENTIAL

25

• operation is not a valid operation handle of class TEE_TT_OPERATION_KDF

• No key is programmed in the operation

• The operation mode is not TEE_TT_MODE_KDF

• derivedKey is not a valid opened object handle that is transient and uninitialized

• derivedKeySize is not supported or is too large

• A mandatory parameter is missing

• Hardware or cryptographic algorithm failure

• If the Implementation detects any other error which is not explicitly associated with a defined
return code for this function

3.4.8 Key sharing API

Use the following proprietary APIs to exchange keys between two different TAs that exist in different
processes. The TAs do not need to have the same UUID. However, to ensure compatibility with the exported
format, the TAs must be built using the same SDK.

 Do not use this API to exchange keys between a TA and another entity, such as a server.

3.4.8.1 TEE_TT_Export

TEE_Result TEE_TT_Export([in] TEE_ObjectHandle object,

[in(objectIdLen)] void *objectID, size_t objectIDLen,

[outbuf] void *buffer, size_t *size);

‘KDF’ cryptographic algorithm must be enabled (CRYPTO_ALGORITHMS := KDF).

Description

The TEE_TT_Export API allows a TA to export the key materials of a persistent or transient object passed in
a parameter as an object into the output buffer pointed to by a buffer. This buffer can then be passed in input
to TEE_TT_Import() to recreate the object.

Note: this API is for SWP only.

The output buffer does not reveal any attributes of the object; private attributes are exported into a
protected form that are bound to the SKB export_key.

When a persistent object is passed, it must contain crypto attributes, it cannot be a pure data object.

Parameters

• object: Handle of the object to export.

• objectID, objectIDLen: A buffer containing the object identifier. The identifier contains arbitrary
bytes, including the zero byte. The identifier length MUST be less than or equal to
TEE_OBJECT_ID_MAX_LEN and can be zero. The buffer containing the object identifier cannot reside
in shared memory.

• buffer, size: Output buffer to get the exported object blob.

Return Code

• TEE_SUCCESS : On success.

• TEE_ERROR_BAD_PARAMETERS : If a pure data persistent object is passed.

• TEE_ERROR_SHORT_BUFFER : If size value is equal to 0, or if the buffer is not large enough to contain
the exported object.

• TEE_ERROR_OUT_OF_MEMORY : If there is not enough memory to complete the operation.

• TEE_ERROR_GENERIC: if any of the internal crypto operations fail unexpectedly.

Panic Reasons

TAP Developer Manual

CONFIDENTIAL

26

• object is not a valid handle on an initialized object that contains crypto attributes.

• objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN.

• If the implementation detects any other error which is not explicitly associated with a defined
return code for this function.

3.4.8.2 TEE_TT_ Import

TEE_Result TEE_TT_Import([out] TEE_ObjectHandle *object,

[in(objectIdLen)] void *objectID, size_t objectIDLen,

[inbuf] void *buffer, size_t size)

‘KDF’ cryptographic algorithm must be enabled (CRYPTO_ALGORITHMS := KDF).

Description

The TEE_TT_Import API creates a transient object from a data blob passed as buffer previously created
with TEE_TT_Export. It returns a handle object that can be used to access the object’s attributes.

Note: this API is for SWP only.

Parameters

• object: A pointer to the handle, which contains the opened handle upon successful completion. If
this function fails for any reason, the value pointed to by the object is set to TEE_HANDLE_NULL.
When the object handle is no longer required, it MUST be closed using a call to the
TEE_CloseObject function.

• objectID, objectIDLen: The object identifier. Note that this cannot reside in shared memory.

• buffer, size: Input buffer which contains the exported object obtained with TEE_TT_Export.

Return Code

• TEE_SUCCESS : On success

• TEE_ERROR_OUT_OF_MEMORY : If there is not enough memory to complete the operation.

• TEE_ERROR_CORRUPT_OBJECT: If the exported object structure is incorrect or of an incorrect size, if
the exported object's integrity is found invalid, or if the exported key cannot be imported.

• TEE_ERROR_GENERIC: if any of the internal crypto operations fail unexpectedly.

• TEE_ERROR_ITEM_NOT_FOUND: If object with corresponding objectID cannot be imported from the
input buffer

Panic Reasons

• objectIDLen is greater than TEE_OBJECT_ID_MAX_LEN.

• If the implementation detects any other error which is not explicitly associated with a defined
return code for this function.

3.4.9 Trusted User Interface

Note: this API is TEE only.

3.4.9.1 Error Codes

Constant Name Value API Level Definition

E_TLAPI_TUI_NO_SESSION 0x00000501 3 and
higher

The session to TUI driver cannot be
found. It was not opened or has been
closed.

TAP Developer Manual

CONFIDENTIAL

27

E_TLAPI_TUI_BUSY 0x00000502 3 and
higher

TUI driver is busy. Another session may
be open.

E_TLAPI_TUI_NO_EVENT 0x00000503 3 and
higher

No TUI event has occurred since the
session started or the last call of get
event.

E_TLAPI_TUI_OUT_OF_DISPLAY 0x00000504 3 and
higher

The coordinates/size of a displayable
object are at least partially out of the of
display area.

E_TLAPI_TUI_IMG_BAD_FORMAT 0x00000505 3 and
higher

Some data found when parsing are
related to a feature that is not supported.

E_TLAPI_TUI_MISSED_EVENTS 0x00000506 6 and
higher

TUI event queue is overflowed.

E_TLAPI_TUI_INVALID_CONTEXT 0x00000507 6 and
higher

The graphic context is invalid.

3.4.9.2 Types

3.4.9.2.1 tlApiTuiScreenInfo_t

typedef struct {
uint32_t grayscaleBitDepth;
uint32_t redBitDepth;
uint32_t greenBitDepth;
uint32_t blueBitDepth;
uint32_t width;
uint32_t height;
uint32_t wDensity;
uint32_t hDensity;

} tlApiTuiScreenInfo_t, *tlApiTuiScreenInfo_ptr;

General information about the screen.

The fields of the structure are:

• grayscaleBitDepth: Available grayscale depth.

• redBitDepth: Available red bit depth.

• greenBitDepth: Available green bit depth.

• blueBitDepth: Available blue bit depth.

• width: Width of the screen in pixel.

• height: Height of the screen in pixel.

• wDensity: Density of the screen in pixel-per-inch.

• hDensity: Density of the screen in pixel-per-inch.

3.4.9.2.2 tlApiTuiTouchEventType_t

Type of touch event.

typedef enum {
 TUI_TOUCH_EVENT_RELEASED = 0,

TAP Developer Manual

CONFIDENTIAL

28

 TUI_TOUCH_EVENT_PRESSED = 1,
} tlApiTuiTouchEventType_t;

Enumerator

 TUI_TOUCH_EVENT_RELEASED: A pressed gesture has finished.

 TUI_TOUCH_EVENT_PRESSED: A pressed gesture has occurred.

3.4.9.2.3 tlApiTuiImage_t

typedef struct {
void* imageFile;
uint32_t imageFileLength;

} tlApiTuiImage_t, *tlApiTuiImage_ptr;

Image file.

The fields of the structure are:

• imageFile: a buffer containing the image file.

• imageFileLength: size of the buffer.

3.4.9.2.4 tlApiTuiCoordinates_t

typedef struct {
 uint32_t xOffset;
 uint32_t yOffset;
} tlApiTuiCoordinates_t, *tlApiTuiCoordinates_ptr;

Coordinates.

These are related to the top-left corner of the screen.

The fields of the structure are:

• xOffset: x coordinate.

• xOffset: y coordinate.

3.4.9.2.5 tlApiTuiTouchEvent_t

typedef struct {
 tlApiTuiTouchEventType_t type;
 tlApiTuiCoordinates_t coordinates;
} tlApiTuiTouchEvent_t, *tlApiTuiTouchEvent_ptr;

Touch event data.

The fields of the structure are:

• type: type of touch event.

• coordinates: coordinates of the touch event in the screen.

3.4.9.2.6 tlApiTuiImageInfo_t

typedef enum {
 TUI_IMAGE_TYPE_INVALID = 0,
 TUI_IMAGE_TYPE_PNG
} tlApiTuiImageType_t;

typedef enum {

TAP Developer Manual

CONFIDENTIAL

29

 TUI_IMAGE_PIXEL_FORMAT_GREYSCALE = 0,
 TUI_IMAGE_PIXEL_FORMAT_TRUECOLOR,
 TUI_IMAGE_PIXEL_FORMAT_GREYSCALE_ALPHA,
 TUI_IMAGE_PIXEL_FORMAT_TRUECOLOR_ALPHA,
 TUI_IMAGE_PIXEL_FORMAT_INDEXED
} tlApiTuiImagePixelFormat_t;

typedef struct {
 uint32_t type;
 uint32_t width;
 uint32_t height;
 uint32_t pixelFormat;
 uint32_t colorDepth;
 uint32_t decodingSize;
} tlApiTuiImageInfo_t, *tlApiTuiImageInfo_ptr;

Since API level 6.

The structure tlApiTuiImageInfo_t is filled by the tlApiTuiGetImageInfo() function.

The fields of the structure are:

• type: Image format. TUI_IMAGE_TYPE_XXX

• width: Image width in pixels

• height: Image height in pixels

• pixelFormat: Pixel format: TUI_IMAGE_PIXEL_FORMAT_XXX

• colorDepth: Color depth in bits

• decodingSize: Size of the buffer to be allocated by the TA to decode the image using
tlApiTuiDecodeImage()

3.4.9.2.7 tlApiTuiRectangle_t

typedef struct {
 int32_t x;
 int32_t y;
 uint32_t width;
 uint32_t height;
} tlApiTuiRectangle_t, *tlApiTuiRectangle_ptr;

Since API level 6.

The fields of the structure are:

• x: X coordinate of the top-left corner of the rectangle.

• y: Y coordinate of the top-left corner of the rectangle.

• width: Width of the rectangle in pixels

• height: Height of the rectangle in pixels.

3.4.9.2.8 tlApiTuiRawImage_t

typedef struct {
 void *data;
 uint32_t size;
 uint32_t pixelFormat;
 uint32_t stride;
 uint32_t width;
 uint32_t height;

TAP Developer Manual

CONFIDENTIAL

30

} tlApiTuiRawImage_t, *tlApiTuiRawImage_ptr;

typedef enum {
 TUI_RAW_PIXEL_FORMAT_RGBA_8888 = 0,
} tlApiTuiRawPixelFormat_t;

Since API level 6.

The fields of the structure are:

• data: A buffer containing the pixels.

• size: Size of the buffer.

• pixelFormat: Pixel format, only TUI_RAW_PIXEL_FORMAT_RGBA_8888 is supported.

• stride: Image stride (number of bytes in the buffer between the beginning of a line and the
beginning of the next line). This value must be multiple of 4 (the pixel size is 4 bytes) and greater
than 4 times the image width. It is usually equal to the width multiplied by the number of bytes
per pixel.

• width: Image width in pixels.

• height: Image height in pixels.

Padding

width
stride

h
eigh

t

1st line

2nd line

Padding

Image

Memory representation of a raw image

3.4.9.2.9 tlApiTuiGraphicContext_t

typedef struct __tlApiTuiGraphicContext_t *tlApiTuiGraphicContext_t;

Since API level 6.

Opaque data type representing a graphic context.

A graphic context holds some parameters related to a drawing area. The parameters include a drawing buffer
and clipping parameters. The parameters apply to any operation made using the graphic context.

3.4.9.3 Functions

3.4.9.3.1 TEE_TBase_TUI_GetScreenInfo

TEE_Result TEE_TBase_TUI_GetScreenInfo(
tlApiTuiScreenInfo_ptr screenInfo);

Description

TAP Developer Manual

CONFIDENTIAL

31

Get screen information.

Parameters

• screenInfo: screen information.

Return Code

• TLAPI_OK if operation was successful.

• E_TLAPI_DRV_NO_SUCH_DRIVER if the TUI driver cannot be found.
E_TLAPI_NULL_POINTER if one parameter is a null pointer.

3.4.9.3.2 TEE_TBase_TUI_OpenSession

TEE_Result TEE_TBase_TUI_OpenSession(void);

Description

Open a session to the TUI driver.

Return Code

• TLAPI_OK if operation was successful.

• E_TLAPI_DRV_NO_SUCH_DRIVER if the TUI driver cannot be found.

• E_TLAPI_TUI_BUSY if the TUI driver cannot be opened.

3.4.9.3.3 TEE_TBase_TUI_CloseSession

TEE_Result TEE_TBase_TUI_CloseSession(void);

Description

Close the session to the TUI driver.

Return Code

• TLAPI_OK if operation was successful.

• E_TLAPI_DRV_NO_SUCH_DRIVER if the TUI driver cannot be found.

• E_TLAPI_TUI_NO_SESSION if the TUI driver session cannot be found. It was not opened or
has been closed.

3.4.9.3.4 TEE_TBase_TUI_SetImage

TEE_Result TEE_TBase_TUI_SetImage (
tlApiTuiImage_ptr image,
tlApiTuiCoordinates_t coordinates);

Description

Draw an image in secure display.

Unlike other drawing functions, this function draws directly to the front framebuffer of the screen and is
subject to tearing.

Only non-interlaced PNG images can be displayed. The Error! Reference source not found. gives the c
apabilities of the PNG decoder.

PNG Image Type Allowed bit depth t-base decoder API level

Greyscale 1, 2, 4, 8 Supported 3 and higher

Greyscale 16 Not supported 3

TAP Developer Manual

CONFIDENTIAL

32

Greyscale 16 Supported 4

Truecolor 8 Supported 3 and higher

Truecolor 16 Not supported 3 and higher

Indexed-color 1, 2, 4, 8 Not supported 3 and higher

Greyscale with alpha 8, 16 Not supported 3

Greyscale with alpha 8, 16 Supported 4

Truecolor with alpha 8 Not supported 3

Truecolor with alpha 8 Supported 4

Truecolor with alpha 16 Not supported 3 and higher

Parameters

• image: image to be displayed.

• coordinates: coordinates where to display the image in the screen, related to the top left
corner defined by tlApiTuiGetSreenInfo.

Return Code

• TLAPI_OK if operation was successful.

• E_TLAPI_DRV_NO_SUCH_DRIVER if the TUI driver cannot be found.

• E_TLAPI_TUI_NO_SESSION if the TUI driver session cannot be found. It was not opened or has
been closed.

• E_TLAPI_NULL_POINTER if one parameter is a null pointer.

• E_TLAPI_ INVALID_INPUT if one parameter is not valid.

• E_TLAPI_TUI_IMG_BAD_FORMAT if the image file cannot be recognized as a valid file.

• E_TLAPI_NOT_IMPLEMENTED if some data found when parsing the image file are related to a
feature that is not supported.

• E_TLAPI_TUI_OUT_OF_DISPLAY if the image or a part of the image is out of the display area.

3.4.9.3.5 TEE_TBase_TUI_GetTouchEvent

TEE_Result TEE_TBase_TUI_GetTouchEvent(
tlApiTuiTouchEvent_ptr touchEvent);

Description

Get a touch event from TUI driver.

This is non-blocking call. It shall be called when the TL is notified.

The touch events are actually queued in the TUI driver. In case the queue overflowed, the application has
lost events and should call tlApiTuiGetTouchEvent and process events ASAP to avoid losing more.

Parameters

• touchEvent: the touch event that occurred.

Return Code

• TLAPI_OK if operation was successful.

TAP Developer Manual

CONFIDENTIAL

33

• E_TLAPI_DRV_NO_SUCH_DRIVER if the TUI driver cannot be found.

• E_TLAPI_TUI_NO_SESSION if the TUI driver session cannot be found. It was not opened or has
been closed.

• E_TLAPI_TUI_NO_EVENT if no event has occurred since the session started or the last call of
this function.

• E_TLAPI_NULL_POINTER if one parameter is a null pointer.

• E_TLAPI_INVALID_RANGE if the pointed touch event structure is not within the secure
memory range.

• E_TLAPI_TUI_MISSED_EVENTS if the TUI event queue is overflowed. In that case the value of
touchEvent is not accurate.

3.4.10 DRM API

Note: this API is TEE only.

3.4.10.1 Structures

3.4.10.1.1 tlApiDrmOffsetSizePair

typedef struct
{
 uint32_t nSize; /* Size of encrypted region */
 uint32_t nOffset; /* offset to encrypted region */
} tlApiDrmOffsetSizePair_t;

Structure containing the offset and size of an encrypted data section within a buffer, potentially one of many
sections within the buffer.

3.4.10.1.2 tlApiDrmAlg

typedef enum {
 TLAPI_DRM_ALG_NONE,
 TLAPI_DRM_ALG_AES_ECB,
 TLAPI_DRM_ALG_AES_CBC,
 TLAPI_DRM_ALG_AES_CTR32,
 TLAPI_DRM_ALG_AES_CTR64,
 TLAPI_DRM_ALG_AES_CTR96,
 TLAPI_DRM_ALG_AES_CTR128,
 TLAPI_DRM_ALG_AES_XTS,
 TLAPI_DRM_ALG_AES_CBCCTS
} tlApiDrmAlg_t;

Enum containing list of cryptographic algorithms available.

3.4.10.1.3 tlApiDrmLink

typedef enum {
 TLAPI_DRM_LINK_HDCP_1,
 TLAPI_DRM_LINK_HDCP_2,
 TLAPI_DRM_LINK_AIRPLAY,
 TLAPI_DRM_LINK_DTCP,
#if TBASE_API_LEVEL >= 7
 TLAPI_DRM_LINK_HDCP_2_1,
 TLAPI_DRM_LINK_HDCP_2_2,
 TLAPI_DRM_LINK_HDCP_1_0 = TLAPI_DRM_LINK_HDCP_1,
 TLAPI_DRM_LINK_HDCP_2_0 = TLAPI_DRM_LINK_HDCP_2,

TAP Developer Manual

CONFIDENTIAL

34

#endif /* TBASE_API_LEVEL >= 7 */
} tlApiDrmLink_t;

Structure containing the type of output link that needs to be protected and checked according to license.

3.4.10.1.4 tlApiDrmInputSegmentDescriptor

typedef struct
{
 uint32_t nTotalSize; /** size of buffer (plain + encrypted) */
 uint32_t nNumBlocks; /* No. of encrypted regions */
 tlApiDrmOffsetSizePair_t aPairs[TLAPI_DRM_INPUT_PAIR_NUMBER]; /* Array of
offset/size pairs */
}tlApiDrmInputSegmentDescriptor;

Structure containing the number of encrypted regions in the buffer and their offset/size information.

3.4.10.1.5 tlApiDrmDecryptContext

The crypto context to contain all IV, key and algorithm information required to decrypt the content.

/**
 * For DRM cipher/copy operations
 *
 * Parameters
 * @param key [in] content key
 * @param key_len [in] key length in bytes (16,24,32)
 * @param iv [in] initialization vector. Always 16 bytes.
 * @param ivlen [in] length initialization vector.
 * @param alg [in] algorithm
 * @param outputoffset [in] output data offset
 *
 */
typedef struct tlApiDrmDecryptContext
{
 uint8_t *key;
 int32_t keylen;
 uint8_t *iv;
 uint32_t ivlen;
 tlApiDrmAlg_t alg;
 uint32_t outputoffet;
}tlApiDrmDecryptContext;

3.4.10.1.6 tlApiDRM_headerV1

Since API level 7

This structure is used for the tlApiDrmProcessContentEx().

/**
 * Extended function for DRM cipher/copy operations
 *
 * Parameters
 * @param size [in] Declared size of the structure to pass to the driver
 * @param decryptCtx [in] DRM Cipher data
 * @param input [in] virtual address of contiguous memory

TAP Developer Manual

CONFIDENTIAL

35

 * @param inputDesc [in] number of blocks and offset data in the input array
to be decrypted.
 * @param processmode [in] content. E.g., encrypted/plain text
 * @param output [in/out] Reference to the address of output decrypted
content. Also use for driver to return an address
 * @param rfu [in] Used to pass additional parameters to driver
 * @param rfuLen [in] Size of the variable pointed by rfu
 *
 */
 uint32_t size;
 tlApiDrmDecryptContext_t decryptCtx;
 void *input;
 tlApiDrmInputSegmentDescriptor_t inputDesc;
 uint32_t processMode;
 uint64_t output;
 void *rfu;
 uint32_t rfuLen;
} tlApiDRM_headerV1;

3.4.10.2 Constants

Constant Name Value Definition

TLAPI_DRM_KEY_SIZE_128
16 Key size supported for AES Cipher.

TLAPI_DRM_KEY_SIZE_192
24 Key size supported for AES Cipher.

TLAPI_DRM_KEY_SIZE_256
32 Key size supported for AES Cipher.

TLAPI_DRM_PROCESS_ENCRYPTED_DATA
1 Indicates encrypted data is being passed to the

driver.

TLAPI_DRM_PROCESS_DECRYPTED_DATA
2 Indicates decrypted data is being passed to the

driver.

TLAPI_DRM_INPUT_PAIR_NUMBER
10 Number of offset/size pair in input descriptor

3.4.10.3 Errors

Constant Name Value Definition

E_TLAPI_DRM_OK
0 No Error.

E_TLAPI_DRM_INVALID_PARAMS
0x601 Invalid parameter for Cipher

E_TLAPI_DRM_INTERNAL
0x602 Internal error in AES

E_TLAPI_DRM_MAP
0x603 Driver mapping error

E_TLAPI_DRM_PERMISSION_DENIED
0x604 Permission Denied

E_TLAPI_DRM_REGION_NOT_SECURE
0x605 If the output address is not protected.

E_TLAPI_DRM_SESSION_NOT_AVAILABLE
0x606 If a single session implementation is already

active, or a multi session implementation has
no free sessions.

TAP Developer Manual

CONFIDENTIAL

36

E_TLAPI_DRM_INVALID_COMMAND
0x607 If the command ID received is unrecognized.

E_TLAPI_DRM_ALGORITHM_NOT_SUPPORTED
0x608 If the requested algorithm is not supported by

the driver. If this error is thrown the trusted
application must decipher the content itself.

E_TLAPI_DRM_DRIVER_NOT_IMPLEMENTED
0x609 If the functions have not been implemented.

3.4.10.4 Functions

3.4.10.4.1 TEE_TBase_DRM_OpenSession

TEE_Result TEE_TBase_DRM_OpenSession (
uint8_t *sHandle);

Description

If multiple session support is required it must be managed first here, this function is also required to set up
any initial requirements in the hardware prior to decryption for example (if required according to platform
and chose framework architecture):

• Initialize the Crypto Hardware

• Initialize the Media Framework

• Authenticate the decoder firmware.

• Enable Firewalls.

Parameters

 sHandle: [out] Session Handle of the new TA session.

Return Code

• E_TLAPI_DRM_OK if operation was successful.

• E_TLAPI_DRM_INTERNAL general error in case of crypto problem

• E_TLAPI_DRM_MAP in case of error mapping memory to driver.
• E_TLAPI_DRM_PERMISSION_DENIED in case of rights access related issue

• E_TLAPI_DRM_SESSION_NOT_AVAILABLE in case the driver is busy and cannot open a session.

• E_TLAPI_DRM_DRIVER_NOT_IMPLEMENTED in case the function is not implemented.

3.4.10.4.2 TEE_TBase_DRM_ProcessContent

TEE_Result TEE_TBase_DRM_ProcessContent (
 uint8_t sHandle,
 tlApiDrmDecryptContext decryptCtx,
 uint8_t *input,
 tlApiDrmInputSegmentDescriptor inputDesc,
 uint16_t processMode,
 uint8_t *output);

Description

Processes the specified content.

If the algorithm is supported by the driver this function is used to decrypt the encrypted data into a protected
buffer. If the algorithm is not supported it will respond in an error. In this case the decryption should be done
by the Trusted Application and the decrypted data shall be copied to the protected buffer using this function
with processMode set to TL_DRM_PROCESS_DECRYPTED_DATA.

TAP Developer Manual

CONFIDENTIAL

37

The parameter processMode is a constant value indicating whether encrypted or decrypted data is being
treated from the TA.

If multiple sessions are supported, the sHandle parameter is used to identify the session requested for
decryption.

Input, key and iv data provided within the tlApiDrmDecryptContext structure indicates the context
of the cryptographic operation.

If a frame consists of multiple encrypted areas, the tlApiDrmInputSegmentDescriptor structure must
hold the offsets and lengths of the encrypted regions, the offsets will also correspond to the offsets in the
output buffer. If the input is merely one encrypted buffer, this will be indicated by the structure. If the input
buffer to the TA contains both clear and encrypted data then both clear and encrypted data must be passed
to the driver using this function.

The output parameter holds a reference to a protected output location for the decrypted data. The actual
type of reference may vary between platforms, it may be an identifier, address, ION handle, but needs to be
consistent between NW media framework component that retrieves the reference and the DRM driver that
handles it. It will be passed through from media framework to driver without modification by the NW and
SW intermediate components.

If processmode is TL_DRM_PROCESS_DECRYPTED_DATA the structure elements: key, keylen and iv
are ignored as they are irrelevant for the copy.

Parameters

• sHandle: [in] Session Handle of the current TA session.

• decryptCtx: [in] Contains the IV, Key, Key length and all necessary crypto information for the
requested algorithm.

• input: [in] Address to the start of a block of encrypted data, or if required multiple sections of
encrypted and decrypted segments the offsets and lengths of which are described in the next
parameter.

• inputDesc: [in] Structure containing offsets and lengths of data to be decrypted if multiple
segments are present within the same buffer, if not it will contain the offset and length of the
only encrypted segment.

• processMode: [in] states whether the incoming data is decrypted or encrypted, which infers a
secure copy, or a decrypt operation is required.

• output: [in] holds a reference to an output address, can be a handle, identifier or address.

Return Code

• E_TLAPI_DRM_OK if operation was successful.

• E_TLAPI_DRM_INVALID_PARAMS incorrect parameters in input.

• E_TLAPI_DRM_INTERNAL general Error in case of crypto problem

• E_TLAPI_DRM_MAP in case of error mapping memory to driver.
• E_TLAPI_DRM_PERMISSION_DENIED in case of rights access related issue
• E_TLAPI_DRM_REGION_NOT_SECURE if the memory for output is not protected

• E_TLAPI_DRM_ALGORITHM_NOT_SUPPORTED in case the algorithm is not supported.

• E_TLAPI_DRM_DRIVER_NOT_IMPLEMENTED in case the function is not implemented.

3.4.10.4.3 TEE_TBase_DRM_ProcessContentEx

TEE_Result TEE_TBase_DRM_ProcessContentEx(
 uint8_t sHandle,
 tlApiDRM_headerV1 *DRM_header);

TAP Developer Manual

CONFIDENTIAL

38

Description

Since API level 7
Processes the specified content.
Extended function for tlApiDrmProcessContent().
More parameters can be transmitted to the DRM driver with the RFU fields of the tlApiDRM_headerV1
structure.

Parameters

• sHandle: [in] Session Handle of the current TA session.

• DRM_header: [in] Contains parameters to be sent to the driver.

Return Code

• E_TLAPI_DRM_OK if operation was successful.

• E_TLAPI_DRM_INVALID_PARAMS incorrect parameters in input.

• E_TLAPI_DRM_INTERNAL general Error in case of crypto problem

• E_TLAPI_DRM_MAP in case of error mapping memory to driver.
• E_TLAPI_DRM_PERMISSION_DENIED in case of rights access related issue
• E_TLAPI_DRM_REGION_NOT_SECURE if the memory for output is not protected

• E_TLAPI_DRM_ALGORITHM_NOT_SUPPORTED in case the algorithm is not supported.

• E_TLAPI_DRM_DRIVER_NOT_IMPLEMENTED in case the function is not implemented.

3.4.10.4.4 TEE_TBase_DRM_CloseSession

TEE_Result TEE_TBase_DRM_CloseSession (uint8_t sHandle);

Description

Closes the DRM session.

It operates on the session indicated by the session handle passed in the function. If multi session is not
supported, this value is ignored.

Parameters

• sHandle: [in] Session Handle of the current TA session.

Return Code

• E_TLAPI_DRM_OK if operation was successful.

• E_TLAPI_DRM_INTERNAL in case of failure.

• E_TLAPI_DRM_DRIVER_NOT_IMPLEMENTED in case the function is not implemented.

3.4.10.4.5 TEE_TBase_DRM_CheckLink

TEE_Result TEE_TBase_DRM_CheckLink (
uint8_t sHandle,
tlApiDrmLink_t link);

Description

This function is used to check the protected external link information like HDCPv1, HDCPv2, AirPlay and DTCP.

It operates on the session indicated by the session handle passed in the function. If multi-session is not
supported, this value is ignored.

Parameters

• sHandle: [in] Session Handle of the current TA session.

TAP Developer Manual

CONFIDENTIAL

39

• link: [in] external link information like HDCPv1, HDCPv2, AirPlay, and DTCP.

Return Code

• E_TLAPI_DRM_OK if operation was successful.

• E_TLAPI_DRM_INTERNAL in case of failure.

• E_TLAPI_DRM_DRIVER_NOT_IMPLEMENTED in case the function is not implemented.

TAP Developer Manual

CONFIDENTIAL

40

4 USING THP AGENT

This chapter describes how to use the THP Agent to install or upgrade a TA.

The THP Agent is responsible for communication between Android and Trustonic. You use the THP Agent to
interface with TAs, and to perform commands such as installing, updating, and uninstalling TAs.

Tip! For information about using THP Agent to personalize TAs, see Developing a TAP Application for Android.

4.1 INSTALLING OR UPGRADING A TA

Use the THP Agent command installOrUpdateTA() to install a TA or upgrade an already-installed TA.

TAs are installed at application runtime. To load a TA, the THP Agent method installOrUpdateTA() is
called when the application starts. When this method is called for the very first time in the lifetime of the
application, it triggers a network connection to the TAM server. For subsequent calls, no network connection
is required.

The android sample provided with the TAP SDK demonstrates how to use the THP Agent interface to install
TAs. For more information about the android sample, see Developing a TAP Application for Android.

Example

The following example shows the code implemented on the Android side to send commands to the THP
Agent.

First, we create a new THPAgent object to handle installing a TA.

THPAgent agent = new THPAgent(this);

Next, we set up the server. If using a secure connection, we also set up the public key certificate within the
client that corresponds to the one set up on the server. For use with the Trustonic-hosted TAMv2
development server, this is included in the sample application.

 try {

// Require a certificate for https

agent = agent.setServerCA("-----BEGIN CERTIFICATE-----\n" +

activity.getString(R.string.ca_cert_raw) + "\n-----END CERTIFICATE-----

");

agent = agent. setServerBaseUrl

(activity.getString(R.string.tam_server_url));

}

catch(CertificateException e){

System.out.println("Certificate Exception" + e.getMessage());

}

The default values used above for the Trustonic-hosted development server and its public key certificate are
defined in values/strings.xml as follows:

<string name="tam_server_url">https://tam.cgbe.trustonic.com/tam-

server<string>

<string

name="ca_cert_raw">MIIDcjCCAlqgAwIBAgIEEjRWADANBgkqhkiG9w0BAQsFADA/MQswCQ

YDVQQGEwJVSzEaMBgGA1UECgwRVHJ1c3RvbmljIExpbWl0ZWQxFDASBgNVBAMMC1RMUyBSb29

0IENBMB4XDTEzMDIyNzE2MzY1MVoXDTM4MDIyMTE2MzY1MVowPzELMAkGA1UEBhMCVUsxGjAY

BgNVBAoMEVRydXN0b25pYyBMaW1pdGVkMRQwEgYDVQQDDAtUTFMgUm9vdCBDQTCCASIwDQYJK

oZIhvcNAQEBBQADggEPADCCAQoCggEBAMaJYI6y7hxdxBoInTkiYhL2qhBtD0Kcmfx+NTiUUk

TAP Developer Manual

CONFIDENTIAL

41

O+9u9qSyzbsN7kfgpsLO8Eq3AGg72zEjayXDfzmlHW1CnO/0nWDiM4b4hDhpJRspE2BCnKvAH

AvcQeGpzX5hhZLYh51Zrn/pOLCvoR9XV1inlw6M0+M9A5n11l6tEEWGbgWRnna+LJFX+bSGni

hP1Be2nHsVnqcIDMo/hzCj2ZX2G95e+UVPIc9JK/SVqFzYHltNjUyOFG7jGOncDhdG9vgHUoi

ikr6ZF7NHaovqxhIOiiK2tDVos//3/PgjrVwPkAJlVenMLpfEdxCtwyHO2frQpmkHc1eWFD5N

Gd8vzh2qECAwEAAaN2MHQwHQYDVR0OBBYEFE9Csq2lSvztAMSjVdll4sxTPwvbMB8GA1UdIwQ

YMBaAFE9Csq2lSvztAMSjVdll4sxTPwvbMA8GA1UdEwEB/wQFMAMBAf8wDgYDVR0PAQH/BAQD

AgIEMBEGCWCGSAGG+EIBAQQEAwICBDANBgkqhkiG9w0BAQsFAAOCAQEAQrnIh4jpJtNf6hqnC

pmwmQFD4456gFh0B3cmQnVvkfDCApJ+9G3xSsaL8LJRvK6c/pAV9p+0pvh3ftV4MFSw9AytZr

ihsrVykxlI1UGRHJmDO1hRh5QlfbMVfstHI0W8ec2Al41g3C9pM+FgBBKIoG6ewpDlaUbMXk8

033jf/OIyF5HTeQYqr788/ykFY32Mz0lpC2GdIeRThlK4ka63WuffdtKAayyPcitMeZtajJpa

7s02MZF9Dd5shISypnUvXAN/BZXIwQXSAOqajTGEv3X/wLyasm3nkEX29IgDvknLBoqnTS9rD

2LQ4BnqNQubr5XROBOlwdkrHTveN4Y9pA==</string>

Next, we supply the file name of the TA we want to install as a string (this is the same name generated as
output from the build_ta.py script).

We determine which TEE mode will be used for this installation, as specified in TEEC_CHOICE in the setup.ini
file. The rot13 sample is installed in the following example:

agent.installOrUpdateTA(getString(R.string.taRot13_uuid),

 this,

 TEEMode.fromInt(

 Integer.parseInt(

 getString(R.string.taRot13_teec_choice))),

 false);

This produces a call back—a method that is triggered when the installTA() method is completed:

 @Override

 public void onInstallTACompleted(Outcome outcome) {

 String taMode = outcome.getTeeClient().name();

The outcome object supplies useful information, such as whether the TA was installed with a Trustonic TEE
or with SWP, and a return type to indicate whether installation was successful or not:

 switch(outcome.getEventType()){

 case SUCCESSFUL:

 Log.d(TAG, "onInstallTACompleted::SUCCESSFUL");

 if (!CARot13.open()) {

 Log.e(TAG, "Failed to open session to Rot13 TA");

 } else {

 Log.d(TAG, "Session to the Rot13 TA established");

 installOK = true;

 }

 break;

 case ERROR:

 Log.e(TAG, "onInstallTACompleted::ERROR");

 //method returned error. To see what happened, inspect the

exception thrown and perform custom logic

 Throwable errorCause = outcome.getException();

 Log.e(TAG, errorCause.getMessage(), errorCause);

 }

TAP Developer Manual

CONFIDENTIAL

42

To install our second TA, we make a new THP Agent to handle our new TA. Aes (within Rot13 TAInstalled
callback method) is used in the example.

agent.installOrUpdateTA(getString(R.string.taAes_uuid),

 new SecondListener(),

 TEEMode.fromInt(

 Integer.parseInt(

 getString(R.string.taAes_teec_choice))),

 false); //aes

We pass as a second argument a new listener, called SecondListener(). This handles the second TA's call back,
in the same way as onInstallTACompleted above handles the first THPAgent's call back.

 }

 private class SecondListener implements InstallTAListener {

 @Override

 public void onInstallTACompleted(Outcome outcome) {

 String taMode = outcome.getTeeClient().name();

 switch (outcome.getEventType()) {

 case SUCCESSFUL:

 Log.d(TAG, "onInstallTACompleted::SUCCESSFUL");

 if (!CAAes.CaOpen()) {

 Log.e(TAG, "Failed to open session to Aes TA");

 } else {

 Log.d(TAG, "Session to the Aes TA established");

 installOKAES = true;

 }

 break;

 case ERROR:

 Log.e(TAG, "onInstallTACompleted::ERROR");

 //method returned error. To see what happened, inspect

the exception thrown and perform custom logic

 Throwable errorCause = outcome.getException();

 Log.e(TAG, errorCause.getMessage(), errorCause);

 }

 }

TAP Developer Manual

CONFIDENTIAL

43

4.2 UNINSTALLING A TA

This section describes how to use THP Agent to uninstall a TA.

Uninstalling a TA works in a similar way to personalizeTA. You call the method uninstallTA, passing
the TA bundle (as you do for personalization) and an UninstallTAListener implementation i.e. a
callback (similar to personalizeTA, except in that case you pass a PersonalizeTAListener

implementation).

Example

For example, if your THPAgent instance is called “agent”, initiate the uninstall flow using:

agent.uninstallTA(taName,this);

Use this if your Android code implements the UninstallTAListener. This means you need to

implement the method onUninstallTACompleted(Outcome result).

The following shows a simple example implementation of the method:

@Override

 public void onUninstallTACompleted(Outcome outcome) {

 if(outcome.getEventType() == EventType.SUCCESSFUL){

 Log.i("UNINSTALLTEST","Uninstall successful");

 }

 else{

 outcome.getException().printStackTrace();

 }

 }

4.3 SETTING THE DEBUG LEVEL

To help with debugging an Android application, you can configure THPAgent to provide more detailed
information during testing. Set the debug level by calling the setLogLevel(LogLevel.level)
method, where LogLevel.level is one of the following:

Level Description

LogLevel.ERROR Show only errors. This is the default setting. Use this setting in a production
environment.

LogLevel.WARNING Show errors and warnings. For example, a warning such as “connection
to TAM server failed, retrying. . . .”

LogLevel.INFO Show errors, warnings and messages that give high-level progress status. For
example, “Going online to retrieve personalization

commands” or “the L2 SD is currently blocked: it is
necessary to go online and retrieve the unblock

command” or “performing Update TA”.

LogLevel.DEBUG Show errors, warnings, messages and low-level information such as the raw
commands being passed down to SD-TA. Use this setting for development.

TAP Developer Manual

CONFIDENTIAL

44

LogLevel.TRACE Show all of the above, plus detailed intermediate information. Use this if you
are developing an application and want to send information to Trustonic for
support purposes.

TAP Developer Manual

CONFIDENTIAL

45

5 USING THE TUI LAYER LIBRARY

This chapter describes the TUI layer library. This is a simple layout manager and rendering engine that allows
you to create UIs in the TUI using the industry-standard sketching tool.

The tool (referred to as the “box model” tool) consists of a structure of boxes, a set of static methods to
assemble these and control rendering, and several independent renderers, each of which can render a single
box based on some content; for example, a rectangle, image or text label.

5.1 LAYOUT MODES EXPLAINED

The following diagrams show how margins and alignment of children can be used to achieve different effects.

D
AlignH=Left
AlignV=Top

A.MarginY

D.MarginY

A
.M

ar
gi

n
X

D
.M

ar
gi

n
X

Example Layout within a parent Container with ChildLayout=None

B
.M

ar
gi

n
X

A

AlignH=Right
AlignV=Bottom

B
AlignH=Right

AlignV=Centre
MarginY=0

C
Centre,Centre

MarginX=0
Height based on Parent

C.MarginY/2

C.MarginY/2

C
Centre,Centre

MarginX=0
Height based on Parent

C.MarginY/2

C.MarginY/2

In this example:

• Children are laid out independently, and may even overlap (they are rendered in first-last order,

and receive events in last-first order)

• Boxes with height set to ‘parent’ take up the entire parent height – MarginY. Boxes with width set

to parent are treated analogously.

• The parent box (the black box, in this example) can have its dimensions set to be ‘based on

children’ in which case the dimension is set to be the maximum of the (child dimension + child

margin) ignoring child boxes that are set to ‘based on parent’.

• If a box’s dimension is set to be based on content, then the size is determined by the renderer for

that box. In practice, this is only useful for text areas

o If the width is set to be ‘based on content’ then a single line of text is measured, regardless

of length. If the height is also set to be based on content, it will be one line height.

o If the height is set to be based on content, then the text is rendered within a rectangle of

the specified width (whether explicit or based on children/parent) and the height is then

set to the height necessary to render all the text.

TAP Developer Manual

CONFIDENTIAL

46

In the diagram, ‘Dynamic’ means ‘based on Parent dimension’. In this example:

• Setting the ‘flow’ dimension to ‘based on parent’ shares the elastic space (horizontally, in this

example), whereas setting the opposing dimension to ‘based on parent’ uses the whole space

(vertically, in this example).

• Alignment can be used to position the shape in the opposing direction (vertically, in this case),

and to position the margins in the flow direction (horizontally, in this case)

• When margins are applied to a centered box, half the margin is used on each side.

• The parent box (black box, in this example) can have its dimensions set to be ‘based on

children’. If the ‘flow’ dimension is set to be based on child dimensions (horizontal, in this case),

then the parent width is set to the sum of the child margin values plus the sum of all children

whose size is not set to ‘based on parent’. If the opposing dimension is set to be based on child

dimensions, then the parent dimension is set to be the size of the largest value of (child width +

child margin), ignoring child sizes set to ‘based on parent’.

The following diagram shows a complex flow example. In this ‘flow’ layout, all children have identical size
and margins.

TAP Developer Manual

CONFIDENTIAL

47

A

AlignH=Right
AlignV=Bottom

B
AlignH=Right

AlignV=Centre
MarginY=0

C
Centre,Centre

MarginX=0
Height based on Parent

D
AlignH=Left
AlignV=Top

E
Centre,
Centre

G
AlignH=Left

AlignV=Centre

F

A.MarginY

D.MarginY

G.MarginY/2

F.MarginY

A
.M

ar
gi

n
X

D
.M

ar
gi

n
X

F.
M

ar
gi

n
X

G
.M

ar
gi

n
X

E.
M

ar
gi

n
X

/2

E.
M

ar
gi

n
X

/2

B
.M

ar
gi

n
X

G.MarginY/2
E.MarginY/2

E.MarginY/2

Example Layout within a parent Container with ChildLayout=Flow

C.MarginY/2

C.MarginY/2

In this example:

• The line height (shown dotted) for each line is based on the height of the tallest item on the

line, including its HMargin

• The number of items on a line is not fixed, but is based on the number of items that will fit

(with the first item that does not fit being moved to the next line)

• For calculation purposes, the child box considered is always (width+marginx,height+marginy).

That box is then positioned based on AlignY for the child, and then the contents are positioned

within that using marginX,marginY

• Width based on parent size is NOT supported with ChildLayout=Flow

• Height based on parent size is supported, but is interpreted to be the height of the current line,

specifically (current line height – the box’s margin). At least one box on the line must have a

non-dynamic height.

• A box with ChildLayout=Flow may not have either its width or height set to be based on child

size.

5.2 SCREEN SIZE ADAPTATION

5.2.1 Unit system overview

On Android, images assets and layout depends on both the screen size and the screen density. On layouts,
measures and coordinates are not specified in physical pixels. Instead, they are usually specified in dp (device
independent pixel) or sp (scaled pixel), which are not usable directly by the TUI.

On TUI, all units are physical screen pixels, so the library must handle the conversion from device-
independent measurement to device-dependent measurement.

FreeType, which is the font renderer used by the TUI, needs a font size in points (1/72th of an inch) and a
density in pixel/inch.

The TUI has access to this information through the API TEE_TBase_TUI_GetScreenInfo(), but may

not be able to use this information directly (see below).

TAP Developer Manual

CONFIDENTIAL

48

5.2.2 Android to TUI units conversion

The following section provides the conversion from Android units to units usable by the TUI and FreeType,
and is based on the Android Documentation.

Unit
name

Description

px Actual device pixel. This is the only unit usable by the TUI API. Any dimension expressed in
another unit must be converted to px before reaching the TUI API.

dp Device independent pixel – 1/160th of an inch.

Android defines it as: An abstract unit that is based on the physical density of the screen. These
units are relative to a 160 dpi (dots per inch) screen, on which 1dp is roughly equal to 1px.

Note that when converting this unit to px, Android does not use the device physical density
information. It uses an approximate density, of the form N×160 where N is an integer.

convertion to px

xpx = metrics.density × xdp

convertion for FreeType's FT_Set_Char_Size parameters:

char_width = x dp × 72 × 64 / 160

horz_resolution=metrics.density × 160

sp Scale-independent Pixels – similar to dp unit, but it is also scaled by the user's font size
preference.

convertion to px:

x px = metrics.density × xsp

convertion for FreeType's FT_Set_Char_Size parameters:

char_width = xsp × 72 × 64 /160

horz_resolution = metrics.scaledDensity × 160

5.2.3 Android screen density buckets

On Android, image resources depend on the screen density. Android does not directly use the physical screen
density measured in pixel/inch. Instead, it classifies the device screen into one of the following buckets:

bucket name scaling factor (metrics.density)

ldpi 0.75

mdpi 1.0

hdpi 1.5

https://developer.android.com/guide/index.html

TAP Developer Manual

CONFIDENTIAL

49

xhdpi 2.0

xxhdpi 3.0

xxxhdpi 4.0

Each bucket has a scaling factor which expresses the density relative to a reference resolution of 160
pixels/inch. For example, the Samsung Galaxy S7 Edge has 1440×2560 pixel display, for a screen measuring
2.86in×5.94in. The physical density is therefore approximatively 534 pixel/inch. Android classifies this phone
in the xxxhdpi density bucket, so as far as Android is concerned, the phone has a density of 4×160 = 640
ppi. On this device, widget of 10×10 dp would take 40×40 screen pixels

The secure world does not have access to the scaling factor used by the normal world. The TUI reports the
density in physical pixel/inch, but that does not give the bucket information. The secure world does not have
access to the bucket information. The TA must obtain the scaling factor from the normal world.

The CA can get the screen density using the DisplayMetrics() API

DisplayMetrics metrics = new DisplayMetrics();

getWindowManager().getDefaultDisplay().getMetrics(metrics);

metrics.density; // scaling factor for the density

scaledDensity; // scaling factor for adjusted by user preferences

5.2.4 Box model scaleX and scaleY

Since the box model applies the scaling factors boxmodel.scaleX and boxmodel.scaleY to all the
box dimensions, the TA can express all dimension in the unit of its choosing (px, dp, sp), by setting the scale
factor appropriately as summarized in the table below

Value of scaleX/scaleY Units in which boxes and text
dimension are expressed

1 px

Android’s
metrics.density

dp

Android’s
metrics.scaledDensity

sp

5.2.5 Layout

The layout used on the normal world depends on screen size measured in pixels. The TUI info returned by
TEE_TBase_TUIGetScreenInfo is used for this.

5.3 EVENTS

Three types of events are supported:

1. Regular Events

o These are identified events with an x,y coordinate which are passed to the ‘closest’ box and

which bubble upwards through the box hierarchy until handled

▪ Specifically, the top-level boxes are ordered top to bottom and processed in this

order

TAP Developer Manual

CONFIDENTIAL

50

▪ For each visible root box, the box hierarchy is descended to find the most closely

containing box

▪ This box is passed the event. If it returns ‘false’ from its handler (or has none), then

the event is passed to its parent, and their parent back up the tree

▪ If no box under the current visual root handles the event, it is passed to the next

lowest visual root, and the process continues

o Typical uses for events of this type are touch, move when touching, or release

o Custom events can be added, and arbitrary data passed to any event.

2. Secondary Events: Enter and Leave

o These are generated automatically if more than one ‘move’ event is seen in a row, or a

‘move’ follows a ‘touch’ (any ‘release’ event will cancel)

o If the previous event was outside a box, and the new event is inside the box, then an ‘Enter’

event is generated for that box. Similarly, if a previous event was inside a box, and the new

event is outside the box, a ‘Leave’ event is generated.

o Enter and Leave events DO NOT BUBBLE. They apply separately to each box entered/left.

3. Pseudo-events: Shown and Hidden

o These are generated automatically for every box in a shown/hidden hierarchy when the

show() or hide() methods are called.

o These events also DO NOT BUBBLE.

Secondary and pseudo-events are relatively expensive to process, so can be disabled if not needed.

The box model also supports a simplified view of Touch/Release if the Move/Enter/Leave events are not
used. In this mode, Release is registered at the same location as Touch, regardless of whether there was an
intervening movement (in the more advanced mode, buttons will respond to Touch followed by any of
Release/Leave/Hide).

5.4 TUI LAYER LIBRARY DEFINITIONS

5.4.1 Constant

5.4.1.1 Boxes dimension mode

These constants indicate how the box dimension is calculated. They must set in the field widthMode and
heightMode of the Box structure.

Constant name Value Description

EXPLICIT 0 Dimension is explicitly set in the width or height field
of the box. The function BoxModel_Layout will not
change the width or height field

FROM_PARENT 1 Dimension is computed from the parent box
dimension

FROM_CONTENT 2 Dimension is computed from the content. This applies
to text box only

FROM_CHILDREN 3 Dimension is computed from the child nodes

TAP Developer Manual

CONFIDENTIAL

51

5.4.1.2 Box state

These constants are bit flags indicating the state of the box.

Constant name Value Description

STATE_ACTIVE 1 The box is active.

STATE_DISABLED 2 The box is disabled.

STATE_PRESSED 4 The box is pressed.

STATE_INHERIT 8 The box inherits the state of its parent.

5.4.1.3 Child layout

These constants indicate how children boxes are laid-out in a parent box.

Constant name Value Description

CHILD_LAYOUT_NONE 0 Each child is laid out independently of each other.

CHILD_LAYOUT_HORIZONTAL 1 Layout children horizontally, from left to right, within
the box.

CHILD_LAYOUT_VERTICAL 2 Layout children vertically, from top to bottom, within
the box.

CHILD_LAYOUT_FLOW 3 Layout children first horizontally, from left to right,
and then top to bottom, within the box.

5.4.1.4 Box alignment

The following constants indicate how a box is positioned relative to its parent.

5.4.1.4.1 Horizontal alignment

These flags set the alignment of the box relative to its parent. They also control where the margin of the box,
if any, is placed. Refer to the description of the box flags hAlign and vAlign for details on how these
flags are used.

Constant name Value Description

ALIGN_CENTER 0 Center the current box horizontally relatively to its
parent

ALIGN_LEFT 1 Place the left border of the box on the left border of
its parent.

ALIGN_RIGHT 2 Place the right border of the box on the right border
of its parent.

TAP Developer Manual

CONFIDENTIAL

52

5.4.1.4.2 Vertical alignment

Constant name Value Description

ALIGN_CENTER 0 Center the current box vertically relatively to its parent

ALIGN_TOP 1 Place the top border of the box on the top border of
its parent.

ALIGN_BOTTOM 2 Place the bottom border of the box on the bottom
border of its parent.

5.4.2 Data structures

5.4.2.1 Box Structure

Each Box is a C structure with the following members:

typedef struct Box

{

 char *db;

 uint32_t width; /* logical pixels, scale to device pixels using boxmodel.ScaleX */

 uint32_t height; /* logical pixels, scale to device pixels using boxmodel.ScaleY */

 uint32_t x; /* 0,0 is top left, moving right/down as values grows. logical pixels*/

 uint32_t y;

 /* offset for layout from natural position defined by layout flags */

 uint32_t marginX;

 uint32_t marginY;

 /* Flags - layout, state, etc */

 struct boxFlags flags;

 /* Structure */

 struct Box *parent;

 struct Box *nextSibling;

 struct Box *firstChild;

 /* Content */

 void *content;

 bool (*handleEvent)(struct Box *self, uint32_t x, uint32_t y, UIEventType type, void

*data);

} Box;

• width, height The size of the box in logical pixels. These are functions used by the application
program, and rendering engines to manipulate boxes.

• x, y The absolute location of the top left corner of the box on the screen. For child boxes
these values are set automatically by the layout manager. (0,0) is top left

• parent A pointer to the parent box that contains this box (or null for top level boxes/popups)

• firstChild, nextSibling, parent
Internal references used to enable efficient graph walking. These should not be set
explicitly; they are updated automatically as boxes are added to the graph.

• content A void * reference to content that is used by the rendering engine. The content and
interpretation of the data pointed to depends on the box type. For example, it
could be the colour information and/or text content. Content may be set to a
structure representing a set of content pointers, and the rendering engines will
choose the correct one based on the box’s state. If this is used, the F flag must be

TAP Developer Manual

CONFIDENTIAL

53

set. Note that the DYNAMIC_CONTENT structure may also be used to remember
application data for a box, which may then be used in event handlers (for example).

• flags A set of flags described in Box Flags.

• marginX, marginY
These values are used to adjust the position of the box during layout.
Layout uses the size (width+marginx,height+marginy) and then positions the box
inside this bounding box based on alignment. Margins apply on one side of a box,
unless it is centred, where the margin is split.

• Renderer A reference to a function to render the box’s content. The box model itself takes no

part in rendering, other than working out which boxes to render, and in what order,
and setting the clipping bounds appropriately.

• handleEvent A pointer to a function that will be sent any events related to this box, such as touch
events. The event handling function is told the x,y location of the event, the event
type and extra data (void*). It may return ‘true’ to indicate the event is handle, or
‘false’ in which case the event is offered to its parent.

5.4.2.2 Box Flags

The box flags are a stored in the C bitfield defined as follows:

struct boxFlags

{

 unsigned int widthMode : 2;

 unsigned int heightMode : 2;

 unsigned int state : 3;

 unsigned int dynamicContent : 1;

 unsigned int childLayout : 2;

 unsigned int hidden : 1;

 unsigned int opaque : 1;

 unsigned int hAlign : 2;

 unsigned int vAlign : 2;

 unsigned int childLayoutReversed : 1;

 unsigned int layoutAdjustment : 1;

 unsigned int _pad : 6;

 unsigned int renderer : 8;

};

• Hidden Used to indicate a box is Hidden and neither it, nor its children, should be drawn, but
it will still take up space.

• opaque The box is fully opaque, so redrawing it will not require redrawing its parent beneath
it.

• childLayout One of four layout schemes for child boxes under this box:

1. CHILD_LAYOUT_NONE

2. CHILD_LAYOUT_HORIZONTAL - Child boxes are placed in a horizontal row, one after the

other, left to right (or right to left)

3. CHILD_LAYOUT_VERTICAL - Child boxes are placed in a vertical column, one after the

other, top to bottom (or bottom to top)

4. CHILD_LAYOUT_FLOW - Child boxes are flowed left to right, line by line

TAP Developer Manual

CONFIDENTIAL

54

• widthMode, heightMode
Set the size of this boxes based on one of the following schemes. Horizontal and
Vertical schemes can be set separately.

1. EXPLICIT– size is given in pixels

2. FROM_PARENT – size is based on parent size

3. FROM_CONTENT – size is based on size of content (only applies to text)

4. FROM_CHILREN – size is the smallest size needed to layout children with the specified scheme.

• hAlign When the parent childLayout field is set to either CHILD_LAYOUT_NONE or
CHILD_LAYOUT_VERTICAL, this fields specify where the box is horizontally
placed in its parent box. After positioning a logical box of size
(width+marginX,height+marginY), in any parent’s childLayout mode, position the
box within this logical box based on the left/center/right alignment value so that the
margin is on the left, for left alignment, on the right for right alignment and split
50/50 for centred alignment.

• vAlign When the parent childLayout field is set to either CHILD_LAYOUT_NONE or
CHILD_LAYOUT_VERTICAL, this fields specify where the box is horizontally

placed in its parent box. After positioning a logical box of size
(width+marginX,height+marginY), in any parent’s childLayout mode, position the

box within this logical box based on the top/center/bottom alignment value so that
the margin is on the top, for top alignment, on the bottom for bottom alignment and
split 50/50 for centred alignment.

• state Used by renders and event handlers, but without direct influence on layout. State is
one of:

1. NORMAL Regular state (default)

2. PRESSED E.g. a button currently being touched / depressed

3. ACTIVE E.g. a radio button that is currently selected

4. DISABLED E.g. a disabled button

5. INHERIT The state should be read from the first ancestor box whose state is not

itself inherit. Useful when a logical button is split into multiple sub-boxes for rendering.

6. DYNAMIC_CONTENT Used to indicate that the content used for rendering (see below) is

dependent on the box state. Renders should detect this state and read the correct content

based on the box state.

5.4.2.3 Properties

Properties of the box model are stored in a global object of type BoxModel. This global object is accessible by
the application under the name boxmodel.

typedef struct BoxModel

{

 int clipX;

 int clipY;

 int clipW;

 int clipH;

 float scaleX;

 float scaleY;

 Box *rootList;

 int registeredEvents;

TAP Developer Manual

CONFIDENTIAL

55

 void(*render)(Box *element);

 void(*measure)(Box *element);

} BoxModel;

extern BoxModel boxmodel;

• scaleX,scaleY

o Scaling factors. These do not affect the box model itself, but should be used by renders to

scale the logical dimensions to physical dimensions. They can also be used to select

appropriate assets.

• clipX,clipY,clipW,clipH

o Clipping region. Rendering functions can optionally use this to avoid unnecessary

processing. The box model itself uses these to avoid calling Render() on any box outside the

clipping region

• registeredEvents

o A bitset of events that will be propagated to boxes. Set to ‘all’ by default, it may be reduced

to improve performance. In particular, ‘leave’, ‘enter’, ‘shown’ and ‘hidden’ events are

relatively expensive and can be disabled if not in use.

• rootList

o A tree of all boxes in the box model. Should not be used directly, but instead boxes should

be declared by calling the Add function. Made accessible to allow static provisioning (to

avoid need for malloc).

5.5 TUI LAYER LIBRARY FUNCTIONS

These are functions used by the Trusted Applications, and rendering engines to manipulate boxes.

5.5.1 Synopsis

Box *BoxModel_Register(Box *box);

void BoxModel_Layout(Box *element);

void BoxModel_Render(Box* element);

void BoxModel_RenderVisible(void);

UIEventType BoxModel_HandleButtonTouchRelease(Box *self, UIEventType type);

void BoxModel_RaiseEvent(short x, short y, UIEventType type, void *data);

void BoxModel_Hide(Box *el);

void BoxModel_Show(Box *el);

void *BoxModel_GetContent(Box* element);

5.5.2 BoxModel_Register

Box *BoxModel_Register(Box *box);

Description

Declare existence of a new box. All boxes must be declared. It adds the box provided as argument to the box
graph and updates it (each parent links to the first child, and each child links to its next sibling).

Note. Top-level boxes (background, popups, etc) must be added in Z-order, lowest first. The relative order of
boxes under a given parent dictates how they are laid out, but there is no need to add all children from one
box before another.

Parameters

TAP Developer Manual

CONFIDENTIAL

56

• box The box to be added to the global box forest. The field parent must be set to the
parent of the box, so this is added at the correct place in the graph. The other fields
for the box relatives are automatically updated by the function.

Return value

Returns the box itself, to allow more compact code.

5.5.3 BoxModel_Layout

void BoxModel_Layout(Box *element);

Description

Layout the contents of a box (recursively). This function computes the position and dimension of all the boxes
that are descendant of element. This call is typically only called once, unless the contents or position change.
Note as the x,y coordinate of each box is stored in absolute coordinates, if a popup is moved, Layout() must
be called again.

For scrolling boxes [future], boxes inside a scrolling container will have their coordinates stored relative to
the region being scrolled not the screen. Layout will not need to be called if an area scrolls.

5.5.4 BoxModel_Render

void BoxModel_Render(Box* element);

Description

Render the region covered by the specified box. This may include items below or above the box in the visual
stack. For example, if the image on a button is changed, Render(button) may be called to draw it showing
‘pressed’ state. The box model will take care of any boxes that overlap this, such as popups (by redrawing
them), and will also take care of boxes under this one if it is not opaque.

5.5.5 BoxModel_RenderVisible

void BoxModel_RenderVisible(void);

Description

Render all visible boxes. This is less efficient than the Render() call below, as it redraws the entire UI

5.5.6 BoxModel_Show

void BoxModel_Show(Box *el);

Description

Set the box to Visible, raise a shown event, and display.

5.5.7 BoxModel_Hide

void BoxModel_Hide(Box *el);

Description

Set the box to Hidden, raise a hidden event and redraw region under the box.

5.5.8 BoxModel_RaiseEvent

void BoxModel_RaiseEvent(short x, short y, UIEventType type, void *data);

Description

TAP Developer Manual

CONFIDENTIAL

57

Raise an event. The Event is routed to the top-most visible box at the coordinates (x,y). If this has no handler,
or returns false from the handler function, then the event is passed to each parent in turn. If nothing in this
stack handles the event at all, that ‘stack’ is ignored and the process restart with the next most visible stack.

5.5.9 BoxModel_HandleButtonTouchRelease

UIEventType BoxModel_HandleButtonTouchRelease(Box *self, UIEventType type);

Description

1. [Optionally] utility method for boilerplate event handling

2. Handles Touch/Release/Leave events for a box by checking the box is enabled, changing its state to

pressed / released, and redrawing the box.

3. Will return EventType.Touch/EventType.Release for handled events, and EventType.None

otherwise.

5.5.10 BoxModel_GetContent

void *BoxModel_GetContent(Box* element);

Description

Return the content for a box, taking into account potential dynamic content (content based on the box or
ancestor box state).

Renderer should not read the content directly (box->content) unless willing to handle dynamic content
themselves.

5.5.11 BoxModel_Free

void BoxModel_Free(Box* element);

Free the resources allocated for the box, either at by BoxModel_Render or BoxModel_Layout.

5.5.12 Renderers

Renderers are extensions to the box model to support rendering of individual boxes. Each renderer takes a
box as an argument, and each box contains a pointer to the relevant function for that box (or null if the box
itself is not rendered – for example if it is simply a container for other rendered boxes)

The renderer will typically use the following information

- box->X,Y,Width,Height

o Screen location to render at, plus size of the box

- box->Flags

o Flags for the box, in particular, the box’s state.

- box->content

o void* pointer to data related to this renderer (e.g. text, color, font etc.)

This should always be accessed via GetContent() to enable dynamic state

- clipX,clipY,clipW,clipH

o Clipping region, which can be used to avoid drawing unnecessary areas. Clipping is useful

when there are multiple top level elements (e.g. popups).

o A renderer does not have to limit itself to the clipping region (but MUST limit itself to the

box’s dimensions), however if scrolling support is added in future, renderers will have to

respect clipping regions, so this is good practice.

- scaleX,scaleY

TAP Developer Manual

CONFIDENTIAL

58

o Scaling to be applied to coordinates used in the box model. This is to enable DPI

independent UIs.

o Note that the box model does not directly make use of scale – however Renders must take

this into account and should scale box dimensions using these factors before applying to

the underlying display.

5.5.13 Rendering Functions

Rendering functions used in the test framework (and proposed for production)

• Solid rectangle

• Simple border (hollow rectangle with line width = 1 pixel)

• Flowing text (left to right, top to bottom, with words fitted on a line broken at spaces).

o For Japanese and similar languages, spaces can be used to hint at break points, but are not

actually rendered.

• Image (PNG or Raw)

o Note that there is no scaling support at present

o For production, a table of assets may be supported to allow easy configuration of the set of

image assets for a given device/resolution.

• Tiled Image (PNG or Raw)

o Repeat image in X and Y directions. Useful for generating complex button faces by

replicating a thin strip vertically or horizontally.

• Advanced Rectangle

o Optional rounded corners (radius + list of corners to apply to)

o Optional linear gradient (start/end colors + horizontal or vertical direction). Uses basic

interpolation of each of A,R,G,B channels.

o Note that there is limited/no anti-aliasing support, and “under the covers” the rectangle is

created by a stack of smaller, solid rectangles.

5.5.14 Notes on Rendering Buttons

To render shaped buttons, try the following:

• Image based.

o Use an image for the entire button.

o Use alternate images for other states (e.g. pressed, disabled etc.)

• Advanced Rectangle

o Rounded buttons and simple gradients are supported; however, the lack of advanced

gradients or antialiasing means this may not work in all cases.

o Alternate content can be used for other states.

• Slices/Tiled Images

o The left and right of the button are supplied as images, and the centre as a third image that

is tiled.

o Alternate images can be used for the other states.

o BoxModel has good support for buttons assembled in this way, including layout and state

inheritance.

• Sliced Rectangles

o Where a button face has a variable gradient, it may be assembled from several sub-

rectangles, each using a linear gradient / single color

TAP Developer Manual

CONFIDENTIAL

59

6 FINGERPRINT SUPPORT FOR TRUSTED APPLICATIONS

This chapter describes the API extensions that allow a TA to authenticate a user using their fingerprint.

6.1 ARCHITECTURE

Fingerprint authentication in the TA uses the Android API for fingerprint.

The fingerprint authentication in the TA is the joint operation of two additional components, as well as
the Client and internal APIs.

• The fingerprint library is a static library for TAs. It provides the fingerprint authentication APIs to the
TAs and handles the communication with the Android fingerprint API.

• The fingerprint Agent is an Android archive. It is a proxy between the fingerprint library and the
Android fingerprint API. Additionally, it provides Java listeners so that the user application can handle
the fingerprint authentication UI by itself.

6.2 USAGE

The level of service of the fingerprint API for TAs is similar to the Android fingerprint API. It offers a
reduced set of operations:

• Associate/Dissociate: establish/destroy a secure channel with the Android fingerprint API. This
operation does not require a fingerprint capture.

• Verify: launch a fingerprint authentication. This operation requires a fingerprint capture.

There is no enroll operation as the fingerprint API for TAs relies on templates enrolled in the Android
security settings. Note that fingerprint templates must be registered, but enabling Android features
based on top of these templates is not necessary.

The following diagrams show the typical sequence of operations to authenticate a user using fingerprints
from a TA.

TAP Developer Manual

CONFIDENTIAL

60

Authenticating:

TAP Developer Manual

CONFIDENTIAL

61

Dissociating:

6.3 PREREQUISITES/LIMITATIONS

The TA targets devices that provide Android 6.0 API and fingerprint sensor hardware.

Android 6.0 does not allow enrolling a fingerprint using a user application but the settings application.
Then the TA does not support the fingerprint enroll operation but relies on fingerprint templates
registered by the Android security settings.

The current implementation does not offer any secure way to get the public key securely into the TA. It
is directly recovered from the Android security API.

6.4 INTERNAL API EXTENSION

6.4.1 Functions

6.4.1.1 TEE_TT_FingerprintAssociate

This function gets an object handle associated to the fingerprint templates enrolled by the Android
system.

TEE_Result TEE_TT_FingerprintAssociate(TEE_ObjectHandle *);

6.4.1.2 TEE_TT_FingerprintVerify

This function verifies a fingerprint against an object handle previously associated.

This function starts a fingerprint capture process including a user interaction.

TEE_Result TEE_TT_FingerprintVerify(TEE_ObjectHandle);

TAP Developer Manual

CONFIDENTIAL

62

6.4.1.3 TEE_TT_FingerprintDissociate

This function dissociates an object handle from the fingerprint templates enrolled by the Android system.

TEE_Result TEE_TT_FingerprintDissociate(TEE_ObjectHandle);

6.5 CLIENT API EXTENSION

6.5.1 class FingerprintAgent

6.5.1.1 Constructor

public FingerprintAgent(OnCallback callback)

This creates a new instance of the fingerprint agent.

The callback parameter is a listener that must implement the OnCallback interface.

6.5.1.2 Methods

public void enable() throws TeeException

The enable method must be called to enable the fingerprint support. No fingerprint listeners can be
invoked if not called.

public void disable()

The disable method disables the fingerprint support. No fingerprint listeners can be invoked once called.

6.5.1.3 Interface

public interface OnCallback {

 void onCallback();

}

This interface provides a listener for authentication notification. It is invoked each time a fingerprint
capture is requested allowing the app to handle the UI.

6.5.2 class Authentication

6.5.2.1 Constructor

public Authentication(Context context, Callback callback)

This create a new instance of an object that is supposed to be active within a fingerprint capture.

6.5.2.2 Methods

public void start()

The start method enables the fingerprint capture. No fingerprint capture listeners can be invoked if not
called.

public void cancel(String message)

The cancel method can be used to cancel a fingerprint capture. No fingerprint capture listeners can be
invoked once called.

TAP Developer Manual

CONFIDENTIAL

63

6.5.2.3 Interface

public interface Callback {

 void onDone(String message);

 void onErrorMessage(String message);

 void onHelpMessage(String message);

}

This interface provides a listener for fingerprint capture events. It indicates the progress in authentication
allowing the app to refresh the UI.

The capture ends with onDone is successful or onErrorMessage if failing. onHelpMessage provides
information enabling the user to better process the capture.

TAP Developer Manual

CONFIDENTIAL

64

Appendix I. MAKEFILE KEYWORDS AND FLAGS

This appendix provides information about the keywords and flags used in the makefile.mk of the TA.

Keyword/flag Description

SDL1_ALIAS the name of the Company key, as provided to key_gen.py

SDL2_ALIAS the name of the Group key, as provided to key_gen.py

TA_KEY_ALIAS the name of the TA “App” key, as provided to key_gen.py

PIN the password to enable use of the keys held in the keystore

TA_VERSION increment this to allow THPAgent’s installOrUpdateTA() to upgrade the
currently installed TA binary, when required

SRC_CPP, SRC_C,
SRC_S

the filenames of the SP’s C++, C and Assembler source code files,
respectively

GP_ENTRYPOINTS use the GlobalPlatform TEE Client API (mandatory)

TA_INSTANCES the maximum number of concurrently active instances

TBASE_API_LEVEL the version of the Kinibi API being targeted. To use later Kinibi APIs or TEE
features, set this level to one where those APIs are

HEAP_SIZE_INIT the initial size of heap allocated during the loading of the TA

HEAP_SIZE_MAX the maximum size of heap during the TA's lifetime (optional)

INCLUDE_DIRS include paths. Relative paths are supported in TAP version 1.3 only

TA_STATIC_KEY_FILE the path to the key description file for the build-time provisioned SWP
keys

Cryptographic algorithm keywords/flags

The following lists the crypto algorithms required for software-protected Trusted Applications:

Keyword/flag Description

HIGHSPEED_AES the High-Speed AES algorithm set for the entire Trusted Application
instead of the High-Security AES

RSA RSA decryption, RSA signature and RSA key handling in Secure Storage

DES DES symmetric encryption/decryption

HMAC HMAC signing and verification (SHA-1, SHA-224, SHA-384, SHA-512, MD5)

TAP Developer Manual

CONFIDENTIAL

65

ECDSA ECDSA signing and ECC key pair generation using up to 264-bit and up to
528-bit prime curves, ECC key handling in Secure Storage

ECDH ECDH and ECC key pair generation using up to 264-bit and up to 528-bit
prime curves, ECC key handling in Secure Storage

DSA DSA signing, DSA key generation and DSA key handling in Secure Storage

UNWRAPPING key unwrapping for all key types

KDF key derivation algorithm (for TEE_TT_KDF)

Reserved

Keyword/flag Description

AUTH_TOOL_KEYSTORE DO NOT USE. Allows the keystore to be provided elsewhere; however, this
feature is not yet fully integrated

TA_SERVICE_TYPE must be set to SYS

TA_BUILD_PATH auxiliary variable, used as Trusted Application project root directory. DO
NOT change as other TAP scripts rely on this

TRUSTED_APP_DIR auxiliary variable, used as Trusted Application project source code
directory. DO NOT change as other TAP scripts rely on this

TRUSTED_APP_BIN auxiliary variable indicating the path to intermediate Trusted Application
binaries. Do not change as other TAP scripts rely on this

