
CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 1

Zebra Technical Manual

Revision

Revision Date Name Description

0.1 22/02/2013 Tom Cobb Initial structure

0.2 17/04/2013 Isa Uzun Various sections brought together.

0.3 02/05/2013 Isa Uzun First draft.

0.4 28/08/2013 Isa Uzun Physical specifications added.

0.5 12/11/2013 Tom Cobb Added schematic diagrams, reorganize

0.6 17/01/2014 Tom Cobb Added position capture examples

0.7 04/02/2014 Tom Cobb Updated based on DASC group suggestions

0.8 18/03/2014 Tom Cobb Added Firmware 0x21 features

0.9 17/04/2014 Tom Cobb Added Qt GUI launch instructions, updated pictures,
added timing information

Prepared by: Tom Cobb, Isa Uzun, Yuri Chernousko

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 2

Contents

1. INTRODUCTION ... 4

2. PHYSICAL SPECIFICATIONS ... 4

2.1 FRONT PANEL ... 4

2.2 FRONT PANEL STATUS LEDS .. 4

2.3 REAR PANEL ... 5

2.4 REAR PANEL STATUS LEDS .. 5

2.5 HARDWARE CONNECTIONS FOR STANDALONE SETUP.. 5

3. SYSTEM DESIGN ... 6

3.1 LOGIC BLOCK TIMING ... 6

3.2 DEFAULT SETUP ... 6

4. EPICS INTERFACE ... 7

4.1 STANDALONE SETUP WITH PREBUILT IOC ... 7

4.2 DIAMOND SETUP WITH CUSTOM IOC .. 7

4.3 THE SYSTEM BUS ... 8

4.4 AND/OR BLOCKS ... 10

4.5 GATE BLOCKS .. 11

4.6 DIV BLOCKS ... 12

4.7 PULSE BLOCKS ... 13

4.8 QUAD BLOCK AND POSITION COUNTERS ... 14

4.9 PC POSITION CAPTURE BLOCK ... 15

4.9.1 EXAFS example .. 18

4.9.2 Tomography example ... 19

4.9.3 Logic analyser example ... 20

4.9.4 External trigger example ... 21

5. ELECTRICAL CONNECTIONS ... 22

5.1 FRONT PANEL INPUTS ... 22

5.1.1 TTL Inputs .. 22

5.1.2 NIM Inputs .. 22

5.1.3 LVDS Inputs ... 23

5.1.4 Open Collector (OC) Input ... 23

5.1.5 Comparator (CMP) Input ... 24

5.1.6 PECL Input ... 24

5.2 FRONT PANEL OUTPUTS ... 24

5.2.1 TTL Output .. 25

5.2.2 NIM Output ... 25

5.2.3 LVDS Output .. 25

5.2.4 Open Collector (OC) Output .. 26

5.2.5 PECL Output .. 26

5.3 REAR PANEL ... 26

5.3.1 Encoder I/O ports .. 27

5.3.2 RS232 port ... 28

5.3.3 JTAG .. 29

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 3

5.3.4 Power .. 29

6. FPGA DETAILS ... 30

6.1 CLOCKS ... 31

6.2 POSITION CAPTURE .. 31

7. SOFTWARE INTEGRATION .. 33

7.1 REGISTER ADDRESS MAPPING .. 33

7.1.1 Zebra Logic .. 33

7.1.2 Position Capture .. 36

7.1.3 System Status and Control .. 37

7.2 RS232 PROTOCOL .. 37

7.2.1 Register Write ... 38

7.2.2 Register Read .. 38

7.2.3 Configuration Store ... 38

7.2.4 Configuration Restore ... 39

7.2.5 Position Capture Data Offload .. 39

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 4

1. INTRODUCTION

Zebra is a digital signal level converter and position capture box. It takes the form of a 1U metal box

with front panel BNCs and LEMOs and rear panel encoder DB15 connectors. Its function is to take

front panel single channel inputs (TTL, LVDS, PECL, NIM, Open Collector) and rear panel encoder

signals (RS422 quadrature with Z channel), pass them through the FPGA to implement logic gates

and position capture circuitry, and output them to front and rear panel outputs of the same format

as inputs. This document will describe the physical interface of Zebra, the RS232 interface to the

FPGA, and the EPICS software that can be used to control it.

2. PHYSICAL SPECIFICATIONS

Zebra is manufactured in the form of a 1U metal box with the following dimensions:

Description Height Height H Depth T

Perforated top cover and base plate 1 U 43.7 mm 220 mm

2.1 Front Panel

Zebra’s front panel (see Figure 1) has 12 inputs and 12 outputs labeled with their input type (E.g.

TTL). The voltage level conversion as described in more detail in sections 5.1 and 5.2.

Figure 1: Zebra 1U front panel

2.2 Front Panel Status LEDs

Under each group of 3 inputs or outputs is a status LED. This LED will light for a minimum of 20ms

on a rising edge of any of the 3 signals. This means that any group containing an output with a

frequency greater than 50Hz will show a solidly lit LED, as will a group containing a constantly high

output.

On the right hand side there is also an array of LEDs indicating the status of each power line in

Zebra.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 5

2.3 Rear Panel

Zebra’s rear panel (see Figure 2) has 4 DB15 connector pairs each with a female encoder input and

male encoder output, a power connector with fuse and earth stud, along with RS232 and JTAG

connectors. The electrical connections are described in more detail in section 5.3.

Figure 2: Zebra 1U rear panel

2.4 Rear Panel Status LEDs

To the left of each connector is a pair of status LEDs: a red LED indicates that the encoder is

disconnected, and a green LED indicates that the encoder is connected. Zebra uses an internal pull-

up resistor to check the status of both halves of the A and B signals of each encoder, if either is

disconnected then both halves of the differential signal will drift high and the red LED will indicate

the encoder is disconnected. It should be noted that some encoders disconnect their outputs to

indicate a problem, so a red LED could mean a disconnected cable or an encoder in error state.

2.5 Hardware Connections for Standalone Setup

If you are planning on using Zebra with the standalone software setup as shown in section 4.1 then

please refer to the following diagram:

Figure 3: Zebra Standalone Setup

64-bit
Linux

PC

USB-
RS232
Adapter

Null
Modem
Cable

Zebra

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 6

3. SYSTEM DESIGN

Inside the FPGA, there are a number of logic blocks, connected by the 64-bit wide system bus. This

allows the input of any logic block to be taken from a physical input or the output from any other

logic block. Each physical output is also taken from the system bus in the same way (see Figure 4).

Figure 4: FPGA System Bus

3.1 Logic Block Timing

On each FPGA clock tick (at 50MHz) the system bus values are created from the physical inputs and

the last clock cycle’s logic block outputs. Each logic block then uses a multiplexor to select a

particular input from the bus, and prepares its outputs based on these inputs. This means that it

will take 20ns for an input signal to get through each logic block, so an input signal that goes

through 2 logic blocks and into an output will take 40ns to go through Zebra. For more details about

the FPGA timing see section 6.

3.2 Default setup

The default setup has all encoders passed straight through, and each front panel output to be the

logic OR of the corresponding group of inputs. E.g. if IN_TTL2, IN_NIM2 or IN_LVDS2 are high,

OUT_TTL2, OUT_NIM2 and OUT_LVDS2 will be high.

Zebra has some limited uses as a level converter with its default setup, but its real power comes

when the logic blocks are rewired to suit the application. This is discussed in section 4 in the context

of the EPICS interface.

Physical

Inputs

Physical

Inputs

Physical

Outputs

Physical

Outputs

Logic Bloc

(E.g. AND)

Logic Bloc

(E.g. AND)

Physical

Outputs

Physical
Inputs

Logic Blocks

(e.g. AND)

Input1 Output

Input2

System

Bus

Selection Multiplexors

Copy on next FPGA clock cycle

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 7

4. EPICS INTERFACE

The EPICS support module Zebra (http://controls.diamond.ac.uk/downloads/support/Zebra)

provides an EPICS driver that communicates with Zebra over a serial line.

4.1 Standalone setup with prebuilt IOC

If you download and unpack the Zebra support module, you will see a “startStandalone.sh” script in

the root of the directory. This assumes you have connected Zebra to the PC as shown in Figure 3. It

also assumes the PC runs a recent 64-bit Linux OS (tested on Red Hat Enterprise Linux 6.3 and

Ubuntu 14.04) and that the USB-RS232 appears as /dev/ttyUSB0.

If you run the scrip it will start a precompiled IOC with the PV Prefix set to “TESTZEBRA” and then

start the GUI in a new window. If you pass an argument to this script it will use this as the PV Prefix

instead (you must do this if your PC is on the same network as another PC running the same Zebra

application).

The standalone GUI is based on Qt rather than EDM, so there are some visual differences between

this and the EDM GUI shown in the examples below. The main difference is that there is a table

display of the position compare data rather than a graph widget. All the PVs serving the data still

exist in the standalone IOC, but the GUI has not been written to display them at the moment.

If you are running position compare then please note that you will need to fill in the resolution and

offset fields and tell Zebra the current position of the motor on the ENC tab of the GUI whenever

you disconnect or power cycle Zebra.

4.2 Diamond setup with custom IOC

The standalone IOC illustrates how to make an instance of the zebra.template database and

zebraConfig() start-up script function. If you make your own IOC you have the option of pointing

the database template at a motor record instance for each encoder, which will provide it with

figures for resolution and offset.

The sections below assume you have setup an IOC according to the instructions included with this

module, and run up appropriate EDM screens for your IOC.

Figure 5 shows the basic elements of the GUI:

http://controls.diamond.ac.uk/downloads/support/zebra

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 8

Figure 5: Screenshot of Zebra system setup

4.3 The System Bus

As described in section 3, there is a 64 signal system bus that connects Zebra’s inputs, logic blocks,

and outputs. In the above screenshot the current status of the System Bus is shown along with

numbered and named elements. The SYS tab of the screen allows you to wire any element of the

system bus to any outputs. For instance, if we wanted to have the output of the OR1 logic block be

output from OUT1_TTL, we would type the number 36 in the blue text entry box, and Zebra would

display the name and current value of the signal in the green readback box.

Also on the SYS tab, we can see the following:

 Open in New Screen: This just opens the SYS tab window in a new screen so you can change
the source of the outputs without swapping between tabs

System Bus

Error Status

Tab Window

Comms Status
Reset Logic Block

State Machines
Soft In Buttons

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 9

 Version: The FPGA Firmware version number in Hex

 Store to File Button: Zebra’s registers are being constantly polled, so the EPICS driver keeps a
local cache of these registers. When this button is pressed, this cache is written to the
filename specified.

 Restore from File Button: This will restore Zebra’s register settings from a local .ini file
specified in the box above. The box below gives the operation status. This is used to duplicate
settings between multiple Zebras.

 Store to Flash: This will store Zebra’s register settings to flash so that they will be restored
after a power cycle.

 Restore from Flash: This will restore Zebra’s register settings from flash. It does the same as
power cycling Zebra.

On the rest of the screen we can also see:

 Comms status: Zebra’s System Bus and Error Status are polled continuously at 1Hz. If Zebra
fails to respond this field will show “Not Connected”

 Soft In Buttons: These toggle the state of the SOFT_IN1..4 elements on the System Bus

 Reset: This button will reset all state machines to their default state:
o Position capture will disarm and stop downloading points
o Gate blocks outputs will be reset to low
o Div blocks will go back to waiting for their initial pulse with their counters reset to 0
o Pulse blocks will be reset to waiting for trigger
o Quad blocks will be reset to their initial state with both outputs low.
Parameters are retained even if they haven’t been written to flash:

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 10

4.4 AND/OR Blocks

Figure 6: Screenshot of Zebra AND blocks

The AND blocks and OR blocks work in a similar way. Both mask out unused inputs according to the

“Use” button, invert the inputs according to the “Invert” button, then take the logical AND/OR of

those inputs. The example below shows a logical AND, the logical OR is similar.

Figure 7: AND block example (AND1 setup as shown in Figure 6)

INP1

INP2

AND1

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 11

4.5 GATE Blocks

Figure 8: Screenshot of Zebra GATE blocks

GATE blocks have an internal state that can be modified by the rising (or optionally falling) edge of

either its inputs. On the selected edge of INP1, the internal state is set high. On the selected edge of

INP2 (or if both edges happen in the same clock tick) the internal state is set low. The behaviour is

similar to an SR flip-flop or bistable, although the GATE block is edge triggered rather than level

triggered.

Figure 9: GATE block example (GATE1 setup as shown in Figure 8)

INP1

INP2

GATE1

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 12

4.6 DIV Blocks

Figure 10: Screenshot of Zebra DIV blocks

DIV blocks have an internal counter that counts from 0 to DIV-1. On each rising (or optionally

falling) edge, if the counter == DIV-1, then it is set to 0 and the pulse is sent to OUTD, otherwise the

counter increments and the pulse is sent to OUTN. DIV can be in the range 0 to 232 - 1

Figure 11: DIV block example (DIV1 setup as shown in Figure 10)

INP1

OUTD

OUTN

COUNT

2
1
0

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 13

4.7 PULSE Blocks

Figure 12: Screenshot of Zebra PULSE blocks

PULSE blocks send out fixed length pulses based on their input. On each rising (or optionally falling)

edge, the pulse block keeps its output low for delay time units, then produces a high pulse of width

time units. If it gets another edge while it is in a delay or pulse producing state it will flag an error in

the bits at the bottom left of the screen. To reset this error, use the Reset button. Delay and pulse

width can be in the range 0 to 6.5535 time units.

Figure 13: PULSE block example (PULSE1 and PULSE2 setup as shown in Figure 12)

INP1

PULSE1

PULSE2

Delay

Width

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 14

4.8 QUAD Block and Position Counters

Figure 14: Screenshot of Zebra QUAD block

The QUAD block take a direction bit, and a pulse stream, and quadrature encodes them on its OUTA

and OUTB outputs. In the example below, DIR is set to 0 so it counts backwards through the states.

Figure 15: PULSE block example (QUAD setup as shown in Figure 14)

Also on this screen you can set the position counters that are used for position capture. After Zebra

is power cycled or the motors are homed, the relevant “Copy” buttons should be pressed to copy

the motor positions to Zebra.

STEP

OUTA

OUTB

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 15

4.9 PC Position Capture Block

Figure 16: Screenshot of Zebra Position Capture block

The PC Block produces pulses based on time, position, or external triggers, and can capture time,

position, the state of the system bus and the pulse divider counters. This is a very flexible block that

can be used in a number of ways, described from sections 4.9.4 to 4.9.3.

The main window contains a diagram that describes the function of the Arm, Gate and Pulse

signals, boxes to setup each of these signals and other settings that must be set before arm:

 Setup Box (Black):
o Capture: Selects which elements will be captured each time a pulse is output. Enc 1-4 are

the encoder inputs on the back panel, Sys 1 and 2 are the upper and lower halves of the
system bus, Div 1-4 are the internal counters of the DIV blocks.

o Posn Trigger: If Gate or Pulse Trig Source are set to Position, which encoder should be used
to compare against.

o Posn Dir: If Gate or Pulse Trig Source are set to Position, which direction should the
compare act in. E.g. should the Gate width be added or subtracted from the gate start to
produce the end position.

o Time Units: If Gate or Pulse Trig Source are set to Time, this setting is the unit of time.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 16

 Arm Box (Red):
o Trig Source:
 Soft - arm on the click of a button.
 External - arm on the rising edge of a signal on the System Bus.

o Arm Button: If Arm Trig Source is Soft, then this button will show, and can be clicked to
arm the PC block.

o External Source: If Arm Trig Source is External, then this is the signal on the system bus
that will arm the block.

o Disarm Button: In either mode, this allows a manual disarm. The PC block will disarm itself
at the end of the last gate signal (if Num Gates != 0).

 Gate Box (Green):
o Trig Source:
 Position - define a position window in motor EGUs.
 Time - define a time window in Time Units.
 External - use an external signal to define each Gate.

o Gate Start:
 If Gate Trig Source = Position, then the first gate signal will go high when the Posn

Trigger encoder first crosses this position.
 If Gate Trig Source = Time, then this is a delay in Time Units from arm.

o Gate Width:
 If Gate Trig Source = Position, the gate will go low at Gate Start + Gate Width if Posn Dir

is positive, or Gate Start – Gate Width if Posn Dir is negative.
 If Gate Trig Source = Time, the gate signal will be high for this amount of time.

o External Source: If Gate Trig Source = External, then this is the signal on the system bus
that will act as a gate signal.

o Num Gates: How many gate signals to output. If 0, then generate gate signals forever,
otherwise drop the arm signal and stop outputting gates after Num Gates are produced.

o Gate Step: If Num Gates != 1 and Gate Trig Source != External, then this is the distance
between the start of consecutive gate signals, in Time Units or Posn Trigger position units.
This will act in the direction of Posn Dir.

 Pulse Box (Blue)
o Trig Source:
 Position - produce pulses based on encoder position.
 Time - define pulses in Time Units
 External - use an external signal to define each pulse.
Each time a pulse is output, the elements specified by Capture are latched and output
onto the graph

o Pulse Delay:
 If Pulse Trig Source = Position, and Posn Dir is positive, the first pulse in each gate will be

at Gate Start + Pulse Delay. If Posn Dir is negative, the first pulse will be at Gate Start –
Pulse Delay.

 If Pulse Trig Source = Time, the first pulse will be Pulse Delay Time Units after the gate
goes high.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 17

o Pulse Width: The width of each pulse in Posn Trigger position units or Time Units.
o Pulse Step: The distance between the rising edge of each pulse, in Posn Trigger position

units or Time Units. Again, this will act in the direction of Posn Dir.
o External Source: If Pulse Trig Source = External, then this is the signal on the system bus

that will act as a pulse signal, also latching the elements specified by Capture.
o Max Pulses: If non-zero, this is the maximum number of pulses that will be output each

gate.

All values are 32-bit signed integers when sent to Zebra, but are translated into either motor

engineering units or time units by the EPICS IOC.

At the bottom of the screen, there is a button to bring up the plot window and an indicator to show

that data download is in progress. The plot window will be discussed in the examples below. The

download indicator lights when the block has armed and is ready to start sending data, and turns

off when the block disarms and the last data point has been sent. Note that data download can be

interrupted by pressing the Reset button.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 18

4.9.1 EXAFS example

Figure 17: Screenshot of Zebra Position Capture EXAFS example

This example illustrates an EXAFS experiment where the Bragg angle of a monochromator is

scanned linearly in energy and a scalar card measuring the transmission and initial photon counts is

triggered on position change. The gate was setup to count from 79.9992 degrees down to 50.0003

degrees (roughly 2keV up to 3keV) to illustrate the non-linearity of the motion.

Zebra produces the first pulse at 79.9992 degrees, then at 79.9883 degrees, and so on until it

reaches 50.0003 degrees. It captures the time that each pulse was produced and plots it on the

graph. Note that if the motor jitters back over a threshold that it has already produced a pulse for,

it will not produce another pulse for that threshold. The timing information and motor positions

can then be used with the data from the scalar cards to produce the absorption edge of the sample.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 19

4.9.2 Tomography example

Figure 18: Screenshot of Zebra Position Capture tomography example

This example illustrates a tomography experiment in which the sample is rotated in the beam, and

a series of exposures is taken on a detector which can be used to reconstruct the structure of the

sample. Multiple rotations (2 in this example) are used to increase accuracy, but only the first 180

degrees of each rotation is captured to allow the detector readout time. The motor is a rotation

stage capable of 180 degrees a second. The detector is set to expose so it is capable of 100Hz

acquisition. As the detector has a fixed exposure time, Zebra needs to trigger it at exactly 100Hz. On

a software arm, Zebra waits until the motor has reached position 0, raises the gate signal, then

produces up to 100 pulses at 100Hz with 5ms width in the window up to 270 degrees when it drops

the gate signal. It then waits until 360 degrees when it repeats the above. The positions of the

motor when theses pulses are output are recorded in the plot window.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 20

4.9.3 Logic analyser example

Figure 19: Screenshot of Zebra Position Capture logic analyzer example

This example shows how to use the position capture functionality to analyse the signals that come

into Zebra. In this example we have a 250kHz signal coming into the DIV1 pulse divider and the

PULSE1 module is being repeatedly triggered at 1Hz with a 70% duty cycle. We setup Zebra to

capture the entire system bus (SYS1 and SYS2) as well as DIV1 counter value. We then set a fixed 10

second acquisition with pulses every 100ms. The plot shows that the counter value has been

captured in blue here, and there are 2475000 pulses difference between the first and last value of

DIV1. We can also look at any element on the system bus. If we set SysFilt1 to 52 (PULSE1) we can

see plotted in grey that there are 7 point at logic 1, and 3 points at logic 0. With a little effort this

means that Zebra can be used as an impromptu scaler card, or can capture the signal from a voltage

to frequency converter as part of an acquisition. It is also useful for debugging the wiring of blocks.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 21

4.9.4 External trigger example

Figure 20: Screenshot of Zebra Position Capture tomography example

This example shows how to trigger Zebra from an external source. The Arm, Gate and Pulse signals

can all be taken from any element on the system bus. This allows Zebra to be triggered by a

detector for instance, or for multiple Zebras to be chained together to capture the positions of

more than 4 encoders. In this example the Soft In buttons have been used to simulate some signals,

but this is not likely to be a commonly used configuration. It is important to note that the arm signal

is edge triggered, so a manual disarm is still available, and dropping the arm signal will not end

acquisition. It is also important to note that when using external signals, each pulse can capture

positions even outside of a gate signal. The gate signal is only used to count the number of gates

input so that Zebra can disarm itself at the appropriate time.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 22

5. ELECTRICAL CONNECTIONS

This section details the electrical specifications of the front and rear panel inputs and outputs.

5.1 Front Panel inputs

The front panel inputs are a collection of single ended and differential inputs on BNC and LEMO

connections. The diagrams below describe the input circuitry that converts each signal level to the

FPGA’s LVTTL level.

5.1.1 TTL Inputs

IO
[0

-2
3

]

IO0

3V3

T
T
L
I
1 100R

BAT54J

BNC

1

2
3

5
4

1
K

0

SN74LVC17

Figure 21: TTL input schematic

TTL Inputs are able to take TTL, LVTTL, LVCMOS and CMOS signals with amplitude of 2.3V - 5.5V.

The channels are terminated with a 1kΩ resistor. If a 50Ω TTL output is used, some ringing may

occur and an external 50Ω coax terminator may be used (like

http://accessories.picotech.com/attenuators.html#TA051), however tests have shown this is

generally not needed.

5.1.2 NIM Inputs

IO1

IO
[0

-2
3

]

-5V0

N
I
M
I
1

560R

1K0

330R

TL301647R

100R

47R

BNC

1

2
3

5
4

Figure 22: NIM input schematic

NIM input logic levels are defined by levels of current into a 50Ω terminating resistor. Logic “0” is

0mA, and logic “1” is a -16mA current, giving a -0.8V signal.

http://accessories.picotech.com/attenuators.html#TA051

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 23

5.1.3 LVDS Inputs

IO2

IO
[0

-2
3

]

3V3

L
V
D
S
I
1

3K3

3K3

FN1002
EPG

1

6

3
4
5 2

100R

-

+

Figure 23: LVDS input schematic

LVDS inputs are able to take and LVDS signal with a differential voltage of magnitude 100mV to

3.3V. The channels are terminated with a 100Ω resistor.

5.1.4 Open Collector (OC) Input

IO
[0

-2
3

]

IO7

5V0 3V3

O
C
I
3

BNC

1

2
3

5
4

100R

1
K

0 BAT54J

SN74LVC14

Figure 24: Open Collector input schematic

The Open Collector input does not take a specific voltage or current. Instead, it converts open

circuit to logic “0”, and a connection to ground as logic “1”. It does this by pulling the input to 5V

with a 1kΩ terminating resistor, and taking the output through an inverting level converter so that

the 5V signal produced when the input is open circuit corresponds the a logic “0” in the FPGA.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 24

5.1.5 Comparator (CMP) Input

IO10

IO
[0

-2
3

]

5V0

C
M
P
I
4

100R

100R

100R

5K

51R TL3016

100R

BNC

1

2
3

5
4

Figure 25: Comparator input schematic

The comparator input takes 0.5V - 4.5V signals, comparing them to a reference voltage level

produced by a potentiometer (R12, 5kΩ). The channel is terminated with a 100Ω resistor, and by

default the reference level is 1.5V.

5.1.6 PECL Input

IO11

IO
[0

-2
3

]3V3

1V9

P
E
C
L
I
4

SY100EPT21

EPG

1

6

3
4
5 2

3K3

47R

47R

0R0

0R0

p

-

+

Figure 26: PECL input schematic

The PECL input is able to take LVPECL signals with a differential voltage of magnitude 0.6V - 0.8V.

Zebra comes supplied with 0Ω resistors R35 and R43 fitted, which puts the input in DC Coupling

mode. To use AC coupling mode and to make it suitable for both PECL and LVPECL inputs, replace

these resistors with 100nF capacitors.

5.2 Front Panel Outputs

The front panel outputs are a collection of single ended and differential outputs on BNC and LEMO

connections. The diagrams below describe the output circuitry that converts the FPGA’s LVTTL level

to the relevant output signal level.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 25

5.2.1 TTL Output

IO
[0

-2
3

]

IO14

T
T
L
O
1

NC7NZ34
BNC

1

2
3

5
4

NC7NZ34

NC7NZ34

Figure 27: TTL output schematic

TTL outputs convert low power FPGA signals into LVTTL signals, which are also compatible with TTL

and LVCMOS levels, and are able to drive a 50Ω external load.

5.2.2 NIM Output

IO13

IO
[0

-2
3

]

-5V0

N
I
M
O
1

2K2

BNC

1

2
3

5
4

2K2 150R

M
M

B
T

3
9

0
4

1

3

2

1K0

100N
2K2

M
M

B
T

3
9

0
4

1

3

2

Figure 28: NIM output schematic

NIM outputs convert the FPGA signals into 0mA (logic “0”) and -16mA (logic “1”) current signal

which are designed to drive a 50Ω external load.

5.2.3 LVDS Output

IO12

IO
[0

-2
3

]

L
V
D
S
0
1

FIN1001M5 EPG

1

6

3
4
52

Figure 29: LVDS output schematic

LVDS outputs produce a signal with a differential voltage of 350mV. It is designed to drive a 100Ω

load.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 26

5.2.4 Open Collector (OC) Output

IO19

IO
[0

-2
3
]

O
C
O
3

2K2

M
M

B
T

3
9

0
4

1

3

2

BNC

1

2
3

5
4

Figure 30: Open Collector output schematic

The open collector output produces an open circuit on logic “0”, and ties the output to ground on

logic “1”. It is designed to be connected to a sensing circuit with a suitable pull-up resistor.

5.2.5 PECL Output

IO21

IO
[0

-2
3

]

P
E

C
L

O
4

100N EPG

1

6

3
4
52

120R

100N

120R

SY100EPT20

Figure 31: PECL output schematic

The PECL output is differential (with a swing of approximately +-800mV) and AC coupled. Any

receiver connected to this output should internally bias the line to its required level (typically VCC -

1.2V for PECL and LVPECL) and match the impedance of the connecting cable (typically 100Ω

differential). Note that, due to the AC coupling capacitors, this output will not sustain a DC output.

5.3 Rear Panel

Zebra’s rear panel has 4 DB15 connector pairs for encoder inputs and outputs, a power connector

with fuse and earth stud, along with RS232 and JTAG connectors. The electrical interface to each of

these connections is detailed below.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 27

5.3.1 Encoder I/O ports

5
6

IO
[0

-1
5

]

56IO1

56IO2

56IO3

5
6

IO
[0

-1
5

]

56IO8

56IO7

56IO6

56IO5

+5V0

DS26LS31DS26LS32

1
0

0
R

1
5
k

1
0

0
R

DS26LS31

+

-
DS26LS32

1
0

0
R DS26LS32

J27B

D
-T

Y
P

E
 x

 2

1B
2B
3B
4B
5B
6B
7B
8B
9B

11B
10B

12B
13B
14B
15B

1
5
k

1
5

K

1
5
k

J26A

D
-T

Y
P

E
 x

 2

1A
2A
3A
4A
5A
6A
7A
8A
9A

11A
10A

12A
13A
14A
15A

DS26LS31

+

-

+

-

Figure 32: Encoder input/output schematic

The encoder inputs/outputs support RS422 quadrature encoders. These encoders have 3

differential channels: channels A (pins 1 and 2) and B (pins 3 and 4) provide a quadrature encoded

pulse stream which can be decoded into the position of the motor, and channel Z (pins 5 and 6) is

typically an index pulse to give homing information. Each channel is 100Ω terminated, and both

halves are pulled up to 5V via a 15kΩ resistor. These signals are converted to LVTTL and passed to

the FPGA, and the FPGA outputs converted back to RS422 for output. Pin 7 is designated for

encoder power, but is taken straight through Zebra so any low voltage power can be used. Pin 8 is

pulled to ground via a 15kΩ resistor. Pins 9-15 are passed straight through and can be used for any

purpose.

Input (Female socket, Top) Output (Male socket, Bottom)

Function Pin Connection Pin Function

RXA+ 1A To/from FPGA 1B TXA+

RXA- 2A To/from FPGA 2B TXA-

RXB+ 3A To/from FPGA 3B TXB+

RXB- 4A To/from FPGA 4B TXB-

RXZ+ 5A To/from FPGA 5B TXZ+

RXZ- 6A To/from FPGA 6B TXZ-

EXT PWR 7A Direct connection 7B EXT PWR

EXT GND 8A Direct connection 8B EXT GND

Not defined 9A-15A Direct connection 9B-15B Not defined

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 28

56IO3

5
6

IO
[0

-1
5

]

1A

2A

3A

4A

3V3

CONN-5

74LVC86

D18GRN74LVC86

D17RED

R
2

5
8

3
3

0
R

R
2

5
7

3
3

0
R

SN74LVC332

Figure 33: Encoder loss detection circuit

The function of the encoder loss detection circuit is to test for an open circuit condition on channel

A or B. If the cable is disconnected, both halves of the differential input will float to 5V because of

the pull-up resistors shown in Figure 32. Zebra uses an XOR gate for each channel to detect this,

and the logical OR of these signals is passed to the FPGA. This is also used to drive a red LED (to

indicate encoder loss) or a green LED (to indicate encoder present).

It should be noted that some encoders disconnect their outputs to indicate a problem, so a red LED

could mean a disconnected cable or an encoder in error state.

5.3.2 RS232 port

This port is used for host communication with the FPGA. A dual channel RS-232 line transceiver

(MAX3232) is used for this with the following pin-out on the DB-9 connector:

Function PIN

DCD 1
RXD 2
TXD 3
DTR 4
GND 5
DSR 6
RTS 7
CTS 8
RI 9

This communication line uses 115200 baud rate, 8 data bits, no parity, and 1 stop bit. A null modem

lead should be used to connect Zebra to a host PC via a USB-RS232 adapter. For more information

on the protocol, see section 7.2.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 29

5.3.3 JTAG

This should only be used to reprogram the FPGA.

5.3.4 Power

Mains power (100-240V AC) is supplied via an IEC 60320 C14 socket on the back (using a standard

“kettle lead”). The state of the internal +5V, +3.3V, +1.2V and -5V lines is indicated with status LEDs

on the front, and the power switch LED will light when mains is applied.

Zebra is protected with a 0.5A fuse accessed with a screw in connector on the back panel.

An earthing stud is provided to tie the chassis to ground and reduce noise. This is internally

connected to the earth of the mains connector. In operation Zebra should be earthed either

through the mains lead or through the earthing stud.

General power consumption of Zebra is 6-7W. There are ventilation holes in the top panel to allow

for heat dissipation, but forced ventilation is not required.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 30

6. FPGA DETAILS

Zebra hardware includes a Xilinx Spartan-3 FPGA (part number XC6SLX9-2TQG144) and surrounding

digital components all interfacing directly to FPGA.

Spartan-6

SRAM Async
A0-A18

XC6SLX9-2TQG144

IS62WV20488BLL-25

16Mbit 2MBx8 Data 0-7

Contr 0-2

SPI Flash Mem

M25P16

16Mbit C D S W HOLD

Q
Config PROM

XCF04S

4Mbit

JTAG

RS422 RS232In5

Out5

InD5

3

5

21

83

RS232
Transceiver

RST

POWER

AC

INLET

R
E

A
R

P

A
N

E
L

ZEBRA - Functional Schematic (Rev 0.4)

3 x

TX

3 x

RC

50MHz

LVDS

NIM

TTL

OC

PECL

CMP

OS

In 1 In 2 In 3 In 4 Out 1 Out 2 Out 3 Out 4

F
R

O
N

T

P

A
N

E
L

3 3 3 3 3 3 3
3

EnTx5

OutD5

3

StatRc5
4

4

Port 6
Port 5

5V0

3V3

1V2

-5V0

2 -

OR

3 -

OR

LVDS

NIM

TTL

OS

2 -

OR

3 -

OR

LVDS

TTL TTL

LVDS

NIM

TTL

OC

PECL

NIM

LVDS

NIM

TTL

LVDS

TTL TTL

RST

+5.0V

+3.3V

+1.2V

-5.0V

OS

2 -

OR

3 -

OR

OS

2 -

OR

3 -

OR

OS

2 -

OR

3 -

OR

OS

2 -

OR

3 -

OR

OS

2 -

OR

3 -

OR

OS

2 -

OR

3 -

OR

L
V

D
S

 /
 N

IM
 /
 T

T
L

 t
o

L
V

T
T

L
 T

ra
n

s
la

to
r

L
V

D
S

 /
 N

IM
 /
 T

T
L

 t
o

L
V

T
T

L
 T

ra
n

s
la

to
r

L
V

D
S

 /
 O

C
 /
 T

T
L

 t
o

L
V

T
T

L
 T

ra
n

s
la

to
r

P
E

C
L

 /
 C

M
P

 /
 T

T
L

 t
o

L
V

T
T

L
 T

ra
n

s
la

to
r

L
V

T
T

L
 t

o
 T

T
L

 /
 N

IM
 /

L
V

D
S

 T
ra

n
s

la
to

r

L
V

T
T

L
 t

o
 T

T
L

 /
 N

IM
 /

L
V

D
S

 T
ra

n
s

la
to

r

L
V

T
T

L
 t

o
 T

T
L

 /
 O

C
 /

L
V

D
S

 T
ra

n
s

la
to

r

L
V

T
T

L
 t

o
 T

T
L

 /
 N

IM
 /

P
E

C
L

 T
ra

n
s

la
to

r

F
R

O
N

T

P

A
N

E
L

IN
T

E
R

F
A

C
E

RS422

In6

Out6

In7

Out7

In8

4

4

Port 7

4

4

Port 8

2

125MHz

4

3

5

2

RS422 RS422 RS422

3

3

RS422

3

3

RS422

3

3

Out8 RS422

3

3

R
E

A
R

P

A
N

E
L

IN
T

E
R

F
A

C
E

Figure 34: Zebra functional schematic

The design is divided into 4 main functional blocks, and all of these modules have external

interfaces to specific IO channels. The details of FPGA firmware design modules and their

implementation are described in TDI-CTRL-TNO-033 Zebra FPGA Firmware Documentation.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 31

Logic Control

(zebra_logic.vhd)

Position Compare

(zebra_poscomp.vhd)

Communications

(zebra_pblaze.vhd)

UART

TX

UART

RX

SRAM Control

(zebra_sram.vhd)

256x16

Configuration Memory

Encoder

inputs

arm/

gate/

pulse

16MBit

SRAM

16MBit

SPI Flash

12 x LVTTL

Logic Inputs

4 Channels x

Encoder Inputs

12 x LVTTL

Logic Outputs

4 Channels x

Encoder Outputs

RS232

Figure 35: Zebra FPGA firmware top-level block diagram

6.1 Clocks

The FPGA design operates on two asynchronous clock domains which are 50 MHz system clock, and

40MHz SRAM clock. System clock is provided using an external 50MHz oscillator through and

40MHz SRAM clock is generated by an internal PLL. J35 is used to select this 50 MHz clock and

should be in place.

6.2 Position Capture

The aim of this Position Capture is to output pulses and store encoder values either at set positions,

on an internal clock, or an external trigger. The following diagram shows a typical Position Capture

output.

Figure 36: Position Capture timing diagram.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 32

Position Capture module is tightly coupled with the external SRAM module (IS62WV20488BLL)

which is a high-speed, low power, 2M-word by 8-bit CMOS static RAM. This memory system is

connected to the FPGA and used in position-capture mode in order to store timestamp, encoder,

divider, and system bus outputs. The maximum number of pulse output samples that can be stored

depends on the user selected fields and is calculated as:

Number of samples = 2e6 / (4 * <# of fields selected>)

Where fields correspond to:

Timestamp
Encoder

#1

Encoder

#2

Encoder

#3

Encoder

#4

Sys Bus

LSB

Sys Bus

MSB

Divider

#1

Divider

#2

Divider

#3

Divider

#4

Each field is a 32-bit value, and can be selected/de-selected for capture by the user using the

PC_BIT_CAP.

The SRAM takes approx 58 clock cycles to store a set of fields to it, so the minimum pulse step is

0.0012ms. It the prescaler on the block is set to work with seconds or 10 seconds as the time unit,

this minimum increases to 0.0003s or 0.003s respectively. If position compare timings below these

are used then the number of points downloaded will not match with the number of pulses

produced, and Zebra will require a soft reset to recover.

The time taken to decode the RS422 signals is between 9 and 10 FPGA clock cycles, depending on

how the input pulse is aligned which takes 180-200ns. Adding the RS422 input conversion delay of

23ns and a TTL output delay of 4ns, it takes ~227ns between an encoder signal pulse arriving at

Zebra and it producing a position compare pulse from a TTL output.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 33

7. SOFTWARE INTEGRATION

This section provides third-parties with the information for integrating Zebra into their control

system.

7.1 Register Address Mapping

From the RS232 serial link, addresses 0x00 to 0xFF can be accessed for read and write access. Some

of these addresses are meaningful for either read or write only as indicated in the following table.

7.1.1 Zebra Logic

Addr Name Register Description Used Bits R/W

0x00 AND1_INV And4 gate-1 invert mask [3: 0] R/W

0x01 AND2_INV And4 gate-2 invert mask [3: 0] R/W

0x02 AND3_INV And4 gate-3 invert mask [3: 0] R/W

0x03 AND4_INV And4 gate-4 invert mask [3: 0] R/W

0x04 AND1_ENA And4 gate-1 input mask [3: 0] R/W

0x05 AND2_ENA And4 gate-2 input mask [3: 0] R/W

0x06 AND3_ENA And4 gate-3 input mask [3: 0] R/W

0x07 AND4_ENA And4 gate-4 input mask [3: 0] R/W

0x08 AND1_INP1 And4 gate-1, input 1 select [5: 0] R/W

0x09 AND1_INP2 And4 gate-1, input 2 select [5: 0] R/W

0x0A AND1_INP3 And4 gate-1, input 3 select [5: 0] R/W

0x0B AND1_INP4 And4 gate-1, input 4 select [5: 0] R/W

0x0C AND2_INP1 And4 gate-2, input 1 select [5: 0] R/W

0x0D AND2_INP2 And4 gate-2, input 2 select [5: 0] R/W

0x0E AND2_INP3 And4 gate-2, input 3 select [5: 0] R/W

0x0F AND2_INP4 And4 gate-2, input 4 select [5: 0] R/W

0x10 AND3_INP1 And4 gate-3, input 1 select [5: 0] R/W

0x11 AND3_INP2 And4 gate-3, input 2 select [5: 0] R/W

0x12 AND3_INP3 And4 gate-3, input 3 select [5: 0] R/W

0x13 AND3_INP4 And4 gate-3, input 4 select [5: 0] R/W

0x14 AND4_INP1 And4 gate 4, input 1 select [5: 0] R/W

0x15 AND4_INP2 And4 gate 4, input 2 select [5: 0] R/W

0x16 AND4_INP3 And4 gate 4, input 3 select [5: 0] R/W

0x17 AND4_INP4 And4 gate 4, input 4 select [5: 0] R/W

0x18 OR1_INV Or4 gate-1 invert mask [3: 0] R/W

0x19 OR2_INV Or4 gate-2 invert mask [3: 0] R/W

0x1A OR3_INV Or4 gate-3 invert mask [3: 0] R/W

0x1B OR4_INV Or4 gate-4 invert mask [3: 0] R/W

0x1C OR1_ENA Or4 gate-1 input mask [3: 0] R/W

0x1D OR2_ENA Or4 gate-2 input mask [3: 0] R/W

0x1E OR3_ENA Or4 gate-3 input mask [3: 0] R/W

0x1F OR4_ENA Or4 gate-4 input mask [3: 0] R/W

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 34

0x20 OR1_INP1 Or4 gate-1, input 1 select [5: 0] R/W

0x21 OR1_INP2 Or4 gate-1, input 2 select [5: 0] R/W

0x22 OR1_INP3 Or4 gate-1, input 3 select [5: 0] R/W

0x23 OR1_INP4 Or4 gate-1, input 4 select [5: 0] R/W

0x24 OR2_INP1 Or4 gate-2, input 1 select [5: 0] R/W

0x25 OR2_INP2 Or4 gate-2, input 2 select [5: 0] R/W

0x26 OR2_INP3 Or4 gate-2, input 3 select [5: 0] R/W

0x27 OR2_INP4 Or4 gate-2, input 4 select [5: 0] R/W

0x28 OR3_INP1 Or4 gate-3, input 1 select [5: 0] R/W

0x29 OR3_INP2 Or4 gate-3, input 2 select [5: 0] R/W

0x2A OR3_INP3 Or4 gate-3, input 3 select [5: 0] R/W

0x2B OR3_INP4 Or4 gate-3, input 4 select [5: 0] R/W

0x2C OR4_INP1 Or4 gate 4, input 1 select [5: 0] R/W

0x2D OR4_INP2 Or4 gate 4, input 2 select [5: 0] R/W

0x2E OR4_INP3 Or4 gate 4, input 3 select [5: 0] R/W

0x2F OR4_INP4 Or4 gate 4, input 4 select [5: 0] R/W

0x30 GATE1_INP1 Gate generator 1, Set Input #1 Select [5:0] R/W

0x31 GATE2_INP1 Gate generator 2, Set Input #1 Select [5:0] R/W

0x32 GATE3_INP1 Gate generator 3, Set Input #1 Select [5:0] R/W

0x33 GATE4_INP1 Gate generator 4, Set Input #1 Select [5:0] R/W

0x34 GATE1_INP2 Gate generator 1, Rst Input #2 Select [5:0] R/W

0x35 GATE2_INP2 Gate generator 2, Rst Input #2 Select [5:0] R/W

0x36 GATE3_INP2 Gate generator 3, Rst Input #2 Select [5:0] R/W

0x37 GATE4_INP2 Gate generator 4, Rst Input #2 Select [5:0] R/W

0x38 DIV1_DIVLO Pulse Divider 1, Divisor Low Word [15:0] R/W

0x39 DIV1_DIVHI Pulse Divider 2, Divisor High Word [15:0] R/W

0x3A DIV2_DIVLO Pulse Divider 2, Divisor Low Word [15:0] R/W

0x3B DIV2_DIVHI Pulse Divider 2, Divisor High Word [15:0] R/W

0x3C DIV3_DIVLO Pulse Divider 1, Divisor Low Word [15:0] R/W

0x3D DIV3_DIVHI Pulse Divider 2, Divisor High Word [15:0] R/W

0x3E DIV4_DIVLO Pulse Divider 2, Divisor Low Word [15:0] R/W

0x3F DIV4_DIVHI Pulse Divider 2, Divisor High Word [15:0] R/W

0x40 DIV1_INP Pulse Divider 1, Input Select [5:0] R/W

0x41 DIV2_INP Pulse Divider 2, Input Select [5:0] R/W

0x42 DIV3_INP Pulse Divider 3, Input Select [5:0] R/W

0x43 DIV4_INP Pulse Divider 4, Input Select [5:0] R/W

0x44 PULSE1_DLY Pulse generator 1, Delay [15:0] R/W

0x45 PULSE2_DLY Pulse generator 2, Delay [15:0] R/W

0x46 PULSE3_DLY Pulse generator 3, Delay [15:0] R/W

0x47 PULSE4_DLY Pulse generator 4, Delay [15:0] R/W

0x48 PULSE1_WID Pulse generator 1, Pulse Width [15:0] R/W

0x49 PULSE2_WID Pulse generator 2, Pulse Width [15:0] R/W

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 35

0x4A PULSE3_WID Pulse generator 3, Pulse Width [15:0] R/W

0x4B PULSE4_WID Pulse generator 4, Pulse Width [15:0] R/W

0x4C PULSE1_PRE Pulse generator 1, Prescaler (time unit select) [15:0] R/W

0x4D PULSE2_PRE Pulse generator 2, Prescaler (time unit select) [15:0] R/W

0x4E PULSE3_PRE Pulse generator 3, Prescaler (time unit select) [15:0] R/W

0x4F PULSE4_PRE Pulse generator 4, Prescaler (time unit select) [15:0] R/W

0x50 PULSE1_INP Pulse generator 1, Input Select [5:0] R/W

0x51 PULSE2_INP Pulse generator 2, Input Select [5:0] R/W

0x52 PULSE3_INP Pulse generator 3, Input Select [5:0] R/W

0x53 PULSE4_INP Pulse generator 4, Input Select [5:0] R/W

0x54 POLARITY

Functional blocks polarity select (0: Rising edge, 1: Falling edge
bits[3 : 0] : Gate generator N input-1 polarity
bits[7 : 4] : Gate generator N input-2 polarity
bits[11: 8] : Pulse divider N input polarity
bits[15:12] : Pulse generator N input polarity

[15:0] R/W

0x55 QUAD_DIR Quadrature Encoder Direction input select [5:0] R/W

0x56 QUAD_STEP Quadrature Encoder Step input select [5:0] R/W

0x57 PC_ARM_INP External arm input select [5:0] R/W

0x58 PC_GATE_INP External gate input select [5:0] R/W

0x59 PC_PULSE_INP External pulse input select [5:0] R/W

0x60 OUT1_TTL Output multiplexer select for Channel #1 TTL Output [5:0] R/W

0x61 OUT1_NIM Output multiplexer select for Channel #1 NIM Output [5:0] R/W

0x62 OUT1_LVDS Output multiplexer select for Channel #1 LVDS Output [5:0] R/W

0x63 OUT2_TTL Output multiplexer select for Channel #2 TTL Output [5:0] R/W

0x64 OUT2_NIM Output multiplexer select for Channel #2 NIM Output [5:0] R/W

0x65 OUT2_LVDS Output multiplexer select for Channel #2 LVDS Output [5:0] R/W

0x66 OUT3_TTL Output multiplexer select for Channel #3 TTL Output [5:0] R/W

0x67 OUT3_OC Output multiplexer select for Channel #3 Open Collector Output [5:0] R/W

0x68 OUT3_LVDS Output multiplexer select for Channel #3 LVDS Output [5:0] R/W

0x69 OUT4_TTL Output multiplexer select for Channel #4 TTL Output [5:0] R/W

0x6A OUT4_NIM Output multiplexer select for Channel #4 NIM Output [5:0] R/W

0x6B OUT4_PECL Output multiplexer select for Channel #4 PECL Output [5:0] R/W

0x6C OUT5_ENCA Output multiplexer select for Encoder Channel #1 A Output [5:0] R/W

0x6D OUT5_ENCB Output multiplexer select for Encoder Channel #1 B Output [5:0] R/W

0x6E OUT5_ENCZ Output multiplexer select for Encoder Channel #1 Z Output [5:0] R/W

0x6F OUT5_CONN
Output multiplexer select for Encoder Channel #1 Disconnect
Output

[5:0] R/W

0x70 OUT6_ENCA Output multiplexer select for Encoder Channel #2 A Output [5:0] R/W

0x71 OUT6_ENCB Output multiplexer select for Encoder Channel #2 B Output [5:0] R/W

0x72 OUT6_ENCZ Output multiplexer select for Encoder Channel #2 Z Output [5:0] R/W

0x73 OUT6_CONN
Output multiplexer select for Encoder Channel #2 Disconnect
Output

[5:0] R/W

0x74 OUT7_ENCA Output multiplexer select for Encoder Channel #3 A Output [5:0] R/W

0x75 OUT7_ENCB Output multiplexer select for Encoder Channel #3 B Output [5:0] R/W

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 36

0x76 OUT7_ENCZ Output multiplexer select for Encoder Channel #3 Z Output [5:0] R/W

0x77 OUT7_CONN
Output multiplexer select for Encoder Channel #3 Disconnect
Output

[5:0] R/W

0x78 OUT8_ENCA Output multiplexer select for Encoder Channel #4 A Output [5:0] R/W

0x79 OUT8_ENCB Output multiplexer select for Encoder Channel #4 B Output [5:0] R/W

0x7A OUT8_ENCZ Output multiplexer select for Encoder Channel #4 Z Output [5:0] R/W

0x7B OUT8_CONN
Output multiplexer select for Encoder Channel #4 Disconnect
Output

[5:0] R/W

0x7C DIV_FIRST
Pulse divider N first pulse select. Set to 0 for first pulse out of OUTN,
set to 1 for first pulse out of OUTD

[3: 0] R/W

0x7E SYS_RESET
Soft Reset

• Resets all functional blocks
[0] W

0x7F

SOFT_IN
Soft In register

 4-bits software set value
[3:0] R/W

7.1.2 Position Capture

Addr Name Register Description Used Bits R/W

0x80 POS1_SETLO Quadrature Decoder 1 Load Low Register [15:0] R/W

0x81 POS1_SETHI Quadrature Decoder 1 Load High Register [15:0] R/W

0x82 POS2_SETLO Quadrature Decoder 2 Load Low Register [15:0] R/W

0x83 POS2_SETHI Quadrature Decoder 2 Load High Register [15:0] R/W

0x84 POS3_SETLO Quadrature Decoder 3 Load Low Register [15:0] R/W

0x85 POS3_SETHI Quadrature Decoder 3 Load High Register [15:0] R/W

0x86 POS4_SETLO Quadrature Decoder 4 Load Low Register [15:0] R/W

0x87 POS4_SETHI Quadrature Decoder 4 Load High Register [15:0] R/W

0x88 PC_ENC

Quadrature Channel Select for Position Capture

 0 – Quad #1

 1 – Quad #2

 2 – Quad #3

 3 – Quad #4

 4 – Sum of all (active?) quadrature counter outputs

[2:0] R/W

0x89 PC_TSPRE Timestamp Clock Prescaler (time unit select) [15:0] R/W

0x8A PC_ARM_SEL

Arm Input Control

 0 – Soft arm

 1 – External arm input

[0]

R/W

0x8B PC_ARM Soft Arm (Self cleared) [0] R/W

0x8C PC_DISARM Soft Disarm (Self cleared) [0] R/W

0x8D PC_GATE_SEL

Gate output counter control

 0 – Quadrature decoder position output

 1 – Timestamp counter

 2 – External gate input

[1:0] R/W

0x8E PC_GATE_STARTLO Gate Start/Delay Low Value [15:0] R/W

0x8F PC_GATE_STARTHI Gate Start/Delay High Value [15:0] R/W

0x90 PC_GATE_WIDLO Gate Width Low Value [15:0] R/W

0x91 PC_GATE_WIDHI Gate Width High Value [15:0] R/W

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 37

0x92 PC_GATE_NGATELO Gate NGates Low Value [15:0] R/W

0x93 PC_GATE_NGATEHI Gate NGates High Value [15:0] R/W

0x94 PC_GATE_STEPLO Gate Step Low Value [15:0] R/W

0x95 PC_GATE_STEPHI Gate Step High Value [15:0] R/W

0x96 PC_PULSE_SEL

Pulse output counter control

 0 – Quadrature decoder position output

 1 – Timestamp counter

 2 – External gate input

[1:0] R/W

0x97 PC_PULSE_STARTLO Pulse Output Start/Delay Low Value [15:0] R/W

0x98 PC_PULSE_STARTHI Pulse Output Start/Delay High Value [15:0] R/W

0x99 PC_PULSE_WIDLO Pulse Output Width Low Value [15:0] R/W

0x9A PC_PULSE_WIDHI Pulse Output Width High Value [15:0] R/W

0x9B PC_PULSE_STEPLO Pulse Output Step Low Value [15:0] R/W

0x9C PC_PULSE_STEPHI Pulse Output Step High Value [15:0] R/W

0x9D PC_PULSE_MAXLO Pulse Output NPulse Low Value [15:0] R/W

0x9E PC_PULSE_MAXHI Pulse Output NPulse High Value [15:0] R/W

0x9F PC_BIT_CAP

Position Capture – data capture mask
bits[3 : 0] : Encoder N capture
bits[5 : 4] : System bus 1, 2 capture
bits[10: 6] : Pulse divider N counter value capture

[10:0] R/W

0xA0 PC_DIR Position Capture – scan direction [0] R/W

0xA1 PC_PULSE_DLYLO Position Capture – pulse delay Low Value [15:0] R/W

0xA2 PC_PULSE_DLYHI Position Capture – pulse delay High Value [15:0] R/W

7.1.3 System Status and Control

Addr Name Register Description Used Bits R/W

0xF0

SYS_VER
FPGA Firmware Version

[15: 0]

R

0xF1

SYS_STATERR System Status
bits[3-0] : Pulsegen N module error
bit[4] : SRAM interface buffer overflow error

[15:0]

R

0xF2 SYS_STAT1LO System Bus – bits[15:0] [15:0] R

0xF3 SYS_STAT1HI System Bus – bits[31:16] [15:0] R

0xF4 SYS_STAT2LO System Bus – bits[47:32] [15:0] R

0xF5 SYS_STAT2HI System Bus – bits[63:48] [15:0] R

0xF6 PC_NUM_CAPLO Pulse counter lower word [15:0] R

0xF7 PC_NUM_CAPHI Pulse counter upper word [15:0] R

7.2 RS232 Protocol

Communication to/from Zebra is performed over RS232 using an ASCII protocol. See section 5.3.2

for baud rate and serial port information. Each command terminates with “\n” delimiter character.

Zebra ignores any carriage returns in the message.

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 38

7.2.1 Register Write

Write a 16-bit value into one of the R/W registers show in section 7.1

Client sends: W<AA><DDDD>\n

Zebra responds: W<AA>OK\n

Where:

 <AA> : 8-bit hex register address as shown in section 7.1

 <DDDD> : 16-bit register write value, big endian

E.g. to write 1 to PC_ARM (register 0x8B):

Client sends: W8B0001\n

Zebra responds: W8B<AA>OK\n

7.2.2 Register Read

Read back the value of a register shown in section 7.1

Client sends: R<AA>\n

Zebra responds: R<AA><DDDD>\n

Where:

 <AA> : 8-bit hex register address as shown in section 7.1

 <DDDD> : 16-bit register write value

E.g. to read OUT1_TTL (register 0x60) which is set to AND1 (element 32 on the system bus):

Client sends: R60\n

Zebra responds: R600020OK\n

7.2.3 Configuration Store

Store the values of all registers shown in section 7.1 into external flash and respond when

complete. This action takes about a second to complete.

Client sends: S\n

Zebra responds: SOK\n

CTRL

Doc No: TDI-CTRL-TNO-042

Issue: 0.9

Date: 17
th

 April 2014

Page: 39

7.2.4 Configuration Restore

Load the values of all registers shown in section 7.1 from external flash and respond when

complete. This action takes about a second to complete.

Client sends: L\n

Zebra responds: LOK\n

7.2.5 Position Capture Data Offload

Position Capture data is offloaded automatically without user issuing a command. Note that all

messages begin with the character P so that they can be filtered out of the command response

messages above. Data is encapsulated between “PR” and “PX” character sets, and represented in

hex ASCII format as shown below.

PR\n
P<TS><ENC1><ENC2><ENC3><ENC4><SYS1><SYS2><DIV1><DIV2><DIV3><DIV4>\n
P<TS><ENC1><ENC2><ENC3><ENC4><SYS1><SYS2><DIV1><DIV2><DIV3><DIV4>\n
....
P<TS><ENC1><ENC2><ENC3><ENC4><SYS1><SYS2><DIV1><DIV2><DIV3><DIV4>\n
PX\n

Where:

 <TS> : 32-bit timestamp, in 50MHz clock ticks since PC_ARM

 <ENCN> : 32-bit encoder channel #N position

 <SYSN> : 32-bit upper and lower words of System Bus.

 <DIVN> : 32-bit divider channel #N output

Timestamp field is stored and sent for each pulse output, while all other fields are user selected

depending on the value of register PC_BIT_CAP.

E.g. if ENC1 and DIV1 are selected, the interrupts will take the following form:

PR\n
P012345670123456701234567\n
....
PX\n

Data offload starts automatically by sending “PR” on Position Capture arm. As soon as data is

captured, it is sent while scanning continues. When all captured data is offloaded from history

buffer, “PX” is sent concluding the data transfer. In case of buffer overrun, an error flag in

SYS_STATERR is set.

